
Towards MLOps in Mobile Development with a
Plug-in Architecture for Data Analytics
Rustem Dautov
SINTEF Digital
Oslo, Norway

rustem.dautov@sintef.no

Erik Johannes Husom
SINTEF Digital
Oslo, Norway

erik.husom@sintef.no

Fotis Gonidis
Gnomon Informatics SA

Thessaloniki, Greece
f.gonidis@gnomon.com.gr

Abstract—Smartphones are increasingly used as universal IoT
gateways collecting data from connected sensors in a wide
range of industrial applications. With the increasing computing
capabilities, they are used not just for simple data aggregation
and transferring, but have now become capable of performing
advanced data analytics. As AI has become a key element in
enterprise software systems, many software development teams
rely on dedicated Machine Learning (ML) engineers who often
follow agile development practices in their work. However, in
the context of mobile app development, there is still limited
tooling support for MLOps, mainly due to unsuitability of native
programming languages such as Java and Kotlin to support ML-
related programming tasks. This paper aims to address this gap
and describes a plug-in architecture for developing, deploying
and running ML modules for data analytics on the Android
platform. The proposed approach advocates for modularity,
extensibility, customisation, and separation of concerns, allowing
ML engineers to develop their components independently from
the main application in an agile and incremental manner.

Index Terms—Internet of Things, Mobile Development, An-
droid, Machine Learning, MLOps, Plug-in Architecture, Fitbit.

I. INTRODUCTION

Smartphones have been traditionally used by end users to
view and control IoT devices, either directly using some form
of device-to-device communication or via IoT cloud platforms.
In recent years, the role of smartphones has evolved. Thanks
to the presence of multiple built-in sensors (e.g., GPS, camera,
accelerometer, gyroscope, proximity, etc.), as well as a wide
range of wireless communication technologies (e.g., Wi-Fi,
Bluetooth, RFID, NFC, etc.) they now play a significant role of
universally adopted edge gateways, often running increasingly
advanced data processing and analytics tasks.

As more and more data analytics takes place on smart-
phones, mobile application development is experiencing an
increased demand for data scientists and Machine Learning
(ML) engineers, i.e. software developers with a particular
focus on working with large amounts of time-series sensor
data collected from downstream IoT devices. Many mobile
development teams have a clear separation of roles and re-
sponsibilities within their projects. ML engineers focus on
the data science lifecycle, namely data ingestion and prepa-
ration, model development, and deployment, with periodical
re-training and re-deploying of the models to adjust for freshly
labelled data, data drift, user feedback, or changes in model in-

puts, caused by evolving business requirements [1]. In parallel
to this, traditional mobile developers focus on the app lifecycle
– i.e. building, maintaining, and continuously updating the
larger business application. Both parties work hand in hand
to make the overall business application and data analytics
perform well together to meet end-to-end performance, quality,
reliability, and user experience goals.

To date, there are multiple frameworks and development
environments for rapid and user-friendly mobile development
(both for Android and iOS, as well as cross-platform), facil-
itating agile development cycles and shorter time to market.
However, there is still a gap in terms of technological and
tooling support for ML engineers on mobile platforms. In
particular, the use of Python, the de facto programming
language in data science, is still quite limited in mobile OSs.
While it is in general possible to code stand-alone scripts and
run the Python interpreter both on Android and iOS, there is
a pressing challenge of seamlessly integrating ML inference
modules written in Python into larger apps as part of business
logic responsible for data analytics [2].

As a step forward towards addressing this limitation, this
paper presents an extensible architecture for rapid development
of data analytics on the Android mobile platform. The pro-
posed architecture motivates for clear separation of concerns
between app developers and ML engineers, allowing the latter
to build and manage data processing modules independently
from the main application logic. This is achieved by employ-
ing the prominent plug-in architectural pattern, which brings
benefits in terms of application logic extensibility, flexibility,
and customisation. This becomes especially important in the
context of DevOps, MLOps, and other agile development
practices, which depend on frequent non-blocking releases of
software updates. Accordingly, the contribution of this paper is
two-fold: i) the conceptual design of a plug-in architecture for
deploying and running ML modules on the Android platform,
and ii) a proof of concept implementation of the proposed
architecture for fatigue detection using time-series sensor data
from Fitbit fitness trackers.

The rest of the paper is organised as follows. Section
II describes the motivation behind this research by looking
deeper into the research context and identifying the gaps in
the current state of art and practice. Section III formulates the
challenges from an MLOps perspective, and then proposes a



plug-in architecture to address them. Section IV presents a
proof of concept prototype, demonstrating the feasibility of
the proposed approach with a real-life application scenario.
Section V concludes the paper by critically evaluating the
results and outlining directions for further work.

II. RESEARCH CONTEXT AND MOTIVATION

A. Technological Trends Underpinning the Research Context

Mobile software development is now experiencing the fol-
lowing concurrent, yet inter-connected trends:
1) Smartphones as universal IoT gateways: IoT-based com-
munication is relevant to many vertical domains with a wide
adoption of the ubiquitous sensor technology (healthcare, auto-
motive, manufacturing, agritech, etc.). Today, the IoT gateway
market is managed by proprietary hardware. An alternative,
allowing connecting to the Internet without any proprietary
hardware, is to have a universal gateway that can enable
configuration-based easy, dynamic plug-in for any kind of IoT
devices. Smartphones are increasingly used as such universal
IoT gateways, thus optimising the costs and increasing the
adoption of the IoT technology for common smartphone users.
Furthermore, in many cases smartphones add more value by
collecting data not only from downstream IoT devices, but
also from built-in sensors and the user activity, thus facilitating
more intelligent context-aware decisions.
2) AI on the edge: IoT time-series data is usually collected
from multiple sensors sampling at a high frequency, often
resulting in extreme amounts of collected data. Sending them
to an IoT cloud for remote processing is often impractical
due to limited network bandwidth and high latency. Another
challenge, especially in telemedicine scenarios, is the data pri-
vacy, which restricts sending personal information externally
[3]. The increased costs incurred by storing data and running
‘heavy’ data analytics in the cloud is another common concern.
Therefore, businesses are moving AI capabilities to the edge
to enable real-time actions in the field, i.e. as close to the
original source of data as possible [4], [5].
3) Adoption of agile development practices: DevOps is a cul-
tural movement containing a set of practices that facilitate the
collaboration between development, testing, and IT operations
[6]. Mobile DevOps takes these concepts further and applies
them to accelerate the development of mobile apps, while
maintaining the quality. Once integrated, these practices bring
considerable positive effect on productivity, efficiency, client
satisfaction, and eventually on revenues. In parallel to this, the
increased integration of ML and AI in enterprise-level software
has led to the emergence of the so-called MLOps [2], [7] –
an adaptation of DevOps practices towards the ML domain,
that aims to deploy and maintain ML models in production
reliably and efficiently. To achieve this, MLOps promotes
automation and monitoring at all steps of the ML system
lifecycle, including integration, testing, releasing, deployment
and infrastructure management.

Taken together, these three converging trends lead to an
increased demand for running advanced data analytics on

mobile platforms, which in its turn calls for dedicated ML
engineers to be involved in the agile development process,
driven by frequent updates and continuous releases. While
this situation appears to bring considerable benefits to involved
stakeholders, the existing tooling support fails to keep up with
these trends, as we further discuss below.

B. State of Art and Practice

ML engineers in their work have to extract, process, de-
fine, clean, arrange and then understand the data to develop
intelligent algorithms. Thanks to the rich support for all these
tasks, Python has become the de facto programming language
used in ML. This is due to its simplicity and readability,
which allows ML engineers to focus on the algorithms and
results, rather than on structuring code and keeping it man-
ageable. This simplicity also allows other people to review
and improve the code. Another advantage is that Python is
also usually consistent across projects and platforms, allowing
to seamlessly use the same few mainstream modules (e.g.
keras, tensorflow, pandas, scikit-learn, numpy
and several others1).

The wide use of Python in ML has also led to the emergence
of multiple cross-platform tools that allow running Python
scripts almost on any platform, often from within a non-Python
execution environment. One of such platforms is Android OS,
which natively supports only Java and Kotlin code. To be
able to run Python, the community has come up with several
frameworks2 that provide a bridge between the native Android
and the external Python code. For example, QPython and
Termux3 offer a command line interface and a simple text
editor for typing and running stand-alone Python scripts. The
cross-platform frameworks BeeWare and Kivy4 can be used to
package Python code as Android apps with support for user
interfaces and seamless access to most Android services.

These existing tools are good for quick prototyping, but
have limited support for integration with native Java/Kotlin
code, especially in the context of a large enterprise-level
project that follows DevOps practices. A notable exception
is Chaquopy Python SDK5 that allows running Python scripts
from Android-native code. It can be integrated using standard
build automation tools such as Gradle and Maven. This proves
especially useful in a team of Android developers coding in
Java/Kotlin and ML engineers coding in Python.

In parallel to this, the research community has been trying
to develop solutions for deploying and running ML models
on resource-constrained platforms (including smartphones),
typically investigated under the umbrella term Edge AI [8],
[9]. The main focus, however, has primarily been on creating
more light-weight, yet accurate enough models, with very
few works focusing on the integration aspects of MLOps
aspects. A relevant approach is described in [10], where the

1https://www.upgrad.com/blog/top-python-libraries-for-machine-learning
2https://wiki.python.org/moin/Android
3https://www.qpython.com, https://termux.com
4https://beeware.org, https://kivy.org
5https://chaquo.com



authors propose their solution for building light-weight ML
models, deploying and running them on almost any platform,
including Android. Although the approach enables loosely-
coupled interaction between multiple software components, it
depends on the additional containerisation middleware, which
is not usually present on most users’ smartphones.

There are also several enterprise-level MLOps tools that
automate the lifecycle of AI/ML components on mobile plat-
forms. Two prominent examples are TensorFlow Lite and
PyTorch Mobile,6 which allow training light-weight models,
deploying and running them on Android and iOS. The pro-
vided SDKs are available in several mobile-native languages,
but are limited to mobile-oriented scenarios, such as text,
image, audio and video analysis.

The lack of Python support forces mobile developers to code
in native programming languages, which are not well-suited
for such tasks due to complexity and rigidity, resulting in more
time spent on code structuring and management and leading
to slower development pace. Companies are often forced to
completely drop the promising idea of running AI-driven
business logic on the mobile edge and roll back to keeping
everything in a centralised cloud (or less commonly – in a fog
environment). In these circumstances, the universal adoption
of MLOps for mobile software development to achieve agile
and rapid integration of ML features is hindered.

With this paper, we aim to address these challenges and
allow ML engineers to be fully involved in mobile de-
velopment following agile development practices. The main
goal of this research effort is to bridge the gap between
DevOps and MLOps in the context of mobile software de-
velopment. Both disciplines are mature enough on their own,
with commercially-available products on the market. However,
their parallel use for mobile development by a team of Android
developers and ML engineers, remains an open question.

III. PROPOSED APPROACH: PLUG-IN ARCHITECTURE

Business requirements for timely data processing on the
mobile edge tend to continuously evolve [11]. These changes
may be triggered by multiple factors, such as, for example,
newly introduced or updated application scenarios or new
hardware sensors integrated into the system. This naturally
calls for a loosely-coupled architecture, wherein frequently up-
dated components, i.e. the ones containing the data processing
logic, can be seamlessly added or removed, with minimum
disruption to the rest of the running system. From an MLOps
perspective, this overall challenge has the following aspects:

1) Modularity to enable separation of concerns: A modular
architecture will reduce complexity and allow developers to
deploy new features independently from each other.
2) Agile support for frequent updates: New features added
to the system should have minimum effect on the rest of the
project, meaning that incremental code updates are applied in
a safe, isolated and non-blocking manner.

6https://www.tensorflow.org/lite, https://pytorch.org/mobile

3) Multi-language support: ML engineers can continue cod-
ing their components in a programming language and using a
technology stack they are most proficient with.

The described challenges have traditionally been addressed
by researchers and practitioners by employing various de-
composition techniques, such as component-based software
engineering [12] or the service-oriented architecture [13]. A
particularly relevant pattern for loosely-coupled software sys-
tems composed of two main components – namely, a relatively
static core part and multiple dynamically evolving extensions –
is the plug-in architecture. The main design principle here is to
allow adding new features as plug-ins to the core application,
providing extensibility, flexibility, customisation, and isolation
of application logic.
• Core system: the core defines how the system operates
and the basic business logic. It is often defined as the gen-
eral business logic or bare minimum for the application to
function. The specific implementations of that functionality
is up to individual plug-ins. The core needs some way to
know what plug-ins are connected and how to use them,
which is usually done through a plug-in registry. The core
also contains common utility functionality to be used by plug-
ins as a way to reduce duplicated and redundant code, and
have one single source of truth. Examples of such common
functionality include logging, database access, versioning,
caching, security mechanisms and other standard re-usable
software components.
• Plug-ins: plug-ins are stand-alone, independent components
that contain specialised processing, additional features, and
custom code that is meant to enhance or extend the core system
to produce additional capabilities. Generally, plug-in modules
should be independent of other plug-in modules, meaning that
adding or removing a plug-in, even at run-time, does not
affect the other plug-ins. The core system declares extension
points, usually in the form of a well-defined API, that plug-ins
can hook into. A plug-in normally implements some custom
functionality, and the core keeps track of attached plug-ins
through some form of registry, which includes information
about available plug-ins and the protocols for accessing them.

A. Service Provider Interface to Implement the Plug-in Architecture

Service Provider Interface (SPI) naturally implements the
modular plug-in architecture (both in traditional J2EE and
Android), including the support for dynamic discovery and
loading at run-time. The SPI mechanism was introduced to
make applications more extensible, as it allows third parties
to enhance specific parts of a main product without modifying
the core application. Using the SPI mechanism, the application
will load the newly added implementation and seamlessly
work with it. There are three main elements underpinning the
SPI mechanism:
• Service represents a well-known set of interfaces and
abstract classes available to the core application. Speaking
in terms of plug-in terminology, a Service is a well-defined
interface that allows the core system to interact with plug-ins.



• Service Provider is a specific implementation of a Service.
Broadly speaking, it is the actual plug-in, which hooks into the
extension points provided by the core system. Each Service
Provider implementation must be placed on the application
class path (typically in the form of a jar file) to be discovered
and loaded, both at compile- and run-time.
• Service Loader is the mechanism for discovering and
loading available plug-in implementations (i.e. Service
Providers). As a pre-requisite for discovery and loading, each
Service Provider needs to be accompanied by a configuration
file that associates it to a specific Service. The Service
Loader also acts as the plug-in registry by keeping track and
caching already loaded Service implementations.

IV. PROOF OF CONCEPT

A. Health Monitoring Using Wearable Fitness Trackers

The rapid technological advances in physiological sensors,
low-power integrated circuits, and wireless communication
has enabled a new generation of wireless sensor networks,
widely used for purposes of continuous health and well-
being monitoring. This continuously collected data can then
be analysed and used for early detection of medical conditions
and assisted rehabilitation. Traditionally, IoT cloud platforms
have been the primary location for deploying and running such
ML-driven analytics. However, more recently, there has been
an increased demand for a more time-critical and autonomous
operation, where ML inference is placed as close to the data
source as possible, i.e. on a smartphone gateway.

This is especially important for remote working conditions
with limited network connectivity, such as the maritime sector,
where workers on ships or oil platforms are exposed to hostile
working conditions such as laborious work, homesickness and
rough weathers, i.e. factors often leading to increased fatigue
and stress levels among seafarers [14]. Off-shore accidents
resulting from poor physical conditions and/or mental health
can easily escalate to life-threatening situations, given that
medical assistance is not as accessible as it would be on land.

Accordingly, the reported research has been conducted in
the context of an R&D project on autonomous and time-critical
fatigue detection among patients by deploying and running
ML models on Android smartphones, acting as IoT gateways
for physiological sensor data (e.g. sleep, physical activity,
and heart rate) coming from Fitbit wearable fitness trackers.
Data collection, feature engineering and model training, albeit
fundamental parts of the whole implementation process, go
beyond the scope of this paper, and below we only focus on
the architectural aspects allowing deployment and integration
of ML features into the core mobile app.

B. Implementation

Following the design principles, described in Section III,
the proposed plug-in architecture was implemented as the
Android Time-Series (AnTS) framework,7 depicted in Fig.
1. As a proof of concept demonstration, we will now explain

7https://github.com/SINTEF-9012/ants

Fig. 1. Proof of concept: AnTS framework for fatigue detection using fitness trackers.

how the AnTS framework, deployed on an Android platform,
is used for loading and processing time-series data collected
from a wearable fitness tracker.

The core of the framework is implemented in Java. It
contains code with generic utility functionality (e.g. SQLite
database broker, logging, JSON and XML parsers, etc.), as
well as defines several entry-points to be used by third-party
apps when imported as a jar file. The core also implements
the plug-in loading functionality using SPI’s ServiceLoader,
which scans for available Service implementations on the
classpath and keeps track of them at run-time.

Currently, there are two abstract Services exposed by the
core system, whereas the actual implementations are contained
in several plug-in extensions:

1) LoadDataService: this abstract class represents possi-
ble sources of data to be further used as input for processing
and analytics. Apart from some other auxiliary functionality,
it declares the main method loadData() to be implemented by
any ServiceProvider inheriting this class. For the purposes of
the fatigue detection scenario, the following ServiceProvider
implementations were developed:
• WebApiDataLoader: this plug-in is responsible for fetch-
ing data from the Fitbit Web API,8 which offers multiple
entry-points for parameterised querying across a wide range
of collected biomarkers.
• DeviceApiDataLoader: although the support for third-party
mobile apps directly accessing live Fitbit data (i.e. without
transferring it first to the cloud) is limited due to the pro-
prietary commercial nature, we also implemented a mock-up
plug-in for querying real-time biomarker data from trackers.
This plug-in plays an important role when the symptoms of a
growing fatigue need to be detected in an autonomous offline
manner.
• SQLiteDataLoader: this plug-in is responsible for querying
data from Android’s native relational database SQLite. Being
extremely light-weight, this DB does not have rich built-
in data types (e.g. Timestamp for time-series data), but is,
nevertheless, able to store sensor data using string timestamps

8https://dev.fitbit.com/build/reference/web-api/



– a simple, yet highly effective solution. Therefore, it was
natural to use SQLite for storing and further accessing locally-
cached data.
• FileDataLoader: this plug-in implementation is actively
used for testing purposes, when we loaded previously recorded
data from locally stored CSV and JSON files.

2) ProcessDataService: this abstract class declares an
interface for various data processing and analytics compo-
nents. It declares the main method processData(String) to
be extended by child implementations. The data processing
functionality can range from a simple mathematical operation
(e.g. calculating an average value over some time window
for some sensor measurements) to running advanced ML
inference. For the purposes of the fatigue detection scenario,
the following plug-in implementations were developed:9

• FatigueDetectionInference: a collection of fatigue detec-
tion inference modules, which vary in terms of the underlying
ML algorithm (i.e. different regression and classification ML
models), the data format and specific data features used, the
granularity and time window of time-series data, etc. The plug-
in implementations themselves are coded in Java, whereas for
invoking the ML models we have relied on the ChaquoPy
library, enabling seamless interplay between Java and Python,
as well as provisioning of the required Python libraries (e.g.
tensorflow, pandas, numpy).
• PythonInference: the capabilities of ChaquoPy to act as a
seamless Java-Python bridge to invoke ML inference scripts
also made us implement a general-purpose ProcessDataSer-
vice implementation to be used as a default generic way of
running Python code out of the box. The ML engineer is
only required to upload the updated ML artefacts (i.e. Python
script, trained model, data labels) without touching the Java
part of the plug-in. To a certain extent, this can be even seen as
a second-level plug-in architecture, wherein multiple Python
scripts can be dropped onto the plug-in classpath to be loaded
and executed at run-time.

C. ML Engineer’s Perspective

One of the main goals of the proposed system was to
actively involve ML engineers in the agile app development
process, allowing them to iterate on their part independently
from the Java developers. The described plug-in architecture
allows them doing so by developing LoadDataService and
ProcessDataService implementations and placing them on
the project classpath along with a declaration file pointing to
a specific parent Service class. The SPI mechanism will then
detect the provided implementations to make them available to
the core system. This comes particularly handy in an applica-
tion system with continuously evolving business requirements.
For example, in the context of the described fatigue detection
scenario, an update to the data analytics components can be
caused by the newly-introduced support for a chest heart

9Please note that we group several similar implementations together for
text clarity and simplicity. In fact, for each ML model there is a separate
ProcessDataService implementation.

rate monitor. There will be an emerging requirement for new
biomarker data and inference models, which can be seamlessly
added using the proposed approach.

Even further opportunities for agile MLOps are provided
by the generic PythonInference implementation, with which
the ML engineer can enjoy the second-level separation of
concerns and solely focus on the Python code and ML models.
Assuming that the data source has been established and is
relatively stable, i.e. data format, labels, and granularity are
known, the ML engineer is free to fine-tune and test the ML
models, completely independently from the Java code.

V. DISCUSSION AND CONCLUSION

The presented research work started as a small-scale pro-
totype in the context of an R&D project focusing on remote
patient monitoring. The main challenge was to allow team
members responsible for data analytics (i.e. ML engineers
mainly specialising in Python) to continuously modify and test
their components, independent of the core Android applica-
tion, which remained relatively stable. As the work matured, it
became clear that the addressed challenges are common across
a wider range of application scenarios, wherein heterogeneous
sensor data needs to be processed locally on a mobile gateway,
in the presence of frequent modifications modifications to the
business logic. As a result, we have tried to generalise and
extend this work, aiming to make it usable not only by a
small group of researchers, but serving a wider community of
practitioners, including mobile developers and ML engineers.
The proposed architecture and implementation have both their
benefits and shortcomings, as well as room for further work,
as discussed below.

A. Benefits and Shortcomings

The proposed system comes with several advantages due
to the nature of the plug-in architecture, which gives the
agility to rapidly change, remove, and add data sources and
processing modules. Each plug-in can be deployed and tested
independently, which opens up promising opportunities for
MLOps in the context of mobile development. More specif-
ically, we highlight the following main advantages of the
proposed system:
• Modularity: because plug-ins are separate modules with
well-defined interfaces, it is easier to quickly track down,
isolate and fix emerging issues.
• Extensibility: the application can be dynamically extended
to include new data processing and ML features, even at run-
time thanks to the dynamic discovery and loading of plug-ins.
• Customisation: creating custom versions of an application
without modifying the core system is very important for ML-
driven software, where iterative fine-tuning and optimisation
of ML models is required.
• Separation of concerns and parallel development: since
various app features can be implemented as separate compo-
nents, they can be developed in parallel by different teams.
One of the teams is ML engineers, who are not necessarily



proficient in native app development, but are still fully involved
in the ML-related activities.

On the other hand, by implementing the plug-in architecture,
the proposed framework inherits several shortcomings (some
of which are planned to be addressed in the future):
• The core being the bottleneck and the single point of
failure: changing the core system might break or alter the
behaviour of the dependent plug-ins. It requires careful design
with support for backward-compatibility in mind. Another
related issue is the separation of functionality, which requires
deciding what belongs to the core and what should be dele-
gated to plug-in implementations.
• Limited integration testing: even if a plug-in is success-
fully tested alone or against the core system, some issues may
emerge only in combination with other plug-ins. This slows
down the testing process, especially if multiple independent
parties develop their own plug-ins in parallel.
• Reduced performance: too many loaded plug-ins can slow
down the overall system. Therefore, it is required to carefully
design the plug-in loading logic, so that only relevant and
non-conflicting functionality is loaded at a time. On the other
hand, if properly implemented, targeted loading of plug-ins
can actually make the system more light-weight and increase
the performance.

B. Future Work

We see the proposed approach as a step forward towards
implementing MLOps in the context of mobile app develop-
ment. Therefore, an immediate next step for us is to integrate
our solution with the existing tools in order to cover the
whole automated MLOps cycle, i.e. from data collection, pre-
processing and model training to deployment and operation,
repeated in an iterative incremental manner. This will also
underpin the empirical evaluation of the developed approach,
since one of its main advantages is the practical usability by
ML engineers in the context of agile mobile development. This
is something that can only be validated in real-life settings
within a diverse team of mobile developers and ML engineers.

One of the assumptions of the current implementation is
that all LoadDataService and ProcessDataService plug-
ins rely on some known data format and structure when
passing time-series data sets from the source to analytics.
This works fine in a relatively small development team, where
one and the same ML engineer has full understanding of
the data and will most probably implement both types of
plug-ins. With more people involved, it becomes a pressing
concern to implement a mechanism for communicating the
data schema across all involved modules. We are currently
implementing overloaded methods in both LoadDataService
and ProcessDataService, which provide the data schema as
a string argument along with the transferred data sets.

While plug-in discovery and loading are already natively
supported by the SPI mechanism, another important direction
for future work is the thorough design and implementation
of the selection mechanism at run-time. Since the plug-in
architecture in general assumes the availability of multiple,

often conflicting implementations, it is important to ensure
that only the required correct plug-ins are loaded at a time.
We are planning to achieve this by designing a classification
taxonomy shared between the core system and all the plug-
ins, which will allow to uniquely describe plug-ins using a
combination of tags and select only the most relevant one at
run-time in a context-aware manner.

ACKNOWLEDGEMENT

The research leading to these results has been supported by
a grant from Iceland, Liechtenstein and Norway through the
EEA Grants Greece 2014-2021, in the frame of the “Business
Innovation Greece” programme. This work was also partly
supported by the Research Council of Norway through the
BIA-IPN programme, project no. 309700.

REFERENCES

[1] M. A. Waller and S. E. Fawcett, “Data science, predictive analytics,
and big data: a revolution that will transform supply chain design and
management,” Journal of Business Logistics, vol. 34, no. 2, pp. 77–84,
2013.

[2] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, 2015.

[3] R. Dautov, S. Distefano, and R. Buyya, “Hierarchical data fusion for
smart healthcare,” Journal of Big Data, vol. 6, no. 1, pp. 1–23, 2019.

[4] R. Dautov and S. Distefano, “Three-level hierarchical data fusion
through the IoT, edge, and cloud computing,” in Proceedings of the 1st
International Conference on Internet of Things and Machine Learning,
pp. 1–5, 2017.

[5] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and A. Puli-
afito, “Pushing intelligence to the edge with a stream processing archi-
tecture,” in 2017 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pp. 792–799, IEEE, 2017.

[6] L. Bass, I. Weber, and L. Zhu, DevOps: A software architect’s perspec-
tive. Addison-Wesley Professional, 2015.

[7] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who
Needs MLOps: What Data Scientists Seek to Accomplish and How Can
MLOps Help?,” in 2021 IEEE/ACM 1st Workshop on AI Engineering-
Software Engineering for AI (WAIN), pp. 109–112, IEEE, 2021.

[8] Y.-L. Lee, P.-K. Tsung, and M. Wu, “Techology trend of edge AI,” in
2018 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pp. 1–2, IEEE, 2018.

[9] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge AI: Algorithms and systems,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 4, pp. 2167–2191, 2020.

[10] M. Lootus, K. Thakore, S. Leroux, G. Trooskens, A. Sharma, and H. Ly,
“A VM/containerized approach for scaling tinyML applications,” arXiv
preprint arXiv:2202.05057, 2022.

[11] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, and A. Pu-
liafito, “Data agility through clustered edge computing and stream
processing,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 7, pp. 1–1, 2021.

[12] G. T. Heineman and W. T. Councill, “Component-based software engi-
neering,” Putting the pieces together, addison-westley, vol. 5, 2001.

[13] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl,
M. Luo, and T. Newling, Patterns: service-oriented architecture and
web services. IBM Corporation, International Technical Support Orga-
nization, New York, 2004.

[14] J. R. Jepsen, Z. Zhao, and W. M. van Leeuwen, “Seafarer fatigue: a
review of risk factors, consequences for seafarers’ health and safety and
options for mitigation,” International maritime health, vol. 66, no. 2,
pp. 106–117, 2015.


