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Energy harvesting battery-free embedded devices rely only on ambient energy harvesting that enables stand-

alone and sustainable IoT applications. These devices execute programs when the harvested ambient energy

in their energy reservoir is sufficient to operate and stop execution abruptly (and start charging) otherwise.

These intermittent programs have varying timing behavior under different energy conditions, hardware

configurations, and program structures. This paper presents Energy-aware Timing Analysis of intermittent

Programs (ETAP), a probabilistic symbolic execution approach that analyzes the timing and energy behavior

of intermittent programs at compile time. ETAP symbolically executes the given program while taking time

and energy cost models for ambient energy and dynamic energy consumption into account. We evaluate

ETAP by comparing the compile-time analysis results of our benchmark codes and real-world application

with the results of their executions on real hardware. Our evaluation shows that ETAP’s prediction error

rate is between 0.0076% and 10.8%, and it speeds up the timing analysis by at least two orders of magnitude

compared to manual testing.
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1 INTRODUCTION
Advancements in energy-harvesting circuits and ultra-low-power microelectronics enable modern

battery-free devices that operate by using only harvested energy. Recent works have demon-

strated several promising applications of these devices, such as battery-free sensing [29, 38, 41] and

autonomous robotics [80]. These devices also pave the way for new stand-alone, sustainable appli-

cations and systems, such as body implants [34] and long-lived wearables [77], where continuous

power is not available and changing batteries is difficult.

Battery-free devices can harvest energy from several sporadic and unreliable ambient sources,

such as solar [58], radio-frequency [38], and even plants [43]. The harvested energy is accumulated

in a tiny capacitor that can only store a marginal amount of energy. The capacitor powers the

microcontroller, sensors, radio, and other peripherals. These components drain the capacitor

frequently. When the capacitor drains out, the battery-free device experiences a power failure and

switches to the harvesting of energy to charge itself. When the stored energy is above a threshold,

the device reboots and becomes active again to compute, sense, and communicate. Successive

charge-discharge cycles lead to frequent power failures, and in turn, intermittent execution of

programs. Each power failure leads to the loss of the device’s volatile state, i.e., registers, memory,

and peripheral properties.

To countermeasure power failures and execute programs intermittently so that the computation

can progress, and memory consistency is preserved, researchers developed two recovery approaches

supported by runtime environments. The first one is to store the volatile program state into non-

volatile memory with checkpoints placed in the program source [7, 9, 40, 42, 48, 51, 63, 78, 81].

Checkpointing approaches differ based on how checkpoints are triggered. In static checkpointing [4,

48, 63, 78], programmers can place checkpoints at arbitrary points in the code or set a timer for

checkpointing. On the other hand, voltage tracker hardware triggers the CPU to get a checkpoint

in the dynamic checkpointing [7, 8, 15, 42]. In both approaches, checkpointing size can be static or

dynamically changing at runtime. Another one is the task-based programming model [18, 50, 80],

in which programs are a collection of idempotent and atomic tasks. Several studies extended these

recovery approaches by considering different aspects, e.g., I/O support [65], task scheduling [41, 52],

adaptation [5, 54], virtualization [23] and timely execution [39, 44].

Considerable research has been devoted to compile-time analysis to find bugs and anomalies

of intermittent programs [53, 70] and structure them (via effective task splitting and checkpoint

placement) based on worst-case energy consumption analysis [1, 19]. Despite these efforts, no

attention has been paid to analyzing the timing behavior of intermittent programs, affected by

several factors such as the energy availability of the deployment environment, the power con-

sumption of the target hardware, capacitor size, program input space, and program structure

(checkpoint placement). Without such an analysis, programmers will never know at compile-time if
their intermittent programs execute as they are intended to do in a real-world deployment. Worse

still, it is extremely costly and time-consuming to analyze the timing behavior of intermittent

programs on real deployments because programmers need to run the programs multiple times on

the target hardware with various ambient energy profiles, hardware configurations, and program

inputs and structuring.

As an example, consider a deployment environment with low ambient energy and frequent

power failures. The computing progresses slowly due to long charging periods, and in turn, the

program throughput may not meet the expectations (e.g., a batteryless long-range remote visual

sensing system takes a picture every 5 minutes and transmits the relevant ones every 20 minutes).

If the program execution time is not what is expected, programmers might increase the capacitor

size, change the target hardware, or remove some checkpoints. These changes may not always lead
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int main() {
 for(;;) {
  sample();
  checkpoint();
  compare();
  compress();
  checkpoint();
  send();
 }
}
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Fig. 1. The execution time of an intermittent program depends on energy-harvesting dynamics, capacitor size,
the power consumption of the target microcontroller (MCU), and checkpoint overhead. Without hardware
deployment, ETAP predicts timing behavior of an intermittent program.

to what is intended (e.g., the bigger the capacitor size is, the longer the charging takes). Therefore,

programmers might have to deploy their programs into the target platform several times and

run them in the operating environment to check if they meet the desired throughput. Having

estimations at a low cost without need to test and re-test multiple times on real hardware, they can

rapidly restructure the program (e.g., add or remove checkpoints) or reconfigure the hardware (e.g.,

change the microcontroller, its frequency, or capacitor size) to improve the program execution time

and, in turn, the throughput.

Goal and Challenges. Our goal in this paper is to estimate statically, at compile-time, the timing

behavior of intermittent programs considering different energy modes, hardware configurations,

program input space, and program structure. The state-of-the-art approaches exploit stochastic

models to represent the dynamic energy harvesting environments, e.g., several models based on

empirical data for RF [55, 56] and solar [26] energy harvesting environments. Similarly, several

techniques [1, 19] extract the energy consumption characteristics of the target microcontroller

instruction set to model its energy consumption. These two stochastic models, capacitor size,

charging/discharging model, program input space, and program structure form a multidimensional

space. The main challenge which we solve is to devise a program analysis solution that considers

this multidimensional space to derive, at compile-time, the execution time probabilities of the given

intermittent program.

Probabilistic symbolic execution [27] is an ideal solution to tackle this challenge since it is

a compile-time program analysis solution quantifying the likelihood of properties of program

states concerning program non-determinism. However, existing techniques consider only typical

program non-determinism, e.g., program input probability distribution. Therefore, we need a
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dedicated symbolic execution technique that integrates intermittent program non-determinism

(charging/discharging model and environment energy profile) and other intermittent program

characteristics (capacitor size and program structure).

Contributions. In this paper, we propose, develop, and assess Energy-aware Timing Analysis of
intermittent Programs (ETAP), a probabilistic symbolic execution approach for estimating the timing

behavior of intermittent programs. We give an overview of ETAP’s functionality in Figure 1. ETAP

generates the execution time probability distributions of each function in the input program.

Programmers may annotate programs with timing requirements for the execution time between

any two lines of code or the time required to collect and process a given amount of data. ETAP also

reports the execution time probability distributions for those requirements. It supports the static

checkpoint programming model but can easily be extended to analyze dynamic checkpointing and

task-based programs. ETAP extends Clang [16] to recognize ETAP-specific configurations and uses

LLVM compiler [45]. It employs libraries of R environment [62] for symbolic computations and

SMT [20] solver to detect infeasible paths. Our symbolic execution technique is designed not to be

specific to any microcontroller architecture.

We compared our analysis to the program executions in a radio-frequency energy-harvesting

testbed setup. The evaluation results show that ETAP’s prediction error rate is between 0.0076%

and 10.8%. To summarize, our contributions include:

(1) Novel Analysis Approach.We introduce a novel probabilistic symbolic execution approach

that predicts the execution times of intermittent programs and their timing behavior consid-

ering intermittent execution dynamics.

(2) New Analysis Tool.We introduce the first compile-time analysis tool that enables program-

mers to analyze the timing behavior of their intermittent programs without target platform

deployment.

(3) Evaluation on Real Hardware. ETAP correctly predicts the execution time of intermittent

programs with a maximum prediction error less than 1.5% and speeds up the timing analysis

by at least two orders of magnitude compared to manual testing.

We share ETAP as a publicly available tool
1
with the research community. We believe that ETAP

is a significant attempt to provide the missing design-time analysis tool support for developing

intermittent applications.

The rest of the paper is structured as follows. Section 2 provides the background information

regarding intermittent programming, timing behavior analysis, and probabilistic symbolic analysis.

Section 3 introduces the challenges for timing analysis of intermittent programs. In Section 4, we

present an overview of ETAP. Sections 5 to 8 describe the core technical solutions. Section 9 reports

on the results of the empirical validation conducted with four benchmarks and a sense and send

application on real hardware. In Section 10, we discuss the related work. Section 11 presents some

insights into the evaluation and limitations of the approach. We conclude the paper in Section 12.

2 MOTIVATION AND BACKGROUND
A typical battery-free device such as WISP [67], WISPCam [57], Engage [21], and Camaroptera [58]

includes (i) an energy harvester converting incoming ambient energy into electric current, (ii)

energy storage, typically a capacitor, to store the harvested energy to power electronics, and (iii)

an ultra-low-power microcontroller orchestrating sensing, computation, and communication. The

microcontrollers in these platforms, e.g., MSP430FR series [74], comprise a combination of volatile

1
https://github.com/ferhaterata/etap
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Fig. 2. Dynamics of Intermittent Execution. A sample application composed of matrix multiplication in
a nested loop. The run-time behavior of the intermittent program (e.g., execution time) depends on the
environmental factors (e.g., ambient energy), checkpoint placement and overhead, and the target platform
(e.g., power consumption and capacitor size). Due to different ambient energy (and charging times), the same
program may have different execution times on the same hardware.

(e.g., SRAM) and non-volatile (e.g., FRAM [75]) memory to store data that will persist upon power

failures.

2.1 Programming Intermittent Systems
Battery-free platforms operate intermittently due to frequent power failures. Several programming

models (supported by runtimes) have been proposed to mitigate the effects of unpredictable power

failures and enable computation progress while preserving memory consistency (e.g., [18, 44, 80]).

Generally speaking, these models backup the volatile state of the processor into the non-volatile

memory so that the computation can be recovered from where it left upon reboot. Moreover,

memory consistency should also be ensured so that the backed-up state in the non-volatile memory

will not be different from the volatile one, or vice versa.

Programming models for intermittent computing have two classes. Checkpointing systems [44]

snapshot the volatile state, i.e., the values of registers, stack, and global variables, in persistent

memory at specific points—either defined by the programmer at compile-time or decided at runtime.

Thanks to checkpoints, the state of the computation can be recovered after a power failure using

the snapshot of the system state. Task-based systems [18, 80] employ a static task-based model.

The programmer decomposes a program into a collection of tasks at compile-time and implements

a task-based control flow (connecting task outputs with task inputs). The runtime keeps track of

the active task, restarts it upon recovery from intermittent power failures, guarantees its atomic

completion, and then switches to the next task in the control flow.
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2.2 The Need for Timing Behavior Analysis
Using existing intermittent programming models, programmers mainly focus on the progress,

memory consistency, and functional correctness of their programs. Without analyzing the timing

behavior affected by several factors, programmers cannot be sure if their intermittent programs

meet throughput expectations in a deployment environment.

Figure 2 depicts how the execution time of a checkpointed code changes under different en-

vironmental conditions. In high-energy environments, the capacitor charges faster, the program

progresses quickly, the checkpoints are triggered more frequently, and the execution needs a shorter

time. The same program takes much longer in low-energy environments. The device is mostly off

to charge its capacitor and becomes active only for a short time to perform computation.

Some runtime environments, e.g., [39, 44, 80], support the expression of timeliness in program

source and check if sensing and computation are handled timely at runtime. They can catch the

sensor readings that lost their timeliness due to power failures and long charging times, throw away

these values, or omit their computation. Even though catching data and computation expiration are

beneficial, programmers cannot reason about the timing behavior of their intermittent program at

compile time due to many factors such as power failure frequency and capacitor charging time, or

checkpoint placement. For instance, sensor readings and computations might expire continuously in

specific energy harvesting conditions due to a wrong checkpoint placement or insufficient capacitor

size. The runtime environments can catch these expirations to prevent unnecessary processing

and save precious harvested energy. However, the program does not produce any meaningful

results due to frequent data expirations. With timing behavior analysis, programmers will know, in

advance, how their programs will execute on the target environment (e.g., if there will be frequent

data expirations) and perform the necessary actions to let their programs meet their expectations.

2.3 Factors Affecting Timing Behavior
Energy Harvesting Environment. The availability of ambient energy sources is unpredictable. The

harvested energy depends on several factors, such as the energy source type (e.g., solar or ra-

diofrequency), distance to the energy source, and the efficiency of the energy harvesting circuit. A

probabilistic model of the energy harvesting environment can be derived based on observations

and profiling [26, 55, 56]. When incoming power is strong enough, the capacitor charges rapidly,

and the device becomes available quickly after a power failure. At low input power, the charging is

slower and takes more time.

Energy Storage. The interaction between the capacitor and the processor in battery-free devices

plays a crucial role in the program execution time. When the capacitor is fully charged, the device

turns on and starts program execution. When the stored energy in the capacitor drops below a

threshold, the device dies. One of the factors that affect the device on time is the capacitor size. If

the capacitor size is large, the device has more energy to spend until the power failure, but charging

the capacitor takes more time. Prior works, e.g., [55], proposed models that capture the charging

behavior of capacitors.

Target Platform. The power requirements of the target platform affect the end-to-end delay of the

program execution. A program might take a long time to finish on platforms with high power

requirements since the capacitor discharges faster. Hence, the program might drain the capacitor

more frequently (since instructions consume more energy in a shorter time). Therefore, the device

is interrupted by frequent power failures, and it is unavailable and charging its capacitor for long

periods. We can model the target platform by using the instruction-level energy consumption

profiles, as suggested in [1, 19]. Another factor that affects the energy consumption of the target

ACM Trans. Embedd. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.
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platform is the condition of the peripherals. Since peripherals have different energy consumption and

timing behavior, they can not be standardized. Therefore, programmers should model peripherals

and give the models as input to ETAP. For instance, programmers should measure the sensor energy

consumption and sensing time in a sensing application for ETAP inputs. They should also annotate

the sensing function in the intermittent program to be analyzed.

Intermittent Runtime. The programming model and the underlying runtime affect the execution

time of intermittent programs. For instance, the checkpointing overhead is architecture-dependent

since the number of registers and the volatile memory size change from target to target. Moreover,

checkpoint placement is also crucial: the more frequent the checkpoints are, the more energy

consumed, but less computation is lost upon a power failure.

Program Inputs. Intermittent program inputs are mostly the sensor readings that depend on the

environmental phenomena. Different inputs lead to different execution flow, and in turn, energy

consumption. The energy consumption affects the frequency of power failures and the charging

time.

3 CHALLENGES FOR TIMING ANALYSIS OF INTERMITTENT PROGRAMS
The main challenge is to devise a technique that facilitates the compile-time timing analysis of

intermittent programs, considering the factors mentioned in the previous section. Since these factors

can be represented using stochastic models [1, 19, 26, 55, 56], probabilistic symbolic execution—a static
analysis technique calculating the probability of executing parts of a program [27]—becomes an

excellent fit for timing behavior analysis. Unfortunately, existing probabilistic symbolic execution

engines [14, 25, 27] do not support low-level code analysis; they are built on top of Symbolic

PathFinder, which is a symbolic execution engine for Java bytecode. Furthermore, they consider only

typical program non-determinism, e.g., program input probability distribution. Most importantly,

ETAP needs a symbolic memory model with a non-volatile memory abstraction for backups,

program restarts, and energy awareness to steer the path exploration algorithm by visiting all

potential divergent power-failure paths in an intermittent program. Therefore, it is not feasible to

integrate or reuse the existing probabilistic symbolic execution techniques for analyzing intermittent

programs. Thus, we introduce a hand-rolled probabilistic symbolic execution engine supporting

intermittent program semantics.

3.1 Probabilistic Symbolic Analysis

Symbolic execution analyzes a program to discover which program inputs execute which program

parts. It searches the execution tree of a program using symbolic values for program inputs. From the

execution tree, it generates program paths with a path condition, i.e., a conjunction of constraints

on program inputs (path constraints). When symbolic execution reaches a node of the execution

tree, it evaluates the path condition describing the path from the root to that node. If the condition

is satisfiable, it continues in that branch of the tree. If not, the branch is known to be unreachable.

The output of satisfiability checking is either false or true. It does not provide how frequently

a path or a basic block executes. On the other hand, probabilistic symbolic execution estimates

finer approximations of the probability of path conditions being true [27]. For a random input

following a discrete uniform distribution, we can count the number of solutions to a path constraint
and divide it by the product of the input domain to get the probability of the path condition. One

approach for counting the number of a set of path constraints is to use model counters. Model

counting is known as the problem of determining the number of assignments satisfying a given
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formula [32, 68, 76]. Its procedures are employed to compute the path probabilities in probabilistic

symbolic execution [24, 27, 59].

ETAP follows a different approach to support sensor inputs as random variables following

complex distributions. It models path execution environments with instances of an abstract memory

model in which LLVM instructions are probabilistically interpreted. We employ two methods in

evaluating probabilities of arithmetic instructions: the linear location-scale transformation of a
random variable and the sum of two random variables (aka. convolution). Linear transformations of

named distributions have mostly analytical solutions; however, we need to employ computational

approaches for non-linear transformations. It is the same for convolution operations. For instance,

the sum of two independent normally distributed (Gaussian) random variables also follows a normal
distribution (its mean is the sum of the two means, and its variance being the sum of the two

variances). On the other hand, the sum of two random variables, which follow Uniform and Normal
distributions, cannot be expressed with a closed-form expression. Therefore, in these cases, ETAP

approximates these probabilities using numerical methods provided by libraries of the R framework.

3.2 Probabilistic Symbolic Storage for Checkpoints/Backups and Restarts

A symbolic memory model (aka. symbolic environment or symbolic store) describes the approach
used by a symbolic execution engine to handle memory operations such as loads and stores

performed by the analyzed program. We could perform these operations concerning a specific

memory object or a memory address [6, 12] in symbolic execution engines for low-level code.

Since ETAP employs LLVM, its implementation tracks objects stored in memory, including their

memory location and type and size information. While simulating restarts after power failures, it
moves those objects to a separate ‘non-volatile region’ to provide an infrastructure for different

checkpointing or backup strategies (e.g., static checkpointing [4, 48, 63, 78] or hardware-triggered

(dynamic) checkpointing [7, 8, 42]) in its symbolic memory model.

LLVM arithmetic and logical operators (instructions) on random variables are overloaded to

produce transformed probability distributions. Once the symbolic execution reaches a branch

point, ETAP integrates the probability function of the transformed distribution into the execution

branches over the region of interest. This function tells us the probability of taking that branch.

After stepping over a branch point, we update the random variables in the symbolic store of the
path with the information gained.

3.3 Energy-awareness

Another challenge for probabilistic timing analysis of intermittent programs is to model power

failures over program executions: divergent execution paths induced by power failures and their

emergent behavior. Our key insight is to drive probabilistic symbolic execution with a probability

distribution representing the remaining energy budget at the capacitor that gets updated after

executing each basic block. Since each basic block’s energy consumption behavior depends on

executed instructions and called function, ETAP must also consider the probability distribution of

energy consumption of each basic block as well as function calls.

All these aspects will be elaborated on the subsequent sections.

4 ETAP: SYSTEMS OVERVIEW
The process in Figure 3 presents an overview of ETAP. Its steps are fully automated. Sections 6-8

provide details of each step. In Step 1, ETAP takes an intermittent program, and time and energy

cost profiles of the target architecture (main.c and msp430 in Figure 3). It automatically generates a
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Fig. 3. ETAP consists of three stages after inputs are specified (see Section 5): (i) Generation of cost models
using binary analysis and program transformation (see Section 6), (ii) Probabilistic Path Exploration that
generates probabilities of execution traces based on sensor input distributions and program semantics
(see Section 7), and (iii) Energy-aware symbolic execution based on intermittent execution of program
semantics, microcontroller’s energy consumption, and capacitor’s energy capacity (see Section 8). Under
given configurations, ETAP generates reports about timing distributions.

cost model with the program having split program blocks in LLVM IR [45] (cost.R and main.ll). The
cost model is an R specification having LLVM program blocks to which time and energy costs are

assigned as probabilistic cost expressions.

We designed our symbolic execution technique not to be specific to any microcontroller architec-

ture and instruction set. Therefore, our symbolic execution runs not on microcontroller instructions

but the program blocks in LLVM IR. This design choice contributes to the scalability of ETAP

since generating paths on program block-level leads to fewer divergent (power failure paths) to be

analyzed. ETAP needs the time and energy cost profiles of the instruction types of each new target

architecture platform organized under addressing modes. In Section 9, we derived the cost profiles

for the MSP430FR5994 platform [74] through empirical data collection. It is a one-time effort for

each new platform. ETAP models power failures during the transition from one basic block to

another instead of after each instruction execution. However, compilers may generate relatively

big basic blocks and, thus, symbolic execution over program blocks observe less power-failures,

which may lead to coarse approximations of energy costs in explored paths. Therefore, to increase

the precision of the symbolic analysis , in Step 1, ETAP automatically splits blocks having outlier

energy costs (maximum outliers) among all the program block energy costs. We employed the IQR

method [47] to detect outlier blocks in a given program based on energy costs.

In Step 2, ETAP symbolically executes the program blocks in LLVM IR (main.ll) with the cost

model (cost.R) to generate program paths and path execution probabilities (main.paths) based on
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#pragma etap timing "Norm(8517.05, 0.01)" //us
#pragma etap energy "Norm(14.560, 20)" //uj
// 1mF capacitor with 1.02V & 1.25V thresholds
#pragma etap capacitor max(750uj) 
#pragma etap capacitor min(520uj)  
#pragma etap checkpoint 
void checkpoint() {...};

int main() {
 int data;
 while (1) {
   sample(&data);
   #pragma etap expires(1.5s)
   if (classify(data)) send(&data);
 }
}

#include "checkpoint.h"

int classify(int data) {
 #pragma etap expires(40ms)
 #pragma distr "data <- Mixing(Binom(40, 0.4),
 15 + Binom(30, 0.6), mixCoeff = c(0.7, 0.3))"
 int result = -1;
 checkpoint();
 if (data < 21) {
   result = featurize(data);
   // checkpoint(); 
 } else if (data > 27) {
   result = alert(); 
   // checkpoint();  
 } else error();
 #pragma etap reachability(30ms)
 checkpoint();
 return result;
}
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Fig. 4. Example Intermittent Program with ETAP Pragmas. In the classify function, featurize and
alert function calls are expected to take relatively more time and consume more energy. Therefore, to
save the progress of computation, the programmer may apply alternative checkpoint configurations such
as adding checkpoints before and after every major computation conservatively (Program Variant #2 has
checkpoints 1, 2, 3, and 4); or placing checkpoints at enter and exit of the function (Variant #1 has
only checkpoint 1 and 4 —checkpoints colored with red in the figure); or saving the progress of featurize
or alert computations separately (Variant #3 has checkpoint 2 and 3 —checkpoints colored with blue in
the figure). The question that ETAP can answer is which checkpoint placement strategy would meet the given
timing requirement best under a set of given capacitor alternatives.

the sensor input distribution. In Step 3, ETAP takes the ambient energy profile, capacitor size,

program paths, and path execution probabilities as input. Each path is symbolically executed with

stochastic ambient energy to estimate execution time probability distributions of program paths

and functions for intermittent execution.

5 SPECIFICATION OF ETAP INPUTS
Engineers specify ETAP inputs (e.g., timing requirements and probability distributions of sensor

inputs) via the ‘#pragma’ directive [28]. Figure 4 presents an example intermittent program (main.c)
and a header file (checkpoint.h) for the checkpoint operation. The runtime environment provides the
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header file [44], which programmers extend with pragmas for the time and energy cost distributions

of the checkpoint operation (𝜏𝑐𝑝 , 𝐸𝑐𝑝 ), ambient energy harvesting time profile (𝜏ℎ𝑎𝑟𝑣𝑒𝑠𝑡 ) and capacitor

size (𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 ).

The main function of the example program samples, classifies and sends the input data in a loop

(main.c); each loop iteration should execute in less than 1.5 second (‘#pragma etap expires(1.5s)’
in main.c). Function classify interprets input data, alerts users, or reports an error (Lines 2-17). It

should finish in less than 40 milliseconds (Line 3). It has two checkpoints (Lines 6 and 15); the second

checkpoint should be reached from the first checkpoint in less than 30 milliseconds (‘#pragma etap
reachability(30ms)’ in Line 14). The "reachability" pragma is to get the probability distribution of

reaching at the specified checkpoint. The “expires” pragma is to get the probability distribution of

timing at the specified point. The input distribution is discretized and modeled (‘#pragma distr’
in Line 4). It is the mixture of two signals following the binomial distribution (Binom(40, 0.4) and
Binom(30, 0.6)).

6 GENERATION OF COST MODELS
ETAP generates a cost model with the intermittent program that has split program blocks in LLVM

IR (Step 1 in Figure 3). It employs Clang [16] to compile the input program into the LLVM IR

code. Each checkpoint call needs to be the first instruction in its basic block because the symbolic

execution returns to the beginning of the basic block for a power failure. Therefore, ETAP splits

checkpoint calls, which are not the first instruction, from their basic blocks.

The LLVM IR code is compiled into the assembly code for the target hardware architecture. ETAP

performs a binary analysis to map the hardware instructions in the assembly code to the basic

blocks. It calculates the time and energy cost distributions of each basic block. To do so, it convolves

the cost distributions of all instructions in that block based on their types and addressing modes

(see Table 3). Some basic blocks may need much more energy than other basic blocks, which may

lead to coarse approximations of energy costs of the program paths. ETAP performs a semantic-

and cost-preserving program transformation to obtain more precise energy costs of the program

paths. Considering all the block energy costs for each function in the program, it detects blocks

having relatively high energy costs (i.e., take them as outliers) and automatically splits them. We

used the IQR method [47] to find and split these blocks. We defined the energy cost threshold value

as 𝑄3 + 1.5(𝐼𝑄𝑅) (𝑄3 is the third quartile, and 𝐼𝑄𝑅 is the interquartile range).

Figure 5 presents the control flow graph (CFG) of classify in Figure 4 (with four checkpoints).

Time and energy costs are modeled as normal distributions and encoded in an R specification (cost.R
in Figure 3). Each node represents a basic block. Blocks a and b, c and d, and g and h were initially

single blocks ETAP splits into two as the checkpoint calls were not the first instruction. No blocks

are split for the threshold.

7 PROBABILISTIC PATH EXPLORATION
ETAP symbolically executes the basic blocks with the cost models in the R environment with depth-

first search (Step 2 in Figure 3). It generates program paths and their execution probabilities for

program execution without power failures. The program paths are later re-executed symbolically with

stochastic ambient energy to estimate its execution time probability distribution for intermittent

execution (see Section 8).

ETAP calculates the path execution probability and the execution time probability distribution

for each program path in the function to be analyzed. Algorithm 1 gives the depth-first search for

probabilistic path exploration.

ETAP adds the visited (current) basic block of the CFG to the path (Line 1). It convolves the

execution time probability distribution of the path and the execution time cost distribution of
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entry

checkpoint.1

F T

if.then:
%1 = load i16, i16* %data.addr
call void @featurize(i16 %1)
store i16 1, i16* %result
br label %if.end4

0.648

if.else
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0.352
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derived from the sum of the distribution
of the number of microcontroller cycles
required by each assembly instruction
corresponding to the basic block.

  ...
  MOV.B #20, R12
  CMP.W @R1, R12 { JL .L2
  MOV.W @R1, R12           
  CALL #featurize          
  MOV.W #1, 2(R1)          
  BR #.L3                  
.L2:
  MOV.B #27, R12
  CMP.W @R1, R12 { JGE .L4
  CALL #alert
  MOV.W #0, 2(R1)
  BR #.L3
  ...
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Fig. 5. Control Flow Graph of Function classify with Program Variant #2. The figure shows the timing (𝜏)
and energy (𝐸) cost models of basic block if.then, which are automatically derived from the mapping between
the basic block in LLVM IR and the compiled target MSP430 assembly. Basic block if.then calls featurize();
basic block if.then2 calls function alert(); and basic block if.else3 calls function error(). ETAP generates a
basic block for each call to checkpoint() function.

the visited block (Line 2). The block instructions in the path environment are evaluated to decide

which successor block to take in which branching conditions (Line 3). ETAP models path execu-

tion environments with instances of a symbolic memory model in which LLVM instructions are

probabilistically interpreted. For instance, in the LLVM instruction ‘%𝑖𝑛𝑐 = add nsw i16 %i.0, 1’, if
‘%i’ is a random variable (r.v.) that follows a discrete probability distribution, the 16-bit integer

register %𝑖𝑛𝑐 becomes an r.v., %𝑖𝑛𝑐 ∼ %i.0 +1, through linear location-scale transformation [10].

If the instruction was among two registers, ‘%𝑖𝑛𝑐 = add nsw i16 %i.0, %i.1’ and in that ‘%i.0’ and
‘%i.1’ are independent r.v.s, the expression would be interpreted as the sum (integral) of two r.v.s

(convolution) [10]. The path execution probability is a conditional probability and recalculated

for each new successor block. The new path probability is the multiplication of the current path

probability and the branch probability for the successor basic block (Line 5). Figure 5 shows the
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Algorithm 1: DFS for Probabilistic Path Exploration

1 Blocks(𝑝𝑎𝑡ℎ)← Blocks(𝑝𝑎𝑡ℎ) ⊕ Name(𝑐𝑢𝑟𝑟 )

2 Timing(𝑝𝑎𝑡ℎ)← Timing(𝑝𝑎𝑡ℎ) ∗ Get(𝐶𝑜𝑠𝑡𝑠 , 𝑐𝑢𝑟𝑟 )
3 Eval(Instructions(𝑐𝑢𝑟𝑟 ), 𝑒𝑛𝑣)

4 foreach 𝑠𝑢𝑐𝑐 in Successors(𝑐𝑢𝑟𝑟 ) do

5 𝑝𝑟𝑜𝑏 ← 𝑝𝑟𝑜𝑏 × BranchProbability(𝑐𝑢𝑟𝑟 , 𝑠𝑢𝑐𝑐 , 𝑒𝑛𝑣)

6 if 𝑝𝑟𝑜𝑏 > 0 ∧ ¬IsMaxLoopReached then

7 𝑃𝑎𝑡ℎ𝑠 ← DFS(𝑃𝑎𝑡ℎ𝑠 , 𝐶𝑜𝑠𝑡𝑠 , (𝑏, 𝑠𝑢𝑐𝑐 , 𝑝𝑟𝑜𝑏), CloneEnv(𝑒𝑛𝑣), 𝑝𝑎𝑡ℎ)

8 return 𝑃𝑎𝑡ℎ𝑠 ⊕ ( Blocks(𝑝𝑎𝑡ℎ), 𝑝𝑟𝑜𝑏, Timing(𝑝𝑎𝑡ℎ) )

probabilities in the example CFG. The paths are recursively explored until the path probability is

equal to zero or the maximum number of iterations for a loop is reached (Line 6-7).

LLVM operators on distributions are overloaded to produce transformed distributions. When

symbolic execution has reached a branch point, ETAP integrates the probability function of the

transformed distribution that the execution branches on over the region of interest. This tells us

the probability of taking that branch. After stepping over a branch point, we perform state forking,

similar to mainstream symbolic execution engines [6, 13], and update the random variables in the

symbolic environment of the path with the information gained.

Linear transformations of named distributions have mostly analytical solutions; however, we

need to employ computational approaches if the transformation is non-linear (e.g., a logarithmic

transformation). This is also the case for convolution operations. For instance, the sum of two

independent normally distributed (Gaussian) random variables also follows a normal distribution,

with its mean being the sum of the two means, and its variance being the sum of the two variances;

on the other hand, the sum of two random variables, which follow Uniform and Normal distributions

respectively, cannot be expressed with a closed-form expression, and therefore, in these cases,

ETAP approximates these probabilities using numerical methods.

For function classify in Figure 5, ETAP explores three paths i.e., 𝜋1: ‘𝑎 → 𝑏 (𝑐𝑝) → 𝑐 → 𝑑 (𝑐𝑝) →
𝑒 (𝑐𝑝)’, 𝜋2: ‘𝑎 → 𝑏 (𝑐𝑝) → 𝑓 → 𝑔 → ℎ(𝑐𝑝) → 𝑖 → 𝑒 (𝑐𝑝)’, and 𝜋3: ‘𝑎 → 𝑏 (𝑐𝑝) → 𝑓 → 𝑗 → 𝑖 →
𝑒 (𝑐𝑝)’ where 𝑐𝑝 indicates the blocks with the checkpoint operation. It calculates path execution

probabilities (or weights) associated with each path (𝜔1 = 0.648, 𝜔2 = 0.058, and 𝜔3 = 0.294). The

nodes labeled with small letters represent the basic blocks (e.g., 𝑎, 𝑏, 𝑐). Each basic block is heat-map

colored based on its execution probability. Each path has an execution time probability distribution

(𝜏1, 𝜏2, and 𝜏3) that represents the path’s timing behavior while it is continuously powered. It is the

convolution of the execution time cost distribution of the basic blocks along the path. Since the

timing behavior is compositional when there is no power failure, ETAP considers checkpoint (𝜏𝑐𝑝 )

and other function calls in the program path (𝜏𝑎𝑙𝑒𝑟𝑡 , 𝜏𝑓 𝑒𝑎𝑡𝑢𝑟𝑖𝑧𝑒 , and 𝜏𝑒𝑟𝑟𝑜𝑟 ) while convolving the cost

distributions as follows:

𝜏1 ∼ 𝑎(𝜏) ∗ 𝑏 (𝜏) ∗ 𝜏𝑐𝑝 ∗ 𝑐 (𝜏) ∗ 𝜏𝑓 𝑒𝑎𝑡𝑢𝑟𝑖𝑧𝑒 ∗ 𝑑 (𝜏) ∗ 𝜏𝑐𝑝 ∗ 𝑒 (𝜏) ∗ 𝜏𝑐𝑝
𝜏2 ∼ 𝑎(𝜏) ∗ 𝑏 (𝜏) ∗ 𝜏𝑐𝑝 ∗ 𝑓 (𝜏) ∗ 𝑔(𝜏) ∗ 𝜏𝑎𝑙𝑒𝑟𝑡 ∗ ℎ(𝜏) ∗ 𝜏𝑐𝑝 ∗ 𝑖 (𝜏) ∗ 𝑒 (𝜏) ∗ 𝜏𝑐𝑝
𝜏3 ∼ 𝑎(𝜏) ∗ 𝑏 (𝜏) ∗ 𝜏𝑐𝑝 ∗ 𝑓 (𝜏) ∗ 𝑗 (𝜏) ∗ 𝜏𝑒𝑟𝑟𝑜𝑟 ∗ 𝑖 (𝜏) ∗ 𝑒 (𝜏) ∗ 𝜏𝑐𝑝

The execution time probability distribution of function classify for program execution without

power failures is a convex combination of all the timing distributions of its execution paths:

𝜏𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 ∼ 𝜔1𝜏1 + 𝜔2𝜏2 + 𝜔3𝜏3. It is a univariate mixture distribution and represents the timing

behavior of the function while the energy is plentiful in the environment.
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entry checkpoint.1 if.else if.then2 checkpoint.3 if.end checkpoint.4
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1 43
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Fig. 6. An Example Path derived for continously-powered execution and its analysis for intermittent execution.

8 ENERGY-AWARE ANALYSIS OF PROGRAM PATHS
ETAP symbolically executes each program path with stochastic ambient energy to estimate its

execution time probability distribution for intermittent execution (Step 3 in Figure 3). Figure 6

presents an example path without power failures (𝜋2: ‘𝑎(𝑐𝑝) → 𝑏 → 𝑐 → 𝑑 (𝑐𝑝) → 𝑒 → 𝑓 (𝑐𝑝)’
where 𝑐𝑝 indicates the blocks with the checkpoint operation) and illustrates its energy-aware

symbolic analysis. We relabel the blocks in path 𝜋2 to increase the readability in Figure 6. We also

initiate the symbolic analysis from block 𝑎 to simplify the presentation.

The analysis starts with a non-deterministic initial capacitor energy budget, i.e., a uniform

random variable on the interval of the capacitor’s maximum and minimum thresholds, 𝐸𝑖𝑛𝑖𝑡 ∼
Unif (𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 ). ETAP divides the path into regions between two sequential checkpoints and

between the beginning/end of the path and the first/last checkpoint in the path (‘𝑎 → 𝑏 → 𝑐’,

‘𝑑 → 𝑒’, and ‘𝑓 ’). The path is analyzed region by region. The power failure probabilities are

calculated for each block in the first region based on the initial capacitor energy distribution (𝐸𝑖𝑛𝑖𝑡 ).

If a power failure is probable, ETAP creates a path which returns to the checkpoint block. In addition

to the initial program path in the first region in Figure 6 (𝜑1: ‘𝑎 → 𝑏 → 𝑐’), three new paths are

derived for power failures (e.g., 𝜑3: ‘𝑎 → ¤𝑏 → 𝑎 → 𝑏 → 𝑐’ where the power failure occurs in block

𝑏). Each new path has only one power failure because ETAP reports non-terminating ones [19] that

need more energy than the capacitor size.

For each path, ETAP subtracts the energy cost distributions of program blocks from the capacitor

energy through convolution; it sums (convolves) the time cost distributions of the blocks. The result

is the time and energy cost distributions of the paths in the first region (𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝐸1, 𝐸2, 𝐸3, and

𝐸4). To reduce the number of convolution operations in the next region, ETAP derives univariate

mixture distributions (e.g., 𝜏𝑚𝑖𝑥1 ) from the cost distributions of the paths with power failure (e.g. in

region 1, 𝜏𝑚𝑖𝑥1 ∼ (𝜔2𝜏𝜑2
∗ 𝜔3𝜏𝜑3

∗ 𝜔4𝜏𝜑4
) ∗ 𝜏ℎ𝑎𝑟𝑣𝑒𝑠𝑡 , where 𝜔2, 𝜔3, and 𝜔4 are failure probabilities).

These distributions are input time costs for the paths in the next region derived from the power

failure paths in the current region (e.g., 𝜑2 ∼ 𝜏𝑚𝑖𝑥1 ∗ 𝑑𝜏 ∗ (𝑑𝜏 ∗ 𝑒𝜏 ) for 𝜑2 in the second region in

Figure 6).

The current capacitor energy distribution is calculated for each path in the first region. For the

capacitor energy of the path without power failure, ETAP subtracts the energy cost distributions

of the blocks from the initial capacitor energy distribution through convolution, i.e., 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∼
𝐸𝑖𝑛𝑖𝑡 ∗−(𝑎𝜖 ∗𝑏𝜖 ∗𝑐𝜖 ). In the power failure paths, the capacitor is charged up to themaximum threshold

energy level during power failure (sleep mode). Therefore, while calculating their capacitor energy,

ETAP considers the maximum energy the capacitor can store, e.g., 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∼ 𝐸𝑚𝑎𝑥 ∗ −(𝑎𝜏 ∗ 𝑏𝜏 ∗
𝑎𝜏 ∗ 𝑏𝜏 ∗ 𝑐𝜏 ) for path 𝜑3: ‘𝑎 → 𝑏 → 𝑎 → 𝑏 → 𝑐’. It uses the final program paths, capacitor energy

levels, and cost distributions of the current region as the initial parameters of the next region. The
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Table 1. Timing Report of ‘#pragma etap expires(40ms)’ for the given configuration space in Figure 7.

Configuration Timing Probability Meets Timing Confidence Intervals (ms)
𝑃𝑟 (𝜏𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 ≤ 40ms) Req.? 95% CI 90% CI 80% CI

Figure 7a 0.691 ✗ [19.2, 68.9] [21.8, 68.7] [22.1, 68.3]

Figure 7b 0.546 ✗ [19.2, 86.1] [39.4, 85.9] [30.7, 85.7]

Figure 7c 0.732 ✗ [10.6, 68.9] [11.0, 68.7] [22.0, 68.2]

Figure 7d 0.838 ✓ [19.2, 78.7] [21.6, 78.4] [22.0, 70.9]

Figure 7e 0.751 ✗ [19.2, 95.9] [30.2, 95.7] [30.6, 90.4]

Figure 7f 0.857 ✓ [10.6, 78.7] [10.9, 78.3] [22.0, 70.0]

Figure 7g 0.934 ✓ [19.1, 93.3] [19.5, 90.4] [22.0, 25.5]

Figure 7h 0.895 ✓ [19.1, 116 ] [19.5, 110 ] [30.5, 104 ]

Figure 7i 0.943 ✓ [10.6, 92.9] [10.9, 84.3] [21.9, 25.4]

same mixture and convolution operations are repeated in each new region. In the last region, the

final energy and time probability distributions are obtained for the path under analysis (see Region
3 in Figure 6).

As we described above, ETAP obtains the execution time probability distributions of each path

of the function under analysis. These distributions are also used to generate reports on how likely

timing requirements are met (see the 2
nd

column in Table 1). ETAP symbolically executes each path

of the function in Figure 5 for intermittent execution. The mixture distribution of the execution

time distributions of these paths is the execution time probability distribution of the function.

Figure 7 shows the reports of the execution time probability distributions of function classify for

intermittent execution under three different capacitor types (1mF, 2mF, and 5mF) and three different

checkpoint placements (variant 1, variant 2, and variant 3 in Figure 4). The first functions in Figure 7

are the probability density function (PDF), and the second ones are the cumulative distribution

function (CDF). As shown in Table 1, ETAP also generates a report for each configuration.

When the capacitor size increases, the probability of failure paths decreases for all variants,

which is expected. Configurations (d), (f), (g), (h), and (i) in Figure 7 satisfy the timing requirement

(see Line 3 in Figure 4) with 0.8 probability (𝑃𝑟 (𝜏𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑦 ≤ 40𝑚𝑠) > 0.8). If we increase the capacitor

size from 2mF to 5mF, the probability of meeting the requirement becomes 0.9 for all variants. This

increase our confidence in meeting the requirement, especially for configurations (g), (h), and (i).

Program variant #1 and #3 have more stable timing behavior compared to variant #2 (less

divergent timing behavior in the probability distributions), and variant #3 performs slightly better

than variant #1 for all confidence intervals. Therefore, we can conclude that it would be better to

use a 5mF capacitor powering the program variant #3 for function classify (see Figure 7f). 5mF

capacitor has a higher energy level, and the probability of meeting the timing requirement would

be higher due to less power failure probability. However, bigger capacitors would require more time

to store enough energy to power up the application, which would decrease the sampling rate of the

sensing application. In this analysis, the setup harvests energy from the emitted radio frequency

(RF) signals at a distance of 40cm. The charging time distributions of the capacitors we used are

given in 95% confidence intervals in Table 2.

We can conclude that it would be better to minimize the capacitor size while meeting the timing
requirement. Also, a 2mF capacitor would be the optimal selection for this setup under the given

timing requirement and energy profile.
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(a) 1mF Capacitor - Variant #1
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(b) 1mF Capacitor - Variant #2
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(c) 1mF Capacitor - Variant #3

20000 40000 60000 80000

0.
00

00
0.

00
04

0.
00

08

20000 40000 60000 80000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pr
ob

ab
ili

ty

95% Confidence Interval (19162.69, 22233.73, 78744.89)

(d) 2mF Capacitor - Variant #1
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(e) 2mF Capacitor - Variant #2
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(f) 2mF Capacitor - Variant #3
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(g) 5mF Capacitor - Variant #1
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(h) 5mF Capacitor - Variant #2
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(i) 5mF Capacitor - Variant #3

Fig. 7. Reports of the Execution Time Probability Distributions (Cumulative Distribution Function) of Function
classify after symbolically executing with 1MHz clock-rate under 3 different capacitor type and 3 different
checkpoint placements with the given 𝜏harvest profiles. The values on x-axis are in microseconds. The blue
vertical lines represent the first quartile, the median, and the third quartile respectively; the red vertical line is
the mean of the probability distributions.

Table 2. Charging Times (ms) of Capacitors in 95% Confidence Interval

40cm distance 1 mF 2 mF 5 mF

𝜏ℎ𝑎𝑟𝑣𝑒𝑠𝑡 [9.48 ms, 11.95 ms] [18.99 ms, 25.64 ms] [41.47 ms, 57.53 ms]
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9 EVALUATION
We now evaluate our prototype on four benchmarks and one real-world application to demonstrate

that: (i) ETAP correctly predicts the execution time of intermittent programs and (ii) it significantly

reduces the analysis time and efforts.

Section 9.1 presents our testbed setup (checkpoint implementation, energy harvesting tools,

and host platform) for our evaluation. In Section 9.2, we describe the target platform and energy

environment profiling used in the evaluation. Section 9.3 gives the results of our evaluation on

the benchmark programs. In Section 9.4, we give the evaluation results for a DNN-based person

detection application.

9.1 Testbed Setup
Target Platform. We used TI’s MSP430FR5994 LaunchPad [74] development board as a target

platform. The operating frequency of the microcontroller (MCU) was set to 1 MHz for our testbed

experiments, however, we also investigated 4MHz, 8MHz, and 16MHz clock-rates. The MCU

supports 20-bit registers and 20-bit addresses to access an address space of 1MB. To infer instruction-

level energy consumption and obtain timing models, we used TI’s EnergyTrace software [72]

sampling the energy consumption of programs at runtime by using the specialized debugger

circuitry on the development board. The precision of EnergyTrace was limited due to its low

sampling rate.

Checkpoint Implementation. This MCU has 256 KB of FRAM (non-volatile memory) to store data

that persists when there is no power. It also includes 4 KB of SRAM (volatile memory) to store

program variables with automatic scope. We implemented (i) a checkpoint routine (checkpoint())
that copies the volatile computation state (20-bit general-purpose registers, program counter, and 4

KB SRAM) into FRAM and (ii) a recovery routine (recovery()) that restores the computation state

after a power failure by using the latest successful checkpoint data. The energy and timing costs of

these routines are constant. We configured ETAP with these costs by using pragmas, as shown in

Figure 4.

Energy Harvesting Tools. We used the Powercast TX91501- 3W power transmitter [60] emitting

radio frequency (RF) signals at 915 MHz center frequency. The transmitter was connected to a

P2110-EVB receiver [61] co-supplied with a 6.1 dBi patch antenna. The receiver accumulated

harvested energy from the emitted RF signals into 50mF, 10mF, and 5mF supercapacitors to power

the MSP430FR5994 launchpad board. We used Arduino Uno [3] with 10-bit ADC (analog to digital

converter) to measure the instantaneous harvested power by the P2110-EVB receiver.

Host Platform. The evaluation was performed on 11th Gen Intel Core™ i7-1185G7 @ 3.00GHz

× 8 cores with 32 GB RAM on Ubuntu 20.04.4 LTS operating system. ETAP’s implementation is

sequential, but, in the future, we aim to discharge symbolic computation queries concurrently.

ETAP used one core and a maximum of 16 GB of memory. The memory consumption was relatively

high, mainly due to the high rate of symbolic computations over random variables introduced by

our benchmarks.

9.2 Profiling Target Platform and Energy Environment
The target platform and energy environment profiling is a one-time effort and eliminates the need

for continuous target deployment and on-the-fly analysis efforts.

9.2.1 Profiling Target Platform. ETAP runs on the platform-independent LLVM instruction set [46].

There is no one-to-one correspondence between the LLVM instruction set and the target architecture

instruction set. Therefore, we employed a block-based mapping strategy as mentioned in Section 6.
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Table 3. Stochastic Cost Models of the MSP430 Instruction Set Architecture based on Formats and Addressing
Modes. We sampled the addressing modes and their combinations grouped by their formats and then
statistically inferred the distribution of sample means employing bootstrapping method [47]. Since we
observed significant differences among measurements while sampling call #memcopy and call #memset
intrinsic functions due to the data-dependent power consumption of these functions, we derived regression
models for those that depend on the number of data words copied or set.

Addressing Example Timing Energy

Modes Instruction Models (`𝑠) Model (𝑛𝑗 )

Format I Double Operand

00 0 mov r5, r9 𝑁 (1.02, 0.01) 𝑁 (4.52, 0.62)

00 1 add r5, 3(r9) 𝑁 (3.02, 0.01) 𝑁 (7.08, 0.62)

01 0 mov 2(r5),r7 𝑁 (3.02, 0.01) 𝑁 (6.97, 0.62)

01 1 add 3(r4), 6(r9) 𝑁 (5.02, 0.01) 𝑁 (10.1, 0.62)

10 0 and @r4, r5 𝑁 (2.02, 0.01) 𝑁 (5.80, 0.62)

10 1 xor @r5, 8(r6) 𝑁 (4.02, 0.01) 𝑁 (8.33, 0.62)

11 0 mov #20, r9 𝑁 (2.02, 0.01) 𝑁 (5.55, 0.62)

11 1 mov @r9+, 2(r4) 𝑁 (4.02, 0.01) 𝑁 (8.34, 0.62)

Format II Single Operand

00 push r5 𝑁 (3.01, 0.01) 𝑁 (8.34, 0.62)

01 call 2(r7) 𝑁 (4.02, 0.01) 𝑁 (10.1, 0.62)

10 push @r9 𝑁 (3.52, 0.01) 𝑁 (8.33, 0.62)

11 call #81h 𝑁 (4.02, 0.01) 𝑁 (10.1, 0.62)

Format III Special Instruction or Intrinsic

Jumps jmp r5, r9 Constant(2) 𝑁 (5.8, 0.62)

multiplication call #_mspabi_mpyi 𝑁 (15.94, 0.27) 𝑁 (16.38, 0.23)

division call #_mspabi_divu 𝑁 (16.39, 0.23) 𝑁 (16.68, 0.17)

memcopy call #memcpy 𝑁 (13.06, .01) ∗ 𝑐𝑁 (9.06, .01) 𝑁 (35.04, 1.38) ∗ 𝑐𝑁 (24.21, 1.24)

In the cost model generation step of ETAP (Step 1 in Figure 3), the target hardware instructions

were automatically mapped into the LLVM basic blocks. The time and energy cost distributions of

each basic block were calculated through the hardware instruction cost distributions.

We used the Saleae logic analyzer [66] and EnergyTrace tool to collect the energy and timing

costs of the MSP430 instructions from the MSP430FR5994 Launchpad at 1MHz clock frequency.

Table 3 presents a simplified version of the cost model we used to predict basic block costs. MSP430

is a 16-bit RISC instruction-set architecture with no data-cache [1]. It has 27 native and 24 emulated

instructions. Our analysis shows that the energy and timing costs of the instructions depend

on the formats and addressing modes. The MSP430 architecture has seven modes to address its

operands: register (00), indexed (01), absolute (10), immediate (11), symbolic, register indirect, and

register indirect auto increment. The timing and energy behavior of each instruction highly depends

on the these addressing modes, which we can group as double operand instructions (Format I),

single operand instructions (Format II), and special instructions (Format III) [73]. We sampled

the addressing modes and their combinations grouped by their formats, and then statistically

inferred the distribution of sample means employing bootstrapping method [47]. Apart from

those instructions, we modeled the subroutines, call #mspabi_mpyi and call #mspabi_divu,
generated by the compiler since MSP430 does not have a hardware multiplier and divider. Besides,
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Fig. 8. RF energy profiles: charging-time samples for a 50mF supercapacitor at different distances.

we derived regression models for call #memset and call #memcopy intrinsic functions. For

call #memcopy, the stochastic models for timing and energy are #memcpy𝜏 ∼ 𝑁 (13.06, .01) ∗ 𝑐 ·
𝑁 (9.06, .01) and #memcpy𝜖 ∼ 𝑁 (35.04, 1.38) ∗𝑐 ·𝑁 (24.21, 1.24) where 𝑐 is the explanatory variable
for the number of data words copied.

9.2.2 Energy Profiles of the Environment. ETAP requires the ambient energy profile and the ca-

pacitor size to infer power failure rates and the off- and on-times of the device. Therefore, we

collected the ADC samples of the instantaneously received power from different setups for 20

seconds. We created different settings by placing the RF power transmitter and receiver in line of

sight at different distances. The measurements were repeated ten times for each setup. Using the

energy profile and energy equation of capacitors (𝐸 = 1/2 ·𝐶 ·𝑉 2
), one can infer a bootstrapping

distribution [47] to model the average waiting time required to charge a capacitor with the given

voltage threshold. ETAP uses the maximum and minimum energy thresholds to calculate charging

and execution time. These energy thresholds are calculated by putting the minimum and maximum

voltage thresholds in the energy equation formula, which assumes a constant capacitance value.

However, the supercapacitor capacitance is not constant and depends on the current voltage value.

In our experimental setting, the voltage range provided by the P2110-B energy harvester board [60]

is from 1.02V to 1.25V, which are pretty close values. For simplicity, we used the capacitor energy

equation formula since it still provides a good approximation for the energy levels of the superca-

pacitor. Alternatively, programmers can also measure the real energy thresholds more precisely by

using tools like EKHO [37].

We run our benchmarks using energy harvesting hardware. Since the instantaneous power

obtained from energy harvesting devices varies depending on the distance between the receiver and

the transmitter, we chose three different distances in our testbed (100cm, 120cm, and 140cm). Figure 8

presents the energy profiles sampled at these distances. The MCU starts to operate intermittently
at 100cm to the transmitter. The harvested power significantly decreases after 120cm, and the MCU

dies quite frequently.

9.3 Evaluation Results for the Benchmarks
We used four benchmarks having different computation demands and memory access frequency

affecting the execution time (see Table 4). In particular, our benchmarks implement network

algorithms and data filtering in real IoT and Edge computing applications.
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Table 4. Benchmarks. Instructions and block counts are derived while MSP430 is continuously-powered.

Benchmark # of Instructions # of Blocks # of Power Source

Static Dynamic Static Dynamic Failure Paths

BitCount 566 103 702 66 7439 922 [33]

CRC 92 1568 17 408 363 [33]

Dijkstra 282 24 585 36 2884 592 [33]

FIR Filter 390 144 400 13 1880 175 [2]

Table 5. Prediction for Intermittent Execution Times compared with Actual Measurements.

Benchmark Distance Actual Measurement (𝑚s) ETAP Prediction (𝑚s) Error

(𝑐𝑚) Mean Std. Dev. Mean Std. Dev. Rate (%)

BitCount <100 6150.038 0.013 6145.405 0.003 0.075

100 33 550.353 19.919 33 693.902 99.793 0.4279

120 99 815.832 1008.207 99 618.170 303.237 0.0197

140 206 575.550 219.747 206 546.729 267.430 0.0143

CRC <100 3689.654 0.001 3690.537 0.001 0.022

100 23 337.998 23.339 23 655.506 29.708 1.3605

120 54 626.126 771.290 54 048.093 154.173 1.0582

140 95 888.740 1369.499 96 297.124 421.776 0.4259

Dijkstra <100 3212.243 0.013 3201.285 0.006 0.341

100 27 136.569 459.938 27 469.100 56.679 1.2254

120 40 455.846 636.112 40 506.445 74.279 0.1251

140 73 032.293 88.785 73 026.767 156.892 0.0076

FIR Filter <100 7282.946 0.019 7277.968 0.004 0.068

100 51 716.969 33.936 51 664.758 173.920 0.1010

120 97 558.188 98.225 97 702.685 136.667 0.1481

140 163 037.556 138.595 163 634.595 481.34 0.3662

9.3.1 ETAP Prediction Accuracy. We compared ETAP’s predictions to the actual measurements

obtained from the testbed (see Section 9.1 for the evaluation setup). The difference between the

ETAP estimation and the actual measurements varies between 0.007% and 1.3% (see Table 5). Despite

the limitations of our measurement devices, and in turn, coarse-grained ambient energy profiles,

ETAP predicted the power failure probabilities with high accuracy. Since the device starts to operate

continuously at a distance of less than 100cm, the prediction error significantly decreases to at

most 0.34% and at least 0.022%. Moreover, it accurately modeled the charging and discharging times

by using the probabilistic distribution of the ambient energy. Note that the prediction accuracy of

ETAP depends on the accuracy of the hardware cost models, and the ambient energy profile.

The prediction errors in Table 5 (e.g., ETAP’s predictions for CRC and Dijkstra are less accurate

at closer distances to the energy harvester) are due to our imperfect probabilistic models. Moreover,

ETAP does not consider the fact that the battery-free device is simultaneously charging while

discharging. Therefore, as the distance gets longer, the amount of charge loaded on the capacitor

during the discharge period decreases, and the predictions become more accurate.
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Table 6. Time Study for Intermittent Execution. ETAP’s automated analysis compared to manual experiment
times. ETAP’s analysis has two stages: first, it performs probabilistic path exploration (cf. Section 7) and then
runs energy-aware intermittent analysis (cf. Section 8). We report here the analysis times of these two stages.
Path exploration symbolically simulates continuously-powered execution and enumerates paths accordingly.
Therefore, the same benchmark takes a similar path exploration analysis time with different capacitors;
however, ETAP’s intermittent analysis time varies depending on the capacitor size due to its impact on the
number of divergent power-failure paths. Environment models on different distances do not impact the ETAP
analysis times since ETAP models the waiting time of the capacitor to charge up.

Benchmark

ETAP Analysis Time (s) Harvesting Experiment Time (s)
Capacitor

Size
Path Intermittent Profiling

100 cm 120 cm 140 cm
Exploration Execution Time (s)

Bitcount 24.165 181.192 200 1698 5042 10412 50mF

CRC 1.283 10.636 200 1249 2797 3895 50mF

Dijkstra 10.590 73.035 200 1391 2029 3842 50mF

Fir Filter 18.709 127.897 200 2591 4897 8203 50mF

Bitcount 24.347 256.727 200 2865 3852 4113 10mF

CRC 1.296 10.259 200 1593 2108 2460 10mF

Dijkstra 10.075 69.147 200 1278 1954 2030 10mF

Fir Filter 18.592 45.084 200 346 488 520 10mF

Bitcount 24.436 71.504 200 3109 4602 5216 5mF

CRC 1.314 10.156 200 1857 2878 3086 5mF

Dijkstra 10.318 108.201 200 1600 2252 2307 5mF

Fir Filter 18.923 26.479 200 406 608 689 5mF

Summary of the ETAP Accuracy Results for the Benchmarks. ETAP predicted the execu-

tion time of RF-powered intermittent programs almost perfectly for the benchmarks. We

observed a reasonable maximum prediction error during our evaluation, which was less than

1.5%.

9.3.2 ETAP Analysis Time. To assess how significantly ETAP reduces the analysis time and efforts,

we measured the time required to deploy an RF-powered application onto our testbed (see Sec-

tion 9.1), run the application 50 times, and collect a sufficient amount of data to reason about the

timing behavior through statistical sampling. The 4
th
column in Table 6 presents the time it takes

for the experimental measurements at each distance and excludes the manual analysis efforts such

as data extraction and preparation for data analysis.

As shown in Table 6, the manual experiment time increases as the number of power failures

during intermittent operation increases (as the distance from the transmitter increases) while

ETAP’s analysis time does not change with regard to distances of the harvesting kit, and it mainly

depends on the number of dynamic program blocks and instruction counts (see Table 4). Moreover,

ETAP checks the likelihood of a power failure after each block, which increases its analysis time.

ETAP appreantly requires less manual effort and is significantly faster than manual testing. ETAP

performed more precise path-based symbolic analysis at least 100 times faster than experimental

measurements under low energy harvesting conditions.
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Algorithm 2: Image Sensing Application

1 𝑖𝑑𝑥 ← 0 ⊲ Buffer index selects current or previous image

2 snapBuffer[2] ⊲ Store current and previous images

3 while 1 do

4 snapBuffer[idx]← CaptureImage()

5 difference← GetDifferencePercentage(snapBuffer)
6 if difference > %30 then

7 inference← DNN(snapBuffer[idx])
8 if inference > %90 then

9 SendImage(snapBuffer[idx])

10 𝑖𝑑𝑥 ← 𝑖𝑑𝑥 ⊕ 0𝑥01 ⊲ change buffer idx to swap current and previous buffer

Summary of the ETAP Analysis Time Results for the Benchmarks. ETAP speeds up the

timing analysis of intermittent programs for the benchmarks by at least two orders of

magnitude and eliminates the burden of the manual data analysis effort.

9.4 ETAP Evaluation Using an Image Sensing Application
We evaluated ETAP using an image sensing application to demonstrate the performance of ETAP’s

path-based probabilistic analysis. We used MSP430FR5994 MCU at 1 MHz, Powercast TX91501-

3W power transmitter, and P2110-EVB receiver co-supplied with a 6.1 dBi patch antenna in the

experimental setup. Furthermore, we set the distance between receiver and transmitter as 100

cm. We utilized 5mF, 10mF, and 50mF supercapacitors as energy storage. Since ETAP requires

peripheral functions’ energy and time costs as inputs, we measured them using TI’s EnergyTrace

software [72]. We simulated peripheral functions rather than using peripherals. Since ETAP gets

these functions’ costs as input, the simulation of peripherals does not have an impact on ETAP

analysis performance.

Application Implementation. Similar to the image sensing pipeline presented in Desai et al. [22],

our application consists of four main steps (see Algorithm 2): (i) capturing the image, (ii) image

differencing, (iii) DNN inference, and (iv) sending the image. The application control graph has

three paths based on the image differencing and DNN inference step results.

• Path 1 is the path in which the first if condition (line 6) is false. The program takes the image

(line 4), compares it with the previous image (line 5), and changes buffer idx to save the next

image (line 10).
• Path 2 is the path in which the first if condition (line 6) is true, and the second if condition

(line 8) is false. The program takes an image (line 4), compares it with the previous image

(line 5), runs DNN to detect a person (line 7 ), and changes buffer idx to save the next image

(line 10).
• Path 3 is the path in which both if conditions are true. The program takes an image (line 4),
compares it with the previous image (line 5), runs DNN to detect a person (line 7 ), sends the
image, which contains a person (line 9), and changes buffer idx to save the next image (line
10).

If there is enough difference between current and previous images, the DNN algorithm runs

to detect a person. If the person is detected, then the image is sent. Since peripherals functions
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Table 7. Harvesting Times (ms) of Capacitors in 95% Confidence Interval at the environment where the
Sense-and-Send application runs.

100 cm distance 50 mF 10 mF 5 mF

𝜏ℎ𝑎𝑟𝑣𝑒𝑠𝑡 [1490980 µs, 152323 µs] [290331 µs, 293208 µs] [147747 µs, 149212 µs]

Table 8. Evaluation of the Sense and Send Application.

Execution

Paths

Cap.

Size

ETAP Analysis Time (s) Actual ETAP Error

Rate

(%)

Path Intermittent Measurement (s) Prediction (s)

Exploration Execution Mean Std. Dev. Mean Std. Dev.

Path 1
50mF 7.826 53.568 0.352 0.532 0.314 0.482 10.80

10mF 8.225 51.033 0.325 0.141 0.349 0.167 7.38

5mF 8.373 52.151 0.348 0.114 0.371 0.122 6.61

Path 2
50mF 86.001 544.292 1.509 0.767 1.531 0.228 1.46

10mF 91.108 535.289 1.273 0.519 1.312 0.408 3.06

5mF 89.447 569.962 1.710 0.891 1.882 0.615 10.06

Path 3
50mF 91.843 562.086 1.320 0.700 1.353 0.763 2.50

10mF 94.764 573.437 1.730 0.489 1.862 0.314 7.63

5mF 92.398 571.485 1.965 0.101 2.094 0.201 6.56

Mixture
50mF 84.657 1149.556 1.167 0.897 1.135 0.397 2.81

10mF 80.744 1129.452 1.214 0.687 1.12 0.319 8.39

5mF 82.670 1142.744 1.327 0.707 1.448 0.394 9.12

were simulated, we defined uniformly distributed random values for image differencing, and DNN

inference steps resulted in the code. We mainly inserted checkpoints at the beginning and end of

each function and the inner loops at DNN.

ETAP Configuration. We compared ETAP’s predictions to the actual measurements on the image

sensing application. We analyzed the three data-dependent paths individually and their overall

execution separately in four experiments. Furthermore, we also similarly analyzed them with

ETAP using the same binaries. The timing and energy consumption of functions CaptureImage()
and SendImage() in Algorithm 2 were modeled as 𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝐼𝑚𝑎𝑔𝑒𝜏 ∼ 𝑁 (13.9346 µs, 0.0005) and
𝐶𝑎𝑝𝑡𝑢𝑟𝑒𝐼𝑚𝑎𝑔𝑒𝜖 ∼ 24447.524 nJ; and 𝑆𝑒𝑛𝑑𝐼𝑚𝑎𝑔𝑒𝜏 ∼ 𝑁 (53.6934 µs, 0.0019) and 𝑆𝑒𝑛𝑑𝐼𝑚𝑎𝑔𝑒𝜖 ∼
817614.653 nJ. Harvesting times, 𝜏ℎ𝑎𝑟𝑣𝑒𝑠𝑡 for all capacitors, are given in Table 7.

We symbolically executed function GetDifferencePercentage() and DNN() in Algorithm 2.

To align the sensor input behavior of the physical experiments with the ETAP’s offline proba-

bilistic analysis, the return values of functions GetDifferencePercentage() and DNN() were

overridden by random values following Unif (1, 100) and Unif (60, 100) distributions using ETAP’s

configuration capability (see Section 5). Thus, we obtained similar path execution probabilities in

the ETAP analysis and the physical experiments for the overall application execution (see mixture
in Table 8).

Evaluation Results for the Image Sensing Application. The error rate of the ETAP’s estimations ranges

between 1.46% and 10.8% (see Table 8). The main reason for the differences in ETAP’s prediction

error rates between benchmarks and path analysis of image sensing application is that function

DNN() of the application has more than one million loop iterations. After such numbers of iterations,
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ETAP starts encountering precision errors while generating a mixture probability distribution

over all explored power failure paths and their execution probabilities. Therefore, ETAP analyzed

one complete run of the application having an initial capacitor energy level following a uniform
energy distribution —representing a maximum uncertainty. However, the actual experiments were

conducted 50 times (runs), with the first run starting from a random initial capacitor level. The runs,

except the first run, in the actual experiments were not independent of each other for the remaining

energy at the capacitor, which led to an increase in the error rates of the ETAP’s predictions for the

image sensing application.

The high standard deviation compared to the benchmark experiments is due to the fact that the

charging time of the capacitor dominates the total execution time after a power failure happens. For

example, the normal execution time for path 1 is 0.143 seconds, while the average discharging time

for 50mF, 10mF, and 5mF capacitors are approximately 1.49 second, 296ms, and 100ms, respectively.

Therefore, power failure does not occur at path 1 for 50mF and 10mF capacitors. However, it is

still possible to have a power failure depending on the initial energy level of the capacitor. This

scenario reveals the highest error rate that may occur in ETAP analysis. If there is no more than

one power interruption (i.e., in path 1), the error rate will increase as the capacitor size increases

since the charging time increases.

Due to the high number of loop iterations in function DNN(), paths 2 and 3 take more analysis

time than path 1 takes and much more than the benchmarks take (see Table 6). When more than

one power failure occurs at each execution (i.e., in path 2 and path 3), the error rate increases as

capacitor size decreases. Since the capacitor size decreases, the number of power failure paths

non-linearly increases. And, the uncertainty in the resulting distribution increases.

While evaluating mixture path analysis at the ETAP’s end, we used uniformly distributed results

for DNN() and GetDifferencePercentage() due to peripheral functions simulated. Therefore,

the execution can branch into any of these paths. We run the application code 50 times in the real

experiments and took a sampling distribution of the execution time to compare the ETAP result. As

shown in the mixture path row of Table 8, the ETAP result reflects the weighted average of those

three paths based on path probabilities. The mixture results are also close the weighted average

of the three paths in experimental measurements. When the number of samples increases, the

experimental results also become closer to the weighted mean of the three paths.

Summary of the ETAPEvaluationResults for theApplication. Considering the evaluation
results in Table 8, ETAP has successfully predicted the execution times of different application

paths (with different sizes) executed on different hardware settings (different capacitor sizes),

with prediction error rates ranging between 1.46% and 10.8%. The relatively high error rates

for the image sensing application are due to precision errors that ETAP encountered while

generating a mixture probability distribution over power failure paths and their execution

probabilities in very large number of loop iterations.

10 RELATEDWORK
We present prior work that relates to our approach in the context of intermittent computing, timing

and energy analysis of intermittent programs, and probabilistic program analysis.

Timing Analysis of Intermittent Programs. Some runtimes provide programming constructs to assign

timestamps to sensed data and check if the data expire. InK [80] is a reactive task-based runtime that

employs preemptive and power failure-immune scheduling for timing constraints of task threads.

Mayfly [39] makes the passing of time explicit, binding data to the time it was collected, and keeping
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track of data and time through power failures. TICS [44] provides programming abstractions for

handling the passing of time through intermittent failures and making decisions about when data

can be used or thrown away. Different from these runtimes, ETAP predicts the timing behavior of

intermittent programs before deployment and introduces zero overhead.

Energy Analysis of Intermittent Programs. CleanCut [19] detects non-terminating tasks in a task-

based intermittent program. To do so, it samples the energy consumption of program blocks with

a special debugging hardware and over approximates path-based energy consumption. Similar

to CleanCut, EPIC [1] traverses control-flow graph to compute best- and worst-case estimates of

dynamic energy consumption for a given intermittent program. ETAP similarly analyze the energy

costs of paths but considers precise program semantics and knows execution probabilities of each

path by means of probabilistic symbolic execution. In fact, profiling is a one-time effort for each

target and has intrinsic support for detection of forward-progress violations. ETAP’s main goal is to

perform energy-aware timing analysis to reason about timing behavior of intermittent programs.

Other Analysis Tools for Intermittent Programs. IBIS [70] performs a static taint analysis to detect

bugs caused by non-idempotent I/O operations in intermittent systems. ScEpTIC [53] has similar

objectives as IBIS, i.e., detecting intermittent bugs. Ocelot [71] enforces intermittent programs

written rust language to maintain temporal consistency. Those tools are complementary and can be

used with ETAP to detect such intermittence bugs. But none of these tools perform timing analysis

of intermittent programs. Moreover, ETAP is a novel probabilistic program analysis approach.

Probabilistic Program Analysis. Various probabilistic symbolic execution techniques have been

proposed in the literature (e.g., [11, 14, 24, 25, 27, 49, 59]). Geldenhuys et al. [27] propose proba-

bilistic symbolic execution as an extension of Symbolic PathFinder [59]. Luckow et al. [49] extend

probabilistic symbolic execution to compute a scheduler resolving program non-determinism to

maximize the property satisfaction probability. Chen et al. [14] employ probabilistic symbolic exe-

cution to generate a performance distribution that captures the input probability distribution over

the execution times of the program. Filieri et al. [25] extract failure and success program paths to

be used for probabilistic reliability assessment against constraints representing subsets of all input

variables range over finite discrete domains. All these techniques consider only typical program

non-determinism, e.g., program input probability distribution. They analyze the control flow of

continuously powered program execution, and they do not consider the power-failure-induced

control flow. To analyze the power-failure-induced control flow, we need symbolic execution at

the IR- (e.g., LLVM) or at the binary level, which is not supported by the current probabilistic

symbolic execution engines. Therefore, it is not feasible to exploit, integrate or reuse the existing

techniques for the analysis of intermittent programs. Our goal is to overcome this problem and

develop a dedicated probabilistic symbolic execution technique that analyzes the control flow

graph of the intermittent programs. That’s why we introduce power-failure-induced edges, and we

use the charging/discharging model, environment energy profile, and other intermittent program

characteristics (capacitor size and program structure).

11 DISCUSSION
Comparison to simple stochastic simulation. Stochastic simulations may not cover all execution

paths, since they randomly generate simulation inputs and simulate the program based on these

input values. In order to execute all possible paths, we would need to perform numerous simulation

runs. Even then, there might still be some paths that have not been examined, and it is not always

possible to give a good estimate how many simulations we need, to obtain a result accurate enough.

Contrarily, ETAP employs probabilistic symbolic execution to get the absolute path frequency by
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using probability distributions, rather than randomly generating inputs and executing the program

paths. This is a more accurate approach compared to simulation, since we are guaranteed to cover

all execution paths needed to analyze the timing behavior of the intermittent program.

Scalability of probabilistic symbolic execution. We do not expect serious scalability issues for ETAP

analyzing intermittent programs running on batteryless devices since these programs are relatively

small by nature. This is also why we chose our benchmarks among the most common benchmarks

that are widely accepted by the intermittent computing community (e.g., [18, 19]). We already

presented the analysis times for the four applications in Table 6’s ETAP Analysis Time column.

The Bitcount benchmark took about a minute. We also believe that a thorough scalability analysis

will be beneficial to understand the limits of ETAP in terms of the maximum program size that we

can analyze as of now.

The prediction accuracy achieved by ETAP in the unpredictable nature of energy harvesting. The
environment models that have more inherent variability will influence the accuracy and precision

of the prediction negatively, such as energy modeling with mobile transmitter or receiver or both.

But the focus of ETAP is not on generating the environment model, but on performing the analysis

given the user-provided model. The user can provide a more sophisticated probabilistic model for

incoming profiles, bimodal, mixture, etc. On the other hand, the RF profile is not stable, it is actually

chaotic. But it can be modeled with a Gaussian distribution easily at certain distances (by applying

bootstrapping method on energy traces) as long as the testbed and the RF source are not mobile.

We model the environmental energy profile in terms of the average waiting time required to fully

charge a capacitor with specific capacitance values on the harvester kit. For instance, the average

waiting time required to charge a 50mF capacitor varies from 8 seconds to 9.5 seconds at 100 cm

away from the RF source. And the more the testbed is positioned away from the source, the waiting

time exponentially increases.

Dealing with loops. If the program has a bounded-loop, simply unrolling the loop would be sufficient;

however, there might be conditions data-dependent upon the program’s input that result in branch

points in the computation tree. In these cases, the path exploration algorithm (Algorithm 1) traverses

the loop until the probability of branching approaches zero. Our computation treemight have infinite

depth, as some loops may be unbounded. Therefore, ETAP terminates analysis after exploring

a user-provided limit (Line 6 in Algorithm 1). In addition, all the benchmarks used in the paper

include loops.

Timing requirements. Timing requirements are optional inputs of ETAP. Without timing require-

ments, ETAP reports the timing distribution of each function in the LLVM module. Programmers

only provide the function to be analyzed, and ETAP generates distributions for the timing and

energy consumption of that function. If a more fine-grained analysis is needed, timing requirements

can be input to get a quantification report about the success rate of the requirements.

Ambient energy profile. While designing ETAP, we assumed that programmers follow a what-if

analysis and evaluate checkpoint placement and timing behavior of functions under different

ambient energy profiles. Even though ambient energy is unpredictable in intermittent systems,

programmers should have an opinion about the energy level of the ambient to decide on intermittent

constraints of their applications, such as capacitor size or checkpoint frequency. Similarly, they

should have some information on the ambient energy behavior. If the ambient energy source is

more erratic, they should consider the worst ambient energy case (e.g., the farthest position of the

RF receiver if the receiver is mobile) to analyze the timing behavior of the application.
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Energy cost of peripherals. The energy consumption characteristics of peripherals are quite different

from each other. Moreover, some peripheral’s energy consumption can change according to their

hardware state. For instance, a transmitter has different energy consumption in receive or transmit

mode. Thus, it is difficult to propose a general energy model that captures all the peripherals. ETAP

needs to know which instructions change the peripheral state and energy consumption character-

istics of each hardware state. Therefore, programmers should measure the energy consumption of

the peripherals by using tools (such as EKHO [37] or EDB [17]) to generate energy cost models.

They should provide these cost models and the instructions that change the peripheral state as

ETAP as inputs. These efforts are out of our current scope, and we left peripherals support as future

work.

Energy cost model. Our evaluation shows that our energy cost model is already sufficient to perform

an accurate timing analysis of intermittent programs. We observed less than 2% estimation error

with our approach considering the benchmarked applications. Therefore, we did not see any reason

to devise or incorporate a better model. It is possible to integrate better models (i.e., more accurate

probability distributions that can provide a fine-grained representation of the pipelining and cache

effects) into ETAP to increase the analysis accuracy. Considering the focus of our paper (i.e.,

probabilistic symbolic execution approach and intermittent computing) proposing a better energy

cost model is orthogonal to our contributions.

Requirement of hardware support and cost of energy profiling. ETAP can use probabilistic or analytical
models derived from either the real measurements conducted on the hardware, or directly provided

(for example, by a hardware vendor). There are many open-source energy harvesting and power

consumption traces available, e.g., [64]. Therefore, ETAP users can analyze their programs without

the need for any hardware measurements, as long as they are provided via some of the mentioned

means.

Using energy approximation. One may argue that compile-time analysis using energy cost ap-

proximations (e.g., [4]) can be employed to predict the execution time of intermittent programs.

Approximating the energy consumption of a code block can only give the time it takes to execute

it continuously. The code block can be interrupted at any point during its execution, and there

are extra recovery operations due to power failures. This situation leads to power-failure-induced

control flow, which is highly dynamic. Therefore, it is impossible to infer the execution time by

using simple energy consumption approximations. And, we need a custom technique to infer the

execution time concerning the dynamic power-failure induced control flow.

Dynamic checkpoint size. For simplicity, ETAP assumes that all volatile data are backed up upon

checkpoint calls [4, 48, 63, 78]. Thanks to this fixed checkpoint size, ETAP can use a fixed probability

distribution to model timing and energy costs of checkpoints. On the other hand, there are studies

that focus on reducing the contents to back up (e.g., [44, 69, 82]) since storing all volatile data in

the cache (or on-chip memory) would be energy-consuming. ETAP can be extended to model the

behavior of dynamically changing size of data to back up thanks to its symbolic memory model (cf.
Section 2.4.2). Since ETAP’s symbolic store tracks memory operations and simulates backups and
restarts, checkpoints can be converted to parametric operations, similar to those regression models

that we developed for timing and energy consumption of memset and memcopy operations (see

Section 9.2.1).

Other checkpointing strategies. ETAP can be extended to support dynamic checkpoints, which are

triggered by the voltage monitoring hardware when the energy level drops below a threshold [7,

8, 42]. ETAP’s probabilistic symbolic analysis tracks the probability distribution of the remaining
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energy after executing each basic block for each program path and quantifies where power failures

happen (cf. Section 2.4.3). ETAP can be similarly adapted to simulate dynamic checkpoints instead

of power failures.

Drift between distributions. There might be a drift between the distributions at measurement

versus deployment time. It may not always be possible to know the exact energy harvesting

and sensor input distributions in the field. Therefore, we design ETAP to give programmers

insight into how their intermittent programs behave under different ambient energy and sensor

input conditions. Programmers are expected to use ETAP with different sensor input and energy

harvesting distributions and estimate the timing behavior of their programs.

MSP430 and other microcontrollers. As MSP430 is a de facto standard for intermittent computing,

we target the MSP430 instruction set and its implementation, the MSP430FR5994 board, to assess

ETAP. We empirically show that we can model the energy and timing behavior of the instruction

set through sampling distributions. Even though instruction-level models to approximate timing

and energy consumption of basic blocks result in accurate analysis on an MSP430 setup, it would

be difficult to develop such models for a sophisticated processor having a memory hierarchy

and a complex pipeline. However, ETAP supports assigning complex probability distributions to

instructions and basic blocks. For instance, to model cache hit and cache miss behavior at instruction

level, we need to know the timing behavior of a load instruction in the case of cache-miss and

a cache-hit separately. ETAP can use a mixed probability distribution that can be, for instance,

a weighted average of 95% of hit-distribution and 5% of miss-distribution. Another method in

the literature [19] is to sample energy consumption of each basic block by executing it on the

target microcontroller many times to generate accurate sampling distributions for each basic block.

However, this method would require a special testing setup for the target microcontroller. In the

future, we will explore more sophisticated chips.

12 CONCLUSION
We presented a novel static analysis approach, ETAP, that estimates the timing behavior of inter-

mittent programs, affected by several factors such as ambient energy, the power consumption of

the target hardware, capacitor size, program input space, and program structure. Considering the

effects of power failures, ETAP symbolically executes the given program to generate the execution

time probability distributions of each function in the program. To do so, it requires probabilistic

energy and timing cost models of the target platform, capacitor size, and program input space. Our

evaluation showed that ETAP exhibits prediction error rate ranging between 0.0076% and 10.8% for

a set of benchmark codes and real world application.

When implementing intermittent programs, programmers must consider several new challenges

unfamiliar to most application developers that target continuously powered IoT systems. For

instance, without compile-time analysis methods, programmers will never know at compile-time if

their intermittent programs execute as they intend to do in a real-world deployment (e.g., meeting

throughput requirements). Worse still, analyzing the timing behavior of intermittent programs on

real deployments is costly and time-consuming because programmers need to run the programs

multiple times on the target hardware. ETAP is the first step to achieve a broad vision [30] addressing

those unique software engineering challenges for programming the batteryless edge.

The execution time and throughput of intermittent programs depend on multiple hardware and

software design factors such as the capacitor size, the energy consumption of the target hardware,

the efficiency of the energy harvester unit, and the program structure (e.g., checkpoint placement

and the size and number of tasks in task-based models). The changes in the hardware and software

configuration may not always lead to what is intended (e.g., the bigger the capacitor size is, the
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longer the charging takes). Using the output of ETAP, programmers can follow a what-if analysis,

e.g., reconfiguring the hardware and restructuring their program to ensure the desired timing

behavior of their program. This what-if analysis is currently manual and not guided. As future

work, we plan to employ metaheuristic algorithms [31, 79] to guide this analysis [35, 36].
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