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A B S T R A C T

Pre-stack AVO inversion of seismic data is a modeling tool for estimating subsurface elastic properties. Our
focus is on the model-based inversion method where then unknown variables are estimated by minimizing the
misfit to the observed data. Standard approaches for non-linear AVO inversion are based on the gradient
descent optimization algorithms that require the calculation of the gradient equations of the objective
function. To improve the accuracy and efficiency of these methods, we developed a technique that uses an
implementation of the adjoint-state-based gradient computation. The inversion algorithm relies on three basic
modeling components consisting of a convolution-based forward model using a linearized approximation of the
Zoeppritz equation, the definition of the objective function, and the adjoint-computed gradient. To achieve an
accurate solution, we choose a second-order optimization algorithm known as the Limited memory-BFGS (L-
BFGS) that implicitly approximates the inverse Hessian matrix. This approach is more efficient than traditional
optimization methods. The main novelty of the proposed approach is the derivation of the adjoint-state
equations for the gradient of the objective function. The application of the proposed method is demonstrated
using 1D and 2D synthetic datasets based on data from the Edvard Grieg oil field. The seismic data for these
applications is generated by using both convolutional modeling and finite difference methods. The results of
the proposed method are accurate and the computational approach is efficient. The results show that the
algorithm reliably retrieves the elastic variables, P- and S-wave velocities and density for both convolutional
and finite difference models.
1. Introduction

In seismic inversion, the objective is to reconstruct unknown model
variables in the subsurface, for example, elastic velocities, from a set
of seismic measurements, including seismic amplitudes and travel time
measured at the surface (Aki and Richards, 1980). The inversion results
are retrieved from seismic reflection data by solving the non-unique
and ill-posed inverse problem and they provide a quantitative model
of predicted physical properties varying laterally and vertically (Buland
and Omre, 2003). Seismic data inversion schemes can be split into two
main classes, post-stack (or acoustic) impedance, and pre-stack (or elas-
tic) inversions. Post-stack inversion aims to predict acoustic impedance
from stacked seismic data and it is often used in stratigraphic interpre-
tation (Ghosh, 2000) but it does not give any information about the
shear wave velocity (Morozov and Ma, 2009; Maurya et al., 2018). On
the other hand, pre-stack inversion is based on the concept of amplitude
variations with offset/angle (AVO/A) and aims to predict a set of elastic
attributes such as seismic velocities, impedances and density (Downton,
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2005). AVO inversion results are typically correlated with petrophysical
attributes like porosity, saturation of fluids, and reservoir litho-facies.
These properties play a significant role in lithology prediction, geofluids
identification, and quantitative reservoir characterization (Chiappa and
Mazzotti, 2009; Zhao et al., 2014; Luo et al., 2019; Grana, 2020). In
addition, AVO inversion can also be used in time-lapse seismic monitor-
ing studies to predict the changes in pressure, saturation, and porosity,
as an example, for CO2 sequestration in depleted reservoirs (Lang and
Grana, 2019; Dupuy et al., 2021).

A seismic reflection event at the recording point is described gen-
erally by the convolution of the seismic source and the reflectivity
series based on the wave equations (Mallick, 2007), Zoeppritz equa-
tions (Kurt, 2007; Skopintseva et al., 2011; Liu et al., 2016) or lin-
earized approximations (Aki and Richards, 1980; Buland and Omre,
2003; Buland and El Ouair, 2006; Downton and Ursenbach, 2006;
Rabben and Ursin, 2011; Xiao et al., 2020). The inversion can be per-
formed according to deterministic or probabilistic inversion methods.
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Fig. 1. Example 1 — Model variables (solid red lines): the P and S wave velocities in (m∕s) and the bulk density in (kg m−3) and the corresponding initial guesses (dashed blue
lines) at the well location in the TWT interval 800–1400 ms are plotted in the figure.
For example, based on Aki and Richards linearized approximation, Hu
et al. (2011) presents a joint AVO inversion technique in the Bayesian
framework to extract seismic velocities and density parameters, Sen-
gupta et al. (2021) perform Bayesian inversion directly in the depth
domain by using linearized Aki and Richards equation, and Liu et al.
(2021) present a joint PP and PS inversion method based on the calcu-
lation of a Jacobian matrix of the Zoeppritz approximation. In addition
to gradient-based optimization, the Monte Carlo inversion method (Jin
and Madariaga, 1994) and Bayesian linearized AVO inversion tech-
nique based on Gaussian distributions (Tarantola, 1987; Buland and
Omre, 2003) have also been utilized to solve the inverse problems and
quantify the uncertainty of the predicted model. Feng-Qi et al. (2013)
present a Bayesian linearized pre-stack inversion based on a trivari-
ate Cauchy distribution. Ensemble-based methods such as ensemble
Kalman filter and ensemble smoother (Evensen et al., 2009) have been
successfully applied to inverse and data assimilation problems, espe-
cially for history matching of borehole and geophysical data. For exam-
ple, Luo et al. (2015) developed an iterative ensemble smoother based
on a regularized Levenberg–Marquardt (RLM) algorithm for reservoir
data assimilation, and Luo et al. (2017) applied the iterative ensemble
smoother to 4D-seismic history-matching. Kolbjørnsen et al. (2020)
develop a Bayesian inversion for litho-geofluids prediction and Grana
(2020) extends the Bayesian litho-geofluids approach to multiple prior
models. Bayesian methods can also be integrated with stochastic sam-
pling. For example, Azevedo et al. (2020) uses the stochastic per-
turbation optimization approach for the inversion of seismic data for
rock properties and facies. In the Bayesian method, prior information
about the subsurface model is included in the inversion in the form
of probability distributions (Gouveia and Scales, 1997). However, the
prior information is often difficult to define and the prior uncertainty
generally impacts the model predictions.

In deterministic methods, the goal is to predict a best-fit model
that is consistent with the observed data, according to the objective
or cost function that defines the dissimilarity between the true data
and the predicted model. The inversion is performed by searching
2

for the optimal model that minimizes the objective function. Numer-
ous iterative algorithms such as the Levenberg–Marquardt (LM) algo-
rithm (Levenberg, 1944; Marquardt, 1963), Occam’s inversion (Consta-
ble et al., 1987), genetic algorithm (Mallick, 1995), conjugate gradient
method (Golub and Van Loan, 2013), simulated annealing method (Ma,
2001) and particle swarm optimization (Shaw and Srivastava, 2007)
have been introduced for solving the least-squares optimization prob-
lems. These methods have been used in seismic AVO inversion prob-
lems. For example, Luo et al. (2020a,b) adopt the Fréchet derivatives
to compute the derivatives of the propagator matrix with respect to
variables and used the L-BFGS approach for the optimization of the
objective function.

In this work, we present a constrained non-linear AVO inversion
scheme by using the Aki and Richards linearized approximation and the
inversion algorithm is based on the minimization of an objective func-
tion. We adopt a gradient descent optimization algorithm depending on
the calculation of the gradients of the L2-norm objective function with
respect to the elastic properties, P- and S-wave velocities, and density.
The adjoint-state numerical technique (Plessix, 2006) is used for com-
puting the gradients of the objective function efficiently by employing
zero-lag cross-correlation between forward and reverse propagated data
residual. The adjoint-state solves a linear system and computes the
gradient of the objective function. The advantage of this method is
that the computational cost of computing the gradient is in practice
independent of the number of model variables (𝑁). Hence, the number
of forwarding models required to compute the gradients through the
adjoint-state method is independent of the number of unknown model
variables. This makes adjoint-state faster and more efficient than other
methods, such as finite difference and Fréchet derivatives (Plessix,
2006). Adjoint methods have been recently used in several geophysical
inversion problems including seismic full waveform inversion (Zhe-
glova and Malcolm, 2019; Pan et al., 2020; Le et al., 2020; Biondi et al.,
2021; Assis and Schleicher, 2021; Hu et al., 2021; Zhu et al., 2021;
Ravasi and Vasconcelos, 2021). Furthermore, the gradient equations
obtained via the adjoint-state technique are exact within the numerical
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Fig. 2. Example 1 — Pre-stack amplitude versus angle (AVA) gathers with different seismic noise levels (without and with S/N = 50) up to maximum incident angle 30◦.

Fig. 3. Example 1 — Inverted P- and S-wave velocities (𝑉𝑃 , 𝑉𝑆 ) and density (𝜌) models obtained from noise-free AVO gathers.
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Fig. 4. Example 1 — AVA seismic response (up to 30◦) for baseline true model, initial model, and inverted model and estimated RMS error.

Fig. 5. Example 1 — Inverted P- and S-wave velocities (𝑉𝑃 , 𝑉𝑆 ) and density (𝜌) models obtained from noisy (S/N = 50) seismic AVO gather.
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Fig. 6. Example 2 — Model variables: P and S wave velocities in (m∕s) and bulk density in (kg m−3) along with corresponding initial models at the well location in the TWT
interval 1700–1965 ms.
precision (Epelle and Gerogiorgis, 2020). In this work, to minimize
the L2-norm objective function, we use the L-BFGS method (Broyden,
1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Nocedal, 1980;
Liu and Nocedal, 1989), a widely used version of the quasi-Newton
iteration method that does not explicitly calculate the Hessian operator,
which reduces the computing time and memory storage unlike other
classical iterative methods such as Newton–Raphson or Gauss–Newton
methods (Tarantola, 2005). Indeed, the L-BFGS method exclusively
stores model information from a limited number of previous 𝑙 iterations
(usually 𝑙 ≤ 10) and provides much faster computational time and
improved convergence rates for geophysical inverse problems (Brossier
et al., 2010). The main novelty of the proposed approach is the calcula-
tion of the gradient of the objective function with respect to the elastic
properties using the adjoint-state method. The analytical derivatives
computed by the adjoint-state lead to advantages in computational
and numerical performance. To stabilize our AVO inversion results,
especially in the case of noisy data, we apply a Tikhonov regularization
method (Aster et al., 2018). The Tikhonov regularization weights
improve the stability of the solution and the accuracy of the optimal
model.
5

We tested the proposed approach using synthetic well logs and
seismic data generated for the Edvard Grieg oil field, in the North
Sea, with different noise levels. We also adopt the staggered-grid fi-
nite difference (FD) method (Virieux, 1986) to simulate the seismic
response. The FD approach contains wave propagation effects such as
seismic refraction, reflection, multiple reflections, and offset-dependent
geometrical spreading. To reconcile the results of the convolutional
approximation, we define an amplitude scaling factor that compensates
for the effects of offset-dependent geometrical spreading and provides
a good match between the two seismic modeling approaches.

In the following, we first discuss the seismic forward modeling
approaches including, the convolutional model and finite difference
method. Then, we describe the mathematical formulation for the pro-
posed non-linear inversion algorithm based on the adjoint-state tech-
nique. Next, we illustrate the implementation of the inversion al-
gorithm to a synthetic multilayered dataset, with and without seis-
mic noise, obtained from well logs assuming no multiples nor other
wave propagation effects. Then, a 2D synthetic data example with
complex structural features such as inclined strata and fault, is pre-
sented. Finally, we apply the approach to a synthetic dataset based
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Fig. 7. Example 2 — Pre-stack amplitude versus angle (AVA) gathers with different seismic noise levels (without and with S/N = 50) up to maximum incident angle 30◦.
on the velocity–stress finite difference (FD) model, including wave
propagation effects.

2. Method

2.1. Seismic modeling

In AVO studies, seismic amplitudes are approximated by a convo-
lutional model. In continuous form, the convolutional model is written
as:

𝑑(𝑡, 𝜃) = ∫ 𝑊 (𝜏, 𝜃)𝑅𝑃𝑃 (𝑡 − 𝜏, 𝜃)𝑑(𝜏) (1)

where 𝑑, 𝑅𝑃𝑃 and 𝑊 are the seismic data, reflectivity, and wavelet
respectively. In Eq. (1), 𝑡 is the two-way travel time (TWT), and 𝜃 is
the incident angle. This approximation does not consider multiples and
wave propagation effects like offset-dependent geometrical spreading,
attenuation, or absorption effects. The Ricker wavelet (Ricker, 1953) is
commonly used for the convolutional model:

𝑊 (𝑡) =
(

1 − 1
2
𝜔2
◦𝑡

2
)

exp
(

−1
4
𝜔2
◦𝑡

2
)

(2)

whereas 𝜔◦ is the dominant frequency. The reflectivity function 𝑅𝑃𝑃
represents the reflection coefficients of P-to-P waves as a function of
𝑡 and 𝜃 and is often modeled using Aki and Richards equation (Aki
and Richards, 1980), which is a linear approximation of the non-linear
Zoeppritz equation (Zoeppritz, 1919) for weak elastic contrasts across
the geological layers. For incident angles less than the acquisition
critical angle, the Aki and Richards equation provides an accurate
approximation of the reflection coefficients for small elastic contrasts.
In theory, the proposed methodology could be extended to the Zoep-
pritz equation, however, the analytical evaluation of the mathematical
6

formulation of the gradient is more challenging to derive. The discrete
version of Aki and Richards approximation for 𝑅𝑃𝑃 is:

𝑅𝑃𝑃[𝑖] (𝜃) =
1
2
(

1 + tan2 𝜃
) 𝛥𝛼[𝑖]

𝛼[𝑖]
− 4

(

𝛽[𝑖]
𝛼[𝑖]

)2 𝛥𝛽[𝑖]
𝛽[𝑖]

sin2 𝜃

+1
2

[

1 − 4
(

𝛽[𝑖]
𝛼[𝑖]

)2
sin2 𝜃

]

𝛥𝜌[𝑖]
𝜌[𝑖]

(3)

where 𝛥𝛼, 𝛥𝛽, and 𝛥𝜌 are the variations P- and S-wave velocities and
density across the reflecting interface 𝑖 whereas 𝛼, 𝛽 and 𝜌 are the
corresponding average P- and S-wave velocities and density.

Alternatively, the seismic response can be modeled by solving the
wave equation. The finite difference (FD) method is often adopted to
approximate the partial derivatives of the wave equation and compute
the propagation of seismic waves (Carcione et al., 1988). Several
numerical schemes have been proposed. In this work, we adopt a high
order (8th) staggered-grid FD scheme (Virieux, 1986) to numerically
model in a discretized grid the P-SV elastic seismic energy propagating
through a heterogeneous medium using the velocity–stress field. At
the time 0, the wave propagating medium is considered to be in
equilibrium; then time-integrated particle velocity and stress are prop-
agated. Absorbing boundary conditions (ABCs) are generally assumed
for the mathematical simulation of seismic wave propagation, to avoid
artificial boundary reflection (ABR). In our approach, we consider a
perfectly matched layer (PML) to attenuate modeling boundary reflec-
tions. The numerical formulation for the velocity–stress FD method
is given by Virieux (1986). In this work, we adopt this formulation
to compute a synthetic dataset with a different operator than the
convolutional model used for the inversion, to validate the proposed
formulation.
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Fig. 8. Example 2 — Inverted P- and S-wave velocities (𝑉𝑃 , 𝑉𝑆 ) and density (𝜌) models obtained from noise-free AVO gathers.
2.2. AVO inversion

The forward modeling equation of seismic AVO inversion is written
as 𝑓 (𝑚) = 𝑑, where 𝑚 represents the unknown model variables. The
objective of inverse modeling is to estimate the model variables 𝑚 from
the seismic AVO data 𝑑. In the proposed formulation, 𝑚 represents
the elastic model variables as 𝑚 = [𝑉𝑃 (𝑡), 𝑉𝑆 (𝑡), 𝜌(𝑡)], including P- and
S-wave velocities and density.

To solve the inverse problem, we first define an objective function to
model the misfit 𝐽 = 𝑑−𝑓 (𝑚) between the real and predicted data, and
then implement an optimization algorithm to minimize the objective
function. Numerous options for the definition of the objective functions
are available in the literature (Alessandrini et al., 2019; Faucher et al.,
2019). We use the Euclidean norm (𝐿2-norm), as it is widely used in
inversion, especially for problems with a natural scattering of the error
components. Mathematically, the 𝐿2-norm objective function is written
as:

𝐽 (𝑚) = 1
‖𝑑(𝑡, 𝜃) − 𝑓 (𝑚)‖2 (4)
7

2

In our approach, the forward modeling operator is given by the convo-
lutional model:

𝑓 (𝑚) = 𝑊 (𝑡) ∗ 𝑅𝑃𝑃 (𝑡, 𝜃|𝑚) + 𝑛(𝑡, 𝜃) (5)

here, the term 𝑛 represents the random ambient noise and * indicates
convolution.

The optimization requires the calculation of the partial derivatives
of the gradient

(

𝜕𝐽
𝜕𝑉𝑃

, 𝜕𝐽
𝜕𝑉𝑆

, 𝜕𝐽𝜕𝜌
)

of the objective function 𝐽 with respect
to elastic properties (𝑉𝑃 , 𝑉𝑆 , 𝜌). We adopt the adjoint-state technique
to calculate the gradient of the objective function. The adjoint-state
solution of Aki and Richards equation (1980) and derivation of the
gradient is given in Appendix A. The so-obtained partial derivatives
with respect to (𝑉𝑃 , 𝑉𝑆 , 𝜌) at a given interface 𝑖 are:

𝜕𝐽
𝜕𝑉𝑃 [𝑖]

= 1
2
(

1 + tan2 𝜃
)

[

− 1
𝛼[𝑖]

− 𝛥𝛼[𝑖]
2𝛼[𝑖]2

]

⋅ 𝜆[𝑖]

+ 1
2
(

1 + tan2 𝜃
)

[

1
𝛼[𝑖 − 1]

− 𝛥𝛼[𝑖 − 1]
2𝛼[𝑖 − 1]2

]

⋅ 𝜆[𝑖 − 1]

+
(

2𝛽[𝑖 − 1]2
)[

2
𝛥𝛽[𝑖 − 1]

+
𝛥𝜌[𝑖 − 1]

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖 − 1]

𝛼[𝑖 − 1]3 𝛽[𝑖 − 1] 𝜌[𝑖 − 1]



Computers and Geosciences 168 (2022) 105214N. Ahmed et al.
Fig. 9. Example 2 — Inverted P- and S-wave velocities (𝑉𝑃 , 𝑉𝑆 ) and density (𝜌) models obtained from noisy (S/N = 50) seismic AVO gather.
+
(

2𝛽[𝑖]2

𝛼[𝑖]3

)[

2
𝛥𝛽[𝑖]
𝛽[𝑖]

+
𝛥𝜌[𝑖]
𝜌[𝑖]

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖], (6)

𝜕𝐽
𝜕𝑉𝑆 [𝑖]

=
[

−
2𝛥𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

−
4𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖 − 1]

−
[

2𝛥𝛽[𝑖]
𝛼[𝑖]2

−
4𝛽[𝑖]
𝛼[𝑖]2

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖]

−
[

2𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

⋅
𝛥𝜌[𝑖 − 1]
𝜌[𝑖 − 1]

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖 − 1]

−
[

2𝛽[𝑖]
𝛼[𝑖]2

⋅
𝛥𝜌[𝑖]
𝜌[𝑖]

]

⋅ sin2 𝜃 ⋅ 𝜆[𝑖] (7)

and

𝜕𝐽
𝜕𝜌[𝑖]

= +1
2

[

1 − 4
(

𝛽[𝑖 − 1]
𝛼[𝑖 − 1]

)2
⋅ sin2 𝜃

]

[

1
𝜌[𝑖 − 1]

−
𝛥𝜌[𝑖 − 1]
2𝜌[𝑖 − 1]2

]

⋅ 𝜆[𝑖 − 1]

− 1
[

1 − 4
(

𝛽[𝑖]
)2

⋅ sin2 𝜃

]

[

1 +
𝛥𝜌[𝑖]

2

]

⋅ 𝜆[𝑖] (8)
8

2 𝛼[𝑖] 𝜌[𝑖] 2𝜌[𝑖]
We then apply a non-linear optimization algorithm, namely L-
BFGS, to update the model variables by minimizing the objective
function 𝐽 according to the L-BFGS iteration Eq. (9). L-BFGS is a
limited-memory quasi-Newton optimization method often used for solv-
ing large-scale non-linear optimization problems where the Hessian
cannot be efficiently computed. The L-BFGS optimization method it-
eratively approximates the inverse Hessian using the curvature infor-
mation from the previous iterations. The L-BFGS optimization method
can be represented as:

𝑚𝑘+1 = 𝑚𝑘 − 𝛼𝑘𝐻𝑘∇𝐽 , 𝑘 = 0, 1, 2, 3,… , (9)

where 𝑘 represents the iteration, 𝛼𝑘 is the scalar step length at iteration
𝑘, ∇𝐽 is the gradient of the objective function respectively, and 𝐻𝑘
describes the inverse Hessian approximation (𝐻𝑘 ≈ ∇2𝐽−1) at iteration
𝑘. The inverse Hessian 𝐻𝑘 is approximated as:

𝐻𝑘+1 = 𝑉 𝑇
𝑘 𝐻𝑘𝑉𝑘 + 𝜌𝑘𝑠𝑘𝑠

𝑇
𝑘 (10)

where 𝑉𝑘 = 𝐼 − 𝜌𝑘𝑦𝑘𝑠𝑇𝑘 , 𝑠𝑘 = 𝑚𝑘+1 − 𝑚𝑘, 𝑦𝑘 = ∇𝐽 (𝑚𝑘+1) − ∇𝐽 (𝑚𝑘), and
𝜌 = (𝑦𝑇 𝑠 )−1.
𝑘 𝑘 𝑘
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Fig. 10. 2D profile of inverted P-wave velocity compared to the true and initial models.
The RMS error between true and inverted models is also displayed.

In the L-BFGS method, the Hessian approximation is more efficient
than in the original BFGS method. At a given iteration 𝑘, suppose that
the current solution is 𝑚 and the vector pairs of the previous 𝑝 iterations
are {𝑠𝑖, 𝑦𝑖} for 𝑖 = 𝑘−𝑝,… , 𝑘−1 with associated matrices 𝑉𝑖 and scalars
𝜌𝑖. We choose an initial 𝐻◦

𝑘 and compute 𝐻𝑘 as

𝐻𝑘 =
(

𝑉 𝑇
𝑘−1...𝑉

𝑇
𝑘−𝑝

)

𝐻◦
𝑘
(

𝑉𝑘−𝑝...𝑉𝑘−1
)

+ 𝜌𝑘−𝑝
(

𝑉 𝑇
𝑘−1...𝑉

𝑇
𝑘−𝑝+1

)

𝑠𝑘−𝑝𝑠
𝑇
𝑘−𝑝

(

𝑉𝑘−𝑝+1...𝑉𝑘−1
)

+ 𝜌𝑘−𝑝+1
(

𝑉 𝑇
𝑘−1...𝑉

𝑇
𝑘−𝑝+2

)

𝑠𝑘−𝑝+1𝑠
𝑇
𝑘−𝑝+1

(

𝑉𝑘−𝑝+2...𝑉𝑘−1
)

+ ⋯

+ 𝜌𝑘−1𝑠𝑘−1𝑠
𝑇
𝑘−1 (11)

We then define a recursive procedure to efficiently calculate the prod-
uct 𝐻 ∇𝐽 , as shown in Algorithm 1.
9

𝑘 𝑘
Fig. 11. 2D profile of inverted S-wave velocity compared to the initial and true models.
The RMS error is also displayed.

Algorithm 1: Limited-memory BFGS two-loops recursion.

1. Inputs: ∇𝐽𝑘,𝐻𝑘
2. 𝑞 ← ∇𝐽𝑘
3. for 𝑖 = 𝑘 − 1, 𝑘 − 2, ..., 𝑘 − 𝑝 do
4. 𝛼𝑖 ← 𝜌𝑖𝑠𝑇𝑖 𝑞;
5. 𝑞 ← 𝑞 − 𝛼𝑖𝑦𝑖;
6. end (for)
7. 𝑟 ← 𝐻𝑜

𝑘𝑞
8. for 𝑖 = 𝑘 − 𝑝, 𝑘 − 𝑝 + 1, ..., 𝑘 − 1 do
9. 𝛽𝑖 ← 𝜌𝑖𝑦𝑇𝑖 𝑟;
10. 𝑟 ← 𝑟 + 𝑠𝑖(𝛼𝑖 − 𝛽);
11. end (for)
12. Stop with result 𝐻𝑘∇𝐽𝑘 = 𝑟
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Fig. 12. 2D profile of inverted density compared to the initial and true models. The
RMS error between the true and predicted models is also displayed.

3. Applications

We present numerous numerical examples of synthetic and field
datasets used to validate the proposed inversion using the traditional
convolutional model. We then extend the application to a synthetic
dataset generated using the FD method. Two synthetic subsurface
profiles, namely example 1 and example 2, are generated from well
logs using the convolutional model. Then the inversion is extended to
synthetic 2D data generated from an elastic model developed for the
Edvard Grieg oil field located in the North Sea.

In example 1, we use a multilayered convolution model to sim-
ulate the synthetic angle gathers from a set of synthetic well log
data. S-wave velocity and density are computed from P-wave velocity
using Castagna’s relation (Castagna et al., 1985) and Gardner’s equa-
tion (Gardner et al., 1974) respectively. The true model variables and
the initial guesses are shown in Fig. 1. Synthetic AVO seismic gathers
up to the maximum angle of incidence 30◦ are generated by convolving
a 25 Hz Ricker seismic wavelet with PP reflectivity series calculated
with the linearized Aki and Richards equation. The pre-stack angle
gather profiles without and with seismic random noise levels (S/N =
10
Fig. 13. Full stack seismic section compared to the seismic response of the inverted
seismic profile and RMS between real and inverted seismic profiles.

50) are shown in Fig. 2. Fig. 3 represents the inverted P wave velocity,
S wave velocity, and density from noise-free AVO seismic gather. The
inverted variables are in good agreement with the true model variables.
Fig. 4 shows the corresponding seismic response of the true, initial and
inverted models as well as the root mean square (RMS) error between
true and predicted seismic gathers. The inversion results prove the
accuracy of this inversion approach. The AVO inversion results with
a signal-to-noise ratio (S/N) of 50 are shown in Fig. 5. The inversion
results show a good agreement and are consistent with real models,
despite some little instability of the solution at quite a few points,
especially for S-wave velocity. We speculate that the local instability of
the solution might be due to the discrete nature of the model and the
band-limited nature of the data. The local instability can be mitigated
using a regularization method such as the total variation regularization.

We then test the inversion using a synthetic seismic dataset gen-
erated from high-frequency acoustic and shear sonic logs and density
data, measured in the Edvard Grieg oil field. These reference elastic
properties 𝑉𝑃 , 𝑉𝑆 , and 𝜌 along with initial models are shown in Fig. 6.
The presented true well log measurements (Fig. 6) are upscaled to
estimate the model variables at the seismic scale (i.e. seismic wavelet
scale) from the higher frequency properties (i.e. sonic log). The reser-
voir zone is located between 1867 and 1888 ms. The convolution-based
seismic forward modeling is used to generate pre-stack seismic AVA
gathers (Fig. 7) without noise and with S/N = 50. The range of angles
of the incident for seismic waves is from 0–30◦ with the interval of
5◦. Figs. 8 and 9 show the AVA inversion results without and with
noise. In the noise-free case, the comparison between true and inverted
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Fig. 14. Seismic records obtained with staggered-grid finite difference methods: (a) full model; (b) overburden model; (c) reservoir model obtained by subtracting the overburden
from the full model.
Fig. 15. Comparison between synthetic data modeled by using convolution and finite difference models after correcting the offset-dependent geometrical spreading.
models shows that the results are accurate (Fig. 8). Similarly, in the
noise-added case, the results also show very good agreement with the
true models (Fig. 9) and are consistent with the real models. However,
the inverted results presented in Figs. 8 and 9 are after applying small
weight Tikhonov regularization to the density and the shear wave
velocity.

We then apply the inversion approach to a synthetic dataset built
using the Edvard Grieg measured data along a section including hor-
izontal and inclined stratigraphy and faulted geological layers. We
adopt an elastic model obtained in previous studies (referred to as the
true model in the following) to generate a synthetic seismic line. The
seismic line comprises 38 common depth points (CDP) and the AVO
inversion is applied trace by trace. The time window is from 500 to
11
2500 ms. Figs. 10–12 show the inversion results for P- and S-wave
velocity and density, respectively. Each figure shows the comparison
between the initial model, true model, and inverted results for all
CDPs. For each model variable, we compute the RMS error between
true and predicted models. The inversion shows accurate results for P-
wave velocity, whereas density values are slightly under-predicted in
the bottom part of the interval and S-wave velocity shows mismatched
in the reservoir region. Fig. 13 shows the full stack of the seismic
dataset, obtained after stacking the AVO gathers generated at each trace
location, and the seismic response of the inverted model, showing an
overall agreement between data and predictions. In some of the inver-
sion results, the correlation between the predicted elastic properties is
overestimated, possibly due to the linearization in the inverse problem.
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Fig. 16. Inverted P- and S-wave velocities (𝑉𝑃 , 𝑉𝑆 ) and density (𝜌) at the top of the reservoir (1.7–1.88 s).
Fig. 17. Pre-stack amplitude versus angle (AVA) gathers based on true model simulated by staggered-grid finite difference method, initial model, and inverted model obtained
with a convolutional approach.
This is a common effect in seismic and petrophysical inversion, due to
the correlation of the seismic angles introduced in the processing which
reduces the degrees of freedom of the solution and makes the problem
underestimated.
12
We extend the inversion to a seismic dataset generated using the
staggered-grid finite difference model of elastic waves. We first gener-
ate the synthetic seismic by computing the forward model for the entire
section from the surface and extracting the reservoir layer between
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1700 and 1888 ms. We perform normal moveout (NMO) correction
offset-to-angle transformation and apply an amplitude scaling factor
to remove the effects of offset-dependent geometrical spreading. The
wavelet with a dominant frequency of 25 Hz is used for the FD model.
We assumed a layered isotropic elastic medium with elastic properties
given in Fig. 1 and simulate an OBC seismic survey. The number
of receiver points are 1001 with a constant distance of 5 m, for a
5000 m maximum offset. The recording interval is 0.002 s. The syn-
thetic seismograms generated by the finite difference simulations are
shown in Fig. 14. The overburden layers extend to 1750 m, whereas the
reservoir layer is between 1750 and 1940 m, such that the overburden
reflections and associated interbedded multiples are subtracted from
the model. The FD results at the top of the reservoir are shown in
(Fig. 14c). As the staggered-grid finite difference modeling considers
all the wave propagation effects, in order to implement a convolutional
model-based inversion scheme for FD synthetic angles gathers, we have
defined an amplitude scaling factor that compensates for the effects
of geometrical spreading for FD seismic profiles and provides the best
calibration between synthetics of both methods. The derivation of the
amplitude scaling factor is described in Appendix B. The comparison
between convolution and FD models at the reservoir zone level, after
the application of the scaling factor, is shown in Fig. 15. We then run
the inversion scheme assuming the FD model until incident angle 18◦.

he results of the proposed adjoint-state-based inversion applied to
he staggered-grid FD model are shown in Figs. 16 and 17. Overall,
he inverted P- and S- wave seismic velocities and density show good
greement with the true models, despite some discrepancies. Fig. 17
hows the synthetic angle gathers for the initial, true, and inverted
odels plotted trace by trace up to 18◦, showing a good match.

. Discussion

In the gradient descent-based optimization algorithms, it is neces-
ary to compute the gradient equations of the least-square objective
unction with respect to unknown elastic variables. The efficiency
f the algorithm relies on the accuracy and the effectiveness of the
omputation of the gradient. To efficiently and accurately compute
he gradient, we adopt the adjoint-state technique. The adjoint-state
ariables do not depend on the perturbations of the model variables.
e apply the method under the non-linear constraints and derive the

et of gradient equations for the objective function. The advantage
f using the adjoint-state method is that it only requires solving one
dditional linear system, which makes the inversion more efficient
han the Fréchet derivative approach (Plessix, 2006). The optimization
roblem is then solved by using the L-BFGS optimizer of the non-linear
uasi-Newton class based on the gradient computed with the adjoint-
tate method. The non-linear L-BFGS approximates the inverse Hessian
atrix by using a few previous iterations (𝑙 < 10) and consequently

educes computational load and makes the algorithm more efficient
han the traditional Newton–Raphson and Gauss–Newton methods.
he proposed approach is tested on several examples based on two
ifferent forward models: the traditional convolutional approach and
he FD method. The adjoint-state-based inversion method for the elastic
roperties can be theoretically applied to other properties e.g., seismic
mpedances, velocity ratio, or petrophysical parameters, by calculating
he gradients with respect to the selected parameterization using the
hain rule of derivative and by incorporating adequate rock-physics
elations. The proposed inversion method can also be applied to other
ngle-dependent reflectivity operators such as Zoeppritz equations or
heir approximations (Shuey, 1985; Fatti et al., 1994)

. Conclusions

We presented a non-linear seismic AVO inversion method based
n a deterministic approach for the minimization of the objective
13

unction. The objective function is based on the convolutional model
here the reflectivity is obtained using linearized Aki and Richards
pproximation. The gradient of the objective function is calculated by
sing the adjoint-state technique. The adjoint-state is computationally
ast and more effective than traditional numerical methods. The min-
mization problem is iteratively solved by using L-BFGS, a non-linear
ptimization algorithm that approximates the inverse of Hessian and
mproves the convergence rate for inversion results. The applications
f the proposed inversion scheme show accurate results for synthetic
eismic data computed using the convolutional model as well as the
taggered-grid finite difference method. The estimated synthetic angle
athers computed from the inversion results match the true data in both
ases. The adjoint-state-based AVO inversion method can be applied to
he different parameterizations of the model by using the chain rule of
ifferentiation.
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ppendix A. Adjoint-state based gradients

The gradient ∇ of an objective function 𝐽 given in the least-square
q. (4), includes the partial derivatives of the objective function with
espect to the model variables 𝑚 = [𝑉𝑃 (𝑡), 𝑉𝑆 (𝑡), 𝜌(𝑡)]:

𝐽 =
[

𝜕𝐽 (𝑡)
𝜕𝑉𝑃

,
𝜕𝐽 (𝑡)
𝜕𝑉𝑆

,
𝜕𝐽 (𝑡)
𝜕𝜌

]

(A.1)

Based on Eq. (4), the partial derivative of 𝐽 are given by:
𝜕𝐽 = −

[

𝑑 − 𝑓 (𝑉𝑃 , 𝑉𝑆 , 𝜌)
]

⋅
𝜕𝑓 (A.2)
𝜕𝑉𝑃 𝜕𝑉𝑃

https://github.com/nahmed215/avoinversion.git
https://github.com/nahmed215/avoinversion.git
https://github.com/nahmed215/avoinversion.git
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𝜕𝐽
𝜕𝑉𝑆

= −
[

𝑑 − 𝑓 (𝑉𝑃 , 𝑉𝑆 , 𝜌)
]

⋅
𝜕𝑓
𝜕𝑉𝑆

(A.3)

𝜕𝐽
𝜕𝜌

= −
[

𝑑 − 𝑓 (𝑉𝑃 , 𝑉𝑆 , 𝜌)
]

⋅
𝜕𝑓
𝜕𝜌

(A.4)

In practical applications, elastic properties are discretized. We adopt
the notation 𝑉𝑃 [𝑖], 𝑉𝑆 [𝑖] and 𝜌[𝑖], for the value of velocity at a given
interface 𝑖. In the discretized domain, the terms

(

𝜕𝑓
𝜕𝑉𝑃 [𝑖]

)

,
(

𝜕𝑓
𝜕𝑉𝑆 [𝑖]

)

and
(

𝜕𝑓
𝜕𝜌[𝑖]

)

represent the Jacobian matrix and are given by

𝜕𝑓
𝜕𝑉𝑃 [𝑖]

= −𝑊 ∗
𝜕𝑅𝑃𝑃 (𝜃)
𝜕𝑉𝑃 [𝑖]

(A.5)

𝜕𝑓
𝜕𝑉𝑆 [𝑖]

= −𝑊 ∗
𝜕𝑅𝑃𝑃 (𝜃)
𝜕𝑉𝑆 [𝑖]

(A.6)

𝜕𝑓
𝜕𝜌[𝑖]

= −𝑊 ∗
𝜕𝑅𝑃𝑃 (𝜃)
𝜕𝜌[𝑖]

(A.7)

We compute the gradient equations for each model variable us-
ing the adjoint method. In the AVO inverse problem, the Lagrangian
function () with the adjoint state variable 𝜆 is given by:


(

𝑉𝑃 , 𝑉𝑆 , 𝜌, 𝑅𝑃𝑃 , 𝜆
)

=
∑

𝑖 ∫𝜃
𝑑𝜃

[

𝑑[𝑖] −𝑊 [𝑖] ∗ 𝑅𝑃𝑃 [𝑖]
]2

+
∑

𝑖 ∫𝜃
𝑑𝜃

[

𝑅𝑃𝑃 [𝑖] − 𝐴[𝑖] ⋅ 𝛥𝛼
𝛼

− 𝐵[𝑖] ⋅
𝛥𝛽
𝛽

− 𝐶[𝑖] ⋅
𝛥𝜌
𝜌

]

𝜆[𝑖] (A.8)

here,

𝐴[𝑖] =
[ 1
2
(

1 + tan2 𝜃
)

]

𝐵[𝑖] =
[

−
4𝛽[𝑖]2

𝛼[𝑖]2
⋅ sin2 𝜃

]

𝐶[𝑖] = 1
2

[

1 −
4𝛽[𝑖]2

𝛼[𝑖]2
⋅ sin2 𝜃

]

while,

𝛼[𝑖] =
𝑉𝑃 [𝑖 + 1] + 𝑉𝑃 [𝑖]

2
𝛥𝛼[𝑖] = 𝑉𝑃 [𝑖 + 1] − 𝑉𝑃 [𝑖]

𝛽[𝑖] =
𝑉𝑆 [𝑖 + 1] + 𝑉𝑆 [𝑖]

2
𝛥𝛽[𝑖] = 𝑉𝑆 [𝑖 + 1] − 𝑉𝑆 [𝑖]

𝜌[𝑖] =
𝜌[𝑖 + 1] + 𝜌[𝑖]

2
𝛥𝜌[𝑖] = 𝜌[𝑖 + 1] − 𝜌[𝑖]

The Lagrangian in Eq. (A.8) can be rewritten as  = 𝐉 + 𝐶 ∗ 𝜆,
where 𝐶 represents the constraints. The constraint in the Lagrangian
multiplier is automatically satisfied if we compute 𝑅𝑃𝑃 using Aki and
Richards equations as:
[

𝑅𝑃𝑃 [𝑖] − 𝐴[𝑖] ⋅ 𝛥𝛼
𝛼

− 𝐵[𝑖] ⋅
𝛥𝛽
𝛽

− 𝐶[𝑖] ⋅
𝛥𝜌
𝜌

]

= 0 (A.9)

The gradient of the objective function 𝑱 is achieved through the
solution of the following system:
𝜕

𝜕𝑅𝑃𝑃
= 0, (A.10)

𝜕
𝜕𝜆

= 0, (A.11)

𝜕
𝜕𝑉𝑃 [𝑖]

= ∫𝜃
𝑑𝜃

{

𝐴
𝛼[𝑖 − 1]

⋅ 𝜆[𝑖 − 1] − 𝐴
𝛼[𝑖]

⋅ 𝜆[𝑖]

− 𝐴𝛥𝛼[𝑖 − 1]
2𝛼[𝑖 − 1]2

⋅ 𝜆[𝑖 − 1] − 𝐴𝛥𝛼[𝑖]
2𝛼[𝑖]2

⋅ 𝜆[𝑖]

+
4𝛽[𝑖 − 1]2

𝛼[𝑖 − 1]3
⋅ sin2 𝜃 ⋅

𝛥𝛽[𝑖 − 1]
𝛽[𝑖 − 1]

⋅ 𝜆[𝑖 − 1]

+
4𝛽[𝑖]2

𝛼[𝑖]3
⋅ sin2 𝜃 ⋅

𝛥𝛽[𝑖]
𝛽[𝑖]

⋅ 𝜆[𝑖]

+
2𝛽[𝑖 − 1]2

𝛼[𝑖 − 1]3
⋅ sin2 𝜃 ⋅

𝛥𝜌[𝑖 − 1]
𝜌[𝑖 − 1]

⋅ 𝜆[𝑖 − 1]

+
2𝛽[𝑖]2

⋅ sin2 𝜃 ⋅
𝛥𝜌[𝑖]

⋅ 𝜆[𝑖]
}

(A.12)
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𝛼[𝑖]3 𝜌[𝑖]
Fig. 18. The comparison between amplitude correction scaling factors to compensate
for the effects of offset-dependent geometrical spreading. The least-square derived
scaling factor shows a good correlation with Ursin’s method (Ursin, 1990) up to incident
angle 20◦.

𝜕
𝜕𝑉𝑆 [𝑖]

= ∫𝜃
𝑑𝜃

{

−
2𝛥𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

⋅ sin2 𝜃 ⋅ 𝜆[𝑖 − 1]

−
2𝛥𝛽[𝑖]
𝛼[𝑖]2

⋅ sin2 𝜃 ⋅ 𝜆[𝑖]

−
4𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

⋅ sin2 𝜃 ⋅ 𝜆[𝑖 − 1]

+
4𝛽[𝑖]
𝛼[𝑖]2

⋅ sin2 𝜃 ⋅ 𝜆[𝑖]

−
2𝛽[𝑖 − 1]
𝛼[𝑖 − 1]2

⋅ sin2 𝜃 ⋅
𝛥𝜌[𝑖 − 1]
𝜌[𝑖 − 1]

⋅ 𝜆[𝑖 − 1]

−
2𝛽[𝑖]
𝛼[𝑖]2

⋅ sin2 𝜃 ⋅
𝛥𝜌[𝑖]
𝜌[𝑖]

⋅ 𝜆[𝑖]
}

(A.13)

and
𝜕
𝜕𝜌[𝑖]

= ∫𝜃
𝑑𝜃

{

𝐶[𝑖 − 1] ⋅
(

1
𝜌[𝑖 − 1]

)

⋅ 𝜆[𝑖 − 1] − 𝐶[𝑖] ⋅
(

1
𝜌[𝑖]

)

⋅ 𝜆[𝑖]

−𝐶[𝑖 − 1] ⋅
(

𝛥𝜌[𝑖 − 1]
𝜌[𝑖 − 1]2

)

⋅ 𝜆[𝑖 − 1] − 𝐶[𝑖] ⋅
(

𝛥𝜌[𝑖]
𝜌[𝑖]

)

⋅ 𝜆[𝑖]
}

(A.14)

When Eqs. (A.10) and (A.11) are satisfied, it means the derivatives
of the extended objective function with respect to 𝑅𝑃𝑃 and state
variable (𝜆) are zero. Then, the gradients of  and 𝐽 with reference
to the model properties coincide: 𝜕

𝜕𝑉𝑃 [𝑖]
= 𝜕𝐽

𝜕𝑉𝑃 [𝑖]
, 𝜕

𝜕𝑉𝑆 [𝑖]
= 𝜕𝐽

𝜕𝑉𝑆 [𝑖]
, and

𝜕
𝜕𝜌[𝑖] = 𝜕𝐽

𝜕𝜌[𝑖] , and the Lagrangian can be used to find the derivative of
𝐽 and obtain the gradient equations for 𝑉𝑃 [𝑖], 𝑉𝑆 [𝑖] and 𝜌[𝑖]. The state
variable 𝜆 can be computed as:

𝜆[𝑖] = −2𝑊 [𝑖] ∗ (𝑑[𝑖] −𝑊 [𝑖] ∗ 𝑅𝑃𝑃 [𝑖]) (A.15)

Appendix B. Amplitude scaling factor

To compare the finite difference model and the convolution model,
we define an amplitude scaling factor to compensate for the effect of
offset-dependent geometrical spreading. If 𝑘 is the scaling factor, the
least-square equation can be written as:

𝐉 = 1
2
∥ dC − 𝑘 ⋅ dFD ∥2𝑡 (B.1)

where 𝑑𝐶 and 𝑑𝐹𝐷 stand for the convolution and the finite difference
models computed for all the data for any travel time 𝑡. The derivative
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of the discretized form (𝑡 = 1, 2, 3,…) of Eq. (B.1) with respect to the
scaling factor 𝑘 the set equal to 0.
d𝐉
dk

= −
∑

𝑡

(

(dC − 𝑘 ⋅ dFD) ⋅ dFD
)

= 0 (B.2)

which leads to

−
∑

𝑡
dC ⋅ dFD + 𝑘 ⋅

∑

𝑡
d2FD = 0 (B.3)

The scaling factor for the geometrical spreading can be then defined
mathematically as:

𝑘 =
∑

𝑡 dC ⋅ dFD
∑

𝑡 d
2
FD

(B.4)

The geometrical spreading scaling factor is plotted as a function of
incident angles in Fig. 18. The comparison of the derived least-square
based 𝑘 is made with Ursin’s method (Ursin, 1990) and the results
displayed in Fig. 18 show the accuracy of the derived scaling factor
up to the incident angle 20◦.
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