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Abstract—Big data pipelines are becoming increasingly vital in
a wide range of data intensive application domains such as digital
healthcare, telecommunication, and manufacturing for efficiently
processing data. Data pipelines in such domains are complex
and dynamic and involve a number of data processing steps that
are deployed on heterogeneous computing resources under the
realm of the Edge-Cloud paradigm. The processes of testing and
simulating big data pipelines on heterogeneous resources need to
be able to accurately represent this complexity. However, since
big data processing is heavily resource-intensive, it makes testing
and simulation based on historical execution data impractical.
In this paper, we introduce the SIM-PIPE DryRunner approach
— a dry run approach that deploys a big data pipeline step by
step in an isolated environment and executes it with sample data;
this approach could be used for testing big data pipelines and
realising practical simulations using existing simulators.

Index Terms—Big data pipelines; Dry run; Software contain-
ers; Sandbox; Testing; Simulation

I. INTRODUCTION

The need for supporting big data pipeline processing is
increasing rapidly with more and more applications running
on the Cloud and large IoT systems handling huge volumes
of data [1]. Big data pipelines are designed to handle large
amounts of streaming and batch processing data and are be-
coming indispensable in a wide variety of application domains
[2]. One of the main challenges in managing big data pipelines
is analyzing the behaviour of different pipeline steps in order
to deploy them in a cost-effective manner. Since deploying
computing resources for these pipelines is expensive, it is
crucial to adjust the deployment parameters for optimized ex-
ecution and to ensure only required resources are provisioned
[3]. Therefore, one of the key aspects of the big data pipeline
lifecycle relates to testing and simulation before deployment in
a production setting [4]. Testing refers to executing steps in a
pipeline according to its definition, whereas simulation focuses
on estimating the performance of the pipeline in the actual
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computing infrastructure by predicting the performance of the
pipeline given the execution parameters. An efficient mean
of testing and simulating pipelines before deployment allows
identifying errors and bottlenecks early and addressing them
before provisioning expensive computing resources in the
actual production environment on the Cloud-Edge continuum.

There are multiple simulation solutions for big data
pipelines (e.g., [5]-[7]). One of the main challenges with
the simulators is that most of the existing approaches rely
on results from previous runs of pipelines or analyses by an
expert in order to make predictions [4]. In the case of big data,
predicting performance using previous runs is likely to result
in high costs if the pipeline is highly computing-intensive. Big
data pipelines are complex and dynamic processes built to run
on top of a multitude of heterogeneous services and computing
resources, which makes prediction of their performance a
challenge [2]. To this end, we propose an approach—SIM-
PIPE DryRunner—based on dry running of big data pipelines.
We describe dry running of big data pipelines as the execution
of a pipeline using a sample or smaller input data size
(compared to the full-scale big data) on a test environment as
opposed to using the infrastructure for production deployment.

The overall approach is depicted in Figure 1. We assume
that the resource usage metrics for the dry run of the pipeline
on a representative set of small input data can be used
in the analysis of its behaviour for large amounts of input
data. The proposed approach deploys each step in the correct
order in an isolated testing environment, hereafter called a
sandbox. We use an isolated environment (e.g., a virtual
machine) for the dry run, since it can reduce interference from
other running applications and ensures better estimates of the
performance for the pipelines. The approach enables one to
run the pipeline and analyze it in a lower cost environment
than simulators, which do additional processing to simulate
the actual computing environment like the Cloud or Edge
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Fig. 1. Dry run approach for testing and simulating big data pipelines.

where it will be deployed in production. The approach, firstly,
could be used to check the correctness of the pipeline and to
ensure that the pipeline is working as expected and producing
the expected output. Secondly, dry run results can be used in
simulators to aid in predicting the performance of the pipeline
and identify possible bottlenecks. Thereby, the dry run result
of the pipeline for a small data size may be used to predict the
performance for bigger data sizes, assuming that the data are
processed in chunks/slices. For example, metrics collected by
dry running with different chunk sizes can be used to estimate
infrastructure resources required for scaling the pipeline (e.g,
CPU, memory and disk size, and using multiple processes).
Software container technologies could simplify the execution
of data pipelines [8] both in isolated and production envi-
ronments by encapsulating individual data pipeline steps in
platform and programming language independent containers.
In this paper, we describe the proposed dry run approach and
present a tool—the SIM-PIPE DryRunner tool—implementing
the approach. The overall SIM-PIPE solution aims at using the
dry run results for testing the pipelines and simulating them
using existing simulators.

The rest of the paper is organized as follows. Section
IT provides the description of our approach as well as the
technical architecture and implementation. In Section III, we
present a use case for the proposed approach, while Section
IV presents related work. In Section V, we summarize our
approach and provide directions for future work.

II. SIM-PIPE DRYRUNNER APPROACH

The proposed approach based on dry running of big data
pipelines relies on the use of an isolated sandbox environment
to execute pipeline steps. By maintaining an isolated testing
environment, we are able to get an estimate of the resource
usage of each step without interference from other running
processes. Moreover, the container-based implementation of
the step facilitates accurate estimation of its total execution
time in the actual deployment infrastructure. This is due to
the homogeneity of container technologies, which ensures that
the execution of the container is reproducible regardless of
the computing infrastructure in which it is executed. Thus, by
running the container-based implementations of the pipeline
steps, we ensure that we obtain values from dry run, which

can be used to predict how the pipeline behaves on resources
on the Cloud-Edge continuum.

Figure 2 shows the main steps of the dry run process. Once
a dry run is initiated, a step in the pipeline and sample data
are deployed to the sandbox using a container. During the
execution of the step, execution time will be recorded and
the sandbox will be continuously pooled for metrics about
the execution. These metrics are stored for later use. Once
the step has successfully performed the data processing task,
the resulting data will be retrieved, the running step will be
removed from the sandbox, and the same process will be
repeated for the next steps (i.e., deploy the step and feed it
with the resulting data from the previous one). Based on the
data gathered, analytics will be performed to derive results that
apply to the entire pipeline. The pipeline steps, in case of steps
performing batch processing, are provided with a sample input
to be used during the dry run. In case of steps which perform
continuous processing, there is a user defined option to provide
the number of seconds to wait before the step is terminated,
this ensures that the correctness of the step and recording of
resource usage metrics can be done for that specified amount
of time. All the details including resource usage statistics,
inputs to the steps, and outputs of the execution are stored
and eventually used to perform resource usage analytics.

In the following we describes the technical architecture and
implementation of the SIM-PIPE DryRunner tool, and outline
a typical use of the tool.

A. Technical Architecture and Implementation

In order to demonstrate the feasibility of the approach for
dry running of big data pipelines, we designed and imple-
mented a prototype application—the SIM-PIPE DryRunner
tool. It consists of several components that are deployed sepa-
rately in order to ensure an appropriate execution environment
for the dry run approach. The current version of the tool, along
with installation instructions are available on GitHub'.

Figure 3 shows the deployment topology and architecture
for SIM-PIPE DryRunner tool. The tool is designed to be de-
ployed in two separate hosts: one for hosting the front-end and
business logic, and one for hosting the sandbox environment.
The main component is the dry run controller, which performs
a step-wise analysis of the pipeline by deploying steps and

Uhttps://github.com/DataCloud- project/SIM-PIPE
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Fig. 2. The SIM-PIPE DryRunner process for testing and collecting performance data.
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Fig. 3. SIM-PIPE DryRunner tool: deployment topology and architecture.

collecting relevant data. Host 1 in Figure 2 contains the dry
run controller and REST service (which serves the front-end of
the implementation) as well as the dry run data storage, which
is implemented using TimescaleDB?. In our implementation,
these sub-components are deployed on the host using Docker
containers. The necessary files for providing the input and
storing the output of each step are transmitted and stored using
an SFTP server which also runs in a Docker container in host
2. When deploying a step to be analyzed, the dry run controller
sends (if needed) data over SFTP to the sandbox host, which
makes it available to the container and executes the step.
The dry run controller and REST service are implemented
using NodeJS? and use a number of NodeJS libraries related to

Zhttps://www.timescale.com
3https://nodejs.org

managing the execution of containers on a target host, namely
dockerode* for container execution control in the sandbox and
ssh2-sftp-client® for interacting with the SFTP server on the
sandbox. The REST API is developed using GraphQL® (a
query language for APIs). Hasura’ is used to develop and
connect to the data model of the dry run data storage. The
front-end of the SIM-PIPE DryRunner tool is implemented
using Appsmith?.

The current version of the SIM-PIPE DryRunner tool user
interface is depicted in Figure 4. The interface displays a list of

“https://github.com/apocas/dockerode
Shttps://github.com/theophilusx/ssh2-sftp-client
Shttps://graphql.org

"https://hasura.io

8https://www.appsmith.com



dry runs tied with a specific pipeline as well as the associated
runs to each dry run. For each run, it displays the run state
(“Waiting”, “Queued”, “Active”, “Completed”, “Failed”, or
“Cancelled”) as well as statistics on each of the steps. The
statistics include the used CPU, memory, network, and running
time. In addition to the statistics, the current version of the user
interface displays logs from the execution of the steps. The tool
assumes that the pipeline description is provided in the form
of a Domain Specific Language (DSL) which is described in
a Github repository®. This DSL has been developed as part of
the DEF-PIPE tool which is a GUI (Graphical user Interface)
based tool to design, implement and store big data pipelines.
More details and usage guidelines of this tool are given in a
Github repository'©.

The current implementation supports explicitly step imple-
mentations as described in the big data pipeline approach in
[9], whereby each container collects input data, stores output
data, and any intermediate data separately in a file system.
Thereby, the SIM-PIPE DryRunner tool provides input data to
the steps and stores intermediate step outputs for analysing the
dry run. Other step implementations that do not use file-based
data transmission are also applicable, but the data delivery
system currently does not support this.

The dry run data storage uses a relational database model
and records each dry run with a timestamp and pipeline
identifier. Each run is also associated with the DSL model
that was used when the run was started as well as its (current)
status and the timestamps when the run was created, started,
and ended. Each run stores data for each of the steps that
are in the input DSL model with the step name, status, and
metrics about the used CPU and memory. Intermediate data
are stored on disk in a file system that are marked with the
pipeline identifier, run identifier, and step number and can be
served on request to the front-end.

B. Using the SIM-PIPE DryRunner tool

Dry run using the SIM-PIPE DryRunner tool is done
through the following steps:

o First, the user creates a new dry run for a pipeline by
providing its DSL description and sample input data using
the SIM-PIPE DryRunner tool UL

o The user starts a new dry run and the current status of
the run and each step is displayed in the UL

o After each step has completed execution indicated by
its status, the user can click on the step to view the
logs generated during execution, CPU usage percentage,
network usage, memory usage and maximum memory
usage over time.

o In case of failure of a step, the status of the step and
correspondingly run would indicate failure status, and
only the logs would be displayed which may help in
debugging.

9https://github.com/DataCloud-project/DEF-PIPE-DSL
10https://github.com/DataCloud- project/DEF-PIPE

o The step can also be stopped while running, and this
stops the current step and all the succeeding steps in the
pipeline.

III. USE CASE

The SIM-PIPE DryRunner tool was tested on data pipelines
in the context of a digital health system, where developers and
data engineers are using data pipelines to implement different
e-health services. The main objective of the digital health sys-
tem is to monitor, support and help patients, especially elderly,
at their homes, remotely. The system uses data pipelines to
gather sensor data (e.g., welfare sensors and medical devices)
from the patients, store and process the patient data, and
provide relevant data to the right stakeholder at the right time
(e.g., notifications of events to healthcare providers, storing
data in electronic health records, and providing data and
notifications to third party health systems).

Figure 5 illustrates a generic digital health data pipeline
that involves three steps: 1) Data generation, pre-processing
and routing, 2) Data storage and analysis, and 3) End user
application logic. The first step is deployed on the Edge,
while the two latter are deployed on the Cloud. The steps
are the same three steps shown in the SIM-PIPE DryRunner
tool UI in Figure 4. The first step involves collecting and
formatting sensor data from healthcare sensors and medical
devices that the patient uses. The second step involves storing
the data and checking it against the patient plan. The third step
involves different types of end user application logic, such as
notifying healthcare providers and submitting reports to 3rd
party healthcare systems.

Several instances and variants of data pipelines are deployed
in the digital health use case. There are pipeline instances for
each patient. Some of the challenges in managing the various
variants of pipelines relates to i) scaling individual steps of the
pipeline, ii) the need to build new applications for each new
type of sensor, and iii) finding the optimal resource allocation
for data processing steps. The SIM-PIPE DryRunner tool
is used to address these challenges, allowing the developers
and data engineers of the digital health data pipelines to
test new variants of the pipelines without deployment on
production infrastructure in order to identify trouble spots and
bottlenecks early, as well as better understand the resource
requirements required from the metrics collected by the SIM-
PIPE DryRunner tool.

IV. RELATED WORK

There are several simulation approaches for data pipelines
that include tools to simulate big data pipelines, such as
the event-based simulator GroudSim [5], and process-based
simulators GridSim [6] and CloudSim [7]. Despite the number
of simulation approaches in literature, there are few that can
be used for testing and simulation of big data pipelines. Liu et
al. [10] present a survey of scientific workflow management
systems in the context of big data pipelines, out of the five
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Fig. 5. SIM-PIPE DryRunner tool front-end.

systems presented only two of them (Taverna'!, Swift'?) had a
simulation or testing component. While Taverna is specialized
to support bio-informatics pipelines, Swift only provides tools
for unit and integration testing of pipelines. These simulators
vary in ways in which they accept data for simulating a
pipeline. Many of them run pipelines multiple times and the
results from the runs are used in simulation [11].
Iatropoulou et al. [12] present a data pipeline management

https://incubator.apache.org/projects/taverna.html
2https://github.com/square/workflow-swift

system for container-based big data pipelines and supports
design, composition, configuration, orchestration, enactment,
and validation of end-to-end big data analytic services. Each
step in the input pipeline is provided in the form of one of
the four predefined containerized application images (named
as Apps) which is part of their microservices architecture.
Though it handles several types of big data workflows, it is
not open source and thus cannot be extended.



V. CONCLUSIONS AND OUTLOOK

We proposed a new approach—SIM-PIPE DryRunner—for
dry running of big data pipelines using an isolated sandbox
for deployment of steps. Testing and simulation of big data
pipelines is challenging, since the existing methods depend on
information from previous runs or domain expert knowledge,
which are difficult to acquire in case of big data pipelines. We
also developed an initial version of the tool—the SIM-PIPE
DryRunner tool—with a user interface in which the pipeline
designer can input and dry run big data pipelines and view the
results of the resource usage of step execution and logs. The
dry run results of the big data pipeline can be used in existing
simulators by bringing them into the respective format that
can be used as input. One limitation of this method is that
it assumes that the big data pipelines have container-based
implementations.

In the future, we aim to enable the SIM-PIPE DryRunner
tool to recommend minimum requirements for the resources
necessary to run the pipeline steps successfully (i.e., the
minimum memory and CPU requirements) and to provide
an estimation of the optimal horizontal scaling for each
individual step that will allow for executing the pipeline
without bottlenecks. Future work also involves extending
it further by integrating advanced analytics for the results
obtained from the sandbox. This involves predicting the
resource usage performance and total execution time of the
pipeline when a given input size is specified. We also aim to
analyze and quantify the impact of parallelisms for various
pipeline steps. This can be used in configuring the resources
at deployment or in scheduling algorithms. Finally, we also
plan to use the dry run results in existing simulators. This
requires investigation of input formats which is accepted by
these simulators and conversion of the output of our tool into
a format that is usable by them.
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