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a b s t r a c t

Hybrid machine learning based on Hamiltonian formulations has recently been successfully demon-
strated for simple mechanical systems, both energy conserving and not energy conserving. We
introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation
via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can
be used to learn external forces acting on a system. We argue that this property is particularly useful
when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure
that facilitates the separation of internal and external forces. Numerical results are provided for a
forced and damped mass–spring system and a tank system of higher complexity, and a symmetric
fourth-order integration scheme is introduced for improved training on sparse and noisy data.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Hybrid machine learning is the combination of data-driven
achine learning and mathematical descriptions of physical sys-

ems. The field is largely motivated by the intuition that providing
hysical knowledge to a learning problem will reduce the re-
uirements for data quantity and quality. Two distinct approaches
or incorporating physical knowledge in machine learning are soft
nd hard constraints. Soft constraints typically penalize violations
f physical laws by adding penalty terms to the loss function
sed during training. This procedure is widely applicable, but
rovides no guarantees as the model must compromise between
on-violation of the constraints and the predictive power as
easured on available data. Hard constraints on the other hand
rovide mathematical guarantees of compliance with specified
aws of physics. This can be achieved by enforcing the model
tructure, and is independent of the available data. Enforcing hard
onstraints introduces bias, which will typically reduce the ex-
ressiveness of the machine learning model. Hard constraints are
herefore challenging to implement, as erroneous assumptions
bout the underlying physical system may yield wrongly biased
odels with poor predictive qualities.
The Hamiltonian formulation of mechanics was originally pro-

osed in the 1830s as a generalization of classical Newtonian
echanics [1]. Since then it has been extended and applied to
echanics, optics, electrodynamics and quantum physics, among
any other fields of physics. Any closed physical system can be
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described by a Hamiltonian function, or the related Lagrangian.
However, the Hamiltonian formulation lacks support for external
interactions such as energy losses due to friction and control of
the system through external forces. Such interactions are com-
monly present in real-world systems and crucial for engineering
applications. The port-Hamiltonian formulation [2] has been de-
veloped to overcome these limitations, enabling interactions and
energy exchanges via ports and a corresponding Dirac struc-
ture. The port-Hamiltonian formulation has been successfully
applied in various domains ranging from electrical circuits to
chemistry [3].

Hamiltonian neural network (HNN) is a hybrid machine learn-
ing framework imposing hard constraints on a data-driven model
[4]. HNNs model the Hamiltonian function with a neural network
while the system dynamics are given by the classical symplectic
Hamiltonian structure. Hence, the expressiveness of the model
lies in the learning of the Hamiltonian during training, while the
hard-constrained structure guarantees that this learned Hamil-
tonian is preserved. Since the Hamiltonian framework is not
designed to model non-closed physical systems, HNN models
are insufficient for many practical applications. This has inspired
several extensions of the HNN framework to facilitate controlled
systems [5], dissipative systems [6] and port-Hamiltonian sys-
tem descriptions [7–9], generalizing to situations without exact
energy preservation. In this work, we consider a general pseudo-
amiltonian formulation that incorporates all of these exten-
ions. This generalization of HNN makes the models more ex-
ressive and alleviates the limitations of using a hard-constrained
pproach.
Other extensions and improvements of HNN worth mention-

ng in this context are generalization to Poisson systems [10],
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eneralization to coordinate-free Hamiltonian systems [11], and
mbedding the system in a higher-dimensional space and con-
training to a submanifold [12,13]. However, these works only
onsider systems with exact energy preservation, leaving appli-
ation of the proposed techniques to pseudo-Hamiltonian system
escriptions to future research.
To our knowledge, the previous work most closely related to

he present one is that of Duong and Atanasov [8,9] where they
how how to learn disturbances of a controlled system on the
E(3) manifold. However, our approach utilizes the Hamiltonian
eural networks of Greydanus et al. [4], via the SymODEN [5,6]
nd port-Hamiltonian neural network [7] frameworks, and is
efined for systems on any manifold. Moreover, in contrast to
ost of the aforementioned references, we do not assume any
pecific structure on the Hamiltonian, like separability.
The main contributions of this paper are

• the introduction of pseudo-Hamiltonian neural network
(PHNN) models with state-dependent external forces,

• performance analysis of PHNN models for systems with
strictly time-dependent external forces,

• the proposal of using PHNNmodels to learn state-dependent
external forces and a demonstration of how models can
remain accurate when the forces are removed or replaced,

• the introduction of a symmetric fourth-order integrator for
accurate training with unknown derivatives without assum-
ing any structure on the Hamiltonian,

• the Python package phlearn, which has been developed
and used to generate the numerical results. Documentation
and standard examples can be found at https://github.com/
SINTEF/pseudo-hamiltonian-neural-networks.

The rest of the paper is organized as follows: First, in Section 2
we provide the necessary background on Hamiltonian formula-
tions of dynamical systems, and define the pseudo-Hamiltonian
formulation that our models are based on. Then, in Section 3,
we present results of PHNN applied to a mass–spring system
with damping and external forces, similar to the problems studied
in [7]. We demonstrate that the improved performance over the
most basic baseline models comes from separating the model in
a state-dependent and a time-dependent part rather than from
imposing a Hamiltonian structure. The main results are found
in Section 4; we consider a system of tanks and pipes with
potential leaks, which can be viewed as state-dependent external
forces. We introduce a new fourth-order symmetric integration
scheme and show that this gives improved performance. Then
we demonstrate how we can learn the leakages simultaneously
with the full system, and obtain a model which also applies for
the system without the leakage. In the brief Section 4.6, we give
an example of how the PHNN model can be used for control,
before we summarize the paper and discuss the potential for
future research in Section 5.

2. Background and methodology

2.1. Hamiltonian formulation

The Hamiltonian formulation describes general closed systems
with energy conservation. A physical system can be described by
a set of 2n generalized coordinates: generalized positions q ∈ Rn

and corresponding generalized momenta p ∈ Rn. Note that q
and p correspond to classical positions and momenta for simple
mechanical systems. The Hamiltonian H(q, p) describes the total
energy of the system and is connected to the dynamics via(
q̇
ṗ

)
=

(
0 In

−In 0

)( ∂H
∂q
∂H

)
, (1)
∂p

2

where In is the n-dimensional identity matrix and q̇ and ṗ denotes
he time derivatives of q and p. Given H and initial conditions
q0, p0}, the system is fully specified. Systems may have several
nvariants, and the term energy is often used interchangeably
ith invariant even in cases when they do not correspond to the
hysical energy of the system.
The HNNs of [4] use a neural network Ĥθ with weights θ to

pproximate the Hamiltonian H(q, p) of a system. Applying the
eneral Hamiltonian structure (1) with the approximated Hamil-
onian yields estimates of the time derivatives ˆ̇q, ˆ̇p. Hence, the
odel can be trained by minimizing the difference between the
stimated and true (approximated) derivatives from the training
ata.
Rather than restricting the study to canonical systems (1),

s is done in most of the literature on HNN, we consider a
eneral formulation that also includes non-canonical Hamiltonian
ystems:

˙ = S(x)∇H(x), x ∈ Rd, (2)

or some skew-symmetric matrix S(x) = −S(x)T ∈ Rd×d. Such
a formulation exists for any function H : Rd

→ R that is an
nvariant of the first-order ordinary differential equation ẋ = g(x),
i.e.
dH
dt

= ∇H(x)Tg(x) = 0.

The matrix S(x) may or may not depend on x, and is generally not
unique if d > 2 [14].

2.2. Pseudo-Hamiltonian formulation

A generalization of (2) that includes dissipation of H and
external forces is the pseudo-Hamiltonian formulation given by

ẋ = (S(x) − R(x))∇H(x) + f (x, t), x ∈ Rd, (3)

where R(x) ∈ Rd×d and xTR(x)x ≥ 0 for all x. This can also be
viewed as a generalization of the port-Hamiltonian systems of
van der Schaft [2,15]; in contrast to those, the pseudo-Hamiltonian
formulation does not include any specific structure on f : Rd

×

R → Rd, and thus we do not consider e.g. the passivity-
preserving property that is associated with the port-Hamiltonian
formulation in control theory [16]. There are however several
recent works on identification of strictly passive systems utilizing
the port-Hamiltonian formulation [17–20]. Compared to PHNN,
these methods are typically more data-efficient, but they are less
general and require more engineering and expert knowledge to
be derived. A specialization of PHNN and comparison to these
methods would be an interesting future study. We also note that
the general formulation (3) is closely connected to the General
Equation for Non-Equilibrium Reversible–Irreversible Coupling
(GENERIC) formalism from thermodynamics [21,22], and PHNN
could be extended to that setting too. This would be similar
to what is done by Zhang et al. [23], but they do not consider
external forces.

In the following, we assume that S and R are independent of
x. Letting S depend on x while R = 0 and f = 0 formulates
Poisson systems. A generalization of HNN to such systems is
treated in [10].

2.3. Pseudo-Hamiltonian neural networks

The key innovation of PHNN is to model H and f in (3) by
separate neural networks Ĥθ and f̂θ and thus learn the internal
and external energy separately. This is similar to what is done
in [7], where the authors use the term port-Hamiltonian systems

https://github.com/SINTEF/pseudo-hamiltonian-neural-networks
https://github.com/SINTEF/pseudo-hamiltonian-neural-networks
https://github.com/SINTEF/pseudo-hamiltonian-neural-networks
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or what we call pseudo-Hamiltonian systems. However, they
nly consider problems where the external force f is known to

be strictly time dependent. The system could then be modeled
without the pseudo-Hamiltonian formulation by two separate
neural networks: one network that models internal dynamics
and depends only on the state, and one network that models
the external force and depends on time alone. We will show
in Section 3.2 that such a model performs similarly to a PHNN
model. Thus, we argue that the pseudo-Hamiltonian formulation
is most useful in system learning when the external forces may
be state dependent and the change in energy stemming from
damping and external forces cannot be immediately separated.

The separation between the terms in the formulation (3) is
obviously not unique; we could let H be constant or set S and
R to zero and any first-order ODE could still be represented
by (3) with all the dynamics attributed to f . Knowing S and
ssuming some structure on R may be necessary to learn the
esired formulation, and the PHNN framework is designed to
ncorporate prior knowledge and assumptions by setting up the
ifferent parts of the model according to these. In the examples of
his paper we aim to learn damping coefficients in R by learnable
arameters while simultaneously learning a neural network Ĥθ

hat represents the energy up to a constant and a neural network
ˆ
θ that represents the changes in the energy that cannot be
ttributed to damping. In practice, our models would best be
tilized in an iterative process where few assumptions are made
nitially, but new models are trained with added information as
e learn more about the system from the models. For example,

ˆ
θ may have output dimension < d if we can assume that the
xternal forces affect only certain states directly. An example is
iven in Section 4.5 on how imposing new assumptions on the
odel may lead to faster training and more accurate results. Also
e note that since the PHNN model tend to learn the simplest
epresentation, the separation between internal dynamics and
xternal forces can in certain cases be obtained without punishing
arge f̂θ by a regularization term. However, regularization is often
elpful or even necessary.
The lack of uniqueness in the pseudo-Hamiltonian formulation

nd the general unpredictability of neural networks make it diffi-
ult to provide guarantees on the PHNN model in its most general
orm. This paper mainly provides a practical proof-of-concept,
nd a further analysis of the methodology is desired and should
e done on specialized models. However, the separation of the
odel into parts with meaningful physical interpretations makes

t easier for domain experts to get a practical understanding of
he model and its behavior, and can make the model applicable
or situations different from those it was trained on.

.4. Implementation and hyperparameters

Following [4,24,25], we use fully connected neural networks
ith two hidden layers of 100 neurons each to estimate the
amiltonian and the external force. Furthermore, we use the
yperbolic tangent (tanh) and Rectified Linear Unit (ReLU) as

activation functions for the first and second hidden layer, respec-
tively, while [4,24,25] use tanh for both. This combination was
discovered to significantly improve performance when applied to
dynamical systems with many dimensions and high complexity,
and for consistency we use it also for the lower-dimension mass–
spring problem. We relate the good performance of this set-up
to the fact that the true Hamiltonians of the considered systems
were linear combinations of nonlinear functions, and note that
other network architectures may be preferable when modeling
systems with different dynamics. The output layer has no activa-
tion. The PHNNs estimate the damping coefficient by a learnable
scalar parameter.
3

We compare the PHNNs to baseline models that estimate
the left hand side of (3) either by one neural network or by
two networks, one state dependent and one time dependent.
The baseline models have the same structure as the feedforward
networks in the PHNNs, but the model with only one network
has 150 hidden units in each layer instead of 100, so that the
PHNN models and the baseline have a comparable number of free
parameters. In all experiments, we use the Adam optimizer with
batch size 32, learning rate 10−3, and the mean squared error
(MSE) as loss function [26].

The models are trained on an approximation of (3) found by
a discretization method corresponding to a numerical integration
scheme, as is done in [25,27,28]. We use the implicit midpoint
method in the next section. That is, we train a model

ĝθ (x, t) := (S − R̂θ )∇Ĥθ (x) + f̂θ (x, t) (4)

stimating the right-hand side of (3) using the loss function

=

xn+1
− xn

∆t
− ĝθ

(
xn + xn+1

2
,
tn + tn+1

2

)2
2

+
λ

N

 f̂θ (xn + xn+1

2
,
tn + tn+1

2

)
1
, (5)

given for one data point xn. The last term is L1-regularization of
the external force, similar to what is suggested in [7], with λ being
the regularization parameter weighting the penalty. In Section 4
we introduce a new fourth-order integrator to replace the implicit
midpoint method in (5).

3. PHNN for systems with time-dependent external forces

The aim of this section is to evaluate the utility of using PHNNs
to model systems where the external forces are strictly time
dependent, whether this is prior knowledge or not. We base our
study around an example similar to that studied in [7].

3.1. Damped and forced mass–spring system

Consider a mass–spring system with damping, affected by an
external force f ,

mẍ + cẋ + kx = f (x, t), (6)

where m is the mass, c is the damping coefficient and k is the
stiffness coefficient. Letting q = x and p = mẋ, such that q is po-
sition and p is momentum, the pseudo-Hamiltonian formulation
of the system is(
q̇
ṗ

)
=

[(
0 1

−1 0

)
−

(
0 0
0 c

)]( dH
dq
dH
dp

)
+

(
0

f (q, p, t)

)
(7)

for H(q, p) =
1
2kq

2
+

1
2mp2. This is on the form (3) with x := (q, p).

Throughout the paper, we consider a forced and damped
mass–spring system (6) with damping coefficient c = 0.3 and
force term f (t) = sin(3t). Initial conditions for this system are
uniformly sampled, satisfying q20 + p20 = r20 with 1 ≤ r0 ≤ 4.5.

3.2. Performance analysis

In the following numerical experiments, we have tested four
different models: two baseline models and two PHNNs. The first
baseline model consists of a single neural network taking both
state variables and time as input. This is what is used as a
baseline model in [7], but we also include a baseline model
consisting of one strictly state-dependent neural network and
one strictly time-dependent neural network, which we argue is
a fairer comparison to the PHNN model presented in that paper.
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Fig. 1. Mean and standard deviation of MSE of state estimates for increasing amounts of training data for the forced and damped mass–spring system.
a

he PHNNs are informed that both damping and the external
orce only directly affect ṗ. That is, the damping is estimated by a
ingle learnable parameter modeling c and the external force by
single-output network modeling f in (7). One PHNN does not
ssume a state-independent external force, and thus estimates
(t) using a neural network f̂θ (q, p, t), while the other PHNN (cor-

rectly) assumes time-dependence only and uses a neural network
f̂θ (t).

We generate five data sets of 1000, 2000, 5000, 10 000 and
20 000 samples. The trajectories in the data sets are all of length
10 with sampling time 1/100. We train the models for 20 000
epochs, with λ = 0.1 for the PHNN models. Since the models rely
on a non-convex optimization problem, we randomly initialize
and train 10 models of each model type for each data set and
also report the standard deviation as a measure of how reliable
the model is if only trained once; see Fig. 1. Generally, the MSE
decreases as the number of training data samples increases. Given
enough training data all models learn to estimate the states
well, and none of the models perform well when trained on a
very limited amount of data. For medium amounts of data, the
one-network baseline model and the PHNN model with state-
dependent external force perform similarly, but are outperformed
by the PHNN with state-independent external force and espe-
cially the two-network baseline model. Thus we conclude that,
for this example, the information that contributes the most to
increased performance is the separation into a state-dependent
and a time-dependent term, rather than the pseudo-Hamiltonian
structure. Fig. 2 shows an example trajectory not in the training
set, where the solid lines indicate the mean prediction made by
the 10 models of each type, and the shaded areas indicate the
standard deviation of the predictions.

The learned Hamiltonian estimate will typically be offset by a
constant bias, which does not affect the gradient and thus not the
trajectories produced by the model either. Therefore we choose to
compare the adjusted Hamiltonian Hθ (q, p)−Hθ (0, 0) to H(q, p).
Fig. 3 shows the exact Hamiltonian of the forced and damped
mass–spring system along with the adjusted Hamiltonians es-
timated by the two PHNNs. The model of each type with the
lowest MSE when estimating the gradient of the Hamiltonian was
chosen. Note that due to the initial condition sampling scheme,
4

−4.5 ≤ p, q ≤ 4.5 in the training data, and outside this area the
prediction of the Hamiltonian quickly deteriorates.

Fig. 4 compares the mean absolute error of the learned damp-
ing coefficient for the two types of PHNNs as a function of training
data sample size. Fig. 5 shows how well the PHNNs estimate the
external force. Since the models can only learn the separation of
the external force from the internal system up to a constant, we
subtract the time-average of the external force from the learned
external force before comparing to the exact solution. Here, we
have chosen the PHNN of each type with the lowest MSE on
estimating the external force during testing. In Fig. 6 we show
how the model adapts if the learned external force is replaced by
a known input of different frequencies. The error is smallest for
ω = 3, which corresponds to the external force in the training
data, and it handles higher frequencies better than lower.

4. PHNN for systems with state-dependent external forces

Since we argue that the main use of PHNN is to learn external
forces where these cannot be assumed to be strictly time de-
pendent, we present here an example where the system under
consideration has state-dependent external forces.

4.1. Connected tanks in a pseudo-Hamiltonian formulation

We construct a system of N tanks connected by M pipes, as
described in [29]. The system can be regarded as a directed graph
G = (V, E) with the vertices V representing the tanks and the
edges E representing the pipes. With νi being the flow through
pipe i, µj the volume of the fluid stored in tank j, and B the
incidence matrix of the graph, conservation of volume gives

µ̇ = −Bν. (8)

We assume that the flow through pipe i is given by

Jiν̇ i = Pk − Pl − λi(ν i), (9)

where Ji depends on the density of the fluid and the pipe di-
mension, Pk and Pl are the pressures in either end of the pipe,
nd λ (ν ) is the friction term [30]. In our numerical experiments
i i
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Fig. 2. Example trajectory with the mean of the predictions made by the models trained on 2000, 5000 and 10 000 data points for the forced and damped mass–spring
system. Error bands indicate standard deviation of predictions made by the 10 models of each type.
Fig. 3. Contour plot of the exact Hamiltonian of the forced and damped mass–spring system along with the adjusted Hamiltonians estimated by a PHNNs with
state-dependent and a PHNN with state-independent external force network.
we use λi(νi) = riνi and hence assume that the R from (3) is
ndependent of the state variables. Generalization to account for
more expressive friction term is entirely feasible within the

ramework, but not considered here. The kinetic energy stored in
he flow within a pipe is given by Epipe

i =
1
2 Jiν

2
i . The gravitational

pressure on the bottom of a tank j is given by Pj = ρg µj
Aj

with
j as the tank footprint, ρ as the density of the fluid and g as
he gravitational constant, and the associated potential energy in
he tank is given by Etank

j =
gρ

2Aj
µ2

j . Substituting the flow with the
nergy variable φi := Jiνi, we get the following Hamiltonian:

(φ, µ) =

M∑ 1
2Ji

φ2
i +

N∑ gρ

2Aj
µ2

j . (10)

i j

5

In the absence of friction or external forces, we can rewrite (8)
and (9) as (2) with x := (φ, µ) and

S =

[
0M×M BT

−B 0N×N

]
. (11)

Including friction and external forces, we get the pseudo-
Hamiltonian system[

φ̇

µ̇

]
=

[
−Rp BT

−B 0N×N

][ ∂H
∂φ

∂H
∂µ

]
+

[
fp(φ, µ, t)
ft (φ, µ, t)

]
, (12)

where Rp is an M × M diagonal matrix with elements ri, and fp
and ft are the external forces acting on the pipes and the tanks,
respectively.



S. Eidnes, A.J. Stasik, C. Sterud et al. Physica D 446 (2023) 133673

i

Fig. 4. Mean and standard deviation of the mean absolute error in the estimates of the damping coefficient c for the forced and damped mass–spring system.
Fig. 5. External force estimated by the two-network baseline model and the two PHNN model types. The error band is included to show the standard deviation of
the estimate made at each time by the PHNN with a state-dependent external force network. At each time T , the mean and standard deviation of f̂θ (q(T ), p(T ), T )
s computed over all values of q(T ), p(T ) occurring in the test set.
Fig. 6. Mean and standard deviation of the MSE of state estimates when the learned external force in the model is replaced with a control input f (t) = sin (ωt), for
different ω. The models are trained on the data set with 10000 samples.
1

Throughout this section, we consider a tank system with four

tanks and five pipes, connected as shown by the graph in Fig. 7.
Unless otherwise specified, we use the following parameters
6

when simulating the system: ρ = 1, Ji = 0.02 for all i, Aj =

for all j, Rp = diag(0.03, 0.03, 0.09, 0.03, 0.03). For conve-
nience, no units are specified and the problem is considered as
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cale-free. An external, state-dependent force acts on the fourth
ank, so that fp = (0, 0, 0, 0, 0) and ft = (0, 0, 0, −10min
0.3, max(µ4, −0.3))). Except for the experiments in Section 4.5,
he fact that only the fourth tank is affected by an external force
s assumed to be known. Initial conditions are uniformly sampled
uch that −1 ≤ x0 ≤ 1 for all states.

.2. Choice of discretization method in training

Instead of training on the integration scheme as we do, works
ike [4,7,24] either assume that derivatives of the state variables
re known or perform one or more integration steps at each train-
ng step. Having the exact derivatives is unlikely in real-world
cenarios, and thus we do not use those in our experiments. Per-
orming integration in the training necessitates the use of explicit
ntegrators or requires a large increase in computational cost.
pecifically, it prohibits efficient use of symmetric integrators
ike the implicit midpoint method. In early testing, we observed
hat using symmetric integration schemes in the training greatly
mproved the performance of our tank system models, which mo-
ivated the development of a symmetric fourth-order integrator
pecifically designed for the inverse problem of learning a system
rom data, rather than integration.

For reasons of brevity, we consider autonomous systems ẋ =

(x) in this section. We define a general integrator

xn+1
− xn

∆t
= Φ∆t (g, xn, xn+1)

o that Φ∆t (g, xn, xn+1) = g((xn + xn+1)/2) gives the implicit
midpoint method resulting in (5). Different integrators have been
proposed in the literature on HNN, building on established the-
ory from the field of numerical integration, e.g. on symplectic
methods for systems with invariants [31]. However, the inverse
problem of learning an ODE from data is different from integrat-
ing a known system, which alters which properties of numerical
integrators we will want to consider. For instance, a certain
class of implicit integrators called mono-implicit Runge–Kutta
(MIRK) methods [32,33] do not depend on intermediate steps
and are thus explicitly given by the known data in the inverse
problem. Moreover, these integrators may be less expensive than
comparable explicit integrators when used for training.

To obtain a more accurate discretization of the system than
obtained by the second-order implicit midpoint method, we pro-
pose the fourth-order scheme

xn+1
− xn

∆t
=

1
2
g

(
xn + xn+1

2
−

√
3
6

∆t

× g
((1

2
+

√
3
6

)
xn +

(1
2

−

√
3
6

)
xn+1

))

+
1
2
g

(
xn + xn+1

2
+

√
3
6

∆t

× g
((1

2
−

√
3
6

)
xn +

(1
2

+

√
3
6

)
xn+1

))
,

(13)

which is symmetric but not symplectic. As a numerical integrator
it is an implicit Runge–Kutta method, and more specifically a
MIRK method, but as a discretization of (3) it is explicitly given
by xn and xn+1. This distinguishes it from e.g. the Gauss–Legendre
method of order four, which would require a system of equations
to be solved by e.g. Newton’s method at each training step.
Moreover, the implicit midpoint method and (13) are applicable
for non-separable Hamiltonian systems, in contrast to the second-
order leapfrog method used in [24] and Yoshida’s fourth-order
method, used in [34,35].
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Fig. 7. Graph showing how the five pipes connect the four tanks (1–4) and the
external force on the fourth tank (red).

The computational cost of a method used during training is
dominated by the number of evaluations of g . Thus, the implicit
idpoint method is comparable to the forward Euler method,
hile (13) is approximately four times as expensive and compa-
able to the classic Runge–Kutta method. The advantage of using
higher-order method is generally most prevalent when data

s sparse, while symmetric methods deal well with noise. Thus,
ven though (13) generally performs best, the implicit midpoint
ethod might be preferable when the training data is obtained
t a sufficiently high frequency and computational cost is an
ssue.

Further analysis of the scheme (13) and more high-order in-
egration schemes is outside the scope of this study and will be
he topic of a paper in preparation, which considers the general
hallenge of applying any data-driven model for estimating a
ynamical system described by differential equations.

.3. Comparison of discretization methods for the tank system

Consider the system of four tanks and five pipes described
n Section 4.1. Four different discretization methods are used
or training PHNNs modeling the tank system for six different
ata sets. The four discretization methods are the forward Eu-
er method, the classic Runge–Kutta method (RK4), the implicit
idpoint method, and the symmetric fourth-order scheme (13)

SRK4). The six data sets consist of trajectories lasting one time
nit and are made to reflect different levels of data quality:

• low sampling time (1/100) and many samples (30 000)
without noise

• low sampling time and many samples with moderate noise
(Gaussian noise with a standard deviation σ = 0.03 added
to the measurements of the states)

• low sampling time and many samples with much noise
(standard deviation σ = 0.05)

• high sampling time (1/30) and few samples (3000) without
noise

• high sampling time and few samples with moderate noise
• high sampling time and few samples with much noise

For each data set and for each discretization method, 10
HNNs are trained for 1000 epochs. A test set consisting of 10
rajectories with random initial conditions is used to test the
erformance of the models. Figs. 8 and 9 and Table 1 demon-
trate that the symmetric methods handle noise well. When data
s scarce a higher order symmetric method is superior to the
econd-order implicit midpoint method, although its advantage
n approximating derivatives more accurately is less important
n noisy data, where the noise becomes a limiting factor for the
ccuracy of the models.
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f

Fig. 8. Volume of the fourth tank as predicted by the PHNNs with the lowest MSE on the test set. The initial condition is φ0
= (−1, −1, 0, 1

2 , −1), µ0
= (1, 1, − 1

2 , −1).
Fig. 9. The mean and standard deviation of the MSE of the PHNNs trained with the different integrators on each data set. The MSE is of the predicted volume and
low in all tanks and pipes from t = 0 to t = 1 on the test set.
Table 1
Mean and standard deviation of the predicted friction coefficients, relative to the ground truth Rp = (0.03, 0.03, 0.09, 0.03, 0.03)
(i.e. so that 1 would mean the correct coefficient).

3000 training points 30000 training points

No noise σ = 0.03 σ = 0.05 No noise σ = 0.03 σ = 0.05

Euler 43.95 ± 13.12 44.62 ± 13.16 45.70 ± 13.36 11.38 ± 3.25 12.35 ± 3.52 13.98 ± 3.94
RK4 −0.59 ± 0.60 −0.22 ± 0.50 0.25 ± 0.50 1.08 ± 0.06 1.98 ± 0.33 3.56 ± 0.81
Midpoint 1.59 ± 0.17 1.72 ± 0.21 1.74 ± 0.25 1.07 ± 0.04 1.21 ± 0.16 1.31 ± 0.18
SRK4 1.07 ± 0.03 1.21 ± 0.13 1.24 ± 0.15 1.03 ± 0.02 1.21 ± 0.18 1.19 ± 0.19
8
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Fig. 10. Mean and standard deviation of the MSE of state estimates for increasing amounts of training data for the tank system.
.4. Model performance

Consider the tank system described in Section 4.1. We use
his system to generate data sets with 100, 250, 500, 1000, 2500,
000, 10 000 and 20 000 samples, as well as a validation set
onsisting of 500 samples. The trajectories in the data sets are
ll of length 1 with sampling time 1/100 and initial conditions
ampled from independent uniform distributions U(−1, 1).
We consider two model types: A baseline network and a

HNN. All networks take the current state of the system as input
nd none depend on time. The PHNN is informed that damping
nly directly affects the states related to pipe flow, and that the
xternal forces are only affecting the last tank state. For each data
et we train 10 models of each model type for 20000 epochs, with
o regularization. For this higher-dimensional problem we used
batch size of 256, but the hyperparameters are otherwise as

pecified in Section 2.4.
Fig. 10 shows that the two models perform comparatively and

hat the MSE decreases as the data size increases. As opposed to
he mass–spring system in Section 3.2, where we could improve
erformance by correctly assuming that the external force was
tate independent, the external forces in the tank system are
nown to be state dependent. This leads to non-uniquely sep-
rable terms in (12). However, we observed that in the case of
he external force only affecting one state variable directly and
his knowledge being used in the model, the imposed structure
nsured that the terms were correctly separated by the model,
ven without using regularization. Thus the PHNN has the advan-
age of estimating individual terms, which we can compare to our
ssumptions and physical knowledge about the system.
Fig. 11 shows the contours of the exact and estimated Hamil-

onian for slices of the state space. The estimates are based on
he PHNN with the lowest MSE for ∇H and they are adjusted
as explained in Section 3.2. As for the mass–spring system, and
as expected, we observe that the Hamiltonian is most accurately
estimated towards the center of the training data distribution.
The exact Hamiltonian is spherical in the φ4 − φ5 and µ1 −

µ2 planes, and ellipsoid in the remaining planes. The learned
Hamiltonian is elongated along the same directions, but with a
small offset in the φ4 and φ5 directions. The largest difference is
for the µ − µ plane, which is offset and slightly elongated.
1 2

9

4.5. Learning external forces

The PHNN framework allows for detection of unknown exter-
nal forces, like a leakage or unknown inflow in one or more tanks.
Moreover, in the case that external forces are altered, for instance
by stopping a leak, a PHNN learned from data with a leak does not
necessarily have to be retrained, as the PHNN’s external forces can
be altered correspondingly.

Consider the example tank system described in Section 4.1,
where we now let

ft,4(φ, µ) = −30min(0.3, max(µ4, −0.3)) (14)

model an undetected leak in the fourth tank. Training a PHNN
model on data generated with this leakage allows for learning
both the tank system dynamics and the leakage when the right
constraints are imposed on the PHNN. In the first experiment, we
assume no knowledge of which tanks might be leaking. In order
to not learn spurious solutions, we apply L1-regularization to the
terms in ft . The upmost left plot in Fig. 12 shows how PHNN
models the external force when trained using the implicit mid-
point integrator for 600 epochs with λ = {0.3, 0.1, 0.03, 0.01}
changing every 150th epoch, on 300 trajectories of length 1 with
sampling time 1/400. The predicted leakages from tanks 1–3
are negligible, while the leak from the fourth tank is accurately
predicted. When re-training the model with the assumption that
there is only a leak in the fourth tank we observe more efficient
training; we obtain an accurate model after only 30 epochs of
training with no regularization.

The second row of Fig. 12 shows how the learned model
deteriorates when training on noisy data with a lower sampling
rate. The training set now consists of 1000 training trajectories
with sampling time 1/100 and Gaussian noise with standard
deviation σ = 0.01. When using the fourth-order integrator
(13) and training for 2000 epochs with λ = {0.3, 0.1, 0.03, 0.01}
changing every 500th epoch we struggle to get an accurate model.
However, as seen in the third row, even on noisy data the leak
in the fourth tank can be learned so well that it is difficult to
distinguish it from the exact solution on visual inspection, if the
model is restricted to learn only the external force affecting that
tank. As seen in the right column of Fig. 12, the trained PHNN
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Fig. 11. The lower left plots show the contour of the exact Hamiltonian when all states are set to zero except for the two displayed in each plot. The upper right
shows the contour of the Hamiltonian as estimated by the PHNN with the lowest MSE in estimating ∇H, and adjusted by subtracting H(0, 0). The plots on the
diagonal show the estimated Hamiltonian when all states are set to zero except the one noted on the x-axis.
can still be used for prediction after the leak is removed, since
the external force network of the PHNN can be removed at will.

We now add an additional leak in the first tank, given by

ft,1(φ, µ) = −10min(0.3, max(µ1, −0.3)).

Again we gather a training set of 1000 training trajectories with
sampling time 1/100 and Gaussian noise with standard deviation
σ = 0.01. We follow the training procedure from the previous ex-
periment, first avoiding to make assumptions about the location
of the leaks, as shown in the fourth row of Fig. 12. The PHNN
struggles to learn in this case, and does not generalize well to
the scenario where the leaks are removed. When assuming that
the leaks are in the first and fourth tanks only, results improve,
as seen in the last row of Fig. 12.

4.6. Control with PHNNs

As a last point, we highlight that the PHNN model is well
suited for control, as illustrated in Fig. 13. In this scenario, a model
is learned for the system with one leaking tank as described
in Section 4.5 using 1000 data points, after which a new pipe
is added to the first tank. The flow through this new pipe is
controllable but also constrained with respect to minimum and
maximum flow. Using the learned PHNN model in a model-
predictive control (MPC) framework, the tank levels of the system
can be driven to desired reference levels through the new pipe.
10
5. Summary and discussion

The potential advantages of a PHNN model over other data-
driven models depend on the modeled system, the available
data and existing knowledge of the system. As illustrated by
the numerical experiments of Section 3.2, we may get improved
performance from assuming that external forces are strictly time
dependent, whether or not we impose a Hamiltonian structure
on the internal system. Further, for larger systems with state-
dependent external forces we are equally dependent on data
quality and quantity as the baseline model, and achieve a similar
prediction accuracy. However, the great advantage of using the
pseudo-Hamiltonian structure in this case is the explainability
and adaptability of the model; for instance, we may learn external
forces and adapt to system changes, as showcased in Section 4.5.
Furthermore, the integrator used during training significantly
affects the resulting model, as demonstrated in Section 4.3.

5.1. Future research

The imposed pseudo-Hamiltonian structure allows for future
exploitation including pseudo-Hamiltonian system identification,
control with PHNN models and expansion to infinite-dimensional
systems.

System identification for a more specialized formulation of
what we call pseudo-Hamiltonian systems was recently proposed
in [36], but only for the case where the external forces are known.
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Fig. 12. Left column: The external forces learned by the PHNNs trained on data gathered with one or two leakages, assuming that the location of the leakages are
either known or unknown. Right column: The level in the fourth tank estimated by the PHNN before and after the leak is stopped and the PHNN external force
model is set to zero. Initial condition: φ0

= (−1, −1, 0, 1
2 , −1), µ0

= (1, 1, − 1
2 , −1).
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imilarly, [34] suggests a framework for using sparse regression
o obtain an analytic expression for the Hamiltonian, but only for
trictly energy-preserving systems with a separable Hamiltonian.
e are investigating system identification using the system set-
p and the techniques presented in this paper, including the
roposed symmetric fourth-order integrator (13), and plan to
ublish a paper on this in the near future.
The demonstrated benefits of the integration scheme (13)

ncourages further investigation of numerical integrators tailored
o the inverse problem of learning dynamical systems. Further
 w

11
dvances in this application can offer better noise handling, for
nstance by taking more neighboring data points into account in
he estimation of the derivative at each point. This is somewhat
elated to the symplectic recurrent neural networks of [24], but
an be made compatible with the more general system (3) and a
ider class of integrators.
Lastly, pseudo-Hamiltonian formulations also exist for infinite-

imensional systems [37–39], and hence PHNN could be devel-
ped for finite-dimensional approximations of such systems as
ell.



S. Eidnes, A.J. Stasik, C. Sterud et al. Physica D 446 (2023) 133673

W
o
M
M
R
r

D

c
t
D

A

r
Y
B
c

R

Fig. 13. A learned PHNN model is used in an MPC framework, which is successfully able to drive the tank levels to the desired reference levels.
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