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Abstract: This article presents analysis results from a long-term multi-site Global Navigation Satellite
System (GNSS) Radio Frequency Interference (RFI) monitoring campaign in the context of Ground
Based Augmentation System (GBAS) Dual Frequency Multi Constellation (DFMC) concept operation.
GBAS resilience against unintentional RFI is an important area for investigation as the ground station
receivers often must operate adjacent to high-traffic roads where chances of being affected by RFI are
high. To be able to develop algorithms and reaction strategies necessary to ensure continuity and
availability of service, knowledge of interference signal characteristics and frequency band/bands
affected, as well as relative occurrence rates between the considered frequencies and frequency
combinations, is necessary. The analysis presented in the article covers the prevalence and properties
of the RFI events observed on the GPSs L1 and L5 and the Galileo E1 and E5a frequency bands
that are considered by the on-going DFMC GBAS concept development initiatives. Due to being
spectrally adjacent, the observed event analysis is also carried out for the Galileo E5b and GLONASS
G1 frequency bands. The article also addresses the issue of spectral occupancy distribution of
the observed events and presents new interesting RFI event types captured during the considered
monitoring period.
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1. Introduction

Although GNSS signals used in aviation are located in a protected Aeronautical Radio-
Navigation Signal (ARNS) frequency band, unfortunately, jamming attacks affecting this
band do occur, and with increasing rate [1–3]. Over the past several years, the combina-
tion of ubiquitous, low-cost communications systems and satellite navigation has moved
civil Global Navigation Satellite System (GNSS) positioning and timing into use domains
where there are stronger motivations for an attack. In particular, widespread use in road-
tolling/automotive insurance or asset-tracking/fleet-management systems encourages
attacks directed at GNSS. As GNSS becomes more deeply embedded into digital infrastruc-
ture, and low-cost GNSS receiver manufacturers already support dual- or multi-frequency
solutions, we can expect to see more jamming events targeting multiple GNSS frequencies
at the same time, as well as potentially more attacks of increased sophistication.

The Ground Based Augmentation System (GBAS) is a GNSS-based precision approach
guidance system for the final approach phase. The system is intended to be used for safety-
critical operations (e.g., zero visibility operations including Autoland), and is therefore
designed to support very stringent integrity, continuity and availability requirements. Since
GBAS receivers have to operate in close proximity to high-traffic roads and airport parking,
the chances of being affected by Radio Frequency Interference (RFI) are high [4,5].

The evolution of GBAS Approach Service Types (GASTs) as well as development of
new concepts/system architectures is a complex and resource intensive process since the
development must be carried out in accordance with rigorous standards. At the moment,
relevant standards for implementation are available only for GASTs C and D, Categories I
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and III, respectively, both based only on the use of the Global Positioning System (GPS) L1.
At the same time, a number of research and industrial activities are focusing on developing
new generation architectures and concepts based on the use of GPS L1 and L5 and Galileo
E1 and E5a [6–9]. GBAS resilience against unintentional RFI is an important area for
investigation. To be able to develop algorithms and reaction strategies necessary to ensure
continuity and availability of service, as well as new system concepts relying on multiple
frequencies (e.g., switching between modes based on different core frequencies), knowledge
of jamming signal characteristics (center frequency, bandwidth, time modulation frequency
of the signal, etc.) and frequency band/bands affected, as well as relative occurrence rates
between the considered frequencies and frequency combinations, is highly beneficial.

RFI monitoring, including event classification and characterization, is an active area
of research in the GNSS community, and there is a growing amount of material publicly
available; see, for example, [1,10,11]. To study the RFI threat with regard to GBAS ground
station operation and address the needs of both the GPS L1-based GAST D and the future
dual-frequency, multi-constellation GBAS concepts, it was necessary to carry out a long-
term multi-site monitoring campaign using equipment that would not only cover the
frequency bands of interest but also allow for flexible analysis of the captured raw RFI
event data (e.g., possibility to reprocess the captured events using different parameters
of interest). To facilitate such monitoring and data analysis tasks, the low-cost multi-
band advanced GNSS RFI detection, analysis and alerting system (ARFIDAAS) developed
by SINTEF was used [12,13]. The system simultaneously supports all navigation bands
transmitted by GPS (L1, L2 and L5), Galileo (E1, E5a, E5b and E6), GLONASS (G1, G2
and G3) and Beidou (B1, B1-2, B2 and B3). Detected RFI events are characterized, and the
raw data are captured and sent for further analysis to the cloud storage. The centralized
cloud storage allows for flexible and broad analysis of all captured events. To direct the
analysis on frequency bands relevant for the GBAS GS operations, the captured RFI event
data were processed and analyzed focusing on the GPSs L1 and L5, and the Galileo E1 and
E5a frequency bands. Additionally, the observed event statistics were also studied for the
Galileo E5b and GLONASS L1 frequency bands. This is mainly due to the fact that those
frequencies are spectrally adjacent to and within the same ARNS bands as L5/E5a and
L1/E1, respectively, so that a strong interference signal affecting Galileo E5b or GLONASS
L1 can potentially have an impact on core signals depending on the filtering level carried
out by the receiver.

This article describes the basic structure of the detection and classification steps carried
out by the ARFIDAAS monitoring system and presents the results based on the RFI events
captured at six different sites. Each of the selected sites was continuously monitoring the
environment in terms of RFI in the L-band for over two calendar years.

2. RFI Data Capture and Event Classification
2.1. RFI Monitoring Network

At the moment of this article’s preparation, the RFI monitoring network included in
total 14 stations; see Figure 1 showing the locations. As the station deployment was carried
out gradually, the period of continuous monitoring at each location varies. For the analysis
presented in this paper, a subset of six stations was selected based on the length of the
operational period. Each of the stations is located in close proximity to heavy traffic roads,
parking facilities and other transportation infrastructure. It is noted, however, that both
the distance and the elevation angle between the monitoring station antenna and the road
vary between sites. Typically, the antenna is installed in a roof-top location as it is shared
with other GNSS research activities, resulting in a ‘below the horizon’ or negative elevation
angle for RFI signals from vehicle-borne sources.
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supported by the connected antenna. Third, the system software allows for some masking 
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found to suffer from the presence of a persistent yet unstable in-power co-authorized user 
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‘environment baseline’ is noted, and deviations from this are used to determine which 
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include Radio Detection And Ranging (RADAR) installations, amateur radio, amateur tel-
evision, malfunctioning Wi-Fi routers, etc. It is noted that, for the purpose of this study, 
the absolute power level of the detected RFI was not controlled, and all events which ex-
ceed the site-specific dynamic triggering thresholds were considered for the purpose of 
determining RFI populations and characteristics. For a more detailed description of sys-
tem design, the reader is referred to [12–14]. If during event analysis no substantial change 
in band shape or apparent power allocation within the band is detected, the event is clas-
sified as an environment baseline event. Such events can be caused by wideband noise 
sources which cover the monitored band uniformly but with a limited amount of power, 
such that peaks from the main lobes of GNSS signals, particularly in the L1 band where 
these are quite visible, remain. 

Figure 1. Locations of presently deployed RFI monitoring systems, with the number of sites indicated
in brackets. Sites used in the analysis presented herein are shown in red.

2.2. RFI Event Detection

First, RFI event detection is carried out based on deviation from a moving average
power level rather than a static threshold of signal amplitude, which eliminates the need for
calibration while also tolerating gain variation within the antenna and signal propagation
network that can arise from temperature variation. Second, the center frequencies, Interme-
diate Frequency (IF) bandwidths and sampling rate parameters can each be adjusted to
tailor the amount of the captured spectrum to the signal bands and bandwidths supported
by the connected antenna. Third, the system software allows for some masking of nuisance
events either in terms of reporting, uploading, or both in cases where sites are found to
suffer from the presence of a persistent yet unstable in-power co-authorized user that
would otherwise cause frequent nuisance detections. Fourth, the spectral shape of the
‘environment baseline’ is noted, and deviations from this are used to determine which
region of the band is affected. Examples of sources that can cause such nuisance detections
include Radio Detection And Ranging (RADAR) installations, amateur radio, amateur
television, malfunctioning Wi-Fi routers, etc. It is noted that, for the purpose of this study,
the absolute power level of the detected RFI was not controlled, and all events which
exceed the site-specific dynamic triggering thresholds were considered for the purpose of
determining RFI populations and characteristics. For a more detailed description of system
design, the reader is referred to [12–14]. If during event analysis no substantial change in
band shape or apparent power allocation within the band is detected, the event is classified
as an environment baseline event. Such events can be caused by wideband noise sources
which cover the monitored band uniformly but with a limited amount of power, such that
peaks from the main lobes of GNSS signals, particularly in the L1 band where these are
quite visible, remain.

2.3. Automatic Event Classification

In support of efficient system operation, an algorithm for automatic event classification
was developed [15]. The algorithm performance was first validated using simulated
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jamming events with known characteristics, and then using the real data collected by the
monitoring stations shown in Figure 1. Figure 2 illustrates the basic flow of the classification
process. This process is now continuously running at each of the monitoring stations where
the classification results, including the identified jamming signal type for each detected
event, are saved together with parameters such as the center frequency, bandwidth and
time modulation frequency of the jammer signals and reported monthly to the site-holder.
The accumulated classification results are then used for long-term statistical analysis. In this
article, only a brief description of the process is provided; for additional implementation
details, as well as discussion of the challenges encountered, see [15,16].
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Figure 2. Automated RFI event characterization, classification and processing (adapted from [15]).

Five main functions were derived from the spectrogram to classify the RFI events
and derive their bandwidth, center frequency and repetition frequency in the case of
time-modulated signals:

• Dominant jamming signal (Figure 3A);
• Energy frequency distribution (Figure 3B);
• Fast Fourier Transform (FFT) of jamming signal (Figure 3C);
• Short-term–long-term (STLT) ratio (Figure 3D);
• Spectrogram continuity (Figure 3E).

For classification of the detected RFI events, three main categories were defined:
narrowband signals, wideband signals and time-modulated signals with multiple subcat-
egories for each as shown in Figure 3. To be more specific, the narrowband signals are
defined to have a bandwidth narrower than 0.5 MHz over the observation window. The
majority of these signals are continuous wave (CW)-type, but undefined narrowband sig-
nals which include an element of time modulation in spectrum or power are also observed.
In the case of events with multiple CW signals at different frequencies, the challenge is
to detect all these separate CW signals, especially if they have a significant difference in
relative power level. While only the strongest CW event might be visible in the dominant
jamming signal (Figure 3A), continuous signals and their frequency can be identified in
the spectrum continuity function (Figure 3E). Additionally, as the standard deviation of
the energy increases for all jamming signal types, except for CW events, this function is
also utilized by the algorithm to identify multiple CW events, even in the presence of other
jammer signal types.
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Wideband signals are defined as signals with a bandwidth larger than 0.5 MHz,
without a measurable time-varying frequency content. The classification algorithm is
capable to distinguish wideband signals and stepped signals. Identifying stepped signals
is somewhat challenging due to the large variety of signal types that can be defined as
a stepped signal. Here, the focus is on signals that are narrowband signals of short time
intervals detectable in the short term long term ratio (STLT) function (Figure 3D). Stepped
signals with a regular reoccurrence might also have a time-modulated frequency that will
be detected in the FFT of the dominant jammer signal (Figure 3C); they are nevertheless
categorized as wideband signals.
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Time-modulated signals are in general also wideband but have a regularly recurring
time-modulated component, such as for example a sinus function. This recurrence of the
signal is detectable in the FFT of the dominant jammer signal as one or more resonance
peaks (Figure 3C). Sinus signals, whether general, wideband, or low-frequency, have exactly
one resonance peak. In the case of chirp signals and triangular signals, multiple resonances
(fundamental and harmonics) with regular spacing and reduction in energy with increasing
frequency can be observed. The spacing of the resonances (harmonics) is a multiple of the
fundamental frequency for chirp signals and a multiple of twice the fundamental frequency
for triangular signals. In the case of a multilevel chirp jammer, the jammer event does not
sweep linearly through a frequency range. This is visible in the FFT of the jammer signal
as side resonances with lower energy compared with the fundamental resonance and its
harmonics (Figure 3C, multi chirp).

Making use of the differences in the defined five functions described above for the dif-
ferent jamming signal types, nine evaluation criteria are defined and are used to distinguish
between the different jamming signal classes.

3. Data Analysis and Results Discussion

Information about each detected event’s RFI modulation, bandwidth, center frequency,
power level and sweep rate where applicable is saved along with the raw IF sample data.
The results discussed below are all formed using an aggregation of the observed parameters
from each site. As mentioned above, the statistical analysis of the accumulated RFI event
data presented herein is based on data from six of the stations within the overall network,
specifically the three sites located in Trondheim (Norway), the Asker site (Norway), the
Amsterdam site (Netherlands) and the Moss site, also in Norway. These sites were selected
as they have been in continuous operation for one or more years. In total, about 8.5 full years
of data were used (in particular, 3116 days), during which 18,600 RFI events were detected.
It is noted that this total number of observed events includes the observations of the L1/E1
and L5/E5a/E5b frequencies only. Thus, the number is higher if other frequency bands
(L2, E6, etc.) are to be included. Readers interested in the analysis presented herein but
focusing on the Galileo E6 frequency band are referred to the material provided in [14,17].

Aviation GNSS receivers have to follow strict interference rejection requirements that
are defined in the form of interference rejection masks for each frequency band covering
both the wideband and continuous wave (CW) interference signal types [18,19]. Since
ARFIDAAS stations are hosted at locations with various RF network configurations, they
do not report absolute power levels but instead rely on detecting variations from the local
baseline. For this reason, while enough data are captured to determine absolute power
levels at the receiving antenna, the rejection requirement masks are not considered in this
study, though are an ongoing activity.

3.1. L1/E1, L5/E5a and E5b Frequency Bands

Table 1 shows the frequency band limits considered in the analysis focusing on the
L1/E1, L5/E5a and E5b bands. The values were selected to cover the frequency band areas
with potentially no suppression applied at the antenna level [20,21].

Table 1. L1/E1, L5/E5a and E5b frequency band limits used in the analysis.

Frequency Band Band Limits (MHz)

L1/E1 1558–1591
L5/E5a 1160–1192

E5b 1192–1215

When the event parameters are aggregated over longer observation periods, site-
specific RFI environment features become visible. It is also possible to see which jamming
signal type is prevalent for the frequency band of interest. As Figures 4–6 illustrate, the
dominant type of RFI varies from site to site. In 2020, the Asker site, for example, was
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dominated by the wideband noise on the L1/E1 band, whereas the Amsterdam and Moss
sites were clearly dominated by the narrowband events, such as continuous wave (CW)
and multi-CW sources on L1/E1. An interesting observation is that the situation on other
bands differs. Table 2 provides a summary of the dominant interference types at each side
for each frequency band. It is noted that in Table 2, the dominant RFI type is defined as
the category with the largest number of observed events. An additional RFI type is also
indicated in the case when one or more other categories are equal to or above 70% of the
dominant one.
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Table 2. Summary of the dominant RFI type per site for the L1/E1, E5a and E5b frequency bands.

Site L1/E1 L5 (E5a) E5b

Moss Narrowband Time-modulated Time-modulated

Trondheim Narrowband/Time-
modulated Time-modulated Time-modulated

Trondheim B Time-modulated Wideband Wideband

Trondheim C Time-
modulated/Narrowband

Wideband/Time-
modulated

Wideband/Time-
modulated

Asker Wideband Wideband Wideband

Amsterdam Time-modulated/
Narrowband/Wideband Wideband Time-modulated

Table 3 shows the results summarized per site considering the L1/E1, E5a and E5b
frequency bands. On average, RFI was present for 23.4 s per day with most of the events
affecting the L1/E1 band (21.7 s per day). The second mostly affected frequency appears to
be the E5a with 5.5 s per day closely, followed by the E5b frequency band affected for 4.8 s
per day on average. Based on the accumulated data, it appears that in the majority of cases,
if there is interference on the L5/E5a frequency band, the L1/E1 band is also impacted. The
situation is similar in the case with the L1/E1 and E5b combination, however, the number
of events impacting the E5b band alone is slightly higher.

As stated earlier, and can as well be observed from this table, there is a substantial
site-to-site variation, not only in terms of the dominant interference type per site and band
as shown in Table 2, but also in the accumulated number of seconds with RFI present and
ratios between frequency bands. While at some sites (e.g., Trondheim) RFI on L1/E1 is
clearly prevalent, on others (e.g., Asker), the ratio between L1/E1 and L1/E1 vs. E5a bands
is 2.5 to 1.

Another interesting observation gathered from the long-term dataset analysis is that
the relative likelihood of different GNSS carriers being impacted at a given station shows
extreme variability, even at the level of full-month observation periods, suggesting that
for accurate site characterization a minimum measurement campaign of several months
may be necessary. Our assumption is that this is potentially due to individual site statistics
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being heavily influenced by a small number of jamming devices which tend to revisit the
site, which is conceptually consistent with vehicle-borne personal privacy devices (PPDs)
operated by individuals with daily routines, or the temporary presence of fixed emission
sources in range of the monitoring station.

Table 3. Site activity summary considering the L1/E1, E5a and E5b frequency bands.

Average RFI Presence per Day (Seconds)

Site Days of
Observation

Number of
Events

All Bands
Accumulated L1/E1 L5/E5a E5b L1/E1 +

E5a
L1/E1 +

E5b
L1/E1 +

E5a + E5b

Moss 463 5670 30.2 29.3 7.2 5.5 6.0 4.9 4.6

Trondheim 561 2551 17.3 15.6 2.1 3.0 1.4 1.4 1.3

Trondheim
B 535 909 7.8 7.5 1.5 1.7 1.3 1.4 1.3

Trondheim
C 730 5016 37.9 32.4 11.2 10.7 6.8 5.7 5.6

Asker 342 1444 19.2 17.9 7.3 6.6 6.0 6.4 5.7

Amsterdam 485 2183 27.7 27.6 3.9 1.5 3.8 1.5 1.4

Total 3116 18,600

Average 23.4 21.7 5.5 4.8 4.2 3.6 3.3

Table 4 summarizes the observed ratios between the considered frequency bands alone
and in combinations. The ratio values are calculated based on the observed number of
seconds per day per site per band/band combination averaged across all sites used in this
analysis. Probability of occurrence results are summarized in Table 5, where the values
are also calculated based on the time (i.e., number of seconds) RFI was observed for per
site and on average. It is noted that no site-dependent weighting was applied for average
value calculation.

Table 4. Observed RFI occurrence ratios between L1/E1, E5a and E5b frequency bands alone
and combined.

Occurrence Ratios

L1/E1
vs.

L5/E5a

L1/E1
vs.

E5b

L1/E1
vs.

L1/E1 +
L5/E5a

L1/E1
vs.

L1/E1 + E5b

L1/E1
vs.

L1/E1 +
L5/E5a + E5b

E5a vs. E5b

3.9 4.5 5.1 6.1 6.5 1.1

Table 5. Probability of RFI occurrence per site and band/band combination considering the L1/E1,
E5a and E5b.

Probability of RFI Occurrence

Site L1/E1 L5/E5a E5b L1/E1 +
L5/E5a L1/E1 + E5b L1/E1 +

E5a + E5b

Moss 3.34 × 10−4 8.30 × 10−5 6.37 × 10−5 7.00 × 10−5 5.65 × 10−5 5.32 × 10−5

Trondheim 1.80× 10−4 2.42 × 10−5 3.52 × 10−5 1.5 × 10−5 1.57 × 10−5 1.47 × 10−5

Trondheim B 8.67 × 10−5 1.74 × 10−5 1.96 × 10−5 1.53 × 10−5 1.66 × 10−5 1.53 × 10−5

Trondheim C 3.75 × 10−4 1.30 × 10−4 1.24 × 10−4 7.91 × 10−5 6.63 × 10−5 6.54 × 10−5
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Table 5. Cont.

Probability of RFI Occurrence

Site L1/E1 L5/E5a E5b L1/E1 +
L5/E5a L1/E1 + E5b L1/E1 +

E5a + E5b

Asker 2.07 × 10−4 8.40 × 10−5 7.58 × 10−5 6.96 × 10−5 7.46 × 10−5 6.55 × 10−5

Amsterdam 3.20 × 10−4 4.52 × 10−5 1.76 × 10−5 4.44 × 10−5 1.72 × 10−5 1.68 × 10−5

Unweighted
average 2.50 × 10−4 6.39 × 10−5 5.60 × 10−5 4.90 × 10−5 4.12 × 10−5 3.85 × 10−5

Another interesting observation based on the long-term monitoring results analysis
is that for four of the six sites considered, the category of narrowband noise on the E1/L1
bands is either the dominant type or is within 70% of the dominant one. The current
working theory for this disparity is that the vast majority of these narrowband detections
are emissions from low-cost active E1/L1 GNSS receiver devices which have become self-
resonant or otherwise leak energy in this band. This assumption was confirmed in several
cases when the interference source was localized and the signal source identified by the
spectrum management authorities in Norway (see Section 4.3 in reference [3] discussing
specific field cases). When considering the distribution of narrowband sources versus
spectrum location in Figure 7, where the narrowband events are visualized in red, and
the categorization in Figure 6, we can see that the Amsterdam station observes vastly
more narrowband interference in the E1/L1 band than the other bands considered. It is
noted that vertical lines in Figures 7 and 8 indicate the bandwidth of each of the observed
RFI events. In the case of narrowband interference, the vertical lines represent the extent
of a multi CW event type that is considered as narrowband but is covering a region of
the spectrum.

If this phenomenon was unrelated to the specific E1/L1 frequency band and was
instead uniformly distributed over the L-band, then we would expect to see approximately
two times more events over the other monitored bands than on E1/L1, but this is obviously
not the case. While it is conceptually uncomfortable to consider that GNSS receivers may
be a large source of GNSS RFI, this might also imply that as low-cost multi-frequency GNSS
receivers proliferate that we should expect the prevalence of narrowband RFI in each of the
other bands to increase over time.

3.2. L1/E1 and G1 Frequency Bands

In addition to the analysis presented in the section above, an analysis attempting to
map the RFI event observations made on GPS/Galileo L1/E1 vs. GLONASS G1 frequency
bands was also carried out. For this particular case, band limits as shown in Table 6
were used. This choice was made in order to study what types of RFI and how often
comparatively events will be observed on these two bands considering the same amount of
bandwidth used (±10 MHz). The data and monitoring site subset used in this case were
the same as detailed above.

First, the dominant interference signal types were studied, (summarized results shown
in Table 7), where it was observed that the amount of the narrowband interference on G1 is
far lower than that on L1/E1, with about only every fourth narrowband event impacting
the G1 frequency. This is consistent with the belief that the narrowband RFI is primarily
generated by malfunctioning GNSS receivers. It is entirely reasonable that a large number
of legacy GPS-only L1 receivers/systems may still be in use on the Scandinavian/European
roadways. The same observation can also be made from the L1/E1 and G1 band occupancy
plots shown in Figure 8 considering the Moss monitoring station for a period of 3 months
in early 2022.
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Figure 7. Band occupancy, Amsterdam station, Netherlands, 2020. Events that occur at the same
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red, wideband black and time-modulated blue. Black horizontal lines indicate the band limits.
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Table 6. Frequency band limits used to analyze event occurrence on GPS/Galileo L1/E1 vs.
GLONASS G1.

Frequency Band Band Limits (MHz)

L1/E1 1565–1585
G1 1592–1612

Table 7. Summary of the dominant RFI type per site for the L1/E1 and G1 frequency bands.

Site Dominant RFI Type on L1/E1
(1575.42 MHz ± 10 MHz)

Dominant RFI Type on G1
(1602.00 MHz ± 10 MHz)

Moss Narrowband Time-modulated/Narrowband
Trondheim Narrowband/Time-modulated Time-modulated

Trondheim B Time-modulated/Narrowband Time-modulated
Trondheim C Time-modulated/Narrowband Time-modulated

Asker Wideband Wideband

We also studied the interference presence per day at each of the monitoring sites on
these two bands. The average ratio between the amount of RFI on L1/E1 and G1 is 2.2.
Very few events affecting both bands simultaneously were detected. Another interesting
observation is that if comparing the results for the L1/E1 band with narrower band limits
of ±10 MHz to ±17 MHz used earlier (see Table 5), the amount of RFI decreases with a
factor of 1.5. Based on high-level analysis, the outcome that fewer events occur within the
narrowed monitoring range, affecting all RFI families (i.e., narrowband, time-modulated
and wideband), is entirely expected.

3.3. New RFI Type Observations

GNSS RFI jamming signal characteristics have been studied extensively by many
researchers [22–24]. Throughout the observation period used for this analysis, a number
of RFI signal types which were not previously observed in the wild were captured. These
include, but are not limited to, signals that were simultaneously low bandwidth, yet
chirp-modulation in fine-grained structure, potentially originating from poorly designed
jamming devices (or self-oscillator equipment with a chirp-like instability), and those that
were wideband time-modulated signals that appear to use an exponential sweeping rather
than a linear function as their sweep modulation signal (Figure 9a,b).
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E5b band than in the 2.4 GHz band, with only the antenna tuning limiting the L-band 
emissions. 

Figure 9. Examples of (a,b) wideband time-modulated signal using an exponential function; (c,d)
non-stationary distribution of RFI potentially evidencing meaconing or spoofing; (e,f) modulated
rake/multi-CW.

Figure 9c,d shows the onset of an RFI event which shows a transient onset of wide-
band RFI with two lobes concentrated around the L1 and G1 center frequencies, which is
consistent with a potential meaconing or spoofing event. Figure 9e,f shows an example of
a rarely seen modulated rake signal where each of the spurs follows the same frequency
toggling behavior in an apparently stable pattern.

Figure 10a,b is considered separately as, unlike the events shown in Figure 9 which all
impact the L1/E1 band, the event in Figure 10 instead intrudes upon the E5b signal. The
signal in this case shows transitions between multiple modulation modes at the scale of tens
of microseconds in discrete bursts. Each burst appears to start and end with a short period
of narrowband activity, followed by an orthogonal frequency division multiplexing (OFDM)
or narrowband rake RFI with several distinct subcarriers visible, then wideband modulation
over the impacted band. Based on help from the spectrum management authorities in
Norway, this source was identified as originating from a malfunctioning Wi-Fi router
with a failure mode causing it to radiate at half the intended frequency. Disturbingly, lab
evaluation of such devices shows that the radio emitted more power in the E5b band than
in the 2.4 GHz band, with only the antenna tuning limiting the L-band emissions.
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4. Conclusions and Recommendations

The analysis presented in this article covered RFI event characterization, RFI threat
profile update and statistical analysis of the captured RFI events in terms of probability
of occurrence, occurrence rate on the L1/E1 frequency only and L5/E5a frequency only,
as well as L1/E1 and L5/E5a frequency bands together. Results obtained on the adja-
cent bands such as the Galileo E5b and GLONASS L1 were also analyzed and presented
for consideration.

As the basis for the analysis, data captured at multiple RFI monitoring stations in
Scandinavia/Europe were used, totaling 8.5 site-years of aggregate observation (i.e., periods
for all stations used in the study summed together). It is believed that the site diversity
and the number of observations used in the exercises (18,600 events) provide sufficient and
representative statistics to confidently illustrate the current RFI threat. It is noted, however,
that as none of the sites used in the analysis are located directly at the airport premises,
the observed ratios between bands and the observed trend in the increasing number of
unintentionally generated events, as well as the new observed signal types, are to serve as
indications of the RFI threat space evolution required to support initial decisions regarding
potential reaction and mitigation strategies. The following conclusions were drawn based
on the analysis results presented above:

• Both the number of events observed, as well as the amount of time per day with
interference present, are the highest on the L1/E1 frequency band on all sites used in
the study.

• The L1/E1 frequency band is impacted most by the assumingly unintentional nar-
rowband interference caused by malfunctioning GNSS equipment. As low-cost multi-
frequency navigation receivers proliferate, it is believed that the total rate of the nar-
rowband EMI in the L5/E5a and E5b bands will increase as a consequence, potentially
reaching parity with the rates now observed in L1/E1.

• RFI events affecting L5/E5a only are less common. In the majority of cases, when there
is interference on L5/E5a, L1/E1 is also affected (1.3 to 1 E5a to L1/E1 + E5a ratio).

• The average ratio of RFI on L1/E1 vs. RFI on L5/E5a is approximately 3.9 to 1. The
ratio for RFI on L1/E1 vs. RFI on both L1/E1 and L5/E5a is approximately 5.1 to 1.

• Both the total number of events and dominant type of the interference signal, as well
as the impact ratios (L1 vs. L5, L1 vs. L1, L5, etc.), depend strongly on the site and
time period considered.
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• When the combination of wideband and time-modulated sources is considered, they
become the majority of events detected at the majority of the sites (here, all sites except
for Moss, Norway). In all cases, the combination is within the same order of magnitude
as the narrowband events, and therefore should not be ignored.

• Significant month-to-month variation was observed in both total RFI occurrence and
the impact ratios.

• GNSS signal jamming is a dynamic/evolving threat. While several of the new jamming
signal types observed within this monitoring campaign are variations of existing
modulations and concepts, e.g., exponentially swept vs. linearly swept, this should be
taken into account when/if considering use of in-receiver mitigation schemes.

Based on the observations discussed above, we arrive at several high-level recommen-
dations:

• The prevalence of RFI is higher than initially expected and could be a factor for
continuity. Based on the observation that the GBAS system has low tolerance to loss
of C/N0 before observations are discarded by low-signal-power monitor, and lower
starting C/N0 due to characteristics of MLAs, antennas siting relative to roadways are
believed to be very important in light of the RFI occurrence rate results.

• Given the observed average ratio of 1 to 3.9 of the interference on L5/E5a vs. inter-
ference on L1/E1, inclusion of an additional fallback mode should be subjected to a
cost–benefit analysis given that the proportion of events which affect the L5/E5a band
only is within an order of magnitude of the occurrence rate on L1/E1.

• While a histogram of in-band power levels was not presented here, this should be
evaluated when considering ground antenna siting, as distance alone may be insuffi-
cient to meet system Electro-Magnetic Interference (EMI) assumptions. Alternately, it
may be necessary to rely on earthworks or other obstructions to local roadways and
other transportation infrastructure.

• While new types of jamming signals observed within this monitoring period are
variations of existing modulations and concepts, e.g., exponentially swept vs. linearly
swept, this should be taken into account when/if considering use of in-receiver
mitigation schemes.

One important factor to keep in mind is that the class of jamming/interference attacks
considered, namely the low-cost in-car jamming devices, will potentially change in the
future where the ratio of interference on L1/E1 and L5/E5a might change. The trend in the
number of RFI events simultaneously affecting both bands can change as well following
the developments in the low-cost multi-frequency GNSS receiver marked. An additional
detail to note is that most of the environment monitoring was performed during the
2020–2021 period, during which the RFI environment was affected by what appear to be
changes in individual behavior and road traffic brought on by the corona virus lockdowns
and restrictions on mobility. A higher probability of occurrence is therefore expected in
the future.
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