Experimental Comparison of Migration Strategies
for MEC-Assisted 5G-V2X Applications

Mohammed A. Hathibelagal
University of Stavanger
Stavanger, Norway
ma.hathibelagal @stud.uis.no

Abstract—The introduction of 5G technology enables new V2X
services requiring reliable and extremely low latency communi-
cations. To satisfy these requirements computing elements need
to be located at the edge of the network, according to the Multi-
access Edge Computing (MEC) paradigm. The user mobility
and the MEC approach lead to the need to carefully analysing
the procedures for the migration of applications necessary to
maintain the service proximity, fundamental to guarantee low
latency. The paper provides an experimental comparison of
three different migration strategies. The comparison is performed
considering three different containerized MEC applications that
can be used for developing V2X services. The experimental study
is carried out by means of a testbed where the user mobility
is emulated by the ETSI MEC Sandbox. The three strategies
are compared considering the viability, the observed service
downtime, and the amount of state preserved after the migration.
The obtained results point out some trade-offs to consider in any
migration scenario.

Index Terms—5G, Multi-access Edge Computing, V2X, Con-
tainer, Migration

I. INTRODUCTION

The experience of being on the road is going to change
significantly as telecommunications service providers transi-
tion to the 5 generation of mobile networks (5G). In the
coming years, we can expect more optimized road traffic,
better in-vehicle infotainment services, and more road safety.
With 5G, the automotive industry and roadside-infrastructure
manufacturers can make use of networks that support ultra-low
latency services other than applications requiring higher peak
data. The 5G ultra-low latency feature enables the support of
novel or enhanced applications for use cases such as advanced
driver assistance, vehicle platooning, and eventually, even
fully autonomous driving. Most of these use cases fall under
the purview of V2X, a hypernym that stands for Vehicle-to-
everything, and currently covers concepts involving wireless
communications from Vehicles to Vehicles (V2V), Vehicles
to Pedestrians (V2P), Vehicles to Cloud (V2C), and Vehicles
to Infrastructure (V2I) [1]]. The cloud paradigm is inadequate
to satisfy the low latency and high reliability requirements
of some V2X services. Indeed, having the applications in
the cloud implies data exchange with distant servers. The
required compute and data storage resources must be available
closer to the edge of the network, and thus, closer to the end
user. Therefore, other than 5G, these services require another

Rosario G. Garroppo
University of Pisa
Pisa, Italy
rosario.garroppo @unipi.it

Gianfranco Nencioni
University of Stavanger
Stavanger, Norway
gianfranco.nencioni @uis.no

enabler technology such as Multi-access Edge Computing
(MECQ).

The MEC standards by the European Telecommunications
Standards Institute (ETSI) consider that both MEC application
and MEC platform may be consumers of a set of MEC ser-
vices, such as Radio Network Information Service (RNIS) [2]
or Location Service (LS) [3]. MEC application can use MEC
services to get contextual information, such as information
on users in the cells or user location and velocity. The
contextual information given by MEC services enhance V2X
applications. As discussed in [1f], on one hand the design of
efficient MEC-integrated V2X applications require the usage
of MEC services. On the other hand, the definition of new
MEC services or changes to existing ones are necessary to
support enhanced V2X applications.

Because the underlying network supports User Equipment
(UE) mobility, the MEC system needs to support application
mobility in order to ensure service continuity to the end
user. In other words, the MEC system needs to support the
relocation of application instances and user-specific states from
one MEC Host (MEH) to another as the UE moves out of and
into the areas covered by the respective MEHs. The relocation
feature is especially important for V2X services because the
primary actors involved (i.e. cars) are expected to cover large
distances over a short period of time.

The strategies for migrating the applications should be
analysed taking into account the two application classes:
stateful or stateless. In the case of stateful, the application
migration requires transferring and synchronizing the service
state between the original and relocated application instance
to provide service continuity. Furthermore, the synchronization
of the application state depends on the implementation of the
application itself. The application developer should consider
the migration issues, designing the application in such a way
that multiple instances of the application can run concurrently,
and the state (context) of the application instance can be
captured in the source instance and copied to another instance
independently from the operation of the instance itself. In
this manner, the relocated application instance in the target
MEH can continue in a seamless manner from the state of
the application instance in the source MEH at the time of UE
disconnection from that. On the contrary, the support for the
migration of a stateless application is relatively simple because

most likely no application context is necessary to transfer, as
well as no synchronization should be guaranteed between the
instance at the source MEH and at the target MEH.

A. Paper Contribution

The paper is focused on the strategies for application migra-
tion between MEHs. The paper has the following assumptions:

o The paper does not consider the Radio Access Network
(RAN), and specifically the radio interface. The moti-
vation is that the paper is focusing in the application
migration between two different MEH and the traffic
exchanged during the migration is not transmitted over
the radio interface. User mobility and varying channel
conditions add impairments on the traffic path between
UE and MEH. For this reason, the wireless network
connectivity does not impact on the performance of the
migration between MEHs. The paper, instead, assumes
that there is a transport network with an available path
between the two MEHs.

o The paper does not consider the latency of the V2X ap-
plications (as for example in [4]) because this parameter
is mainly related to the link between the MEH and the
UE. This feature may be part of the decision algorithm
deciding when to perform the Point-of-Access (PoA)
handover or/and the MEH handover. Furthermore, to
improve the performance of the path between the UE and
the MEH some approaches, such as duplicate MEHs, can
be considered [5]. Instead, the paper is focusing on the
downtime as interruption of the MEC V2X application,
so as part of the reliability.

The main contributions of the paper are the followings.

o Two extensions of the pre-relocation strategy presented
by Campolo et al. [[6] to support applications that re-
quire the preservation of only user state and of both
user and application states, respectively. The considered
applications differs from the amounts of state information
necessary for resuming them correctly after the migration
is completed. The extensions cope with the set of com-
mands and tools to use for the implementation of the pre-
relocation and the relocation procedures. Although earlier
testbeds had tried live migrations, they did not have well-
defined pre-relocation stages and how to implement them.

o The comparison of migration strategies is performed by
using the emulation of user mobility and MEC Appli-
cation Programming Interfaces (APIs) given by the ETSI
MEC Sandbox |[7]. Previous works did not consider this.

o The comparison is carried out considering three simple
applications developed with the goal of using RNIS
and LS MEC services and that have different state-
preservation requirements. The ETSI MEC Sandbox is
used to access to MEC service via MEC API during the
emulation of user mobility. The applications are simple
but can be seen as a microservice for more complex
V2X Application. Contrary to the modern monolithic
architecture where an application self-contains all the

components, the microservice architecture is an approach
to developing an application as a set of small independent
services. Each of the services is running in its own
independent process [8]]. More complex V2X services can
use the elementary application we used in our analysis to
access the MEC services. The developed applications use
both LS and RNIS, which, as previously mentioned, are
important in V2X use cases [1].

« The experimental analysis has as final target to assess the
viability of the migrated container at the target MEH for
each migration strategy and application. Earlier analysis
focused more on the size of the container and associated
data being migrated, presenting results mainly in terms
of service downtime and re-location latency.

The paper is organized as follows. Section [lIf overviews the
related works. Section presents the considered migration
strategies, while Section describes the testbed used for
the experimental analysis. Further, this section presents the
three applications considered in the study. Section [V]shows the
experimental results, while the summary of the performance
given by the compared strategies is presented in Section
Finally, Section [V1I| concludes the paper.

II. RELATED WORKS

Service migration is a very active research topic. Migration
strategies are closely coupled to the technologies used for
resource isolation and hosting the applications. According to
Wang et al’s survey [9]], the two most widely-used technologies
are: Virtual Machine (VM) technology and container technol-
ogy. Applications packaged into full-fledged virtual machines
offer the highest degree of resource isolation and control.
They run their own copies of the operating systems they need
and access emulated hardware [10]. Different optimization
problems have been studied for the optimal VM placement
and migration frameworks, such as the recent [11] [12].

Compared to VMs, containers are far lighter because they
rely on the operating system running on the edge host for a
lot of functionality. Tools like Docker make use of separate
namespaces and control groups to ensure the isolation of
processes. However, because all the containers running on the
same edge host use the same kernel, the degree of isolation is
not as high as that available with VMs [13]]. Nevertheless,
containers offer some important advantages, such as small
image size, very small memory footprint, and fast instantiation
times. These features make containers interesting for edge use
cases. As reported in Randazzo et al. [[14] Docker is one of
the most widely deployed container platforms. It is also worth
mentioning that there is a rise in a new breed of VMs based
on unikernels [[15]], and another emerging technology called
kata-containers [|14]]. However, these emerging lightweight VM
approaches are still experimental and not widely used. Thus,
this paper focuses primarily on container-based migration
strategies. Fondo-Ferreiro et al. [16] proposes an architecture
for automated orchestration for deploying applications at the
best location and even that relocate them, when necessary,
to satisfy the Quality of Service (QoS) requirements. They

implemented the proposed architecture in an experiment that
demonstrates how Open Source MANO (OSM) can automate
the relocation of a video processing application that helps
drivers to remember the latest traffic sign viewed.

This paper focuses on the experimental comparison of
different migration strategies, considering three different ty-
pologies of applications.

Focusing on the migration strategies, Farris et al. [17]]
describe an early proactive strategy for service migration,
which involved maintaining replicas of the service on multiple
MEHs to minimize downtime. They performed the experimen-
tal analysis of the proposed approach using a testbed composed
of two MEHs each one implemented by a PC with the Docker
engine. As metrics, they consider the total migration time and
the initialization time. However, because there is no actual
migration of the container filesystem, the downtimes they
observe (on average lower than 2 s) are a function of the used
Docker Volume (DV). Indeed, in their tests, they used the same
Docker container image for all scenarios and changed only
the DV size. Although this approach shows very short service
interruptions, it does not efficiently use the MEH resources.
In fact, the service needs to be instantiated on several MEHs
even though the UE is connected to only one of them at any
given instant. Farris et al. have suggested optimizations such as
replicating the service only on MEHs that lie in the direction
of movement of the UE.

Most studies make a distinction between transferring the
actual filesystem of the container and the user state. Further-
more, they either assume the service itself is stateless or do not
place an emphasis on the setup of its initial default state. This
often results in slow boot up times for the service. For services
that have complex initial states, it might be better to not build
them from scratch during container boot-up. Examples of such
services could be Massively Multiple Online Role-Playing
Games (MMORPGs), where start up times can be long, and
the game-world state is just as important as the user state.

A live migration-based approach can overcome the above
problems. In this type of migration, the service does not
start with a fresh new state on the target MEH. Instead, it
simply resumes from its state on the source MEH. This can
be accomplished by various methods. Earlier methods involved
maintaining a log of all events generated by the container on
the source MEH and replaying the log on the container of the
target MEH. They are simply a container-oriented adaptation
of the system trace and replay approach commonly used in
a live migration of VMs [18]. This approach is quite error-
prone, especially when there are lots of asynchronous events.
Therefore, more recent methods favour directly copying both
the filesystem contents and memory pages of the container on
the source MEH to the target MEH [19].

For instance, Addad et al. [20] propose a live migration
strategy in the context of 5G, aimed to minimize both down-
time and total migration time. Their experimental analysis has
been carried out with a testbed consisting of virtualized nodes
running Ubuntu 16.04. They used Linux Containers (LXC) and
the Checkpoint/Restore In Userspace (CRIU) project for creat-

ing application containers and managing their memory pages.
Their experiments ran with two containers: a blank Linux
container and a larger Linux container with a video stream-
ing server installed in it. They compared both stateful and
stateless migration scenarios. Their results show downtimes
of approximately 1050 ms for the blank container and 1300
ms for the video streaming container. Transferring both the
filesystem contents and memory pages can be time-consuming,
especially if the MEH has a large RAM. Therefore, Addad et
al. followed an iterative approach to transferring the memory.
This approach results in larger network resources consump-
tion but keeps the service downtime low. More recently the
authors propose two different algorithms to optimize network
resources allocation as well as to adjust the network usage to
minimize slice migration overhead [21]]. Stojanov et al. [22]]
analyze the performance of a new CRIU feature, the so-
called image cache/proxy. Their results show that the total-
copy using rsync generates a lower migration time than the
image-cache/proxy technique. We use this result for a detailed
definition of a migration strategy based on the CRIU tool with
the total-copy using rsync.

Campolo et al. [6] propose a custom migration strategy
based on Docker containers. The performance has been exper-
imentally evaluated by means of a simple testbed composed of
two PCs with the Docker Engine. The analysis considers two
containers with different filesystem sizes and multiple DVs
with different file sizes. Their strategy is specifically designed
for V2X services [5]. Their migration strategy has two phases
and relies extensively on the use of DVs. In the first phase,
called the service pre-relocation phase, they migrate only the
filesystem of the source container. In the second phase, called
the service relocation phase, they migrate only the additional
state of the source container, which is now expected to be
in a small DV. Because there is no downtime during the
service pre-relocation phase, transferring the DV and booting
up the container account for most of the observed downtime.
This strategy allowed them to reduce service downtimes to
approximately 2 seconds, so long as the DV is 10 KB or
smaller. Furthermore, the downtime is largely independent
of the actual size of the container. This strategy is feasible
only if the application running inside the container is custom-
built to support it. This is because the application needs
to be aware of the migration. Indeed, the application acts
differently depending on the currently active phase. When
there is no migration happening, the application must store
most of its state on the container’s filesystem. But during the
pre-relocation phase, it must stop writing to the container’s
local filesystem and store all of its state in a DV.

The previously cited works focused only on the size of
the container’s filesystem, the user state, and the container
memory pages. They are application-agnostic strategies, i.e.
they work the same regardless of the service application
being migrated. Bellavista et al. [23|] suggest a proactive
handoff strategy very similar to [6], with the extension that
their strategy is application-aware. Consequently, instead of
transferring the service as one monolithic container, their

approach suggests splitting it up into multiple containers
and transferring each of them individually. The experimental
analysis has been carried out on a heterogeneous testbed
composed of two PCs and a Raspberry Pi3, all running Linux.
Instead of Docker alone, they use Docker Compose to simplify
the code necessary to instantiate multiple containers and to set
up their DVs in an error-free manner. The considered service
is a Java web application, using the MongoDB database. Thus,
their application has two distinct layers: a service layer and
a data layer, each of which could be migrated separately.
One of the obvious disadvantages of this approach is that
it is feasible only if the considered service has a modular
architecture and can be easily split into distinct layers. For
example, the distinction between the service layer and the data
layer is not always clear. Furthermore, in some cases, such as
when closed-source applications are considered, such a split
might not be possible at all.

III. MIGRATION STRATEGIES

The MEC application migrates in two phases: i) the pre-
relocation and ii) the relocation. The MEC orchestrator is
responsible for triggering each phase at an appropriate time.
Figure [I] gives an overview of the sequence of events that
occur in a successful migration. In this work, the compared
migration strategies differ by the actions taken in the event
indicated as A and B in the figure.

Source MEH

Orchestrator Target MEH

Start pre-relocation
A
Imported QOntainer Ready
Start relocation ’l
B
T
Ready t+) Serve

Fig. 1. General scheme of the migration procedure

The service pre-relocation could be triggered by i) MEC ap-
plications (client or MEC side), ii) Source/target MEHs using
the associated Radio Network Information Service (RNIS) or
data planes, and iii) the MEC Orchestrator (MEO) [24]. In the
presented experimental analysis, the assumption is the MEO
generates the triggers. Like in [6], the MEO is implemented
as a set of shell commands and scripts. This approach allows
for creating a manual MEO and to time all the phases, i.e.
running the appropriate Docker Engine commands and timing
them.

A. Simple Filesystem Preservation (SFP)

A first study on the performance obtained for this kind of
migration strategy is presented in [6].

The strategy is characterized by the following procedure A.
The layered filesystem of the Docker container on the source
MEH is flattened and exported into a tarball using the Docker
export command. This tarball is then securely copied to
the target MEH using the scp tool and used to create a new
container image using the Docker import command.

Throughout the service pre-relocation phase, the source
MEH continues to serve the UE without any interruptions. On
the contrary, the container on the source MEH is shut down
during the relocation phase. As soon as this phase begins, the
UE starts experiencing service downtime and the rest of the
steps have to be completed as quickly as possible.

The procedure B consists in shutting down the container
and copying its DV to the target MEH.

Given the assumption that the DV contents are merely
Floating Car Data (FCD) packets, the remote copy mechanism
is a combination of the Linux dd and nc commands. Because
there is no encryption overhead involved and no time is spent
on the SSH handshake, this copy operation can be very quick.
Once the DV is available on the target MEH, the container
image created in the previous phase is instantiated and booted
up so the UE can connect to it. The DV is mounted as the
container is booted up. At this point, the service downtime
ends. To ensure the integrity of the UE’s data available
on the target MEH after the migration, the service running
on the container is expected to be aware of the migration.
Furthermore, the service implements the Algorithm |1} which
ensures that there is no change in the filesystem after the tarball
is created during the pre-relocation phase.

Algorithm 1 Algorithm implemented by the migration-aware
service

1: if Migration in progress then
2: Stop writing to the container’s filesystem
3: Start writing to mounted DV
4: else
5
6

Write to the container’s filesystem normally
: end if

Algorithm [I] also ensures that all the new information
the UE generates during the service pre-relocation phase is
available on the DV. Obviously, in this phase, application data
could be lost due to the stop of writing to the container’s
filesystem.

The algorithm is implemented in the applications by ex-
posing an endpoint the orchestrator could use to specify the
current phase of migration.

B. Filesystem and Container Configuration Preservation
(FCCP)

The SFP presents a big pitfall: It does not preserve any
application configuration or application-related state that is
not present on the filesystem. Furthermore, the Dockerfile

used to build the container at the source MEH is not available
at the target MEH. Because the container at the target MEH
is built solely using the imported filesystem, it will not be
aware of common and crucial initialization instructions such
as CMD or ENV. Several Dockerized Linux applications use en-
vironment variables to store configuration settings [25]]. These
could include critically important details, such as the value
of the PATH variable, which specifies the locations where
the Linux OS looks for executable files, or the PWD variable,
which specifies the current working directory. Without access
to these details, the MEC application is unlikely to behave
the same way it did on the source MEH when it starts on the
target MEH. To overcome these issues, the baseline SFP needs
to be extended to add some state information. In particular,
by making only minor changes to the SFP implementation,
all the environment variables, all the Docker instructions, and
several application settings can be preserved. The changes lead
to FCCP presented and studied in [23]. The Docker save
and load commands are suitable for preserving the basic
state information. Therefore, the differences between SFP and
FCCP are only in the procedure A. In the procedure A of
FCCP, the Docker export command at the source MEH,
used in SFP, is replaced with the Docker save command.
Similarly, at the target MEH, the Docker import command is
replaced with the Docker 10ad command. Unlike the Docker
export command, the Docker save command works only
with container images. This means that a running or pre-
instantiated container cannot be saved directly. To overcome
this limitation, the Docker commit command is run before
the save command. This generates a new container image
identical to the currently running container.

As one might expect, the tarball generated by the Docker
save command is slightly larger. Indeed, the output of the
save command contains not only additional state information
but also details about all the necessary parent layers, such as
their tag names and versions. To reduce the tarball size, it can
be compressed using the gzip tool. There is no need for a
corresponding explicit decompression step at the target MEH
because the Docker 1oad command can handle compressed
archives. However, the compression and decompression oper-
ations themselves are time-consuming. The tradeoff between
the latency added by the compression/decompression opera-
tions and the tarball size suggests sending the tarball without
compression.

It is worth mentioning that the Docker commit command,
by default, temporarily freezes the container while it creates
a container image from it. This behaviour is necessary to stop
changes in the container state during the commit operation,
which could potentially lead to data corruption. As a conse-
quence, there are potentially two service downtimes during
the migration: one during the commit operation and the other
during the actual migration.

C. Full State Preservation (FullSP)

Although the FCCP is capable of preserving much of the
container state, it is still the responsibility of the MEC applica-

tion (or its developers) to maintain the list of all environment
variables and settings it needs. This is necessary because items
in the list are to be passed individually to the Docker commit
command as input parameters. As a result, also FCCP can be
applied only to open source applications or closed source ones
that are willing to share the list.

For a migration strategy to support all applications, even
those that were not built to run in a MEC scenario, it should
not depend on any inputs from the applications.

In the case of FullSP, the contents of all the memory pages,
CPU registers, and other resources used by the container on
the source MEH are additionally copied to the target MEH
during the migration. Such a migration is referred to as a live
migration in [22]. It is important to note that the migration
can now be fully transparent to the MEC application. In other
words, after a successful live migration, the MEC application
would generally not even notice that it was migrated.

To support this kind of migration, tools such as CRIU are
necessary. CRIU can create a detailed copy of a process that
is running inside a container. In particular, CRIU can record
important details such as the contents of the relevant memory
pages, contents of CPU registers, the sockets currently being
used, files currently open for I/O operations, and mountpoint-
related information [26[]. To record these data, CRIU uses
ptrace, a system call meant for creating a process trace.

CRIU needs to be controlled by the Docker Engine. Because
this is currently an experimental feature, it is available only
after Docker Engine is manually configured to enable it. To
use this tool, CRIU needs to be installed and enabled on both
the source and target MEH.

A fundamental difference between the FullSP and the other
two migration strategies is that during both the pre-relocation
and relocation phases, the Docker checkpoint command is
run on the source MEH to freeze the application’s container
and save its state. By default, this operation immediately stops
the container. The leave-running flag is set during the
pre-relocation phase to keep the container alive afterwards.
However, this setting is not necessary during the relocation
phase because the container is not expected to be alive on the
source MEH anymore.

The output of the checkpoint operation is a directory
containing several CRIU image files. These files are copied
to the target MEH so that they can be used to restore the
checkpoint-ed application. But this action is possible only if
a valid container is already present and active on the host.

Therefore, during the service pre-relocation phase, the
container also needs to be built on the target MEH. For
common applications, the easiest way to achieve this is to use
Docker Hub or any other container registry available in the
MEC system. However, for custom applications the Docker
commit, save, and 1oad commands should be used to set
up the container, as described in FCCP. The latter approach
has been considered in the study. In this manner, the results
can be related to a general custom application.

The application is checkpointed twice in order to leverage
the rsync tool and minimize the service downtime. This

way, in the procedure A the entirety of the memory pages are
copied to the target MEH, and in the procedure B of the actual
relocation only the changed bits are copied. This is important
because the memory pages can often be as large as the
container’s filesystem. Other than the checkpoints operations,
during A the container image is saved to the target MEH, while
in B the DV is transferred from the source MEH to the target
MEH.

Table [l summarizes the main features of the described
migration strategies.

SFP FCCP FullSP
Preserves filesystem Yes Yes Yes
contents
Preserves~ container - Yes Yes
configuration
Preserves ~ memory
pages, CPU register No No Yes
contents
Application needs to
be aware of migra- Yes Yes No
tion?
Is Live? No No Yes

Docker En- Docker En- Docker En-
Tools used . . .

gine gine gine + CRIU

TABLE T

OVERVIEW OF THE THREE MIGRATION STRATEGIES

IV. EXPERIMENTAL SCENARIO

Figure [2] gives an overview of the components and layout
of the experimental scenario.

p

/

[

ETSI MEC SANDBOX

Simulated \
UEs Mobility ‘

/

\ |
\ /
\\\ LS RNIS ‘ ‘ WAIS ‘ //

H /

_— -~
O Internet 2
< _

T

NUC 1 - Source MEH NUC 2 - Target MEH

API Gateway

Simulated
Network

Customized
Ethernet
Switch

Containerized TC
MEC App

Docker

API Gateway

Docker

Fig. 2. Overview of the experimental scenario

Two Next Unit of Computing (NUC) small form factor
workstations were used as Source and Target MEH. Each has
16 GB of RAM, an Intel Core i7 processor, and a solid-
state drive. The workstations can communicate with each
other using a customized 1Gb Ethernet link. In the figure, TC

represents the Traffic Control utility of Linux used to limit the
data rate (e.g., to 100 Mbps) and to add packets loss in some
experiments. Furthermore, each NUC has another network
interface for its connection to Internet. Both the workstations
run Ubuntu 20.04 LTS as the operating system and have
Docker Engine 20.10.4 installed on them. Furthermore, to
support live migration, CRIU 3.15 is manually compiled from
its source code and installed on both the MEHs.

As shown in the figure, the MEC platform is represented
by the ETSI MEC Sandbox environment [7].

As Figure E] shows, the ETSI MEC Sandbox is an interactive
environment targeted at developers. It offers several commonly
used MEC service APIs with OpenAPI-compliant descriptions.
These REST-based APIs accept inputs and generate responses
in the form of both JSON and YAML documents.

At the time of this work, other than WLAN Access Infor-
mation Service (WAIS) the ETSI MEC Sandbox supported
both Location Service (LS) and Radio Network Information
Service (RNIS) APIs but implemented only a limited subset
of the endpoints mentioned by the ETSI ISG [2], [3]. For
example, the LS API implementation did not support most of
the distance and area related subscription endpoints. Similarly,
the RNIS API did not support endpoints that could fetch S1-
U bearer information or layer 2 measurements information.
Consequently, the V2X MEC applications built were designed
to work around the limitations. Furthermore, the ETSI MEC
sandbox offered one scenario with three different network
configurations. The scenario was set to emulate the urban
environment in the city of Monaco, with a configurable
number of stationary, fast, and slow moving UEs. The three
available network configurations are different primarily in the
network technologies they supported, see [7].

The study is carried out using the 4g-5g-wifi-macro
configuration, which is the most flexible and supports all
the network technologies that are likely to be available in
actual network deployments. The scenario is composed of
nineteen 5G small cell PoAs, eleven WiFi PoAs, and ten
4G macro cell PoAs. As concerning the user mobility, the
ETSI MEC Sandbox allows the configurations of Stationary
UEs, which represent smart city IoT connected devices such
as street cameras, smart sensors, etc., the low Velocity UEs,
which change location relatively slowly, and the fast moving
UEs, which represent motorized vehicles moving along the
main city roads. The experimental analysis considers only fast
moving and low velocity UEs.

It is important to note that the sandbox does not specify the
location of the MEHs. It gives only the locations of the radio
PoA and the zones they belong to. Experiments are firstly run
assuming that a MEH is present near each of the nineteen 5G
PoAs. For the sake of simplicity, it is also assumed that each
MEH serves exactly one 5G small cell base station. Then,
experiments are run assuming that a MEH is associated only
with zones instead of the individual PoA they contain.

The MEC applications are usually expected to connect to the
MEC services they need through an API gateway, see figure [2}
Therefore, an API gateway is created using Apache HTTP

ETS. V74 N
(\&%//‘ HOME

=

SANDBOX ~ HELP V1.7 e

Configuration

Network

[-49—5g—wifi—macr0 N

Pause

Stationary UE o 1/4 +
Low Velocity UE - 1/4 +
High Velocity UE - 1/ 4 +

MEC App. Instance IDs NEW

Leaflet | © MapTiler, © OpenStreetMap contributors

API Console

RESP.

o CODE

TYPE METHOD ENDPOINT

011-mep1-9 201 Request POST

OM-mep1-8 201 Request POST Z1032d60-86d9-52059ad314b6/services

/mec_app_support/vi/applications/b8ae165a- 2022-07-
ale3-4dé6c-86d9-52c59ad314b6/subscriptions 05T13:59:52.791830195Z

/mec_service_mgmt/v1/applications/b8ae165a- 2022-07-
05T13:59:52.783634433Z

(& MEC Service APIs

Location (013)

MEC Application Support (011)
MEC Service Management (011)
Radio Network Information (012)
WLAN Access Information (028)

Fig. 3. Screenshot of the ETSI MEC Sandbox user interface

Server 2.4. Using its mod_proxy module, a reverse proxy is
set up so that any request is routed to the ETSI MEC Sandbox.

The gateway is containerized and is set up on both the
source MEH and the target MEH. It has the same Uniform
Resource Locator (URL) on both and the MEC applications
can interact with it using a Docker bridge network.

The httpd:2.4 image available on Docker Hub is used
as the base image for the gateway.

A. Applications

The experimental study considered three containers, each
containing a different simple application that uses MEC
services. The considered applications are example of mi-
croservices for V2X applications that consume MEC services.
Considering the necessary state information to preserve during
the migration, these applications can be classified as follows.

« Basic Application (BA). The simplest application merely
operates as an RNIS consumer. As shown in [[1], RNI API
and its required enhancement can be used for supporting
V2X applications for road safety, such as intersection
movement assist and queue warning, or for advanced
driving assistance, such as “Real Time Situational Aware-
ness and High Definition Local Maps” and "high def-
inition sensor sharing (or see-through)”. The BA is a
simple periodic request (with period set to 200 ms) of
RNI MEC service. As shown in [27]], the developed
application requests E-RAB info, which gives data such

as the E-UTRAN Cell Global Identifier, the information
of users per cell, maximum and guaranteed E-RAB bit
rate in uplink and downlink. Migrating this application
serves as an initial test for the viability of the testbed
implementation. The functionality of this application does
not depend on any state information, be it user state or
application state. Consequently, the application does not
depend on the contents of a DV or any other form of
persistent storage.

The basic application is built using NodeJS 15.14.0 and
got 11.8.2, which is an HTTP request library.

User State-Preserving Application (USPA).

The USPA is a simple periodic request (with period set
to 200 ms) of LS. As shown in [27]], this application
is a simple counter that increments its value whenever
the UE’s current zone changes. In general, the LS MEC
service can be used for the “vulnerable road user” V2X
use case group. Indeed, the MEC system is evolving for
enabling the support of accurate positioning in a short
or real-time, exploiting the new capability provided, for
example, by 5G system. In general, LS offers information
on user position and velocity that can be used to predict
possible dangerous events.

As its name suggests, USPA needs the user-specific state
preserved to function correctly. To satisfy a realistic use
case, USPA is designed to perform a single, atomic
change to the user state. This change involves the in-

crement of a counter that is a part of the user state.
During the migration, the value of the counter is of critical
importance. Indeed, for a migration to be considered
successful, the counter should not start from zero at the
target MEH. Instead, it should resume from the value
assumed at the source MEH. This emphasizes the point
that although the application itself is stateless, the user-
specific state must be preserved.

This application too is built using NodeJS and got. It is
designed to be aware of the migration and uses the DV
to store the counter value and run-time logs once the pre-
relocation phase started. It is also capable of retrieving
the counter value from the DV, if available during startup.
It is also worth emphasizing that, much like BA, USPA
too does not need to preserve any application instance-
specific state to function correctly. USPA needs only the
user-specific state.

o Application With a Stateful Workload (ASW). This
application interacts with the LS MEC service to store
the list of visited zones during the UE movement and the
number of PoAs of each visited zone. These information
are stored using Memcached. Memcached is a high-
speed, in-memory, key-value datastore in edge computing
scenarios [[28]]. Key-value stores are indispensable in most
web applications today. They are often used as a cache
to store the results of expensive or time-consuming com-
putations [29]]. As such, they are large hash tables, with
unique keys pointing to important values. Memcached
represents an interesting benchmark for testing the live
migration strategy of applications with in-memory state-
ful workload. The selection of Memcached 1.6.9 offers an
easy to use command-line interface over Telnet [30]], the
Linux telnet utility is used to retrieve access point-
related information on it. This information is obtained
from the LS API using the Linux command-line utility
cURL.

All three applications run inside their separate containers.
The container images of BA and USPA are built with the Node
l6-alpine3.11 image as the base. The ASW container
image is built with the memcached 1.6.9 image as the
base. All of the base images are pulled from Docker Hub.
Table [l summarizes the main features of the three applications
considered in the experimental analysis.

B. Variable Network Conditions

Containers running the three applications are migrated from
the source MEH to the target MEH under two different
network conditions: normal and congested. Under normal
conditions, the network has a data rate of approximately 1
Gbps. The simulation of the network congestion is obtained
using the Linux tc utility. To configure tc appropriately, a
classful queueing discipline of type Hierarchical Token Bucket
(HTB) is set up. A class with its rate set to 100 Mbps
has been added to reduce the data rate to 100 Mbps when
the congestion scenario is simulated. For a data rate set to

BA USPA ASW
User-
State preservation re- No state nec- User‘— spec'lﬁc‘ and
quirements essary specific state apph.catlon-
necessary specific state
necessary
Use
Keep a Memcached
S)l;ery Ril'\n]g count of the to store
information number of the list of
Offered service every 200 zones visited all useable
ms using the by the UE, PoAs in the
RNIS API using the LS visited zone
APL during the
UE mobility
Docker Volume usage No Yes No
Migration awareness No Yes No
TABLE T

OVERVIEW OF THE THREE MEC APPLICATIONS CONSIDERED IN THE
EXPERIMENTAL ANALYSIS

100 Mbps, different tests have been carried out setting diverse
packet loss (PL) probability, i.e. 0%, 0.1%, 1%, and 5%.

V. PERFORMANCE ANALYSIS

The performance analysis considers the combination of the
application features, the migration strategy, and the network
condition. Most of the presented results are obtained using the
reference configuration represented by no packet loss and data
rate set to 100 Mbps. In all tests considering a 1Gbps link,
the observed latency due to the transfer of data necessary for
the application migration is one-tenth of that observed in the
reference scenario.

All the code used for the experimental performance analysis
is available in [27]).

A. Container Sizes

For each container, the value of its size is obtained using
the Docker inspect command. The obtained results indicate
that BA and USPA give similar values, i.e. 111.82 MB against
112.14. On the contrary, the ASW container has a size of
152.17 MB.

The analysis of the tarballs shows a significant difference
between the size of the container images and the tarballs gen-
erated from the container instances. This difference is expected
because the Docker export, save, and checkpoint com-
mands operate differently and preserve varying amounts of
run-time application state, as discussed earlier.

Figure [] shows the tarball sizes for the different combina-
tions Application-Strategy. For migration strategies
SFP and FCCP, there are only minor variations in the tarball
sizes for the applications BA and USPA. In both cases, FCCP
leads to a less than 0.1% increment of the tarball size with
respect to the SFP strategy.

The figure shows that for the applications BA and USPA, the
strategies SFP and FCCP generate quite a similar tarball size
because there is either no state preserved or very little state
preserved, respectively. The increment of size is limited to
about 3%. The FullSP migration strategy shows a noticeable

increase in tarball size for all applications. As an example, in
the case of BA the tarball size increment given by FullSP
over FCCP is equal to more than 10%. In general, SFP gives
the smallest tarballs for all applications, while FullSP the
largest ones. The maximum is observed with the application
ASW. The observed increment with respect to FCCP is more
than 19%.

@ 100 -

Size (

USPA ASW

Fig. 4. Tarball sizes

B. Duration of Pre-relocation Phase

The tarball sizes are expected to have no significant impact
on the service downtime. This result is because the tarballs
are generated and transferred during the service pre-relocation
phase. Of course, this holds only if the service pre-relocation
starts at the right time. Therefore, the orchestrator needs to
know the overall duration of the pre-relocation phase. This
duration is the sum of the following components:

e Time to prepare the pre-relocation information at the
Source MEH;

e Time to transfer the Tarball;

o Time spent on the Target MEH.

The Linux time utility was used to time all the operations
discussed below. Because the exact duration varied by a few
milliseconds every time the commands were run, the shown
results are obtained by averaging the values observed in five
different runs.

1) Time to prepare the pre-relocation information at the
Source MEH: The estimation of this parameter depends on
the migration strategy. In particular, in the case of SPF,
this parameter is only due to the time taken by the Docker
command export. Instead, for FCCP, it can be estimated
by the sum of the times taken by the Docker commands
commit and save. The sum of the time taken by the Docker
commands commit, save, and checkpoint represents the
estimation of this parameter in the case of FullSP. Figure
[5] shows the results. In all scenarios, the strategy SPF is the
fastest. This result is because only one Docker command needs
to be run, and only the filesystem contents are preserved. On

the contrary, with three different Docker commands and full
state preservation, FullSP is the slowest.

In strategies FCCP and FullSP, the Docker operation
commit, as mentioned earlier, temporarily freezes all the
containers. The freeze periods observed during the commit
command are relatively short and almost similar for all the
applications. Indeed, the minimum duration is 178 ms for the
BA, while 197 ms is the maximum observed for ASW.

4 T T T
[sPF

[Fcep

35| == Fuisp 7

3k -

25p -

Time (s)

BA USPA ASW

Fig. 5. Time to prepare the pre-relocation information at the Source MEH

2) Time to Transfer the Tarball: This parameter is equal
to the time taken by the command scp to transfer the tarball
from the source MEH to the target MEH. The observed values
are approximately equal to the Tarball size divided by the link
data rate, i.e. 1 Gbps or 100 Mbps.

3) Time spent on the Target MEH: In the case of SPF,
this parameter corresponds to the time taken by the Docker
command import. For the strategies FCCP and FullSP,
the value of this parameter is related to the time taken by the
Docker command 1oad. As shown in figure [f] the results are
identical for both strategies FCCP and FullSP because the
checkpoint data is not used yet. Thus, it does not contribute to
the time necessary to complete the pre-relocation operations
at the target MEH.

SPF is again the fastest because it does not preserve any
Docker layers information. Whereas FCCP and FullSP are
much slower because they preserve information on about six
Docker layers, each of which has to be restored individually.

C. Duration of Relocation Phase

Throughout the pre-relocation phase, in all three implemen-
tations of the testbed, the UE has largely uninterrupted access
to the MEC application. In fact, the application is unaware of
the phase. On the contrary, the relocation phase does introduce
service downtimes, which must be measured and analysed.
Also, the relocation phase can be analysed considering three
different contributions, as the pre-relocation.

1) Time to prepare the relocation information at the Source
MEH: In all three strategies, the following operations need to
be run on the source MEH:

25 T T
I SPF

[Fccp
[FullsP

Time (s)

05 -

BA USPA ASW

Fig. 6. Time spent on the target MEH during Pre-Relocation

o Stop the container using the Docker command stop;
o Generate a tarball of the DV used by the container using
the Linux utility tar.

In the strategy FullSP, the Docker operation checkpoint
has to be additionally run to generate a new checkpoint. This
operation has to be done before stopping the container.

For applications BA and ASW, the DVs are always empty.
In the case of BA, the DV is empty because this application
is completely stateless. It needs to store neither user nor
application instance state. In the case of ASW, the DV is empty
because all the state is being stored in the memory of the
container.

The DV of USPA contains data. The amount of data is
directly proportional to the duration of the pre-relocation
phase. A side effect of this behaviour is that the network
congestion increasing the time necessary to transfer the tarball
from the source to the target MEH increases the size of the DV.
Although mentioned, this relation has not been fully accounted
for in the testbed presented in Campolo et al. [6]. Therefore
the final results shown in this paper can be expected to be
more realistic. Indeed, the experimental measurements carried
out with the USPA indicate a DV size of about 80 KB with
the 1 Gbps link, while size of about 110 KB is observed in
the scenario with a 100 Mbps link.

The command tar is very quick, and the difference be-
tween the times to archive the two data volumes is, on average,
less than 1 ms. Therefore, in the estimation of the total time
spent on the source MEH, this contribution is assumed to be
a constant.

Figure [7] shows the total time spent at the source MEH during
the relocation phase. The strategies SPF and FCCP are the
fastest. However, FullSP is consistently slower because of
the additional checkpoint operation. Thus, FullSP implies
that all applications take a markedly longer time. It is also
worth noting how the strategies SPF and FCCP are fast for
the application ASW, which does not store any state in the file
system. This result is because these strategies ignore most of

the state information that ASW needs in order to run correctly
on the target MEH.

25 T T T

I sPF
[Fcep
[]FulisP

2k — -

Time (s)

05 .

0 “

BA USPA ASW

Fig. 7. Time to prepare the relocation information at the Source MEH

2) Time to Transfer Data: The tool nc is used to copy the

DV’s tarball from the source MEH to the target MEH. This
action is necessary only for USPA because this application is
the only one that uses the DV to store additional state while
the pre-relocation is in progress.
In the case of FullSP, the utility rsync is additionally
used to transfer the checkpoint files generated by the CRIU
tool. This transfer is configured to use SSH to maintain data
confidentiality. All applications generated at least 13 MB of
checkpoint data, with ASW generating, on average, 16 MB.
With the command rsync, it was noted that, on average,
only 2.9 MB of updated data have to be transferred, resulting
in an average speedup of 4.52x. In other words, compared
to scp, the command rsync is about 4.52 times faster.
Figure [§] shows the measured times for transferring additional
user state and application state during the relocation phase in
the scenario with a 100 Mbps link. The scenario with a 1 Gbps
link shows results with times that are about one-tenth of those
shown in the figure. For sake of simplicity, these results are
not reported in the paper.

A second set of simulation is focused on the evaluation
of the impact of the PL probability on this performance
parameter. The chosen PL values consider the fact that usually
this link uses a transport network infrastructure not involving
wireless communications. Thus, the considered values are
0.1%, 1% and 5%. PL increases the time necessary for
transferring the tarball in the pre-relocation phase, i.e. the
amount of data shown in Figure [

In the case of USPA and ASW, the increment of the
transferring time increases the amount of data acquired during
the pre-relocation. These data will be transferred as additional
user or/and application state during the relocation phase. The
experimental results show that the time for transferring the
tarball has a negligible increment (less than 4%) when the PL
probability is 0.1% and 1%. On the contrary, with PL set to
5%, the results show an increment of the transferring time

06 T T T
I SPF
[Fccp

=1 FullsP
05 = -

04l E

Time (s)
o
w
T

02 g

0.1 -

BA USPA ASW

Fig. 8. Time to copy the additional user and application state to target MEH
- Reference configuration: data rate set to 100 Mbps and no PL.

equal to 71.72% and 75.64% in the case of the smallest and
the largest tarball size respectively. Table highlights the
impact of the PL on the time to copy the additional user and
application state to the target MEH.

FCCP-0% FCCP-5% FullSP-0% FullSP-5%
BA (s) 0 0 0.356 1.310
USPA (s) 0.008 0.038 0.368 1.651
ASW (s) 0 0 0.516 2.112
TABLE III

IMPACT OF PL ON THE TIME TO COPY THE ADDITIONAL USER AND
APPLICATION STATE TO THE TARGET MEH - DATA RATE EQUAL TO 100
MBPS

The results show that the time for copying the additional
data remain below 0.04 s in the case of FCCP also for PL equal
to 5%. This value is negligible respect to the time required for
the other operations to complete in the relocation phase that
are in the order of 1 s. On the contrary, the results obtained
with FullSP highlight that with a PL probability of 5% the
time for transferring the additional data is in the order of
seconds, such as the time required for the other operations of
the relocation phase. In other words, the packet loss probability
of 5% duplicates the service downtime.

3) Time Spent on the Target MEC Host: When the strategies
SPF and FCCP are used, the following operations need to be
run on the target MEH:

1) Create a new DV by running the Docker command
volume create and add to it the contents of the
tarball received from the source MEH.

2) Boot up the container by running the Docker command
run, mounting the volume just created.

A slightly different set of commands has to be run in the

case of FullSp:

1) Create a new DV by running the Docker command
volume create and add to it the contents of the
tarball received from the source MEH

2) Use the Docker command create to create a new
instance of the container without booting it up
3) Use the Docker command start to start the container
from the appropriate checkpoint
All compared strategies show to complete all their oper-
ations in less than 1 second, with SPF always being the
fastest, and FullSP always being the slowest. Figure [J] gives
an overview of the total amount of time spent performing
operations on the target MEH.

0.8 T T T
[sPF

[Fcep

0.7 | =1 Fuisp .

USPA ASW

Fig. 9. Time spent on target MEH during relocation

VI. COMPARISON SUMMARY

The presented experimental analysis allows the comparison
of the considered migration strategies using the following
parameters:

e Service Downtime;

o Amount of preserved state;

« Viability.

A. Service Downtime

Service downtime is one of the most important performance
parameters. All the migration strategies have been designed to
minimize this parameter. The downtime starts as soon as the
Docker command stop is run on the source MEH and ends
only when the MEC application has started successfully on
the target MEH.

Figure [T0] shows the observed values of the service down-
time in the case of the reference configuration (i.e. data rate
equal to 100 Mbps and no packet loss). The figure points
out that operations on the source MEH are responsible for
a significant portion of the downtime. The copy operations
contribute very little to the total service downtime, primarily
because of the small amounts of data transferred during the
relocation phase. As mentioned earlier, the bulk of the data
is transferred during the pre-relocation phase. Lastly, the time
spent performing operations on the target MEH is relatively
short, with the strategy Ful1lSP taking up the most time.

The link capacity, i.e. 100 Mbps or 1 Gbps in our testbed,
has only a minor impact on service downtimes for strategies

SPF and FCCP. On the contrary, FullSP shows a non-
negligible contribution to the downtime for all applications.

These results indicate SPF as the fastest, regardless of the
application being migrated. Therefore, if minimizing service
downtime is the only priority, SPF would be the best choice
for application migration. It is worth noting that in the case of
PL probability set to 5%, the values shown in Table [III| lead
to almost double the service downtime due to the high copy
operation in the relocation stage. For example, in the scenario
“ASW, FullspP”, the 5% of PL leads to a service downtime
of 5.027 s against the 3.431 s observed when no loss is added
to the 100 Mbps link between the two MEHs.

4 T T T T T T T T T
[Operation at Source MEH
[Copy Operation

[Operation at Target MEH

] L <Q R < <Q <Z L 4
& & © & Io% ® & o ®
< NS < \

Fig. 10. Observed service downtimes - Scenario with data rate between MEHs
equal to 100 Mbps and no PL

B. Amount of state preserved

As discussed earlier, there is no configuration information
available on the target MEH when SPF is used. As a result,
the Docker command run does not know how to start the
MEC application. In the experimental tests, this problem has
been overcome by manually passing the instruction CMD to
the Docker command run.

In the cases of FCCP and FullSP, there is enough config-
uration information available to start all the MEC applications.
But only FullSP can preserve the complete state of the
application ASW. Therefore, when state preservation is the key
criteria, Ful1lSP represents the most suitable strategy.

C. Viability

For the sake of completeness, two different viability metrics
are considered. These are the most important metrics because
if a migration strategy is not viable, the other metrics either
cannot be calculated or do not matter.

The first viability metric evaluates whether an application
can start and run correctly on the target MEH after the
migration. As expected, SPF is the least viable because even
the application BA, which needs no state at all, cannot start
without manual intervention. On the other hand, FullSP is

Application Type ~ SFP FCCP FullSP
Yes (with
BA some manual Yes Yes
inputs)
USPA No Yes Yes
ASW No No Yes
TABLE TV

VIABILITY OF MIGRATION STRATEGIES FOR THE V2X APPLICATIONS

the most viable because it can correctly run all applications.
Table [IV] gives an overview of this viability metric.

The second viability metric evaluates whether the migration
strategy can be completed within the time period when the
application can remain in the target MEH without performing
another migration. As observed during the experiments carried
out using the city scenario simulated by the ETSI MEC Sand-
box, this metric depends only on where the MEHs are located
and does not help in comparing the migration strategies.

Indeed, in the scenario with a MEH associated with each
5G small cell PoA, the results show that all the migration
strategies are largely viable in the case of the 1 Gbps link.
When the MEHs are associated with zones, all the migration
strategies are largely viable even in the case of a 100 Mbps
link.

However, there are some paths a client could take in the
city that have areas where none of the migration strategies
is viable, regardless of link capacity and MEH placement. In
these areas, the client switches between zones (or between
PoAs) too quickly for a successful migration. Table [V] gives
an overview of the amounts of time available for migration.
The table shows that in the worst conditions, the available time
to complete the application migration is about 1 s in the case
the MEH is associated with each PoA or 1.8 s when associated
with Zones. These values are lower than the time necessary to
complete the migration, as observed during the experiments.

If MEH is associated
with each POA

If MEH is associated
with each zone

Average time avail-

L 12.301s 53.151s
able for migration
Shortest available 1.037s 1.854s
time observed
TABLE V

OVERVIEW OF AMOUNTS OF TIME AVAILABLE FOR MIGRATION

VII. CONCLUSIONS

Using the two-phase migration approach described in Cam-
polo et al. [6]], the paper presents the experimental comparison
of three different migration strategies. The primary difference
between the three strategies is the amount of preserved user-
specific and application-specific state and configuration data.
The comparison considers three applications consuming MEC
services. These applications have different features in terms
of state preservation requirements, DV usage and migration
awareness. The experimental results show that the viability of

the migration strategy depends on the features of the appli-
cation. In particular, the application requirements in terms of
preservation of user-specific and application-specific state and
configuration data represent an important feature impacting the
viability. SFP is the fastest strategy, and it can be considered
ideal for the migration of applications without requirements for
state and data preservation. However, also in the simple BA
some manual inputs are necessary for having the application
running in the target MEH. On the opposite side, FullSP
is found to be the slowest, but it can be used to migrate
any application that is supported by the CRIU tool. In the
middle, FCCP preserves enough state and is generic enough to
potentially support a large number of open source applications.
It is also nearly as fast as strategy SFP. Therefore, in scenarios
where minimizing service downtime and preserving small
amounts of application configuration data and user-specific
state are both critically important, FCCP represents the most
suitable strategy.

The experimental results provide insights into the migration
of real-world MEC applications that are based on common
frameworks and components such as NodeJS and Memcached.
However, this study can be extended in the future by in-
tegrating into the MEC system a full-fledged orchestrator
and other management-level entities that make the smart
relocation feature possible. Furthermore, the considered MEC
applications could be upgraded to use the publish-subscribe
model instead of the request-response one, while accessing
the MEC services. This upgrade would lead to reducing data
rate and CPU resource consumption.

ACKNOWLEDGMENT

This work was supported by the Norwegian Research
Council through the 5G-MODaNel project (no. 308909), and
by the Italian Ministry of Education and Research (MIUR)
in the framework of the CrossLab project (Departments of
Excellence).

REFERENCES

[1] ETSI ISG, “Multi-access edge computing(mec); study on mec support
for v2x use cases,” ETSI GR MEC 022 V2.1.1, 2018.

, “Multi-access edge computing (mec); radio network information
api,” ETSI GS MEC 012 V2.2.1, 2022.

[3] ——, “Multi-access edge computing (mec); location api,” ETSI GS MEC
013 V2.2.1, 2022.

[4] C. Quadri, V. Mancuso, M. A. Marsan, and G. P. Rossi, “Edge-based
platoon control,” Computer Communications, vol. 181, pp. 17-31, 2022.

[5] S. Dabbene, C. Lehmann, C. Campolo, A. Molinaro, and F. H. P.
Fitzek, “A MEC-assisted Vehicle Platooning Control through Docker
Containers,” in 2020 IEEE 3rd Connected and Automated Vehicles
Symposium (CAVS), 2020, pp. 1-6.

[6] C. Campolo, A. Iera, A. Molinaro, and G. Ruggeri, “MEC support for
5G-V2X use cases through Docker containers,” in 2019 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2019,
pp. 1-6.

[71 ETSI MEC, “MEC Sandbox,” 2022, accessed March 16, 2022. [Online].
Available: https://try-mec.etsi.org/

[8] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,”
International Journal of Open Information Technologies, vol. 9, pp. 24—
27, 2014.

[9] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23 511-23 528, 2018.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]

[28]

[29]

[30]

K. Gillani and J.-H. Lee, “Comparison of linux virtual machines and
containers for a service migration in 5g multi-access edge computing,”
ICT Express, vol. 6, no. 1, pp. 1-2, 2020.

S. Shahryari, F. Tashtarian, and S.-A. Hosseini-Seno, “Copam: Cost-
aware vm placement and migration for mobile services in multi-cloudlet
environment: An sdn-based approach,” Computer Communications, vol.
191, pp. 257-273, 2022.

Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, “Joint offloading decision
and resource allocation for mobile edge computing enabled networks,”
Computer Communications, vol. 154, pp. 361-369, 2020.

D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
A. Randazzo and I. Tinnirello, “Kata containers: An emerging architec-
ture for enabling MEC services in fast and secure way,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management
and Security (I0TSMS). 1EEE, 2019, pp. 209-214.

P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A
binary-compatible unikernel,” in Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, 2019, pp. 59-73.

P. Fondo-Ferreiro, A. Estévez-Caldas, R. Pérez-Vaz, F. Gil-Castifieira,
F. J. Gonzilez-Castano, S. Rodriguez-Garcia, X. R. Sousa-Vizquez,
D. Lépez, and C. Guerrero, “Seamless multi-access edge computing
application handover experiments,” in 2021/ IEEE 22nd International
Conference on High Performance Switching and Routing (HPSR), 2021,
pp. 1-6.

I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-short
latency to user-centric 5G applications at the mobile network edge,”
Transactions on Emerging Telecommunications Technologies, vol. 29,
no. 4, p. e3169, 2018.

H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of the
18th ACM international symposium on High performance distributed
computing, 2009, pp. 101-110.

S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti, “Migrating
Linux containers using CRIU,” in International Conference on High
Performance Computing. Springer, 2016, pp. 674-684.

R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,
“Towards a fast service migration in 5g,” in 2018 IEEE Conference on
Standards for Communications and Networking (CSCN). 1EEE, 2018,
pp. 1-6.

R. A. Addad, D. L. C. Dutra, T. Taleb, and H. Flinck, “Al-Based
Network-Aware Service Function Chain Migration in 5G and Beyond
Networks,” IEEE Transactions on Network and Service Management,
vol. 19, no. 1, pp. 472-484, 2022.

R. Stoyanov and M. J. Kollingbaum, “Efficient live migration of linux
containers,” in International Conference on High Performance Comput-
ing. Springer, 2018, pp. 184—193.

P. Bellavista, A. Corradi, L. Foschini, and D. Scotece, “Differentiated
service/data migration for edge services leveraging container character-
istics,” IEEE Access, vol. 7, pp. 139746-139 758, 2019.

ETSI ISG, “Mobile edge computing (mec);end to end mobility aspects,”
ETSI GR MEC 018 V1.1.1, 2017.

B. Ward, How Linux works: What every superuser should know. no
starch press, 2021.

Y. Takagawa and K. Matsubara, “Yet another container migration on
freebsd,” in AsiaBSDCon 2019 Proceedings, 2019, pp. 97-102.

A. Hathibelagal, “MEC testbed,” https://github.com/hathibelagal-dev/
MECTestbed, 2021.

S.-J. Cha, S. H. Jeon, Y. J. Jeong, J. M. Kim, S. Jung, S. Pack
et al., “Boosting edge computing performance through heterogeneous
manycore systems,” in 2018 International Conference on Information
and Communication Technology Convergence (ICTC). 1EEE, 2018,
pp. 922-924.

M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-core
key-value store,” in 2011 International Green Computing Conference
and Workshops. 1EEE, 2011, pp. 1-8.

A. Soliman, Getting Started with Memcached. Packt Publishing Ltd,
2013.

https://try-mec.etsi.org/
https://github.com/hathibelagal-dev/MECTestbed
https://github.com/hathibelagal-dev/MECTestbed

