
Received August 7, 2020, accepted August 25, 2020, date of publication August 28, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3020213

Extracting Petri Modules From Large and Legacy
Petri Net Models
REGGIE DAVIDRAJUH , (Senior Member, IEEE)
Department of Electrical Engineering and Computer Science, University of Stavanger, 4036 Stavanger, Norway

e-mail: reggie.davidrajuh@uis.no

ABSTRACT Petri nets, even though very useful for modeling of discrete event systems, suffer from some
weaknesses such as huge size, huge state space, and slow in simulation. Due to the huge state space, model
checking a Petri net is difficult. Also, due to the slowness in simulation, discrete-timed Petri nets cannot
be used for real-time applications. Thus, modular Petri nets are suggested as a way of overcoming these
difficulties. In modular Petri nets, modules are designed, developed, and run independently, and the modules
communicate with each other via inter-modular connectors. This approach is suggested for developing newer
Petri net models. However, there exists a large number of Petri net models of real-life systems, and these
legacy models are enormous and non-modular. And, these models cannot be discarded as large amounts of
time and money were spent to develop these models. This paper presents a unique algorithm for extracting
modules from large and legacy Petri net models. The algorithm extracts modules (known as ‘‘Petri modules’’)
that are well-defined for inter-modular collaboration. Also, the extraction method preserves the structural
properties. The goal of the paper is to introduce a methodology by which Petri nets can be moved to a new
level in which a modular Petri net model can be made of Petri modules. The Petri modules are independent
and can be hosted on different computers. These modules communicate via inter-modular components such
as TCP/IP sockets. Since Petri modules are compact, also run faster, thus become suitable for supervisory
control of real-time systems.

INDEX TERMS Modular Petri nets, module extraction, Petri modules, legacy Petri nets.

I. INTRODUCTION
Petri nets are a highly effective way of modelling discrete
event systems. However, Petri net models of real-life discrete
event systems are enormous. Due to the huge size, these
models lack overview, run slowly during execution, and per-
forming analysis on the model becomes difficult. Sometimes,
slicing of a Petri Net is performed so that the size of the Petri
Net is reduced so that the state space (aka reachability graph)
generated from it is smaller as well. However, the existing
slicing algorithms are ineffective for real-world discrete event
systems [1]; Also, slicing is not applicable to performance
evaluation [2]. Thus, there is a need for alternative method-
ologies for slicing that are effective for Petri net models of
real-life large discrete event systems.

This paper proposes Modular Petri Nets. In modular Petri
nets, large Petri net models are decomposed into Petri mod-
ules. These Petri modules are compact, and the state spaces

The associate editor coordinating the review of this manuscript and

approving it for publication was Shouguang Wang .

of these modules are also compact enough to be exhaustively
analyzed. Also, these modules need not run on the same
computer, as the modules can be run in parallel on different
computers. The specific goal of this paper is to introduce a
new algorithm that can extract Petri modules from existing
large and legacy Petri net models.

Legacy Petri nets are Petri net models that have been
around a long time. Legacy Petri nets are large and are com-
plex (difficult to understand). However, legacy Petri nets are
still useful as these Petri nets model real-life systems; these
models cannot be discarded as they have incurred some cost
for the development (modellers’ time and resources).

This paper consists of ten sections. Section-II presents
a short literature study on modular Petri nets. Section-III
presents a new modular Petri net that comprises of a set
of Petri modules and inter-modular connectors. The formal
definitions to Petri modules and inter-modular connectors
are given in section-IV. And, sections V to VII present
the new algorithm for extracting Petri modules from Petri
nets. An application of the algorithm, as a proof-of-concept,

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 156539

https://orcid.org/0000-0003-0013-5274
https://orcid.org/0000-0002-8998-0433

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

is given in section-VIII. And, section-IX presents an analysis
of the preservation of the structural properties. The paper
concludes with a discussion in section-X.

II. LITERATURE STUDY
Earlier studies on modular Petri nets can be classified into
four generations:

1) First-generation studies on the ease of modeling.
(E.g., [3]–[9]).

2) Second-generation studies on the ease of analysis of
Petri net with the help of modules (E.g., [10]–[14]).

3) Third-generation studies that provide tools for specific
applications (E.g., [15]–[22]).

4) Fourth-generation studies on the developing inde-
pendent modules that can function as intelligent
autonomous agents (E.g., [23]–[27]).

First-generation studies are about non-modular Petri nets.
However, these studies laid the foundation. In [3] and [4],
the authors present techniques for compressing Petri net
segments (rudimentary modules). A clear-cut interface for
Petri net segments are introduced in [5]; [6], [7] introduce
object-oriented Petri nets. In [8], the authors propose decom-
posing a large Petri net into segments based on the func-
tionality, and [9] shows how a Petri net model of a flexible
manufacturing systems can be decomposed into segments.

Second-generation studies mostly on the ease of analysis
of Petri nets, with the use of modularization or segmenting.
In [10], the authors discuss how state space analysis can be
simplified by the analyses of the segments, and [11] shows
how Petri net models of different systems can be quickly
developed by recycling modular components. Similarly, [13]
emphasizes reconfigurable modules for the use in different
models.

Third-generation studies that provide tools for specific
applications. E.g., [15] presents a tool (known as ‘‘Exhost-
PIPE’’) for modeling multi-agents, and [16] for model-
ing molecular networks. Papers [17], [18] are on modeling
national health system, and [19] is for modeling freight ter-
minals. Paper [20] is for modeling traffic signals, and [21]
used modular modeling of manufacturing systems. Finally,
[22] presents a tool known as General-purpose Petri nets
(GPenSIM).

Fourth-generation studies are the ones that treat modules
of modular Petri nets as intelligent autonomous agents. E.g.,
[26] develops a modular Petri net for detecting cyber-security
threats; in this model, the modules are autonomous and
intelligent. The studies such as [23]–[25] show that models
of autonomous manufacturing systems can be made up of
modules that are fed by networked sensors.

III. MODULAR PETRI NETS
Based on the literature study, [28] presents a new modular
Petri net, in which a Petri model consists of a set of mod-
ules (known as Petri modules) and inter-modular connectors
(known as IMCs).

FIGURE 1. A sample modular Petri net for performing the four arithmetic
operations (+, −, *, and /). The client creates the jobs and passes them to
the multiplier (performs multiplication and division tasks), and the adder
(performs addition and subtraction). Place ‘‘pCommonBuffer’’ functions
as an inter-modular connector.

For example, Fig. 1 shows a sample modular Petri net
that is composed of three Petri modules such as client,
multiplier, and adder, and only one place (‘‘pCommon-
Buffer’’) that functions as inter-modular connector. This
model is to compute the four fundamental arithmetic opera-
tions. The client is the one the generate the problem (work
load). Adder performs the addition and subtraction opera-
tions. And multiplier performs multiplication and division
tasks.

In Fig.1, only the place ‘‘pCommonBuffer’’ is drawn in
a larger size; all other elements are drawn with the same
scale. Place ‘‘pCommonBuffer’’is drawn in a large size to
indicate that it is a special place. Unlike all other elements
in Fig.1, the place ‘‘pCommonBuffer’’ is an inter-modular
connector. Without ‘‘pCommonBuffer’’, all other modules
can function independently; however, these modules cannot
communicate. Hence, ‘‘pCommonBuffer’’ is drawn larger to
show the importance of it in the communication between the
modules.

A. PETRI MODULE
A Petri module has four distinct sets of elements:

156540 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

• Input ports TIP: Input port transitions function as the
input gates of amodule.Only through these transitions
(input ports), tokens can be directed into the module.

• Output ports TOP: Output port transitions function as the
output gates of a module. Only through these tran-
sitions (output ports), tokens can be directed away
from the module.

• Local transitions TL : As the local member (internal ele-
ment) of a module, a local transition consumes tokens
from local input places and deposits tokens into local
output places. A local transition cannot have any direct
connection with the external places (places outside the
modules).

• Local places PL : As the local member of a module,
a local place feeds tokens to either local transitions or
input and output ports of the module. A local place gets
tokens from either local transitions or input and output
ports of the module. A local place cannot have any direct
connection with the external transitions.

B. INTER-MODULAR CONNECTORS
A modular Petri net model consists of zero or more
Inter-Modular Connectors (IMC). The IMCs are not modules
thus don’t possess the input and output ports. IMCs possess
IM transitions and IM places.
The algorithm proposed in this is paper for the extraction

of Petri modules from legacy models. The extracted Petri
modules comply with the definitions given in section-IV.
A concise set of formal definitions to the new modular Petri
net is given in section-IV.

IV. FORMAL DEFINITIONS
Lets us start with the formal definition for Place-Transition
Petri Nets.

A. FORMAL DEFINITION OF P/T PETRI NET
Definition 1 (Place-Transition Petri Net): (P/T Petri Net, for
short) is defined as a four-tuple [29]:

PTN = (P,T ,A,M0),

where,
• Places: P is a finite set of places, P = {p1, p2, . . . , pnp}.
• Transitions: T is a finite set of transitions, T =

{t1, t2, . . . , tnt }. P ∩ T = ∅.
• Arcs: A is the set of arcs (from places to transitions and
from transitions to places). A ⊆ (P× T) ∪ (T × P).
The default arc weight W of aij (aij ∈ A, an arc going
from pi to tj or from ti to pj) is one, unless noted other-
wise.

• Marking: m is the row vector of markings (tokens) on
the set of places.

M = [M (p1),M (p2), . . . ,M (pm)] ∈ N np ,

M0 is the initial marking. Due to the markings, a PTN =
(P,T ,A,M0) is also called amarked P/T Petri Net. �

B. FORMAL DEFINITION OF PETRI MODULE
Definition 2 (Petri Module): is defined as a six-tuple [28]:

8 = (PL8,TIP8,TL8,TOP8,A8,M80),

where,

• Input Ports of the module: TIP8 ⊆ T .
• Local transitions of the module: TL8 ⊆ T .
• Output Ports of the module: TOP8 ⊆ T .
• TIP8, TL8, and TOP8, are all mutually exclusive:

TIP8 ∩ TL8 = TL8 ∩ TOP8 = TOP8 ∩ TIP8 = ∅.

• The transitions of the module: T8 = TIP8∪TL8∪TOP8.
• The local places of the module: PL8 ⊆ P. Since a
module has only local places, P8 ≡ PL8.

• ∀p ∈ PL8,

- - •p ∈ (T8 ∪ ∅). (input transitions of local places are
either the transitions of the module or none)

- - p• ∈ (T8 ∪ ∅). (output transitions of local places
are either the transitions of the module or none)
This means, local places cannot have direct connec-
tions with external transitions.

• ∀t ∈ TL8,

- - •t ∈ (PL8∪∅). (input places of local transitions are
either the local places or none (cold start))

- - t• ∈ (PL8 ∪ ∅). (output places of local transitions
either the local places or none (sink))

• ∀t ∈ TIP8

- - •t ∈ (PL8 ∪ PIM ∪ ∅). (input places of input
ports can be local places or places in inter-modular
connectors or can be even an empty set)

- - t• ∈ (PL8 ∪ ∅). (output places of input ports can
only be local places, or empty set)

• ∀t ∈ TOP8

- - •t ∈ (PL8∪∅). (input places of output ports can be
local places or an empty set)

- - t• ∈ (PL8 ∪ PIM ∪ ∅). (output places of output
ports can be local places or places in inter-modular
connectors or empty set.

• A8 ⊆ (PL ×T8)∪ (T8×PL): where aij ∈ A8 is known
as the internal arcs of the module.

• M80 = [M (pL)] is the initial markings in the local
places. �

C. FORMAL DEFINITION OF INTER-MODULAR
CONNECTOR
Definition 3. (Inter-Modular Connector (IMC): is defined as
a four-tuple [28]:

9 = (P9 ,T9 ,A9 ,M90)

where,

• P9 ⊆ P: P9 is the set of places in the IMC (known as
the IM-places). ∀p ∈ P9 ,

VOLUME 8, 2020 156541

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

- - •p ∈ (TOP∪T9 ∪∅). (input transitions of IM places
are either the output ports of modules, IM transi-
tions of this IMC, or none)

- - p• ∈ (TIP∪T9∪∅). (output transitions of IM places
are either the input ports of modules, IM transitions
of this IMC, or none)
This means, IM places cannot have direct connec-
tions with local transitions, or IM transitions of
other IMCs.

• ∀p ∈ P9 , ∀i p /∈ P8i (an IM-place cannot be a local
place of any Petri module).

• T9 ⊆ T : T9 is the transitions of the IMC (known as the
IM-transitions). ∀t ∈ T8,
- - •t ∈ (P9 ∪ ∅). (input places of IM-transitions

are either the IM-places of this IMC, or none (cold
start))

- - t• ∈ (P9 ∪ ∅). (output places of IM-transitions
either the IM-places of this IMC, or none (sink))

• ∀t ∈ T9 , ∀i t /∈ T8i (an IM-transition cannot be a
transition of any Petri module).

• A9 ⊆ (P9 × (T9 ∪ TIP)) ∪ ((T9 ∪ TOP)× P9): where
aij ∈ A9 is known as the connecting arcs of the IMC.

• M90 = [M (p9)] is the initial markings in the IM-places.
�

D. FORMAL DEFINITION OF MODULAR PETRI NET
Definition 4 (Modular Petri Net): is defined as a
two-tuple [28]:

MPN = (M, C)

where,
• M =

∑m
i=0 8i (zero or more Petri Modules)

• C =
∑n

j=0 9j (zero or more Inter-Modular Connectors)
�

V. PETRI MODULES: RULES OF INTERFACING
This section focuses on the module interface (the borders or
the input and output ports). For extracting a module from a
large Petri net, we can summarize the border rules as follows:
• Inputs to a module: all the inputs to a module can only
pass through the input ports of the module. An external
element (outsider of a module) is not allowed to input
directly to a local member of a module or an output port.

• Outputs from a module: all the outputs from a module
can only pass through the output ports of the module.
It is not allowed for a local member or an input port to
directly output to an external element.

• Internal arcs (connections) of a module: As members of
a module, a module consists of three types of transitions
(input port, local transition, and output port), and local
places. It is allowed that a transition that is a member of
a module can be input and out to any local places, and
vice versa.

With the rules given above, an algorithm is formulated for
extracting the modules and is shown in Fig.2.

FIGURE 2. The algorithm for extracting Petri modules from a large Petri
net: ‘‘FindClusters’’ detects clusters in the model and ‘‘ProcessCluster’’
(manually done by the modeller) evaluates and pre-processes the clusters
into rudimentary modules. ‘‘ProcessModules’’ completes the module
formation. During Pass-1, ‘‘ProcessModules’’ fixes the violations in output
connections of the members of a module. And during Pass-2, input
connections of the members of the module are fixed.

VI. EXTENDED PEER-PRESSURE ALGORITHM
In the extraction algorithm given in the next section, there
is a function called ‘‘FindClusters’’ on Line-02 (see Fig.2).
This function is to detect the pivotal elements of a large
Petri net automatically. This function uses ‘‘the extended
peer-pressure algorithm’’ that is presented in the author’s ear-
lier work [30]. Hence, in this section, a concise introduction
is given to the extended peer-pressure algorithm; for more
details, the interested reader is referred to [30].

The extended peer-pressure algorithm is a clustering
algorithm that is for finding clusters in a large network.
Using this extended peer-pressure algorithm, the user can
choose the number of resulting clusters by fine-tuning a
parameter known as the ‘‘self-loop strength’’. The extended
peer-pressure algorithm not only dissects the network into the

156542 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

expected number of clusters but also the pivotal elements (the
important elements) of each cluster will be revealed. In other
words, among the internal elements of each cluster, will be
one or more pivotal elements (the main elements) and the
others will be the secondary elements. Hence, in the extrac-
tion algorithm presented in the next section, the function
‘‘FindClusters’’ uses the extended peer-pressure algorithm
for automatic detection of the pivotal elements in each cluster.

VII. THE ALGORITHM FOR MODULE EXTRACTION
The algorithm for module extraction (see Fig.2) is a two-pass
algorithm:
• In Pass-1: a rudimentary module is formed, by checking
and fixing the outputs of all the members of the module.

• In Pass-2: all the inputs of the members of the module
are checked and fixed. For this purpose, the transpose of
the Petri Net is used.

In detail, the algorithm consists of the following steps:
• (Line 02) Finding the clusters: The extended
peer-pressure algorithm is for automatically detecting
the main (pivotal) elements of large Petri net; after find-
ing the pivotal elements, clusters (primitive modules)
can be extracted surrounding the pivotal elements. The
author’s earlier work [30] describes automatic detection
of the pivotal elements, which is the basis for the func-
tion ‘‘FindClusters’’ (line-02).

• Lines 05-09: Processing the clusters: Processing the
clusters is amanual process as it has to be done by the
modeller. The modeller performs three specific tasks
(again, manually):
1) Judging whether a cluster is suitable to become a

module, due to its small size.
2) Making sure that an active cycle of operations does

not accidentally fall into a set of modules.
3) Selecting (hand-picking) the input ports and output

ports of the modules.
Task-1: Judging whether a cluster is suitable to become a
module: Some of the clusters (again, primitive modules)
found by ‘‘FindClusters’’ may possess pivotal elements
numbering less than or equal to three. A modeller may
appraise that these smaller clusters are not suitable for
functioning as modules (e.g., a large model decom-
posed into too many smaller modules will cause a lot
of inter-modular connections). In this case, the elements
in these smaller clusters can become IMCs for other
modules, or become part of other clusters.
Task-2: Making sure that an active cycle of operations
does not accidentally fall into a set of modules: An active
cycle (where a cycle involving a number of elements are
repeatedly executed) can be broken into several mod-
ules during the modularization, due to the inexperience
or oversight of the modeller. Decomposing an active
cycle into different modules can cause unnecessarily
high inter-modular communication, and high simulation
time. Hence, the modeller is supposed to analyze and

understand the cycles in the large Petri net, before start-
ing to decompose it. In other words, it could be a good
idea to perform a top-down approach. Starting with the
large Petri net, analyze it for the cycles, and then start
modularizing, while making sure that the active cycles
are not dissected and distributed into different modules.
Task-3: Selecting (hand-picking) the input ports and
output ports of the modules: Once a cluster is selected
for formation of a module, then both the input ports and
the output ports are also determined by themodeller. The
following rule of thumb can be used during the selection.
The set of transitions that accepts most of the inputs into
the cluster becomes the input ports. Similarly, a set of
transitions that outwardly connects the cluster to the rest
of the model becomes the output ports.
After processing (the above mentioned three tasks), the
clusters become rudimentary modules, possessing the
input ports, the output ports, and the internal elements
(local transitions and local places). However, the input
connections and output connections of the members of
the module may violate the rules of interfacing dis-
cussed in section-V. These violations are fixed in the two
passes.

• (Lines 13-16) Pass-1: the function ‘‘ProcessModules’’
uses an modified ‘‘Depth-first-search’’ traversal. The
traversal starts with the input ports, one at a time. While
traversing, from an input port or from a local member,
if there is an output to an outside node, then this is
considered as a violation, and it is fixed. When the
traversal hits an output port, it will not continue with
outputs to any outside node. However, it will continue if
an output port has an output to a local place. The function
terminates after checking and fixing all the outputs of all
the members of the module (the input ports, the output
ports, and the internal elements such as local transitions
and local places).

• (Lines 19-27) Pass-2: In Pass-1, all the outputs of the
members of the module are checked and fixed. Pass-2
is for checking and fixing the inputs of the members,
using the same function ‘‘ProcessModules’’. However,
to check the inputs, the Petri net is transposed, and the
transposed Petri net is input to the function. Also, the
input ports and the output ports are exchanged. This
means the output ports are fed into the function ‘‘Pro-
cessModules’’ as input ports, and similarly input ports
as output ports.
After pass-2, all the members of the module is thor-
oughly checked, verifyingwhether their input and output
connections obey the rules of interfacing.

• (Line 30) Completion: Once the Petri net is transposed
back to its normal form, there will be a number of
Petri modules, clearly identified and encapsulated by the
input and output ports. All the transitions and places that
reside outside of these modules will become the IMC.

During the two-passes, the algorithm uses fixes for correcting
the connections (arcs) that violate the rules of interfacing.

VOLUME 8, 2020 156543

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 3. Violations in the output connections from an input port.

The process of fixing is explained in the following two sub-
sections, section-VII-B and VII-C.

A. RUNNING-TIME OF THE ALGORITHM
As shown in Fig.2, the algorithm mainly consists of three
functions:

• FindCluster: it is stated [30] that the algorithm takes
O(r · V 3) time, where r is the number of iterations and
V is the number of elements (places and transitions) in
the Petri net.

• ProcessClusters: this function cannot be executed auto-
matically, as this function needs the experience and
insight of the modeller. The steps described in this func-
tion are to be followed by a modeller, e.g., hand-picking
input and output ports, moving elements in and out of
clusters.

• ProcessModules (in Pass-1 and Pass-2): ProcessMod-
ules is a modified depth-first-search (DFS) algorithm.
(the running time of DFS is O(V + E), where V and
E are the numbers of vertices and edges, respectively).
The DFS will be repeated a number of times, once for
each input and output port. Assuming the total number
of input and output ports |TI + TO| � V , the running
time of the function ProcessModules becomesO(V+E).
Since Petri nets are generally sparsely connected [31],
V ≈ E , we can conclude that the running time of the
function ProcessModules in terms of V is O(V).

Hence, neglecting the function ‘‘ProcessClusters’’, the run-
ning time of the algorithm for extraction of modules become
O(r · V 3)+O(V) = O(r · V 3).

B. FIXING VIOLATIONS IN PASS-1
In Pass-1, if an output arc from an input port or a local
member hits a node that is outside the module, it is considered
as a violation. Fig.3(a) shows such a situation. When we start
the traversal with an input port, there may be an arc from the
input port to an outside node. This is not acceptable, as input
ports (and local transitions) are only supposed to feed tokens
to local places inside a module. In this case, this violation
can be fixed by introducing a‘‘dummy’’ place-transition pair,

as shown in Fig.3(b). The dummy transition tD now acts as
an output port too.

A similar situation is described in Fig.4(a). In this case,
a local transition tL has an output arc to an outside place.
This can also be correctedwith a dummy place-transition pair,
as shown in Fig.4(b). Also, there could be another possibility
as shown in Fig.4(c); in this case, the local transition tL
can become an output port tO, eliminating the necessity of
injecting a dummy place-transition.

Fig.5(a) looks into the problem of a local place hav-
ing an output to a transition that is residing outside the
module. In this case, the solution is to inject a dummy
transition-place pair; the dummy transition tD becomes an
output port whereas the dummy place pD is placed outside
the module meaning it becomes a part of an IMC.

In figures Fig.3-7, 10-14, 17 and 19, the transitions are
drawn in different sizes and shapes to indicate that there are
different types of transitions. Firstly, the extraction algorithm
creates two types of transitions:

1) The process transitions that are part of the original Petri
net.

2) The injected ‘‘dummy’’ transitions to fix the violations.
Naturally, to differentiate these two types, these transitions
are drawn differently (dummy transitions are represented by
thinner rectangles, whereas process transitions by thicker
rectangles). Secondly, the Petri modules have input and out-
put ports as well as internal transitions. The transitions that
are input and output ports are represented by rectangles with
thicker (bolder) lines and the internal transitions with thinner
lines.

C. FIXING VIOLATIONS IN PASS-2
The previous section-VII-B looked into the output arcs of the
members of a module in Pass-1. In Pass-2, the input arcs
of the members are checked. Fig.6 and Fig.7 show the three
types of violations that can happen, and the fixings are also
shown.

Fig.6(a) shows an output port receiving an input from an
outside place. A dummy transition-place pair can fix this
violation as shown in 6(b); the dummy transition tD becomes
an input port too. In Fig.6(c), a local transition receives an

156544 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 4. Violations in the output connections from a local transition.

FIGURE 5. Violations in the input connections from a local place.

input from an outside place, and the solution with a dummy
transition-place pair is shown in 6(d). Another solution is to
make the local transition as an input port, as shown in 6(e).
Fig.7 shows the final fixing. In this case, a local place

violates the rules by receiving direct inputs from an outside
transition (Fig.7(a)). The solution is shown in 7(b). Here
again, the dummy place pD becomes an IMC, whereas the
dummy transition tD becomes an input port.

VIII. APPLICATION OF THE MODULE EXTRACTION
ALGORITHM
A simple Flexible Manufacturing System (FMS) shown in
Fig.8 is for making only one type of product. The FMS

example is taken from [27] and [32]. The operational spec-
ifications of the FMS are as follows:
• The input raw material of type 1 arrives on the conveyor
belt C1. Robot R1 picks up the rawmaterial of type 1 and
places into the machine M1. Similarly, robot R2 picks
up the raw material of type 2 from conveyor belt C2 and
places it into the machine M2.

• Machine M1 makes the part P1, and M2 makes the part
P2. When the parts are made by the machines M1 and
M2, these parts are placed on the assembly station (AS)
by the robots R1 and R2, respectively.

• Assembly station AS is used to join the two parts P1 and
P2. Robot R2 does the part assembly at AS.

VOLUME 8, 2020 156545

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 6. Violations in the input connections of members of a module.

• Robot R3 picks the product from the assembly station
and places it on the painting station PS.

• Robot R4 performs the surface polishing and painting.
• Once the painting is completed, robot R3 picks up the
completed product from the painting station PS and
packs it into the cartridge OB.

A. THE PETRI NET MODEL
In the Petri net model shown in Fig.9, the following activities
represent the FMS operations (’t’ stands for transition):

• tC1: conveyor belt C1 brings the input material of
type 1 into the FMS.

• tC2: conveyor belt C2 brings the input material of
type 2 into the FMS.

• tC1M1: robot R1moves rawmaterial from conveyor belt
C1 and places it on M1.

• tC2M2: robot R2moves rawmaterial from conveyor belt
C2 and places it on M2.

• tM1: machining of part 1 at machine M1.
• tM2: machining of part 2 at machine M2.
• tM1AS: robot R1moves part 1 fromM1 to the Assembly
Station AS.

• tM2AS: robot R2moves part 2 fromM2 to the Assembly
Station AS.

• tAS: robot R2 assembles parts P1 and P2 together at the
assembly station AS.

FIGURE 7. Violations in input connections of local place.

• tAP: robot R3 picks the product from the assembly
station and places on the painting station PS.

• tPS: robot R4 performs surface polishing and painting
on the product.

• tPCK: when the painting job is finished, R3 packs the
product into the output cartridge.

The Petri net model of the FMS is shown in Fig.9 is obtained
by connecting the activities listed above, one after the other.
In the Petri net model, the input buffers IB1 and IB2 are
represented by the places pIB1 and pIB2, and the output
buffer by the place pOB. It is an assumption that the three
places have no capacity restraints.

In Fig.9, transitions tM1, tM2, tAS, and tPS are shown in
shaded color, as these transitions represent the pivotal ele-
ments (the most important machines) of the Petri net model.
Also, the numbers written inside the transitions are the firing
times (time took by the relevant activity), given in some time
units.

B. STATE SPACE OF THE PETRI NET MODEL
In Fig.9, the initial state is assumed as one token each
in the following places. Input places pIB1, pIB2, pR1 to
pR4 (showing the availability of the robots R1 to R4),
pC1, pC2 (showing the availability of the conveyor belts),
and po1AS, po2AS. The state space of the FMS is shown
in Fig.10.

It is important to note that there are 45 states in the state
space shown in Fig.10. The state space shown in Fig.10
is incomprehensible due to overlapping of the 45 states.
Out of the 45 states, only 29 are unique states (the 16
duplicate states are highlighted in yellow color). However,
this state space is only for the initial markings of one
token each in pIB1 and pIB2. If the initial markings on
the pIB1 and pIB2 are increased (while keeping the same
one initial token in pR1 to pR4, pC1, pC2, and po1AS,
po2AS) then the number states in the state space increases
linearly.

Table 1 presents the number of states in the state space
when the initial token in pIB1 and pIB2 are increased.

Table 1 shows the enormous size of the state space (e.g.,
184 states when there are just two tokens each in the input
buffers pIB1 and pIB2).

156546 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 8. A simple Flexible Manufacturing System (FMS); adapted from [27], [32].

FIGURE 9. The Petri Net model of a flexible manufacturing system.

C. IDENTIFYING THE PRIMITIVE MODULES
Let us apply the extended peer-pressure algorithm to detect
the clusters (primitive modules) in the Petri net model shown

in Fig.9. The following nine clusters were detected by the
function ‘‘FindCluster’’ which is based on the extended
peer-pressure algorithm (see section-VI).:

VOLUME 8, 2020 156547

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 10. The state space of the flexible manufacturing system. The state space is incomprehensible due to overlapping of the 45 states.

TABLE 1. Number of states in the state space versus number of initial
token in the input buffers.

* Cluster-1: tAS, tPCK, tPS
* Cluster-2: tC1,tC1M1,tM1,pC1,pIB1,pOC1,piM1,poM1
* Cluster-3: tC2,tC2M2,tM2,pC2,pIB2,pOC2,piM2,poM2
* Cluster-4: pOB
* Cluster-5: pR2
* Cluster-6: pR3, pR4, piCK
* Cluster-7: tM1AS, pR1, pi1AS, po1AS
* Cluster-8: tM2AS, pi2AS, po2AS
* Cluster-9: tAP, piPS, poAS
Some of these clusters contains only places (clusters 4-6).

Thus, these places become IMCs. The other five clusters
are destined to become modules. Table 2 shows the clusters
and the hand-picked input and output ports of the modules.
Selecting (hand-picking) the input ports and output ports of
a module is described as task-3 of the modeller during the
execution of the function ‘‘ProcessClusters’’ (in section-VII).
The following rule of thumb can be used during the selection:
The set of transitions that accepts most of the inputs into the
cluster becomes the input ports; a set of transitions that passes

FIGURE 11. Conveyor Belt-1: the segment.

FIGURE 12. Conveyor Belt-1: the module.

most of the outputs of the cluster to the rest of the system
becomes the output ports.

The inter-modular components are the elements that do not
fall into any of the five modules. The IMCs are the places
pC1, pC2, poC1, poC2, pR2, pi1AS, pi2AS, po1AS, po2AS,
pR3, poAS, and pOB, and the transition tAS.

Let us go through these five modules in the following
subsections.

D. INPUT MODULES
Two input modules deal with the arrival of input (raw) mate-
rial into the production line and transporting the material on
the conveyor belts. The two input modules are ‘‘Conveyor
Belt-1’’ and ‘‘Conveyor Belt-2’’. Since these twomodules are
similar, let us focus on ‘‘Conveyor Belt-1’’.

156548 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

TABLE 2. The clusters for modularization.

FIGURE 13. The state space of the module ‘‘Conveyor Belt-1’’. The state
space consists of five unique states.

Fig.11 shows the segment of Petri net that represents
the arrival of input material-1. Fig.12 shows the mod-
ular version. pIB1 that represents the continuous arrival
input material is kept outside the module. In the seg-
ment (Fig.11), pC1 and pIB1 are the two inputs to tC1.
In the module (Fig.12), since tC1 functions as an output
port, it cannot receive any input from the external places.
Thus, in Pass-2, a dummy transition-place pairs (tD1IP1 &
pD1IP1 and tD2IP1 & pD2IP1) are introduced so that pC1
and pIB1 can still input tokens into tC1 via tD1IP1 and
tD2IP1.

Fig.13 shows the state space of the module ‘‘Conveyor
Belt-1’’, for the initial tokens of one token each in pC1 and
pIB1. The state space of this module consists of five unique
states.

E. MACHINING MODULES
There are two machining modules,‘‘Machining-1’’ and
‘‘Machining-2’’. Since these two modules are similar too, let
us focus on the module ‘‘Machining-1’’ only.

Fig.14 shows the segment in which tC1M1 outputs to an
outside element pC1. During the Pass-1, this violation is
fixed with a dummy place-transition pair pD2M1-tD2M1.
Also, the output port tM1AS receives tokens from the outside
place po1AS, which will be fixed in Pass-2. Fig.15 shows the
resulting module.

FIGURE 14. Machining-1: the segment.

FIGURE 15. Machining-1: the module.

Fig.16 shows the state space of the module ‘‘Machining-
1’’, for the initial tokens of one token each in pC1 and pIB1.
The state space of this module consists of 12 unique states
(and seven duplicate states).

F. FINISHING AND OUTPUT MODULE
Fig.17 shows the segment ‘‘Finishing-1’’. The connections
of the input port tAP, the local members pPS, tPS, pR4, and
pPCK, and the output port tPCK do not cause any violation.
Thus, during the two passes, there was no need to fix any
connections. Fig.18 shows the resulting module.

Fig.19 shows the state space of the module ‘‘Finishing-1’’,
for the initial tokens of one token each in poAS and pR4. The
state space of this module consists of four unique states.

G. INTER-MODULAR CONNECTOR
All those elements that are not a member of any modules
become IMC. The following places that function as buffers
between the modules are the IMC: pIB1, pIB2, pC1, pC2,
poC1, poC2, pR2, pi1AS, pi2AS, po1AS, po2AS, pR3, poAS,
and pOB. Note that pIB1, pIB2, and pOB in a way special
IMCs, as these are the sources and the sink of themodel. Also,
tAS becomes the only IMC transition.

VOLUME 8, 2020 156549

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 16. The state space of the module ‘‘Machining-1’’. The state space consists of 12 unique states.

FIGURE 17. Finishing: the segment.

H. THE COMPLETE MODULAR PETRI NET
Fig.20 shows the modular Petri net that is composed of the
five modules.

IX. ANALYZING THE FIXES
The algorithm for module extraction applies fixes in the for-
mation of modules; in Pass-1 and Pass-2, the fixes are injec-
tion of dummy place-transition pairs. In this section, we study
the impact of the fixes. By studying the structural prop-
erties place-invariant and transition-invariant, this section
shows that the injection of dummy places do not cause any
changes. There are some algorithms available for computing
place-invariants and transition-invariants, e.g., [33], [34].

At first, we start with a general analysis of the impact of
the dummy elements.

A. GENERAL ANALYSIS OF THE FIXES
1) DUMMY PLACES
Dummy places are virtual places as these do not represent
any passive elements in the real-life system (e.g., pD does not

FIGURE 18. Finishing: the module.

FIGURE 19. The State Space of the module ‘‘Finishing-1’’. The state space
consists of four unique states.

represent a real buffer). Thus, because of the virtual existence,
the dummy places do not malfunction anytime.

In a fix, [real transition tX→ dummy place pD→ dummy
transition tD], whenever pD receive a token from tX, the
token will be immediately snatched away by tD. Similarly,

156550 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 20. Modular Petri Net model of FMS.

in [dummy transition tD→ dummy place pD→ real transi-
tion tX], whenever pD receive a token from tD, the token will
be immediately snatched away by tX. Thus, in both cases,
pD holds the token only momentarily. Therefore, in both
cases, it can be assumed that always, m(pD) = 0.

2) DUMMY TRANSITIONS
Like dummy places, dummy transitions are also virtual as
these do not represent any active elements in the real-life
system (e.g., tD does not represent a real machine). Thus,
because of the virtual existence, the dummy transitions do
not malfunction anytime. Also, a dummy transition tD fire
immediately.

For untimed Petri net, tD is a primitive transition that do not
possess a firing time (in other words, ft(tD) = 0). For timed
Petri net, all transition must have non-zero firing time (at
least, in GPenSIM environment).While ti ∈ T takes non-zero

FIGURE 21. Fix-1: Original place pL and a dummy transition-place pair.

firing time, the dummy transitions tDi ∈ TD are suppose to
fire immediately. Hence, firing time of tDi is assigned the
minimum time interval that is possible, ft(tD) = 1T . 1T
is the absolute minimum time in GPenSIM realization that is

VOLUME 8, 2020 156551

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 22. Fix-2: Original transition tX and a dummy place-transition
pair.

not zero (known as ‘‘DELTA_TIME’’ in GPenSIM reference
manual [35]. Since the firing time of tD is negligible when
the activities in real-systems are considered, even for timed
systems, it can be safely assumed that ft(tD) = 0.
Fig.3-7 show six cases of fixes. All these fixes can be

grouped into three types:

1) Input or output connection of a local place is fixed,
as shown in Fig.21. As shown in Fig.21(a), [original
place pL → dummy transition tD → dummy place
pD] is equivalent the original place pL. This is because,
pD falls outside the module and becomes an IMC (see
also Fig.5(b)), thus will not appear in the state space
of the module. tD, as it always fires immediately, will
make the leaves of the state space. Similarly, [dummy
place pD→ dummy transition tD→ original place pL]
(Fig.21(b)) is equivalent the original place pL. In this
case, pD again falls outside the modules as an IMC that
becomes the input to the module (see also Fig.7(b)).

2) Input or output connection of a transition is fixed,
as shown in Fig.22. Again, by the proof shown in
[36] (‘‘fusion of series transitions’’), [dummy transi-
tion tD + dummy place pD + original transition tX]
(Fig.22(a)) is equivalent the original transition tX; tX
can be a local transition tL or an output port tO.
Similarly, [original transition tX→ dummy place pD
→ dummy transition tD] (Fig.22(b)) is equivalent the
original transition tX; in this case, tX can be a local
transition tL or an input port tI.

3) A local transition is moved to either an input port or an
output port. In this case, there is no change in structural
or behavioral properties.

B. P-INVARIANTS
Consider the Resource Allocation System (RAS) shown in
Fig.23; this example is taken from [10]. Description of the
RAS:

• The RAS has three common resources such as Rx, Ry,
and Rz.

• The resources Rx, Ry, and Rz have three, two, and one
instances (copies), respectively. The number of instances
is shown as the initial tokens in Fig.23.

• The RAS is made up of two cyclic processes A and B.
• Process A possesses four tasks, A1 to A4. Process B
owns five tasks, B1 to B5.

• A and B use the three resources during different tasks,
as shown in Fig.23. For example, task A1 needs two
instances of Rx, whereas task B1 needs one instance
each of Rx and Rz. Fig.23 also shows that the tasks
release the resources after usage.

• Though processes A and B can run in parallel, simul-
taneous execution of the tasks are not possible since
the tasks of A and B requires more than the available
resources instances. For example, A1 and B2 cannot run
in parallel. As A1 and B2 each need two instances of Rx
(A1 directly takes two instances of Rx, whereas B2 takes
one instance directly, and one from B1). However, there
are only three instances of Rx.

The RAS has the following p-invariants:
1) PIpA41 is for preserving the initial tokens in pA41.
2) PIpB51 is for preserving the initial tokens in pB51.
3) PIRX is for preserving the initial tokens in RX .
4) PIRY is for preserving the initial tokens in RY .
5) PIRZ is for preserving the initial tokens in RZ .
The p-invariants of RAS model:

PIpA41 : m(pA12)+ m(pA23)+ m(pA34)+ m(pA41) = 2

PIpB51 : m(pB12)+ m(pB23)+ m(pB34)+ m(pB45)

+m(pB51) = 3

PIRX : m(pRX)+ m(pB12)+ 2× (m(pA12)+ m(pA23)

+ m(pA34)+ m(pB23)+m(pB34)+ m(pB45)) = 3.

PIRY : m(pRY)+ m(pA23)+m(pB45)+2× m(pA34)=2.

PIRZ : m(pRZ)+ m(pB12)+ m(pB23) = 1.

Let us remodel the RAS problem as a modular Petri net.
The modular RAS is shown in Fig.24.
Let us study the p-invariants of the two modules A and B.

While performing the invariant analysis, we need to include
the complete instances of the resources (in other words, the
initial tokens) in the drivers as shown in Fig.24. The invariants
of the module-A:

PIpA41 : m(pA12)+ m(pA23)+ m(pA34)+ m(pA41) = 2

PIRXA : m(pRXA)+ 2× (m(pA12)+ m(pA23)

+m(pA34)) = n1
PIRYA : m(pRYA)+ m(pD1)+ m(pA23)+ m(pD2)

+2× m(pA34) = n2.

The invariants of the module-B:

PIpB51 : m(pB12)+ m(pB23)+ m(pB34)+ m(pB45)

+m(pB51) = 3

PIRXB : m(pRXB)+ m(pD3)+ m(pB12)+ 2× (m(pB23)

+m(pB34)+ m(pB45)) = n3
PIRYB : m(pRYB)+ m(pD4)+ m(pB45) = n4.

PIRZ : m(pRZ)+ m(pB12)+ m(pB23) = 1.

156552 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 23. Resource Allocation System (RAS) [10].

By setting all m(pDn) = 0, we can see that,

• PIRX = PIRXA +PIRXB , as n1+n3 = 3 (the initial tokens
in RX).

• PIRY = PIRYA +PIRYB , as n2+n4 = 2 (the initial tokens
in RY),

Thus, the presence of the dummy places do not disturb the
p-invariants.

C. T-INVARIANTS
To study the impact of fixing on t-invariants, let us take a
simple Petri net that is shown in Fig.25. In this Petri net, there
is one t-invariant: {t1, t2, t3}. If we put a token into p4, then
the firings of t1, t2, and t3, will bring back the same state we
started (that is one token in p4). Hence, t-invariant {t1, t2, t3}
is justified.

Fig.26 shows one way of modularizing the Petri net in
Fig.25. In the modular Petri net, transitions t1 and t3, and
places p2 and p4 become members of module-A. Module-A
is free from any fixing as all the connections of its members
(t1, t3, p2, p4) do not violate the rules of interfacing.

The rest of the places in Fig.25, p1 and p2, become the
members of module-B. Since p1 cannot have direct input
from outside transition, and p3 output to outside transition,
these two connections are fixed. The fixing makes use of the
dummy transitions tD1 and tD2 as the input and output port
of module-B. Also, due to the fixing, dummy places pD1 and
pD2 become IMCs.

Studying the modular Petri net reveals that the modular
model posses a t-invariant too, which is {t1, t2, t3, tD1, tD2}.
For example, if we put one token in p4, and let the transitions

t1, tD1, t2, tD2, and t3 to fire in that order, we then will
go back to the original state of one token in p4. Since it is
already shown in subsection-IX-A ‘‘General analysis of the
Fixes’’ that tDi can be neglected in comparison with the real
transitions, the t-invariant of the modular Petri net becomes
the same as its monolithic (non-modular) version.

X. DISCUSSION
In the example shown above, the non-modular (monolithic)
Petri net posses a t-invariant consisting of the transitions t1,
t2, and t3. The t-invariant could be a cycle that might fre-
quently occur. In the modular version, the cycle is broken into
two groups of transitions, and one group (t1 and t3) become
members of one module (module-A) and the other group (t2)
a member of the other module (module-B). Technically seen,
these two versions, monolithic and modular, are the same and
provide the results (e.g., same t-invariants as shown above).
However, there is a big difference between these two versions.

If the t-invariant (consisting of the transitions t1, t2, and t3)
represent a frequently occurring cycle of a real system, then
splitting the cycle into two or more modules is a bad idea.
This is because of the cycle that span several modules will
pass tokens from module to module that may incur additional
communication delays, assuming that the modules are hosted
on different computers.

In this paper, a small example (the flexible manufacturing
systems, shown in Fig.8) is taken as the case study as we
are trying to explain how the definitions for the modular
Petri net and the extraction algorithm actually work in prac-
tice. The case study should help the readers to visualize the
mechanisms behind the algorithm in action. The case study

VOLUME 8, 2020 156553

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 24. Modular Petri net model of RAS.

is purposely chosen to be small so that it will not result in
too many modules. Also, due to the smaller size, it will be
easy to focus on what we are supposed to focus, namely, the
extraction algorithm. Even though the problem (the Petri net
model shown in Fig.9) is small, the resulting state space is
large (shown in Fig.8). However, for a Petri net model of a
real-life discrete-event system, the resulting state space will
be huge.

In comparison to the state space of the whole model,
the state spaces of the modules are compact (Fig.13, 16,
and 19). The modules are smaller in size in terms
of the number of places, transitions, and arcs. Hence,
the execution time for individual modules also becomes
small compared to the execution time of the whole
model.
Limitations of the Proposed Methodology: This paper does

not present the experimental evaluation of the extraction
algorithm. This because the algorithm can not be fully imple-
mented as an executable software as part of the algorithm
(lines 05-09, the function ‘‘ProcessCluster’’) has to be exe-
cuted manually by the modeller. The rest of the algorithm
(functions ‘‘FindCluster’’ and the two passes involving the
function ‘‘ProcessModules’’) are implemented as software
using the GPenSIM tool [37] on the MATLAB platform.

Since the algorithm, on the whole, cannot fully be imple-
mented as an executable software, experimental evaluation is
not possible. However, the running time of the parts of the
algorithm that can be implemented as an executable software
is presented in section-VII-A.

There is no guarantee that the extraction algorithm pre-
sented in this paper will always work. The algorithm will not
work if a Petri net model is ‘‘highly connected’’, where most
the elements (places and transitions) are connected with each
other, and the connections are crisscrossing the model. In this
case, modularizing the Petri net with the algorithm presented
in this paper will not be possible. However, in reality, Petri
nets are streamlined meaning a Petri net can be partitioned
into segments due to the different functionalities; in this case,
these segments can be extracted as Petri modules using the
algorithm provided in this paper.

In engineering, we start with the developing subsystems
and finally assemble these subsystems together to create the
overall model [38]–[40]. However, the focus of this paper
is entirely different. In this paper, as the title clearly states,
we start with existing Petri net models (legacy Petri nets);
this paper is about how to decompose large and legacy Petri
nets into modules so that modular Petri net benefits can be
achieved.

156554 VOLUME 8, 2020

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

FIGURE 25. T-invariants of a Petri net.

FIGURE 26. T-invariants of a modular Petri net.

Finally, the algorithm is semi-automated meaning the algo-
rithm and the resulting processes heavily dependent on the
modeller. The modeller determines the grain size of the
extracted model. It is also clearly stated that in the paper
that the inexperience or oversight of the modeller can cause
problems. For example, an active cycle can be accidentally
broken into different modules causing unnecessary delays.
The example that is shown in Fig. 25 and 26 is to prove this
point.

XI. CONCLUSION
Ever since its inception in 1962, Petri Nets have been used
for modeling of discrete event systems. Petri net is still an
active research area; research papers on newer applications
(e.g., [41], [42]), and the analysis (e.g., [43]–[45]) continue
to appear. However, its huge size, and its state-space, and the
slow execution (and simulation) prevents its use for modern
large real-life applications, e.g., Industry 4.0. The research
on Petri nets needs to upgrade Petri nets into a higher level,

in which Petri net models (modules) become smaller and
faster, distributed and communicating agents.

This paper presents an algorithm by which large and
legacy Petri net models can be decomposed into Petri
modules. These modules are smaller thus runs (can be
executed) faster. Also, these modules can be run on differ-
ent computers, and the communication between the mod-
ules happen via well-defined input and output ports, passing
messages (tokens) between them (e.g., in the form of TCP/IP
packets).

REFERENCES
[1] R. Davidrajuh, ‘‘Experimenting with the static slicing of Petri nets,’’ in

Proc. IEEE 24th Int. Conf. Intell. Eng. Syst. (INES), Jul. 2020, pp. 25–30.
[2] R. Davidrajuh and A. Roci, ‘‘Performance of static slicing algorithms for

Petri nets,’’ Int. J. Simul., Syst., Sci. Technol., vol. 20, p. 15, Mar. 2019.
[3] V. M. Savi and X. Xie, ‘‘Liveness and boundedness analysis for Petri nets

with event graph modules,’’ in Proc. Int. Conf. Appl. Theory Petri Nets.
Berlin, Germany: Springer, 1992, pp. 328–347.

[4] J. F. Claver, G. Harhalakis, J. M. Proth, V. M. Savi, and X. L. Xie, ‘‘A step-
wise specification of a manufacturing system using Petri nets,’’ in Proc.
Conf. Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 1991, pp. 373–378.

[5] G. G. de Jong and B. Lin, ‘‘A communicating Petri net model for the design
of concurrent asynchronous modules,’’ in Proc. 31st Annu. Conf. Design
Autom. Conf. DAC, Jun. 1994, pp. 49–55.

[6] L.-C. Wang, ‘‘Object-oriented Petri nets for modelling and analysis of
automated manufacturing systems,’’ Comput. Integr. Manuf. Syst., vol. 9,
no. 2, pp. 111–125, May 1996.

[7] L.-C. Wang and S.-Y. Wu, ‘‘Modeling with colored timed object-oriented
Petri nets for automated manufacturing systems,’’ Comput. Ind. Eng.,
vol. 34, no. 2, pp. 463–480, Apr. 1998.

[8] W. J. Lee, S. D. Cha, and Y. R. Kwon, ‘‘Integration and analysis of use
cases using modular Petri nets in requirements engineering,’’ IEEE Trans.
Softw. Eng., vol. 24, no. 12, pp. 1115–1130, Dec. 1998.

[9] Y. Xue, R. M. Kieckhafer, and F. F. Choobineh, ‘‘Automated construc-
tion of GSPN models for flexible manufacturing systems,’’ Comput. Ind.,
vol. 37, no. 1, pp. 17–25, Jun. 1998.

[10] S. Christensen, ‘‘Modular analysis of Petri nets,’’Comput. J., vol. 43, no. 3,
pp. 224–242, Mar. 2000.

[11] G. J. Tsinarakis, N. C. Tsourveloudis, and K. P. Valavanis, ‘‘Modular Petri
net based modeling, analysis, synthesis and performance evaluation of
random topology dedicated production systems,’’ J. Intell. Manuf., vol. 16,
no. 1, pp. 67–92, Feb. 2005.

[12] N. Tsourveloudis, ‘‘Fuzzy work-in-process inventory control of unreli-
able manufacturing systems,’’ Inf. Sci., vol. 127, nos. 1–2, pp. 69–83,
Aug. 2000.

[13] H. Lee and A. Banerjee, ‘‘A modular Petri net based architecture to model
manufacturing systems exhibiting resource and timing uncertainties,’’ in
Proc. IEEE Int. Conf. Autom. Sci. Eng., Aug. 2009, pp. 525–530.

[14] J. I. Latorre-Biel, E. Jiménez-Macías, J. L. García-Alcaraz,
J. C. S.-D. Muro, J. Blanco-Fernandez, and M. P. D. L. Parte, ‘‘Modular
construction of compact Petri net models,’’ Int. J. Simul. Process Model.,
vol. 12, no. 6, pp. 515–524, 2017.

[15] O. Bonnet-Torrès, P. Domenech, C. Lesire, and C. Tessier, ‘‘E xhost-pipe:
Pipe extended for two classes of monitoring Petri nets,’’ in Proc. Int. Conf.
Appl. Theory Petri Nets. Berlin, Germany: Springer, 2006, pp. 391–400.

[16] M. A. Blätke, S. Meyer, and W. Marwan, ‘‘Pain signaling-a case study of
the modular Petri net modeling concept with prospect to a protein-oriented
modeling platform,’’ in Proc. 2nd Int. Workshop Biol. Processes Petri Nets
(BioPPN), Newcastle Upon Tyne, U.K., Jun. 2011, pp. 1–19.

[17] C. Mahulea, J.-M. Garcia-Soriano, and J.-M. Colom, ‘‘Modular Petri net
modeling of the spanish health system,’’ in Proc. IEEE 17th Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), Sep. 2012, pp. 1–8.

[18] C.Mahulea, L.Mahulea, J. M. García Soriano, and J.M. Colom, ‘‘Modular
Petri net modeling of healthcare systems,’’ Flexible Services Manuf. J.,
vol. 30, nos. 1–2, pp. 329–357, Jun. 2018.

[19] M. Dotoli, N. Epicoco, M. Falagario, and G. Cavone, ‘‘A timed Petri
nets model for performance evaluation of intermodal freight transport
terminals,’’ IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2, pp. 842–857,
Apr. 2016.

VOLUME 8, 2020 156555

R. Davidrajuh: Extracting Petri Modules From Large and Legacy Petri Net Models

[20] M. dos Santos Soares and J. Vrancken, ‘‘A modular Petri net to modeling
and scenario analysis of a network of road traffic signals,’’ Control Eng.
Pract., vol. 20, no. 11, pp. 1183–1194, Nov. 2012.

[21] A. Słota, J. Zaja̧c, and M. Uthayakumar, ‘‘Synthesis of Petri net based
model of a discrete event manufacturing system for nonlinear process
plan,’’Manage. Prod. Eng. Rev., vol. 7, no. 2, pp. 62–72, Jun. 2016.

[22] R. Davidrajuh, ‘‘Distributed workflow based approach for eliminating
redundancy in virtual enterprising,’’ J. Supercomput., vol. 63, no. 1,
pp. 107–125, Jan. 2013.

[23] J. Lee, B. Bagheri, and H.-A. Kao, ‘‘A cyber-physical systems architec-
ture for industry 4.0-based manufacturing systems,’’ Manuf. Lett., vol. 3,
pp. 18–23, Jan. 2015.

[24] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, ‘‘How virtu-
alization, decentralization and network building change the manufacturing
landscape: An industry 4.0 perspective,’’ Int. J. Mech. Ind. Sci. Eng., vol. 8,
no. 1, pp. 37–44, 2014.

[25] J. Davis, T. Edgar, J. Porter, J. Bernaden, and M. Sarli, ‘‘Smart manu-
facturing, manufacturing intelligence and demand-dynamic performance,’’
Comput. Chem. Eng., vol. 47, pp. 145–156, Dec. 2012.

[26] S. Berger, M. Bogenreuther, B. Häckel, and O. Niesel, ‘‘Modeling avail-
ability risks of IT threats in smart factory networks—A modular Petri net
approach,’’ in Proc. 27th Eur. Conf. Inf. Syst. (ECIS), Stockholm-Uppsala,
Sweden: Association for Information Systems, AIS Electronic Library
(AISeL), 2019, pp. 1–17.

[27] R. Davidrajuh, B. Skolud, and D. Krenczyk, ‘‘Performance evaluation of
discrete event systems with gpensim,’’ Computers, vol. 7, no. 1, pp. 1–8,
2018.

[28] R. Davidrajuh, ‘‘A newmodular Petri net for modeling large discrete-event
systems: A proposal based on the literature study,’’Computers, vol. 8, no. 4,
p. 83, Nov. 2019.

[29] J. L. Peterson, Petri Net Theory and the Modeling of Systems.
Upper Saddle River, NJ, USA: Prentice-Hall, 1981.

[30] R. Davidrajuh and C. Rong, ‘‘Finding the pivotal elements for modular-
ization of Petri nets,’’ in Proc. Int. Conf. Adv. Mech. Syst. (ICAMechS),
Aug. 2019, pp. 92–97.

[31] J. Jensen and W. S. Kendall, Networks and Chaos-Statistical and Proba-
bilistic Aspects, vol. 50. Boca Raton, FL, USA: CRC Press, 1993.

[32] R. Davidrajuh, B. Skolud, and D. Krenczyk, ‘‘Gpensim for performance
evaluation of event graphs,’’ in Advances in Manufacturing (Lecture Notes
in Mechanical Engineering), vol. 201519. Cham, Switzerland: Springer,
2018, pp. 289–299.

[33] J. Martínez and M. Silva, ‘‘A simple and fast algorithm to obtain all
invariants of a generalised Petri net,’’ in Application and Theory of Petri
Nets. Berlin, Germany: Springer, 1982, pp. 301–310.

[34] G.-J. Liu and C.-J. Jiang, ‘‘Incidence matrix based methods for computing
repetitive vectors and siphons of Petri net,’’ J. Inf. Sci. & Eng., vol. 25,
no. 1, pp. 1–16, 2009.

[35] R. Davidrajuh, Modeling Discrete-Event Systems With GPenSIM. Cham,
Switzerland: Springer, 2018.

[36] F. DiCesare, G. Harhalakis, J.-M. Proth,M. Silva, and F. Vernadat,Practice
of Petri Nets in Manufacturing. Dordrecht, The Netherlands: Springer,
1993.

[37] GPenSIM. (2019). General-Purpose Petri Net Simulator. Accessed:
Jul. 20, 2020. [Online]. Available: http://www.davidrajuh.net/gpensim

[38] M. Zhou, F. DiCesare, and A. A. Desrochers, ‘‘A hybrid methodology for
synthesis of Petri net models for manufacturing systems,’’ IEEE Trans.
Robot. Autom., vol. 8, no. 3, pp. 350–361, Jun. 1992.

[39] G. J. Liu, C. J. Jiang, Z. H. Wu, and L. J. Chen, ‘‘A live subclass of Petri
nets and their application in modeling flexible manufacturing systems,’’
Int. J. Adv. Manuf. Technol., vol. 41, nos. 1–2, pp. 66–74, Mar. 2009.

[40] C. Xia and C. Li, ‘‘Property preservation of Petri synthesis net based
representation for embedded systems,’’ IEEE/CAA J. Automatica Sinica,
early access, Jan. 16, 2020, doi: 10.1109/JAS.2020.1003003.

[41] D. A. Zaitsev, T. R. Shmeleva, and J. F. Groote, ‘‘Verification of hyper-
torus communication grids by infinite Petri nets and process algebra,’’
IEEE/CAA J. Automatica Sinica, vol. 6, no. 3, pp. 733–742, May 2019.

[42] J. Zhou, J. Wang, and J. Wang, ‘‘A simulation engine for stochastic timed
Petri nets and application to emergency healthcare systems,’’ IEEE/CAA J.
Automatica Sinica, vol. 6, no. 4, pp. 969–980, Jul. 2019.

[43] S. Wang, W. Duo, X. Guo, X. Jiang, D. You, K. Barkaoui, and M. Zhou,
‘‘Computation of an emptiable minimal siphon in a subclass of Petri nets
usingmixed-integer programming,’’ IEEE/CAA J. Automatica Sinica, early
access, Jun. 2, 2020, doi: 10.1109/JAS.2020.1003210.

[44] M. Agarwal, S. Biswas, and S. Nandi, ‘‘Discrete event system framework
for fault diagnosis with measurement inconsistency: Case study of rogue
DHCP attack,’’ IEEE/CAA J. Automatica Sinica, vol. 6, no. 3, pp. 789–806,
May 2019.

[45] B. Huang, M. Zhou, P. Zhang, and J. Yang, ‘‘Speedup techniques for mul-
tiobjective integer programs in designing optimal and structurally simple
supervisors of AMS,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 1,
pp. 77–88, Jan. 2018.

REGGIE DAVIDRAJUH (Senior Member, IEEE)
received the master’s degree in control systems
engineering and the Ph.D. degree in industrial
engineering from theNorwegianUniversity of Sci-
ence and Technology (NTNU), in 1993 and 2001,
respectively, and the D.Sc. (Dr.Hab.) degree in
informatics from the AGH University of Science
and Technology, Poland, in 2016. He is currently
a Professor of informatics with the Department
of Electrical Engineering and Computer Science,

University of Stavanger, Norway. He is also a Visiting Professor with the
Silesian University of Technology, Poland. His current research interests
include discrete-event systems, Petri nets, and graph algorithms. He is
an Editor of the International Journal of Business and Systems Research
(Inderscience) and an Associate Editor of Expert Systems with Applications
(Elsevier). He developed the software General-purpose Petri Net Simulator
(GPenSIM). Some universities around the world use GPenSIM for modeling
and simulation of discrete-event systems.

156556 VOLUME 8, 2020

http://dx.doi.org/10.1109/JAS.2020.1003003
http://dx.doi.org/10.1109/JAS.2020.1003210

