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Abstract: Friction is the main phenomenon that has a huge influence on the flow behavior of deformed
material in sheet metal forming operations. Sheet metal forming methods are one of the most popular
processes of obtaining finished products, especially in aerospace, automobile, and defense industries.
Methods of sheet forming are carried out at different temperatures. So, it requires tribological tests
that suitably represent the contact phenomena related to the temperature. The knowledge of the
friction properties of the sheet is required for the proper design of the conditions of manufacturing
processes and tools. This paper summarizes the methods used to describe friction conditions in
conventional sheet metal forming and incremental sheet forming that have been developed over
a period of time. The following databases have been searched: WebofKowledge, Scopus, Baztool,
Bielefield Academic Search Engine, DOAJ Directory of Open Access Journals, eLibrary.ru, FreeFullPdf,
GoogleScholar, INGENTA, Polish Scientific Journals Database, ScienceDirect, Springer, WorldCat,
WorldWideScience. The English language is selected as the main source of review. However, in a
limited scope, databases in Polish and Russian languages are also used. Many methods of friction
testing for tribological studies are selected and presented. Some of the methods are observed to have
a huge potential in characterizing frictional resistance. The application of these methods and main
results have also been provided. Parameters affecting the frictional phenomena and the role of friction
have also been explained. The main disadvantages and limitations of the methods of modeling the
friction phenomena in specific areas of material to be formed have been discussed. The main findings
are as follows—The tribological tests can be classified into direct and indirect measurement tests of
the coefficient of friction (COF). In indirect methods of determination, the COF is determined based
on measuring other physical quantities. The disadvantage of this type of methods is that they allow
the determination of the average COF values, but they do not allow measuring and determining the
real friction resistance. In metal forming operations, there exist high local pressures that intensify
the effects of adhesion and plowing in the friction resistance. In such conditions, due to the plastic
deformation of the material tested, the usage of the formula for the determination of the COF based on
the Coulomb friction model is limited. The applicability of the Coulomb friction model to determine
the COF is also very limited in the description of contact phenomena in hot SMF due to the high shear
of adhesion in total contact resistance.

Keywords: coefficient of friction; bending under tension; draw bead; friction; friction testing; material
properties; mechanical engineering; sheet metal forming; strip drawing; surface properties; tribology

Metals 2020, 10, 47; doi:10.3390/met10010047 www.mdpi.com/journal/metals

http://www.mdpi.com/journal/metals
http://www.mdpi.com
https://orcid.org/0000-0002-4366-0135
https://orcid.org/0000-0001-9588-4707
http://dx.doi.org/10.3390/met10010047
http://www.mdpi.com/journal/metals
https://www.mdpi.com/2075-4701/10/1/47?type=check_update&version=2


Metals 2020, 10, 47 2 of 34

1. Introduction

Conventional sheet metal forming (SMF) methods are widely used for making shaped components
across the many industries. In an SMF process, a thin piece of metal sheet, commonly referred to
as the workpiece, is stretched by stamping tool into the desired shape without excessive thinning
or wrinkling. Finished products fabricated by SMF processes have good quality, are geometrically
accurate, and commonly do not require finishing procedures. The main problem in SMF techniques is
the appropriate compensation of the springback phenomenon [1,2]. However, sheet forming processes
are complex and require expensive tooling that is economically feasible only for mass production [3].
Goals of experimental investigations in sheet metal forming operations are classified into two [4,5]:

(1) understanding the contact conditions during sheet metal forming and
(2) assessing the influence of specific variables in the forming operations.

Incremental sheet forming (ISF) is a relatively recent technique that allows solving many problems
of the conventional sheet forming process. ISF is a dieless forming process suitable for small batches
and has demonstrated its great potential to form complex three-dimensional parts with using a
relatively simple and low-cost tools. Potential application areas of ISF include the aerospace industry,
biomedical applications, rapid prototype production, and metal forming in the automotive industry.
ISF processes are characterized by much less forming force compared to conventional stamping, no
need to manufacture the dies, a higher value of the sheet deformation in relation to die-forming, and the
ability to shape elements on a conventional computer numerical control (CNC) milling machine [6].

In general, ISF includes several sheet flexible forming approaches, such as Single Pint Incremental
Forming (SPIF), Two Point Incremental Forming (TPIF), also known as Double-Sided Incremental
Forming (DSIF), Incremental Forming with Counter Tool (IFWCT), or Water Jet Incremental Sheet
Metal Forming (WJISMF) [6–8].

In SMF, the shape, dimensional accuracy, and surface roughness of the final part mainly depend
on the character of sheet deformation due to material properties, tool design, forming conditions
(temperature, forming speed, etc.), initial surface topography, friction conditions (dry or lubricated
contact). Former studies [9,10] showed that the surface properties of the tool have a significant effect on
friction as well as wear behavior of sheet metal forming under lubricated conditions. The existence of
friction forces at the deformed material and tool interface, in particular, determines the non-uniformity
of the deformation of the sheet metal.

Therefore, it is necessary to have sufficient knowledge of the frictional resistance in order to
properly design the die tool and to forecast the flow of the material under forming, especially in
the case of complex shapes. Moreover, finite element-based numerical simulations that allow for an
accurate analysis of deformation of the sheet require a proper description of the contact phenomena.
However, for proper operation, one requires knowledge of the frictional resistance and its evolution
during the forming process. This justifies the work on the proper planning of the friction tests using
proper simulators that are developed to model the friction phenomena simulation tests. In this paper,
the methods used to represent the friction conditions in conventional SMF and ISF have been summarized.
Furthermore, the main disadvantages and limitations of the modeling methods of the friction phenomena
in specific areas of the material to be formed have been discussed.

2. Methods

To fulfil the aim of the article, the main scientific databases have been explored. The English
language is selected as the main source of review. However, in a limited scope, Polish and Russian
languages are also used in exploring the Polish language and Russian language-based scientific
databases. To identify the potential relevant documents, the following bibliographic databases were
searched: WebofKowledge, Scopus, Baztool, Bielefield Academic Search Engine, DOAJ Directory of
Open Access Journals, eLibrary.ru, FreeFullPdf, GoogleScholar, INGENTA, Polish Scientific Journals
Database, ScienceDirect, Springer, WorldCat, WorldWideScience. No restriction has been made on the
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publication years. The search strategy was limited to scientific articles and scientific theses distributed
in open access and distributed under the access available at the authors’ Universities. The duplicated
articles found by various databases were not considered. Papers were also excluded if they did not fit
into the conceptual framework of the study. References available in found articles were also considered.
Many years of experience of the authors allow drawing the hypothesis that there is a very limited
number of friction tests in sheet metal forming, which causes that no special numerical screening
algorithm was used. The articles were reviewed “manually”. It should be pointed out that the results
found by different databases were consistent. The keywords used to search in the databases include,
but not limited to:

I. English language: “friction coefficient sheet forming”, “friction coefficient metal forming”,
“friction sheet forming, “friction deep drawing”, “tribology sheet metal forming”, “friction
bending under tension”, “friction blank holder”, “coefficient of friction”, “tribometer coefficient of
friction”, “friction simulative tests”, “strip drawing test”, “hot forming friction testing”, “friction
in draw bead”, “draw bead friction test”, “advances in friction testing”, “advances in friction
measuring”, “friction apparatus for sheet metal forming”;

II. Polish language: “tarcie podczas kształtowania blach”, “współczynnik tarcia”, “tarcie przeróbka
plastyczna metali”, “tribotester”, “pomiar tarcia kształtowanie blach”, “opory tarcia”, “tarcie
pod dociskaczem”, “metody wyznaczania oporów tarcia”, “metody określania współczynnika
tarcia”, “postępy w pomiarze współczynnika tarcia”, “pomiar sił tarcia w procesie tłoczenia”,
“test przeciągania paska blachy”, “test zginania blachy z rozciąganiem”, “test przeciągania w
warunkach ściskania blachy”, “test zginania w warunkach ściskania blachy”, “test zginania
blachy z przeciąganiem”, “test zginania blachy z ciągnieniem”;

III. Russian language: “трибoтестер”, „кoэффициент трения фoрмoвaние листoвoгo метaллa”,
„трение при фoрмoвaнии листoвoгo метaллa”, „метoдыoпределения сoпрoтивления
трения”, „сoпрoтивление трения”, „прoгресс в измерении кoэффициентa трения”,
„фрикциoннo-плaстическoе фoрмoвaние метaллoв”, „измерение трения”, „метoдыoпределения
кoэффициентa трения”.

IV. The next section shortly describes the fundamentals of tribology in sheet metal forming. The results
of the review are presented in Sections 4 and 5.

3. Frictional Resistance

Frictional resistance depends on diverse parameters such as lubrication, normal pressure,
the surface roughness of the sheet metal and the tool, type of materials of the contact pair, sliding speed,
and temperature [11]. In forming at elevated temperatures, the coefficient of friction (COF) is usually
higher than in cold forming. This is because higher temperature forming increases adhesion at the
contact interface. The interaction between the two surfaces and the oxide and debris layers formed is
constantly changing and strongly affected by the forming conditions [12]. It is well known [13,14] that
friction changes as a result of plastic deformation of the material and the increased surface roughness.
This leads to the transition from a hydrodynamic to a mixed friction regime, and the metal to metal
contact increases.

The unfavorable effects of frictional resistance include [15,16]: non-uniform workpiece deformation,
worsening of workpiece surface roughness, and the increased tool wear. The existence of frictional
resistance between workpiece and punch in the stamping process has an advantage that the maximum
allowable drawing force can be increased. As it was concluded by Menezes et al. [17], the variations of
the COF between the tool and workpiece surface directly affect both the stress distribution and the
shape of the workpiece. This also has direct impacts on the material microstructure.

Friction in sheet metal forming is a complex function of the physico-mechanical properties of the
tool and workpiece, forming parameters, the topography of both metallic sheets and tools, and contact
conditions. In order to fully characterize the role of friction in sheet metal forming, a tribological
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system may be introduced, which consists of four main elements (Figure 1)—friction pair, lubricant,
micro- and macroenvironment, and processing parameters.

Figure 1. Scheme of a tribological system in sheet metal forming.

Tribology plays a key role in the formability of material and quality of products. The surface
roughness of sheet and tooling surfaces, surface coating, and lubrication type are the fundamental
parameters of the tribological performance of elements in the automotive industry [18]. The most
economical and effective way to reduce the harmful effects of frictional resistances in stamping
operations is lubrication. The most important properties of the lubricant are viscosity and extreme
pressure load [19]. The pressure between the die and the workpiece is a crucial factor determining
the effectiveness of lubrication. At a relatively low contact pressure, the frictional interaction takes
place through mixed lubricated asperity contacts that are dominated by boundary effects [20]. In such
conditions, the total applied load is partially carried by the hydrodynamic action of the lubricant
film. The contact normal stresses in deep drawing and hot sheet metal forming may reach a value
of 750–800 MPa. So, the proper selection of lubricant type is crucial to realize the tool-workpiece
separation and friction reduction. The application of good boundary lubricants containing hard
coatings and extreme-pressure additives could increase the frictional resistance of the die-workpiece
contact surfaces [21]. Results of Kim et al. [22] also showed that the combined uses of good boundary
lubrication and hard coatings reduce heat generation at the die-workpiece contact.

In SMF, the friction coefficient is controlled by two different friction components [23]: (1) an adhesive
force acting in the real contact areas and (2) a deformation force acting when the harder tool
surface asperities plow into the surface of the softer sheet metal. Surface plowing refers to the
deformation of the surface of a softer material due to a harder material sinking into it. In other words,
the friction effect is observed due to the adhesion effects between asperities, the plowing at contacting
asperities, and the hydrodynamic friction stresses that appear when the lubrication regime is applied.
The impact of adhesion and plowing on the frictional resistance is a function of the real area of contact.
Therefore, frictional resistance depends on the real area of contact, which can be influenced by two
mechanisms [24–26]: (1) roughening and (2) flattening. These mechanisms occur due to sliding, normal
load and stretching, where flattened surfaces exhibit a higher COF. On the other hand, roughening of
asperities decreases the real area of contact resulting in lower friction.

In addition, in hot forming processes, the temperature may dynamically change in the forming
process, so a constant COF cannot reflect friction and galling characteristic of the interface [27]. Galling,
in particular, accelerates with rising temperatures in both lubricated and dry friction conditions [28],
thus affecting the quality of parts formed.

Many studies were devoted to investigating the effectiveness of friction reduction by different
types of lubricants. A lubricant with high viscosity can form a thicker film, enlarging the distance
between the interacting asperities and hence reduces abrasion. In contrast, lubricants with an extremely
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high value of pressure load may maintain an oil film under higher contact pressure between asperities
and minimize the asperity adhesion [19,20].

4. Friction Testing in Conventional Sheet Metal Forming

4.1. Background

The first quantitative investigations of friction, lubrication, and wear were made by inventor
Leonardo da Vinci (1452–1519) almost 450 years ago. Guillaume Amontons (1663–1705) in 1699
enunciated fundamental laws of friction, with those names not associated. One of the two main
statements is that the friction force is independent of the apparent area of contact between the two
surfaces. Secondly, the friction force acting between two sliding surfaces is proportional to the applied
load. The concept of experimental apparatuses and development of da Vinci′s understanding of the
friction laws have been comprehensively examined by Hutchins [29]. Many of the concepts of friction
measurement presented in da Vinci′s manuscripts are still up-to-date. Furthermore, they formed the
basis for creating new concepts of friction tests.

Due to the presence of different conditions with regard to the pressure forces, state of stresses,
and speed of displacement in the individual areas of the draw piece, a series of tribological tests were
developed to model the friction conditions for the needs of the plastic sheet forming processes [16,30].
Over the years, two main groups of tribological tests were developed. The tests simulating tribological
conditions model the geometrical interactions of the friction pair, often without maintaining the process
kinematics. The second group, the process simulation tests, are designed to manipulate plastic-forming
operations while maintaining process kinematics. Both groups of tests can be divided into tests with
direct or indirect measurement of the values of the COF. A review of the effects of coating, lubrication,
and temperature on the tribological characteristics in hot forming and the tribometers for different
metal forming processes at elevated temperatures has been presented by Dohda et al. [31]. Moreover,
the tribological behaviors of oxides in hot forming were discussed. An overview of the simulation tests
representing the friction conditions in the specific areas of the draw piece is also shown in Figure 2.

Figure 2. Tribological tests representing the friction conditions in the specific areas of the draw
piece: (a) pin-on-disc tribometer, (b) bending under tension, (c) drawing with tangential compression,
(d) bending with tangential compression, (e) strip-drawing test, (f) draw-bead test, (g) strip-tension
test, (h) hemispherical stretching, (i) strip-reduction testing; prepared based on [16].
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Most tests allow indirect determination of the value of the COF based on the measurement of the
changes in other physical parameters like strains or forces. Besides, in order to study the interactions
in the sheet-tool interface, the industry is nowadays using different numerical simulation-based
tests [32–34].

Bay et al. [16] divided the friction tests with regard to the normal pressure value, surface expansion,
and sliding length into three groups:

(1) bending under tension tests with mild tribological conditions with normal medium pressures,
low-sliding speeds, and no surface expansion,

(2) draw-bead tests with medium-to-high normal pressures, medium sliding lengths, and no surface
expansion and

(3) strip-reduction tests with normal high pressures, low-sliding lengths, and surface expansion.

Even until the present, no universal method has been developed for determining the COF. This
is attributed to the variety of the geometry of tool contact with the deformed material as well as the
existence of different stress and strain states in specific areas of the draw piece in the sheet-forming
processes (Figure 3).

Figure 3. Types of sheet-tool contact: (a) flat contact, (b) sliding over a curved part of the tool, and
(c) linear sliding contact.

4.2. Friction Between Flat Dies

Strip drawing test (SDT) is used to model friction condition in metal forming, i.e., between
the punch and the die wall. In this test, a plane specimen of the tool material is pressed against a
strip of sheet metal, which is drawn simultaneously [15]. The strip is drawn between non-rotating
counter-samples, which are mostly flat [14] or have cylindrical shape [13,15] (Figure 4). The existence of
frictional forces between the contact surfaces assists in achieving better accuracy of measurement of the
COF. Several parameters such as the pressure force between counter-samples, lubrication conditions,
drawing speed, the surface roughness of the counter-samples and temperature do affect the change in
frictional resistance.

Figure 4. Schematic diagram of the strip-drawing test: (a) cylindrical dies and (b) flat dies.
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The value of the COF is determined according to the formula:

µ =
FP

2FN
(1)

where FP is the pulling (friction) force, FN is the normal force.
The SDT has been studied by many authors to determine the COF in a wide range of process

parameters. The experimental results determined by Trzepieciński et al. [15,35] have determined
several relationships that show the effect of lubricant conditions, surface roughness and the orientation
of the sheet metal on the value of the COF in the forming processes. Vollertsen and Hu [36] used the
SDT to identify the tribological size effects and develop a size-dependent friction function integration
in finite element-based numerical simulations. Masters et al. [14] studied the friction behavior of
metallic sheets at different levels of specimen strain. They found that the COF increases with the level
of strain. The problem of the influence of the drawing speed and the directional surface topography on
the value of friction resistance and the change of surface topography in mixed lubrication conditions in
the SDT was discussed by Roizard et al. [37]. During the testing of sheets whose roughness ridges were
oriented perpendicular to the direction of drawing, the friction force was 30% lower when drawing
inversely oriented specimens. The analysis of surface roughness changes in aluminum sheets during a
sheet-drawing test of cylindrical and flat counter-samples [38] showed a similar character of surface
topography change, and comparable value of the COF determined in both tests.

The mean contact pressure between pins and sheet metal strip may be estimated by using the
Hertz relation for a line contact under the elastic deformation with smooth surfaces [39]:

pn =
π
4

√
Fn
b E∗

2πR∗
(2)

where b is the specimen width, Fn is the applied load, E* and R* are the combined elasticity modulus
and the combined radius, respectively, determined according to:

E∗ =
2E1E2

E2
(
1− ν2

1

)
+ E2

(
1− ν2

2

) (3)

R∗ =
R1R2

R1 + R2
(4)

where R1 and R2, E1, and E2, v1 and v2 are radiuses, Young’s moduli and Poisson’s ratios of bodies in
contact, respectively.

Parameters that can influence friction and lubrication are also extensively studied in the last
decade. Payen et al. [40] investigated mainly the role of contact pressure and of a chemical coating
on the tribological behavior and the roughness changes of sheets surfaces in SDT, which they called
the plane friction test. Applying an anti-adhesive coating reduced the local friction shear stress at the
boundary contacts. As a consequence, the character of asperities deformation is changed in such a way
that large levels of normal crushing of asperities can be reached with reduced debris generation [40].
Coelho et al. [41] tested EBT (Electron-Beam Texturing) zinc-coated trip 700 steel sheet under the strip
drawing test with flat dies considering a real contact area in the die-sheet-die system instead of the
apparent one. The results for flat contact friction demonstrate that a suitable combination of velocity
and pressure is required to establish the micro-hydrodynamic effect under typical boundary lubrication
conditions. The micro-hydrodynamic conditions of the boundary lubrication are caused by the plastic
deformation of coating, which produces high hydrostatic pressure on the entrapped lubricant.

Venema et al. [42] used the strip-drawing test with flat dies to characterize tribological interactions
between the tool and the sheet metal during hot stamping using hot friction draw tester with roller
hearth furnace. The essence of the friction test is based on the SDT with flat dies. Their results show
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that the tool materials worn down by friction could be embedded in relatively soft sheet coating which
subsequently causes plowing of the tool surface. Xue et al. [43] designed the strip drawing test, which
consist in a combination of flat and convex dies (Figure 5). The authors did not describe the advantage
of such a configuration over a flat and rounded counter-sample (Figure 4). The COF value may be
determined using the commonly used Equation (1).

Figure 5. Strip-drawing test setup with combined shapes of counter-samples.

The motivation of the experimental investigations of Recklin et al. [44] was observed if different
test stands of friction investigation show a significant quantitative difference in the friction value.
The main reason for the deviation of the tribological behavior in different stands is the different stiffness.
Moreover, the contact area of each test stand may be different. Therefore, Recklin et al. [44] compared
two commonly used strip drawing tests and detected the causes of the deviation. It was found that
the quantitative value of the mean COF over the contact pressure depends on the area of the contact
surface. The second important conclusion is that the variation of COF over the contact pressure is
dependent on the stiffness of the stand.

Kondratiuk and Kuhn [45] tested the COF of coatings in hot strip drawing experiments (Figure 6).
The basic setup consists of a drawing device, a continuous electric furnace, a feeder section to
transport the sheet metal strip. After placing a steel strip manually onto the chain drive, the strips
are automatically transported into the furnace using a motor-powered chain drive. The strip is then
transported into a hydraulic holding device when the pre-specified dwell time has been reached. Next,
the tool closes, and the strip is compressed by applying a load acting between the upper and lower
tool and is drawn through the drawing device.

Figure 6. Schematic representation of a hot strip drawing simulator: 1—chain, 2—electric furnace,
3—tool holder, 4—movable tool holder, 5—heated sheet metal strip, 6—sliding bed with a hydraulic
holding down device; prepared on the basis of [45].

The COF can be calculated using Equation (1) as a function of drawing distance. The results of
investigations allowed the individual tribological characterization of the hot-dip-aluminum–silicium
and electro-plated zinc alloy coatings for hot forming applications. The effectiveness of the use of



Metals 2020, 10, 47 9 of 34

lubricants to decrease the forming load in hot stamping of Al-coated 22MnB5 steel was studied by
Uda et al. [46] in hot strip drawing test. Al-coated 22MnB5 steel is widely used as the sheet material in
hot stamping. Technically, the used device is very similar to that used by Kondratiuk and Kuhn [45].
Based on the results of the experimental tests, a new high-performance lubricant for hot stamping
was developed. Tokita et al. [47] studied the effects of the temperature deviation due to contact with
the tools and the COF at high temperatures on stretch formability at a high temperature using a high
temperature sliding test. Experimental testing of HR steel sheets conducted under warm forming
conditions shown that, in forming in the low-temperature range (200–400 ◦C), the influence of the COF
on sheet formability is dominant in spherical stretch forming. The COFs of both the hot rolled and
galvannealed coated steel sheets at a high temperature were higher than those at room temperature.

The above-mentioned test (Figure 6) was performed outside the furnace, and hence it is not
exactly isothermal. Shi et al. [48] designed a friction rig intended to make isothermal tests at elevated
temperature. Using this test rig, the frictional properties of the sheets in SDT was studied. The rig
is universal and can be fitted to any universal testing machine equipped with the furnace chamber.
The vertical force of pulling the sheet between counter-samples is measured by testing machine, and the
normal pressure is applied to test-piece by the gravitational force of the weights via a lever mechanism.

The correlations between the tool surfaces and friction in SDT with flat dies were determined
by Merklein et al. [49]. In this study, diverse finishing strategies were employed on the surface of
the tool. Tribological performance of tool surfaces fabricated using different finishing strategies was
investigated by conducting strip drawing tests under dry conditions. From the results with lubricated
strips, it was found that the preferential direction orientation has a lower influence on the friction
compared to the roughness. Moreover, the orientation of grinding marks in the tool surface has a
notable influence on the friction under dry conditions.

Tests with the rotary movement of the tool consist of placing a specimen in the form of a
ring or a disc between the anvil of a testing machine and the counter-sample performing a rotary
movement along the axis of the specimen. During the test, the tangential force and normal force are
measured in the contact area. As a counter-sample, flat (pin-on-disc) [50] or spherical (ball-on-disc,
Figure 7a) [51–53] pins, as well as ring-shaped tools (Figure 7b) known as twist compression tests
(TCTs) are used. The frictional resistance can be determined for different slip speeds, lubrication
conditions, and pressure forces.

Figure 7. Illustration of rotary counter-sample tests (a) pin-on-disc, and (b) twist compression (prepared
on the basis of [54]).

During the pin-on-disk tests, the friction force and the slip distance for the first disk revolution
are measured using a computer program that registers and controls the values of the friction force as a
function of time. The COF value was determined from the values of both normal FN and friction FT
forces using the formula in Equation (5):

µ =
FT

FN
(5)
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The apparent pressure pc in the pin-on-disk test with flat pin may be evaluated from the friction
band width, bf, which can be assumed to be equal to the diameter of a circular contact section. Thus,
the apparent pressure for each test was calculated from [41]:

pc =
4FN

πb2
f

(6)

where FN is the normal force, and bf is the width of friction band.
The results of investigations using pin-on-disc tribometers where the length of the friction track is

arbitrary, cannot be compared with measurements carried out on the work stations with the to-and-fro
motion of the counter-sample. Due to the cyclic contact of the counter-sample with the surface of the
sheet being tested and the concentrated nature of the contact, the COF value representative for a given
surface can only be determined for the initial stage of the friction process. In this manner, one can
determine the anisotropy of the value of the COF according to the rolling direction of the sheet [51,53].

The use of tribotesters to determine the COF of plastically deformed sheets is limited due to
the nature of the concentrated contact, whose presence in the real deep-drawing processes is limited.
Moreover, the low ratio of the yield strength of the workpiece material and the counter-sample material
allows the rapid initiation of wear processes. The superficial contact of the counter-sample with the
sheet surface being tested is assured by a method using an annular counter-sample with a radius of
external cylindrical surface r loaded with pressure p (Figure 7b) [10]. The value of the COF in the TCT
is determined based on the following formula:

µ =
T

A× p× r
(7)

where T is the torque, A is the surface area of contact, p is the normal pressure, and r is the radius of
the external cylindrical surface.

Kim et al. [22] used TCT to establish guidelines on how to select the optimum combinations of die
materials, coatings, and lubricants for stamping of galvanized AHSS (DP600, TRIP780, and DP980) for
automotive structural parts. Ball-on-disc tests were used to a large extent in describing the tribological
behavior of materials in the contact region and to determine the COF [13,14]. It is important to note
that these tests are quite similar to scratch tests and are different from ring compression tests and
pin-on-disc tests. They generate apparent friction that may contain two integrated components, i.e.,
shear friction and plowing friction [52].

Pin-on-disc tester was used in the study reported by Dou and Xia [55], which described the effects
of the normal loads and the sliding velocity on the friction characteristics between the stamping die
and the sheet metal under the boundary lubrication. From this study, it was observed that the friction
mechanism between sheet metal and the die is mainly abrasive wear and plowing wear, with slight
adhesive wear.

Reports from some researches [56,57] indicate that the measured COF is usually higher when
the sliding direction is parallel to the grinding lay. Ajayi et al. [53] used a pin-on-disc tribometer and
investigated the role of surface texture, especially the effect of grinding lay on frictional behavior of the
boundary lubrication regime. The results indicated frictional anisotropy of the directionally ground
AISI 8620 specimens in the entire speed range of the test, although it is more apparent at low speed,
and that the magnitude of the friction variation spikes is significantly reduced. At such high speeds,
where the spikes are lower and closer together as a function of time, the frictional anisotropy may be
mistaken for noise in the friction measurement system.

Interface friction of the ball-on-disc test under a high temperature is studied by Wu et al. [58].
A shematic illustration of the test stand is shown in Figure 8. A full contact model is developed to
assess the lubrication of this testing mechanism and to decouple the contributions of solid-solid contact
asperity to the interface friction stress. It was found that the temperature increase can significantly
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influence the lubricant performance. This can be due to the effect of lubricant additives. Furthermore,
in the boundary lubrication regime, friction is sliding-speed dependent because the interaction of the
solid layer may be formed by lubricant additives when the temperature of the lubricant increases.

Figure 8. Schematic configuration of the tribological test: 1—specimen, 2—liquid container, 3—heat
chamber, 4—load cell, 5—pin, 6—cover; prepared on the basis of [58].

Experimental testing of high steel sheets under hot stamping conditions using a high-temperature
pin-on-disc test carried out by Ghiotti et al. [59] reveals that the blank temperature and contact pressure
have a larger influence on the COF that typically can reproduce the condition in industrial processes.
Moreover, the cooling rate does not affect the surface characteristics, in the range variations typical of
the hot stamping. It was found that with increases in stamping temperature, the COF decreases. This
can be explained by a reduction of shear strength of coating with the temperature.

Ball-on-plate Sliding Test (BST) is designed by UMT-TriboLab. The apparatus allows high-temperature
reciprocating wear and is equipped with a resistance furnace. Figure 9 shows an illustration of the test
set-up. A special clamping fixture was designed to ensure that there exists no slipping or movement of
specimens while testing. The electro-mechanical drive allows us to carry out the ball-on-plate tests
and assuring the existence of constant pressure at the contact interface [27]. The COF under different
conditions can be calculated using the classical Coulomb′s law (Equation (5)).

Figure 9. Schematic of UMT (Universal Mechanical Tester)-Tribolab tribometer.

Lu et al. [27] conducted experimental investigations on the unlubricated reciprocating sliding
friction and galling behavior of 7075 aluminum alloy sheets at different temperatures. The results allow
connecting the process temperature with the friction mechanism. Conventional scratch tests may be
modified in order to obtain a well-controlled slipping contact as in BST. For example, Carlsson et al. [60]
used a steel ball of diameter 7.5 mm instead of the Rockwell C diamond stylus with a radius of
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200 µm. Based on the experimental test of friction of Dogal® and Aluzink® sheets, they concluded that
compared with the BUT (Bending Under Tension) test, the modified scratch test, and the pin-on-disc
test are easy and rapid to perform.

Kirkorn et al. [9] conducted investigations on the frictional behavior of a number of conventional
tool materials that are used in the sheet forming industry employing a novel method of COF measuring
based on flat-die strip drawing. According to the authors, the uniqueness of this device (Figure 10),
compared with existing tribotesters used in sheet forming applications, is the ability to fully control
the applied normal force and drawing velocity during experimental studies. A more comprehensive
description of the functionality of the tribotester used can be found in [61]. The developed device
enabled comparison of different tool steels, surface treatments, coatings, and lubricants in terms of
galling and friction under real SMF process conditions. The normal and shear forces were measured,
and the COF is calculated using Equation (31).

Figure 10. Schematic illustration of flat-die strip drawing: 1—specimen, 2—spring, 3—spring buffer,
4—tool holder, 5—tool, 6—force sensor.

4.3. Friction in Ironing in a Conical Die

Strip Reduction Tests (SRTs) represent severe tribological conditions with low slipping length, high
normal pressure, and surface expansion. Some types of SRTs are tests carried out with a reduction of the
sheet thickness between flat [62] or cylindrical [38,63] counter-samples. One of the first experimental
approaches for the simulation of the ironing process was developed by Fukui et al. [64], who made direct
measurements of friction force in metal-strip drawing where the strip was made to reduce between
two stationary dies. The COF is defined as the ratio of normal force and tangential force occurring
during sheet drawing between cylindrical surfaces (Figure 7a), and this relation is expressed as [65]:

µ =
FT − 2FN tan

(
α
2

)
2FN + FT tan

(
α
2

) (8)

where FT is the pulling (friction) force, FN is the normal force and α is an angle of the arc contact area
(Figure 11a), which may be determined according to the formula:

tan
α
2
=

√
g0 − g1

4R− (g0 − g1)
(9)

where R is the radius of the rounded edge of the counter-sample, g0 is an initial sheet thickness, and g1

is the final sheet thickness.
From the conditions of the equilibrium of the elementary section of the sheet between flat dies

(Figure 11b), the relationship between the drawing force FT of the sheet and the pressure force FN is as
follows [66]:

FT

FN
=

2(µ+ tanα)
1− µ tanα

(10)
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Assuming that the value of the COF does not change along the contact surface between the dies
and the plate, the value of the COF is given by:

µ =
FT − 2FN tanα
2FN + FT tanα

(11)

Figure 11. Illustrative diagram of the strip-reduction test carried out between (a) cylindrical dies
(b) flat dies.

The SRT test has also been conducted by several researchers to simulate the ironing process [33,67].
This test is capable of simulating varying conditions such as drawing speed, reduction, sliding length,
and the tool temperature [68]. The apparatus developed by Andreasen et al. [68] uses a round,
non-rotating tool-pin instead of a wedge-shaped die (Figure 12). The test was conducted in such a way
that the thickness of the sheet metal strip is reduced between a non-rotating tool pin (representing the
conical die) and a supporting plate (representing the cylindrical punch).

Figure 12. Schematic representation of the SRT: 1—specimen, 2—jaws, 3—piezoelectric transducer,
4—tool pin, 5—supporting plate, 6—vertical guide; prepared on the basis of [68].

The strip and the supporting plate are clamped together at the front end (corresponding to the
punch nose in ironing). The two ends of the tool pins have square cross-sections that are designed
to be mounted on two vertical guides that allow the change of the gap between the tool pin and the
support the plate [68].

Recently, Moghadam et al. [63] developed the method of detection of the onset of galling in strip
reduction testing using acoustic emission. They investigated the same apparatus as Andreasen et al. [68].
It was concluded that acoustic emission could be applied as a non-destructive measuring technique
for assessment of galling in the strip reduction test emulates the ironing process. A direct correlation
between the contact conditions and the generated acoustic emission events was found. Dohda and
Kawai [69] proposed an alternative to Fukui et al.’s [64] strip-ironing type tribometer consisting of a
bottom plate that is drawn with the strip through a wedge-shaped ironing die. Measurements carried
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out by Le and Sutcliffe [66] show that, in SDT, the change in friction is associated with a change in
contact ratio between the tool and strip. Analysis of the surface drawn with rougher dies suggests that
the lubrication has broken down, leading to the plowing of material picked up onto the tool surface.

Üstünyagiz et al. [33] proposed a new strip reduction test (SRT) for an industrial ironing process
in order to replicate the severe tribological conditions involving sliding length, tool temperature,
lubricant film and drawing speed. Sulaiman et al. [62] studied lubrication performance in SRTs with
tools provided with longitudinal and shallow pockets that are oriented perpendicular to the sliding
direction (Figure 13). They found that the distance between the pockets should be larger than the
width of the pocket. By doing so, a topography similar to the flat table mount is created to avoid
mechanical interlocking in the valleys. If the distance between the pockets is 2–4 times larger than the
pocket width, the textured tool surface reduces friction and improves the lubrication effect.

Figure 13. Schematic diagram of an SRT with a textured tool surface, prepared based on [62].

In addition, Üstünyagiz et al. [33] proposed a new Continuous Strip Reduction (CSR) test that
can replicate the extreme tribological conditions under forward stroke and backward retraction of the
punch (Figure 14). To replicate the forward stroke, two stationary cylindrical tool pins are used to draw
the strip from right to left while its thickness is reduced in section I (Figure 15).

Figure 14. Schematic of the ironing process during (a) forward and (b) backward strokes.

The lower cylindrical tool pin is mounted on a heater block, which was used to adjust the tool
temperature by an electric cartridge. The backward stroke of the ironing process is replicated in
section II (Figure 15). This section provides a further reduction in the strip thickness, and the gap
between the two stationary pins can, thus, be adjusted to a value slightly smaller than that utilized
in section I. The test can simulate process parameters such as drawing speed, sliding length, strip
thickness reduction and tool temperature. It is also possible to quantify the onset of the breakdown
of the lubricant film and the resulting galling effect after several strokes during the forward and
backward strokes.
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Figure 15. Schematic diagram of an SRT with a textured tool surface: 1—specimen; 2, 3, 6, 7—stationary
cylindrical tool pins; 4, 8—housing; 5, 9—heater blocks; 10—base; prepared based on [33].

4.4. Friction Conditions in Die Curvature

The Bending Under Tension (BUT) test developed by Littlewood and Wallace [28] is attributed to
the friction modeling on the edge of the die. The test consists of drawing the strip of metal around
the cylindrical counter-sample (Figure 16). The traditional way of performing these BUT tests is by
differential measurements using two sequential tests, one by drawing over a fixed circular cylindrical
tool-pin, the other over a freely rotating pin, implying that no sliding takes place. Then an estimate of
the friction is obtained from the difference in the front tension measured in the two tests.

Figure 16. Forces acting on an elementary section of the strip.

Assuming that there is a constant COF µ in the contact region and the wrap angle γ (Figure 16) is
constant during the test according to the equilibrium of all forces acting on an elemental cut of the strip
dγ, it can be shown that:

F + qµwRdγ− (F + dF) = 0 (12)

qwRdγ− Fsin
dγ
2
− (F + dF)sin

dγ
2

= 0 (13)

For a very small dγ, one can assume that sin dγ
2 ≈

dγ
2 and dF << F. Thus, combining Equations (12)

and (13) gives:

µdγ =
dF
F

(14)

Integrating Equation (14), and taking into account γ = π/2 the COF is determined to be:

µ =
2
π

ln
(F1

F2

)
(15)
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The average contact stress (unit contact pressure, q) in this case is determined from the
following equation:

q =
F1 + F2

2wR
(16)

where w is the width of the strip, and R is the radius of the pin.
Trzepieciński and Lemu [32] developed a tribological simulator based on the concept of the BUT

test. The test device is schematically shown in Figure 17. As illustrated, a grip supported by a load cell
was used to hold the test strip at one end of the device. The specimen was wrapped around a fixed
cylindrical roll and loaded in a tensile testing machine, ensuring contact over an angle of approximately
90◦. Applying the fixed pin allows setting up the rolls in four positions, which enables the utilization of
the full circumference of the roll. The tensile forces F1 and F2 can be measured simultaneously during
the test. A major benefit of this test setup is that strain it is not necessary to measure the strain in order
to determine COF. For some tests, the effect of strain on COF can be of interest, while the use of an
extensometer may not be reasonable or warranted in some other cases.

Figure 17. Schematic view of the testing device: 1—device frame, 2—specimen, 3 and 4—tension
members, 5 and 6—extensometers, 7—working roll, 8—fixing pin.

Furthermore, the BUT test allows determination of the change of COF during the process of
stretching the specimen over the roller. This change may be related to the change in sheet topography
and increased normal pressure due to sheet deformation [15,70]. Furthermore, it may be related to a
change in the contact conditions as a result of the strain hardening phenomenon. As a result of the
friction resistance existing between the roller and the sheet, one gets F1 > F2 (Figure 17). Weinmann
and Kernosky [71] developed a transducer that can be used to measure tension in metal strip while
letting it move over the die shoulder. The transducer portion that is simulating the die shoulder
is cylindrical and mounted on the body on a pair of bearings. Similar to the BUT test, the friction
was determined based on both the front and back-tensions. So, the friction is not measured directly.
Bay et al. [16] developed a test design that is variant of that of Weinmann and Kernosky [71], which
measures not only back and front tensions but also the torque on the counter-sample (pin) directly.
The friction apparatus is designed in such a way that the sheet strip clamped in two claws is bent
around a non-rotating pin. Drawing the strip with the front claw while breaking the back claw ensures
sliding of the strip around the pin under the controlled back-tension. To simulate the influence of
varying tool temperature, authors designed electric heaters which can be inserted in the tool-pin holder.
Moreover, in order to control the temperature, water-cooling channels were drilled in elements of
friction apparatus.

Dilmec and Arap [72] proposed a test apparatus to measure the COFs for both the flange and the
radius regions using only a single experiment. The operating procedure of this apparatus is based on
the principles of strip drawing test and BUT methodology. Since the press moves vertically, the flat
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die simulator and the radial strip drawing test could not be individually designed. The section of the
system that represents friction conditions at the die radius region, is shown in Figure 18. The COF
for the radius region can be calculated using the front tension force registered by the press control
system and the back-tension force using the Euler equation (Equation (15)). Then the analysis of
variance method was used to investigate the effect of the blank holder force, die radius, drawing speed,
the surface roughness of the tools, and the type of lubrication on dynamic COF between the sheet
metal flange and the radius regions of the tools.

Figure 18. Schematic view of BUT device.

Many experimental and numerical works have contributed to the knowledge about tribological
phenomena on the edge of a rounded die [70,73,74]. The BUT tests consist of making differential
measurements by carrying out two tests, one after the other, one by drawing over a fixed circular roller,
the other over a freely rotating roller [74]. A major drawback in all studies of BUT test is that friction
measurement requires repeated measurements of the front and the back forces.

In another variant of the BUT test, the bending force can be determined by conducting the test
with a free rotating roller or in conditions of minimized friction between the roller and the plate.
The difference in the values of tensile forces for fixed and rotating rollers is attributed to the bending
force of the sample around the roll. The test is carried out in two stages (Figure 19) [75]—(1) with a
blocked roller and (2) with a mobile roller.

Figure 19. Schematic diagram of the bending under tension test realized by (a) fixed and (b) rotatable pin.

Taking into account the influence of sheet thickness and the radius of the counter-samples,
the dependence relationship determining the COF based on the measurement of tensile forces in both
stages is as follows [75]:

µ =
1
γ

2R + g
2R

ln
F1a − (F1b − F2b)

F2a
(17)

where R is the radius of the counter-sample, γ is the contact angle, g is the sheet thickness, F1a is a
pulling force on a fixed counter-sample, F1b is a pulling force on a rotatable roller, F2a is a back-tension
force on a fixed counter-sample, F2b is a back-tension force on a rotatable roller, Fb = F1b – F2b is the
bending force of the specimen over the roller.
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Sniekers and Smits [76] used a torque sensor on the pin in the BUT test to avoid the second step
of the test when the pin is free to rotate. In this method, the COF is determined by measuring the
torque from:

µ =

F0D
R√

F2
1 + F2

2 −
(F0D

R

)2
(18)

where F0D represents the torque on the pin (Figure 20), F1 and F2 are the pull force and the back-tension
force, respectively.

Figure 20. Equilibrium of the torque in the BUT, prepared based on [76].

The ratio of the friction stress τ [77] and the contact pressure p given by Equation (16) giving the
COF are given by Equations (19) and (20), respectively.

τ =
2T
πwR2 (19)

µ =
4T

πR(F1 + F2)
(20)

where w is the strip width and R is the pin radius.
Sube [78] proposed a variation of the Equation (20) as:

µ =
(F1 + F2) − Fb

2wR
(21)

where Fb is the bending force obtained as a difference of the pull force from the back force (Equation (22)),
represented by F∗1 and F∗2 in Equation (22), respectively. These forces are obtained when the test is
conducted with the pin free.

Fb = F∗1 − F∗2 (22)

Direct measurement of the central force induced in the specimen is not possible in the BUT test [79].
This can be a serious problem when the specimen is made of a material that is strain-rate sensitive
because it may lead to force estimation errors and, as a result, substantial errors in COF calculations.
One of the limitations of the BUT test is the difficulty of isolating the bending effect based on theoretical
calculation from the approximated equation of Swift’s bending force. To overcome this limitation,
Hassan et al. [79] developed a BUT punch friction test in which an improved analytical friction model
that accounts for the bending was proposed. This proposed method enables direct measurement of
tensile forces from F1 and F2 (Figure 20). Punch displacement is then measured using displacement
capacitive transducer. The pin holder of the rig is supported by a specially designed head that can
replace the chuck.
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In general, the friction coefficient value can be determined from [79]:

µ =
1
θ

ln
[

F1

F1 + Fb

]
(23)

where Fb is the bending force.
In order to isolate the effect of friction from that of bending and hence compensate the bending

effect, two test methods are commonly employed: (1) using a fixed pin and (2) using a rolling pin.
The actual friction coefficient is then calculated using an equation proposed by Wagoner et al. [80]:

µ =
[ 1
θ

ln
F1

F2

]
pin
−

[ 1
θ

ln
F1

F2

]
roller

(24)

where θ is the angle of contact between specimen and roller/pin.
Gali et al. [81] developed the hot forming friction measurement setup (Figure 21). This tribometer

is capable of measuring the COF between the pin and a metallic strip contact stretching at different
strain rates and temperatures. The apparatus consisted of a friction measurement assembly and
a loading system, with two synchronized linear actuators that apply a constant strain rate to the
sample. A strip was placed around the rotating heater and pulled on both ends by a tensile force.
The strip was also compressed by the steel pin, which has an embedded load cell to measure the normal
load. The tribometer was developed at the University of Windsor, and the principles of its operation,
including the details of the strain measurements, are described in an earlier paper of Das et al. [82].
They additionally installed a camera system over the top face of the strip to measure changes in the
initial diameter of circular grids inscribed on the strip’s surface and then used it for in-situ evaluation
of the major and minor strains in the hot zone. The results of testing AA5083 aluminum alloy sheets at
different temperatures showed that COF increased, and this can be attributed to the effects of softening
tribolayer at high temperature and abrasion at low temperature [81].

Figure 21. Schematic of the hot bending under the tension test.

While forming the draw pieces with complex shapes, such as car bodies, it is important to utilize
dies having varying outline curvatures. When cylindrical counter-samples are used to model friction
conditions on dies with varying outline curvatures and varying radii of edge fillets, it is difficult to
get results on the edge of the die that fully reflect the friction conditions. To overcome this limitation,
Trzepieciński and Lemu [32] proposed an experimental and numerical method to describe the friction
in sheet metal forming. Due to the rounded shape of the proposed counter-samples (Figure 22), it was
found necessary to employ a different method of determining the forces can eliminate friction through
the steps listed below [32]:
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• determining the pulling and back-tension forces experimentally, i.e., by friction test, using a
counter-sample having a non-cylindrical profile,

• using numerical methods to determine the pulling and back-tension forces under frictionless
conditions (µ = 0) employing a counter-sample with a non-cylindrical profile.

Figure 22. Proposed methods for the determination of the COF on a die edge with a (a) convex and (b)
concave profile.

Considering that the sample is bent at an angle of 90◦ while conducting the friction test, the COF
is determined by [32]:

µ =
1
γ

2R + g
2R

ln
F1exp − (F1num − F2num)

F2exp
(25)

where R is the counter-sample radius, g id the thickness of the sheet, F1exp is the pulling force
(experimentally determined), F1num is the pulling force (numerically determined), F2exp is the back-tension
force (experimentally determined), and F2num is the back-tension force (numerically determined).

The knowledge of intensity and distribution of the contact and friction stresses over the die
surface in SMF is important both from the tool wear analysis and the die design. Jurkovic et al. [83]
proposed a method of defining contact stresses and determination of COF. A more detailed figure can
be found in the aforementioned reference [83]. For the determining method of direct contact stresses,
the authors elaborated and designed sensors for the measurement of normal stresses and tangential
contact stresses. The contact stresses are measured by means of pins with transducers.

4.5. Friction Testing in the Draw Bead Region

The draw bead test (DBT) is a concept developed by Nine [84] for friction modeling at the
draw bead in sheet metal forming. Draw beads compensate for the material flow resistance around
the perimeter of the draw piece or to change the stress state in specific regions of the draw piece.
The curvature of the metallic sheet passing the draw bead model (Figure 23) changes frequently. Thus,
the aim of the method is to enable separation of the deformation resistance in the sheet from the
frictional resistance. In DBT, the values of the pulling and the clamping forces are measured when
pulling the strip over fixed (Figure 23a) and rotating (Figure 23b) rollers. Drawing the sheet over the
set of rotating rolls minimizes the frictional resistance.
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Figure 23. The concept of determining frictional resistance: (a) fixed rollers, (b) rotatable rollers,
(c) geometrical parameters of draw bead.

When the wrap angle of the middle roller is 180◦, the difference in the drawing force for the
rotating and fixed rollers may be attributed to the friction process and used to calculate the value of the
COF according to the relationship [84]:

µ =
FF − FR

π·NF
(26)

where FF is the pulling force, FR is the pulling force, and NF is the normal force or clamping force.
These forces are obtained from the fixed rolls, the freely rotating rolls, and the fixed beads, respectively.

The change of friction conditions may be obtained by changing the lubrication conditions, shape,
and dimensions of the draw bead model, wrap angle of the counter-sample, and the drawing speed of
the sheet [85]. The influence of the manufacturing tolerance of the sheet metal on the disturbance of the
recorded forces is often omitted in DBTs. The influence of the values of surface roughness parameters
on the value of the COF was discussed in detail in Skarpelos and Morris [86], which found that metallic
sheets with a higher Ra parameter showed a lower value of COF.

The value of the COF for a wrap angle α different from 180◦ is determined from [87]:

µ =
sinα
2a

PF − PR

NF
(27)

where α represents a quarter of contact angle of the actual engagement of the strip over the middle roll.
The difference between forces PF and PR in the numerator of Equation (27) is the force that

expresses the frictional resistance. This force is a component of frictional resistance occurring in the
direction of the sample drawing. This resistance is associated with the occurrence of friction on the
entire length of the contact arc on each of the three rollers equal to 2α = π rad (Figure 23c). The value
of the friction force FT = PF − PR is burdened with the error resulting from the assumption that
the use of rotating rollers eliminates friction. The normal force NF is a component of the resultant
pressure on the direction normal to the direction of drawing the sheet, and thus, the value of the COF
determined according to Equation (27) cannot be identified with the classical Amontons–Coulomb
friction coefficient.

When the middle roller’s maximum displacement becomes equal to its diameter, its wrap angle
becomes different from 180◦, because it is necessary to ensure adequate clearance c (Figure 23c) between
the counter-samples. This prevents the blocking of the specimen. The value of the wrap angle on
all rollers is related nonlinearly to the value of clearance c and the displacement of the middle roller,
as shown in Figure 24. Excessive drawing resistance may occur, and as a result, test samples of mild
steel sheets may break when the wrap angles get larger. In contrast, the use of excessive clearance c
between the rollers can cause an unfavorable change in the way the sheet deforms [88]. According to
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the recommendations in Nanayakkara et al. [87], the side clearance c should be equal to approximately
twice the sheet thickness:

c = g + s (28)

where s is an additional margin equal to 0.77 mm for g = 0.8 mm sheet thickness.

Figure 24. The relation between the total angle of wrap 2α and the middle roller penetration z.

Figueiredo et al. [4] used the draw bead simulation (DBS) test to investigate the tribological
properties of DP600 dual-phase steel sheets. Results of experimental tests allowed to conclude that
the die material surface roughness has a significant effect on COF. A major drawback in all studies on
friction measurement in the draw bead region is that the determination of friction demand repeated
measurements of the drawing force using fixed and rotating counter-samples. Such a way of the
determination of the value of COF leads to large uncertainties due to scattering [89]. In order to avoid
this problem, Olsson et al. [90] proposed a new draw bead test that can measure the friction force
acting directly on the tool radius using a build-in piezoelectric torque transducer. The method enables
recording the breakdown of lubricant film as a function of the drawing distance. For coated sheet
steels, the friction coefficient is assumed constant with contact pressure. One of the first comprehensive
tests of frictional resistances of zinc-coated sheets using the BUT and DBS tests have been conducted
by Vallance and Matlock [91].

The conventional methodology of the DBS test is only valid to measure an average COF over
the pressure range. However, the new methodology proposed by Kim et al. [92] can be employed to
determine friction coefficients from draw-bend friction tests involving pressure non-uniformity. In this
methodology, contact pressure maps that are obtained from numerical simulations, contrary to the
uniform pressure assumption, are used to build the COF model expressed as a 2nd order polynomial
of pressure.

4.6. Friction Modeling in the Punch Curvature

In the tensile strip test (Figure 25), developed by Duncan et al. [93], a strip specimen of sheet metal
is pulled over two rollers. This is done to simulate the frictional phenomena between the punch and
sheet metal in sheet forming. While the pulling force and the strain are measured on one side of the
roller, the back-tension force on the second side of the roller is calculated from the measured strains,
i.e., using the stress-strain relationship of the test material [94]. Assuming that the COF is constant
over the rollers, its value may be determined using the formula [95]:

µ =
2
π

ln
Fp

Fb
(29)

where Fp is a pulling force and Fb is a back-tension force (Figure 25).
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Figure 25. Schematic diagram of the tensile strip test.

Similar to that introduced by Duncan et al. [93], the apparatus developed by Lovell and Deng [19]
is a “plane-strain bend/unbend tension” device that stretches and bends the test specimens of the metal
strip. COF between the die and the workpiece, and the surface roughness of the deformed sheets,
could be measured under different lubrication conditions, strip widths, testing speeds and pin radii.

Hao et al. [96] studied the friction at the tool-workpiece interface using the “U” shaped friction
test. As depicted in Figure 26, the strip specimen is pulled over two pins and around a rounded die,
which is mounted on a load cell. The pulling force, F1, and the strip tension on the other side of the
pins, F2, are measured during the test. In the” U” shaped strip friction test, the COF is estimated from
measurements of strip tensions on each side of the die. The force and moment equilibrium on an
element of the strip give the following formulas that can be used in determining the COF µ, the average
contact pressure ps, and the average friction stress f [22] as given in Equations (30), (31), and (32)
respectively:

µ =
1
θ

ln
F1

F2
(30)

ps =
F1 + F2

2wR
(31)

f =
F1 − F2

wRθ
(32)

where F1 and F2 are the strip tensions (Figure 26), R is the radius of the die, w is the strip width, and θ
is the wrap angle of the strip on the die.

Figure 26. Schematic of the “U” shape strip test, prepared based on [96].

This test is a modification of the tensile strip test, which was developed at Ohio State University
(OSU) [80]. It was designed for the experimental determination of the COF in conditions of variable
wrap angle of the sheet over a cylindrical counter-sample (Figure 27). As in the case of the bending
under tension test, the resistance associated with sample bending and drawing can be separated by
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running the OSU test on fixed and rotating rollers. The rotating rollers allow the elimination of the
effects of friction and allow the measurement of forces required to bend the specimen. The undeniable
advantage of the OSU test is to ensure the realism of the deformation process of the sheet and
contact conditions:

• simultaneous occurrence of the bending and stretching of the sheet,
• the wrap angle of the counter-samples changes gradually with the increase in their displacement.

Figure 27. Schematic diagram of the OSU friction test: F1—the force acting on the center of the
specimen, F2—is the force acting in side walls, H—punch height, N—pressure force, R—radius of
cylindrical counter-sample, γ is the contact angle, ε1 and ε2—strains of the specimen in the center and
side walls, respectively.

Apart from the effect of bending and straightening the sheet, the relationship between the tensile
forces F1 and F2 is equal:

F1

F2
= eγµ (33)

where γ is the wrap angle of the counter-sample, µ is the COF.
After rearranging Equation (33), the COF takes the form:

µ =
1
γ

ln
F1

F2
(34)

The plastic deformation of the sheet caused by bending around the counter-sample causes changes
in the topography of the surface, and consequently, the local pressures relative to the actual contact
surface is smaller than the nominal pressures taking into account the nominal contact surface [70].

4.7. Friction Conditions Under Sheet Stretching

Figure 28 illustrates a schematic view of an apparatus developed by Azushima and Zhu [97] for
the Tension-Bending Test (TBT) and represents stretching over the punch radius of curvature and
under the punch nose. The sheet metal strip is clamped with the end of the actuator ram head, and the
other end is subjected to a tension load. The drawing load is then measured by means of a strain gauge
load cell inserted between the ram load and the chuck. The test may be conducted under different
drawing speeds, the geometry of the die, surface topography of die, and lubrication conditions.

The COF is determined using following equation [97]:

µ = 2
FD − FT − FB

θ(FD − FT)
(35)

where FD is drawing load, FT is back-tension force, FB is the Swift bending tension [98], and θ is the
die angle.
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The average contact pressure is defined as [97]:

pav =
FT + FD

2wR
(36)

where R is the die radius, and w is the specimen width.
TBT has been used by Azushima and Zhu [97] to study the lubrication characteristics at the

interface between the A1100 aluminum sheet and tool in the die corner of deep drawing. They found
that the surface roughening becomes predominant when the average contact pressure gets lower,
and thus, the COF becomes constant. In addition, increasing average contact pressure leads to the
flattening of surface asperities for higher average contact pressure, and hence, the COF decreases.
Azushima et al. [98] measured the COF using TBT, and they observed that the asperity flattening
occurred for the specimen with a rough surface, which dominated the boundary lubrication regime,
and the COF remained constant. It is well known that, due to the geometry of contact in TBT,
the asperity flattening and the surface roughening took place due to the plastic strain.

Figure 28. Schematic illustration of the flat-die strip drawing.

5. Friction Testing in Incremental Sheet Forming

In the ISF process, a rigid tool with a rounded tip is widely used do deform the sheet metal.
To avoid possible scratch on the sheet surface, an Oblique Roller-Ball (ORB) tool in combination with
the path generation algorithm, was developed by Lu et al. [99]. To better understand the frictional
effect, the authors also developed an analytical model of friction based on the stress analysis. In the
design (Figure 29), a ball cap is clamped by the tool arm to a certain angle instead of clamped vertically
in the conventional design. The rotation of the spindle will not change the position of the rollerball.
The measured forming loads, i.e., horizontal and vertical forces, show the cyclical change in tool forces
tends to be a “U” shape. The force difference after passes suggests the varied friction conditions.

Figure 29. Schematic representation of the ORB test: c—CNC spindle, 2—tool arm, 3—ball bearings,
4—ball cup, 5—roller ball; prepared based on [99].
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Precise calculation of COF is not easy since the measured horizontal force contains not only the
friction but also the forming force. According to the approach of Xu et al. [100], Lu et al. [99] defined
friction indicator µ* in the analysis to evaluate COF. This friction indicator is the ratio between the
horizontal and vertical force components at the mid-position of the groove in each pass, according to
Equation (37) [99]:

µ∗ =
fH∣∣∣ fZ∣∣∣ = f riction + f orming load∣∣∣ fZ∣∣∣ (37)

where fH is the horizontal (or in-plane) force resisting the motion of the forming tool in the horizontal
plane, fZ is the vertical force acting normal to the horizontal plane and flattens the sheet.

It should be noted that µ* is not only the result of friction conditions but also related to other effects
such as strain hardening phenomenon and geometry of the desired component. The experimental
friction tests revealed that lower friction could be obtained using roller-type tools. This reduction
is more apparent when the pressure between the tool and sheet is high up to a specific level [99].
Durante et al. [101] concluded that the forces in SPIF continue to increase in the initial few contours
due to the dynamic equilibrium between sheet thinning and strain hardening. Therefore, the friction
indicator should be calculated once the force has achieved a steady-state.

Wei et al. [102] evaluated the COF using Equation (38) using sliding tests on 20 mm wide specimens,
fixed at the ends. As illustrated in Figure 30, a tool path alternates between a stroke, back and forth
twice along an 80 mm straight line [101], similar to the straight groove test, was used by Kim and
Park [103] and more recently by Ilyas et al. [104] to evaluate forming limit curves in ISF.

Figure 30. Sliding test path for the evaluation of COF (number of tool passes have been indicated by
1–3 and 2–4), prepared based on [101].

The formula for the determination of the COF value is [102]:

µ =

∣∣∣∣∣Fh
Fv

∣∣∣∣∣ (38)

where Fh and Fv are horizontal and vertical components of the total force, respectively.
In order to evaluate the modulus of the equivalent force in the sheet plane, it is enough to calculate

the force Fh [101]:

Fh =
√

F2
a + F2

b (39)

where Fa and Fb are values of the horizontal component forces evaluated in the central zones for sides a
and b in Figure 31, respectively, and represent the moduli of the two components of the horizontal force.

Analysis of variance of the effect of some forming parameters (sheet thickness, tool diameter,
forming angle, and step size) on the value of friction indicator µ* conducted by Wei et al. [102]
revealed that the response of friction indicator to parameter variations is relatively complex. During
forming, the mechanical properties of the sheets change during the strain-hardening phenomenon [6].
Furthermore, the tool-sheet contact area changes when the forming is performed with an altered set
of parameters [105]. These changes affect the values of force components, and hence, the friction
indicator [102]. It should also be noted that the results of roughness findings of Wei et al. [102] are
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different from those presented in the ISF literature. The material type observed to be the major factor
influencing the friction condition, and hence, the roughness. Recently, a number of researchers mainly
studied the friction indicator as to the function of tool rotation. In many cases [100,101,105], it has been
revealed that the friction indicator has a significant effect on the roughness.

Figure 31. Sides of the tool path during the forming of pyramid frusta.

In the case of the pin-on-disc test, the tool contacts the workpiece over the same rounded loop
repeatedly; whereas in the case of the SPIF, the forming tool never exactly touches the same workpiece
area. Despite this, Petek et al. [106] used a conventional pin-on-disc test shown in Figure 21 to study
the coating ability to prevent the adhesion of the workpiece at initial testing conditions during SPIF.
Pin-on-disc test is also applied by Minutolo et al. [107] to determine COF value for a numerical model
of the ISF process. The sliding speed was set equal to the punch feed rate in the motion of the groove.
According to the authors′ conclusion, results of finite element-based computations were observed to
have good agreement with the experimental ones, showing that pin on disc test can be used for testing
friction in the SPIF process. Hussain [108] successfully studied the different lubrication strategies
during ISF of titanium sheets using pin-on-disc tribometer.

Saidi et al. [109] proposed an approach estimating the COF in SPIF based on the values of forming
forces Fx, Fy, and Fz (Figure 32) while forming the truncated cones with wall angle α. The authors
took the following assumptions: (i) value of COF varies from one zone to another, and (ii) COF is
estimated on the basis of a uniform displacement of the tool with respect to the workpiece. Based on
these assumptions, the COF was calculated by the following relation [109,110]:

µ =

√
F2

x + F2
y√

F2
z

(40)

Figure 32. Relationship of the forming force components.
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6. Conclusions

In the SMF occurs various zones in terms of stress, deformation, sliding velocity, and contact
conditions. Therefore, over the years, a number of tribological tests to model the phenomenon of
friction in individual regions of sheet metal to be formed have been developed. The aim of this review
is (i) presentation of tribological tests aimed at determining the value of COF occurring in SMF and
ISF, while maintaining the actual contact geometry and kinematics of the tool movement, and (ii) the
discussion of the disadvantages and limitations of specific tests. Although most of the friction tests
were developed many decades ago, they are still valid and used by many authors. Although the
methods to determine friction resistance in conventional SMF at different temperature conditions
have been fairly well understood [10,15,16,50], there are a very limited number of experimental tests
modeling conditions in ISF [102,104,105,109]. This is due to the difficulty in separating the frictional
resistance from the plastic deformation resistance in the process [110].

Based on the literature review, the tribological tests can be classified into direct and indirect
measurement tests of the COF. In indirect methods of determination, the COF is determined on the
basis of measuring other physical quantities, e.g., friction force and normal force [40,50–53,55,57,58,66].
Based on the adopted model, the COF is calculated. The disadvantage of this type of methods is
that they allow the determination of the average value of COF, while they do not allow measuring
and determining the real friction resistance. Most of the tribometers, which are typically used to
measure the wear resistance, allows determining the instantaneous value of the COF. The rotational
specimen causes that the length of the friction track is unlimited. This intensifies the wear processes and
causes overestimation of the value of COF. Assigning the COF determined in a pin- and ball-on-disc
tribotesters to the conditions arisen in conventional SMF should be limited. However, the pin-on-disc
and ball-on-disc are able to determine the effect of directional topography on the wear and COF [111].

Most of the friction tests, are able to capture the COF values of tool-workpiece interfaces by controlling
critical parameters, such as lubrication conditions [19,20,62,112], microgeometry of contact (surface
roughness of sheet and tools surfaces) [50,53,91], contact pressures [40,90], temperature [42,46,47,81], tool
material and coating applied [21,22,38,45], and sliding velocity [33]. The multitude of parameters and
phenomena affecting frictional resistance means that the results obtained in various tribological tests
are not comparable [35].

The BUT and DBS tests could not directly measure COF in such a way that their value has
heavily relied on the material behavior of tested materials. During friction tests, the sheet is plastically
deformed, which affects the value of process forces used to evaluate the value of the COF. In contrast,
the plastic deformation of the sheet strip specimen in BUT tests allows determining the evolution of
the value of the COF with the increased contact pressure.

In the classical Coulomb model commonly used in the solid mechanics, the friction force is
proportional to the normal pressure. The ratio of the friction force to the contact pressure is handled as
a material constant, named the COF [113]. In metal forming operations exist high local pressures which
intensify the effects of adhesion and plowing in the friction resistance. In such conditions, the usage of
the formula for the determination of the COF based on the Coulomb friction model (Equation (1)) is
limited to small pressures.

In SDT, it was realized that in the presence of the cylindrical counter-samples, the relation of the
normal force and the friction force is nonlinear [15,35]. It is a result of a non-proportional increase in real
contact area with an increase in normal force. This phenomenon is observed by the non-linear decrease
of the value of the COF (Equation (1)) with an increase of normal force [35]. In the case of lubricated
conditions and tests with flat counter-samples, the value of pressure is crucial in the determination
of the COF. As shown by Mousavi et al. [114], since the lubricant film is under relative high surface
pressure, a uniform distribution of lubricant over the contact area rarely takes place. Therefore,
lubricant pockets can provide the permanently reserved lubricant during the sheet metal forming.



Metals 2020, 10, 47 29 of 34

The main problems observed in warm and hot forming processes are that high friction and wear
occur because of high adhesion between the workpiece material and tool surface, and surface-initiated
fatigue. The occurrence and prevention of galling mechanism are investigated by using tribometers
for metal forming at elevated temperatures [12,27,63]. The typically used pin-on-disc tribometer to
characterize frictional contact in hot stamping do not reproduce appropriate contact conditions. First,
the cyclic contact of the pin with the specimen does not correspond to real contact conditions [58].
Second, the build-up in the front of pin causes plowing friction and causes overestimation of COF.
Third, if the ball-shaped pin is used, the real contact area changes during the test [111]. In fact,
according to the Coulomb law, the COF is independent of the contact area. However, the applicability
of Coulomb friction model is very limited in the description of contact phenomena in hot SMF due to a
high shear of adhesion in total contact resistance.
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