
Food Quality and Preference 106 (2023) 104792

Available online 31 December 2022
0950-3293/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Short Communication 

Critical evaluation of assessor difference correction approaches in 
sensory analysis 

Justus L. Großmann a, Johan A. Westerhuis a,*, Tormod Næs b, Age K. Smilde a 

a Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands 
b Nofima AS, Ås, Norway   

A R T I C L E  I N F O   

Keywords: 
Sensory analysis 
Permutation 
Product effect significance 
Scaling effect 
Mixed ANOVA 
Mixed assessor model 

A B S T R A C T   

In sensory data analysis, assessor-dependent scaling effects may hinder the analysis of product differences. 
Romano et al. (2008) compared several approaches to reduce scaling differences between assessors by their 
ability to maximise the product effect F-values in a mixed ANOVA analysis. Their study on a sensory dataset of 14 
cheese samples assessed by twelve assessors on a continuous scale showed that some of these approaches 
apparently improved the F-value of the product effect. However, this direct comparison is only legitimate if these 
F-values originate from the same null distribution. To obtain the null distributions of the different correction 
methods, we employed a permutation approach on the same cheese dataset also used by Romano et al. (2008) 
and a random noise simulation approach. Based on the empirically obtained null distributions, we calculated the 
corrected product effect significance to directly compare the performance of the preprocessing methods. 

Our results show that the null distributions of some preprocessing methods do not correspond to the expected 
F-distribution. In particular for the ten Berge method, the null distribution is shifted towards higher F-values. 
Therefore, an observed increase of the product effect F-value, as compared to the F-value on raw data, does not 
necessarily lead to increased product effect significance. If p-values are calculated based on such inflated F- 
values, significance may thus be overestimated. In contrast, calculation of p-values directly from the empirical 
null distributions obtained by permutation provides a common ground to properly compare method perfor-
mance. Moreover, we show that differences in reproducibility between assessors, as they exist in real-world 
sensory datasets, may lead to overestimation of product effect significance by the mixed assessor model (MAM).   

1. Introduction 

In food science, sensory panels are commonly used to assess the 
sensory profiles of food products (Amerine, Pangborn, & Roessler, 
1965). Despite training and calibration, individual differences between 
assessors regarding the use of the assessment scale may obfuscate the 
view on the product profiles. These individual differences manifest 
themselves in a level effect (differences in assessor means), a scaling 
effect (differences in product effect magnitude), a disagreement effect 
(product:assessor interactions not explained by scaling differences) and 
a variability effect (differences in reproducibility) (Brockhoff, 2003). 
The handling of these undesired effects has been extensively discussed in 
literature (Brockhoff & Skovgaard, 1994; Brockhoff, Schlich, & Skov-
gaard, 2015; Næs, 1990). 

Univariate analysis of continuous sensory data is often conducted 
using a 2-way mixed ANOVA approach with a fixed product effect ν, a 

random assessor effect a and a random product:assessor interaction g. 
Sensory assessments for each attribute in a study with I assessors, J 
products and K replicates can generally be described using an ANOVA 
model of the following kind: 

yijk = μ + ai + νj + gij + εijk (1)  

where εijk ∼ N
(
0, σ2) and independent (Næs, 1990). Eq. (1) shows that 

the aforementioned level effect is captured in a, whereas the scaling and 
disagreement effects will be absorbed by the interaction term g. The F- 
test for the product effect ν in the mixed ANOVA (Eq. (1)) corresponds to 

Fν =
MSν

MSg
(2)  

with MSν and MSg referring to the mean squares of the product effect and 
the interaction, respectively (Næs & Langsrud, 1998). Under the null 
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hypothesis 

H0 : ν1 = ⋯ = νJ = 0 (3)  

i.e. no difference exists between products, Fν is expected to be F- 
distributed with J − 1 numerator and (I − 1)(J − 1) denominator degrees 
of freedom (DFs), if the assumptions about independence, equal vari-
ance and normal-distributed residuals hold. 

The significance of the product effect is commonly expressed as a p- 
value (pν). The p-value p*

ν associated with an observed product effect F- 
value F*

ν represents the probability of obtaining an Fν value that is at 
least as high as the observed F*

ν value in a situation where H0 is true. H0 is 
rejected for F*

ν if p*
ν is lower than the predefined significance level α. 

A statistical test is called exact if the probability of a false positive 
result on H0 data (type 1 error) is exactly the same as the preset sig-
nificance level (e.g. α = 0.05). A statistical test is termed conservative if 
this probability of a false positive result on H0 data is never higher but 
generally lower than the preset significance level (Good, 2005). In 
contrast, an anti-conservative test has a probability of producing false 
positive results that is generally higher than the preset significance level. 

Equation (2) shows that absorption of the scaling variance into gij 
leads to lower values of Fν, and thus to a decrease in product effect 
significance. Therefore, it is desirable to handle the scaling differences 
between assessors in order to obtain a more significant product effect. 

A number of strategies have been devised to account for scaling 
differences prior to the application of 2-way mixed ANOVA. Romano, 
Brockhoff, Hersleth, Tomic, and Næs (2008) compared four univariate 
preprocessing methods to obtain assessor specific scaling factors – 
standardisation, the ten Berge approach, which corresponds to the 
scaling part of Procrustes rotation (Næs, 1990; Ten Berge, 1977), and 
two variants of the assessor model (Brockhoff & Skovgaard, 1994) – by 
applying 2-way ANOVA to the scaling-corrected data and assessing the 
resulting product effect F-values. Their results showed, i.a., that the ten 
Berge method consistently increased Fν values, delivering the highest Fν 
values for 8 out of 12 analysed attributes and seemingly making the 
product effect for the fattiness attribute significant at the α = 0.01 sig-
nificance level. 

More recently, Brockhoff et al. (2015) conceived the Mixed Assessor 
Model (MAM) as an extension to the decomposition in Eq. (1). In the 
MAM, the interaction term gij is separated into a disagreement term dij 
and an assessor-specific scaling term βixj: 

yijk = μ + ai + νj + βixj + dij + εijk (4) 

The scaling term βixj is composed of the centered product averages xj 

as a surrogate of the true product effects νj and the assessor-specific 
scaling factors βi, with 

∑I
i=1βi = 0. 

Fν is calculated as the ratio of MSν and MSd (mean squares of the 
disagreement effect d) with J − 1 and (I − 1)(J − 1) DFs, respectively. 
Brockhoff et al. (2015) also present two modifications to the MAM: The 
conditional MAM approach (MAMC) applies Eq. (4) only if the scaling 
effect is significant at a significance level of, e.g., αscaling = 0.2; and the 
conventional ANOVA (Eq. (1)) is applied otherwise. The adjusted MAM 
(MAMA) only removes the scaling effects of assessors with positive 
scaling coefficients from g, as a negative scaling coefficient for a given 
assessor indicates cardinal disagreement with the majority of assessors. 
The conditional adjusted MAM (MAMCA) combines both approaches, so 
scaling variance is only removed for assessors with a positive scaling 
coefficient and if pscaling < αscaling. In the modifications of the MAM, the 
number of denominator DFs corresponds to (I − 1)(J − 1) − ι, where ι is 
the number of assessors whose scaling effects were removed. 

In this paper, we re-analyse the cheese dataset presented in Romano 
et al. (2008), focusing on significance of the estimated product effects 
after applying different assessor difference correction methods. Using a 
permutation approach, we investigate the null distributions of the 
different aforementioned methods and check if the actual null 

distributions correspond to the respective assumed F-distribution. It is 
essential to calculate product effect significance from the correct null 
distribution; otherwise, the obtained type I error rates are inaccurate, i. 
e., the product effect for a given sensory attribute may falsely be deemed 
significant at a given significance threshold. Thus, obtaining accurate p- 
values is crucial in the process of deciding if a sensory attribute should 
be further considered for analysis. 

Additionally, we will show for each method how many of the sensory 
attributes in the given dataset have been improved with respect to 
product effect significance by correcting for the assessor scaling differ-
ences, as compared to applying no correction at all (raw). Although this 
is not a thorough power analysis, it already shows some clear differences 
between the methods. 

2. Permutation strategy 

Romano et al. (2008) compared the aforementioned preprocessing 
methods only by their effect on the size of Fν. In this study, we set out to 
investigate the effect of several preprocessing and decomposition 
methods on ν significance using the same dataset as Romano et al. 
(2008), by comparing the Fν values obtained after preprocessing to their 
respective null distributions. This way, we can benchmark the methods 
with accurate type I error rates. 

In order to obtain the H0 distributions for the different methods 
empirically, the case of H0 : ν = 0 can be simulated repeatedly, 
recording the observed Fν values. A straightforward way to achieve this 
is to randomly permute the values of an attribute in the given sensory 
dataset. Then, the preprocessing method under investigation is applied 
to the permuted data, after which the product F-value is calculated ac-
cording to equation (2). This is repeated for each permutation iteration 
and the resulting F-values are collected to yield the H0 distribution. 
Permutation enables us to mimic the absence of certain effects in the 
data while ensuring that the resulting data structure resembles the 
actual dataset. The null distributions obtained through permutation can 
expose statistical tests that are too optimistic (anti-conservative), and 
corrected critical values and p-values can be calculated based thereon. 
As sampling all possible permutations is not computationally feasible, 
we apply a Monte Carlo permutation approach, where a random subset 
of all possible rearrangements is considered for analysis (Phipson & 
Smyth, 2010). Under the assumption that observations are exchange-
able, random permutation tests produce asymptotically exact p-values 
(Good, 2005). 

By applying unrestricted permutation, i.e. shuffling the readings of 
an attribute in a completely random fashion, the product effect ν as well 
as the assessor effect a and the interaction g vanish, resulting in a data 
structure that is equivalent to 

yijk = μ+ εijk (5)  

with εijk ∼ N
(
0, σ2) and independent, i.e. the residual error variance σ2 

is equal between assessors. The Fν null distributions obtained by 
applying mixed ANOVA (Eq. (1)) on the permuted, preprocessed data 
will be equivalent to those obtained by performing the same procedure 
on data sampled directly from a normal distribution N

(
0, σ2). The Fν null 

distributions are expected to be functions of I and J and to be identical 
between all attributes. A comparable approach has previously been 
applied to test significance in generalised Procrustes analysis (GPA) 
(Wu, Guo, De Jong, & Massart, 2002). 

However, as also discussed in Romano et al. (2008), the residual 
error variance of a real dataset may differ between assessors. In that 
case, it can be argued that the error structure should be preserved by 
restricting the permutation so that shuffling occurs within assessors 
only. This leads to a model that includes the mean assessor effect and 
contains an assessor-specific error variance: 

yijk = μ + ai + εijk (6) 
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with eijk ∼ N
(
0, σ2

i
)
, where the Fν null distribution depends on the σ2

i 

of each assessor and may therefore differ between attributes. This 
restricted permutation approach has previously been described in the 
context of sensory data analysis by Xiong, Blot, Meullenet, and Dessirier 
(2008). 

Comparing the two permutation approaches enables us to investigate 
the effect of neglecting the ANOVA assumption of errors being identi-
cally distributed between assessors. While the unrestricted permutation 
approach conforms with the assumptions of the commonly used mixed 
ANOVA, the assumption of unequal error variances corresponding to the 
restricted approach may be more reasonable in reality. 

3. Materials and methods 

The aforementioned permutation approaches were applied to the 
sensory dataset used by Romano et al. (2008) which consists of J = 14 
cheese samples being assessed with regard to 13 sensory properties by 
I = 12 experienced assessors in K = 2 replicates, for a total of 336 as-
sessments per attribute. The assessed attributes comprise four odour 
attributes, eight flavour attributes and fattiness. Each attribute was rated 
on a continuous scale ranging from 1 to 9 with a resolution of 0.1. 

Permutation (unrestricted: 2 ⋅ 105 randomisations per attribute, 
restricted: 106 randomisations per attribute), preprocessing and subse-
quent analyses were performed in R 4.0 (R Core Team, 2020), using aov 
() for fitting the mixed ANOVA and the MAManalysis() function of the 
SensMixed package (Kuznetsova, Bruun Brockhoff, & Christensen, 
2018) for fitting the balanced mixed assessor model (MAM). 

To ensure that the findings of the permutation approaches on the 
given cheese dataset are not just a result of the specific properties of that 
dataset, we also performed a simulation experiment using randomly 
generated data. Random data to complement the unrestricted permu-
tation approach was generated according to Eq. (5) by repeatedly 
sampling from a normal distribution with μ = 5 and σ = 1.5 in order to 
produce data that resembles the given sensory dataset (any values for µ 
and σ are suitable, as long as σ > 0. Random data to complement 
restricted permutation was generated according to Eq. (6) by repeatedly 
sampling I different normal distributions with μ + ai = 5 and the 
respective σi sampled from a uniform distribution with the interval 
(0.1,1). 

The four preprocessing methods were applied as described in 
Romano et al. (2008) in order to obtain a set of assessor-specific scaling 
factors for each attribute. Below, we will briefly describe each of the 
preprocessing strategies, which are applied separately for each attribute. 
We also provide R code for the scaling methods (see section 6). 

The standardisation approach (std) standardises each attribute for 
each individual by subtracting the average value per assessor 

(
yi
)

and 
dividing by the standard deviation (si) over all products. 

ystd
ijk =

yijk − yi

si
(7) 

As a result, for each assessor, each attribute has a mean of 0 and a 
standard deviation of 1. 

The ten Berge method (tenb), which corresponds to the scaling part of 
the Procrustes rotation method, is discussed in detail in Ten Berge 
(1977), Næs (1990) and Romano et al. (2008). This method aims to find 
a scaling factor fi for each assessor that minimises the sum of squared 
differences between the scaled assessor profiles for the considered 
attribute: 

trace
∑

i<p

(
fiyi − fpyp

)(
fiyi − fpyp

)′

(8) 

Each pair of yi and yp – the response values of assessors i and p 
averaged across replicates and zero-centered – multiplied by their 
optimal scaling factors fi and fp should agree as closely as possible. 

The assessor model (Brockhoff & Skovgaard, 1994) takes the 

different use of the scale and different variances σi
2 of the assessors into 

account. The model can be written as 

yijk = ai + βiνj + εijk (9)  

with εijk ∼ N
(
0, σ2

i
)
, and independent, i.e. the residual error variance σ2

i 
is expected to differ between assessors. Here νj represents the product 
effect, ai the assessor means, and βi the different assessor scaling values. 
The βi values are estimated in an iterative procedure where individuals 
are weighted according to their sensitivity. 

Romano et al. (2008) suggest two strategies to remove scaling effects 
based on the β̂ i estimated by the assessor model – a multiplicative (mult) 
approach in analogy to standardisation, and an additive (add) approach. 
In the multiplicative approach (mult), the response data is corrected as 
follows: 

ymult
ijk =

yijk − âi

β̂i

(10) 

However, as discussed in Romano et al. (2008), this approach could 
lead to biased results because during the iterative estimation of βi, the 
individual assessors are weighted differently. The additive approach 
(add) aims to specifically remove the scaling part of the assessor-product 
interaction, 

yadd
ijk = yijk − (β̂i − β̂)νj (11)  

where β̂ is the average of all β̂ i values. 
The balanced conditional adjusted MAM (MAMCA) was fit with the 

default settings given in the SensMixed package, i.e. a scaling effect 
significance threshold of 0.2 and removing only positive scaling effects 
from the disagreement effect g. The balanced conditional MAM (MAMC) 
removes negative scaling effects as well. 

P-values were calculated from the empirical cumulative distribution 
function (ECDF) as the fraction of permutation Fν values at least as high 
as the observed Fν value from the real dataset. In cases where the 
number of exceedances was below 10, the upper tail of the Fν null dis-
tributions was approximated by a generalised Pareto distribution (GPD) 
as described in Knijnenburg, Wessels, Reinders, and Shmulevich (2009), 
using the eva package (Bader & Yan, 2020) for GPD fitting, and the p- 
value was calculated from the GPD parameters. GPD fitting was carried 
out with the fitting window starting at the 0.997 quantile, moving up in 
steps of 1.2⋅10-4 until a good fit (Anderson-Darling test, pAD > 0.5) was 
obtained. 

4. Results and discussion 

4.1. Estimating significance by permutation 

Application of the unrestricted permutation approach (Eq. (5)) to the 
sensory dataset from Romano et al. (2008), followed by the different 
preprocessing methods and mixed ANOVA (Eq. (1)) reveals the Fν null 
distributions shown in Fig. 1. With unrestricted permutation, the errors 
of the considered sensory attribute are pooled across assessors, so that σi 
is equal between assessors. We expect the distributions of the pooled 
errors to be quite consistent between attributes, as the error distribution 
for each attribute should approach a normal distribution with an 
increasing number of assessors, samples and replicates (Liapounoff, 
1900). 

Hence, the null distributions for the different attributes are in close 
agreement among each other (Fig. S2) as well as with the null distri-
butions generated from random, normal-distributed data (Fig. S6) with I 
= 12, J = 14 and K = 2. The Fν null distributions shown in Fig. 1 are 
therefore representative for the null distributions of all 13 attributes. 

The distributions of Fraw
ν , Fstd

ν and FMAMCA
ν are in good agreement with 

the assumed F-distribution with J − 1 and (I − 1)(J − 1) DFs. However, 
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applying mixed ANOVA to data preprocessed with the ten Berge (tenb) 
and assessor model (add and mult) methods produces null distributions 
that are shifted towards higher values of Fν. Consequently, the p-values 
calculated from Fν values produced by these methods assuming that 
their Fν null distributions correspond to an F-distribution with J − 1 and 
(I − 1)(J − 1) DFs are underestimated (Fig. 1B). 

In other words, this test would be anti-conservative, i.e., product 
effect significance would be overestimated for tenb, add and mult. To 
assess the influence of different preprocessing methods on the signifi-
cance of the product effect, a direct comparison of the respective Fν 
values is therefore impossible. Instead, the respective null distributions 
(as shown in Fig. 1A) should be consulted to calculate p-values that can 
be used for a proper comparison between methods. 

The ten Berge preprocessing produces an almost symmetric Fν null 
distribution with a mean of 3.59, showing that application of this 
method will yield a seemingly significant product effect even when 
applied to permuted or randomly generated data where no product 

effect is present. For instance, an Fν value of 3 would be considered 
highly significant if it arises from uncorrected or standardised data but 
clearly nonsignificant if it arises from ten Berge preprocessed data. This is 
in line with previous findings that the closely related generalised Pro-
crustes analysis (GPA) will find a consensus in permuted sensory panel 
data, with the probability of obtaining a consensus by chance increasing 
with the number of attributes considered (Wakeling, Raats, & MacFie, 
1992). Our results show that this is also true for the single-attribute case. 

The null distributions of Fadd
ν and Fmult

ν are shifted towards higher 
values as well. For the given dataset, Fadd

ν follows an F-distribution with a 
nonzero noncentrality parameter, while Fmult

ν exhibits a sharp peak at 1 
and does not resemble an F-distribution. 

Using the empirical Fν null distributions obtained by permutation, 
critical F-values were calculated for each preprocessing method 
(Table 1), which show that the critical Fν values for a typical significance 
level of α = 0.01 differ drastically between methods. Based on the Fν 
values obtained from the unpermuted data (Fig. 2A), corrected p-values 
were calculated directly from the empirical cumulative distribution 
functions (ECDF) or by fitting a generalised Pareto distribution (GPD) to 
the distributions’ tails (Fig. 2B). The corrected p-values show that mixed 
ANOVA on the raw (uncorrected) data and on standardised data yielded 
a significant product effect for 12 out of 13 attributes (#sign), while the 
additive assessor model and the MAMCA increased and the ten Berge 
method and the multiplicative assessor model decreased the number of 
significant attributes (Table 1). Standardisation, the additive assessor 
model and the MAMCA improved pν for the majority of attributes (#impr), 
whereas the ten Berge method and the multiplicative assessor model 
reduced product effect significance. In line with the findings by Romano 
et al. (2008), the multiplicative assessor model preprocessing does not 
seem appropriate for the given data. Also, although the ten Berge method 
consistently increases Fν, the comparison to its null distribution reveals 
that it improves ν significance only for 2 out of 13 attributes. 

4.2. Effect of unequal errors 

In addition to unrestricted permutation, we also performed a 
restricted (within assessor) permutation approach to account for dif-
ferences in σi between assessors (Eq. (6), Fig. S1). Contrasting the 
restricted with the unrestricted permutation approach enables us to 
estimate the effect of disregarding the ANOVA assumption of identically 
distributed errors. The comparison of null distributions across attributes 
(Fig. S3) reveals that particularly the MAMCA is sensitive to the error 
structure of the considered sensory attribute. For some sensory attri-
butes, the Fν distributions obtained by restricted permutation are shifted 
to the right, as compared to the expected F-distribution with J − 1 and (I 
− 1)(J − 2) DFs and the distribution obtained by unrestricted permu-
tation. This means that with no product effect present, the Fν values 
calculated by the MAMCA on data with unequal σi are higher than on 
data with identical σi. In other words, the MAMCA (as well as the additive 
assessor model) may overestimate Fν in situations where the error is not 

Fig. 1. (A) Null distributions of Fν after applying different preprocessing and 
decomposition methods to data generated by repeatedly permuting all 13 at-
tributes of the given cheese dataset, compared to the expected null distribution 
with J-1 and (I − 1)(J − 1) DFs (grey). The raw, std and MAMCA distributions 
agree with the expected F-distribution. (B) Histogram of p-values obtained from 
the Fν distributions shown above, assuming that Fν is F-distributed with J − 1 
and (I − 1)(J-1) DFs. Under H0 (no product effect), a uniform distribution of pν 
values is expected (grey). Raw: uncorrected data, std: standardisation, tenb: ten 
Berge method, add: additive assessor model, mult: multiplicative assessor model, 
MAMCA: conditional adjusted MAM. 

Table 1 
Critical Fν-values (α = 0.01) for the given dataset were calculated from the ECDF 
obtained by unrestricted permutation. #sign denotes the number of significant 
attributes (α = 0.01) after application of each method and #impr represents the 
number of attributes for which pν improved by the respective method (as 
compared to raw, uncorrected data).  

Method Fα=0.01
crit #sign #impr 

raw 2.26 12 - 
standardisation 2.27 12 10 
ten Berge method 5.07 8 2 
assessor model – add. 2.86 13 10 
assessor model – mult. 2.50 5 1 
MAMCA 2.27 13 11 

F(J–1, (I–1) (J–1)) 2.26 – –  
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identically distributed between assessors. 
Fig. 3 compares the product effect p-values obtained from the un-

restricted and restricted permutation null distributions, visualising the 
effect of taking the presence of unequal σi into account. As a conse-
quence of the aforementioned inflation of Fν for the MAMCA and the 
additive assessor model, the Fν values observed for the given dataset (see 
Fig. 2A) are less significant under realistic assumptions (unequal σi, 
vertical axis) than under the idealistic ANOVA assumptions (horizontal 
axis). In other words, on real data with unequal σi, calculating pν using 
the unrestricted permutation null distribution (or assuming an F-distri-
bution with J − 1 and (I − 1)(J − 1) DFs, equivalently) will lead to an 
underestimation of pν for the MAMCA and the additive assessor model 
preprocessing, as shown in Fig. 3. In contrast, the standardisation, ten 
Berge and multiplicative assessor model null distributions are consistent 
between permutation methods and attributes, as division by the 
respective scaling factors SDi or βi will evidently equalise the error 
structures between assessors. For these methods, the size of Fν will not 
depend on whether σi is unequal between assessors in the considered 
dataset. However, for the latter two it is essential that their actual Fν null 
distributions are used to calculate product effect significance and not the 
F-distribution with J − 1 and (I − 1)(J − 1) DFs. 

4.3. Mixed assessor model 

A deeper look into the conditional adjusted MAMCA results (Fig. S4) 
shows that the Fν null distributions are shifted to the right for attributes 
that were frequently found to have a significant scaling effect in 
restricted permutation (Table S1). As the product effect is removed by 
permutation, we would expect no scaling effect to be present either, 
pscaling should be uniformly distributed and differences in variance be-
tween assessors should be interpreted as differences in reproducibility. 
Fig. S5 shows that in the case of unrestricted permutation, pscaling is 
identically distributed between attributes and indeed roughly uniform, 
whereas in restricted permutation, where σi differs between assessors, 
the MAMCA finds a significant scaling effect more frequently than ex-
pected for some attributes. Consequently, the MAMCA removes scaling 
variance from the interaction effect g more frequently, leading to an 
inflation of Fν (see Eq. (2)). The inflation of Fν is strongest for those 
attributes whose pscaling distributions are most strongly skewed. The 
pscaling-histograms also show that the underestimation of pscaling and the 
corresponding inflation of Fν is not specific to the selected scaling sig-
nificance cutoff (αscaling) of 0.2 for the MAMCA and MAMC. However, 
with αscaling approaching zero, the MAMCA and MAMC become more and 
more similar to the conventional mixed ANOVA (Eq. (1)), alleviating the 

Fig. 2. (A) Product effect F values (Fν) estimated by 
mixed ANOVA (Eq. (2)) on the unpermuted cheese 
data (12 assessors, 14 products, 2 replicates) before 
(raw) and after preprocessing (std: standardisation, 
tenb: ten Berge method, add: additive assessor model, 
mult: multiplicative assessor model, MAMCA: condi-
tional adjusted MAM). Odour attributes are denoted 
by –od and flavours by –fl. (B) Corrected p-values 
calculated from the Fν null distributions generated by 
unrestricted permutation. P-values greater than 
3.125⋅10-6 (dotted line) were calculated from the 
ECDF, smaller p-values were calculated from a GPD fit 
to the distribution tails. The dashed line represents the 
α = 0.01 significance level, which we use to determine 
whether the product effect for an attribute is 
significant.   
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issue of an inflated type I error rate possibly at the cost of decreased 
power in detecting the product effect. 

A comparison with the conditional MAMC reveals that the condi-
tional adjusted MAMCA finds a significant scaling effect (and thus 
removes the scaling from the interaction effect g) less frequently. This 
means that calculation of the scaling effect in the adjusted manner re-
duces the inflated chance of obtaining a significant scaling effect with no 
product effect being present. The Fν test of the MAMCA is less anti-
conservative than that of the MAMC, which means that the probability of 
a false-positive result is lower for the MAMCA than for the MAMC but it 
can still be higher than the nominal level. Regarding the type I error rate, 
it is therefore advisable to use the MAMCA rather than the MAMC on data 
with unequal errors. 

All in all, the results show that the MAM is sensitive to the error 
structure of the data, because it may interpret unequal σ2

i between as-
sessors as scaling effects, even if no product effects are present. This 
observation can be replicated on randomly generated data (Eq. (6)) 
without a product effect and with unequal σi between assessors (Fig. S6): 
the Fν null distribution of the MAMCA is shifted to the right, as compared 
to the expected F-distribution, implying that the size of the disagreement 
effect d is underestimated. However, if product effect significance is 
calculated using the respective null distributions generated from 
restricted permutation, the MAMCA is still the best-performing method 
on the given dataset. 

5. Conclusion 

In this work, we revisited and extended the analyses performed by 
Romano et al. (2008) and presented a permutation-based approach to 
investigate the statistical validity of the product effect F-test. Our results 
show that application of certain preprocessing methods to deal with 
scaling effects in sensory panel data followed by ANOVA will produce Fν 
values whose null distributions do not correspond to the expected F- 
distribution. Consequently, correcting for scaling effects may turn the F- 
test for the product effect in a mixed ANOVA anti-conservative, which 
means that the chance of false positive findings is inflated. In particular, 
the ten Berge method produces high Fν values without a product effect 
present, which will lead to an overestimation of product effect signifi-
cance if this fact is not accounted for. An unrestricted and a restricted 

permutation approach were applied to obtain proper Fν null distribu-
tions and to evaluate the methods under ideal as well as under realistic 
(σi differing between assessors) conditions. Our results show that the 
error structure of an attribute affects its product effect significance in 
mixed ANOVA for some preprocessing methods. The permutation results 
were corroborated by investigations on randomly generated data, 
showing that our findings generalise beyond the specific dataset used in 
this study. 

Unrestricted permutation produces near-identical null distributions 
for each sensory attribute, and therefore would need to be performed 
only once for a given dataset. This approach clearly produces more 
appropriate type I error rates for the ten Berge method and the assessor 
model than just assuming an F distribution with J − 1 and (I − 1)(J − 1) 
DFs. Restricted permutation, which needs to be performed separately for 
each attribute, additionally accounts for the fact that differences in error 
variance can result in inflated Fν values for some methods, such as the 
mixed assessor model (MAM). Based on the empirical Fν null distribu-
tions obtained through restricted permutation, product effect p-values 
can be calculated that take each attribute’s error structure into account. 
In conclusion, restricted permutation is more computationally expensive 
than unrestricted permutation, but delivers statistically more exact re-
sults in real-world scenarios where errors are unequal between asses-
sors. Accurate p-values are the foundation for future in-depth power 
analyses of scaling correction and product effect estimation methods. 

6. Data and code availability 

The sensory dataset used in this paper as well as the R code to 
perform the scaling correction methods, model fitting and the permu-
tation and simulation approaches have been deposited at github.com/jlg 
rossmann/scaling-correctionbenchmark. 

CRediT authorship contribution statement 

Justus L. Großmann: Writing – original draft, Conceptualization, 
Formal analysis, Visualization. Johan A. Westerhuis: Writing – review 
& editing, Conceptualization. Tormod Næs: Methodology, Validation, 
Supervision. Age K. Smilde: Supervision. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
[Johan Westerhuis, Justus Grossmann, Age Smilde report financial 
support provided by the Netherlands Organisation for Scientific 
Research (NWO Proj. No. 731.015.207).] 

Data availability 

Data and code have been made available via github: https://github. 
com/jlgrossmann/scaling-correction-benchmark 

Acknowledgement 

The authors JLG, JAW and AKS acknowledge funding in the form of a 
Public-Private Partnership from the Netherlands Organisation for Sci-
entific Research (NWO Proj. No. 731.015.207) in support of this work. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foodqual.2022.104792. 

Fig. 3. Comparison of product effect p-values calculated from unrestricted and 
restricted permutation. The plot only shows the p > 10-5 region, where p-values 
were determined from the ECDF with high confidence. Each dot represents one 
attribute whose significance was estimated after preprocessing with the method 
indicated by the fill color. The significance of ν as calculated by the MAMCA and 
the additive assessor model was frequently overestimated by unrestricted per-
mutation, i.e. when differences in σi between assessors were disregarded. 

J.L. Großmann et al.                                                                                                                                                                                                                           

http://github.com/jlgrossmann/scaling-correction-benchmark
http://github.com/jlgrossmann/scaling-correction-benchmark
https://doi.org/10.1016/j.foodqual.2022.104792
https://doi.org/10.1016/j.foodqual.2022.104792


Food Quality and Preference 106 (2023) 104792

7

References 

Amerine, M. A., Pangborn, R. M., & Roessler, E. B. (1965). Principles of Sensory Evaluation 
of Food (1 ed.). Academic Press.  

Bader, B., & Yan, J. (2020). eva: Extreme Value Analysis with Goodness-of-Fit Testing. 
Brockhoff, P. B. (2003). Statistical testing of individual differences in sensory profiling. 

Food Quality and Preference, 14, 425–434. 
Brockhoff, P. B., Schlich, P., & Skovgaard, I. (2015). Taking individual scaling differences 

into account by analyzing profile data with the Mixed Assessor Model. Food Quality 
and Preference, 39, 156–166. 

Brockhoff, P. M., & Skovgaard, I. M. (1994). Modelling individual differences between 
assessors in sensory evaluations. Food Quality and Preference, 5, 215–224. 

Good, P. (2005). Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer Series 
in Statistics (3 ed.). New York: Springer-Verlag.  

Knijnenburg, T. A., Wessels, L. F., Reinders, M. J., & Shmulevich, I. (2009). Fewer 
permutations, more accurate P-values. Bioinformatics, 25, 161–168. 

Kuznetsova, A., Bruun Brockhoff, P., & Haubo Bojesen Christensen, R. (2018). SensMixed: 
Analysis of Sensory and Consumer Data in a Mixed Model Framework. R package 
version 2.1-0. 

Liapounoff, A. (1900). Sur une proposition de la théorie des probabilités. Bulletin de 
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