
Kriging analysis on CPTU data from offshore wind farm 

Rongjie He & Jinhui Li* 
Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), China 

Shaoli Yang 
Norwegian Geotechnical Institute (NGI), Oslo, Norway 

Ben He 
Key Laboratory for Far-shore Wind Power Technology of Zhejiang Province; PowerChina Huadong Engineering 
Corporation Limited, (HDEC), Hangzhou, China 

ABSTRACT: In recent years, offshore wind power has been widely developed. Because of the com­
plexity of marine geology and the large spatial variability of soils, it is necessary to obtain 
CPTU data before the foundation design. However, how to reasonably interpret the CPTU data will 
greatly affect the reliability and safety of the offshore windfarm foundation. In addition, there is 
a need to predict soil conditions at the locations without CPTU data. In this study, based on the 
available CPTU data of offshore wind farm in east China sea, kriging method is used to interpret the 
CPTU data, and the soil conditions in a large area can be predicted. This method can be used to 
develop ground model for a large offshore wind farm, and estimate the relevant soil parameters 
based on CPTU data. The analysis methods can provide reference for other projects of offshore wind 
farm. 
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1	 INTRODUCTION 

Offshore wind power has been widely used as 
the clean energy in many countries. Dinh and 
Nguyen (2019) proposed that offshore wind 
power has the advantages of higher full load 
hours per year, longer service life and higher 
rotor speed comparing with onshore wind power. 
In practical engineering, foundation design should 
be carried out before the installation of offshore 
wind turbine. 

Marine soil has the characteristics of large spa­
tial variability (Dasaka and Zhang 2012; Ching and 
Phoon 2013; Li et al. 2014; Lloret-Cabot et al. 
2014). Before the foundation design of the offshore 
wind turbine, it is necessary to obtain the CPTU 
data of relevant soil layers. Then the obtained 
CPTU data can be interpreted to get soil param­
eters. For example, Robertson method (Robertson 
and Wride, 1998) can be used to determine the clas­
sification of marine soil layer based on the CPTU 
data. However, due to the high cost of offshore 
work, the CPTU tests in a large area are usually 
limited. Therefore, how to predict soil conditions at 

the locations without CPTU data has become an 
important engineering problem which needs to be 
solved. 

Based on the above background, taking the 
CPTU data of offshore wind farm in east China 
sea as an example, this study used the Kriging 
method to predict the CPTU data in the unknown 
area, and then used the Robertson method 
(Robertson and Wride, 1998) to obtain the soil 
classification of the whole seabed profile. The 
predicted results can reach the 95% confidence 
interval in statistics. The algorithm can provide 
reference and guidance for the foundation design 
of offshore wind turbine. 

2	 INVESTIGATION SITE OF OFFSHORE 
WIND FARM 

The site of the offshore wind farm is in the east 
China sea. The positions of the boreholes are shown 
in Figure 1. This site contains 27 boreholes. The 
drilling depth of each borehole is more than 35 m, 
and CPTU data is measured every 0.02 m along the 
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depth. In Figure 1, the interval of boreholes in differ­
ent columns is 11000 m which is too large, so 15 
boreholes in the same column are selected for ana­
lysis as shown in the frame. The measured CPTU 
data contain cone penetration resistance (q), sleeve 
friction (f) and pore pressure (u). 

According to the soil samples at the site, the actual 
soil layers of boreholes no. 50, no. 72 and no. 77 have 
been already known which are shown in Figure 2. It 
can be seen from Figure 2 that the actual seabed geo­
logical conditions are generally divided into four 
layers: Ooze clay, clay, silty clay, and silty sands. The 
soil layers in the first 25 m are relatively homogeneous, 
and they are Ooze clay. The soil layers beyond 
25 m vary from location to location. Figure 3 shows 
the typical CPTU data along depth of borehole no. 50. 
It can be seen that the trend of the curve at the first 
25 m is increasing linearly, and the trend of the curve is 

Figure 3(a). Measured cone resistance along depth below 
seafloor 

much more complicated beyond 25 m. 

Based on CPTU data, the classification of soil 
layer can be obtained. There are many traditional 

Figure 1. The position of the boreholes. 

Figure 3(b). Measured sleeve friction along depth below 
seafloor 

Figure 2. Soil conditions of known boreholes (Borehole 
no. 50, no. 72 and no. 77). 

Figure 3(c). Measured pore pressure along depth below 
seafloor. 

Figure 3. The variation of CPTU data with depth in bore-
hole no. 50. 
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soil classification methods, such as Jefferies method 
(Jefferies and Davies, 1991), Olsen method (Olsen 
and Mitchell, 1995), Robertson method (Robertson 
and Wride, 1998) and so on. Liu et al. (2013) pro­
posed that the Robertson method is suitable for the 
Chinese soil classification. Therefore, the Robertson 
method is used for soil classification in this study. 
The calculation formulas are shown from Equation 1 
to Equation 6, 

where Qtn is normalized cone penetration resistance; 
Fr is normalized sleeve friction; Bq is normalized pore 
pressure; σv0 is the total overburden stress; σ0v0 is 
effective overburden stress; u0 is equilibrium pore 
pressure; qt is corrected cone penetration resistance; 
a is the net area ratio between load cell support diam­
eter, d, and cone diameter, D; Ic is soil classification 
index. The soil types are attributed from Ic which is 
shown in Table 1.  

Table 1. The soil classification based on Robertson 
method. 

Ic Soil type 

Ic>3.6 Ooze clay 
2.95<Ic,<3.6 Clay 
2.60<Ic,<2.95 Silty clay 
2.05<Ic,<2.60 Sandy silt 
1.31<Ic,<2.05 Silty sands 
Ic<1.31 Dense sand 

points in region D, whose position coordinates 
are x1, x2, x3 to xn, respectively, and the corres­
ponding observation values are Z(x1), Z(x2), Z(x3) 
to Z(xn), respectively. Then the formula of the 
estimated value at unknown position x0 in region 
D is shown in Equation 7, 

where λi is the weight coefficient of Kriging interpol­
ation. The values of λi should be known. The semi­
variogram is used to calculate the λi. The 
semivariogram of the observation data can be calcu­
lated by Equation 8, 

where Nh is the number of the observation points 
and h is the separation distance between different 
points. Based on the semivariogram values of the 
observation points, the Gaussian model and expo­
nential model are usually used to fit the trend of the 
semivariogram which are shown in Equation 9 and 
Equation 10, 

where C0 is nugget; C is partial sill and a is range. 
Before fitting the semivariogram, it is essential that 
the data is stationary; that is, the mean and covari­
ance of the data depend only upon separation, not on 
absolute location. If the data are non-stationary, 
treatment must be given to transform the data to 
a stationary set by removing the deterministic com­
ponent called the trend, and the stationary residual 
random component is then analyzed. 

After fitting the semivariogram, the weight coeffi­
cient λi can be calculated based on Equation 11, 

3 KRIGING METHOD 

Kriging interpolation (Liu et al., 2016) is an opti­
mal linear unbiased interpolation method. For where γij is the modelled semivariogram values based 
ordinary Kriging, there is a group of observation on the distance between the two samples pertaining to 
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the ith and jth locations, and μ is the Lagrange param­
eter. The formula for calculating the variance is 
shown in Equation 12, 

where σOK is the OK standard variance of the Kri­
ging method. Assuming that the parameter is nor­
mally distributed with a mean value z0 (estimated 
value) and a standard variance σOK, the 95% confi­
dence interval of the estimation is [z0-1.96σOK, 
z0+1.96σOK] (Ang and Tang, 2007). 

Taking the CPTU data in depth 10 m for analysis 
as an example, the fitting equations of the determin­
istic component are shown in Equation 13, Equa­
tion14 and Equation 15, respectively, 

where qtrend, ftrend and utrend are trend values of cone 
penetration resistance, sleeve friction and pore pres­
sure, and x is the longitude coordinate of the obser­
vation points. 

After removing the deterministic component, the 
stationary residual random components are used to 
fit the semivariogram. In this case study, comparing 
with Gaussian model, exponential model has higher 
fitting goodness. As a result, the exponential func­
tion is used to fit the semivariogram. The number of 
lag distances is 105 in total. Taking about 200 m as 
a group, the lag distances are divided into 14 groups. 
The lag distances of 14 groups are averaged to 
obtain the best fitting results and they are shown in 
Figure 4. 

Cheon and Gilbert (2014) indicated that it is reason­
able to have a horizontal range of more than 1000 m in 
offshore engineering. Based on the results, the range of 
the three residuals are all 120 m which are reasonable. 
Then, the CPTU data in unknown positions can be pre­
dicted based on the modelled semivariogram. 

PREDICTION OF SOIL TYPES 

From Figure 2, there are mainly four soil layers in the 
seabed. According to the calculation, different soil 
layers have different modelled semivariograms. As 
a result, four modelled semivariograms were used to 
analyze the depths below seafloor at depth of 1m to 
25 m,  26 m to 29 m, 29 m to 31 m,  and  31 m to 35 m,  
respectively. 

Figure 4(a). The semivariogram of cone resistance 

Figure 4(b). The semivariogram of sleeve friction 

Figure 4(c). The semivariogram of pore pressure
 

Figure 4. The semivariogram of CPTU data in depth 10 m.
 

In order to verify the accuracy of the Kriging 
method, the soil types at boreholes no. 50 and no. 77 
were predicted. The predicted results are shown in 
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Figure 5 and Figure 6. The results were compared 
with the actual soil types at the two boreholes. It can 
be seen that the predicted soil types are basically 
consistent with the actual soil types. The results 
prove that the Kriging method is reasonable. 

B1 is the first unknown position without CPTU 
data which needs to be predicted. The longitude and 
latitude of B1 are 120.556 degree and 27.14 degree, 
respectively. For the depth of 15 m, 27 m, 30 m and 
35 m, the estimators of cone penetration resistance of 
B1 are 0.521 MPa, 1.213 MPa, 2.105 MPa and 3.290 
MPa; the estimators of sleeve friction of B1 are 6.7 
kPa, 18 kPa, 21.3 kPa and 61.3 kPa, and the estim­
ators of pore pressure of B1 are 0.414 MPa, 0.601 
MPa, 0.808 MPa and 0.822 MPa. The 95% interval 
of confidence is shown in Table 2 and the predicted 
soil types are shown in Figure 7. For Table 2, it just 
means that the value will be within this interval. 

Table 2. The predicted CPTU data in B1 (95% confidence 
interval). 

Figure 5. The comparison between prediction value and 
actual data in borehole no. 50. 

Figure 6. The comparison between prediction value and 
actual data in borehole no. 77. 

Depth (m) q (MPa) f (kPa) u (MPa) 

15 [0.521, 0.521] [6.690, 6.705] [0.411, 0.418] 
27 [1.106, 1.321] [17.3, 18.7] [0.572, 0.630] 
30 [0, 8.794] [20.80, 21.8] [0.443, 1.173] 
35 [0, 31.725] [0.056, 0.067] [0.176, 1.469] 

B2 is the second unknown position without CPTU 
data which also needs to be predicted. The longitude 
and latitude of B2 are 120.592 degree and 27.14 
degree, respectively. For the depth of 15 m, 27 m, 
30 m and 35 m, the estimators of cone penetration 
resistance of B2 are 0.520 MPa, 1.186 MPa, 2.038 
MPa and 3.066 MPa; the estimators of sleeve friction 
of B2 are 6.8 kPa, 17.3 kPa, 21.5 kPa and 57.3 kPa, 
and the estimators of pore pressure of B2 are 0.414 
MPa, 0.643 MPa, 0.760 MPa and 0.827 MPa. The 
95% interval of confidence is shown in Table 3. For 
Table 3, it just means that the value will be within this 
interval. 

According to the soil classification criteria, the 
predicted soil types are the same with that at location 
B1, which can be seen in Figure 7. 

Table 3. The prediction CPTU data in B2 (95% confi­
dence interval).
 

Depth (m) q (MPa) f (kPa) u (MPa) 

15 [0.52, 0.52] [6.79, 6.805] [0.410, 0.417] 
27 [1.081, 1.291] [16.6, 18.02] [0.622, 0.665] 
30 [0, 8.636] [0.021,0.022] [0.415, 1.104] 
35 [0, 30.797] [0.052, 0.062] [0.189, 1.465] 

Figure 7. The prediction of soil classification in B1 and B2 
(95% CI). 

Based on the CPTU data of boreholes, the seabed 
profile can be predicted and the results are shown in 
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Figure 8. The prediction soil layer of seabed profile. 

Figure 8. It can be seen that the seabed profile 
mainly has four soil layers containing ooze clay, 
clay, silty clay and sandy silt. In the first 25 m, the 
soil is homogeneous which is ooze clay. Beyond 
25 m, the soil conditions become much more com­
plex. The general conditions of soil layer are consist­
ent with the actual soil conditions. It means that 
Kriging method can predict the soil conditions at 
unknown positions effectively, which can be used to 
guide the foundation design of offshore wind turbine. 

CONCLUSIONS 

In this study, the offshore wind farm in east China 
sea is analyzed as a case study. The results indicate 
that Robertson method is suitable for the soil classi­
fication in the east China sea and Kriging method 
can predict the soil conditions in unknown positions 
with 95% interval of confidence. The algorithm can 
be used to provide guidance and reference for the 
foundation design of offshore wind turbine. 
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