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Introduction 

 
«The birds are still ... and the sea is calm; hushed are the winds, and silence broods 

o'er this narrow firth» 

      Agamemnon in the Iliad by Homer 

 

With this phrase, Agamemnon referred to the problem he was facing. He had a fleet of 

100 ships stranded at the port of Aulis expectant on the winds to follow such as they 

could invade Troy. If he only had enough information, he would probably have planned 

differently and choose a more favorable port for starting his invasion. Such an 

unfortunate port call (he was punished by the goddess Artemis), was later 

compensated by the sacrifice of his daughter Iphigenia to the goddess on behalf of 

favorable winds.  

At the same time that the Iliad was supposedly written (c. 8th century BC), the 

Phoenicians dominated the trade by sea at the Mediterranean. The standard way of 

trading was in the hands of merchant skippers. These merchants, usually also the 

captains and owners of the vessels, were part of the adventure and would trade cargo 

as the vessel was visiting ports (Fayle, 2006). They would act with due diligence and 

plan for an efficient voyage, considering the seasonal wind patterns, the intended trade 

route and their commercial interests. 

The rise of Carthage (a former Phoenician colony) as a maritime power gave rise to 

years of commercial dominance driven by their exploring skills and long preserved 

secrets of the discovered routes (Fayle, 2006). With the fall of the Carthaginians to the 

Romans as the result of the Punic wars (c. 264-146BC), such secrets switched hands 

and developed, together with the expansion of the empire, into new routes. The 

Romans would efficiently plan for their trade voyages based on the information 

collected by their knowledge gained and years of observations. As an example of this, 

they would export their grain to Alexandria in July and August and arrive in due time 

for sorting out the complexities of trading at a destination including, in the more 
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favorable cases, delays arising from corrupt officialdom or bureaucratic concerns 

(Arnaud, 2018).  

Despite the sense of efficiency being part of maritime trade since early civilization, the 

motives for such efficiency have changed as new technology has emerged (e.g., steam 

engines, GPS, satellite communications, etc.) or as civilization faces new challenges 

(e.g., feeding the empire, globalization, climate change, etc.). Whether the intention 

was to invade a country or be on time at a port according to weather seasonality in the 

past, or taking fuel with the least delay and reduce vessel emissions based on efficient 

port calls in the present time; there is an undisputed awareness of the benefits for a 

maritime venture of being operationally efficient. It is the objective of this thesis to 

explore and measure the resulting benefits (commercially and/or socially) in present 

maritime transport applications.  

Operational efficiency is defined by Lee and Johnson (2013) as the ability to provide 

services cost-effectively without sacrificing quality. Based on this definition, vessels’ 

operational efficiency in this thesis refers to cost-effective vessel operation and port 

utilization while keeping to the agreed transport terms and schedule. Such efficient 

planning is closely related to the vessel time at sea and/or the time in port (Moon and 

Woo, 2014). 

If vessel operational efficiency assumes that there is a tradeoff between time at sea 

and time in port, there is a direct effect of port efficiency (or, more generally, any waiting 

time at an intermediate stop such as a bunkering port or a canal) on the efficiency of 

the voyage. The efficiency of the voyage could be quantified in terms of cost 

minimization, reduced time at port or emissions reduction.  

Port efficiency has been thoroughly researched in the academic literature (see Poulsen 

and Sampson (2020) and Krmac and Mansouri (2022) for a review). However, many 

of the studies refer to efficiency as a measure of container port throughput and number 

of port calls. Few studies refer to the turnaround time or waiting times at port (see Slack 

et al., 2018 for a review). The main reason, as suggested by Slack et al. (2018), is that 

time data for measuring port efficiency is seldom available to have a proper 

comparison. This is the case as it is difficult to collect consistent time data from 

individual ports and shipping lines, and the use or access to such data might further 

be restrained by business secrecy.  
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In order to plan an operationally efficient voyage, the operator needs access to 

statistics on key variables such as waiting times and servicing times for any potential 

stops during the intended voyage. Such data and statistics then feed the decision 

making from an operational efficiency perspective. Along this line, the chapters of this 

thesis are based on the same overarching concept. First, establishing a framework for 

generating robust port/canal statistics, including waiting times. Second, to obtain 

insight from the underlying dynamics of the ports and canals. Third, with the insight 

gained from the generated statistics, to propose solutions for vessels to be operated 

efficiently.  

In this thesis, we study vessel operational efficiency in the context of two maritime 

applications. First, in Chapter 11 and Chapter 2 the focus is on the bunkering (fuel) 

management problem and the effect of waiting times in the bunkering port selection. 

Second, Chapter 3 investigates the potential GHG emissions impact from vessel 

speed reduction due to increasing operational efficiency at a maritime chokepoint such 

as a canal. 

In Chapter 1, we identify the need for a framework for the extraction of empirical data 

and statistics on global bunkering operations. Bunkering operations statistics are 

important for studies on regional port competitiveness and to feed optimization models 

for the bunkering management problem. For this purpose, the first part of the chapter 

describes a framework for deriving bunkering statistics, based on Automatic 

Identification System (AIS) data, spatial analysis and the Density Based Spatial 

Clustering Application with Noise (DBSCAN) algorithm. The framework can generate 

bunkering statistics, such as waiting times, service times, number of transits per port 

and whether a vessel was served at port or at anchorage. The second part of the study 

uses the framework to generate statistics for bunkering operations at the various ports 

in the Mediterranean Sea. The results validate earlier results and hypotheses in the 

literature on bunkering operations, commonly obtained from qualitative methods. More 

importantly, it presents, for the first time, a comparison metric for the efficiency of 

bunkering operations in the Mediterranean Sea.  

Having an efficiency metric (waiting times) for every port in the Mediterranean, Chapter 
2 addresses the question of what is the value of efficiency in an optimal bunkering 

 
1 The paper is published in Transportation Research Part E: Logistics and Transportation Review (2021) 

In order to plan an operationally efficient voyage, the operator needs access to

statistics on key variables such as waiting times and servicing times for any potential

stops during the intended voyage. Such data and statistics then feed the decision

making from an operational efficiency perspective. Along this line, the chapters of this

thesis are based on the same overarching concept. First, establishing a framework for

generating robust port/canal statistics, including waiting times. Second, to obtain

insight from the underlying dynamics of the ports and canals. Third, with the insight

gained from the generated statistics, to propose solutions for vessels to be operated

efficiently.

In this thesis, we study vessel operational efficiency in the context of two maritime

applications. First, in Chapter 11 and Chapter 2 the focus is on the bunkering (fuel)

management problem and the effect of waiting times in the bunkering port selection.

Second, Chapter 3 investigates the potential GHG emissions impact from vessel

speed reduction due to increasing operational efficiency at a maritime chokepoint such

as a canal.

In Chapter 1, we identify the need for a framework for the extraction of empirical data

and statistics on global bunkering operations. Bunkering operations statistics are

important for studies on regional port competitiveness and to feed optimization models

for the bunkering management problem. For this purpose, the first part of the chapter

describes a framework for deriving bunkering statistics, based on Automatic

Identification System (AIS) data, spatial analysis and the Density Based Spatial

Clustering Application with Noise (DBSCAN) algorithm. The framework can generate

bunkering statistics, such as waiting times, service times, number of transits per port

and whether a vessel was served at port or at anchorage. The second part of the study

uses the framework to generate statistics for bunkering operations at the various ports

in the Mediterranean Sea. The results validate earlier results and hypotheses in the

literature on bunkering operations, commonly obtained from qualitative methods. More

importantly, it presents, for the first time, a comparison metric for the efficiency of

bunkering operations in the Mediterranean Sea.

Having an efficiency metric (waiting times) for every port in the Mediterranean, Chapter

2 addresses the question of what is the value of efficiency in an optimal bunkering

1 The paper is published in Transportation Research Part E: Logistics and Transportation Review (2021)
3



 

4 
 

management plan for tramp ships? The research question is explored by a set of 

experiments simulating the different settings a shipowner would face if trading in the 

Mediterranean Sea. The experiments are based in a multistage stochastic model of 

the bunkering management problem with consideration of stochastic waiting times 

(sourced from Chapter 1 framework), stochastic bunker prices, voyage dynamics and 

contractual information. The results suggest that when there is large uncertainty in 

waiting times, a decision solely driven by price could lead to significant losses. As a 

managerial insight, this study shows that shipowners should evaluate waiting times at 

potential bunkering ports as part of standard practice. 

Finally, Chapter 3 explores the question: What are the implications for emissions if 

vessels reduce speed due to improving operational efficiency at maritime chokepoints 

such as a canal? Speed reduction is an operational measure with a high emissions 

reduction potential (Bouman et al., 2017). A vessel can reduce GHG emissions by 

reducing speed and spending more time at sea instead of sailing at high speed to wait 

at anchorage (rush to wait). The findings show that more efficient scheduling at 

maritime chokepoints, such as the Panama Canal in our case, can have a significant 

impact on overall emissions. Once again, we develop an algorithmic framework based 

on AIS data that can generate robust statistics on waiting and transit times as a basis 

for the empirical evaluation. From a qualitative point of view, our work highlights how 

many of the well-known contractual barriers to operational efficiency in ports are 

mitigated in the case of canal operation, making this a suitable avenue for the gradual 

implementation of policies driven by the need for emission reduction. 
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Chapter 1 

 
Generating bunkering statistics from AIS 

data: A machine learning approach* 
 
 

Gabriel Fuentes a,b 

 
 

a Centre for Applied Research at NHH(SNF) 

b Department of Business and Management Science, NHH 
 
 
 

Abstract 
In shipping, the optimization of the bunkering location is dependent on price, deviation 

from the planned route and the cost of delays incurred by the bunkering operation itself. 

Despite their potential importance, detailed statistics for bunkering operations at the 

individual port call level (e.g. waiting times, barge capacity, location - anchorage or 

terminal) are not available. I develop a new method, based on the Density-Based 

Spatial Clustering of Applications with Noise (DBSCAN) algorithm, that can a) identify 

tanker vessels used as bunkering tankers, b) detect stationary ocean-going vessels at 

anchorage or alongside terminals and c) automatically recognize bunkering operations 

as a rendezvous between an ocean-going vessel and a bunkering barge. I find that the 

high time complexity of the DBSCAN algorithm in this setting can be compensated by 

adjusting the algorithm to distributed computer settings. In the empirical study, I use 

the output to describe the relative importance of Mediterranean ports for bunkering and 

provide statistics on waiting and servicing times. The empirical findings are important 

for the optimization of the bunkering location decision in shipping and studies on 

regional port competitiveness. 

 
*This research was partly financed by the Research Council of Norway under the project “Smart digital 
contracts and commercial management”, project number 280684. The bunker ports position were kindly 
provided by Bunker-Ex.  
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regional port competitiveness.
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1.1 Introduction 
Bunkering information is important to ship operators, ports, and suppliers alike. Ship 

operators can benefit from knowledge about the servicing and waiting times for 

bunkering to make informed operational decisions. Examples of such decisions are: 

whether to deviate for bunkers or bunker during cargo operations, making a route plan, 

selecting the voyage speed, and deciding the quantity of bunker to load. Bunker 

suppliers can use the fleet age and capacity of their bunker barges, service times and 

fuel prices to assess where they stand in the intra-/inter-port competition. This is helpful 

in decisions about service pricing, fleet renewal, fleet location or fleet maintenance. 

Port operators can monitor and compare bunkering servicing times and asses how it 

influences their core business (transferring cargo/passengers) and port 

competitiveness and, if the service does not already exist, integrate bunker supply as 

part of their pool of services. Using the port of Antwerp as an example, Aronietis et al. 

(2017) claim that bunkering operations have no influence on port choice, as bunkering 

–in the case of liner operations– is optimized on a defined route. Conversely, Lam et 

al. (2011) argue, based on their comparison of Shanghai and Singapore ports, that the 

bunkering service is important to ports aiming to be recognized as maritime hubs within 

existing supply chains. What is clear is that a port-by-port analysis is suitable only when 

there is access to standardized measures of comparison.  

Until now, detailed and comparable information about bunkering operations from 

individual ports does not exist. Key information such as the number and specifications 

of actively operating bunker barges, whether bunkering services are performed 

alongside or as a barge-to-ship operation at anchorage is not standardized and, to my 

knowledge does not exist as aggregate statistics. The motivation of this paper is to 

create a general, standardized and automatic detection algorithm that can recognize 

bunkering operations and generate the data that can serve as a base to rank port 

performance in terms of bunkering services. 

The bunkering statistics presented in this paper is derived from Automatic Identification 

System (AIS) data from ships. AIS has expanded from its primary use as an aid to 
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navigation and collision avoidance1 to several other uses including being a tool for 

vessel trading pattern recognition. AIS data has been used extensively as part of both 

commercial activities and research, with more suppliers of data entering the market 

and benefiting from an ever-increasing network of low-earth orbit satellites and coastal 

receivers. Higher observational frequency also creates an escalating challenge in 

terms of algorithm effectiveness for large databases, as is the case for the empirical 

study in this paper. 

The proposed method to extract the bunkering operation information relies on 

generating an automatic detection algorithm powered by the unsupervised learning 

method Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester 

et al., 1996). This algorithm solves the problems of classifying the bunker barges, 

recognizing a stopped vessel at anchorage/berth and identifying a bunker operation 

from a barge to an oceangoing vessel at close quarters. The first step classifies a 

bunker barge as a tanker vessel within a particular size range that is positioned within 

local port waters for an extended period of time. The second step recognizes stopped 

ocean-going vessels by filtering positions inside port waters and clustering those within 

a proximity parameter. To model a vessel swinging around an anchor position, the 

setting uses tidal streams as the proximity parameter. The third and final step identifies 

a bunkering operation from periods where a bunker barge and an ocean-going vessel 

are in close proximity. The empirical results are validated against statistics in the 

bunkering literature. 

The paper’s contributions are fourfold. First, I develop an algorithm for the recognition 

of tanker vessels used as bunkering barges, with the classification carried out from the 

overall list of existing vessels. To be selected, vessels must fulfill the characteristics of 

a prospective bunker barge, such as the percentage of time spent inside port waters, 

and the type and size of the vessel. Second, I improve algorithms for the detection of 

vessels at anchor or alongside berth using an adaptation of the DBSCAN algorithm. 

The algorithm is capable of separating drifting vessels from anchored vessels using 

the detection of an anchorage shape, or stationary vessels alongside a berth. Third, I 

propose an algorithm for the automatic recognition of bunkering operations between a 

 
1 AIS is mandatory for vessels of 300 gross tonnage and upwards engaged in international voyages and 
cargo vessels with 500 gross tonnage and upwards not engaged in international voyage as per the 
International Convention for the Safety of Life at Sea 74/88 (SOLAS). 
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bunkering vessel and an ocean-going vessel based on the rendezvous between the 

defined berthed or anchored vessel and prospective bunker barges. Finally, I extract 

and compare the bunkering statistics across ports in the Mediterranean and Marmara 

Sea based on the auto-generated results from the algorithm. 

The rest of the paper is organized as follows: Section 1.2 contains the literature review, 

Section 1.3 describes the algorithm for bunkering recognition, and Section 1.4 includes 

the application of the algorithm, the statistical results of real data from the 

Mediterranean and Marmara Sea, and provides a sensitivity analysis for parameters 

testing. Finally, Section 1.5 concludes and identifies prospects for future extensions. 

 

1.2 Literature review 
The literature on bunkering includes fuel management strategies, fuel services as a 

determinant of port competitiveness, financial instruments to hedge against price 

fluctuations, competition between bunkering ports, or statistical analysis of bunker 

price dynamics. 

Acosta et al. (2011) review the port competitiveness literature and conclude that the 

primary factor when selecting a port is cost, with the quality and completeness of 

services (where bunkering is part) being secondary. When focusing on bunkering they 

argue that the fuel price together with geographical advantage (i.e. proximity to main 

trading routes) are the major determinants of selecting a port. Following in importance 

they also identified port tariffs and bunkering supply waiting times. Their conclusions 

are based on responses to a questionnaire from Gibraltar Strait port operators.  

Also following a qualitative approach, Aronietis et al. (2017) interviewed shipping 

companies calling the port of Antwerp and having offices in Antwerp. They validated 

that bunkering competitiveness is mainly affected by the fuel price, with the correct 

delivery of fuel quantity and quality being second in importance. This shows that a care 

towards service and the perception of a good service is important. Lam et al. (2011) 

compared the port competitiveness of Shanghai and Singapore and relate this to their 

position as bunkering hubs. The limited research on the topic drove them to collect 

information through interviews with regulatory bodies, marine consultants, bunker 

suppliers/brokers, ship managers and ship operators. Based on their results, they 
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argue that bunker price ranks third in order of importance following bunker quality and 

market transparency, with the latter referring to the degree of corruption in the 

bunkering market. They assert that a bunker market is more transparent when there is 

strict control from authorities regarding bunkering practices. Better visibility regarding 

the bunkering activities, such as the micro-level statistics developed in this paper, is 

an important tool to enhance transparency. 

The reliance on qualitative research methods in the literature on bunkering market 

competition is a consequence of the difficulties in collecting data for conducting 

analysis. Moreover, the lack of a data standard and unified collection method makes 

the comparison of ports nearly impossible, effectively limiting the research to small-

scale case studies. Shipping as a globally integrated market could benefit from both 

an accumulation of local data and the analysis along several dimensions at a higher 

level of aggregation. 

The elements assessed in port competitiveness analysis can also be considered as 

part of bunkering decision support tools within the area of Operations Research (OR). 

Besbes and Savin (2009) provide a profit optimization model that considers bunkering 

decisions for both the liner and tramp shipping cases. The liner case models fuel prices 

as a variable with stochastic dynamics, while the tramp case provides optimal solutions 

that choose a combination of route and bunkering stops. Both cases use scenarios 

across ports where the price is constant or variable. Yao et al. (2012) use real data 

from ships and create empirical approximations of the function that compares fuel 

consumption rate and ship speed. The empirical models, segmented by ship size, 

prove to be superior to standard non-data driven functions when used as part of the 

bunkering optimization model. Together with differences in results, they argue that the 

traditional standard consumption function - Ronen’s (1982) cubic speed model - results 

in lower cost but is suboptimal as it is not reflecting real scenarios. Wang and Meng 

(2012) confirm that better estimates can be had from data-driven fuel consumption 

models in container shipping, but recognize that Ronen’s function is a good 

approximation when historical data is not available. Vilhelmsen et al. (2014) show the 

bunker consumption and its interaction with the fuel inventory, with ship speed as a 

decision variable. They provide a heuristic solution to the optimal routing, scheduling 

and bunkering of a tramp fleet carrying full shiploads. They find that the integration of 
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bunkering operations in cargo scheduling proves beneficial for the overall solution. 

Similarly, Sheng et al. (2015) model the multi-stage stochastic version in a liner 

shipping case. The solution determines the ship-owner’s bunkering policy based on a 

ship’s remaining fuel level and the prevailing fuel price when at a scheduled port. They 

generate the fuel consumption scenarios by sampling average approximation and the 

fuel prices’ percentage difference in a one-stage (one voyage leg) Markovian process.  

The problem of bunkering optimization is still open for further improvements. No model 

has yet included the distributions of bunkering service and waiting times or other 

measures of service quality within the bunkering location selection problem. This 

seems relevant, as it may be optimal for a ship-owner to deviate from a port that is 

“cheap and close” to a more costly and distant port that has a substantially faster 

service. The former choice might be related to the strict fulfillment of contractual 

requirements, such as meeting a pick-up window (laycan) for tramp vessels. An 

inefficient bunkering service implies that the vessels has to speed up to reach a laycan, 

causing a subsequent increase in consumption and emissions. As a related illustration 

of these tradeoffs, Aydin et al. (2017) introduce uniformly distributed servicing times 

(for cargo operations) and recognize its influence in bunkering decisions as part of a 

discretized dynamic programming model. They found that the uncertainty of waiting 

times affects the optimal speed decision necessary to complete the voyage on time.  

One of the best candidates to recognize bunkering operations is AIS data. Once used 

strictly for navigational purposes, AIS data has created an interesting niche in the areas 

of research and commercial management in shipping. It has being used to recognize 

shipping information related to near-miss ship collisions (Mou et al., 2010; Zhang et 

al., 2016), ship emissions (Tichavska and Tovar, 2015; Goldsworthy and Goldsworthy, 

2015; Johansson et al., 2017), global trade flows (Adland et al., 2017; Jia et al., 2017), 

the spatial dynamics of fixtures (Prochazka et al., 2019), and underwater exposure of 

the marine fauna (Merchant et al., 2012), just to mention a few applications.  

Recognizing vessel patterns from AIS has gained further attention, as more and better-

quality data has become available. An early automatic method to recognize vessel 

patterns by AIS can be found in Pallotta et al. (2013). The work of Cazzanti and Pallotta 

(2015) presented one of the first approximations to the classification of areas where 

vessels are stationary by utilizing the Traffic Route Extraction and Anomaly Detection 
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algorithm embedded with DBSCAN. They classify anchored vessels by detecting rapid 

changes in the vessel course over ground while inside an identified cluster. Rather 

than detecting stoppages, Sheng and Yin (2018) adapted the DBSCAN with a 

hierarchical density estimate to extract the common shipping patterns in the Port of 

Tianjin. As an interesting twist, Lei (2015) provided a method of statistical vessel 

trajectories recognition to detect deviation from common patterns. In related work, 

Zhang et al. (2019) used vessel patterns to recognize hotspots for high vessel speeds 

and matching this with the spatial distribution of shipping accidents within the port of 

Singapore. 

The challenges in handling AIS data have themselves provided some interesting topics 

that have now become new research areas. An important issue addressed by some 

papers, and of interest in the context of this paper, has to do with the reliability and 

completeness of the information derived from AIS data. Adland et al. (2017) compared 

the volume of crude oil exports derived from AIS data with official customs data. They 

also recognized the challenge of generating micro-level shipment information and the 

prospects of strengthening detection algorithms. Dobrkovic et al. (2018) documented 

the existence of incomplete and noisy AIS data, mostly on the high seas and in high-

traffic areas, and provides an algorithm to adjust trajectories representing maritime 

lanes. Related to techniques to recognize patterns, Sheng and Yin (2018) stress the 

difficulty of vessel traffic analysis because of the large quantity of raw AIS data and 

proposed a method by a revised DBSCAN algorithm to cluster the information into valid 

traffic lanes.   

Advancing in ways that aim to replicate humans’ ways of solving problems, Machine 

Learning (ML) algorithms have recently proven successful in many settings. In this 

paper, I adapt the unsupervised learning algorithm DBSCAN due to its range of 

relevant built-in capabilities. The motivation behind DBSCAN derives from the goal of 

recognizing clusters inside large databases with arbitrary shapes (Ester et al., 1996). 

DBSCAN is used extensively on many real-world problems and remains relevant as 

an important and flexible clustering algorithm, as suggested by Schubert et al. (2017). 

A testimony of this flexibility can be observed in the many variants of the algorithm 

summarized by Khan et al. (2014). In shipping, Fuentes and Adland (2020) used 

DBSCAN to derive access routes to the Suez Canal. In a more general implementation, 

algorithm embedded with DBSCAN. They classify anchored vessels by detecting rapid

changes in the vessel course over ground while inside an identified cluster. Rather

than detecting stoppages, Sheng and Yin (2018) adapted the DBSCAN with a

hierarchical density estimate to extract the common shipping patterns in the Port of

Tianjin. As an interesting twist, Lei (2015) provided a method of statistical vessel

trajectories recognition to detect deviation from common patterns. In related work,

Zhang et al. (2019) used vessel patterns to recognize hotspots for high vessel speeds

and matching this with the spatial distribution of shipping accidents within the port of

Singapore.

The challenges in handling AIS data have themselves provided some interesting topics

that have now become new research areas. An important issue addressed by some

papers, and of interest in the context of this paper, has to do with the reliability and

completeness of the information derived from AIS data. Adland et al. (2017) compared

the volume of crude oil exports derived from AIS data with official customs data. They

also recognized the challenge of generating micro-level shipment information and the

prospects of strengthening detection algorithms. Dobrkovic et al. (2018) documented

the existence of incomplete and noisy AIS data, mostly on the high seas and in high-

traffic areas, and provides an algorithm to adjust trajectories representing maritime

lanes. Related to techniques to recognize patterns, Sheng and Yin (2018) stress the

difficulty of vessel traffic analysis because of the large quantity of raw AIS data and

proposed a method by a revised DBSCAN algorithm to cluster the information into valid

traffic lanes.

Advancing in ways that aim to replicate humans' ways of solving problems, Machine

Learning (ML) algorithms have recently proven successful in many settings. In this

paper, I adapt the unsupervised learning algorithm DBSCAN due to its range of

relevant built-in capabilities. The motivation behind DBSCAN derives from the goal of

recognizing clusters inside large databases with arbitrary shapes (Ester et al., 1996).

DBSCAN is used extensively on many real-world problems and remains relevant as

an important and flexible clustering algorithm, as suggested by Schubert et al. (2017).

A testimony of this flexibility can be observed in the many variants of the algorithm

summarized by Khan et al. (2014). In shipping, Fuentes and Adland (2020) used

DBSCAN to derive access routes to the Suez Canal. In a more general implementation,

7



 

8 
 

Cazzanti and Pallotta (2015) and Sheng and Yin (2018) use the method for vessel 

pattern recognition, aligning the motivation behind DBSCAN with what researchers are 

faced with when using AIS data. For this paper, DBSCAN proves to be particularly 

useful in finding anchorage clusters of different and arbitrary shapes. 

From this review I can recognize at least three relevant gaps in the literature. Firstly, 

there is a need to develop a framework for the standardization and extraction of micro-

level empirical data on global bunkering operations. Secondly, optimization models for 

the bunkering location problem must be expanded to take into account bunkering 

waiting and servicing times, in addition to the classical fuel price-deviation tradeoff. 

Thirdly, algorithms for vessel pattern recognition need to be extended to cater for a 

more granular spatial analysis at the micro level, such as the ability to recognize a 

rendezvous between two vessels in an offshore barge-to-ship bunkering operation.  

 

1.3 Methods 
This section describes the components of the algorithm used to generate bunkering 

statistics. First, the DBSCAN algorithm is reviewed to help in introducing the specific 

application developed on this paper. Then, the bunkering algorithm is described in 

three subsegments which I consider to be its natural subdivisions: bunker barge 

recognition, stopped vessel recognition and bunkering operation recognition. The 

description of the full bunkering algorithm can be followed as pseudo-code in the 

Appendix A. 

1.3.1  DBSCAN algorithm 

The DBSCAN algorithm (Ester et al., 1996) classify positions (points) into clusters 𝐶𝐶 

based on parameters selected by a user. In contrast to other machine learning 

algorithms, DBSCAN does not require predefined input shapes (unsupervised 

learning), which is a convenient condition for discovering arbitrary shapes such as 

anchoring patterns.  

The algorithm works iteratively one position –from a database D– at the time and 

classify clusters by defining groups of positions from the predefined parameters epsilon 

distance (𝜖𝜖) and minimum of positions (minPts). 𝜖𝜖 works as a threshold for the 
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classify clusters by defining groups of positions from the predefined parameters epsilon

distance (c) and minimum of positions (minPts). E works as a threshold for the
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detection of neighboring points when compared against distances calculated between 

every pair of positions 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑞𝑞) using consistent distance measurements (e.g. 

Euclidean, Manhattan, etc.). A summary of the algorithm is presented as follow: 

Step 1. 𝑄𝑄 = {𝑞𝑞 ∈ 𝐷𝐷 ∶ |𝑁𝑁(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑞𝑞, ∀𝑝𝑝 ∈ 𝐷𝐷), 𝜖𝜖)| ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝 ≠ 𝑞𝑞}  

Step 2. 𝐶𝐶 = {𝑞𝑞, 𝑞𝑞′ ∶ 𝑞𝑞, 𝑞𝑞′ ∈ 𝑁𝑁(𝑞𝑞) ∩ 𝑄𝑄, 𝑞𝑞 ≠ 𝑞𝑞′} 

Step 3. 𝐶𝐶 = {𝑟𝑟: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟, 𝑞𝑞) < 𝜖𝜖, 𝑞𝑞 ∈ 𝐶𝐶, ∀𝑟𝑟 ∈ 𝐷𝐷\𝑄𝑄} ∪ 𝐶𝐶 

Step 4. 𝑍𝑍 = {𝑧𝑧 ∈ 𝐷𝐷\𝐶𝐶} 

where, 𝑄𝑄 is a set of core points, 𝐶𝐶 is a set defining clustered points, 𝑍𝑍 is a set of 

unclassified points or noise points, 𝑁𝑁 is a set of points within a neighborhood, and 𝐷𝐷 is 

a database set including all points. 

In step 1, a cluster starts by declaring core positions (q). They are classified as such if 

they have a larger or equal number of neighbors than the minPts within the predefined 

epsilon distance. In step 2, q members of the same neighborhood (N) are merged in 

the same cluster. The positions not classified as core positions are kept for further 

classification.  

From the clusters built from q, an additional refinement (step 3) expands the clusters 

by detecting border positions (r) from those in D not labelled as q. These are positions 

that are within 𝜖𝜖 of already defined q inside clusters (directly density-reachable) or 

positions that connects to q via sequence of other q (density-reachable). The positions 

not labelled in either of the classification processes are then classified as noise 

positions (z) (step 4) and are not part of any cluster. 

The algorithm generates clusters that fulfill two main conditions. First, the maximality 

condition states that if r is in a cluster and there is a q that is density-reachable from r, 

then q also belongs to the cluster. Second, the connectivity condition states that for all 

r and q elements of a cluster, r is density-connected to q. That is, both r and q are 

density-reachable to some point o. 

The bunkering recognition algorithm uses DBSCAN to classify anchoring patterns by 

modelling the expected movement of a vessel from the forces potentially affecting it 
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In step 1, a cluster starts by declaring core positions (q). They are classified as such if

they have a larger or equal number of neighbors than the minPts within the predefined

epsilon distance. In step 2, q members of the same neighborhood (N) are merged in

the same cluster. The positions not classified as core positions are kept for further

classification.

From the clusters built from q, an additional refinement (step 3) expands the clusters

by detecting border positions (r) from those in D not labelled as q. These are positions

that are within E of already defined q inside clusters (directly density-reachable) or

positions that connects to q via sequence of other q (density-reachable). The positions

not labelled in either of the classification processes are then classified as noise

positions (z) (step 4) and are not part of any cluster.

The algorithm generates clusters that fulfill two main conditions. First, the maximality

condition states that if r is in a cluster and there is a q that is density-reachable from r,

then q also belongs to the cluster. Second, the connectivity condition states that for all

r and q elements of a cluster, r is density-connected to q. That is, both r and q are

density-reachable to some point o.

The bunkering recognition algorithm uses DBSCAN to classify anchoring patterns by

modelling the expected movement of a vessel from the forces potentially affecting it
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while at anchor. Further description of the parameters selection is covered in the 

following sections. 

1.3.2 Bunker barges recognition 

As bunkering is a marine operation considered as high risk, given its potential impact 

on the environment and human life should fuel spills occur, the operations are expected 

to occur within areas where the external natural conditions permits a safe connection 

between the vessel and it supplier (Ford, 2012). Such conditions are normally fulfilled 

at places such as anchorages or berths.  

The former condition helps in reducing the bunkering operations search space to ships 

linked within port areas. A procedure to recognize both, the polygons where bunkering 

operations are carried and a bunker barge is summarized in Figure 1. First, polygons 

are generated from the World Ports Index (WPI) coordinates. The creation of the “local 

waters” polygon, where bunker barges are expected to operate, is defined by a circle 

with a radius of five nautical miles from the port’s position. Any ports where the resulting 

circles are intersecting are merged and counted as a joint port. Then, a Point-In-

Polygon (PIP) query conducts the comparison of the vessels’ positions and the defined 

anchorages. In spatial analysis, a PIP serves to detect if a polygon has a point inside 

of it. Note here that it is considered good practice to align both the polygon and the 

point to the same coordinate standard, which for this case is WGS84. Each ship 

position, as reported by AIS is pre-filtered via PIP query against larger and fewer 

polygons to include only those within the region of interest. The valid positions are 

iteratively tested against the port “local waters” polygons using the PIP query.  
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waters" polygon, where bunker barges are expected to operate, is defined by a circle
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circles are intersecting are merged and counted as a joint port. Then, a Point-In-

Polygon (PIP) query conducts the comparison of the vessels' positions and the defined

anchorages. In spatial analysis, a PIP serves to detect if a polygon has a point inside

of it. Note here that it is considered good practice to align both the polygon and the

point to the same coordinate standard, which for this case is WGS84. Each ship
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polygons to include only those within the region of interest. The valid positions are

iteratively tested against the port "local waters" polygons using the PIP query.
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Figure 1 

Procedure for generating port polygons and recognition of bunker barge prospects 

 

For a tanker vessel to be considered a candidate for use as a bunkering barge, it must 

have a length overall (LOA) lower than 170 meters and stay inside the local waters of 

a port or ports for 70 percent of the time. These filters are applied to reduce the 

complexity of subsequent sections of the algorithm where the position of an ocean-

going vessel is tested against a list of prospective barges to recognize the one that 

provides it with fuel. The maximum LOA criteria is necessary to classify vessels with 

sufficient maneuvering flexibility that are capable of being moored alongside a bigger 

vessel with relative ease in restricted navigational areas and is based on the largest 

LOA (168.83 meters) for vessels classified as “Oil Bunkering Tanker” at the Clarksons’ 
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For a tanker vessel to be considered a candidate for use as a bunkering barge, it must

have a length overall (LOA) lower than 170 meters and stay inside the local waters of

a port or ports for 70 percent of the time. These filters are applied to reduce the

complexity of subsequent sections of the algorithm where the position of an ocean-

going vessel is tested against a list of prospective barges to recognize the one that

provides it with fuel. The maximum LOA criteria is necessary to classify vessels with

sufficient maneuvering flexibility that are capable of being moored alongside a bigger

vessel with relative ease in restricted navigational areas and is based on the largest

LOA (168.83 meters) for vessels classified as "Oil Bunkering Tanker" at the Clarksons'
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World Fleet Register database. The minimum stay criteria follows an analysis of the oil 

bunkering tanker vessels' relative stay at port. From the results, bunker barges shows 

in average to stay at port waters for 70% of the time as calculated from their AIS 

positions inside port water relative to the total positions of the vessel. Additionally, 

barges declared as “Slop Reception Vessel”, “Water Carrier” or “Waste Disposal 

Carrier” are removed as they could be confused for bunkering operations as they also 

perform operations alongside bigger vessels. 
                     

The application of these filters (line 16 -37 in Appendix A- Algorithm 2)  results in a list 

of bunkering barge candidates in the Mediterranean and Marmara Sea together with 

their port(s) of service. This list is then iteratively tested for proximity against a vessel 

waiting for bunkering service. A vessel is recognized as a waiting vessel from the 

moment it is stopped, an operation described in the next section. 

1.3.3 Stopped vessel 

In most settings, a stopped object can be identified simply when it ceases to move, 

that is, when its speed is zero. AIS data also provides the vessel speed at every 

timestamp calculated from the distance between coordinates and the time between 

positions, but it cannot be used directly to find stopped vessels in this framework. A 

vessel with zero speed is easily recognizable but not observed often, unless the vessel 

is moored to a berth or kept steady using a dynamic positioning system. Given that 

most bunkering operations are performed at anchorage, it is expected that a “stopped 

vessel” will show some movement in a somewhat regular drift around the anchor 

position—an effect termed “swinging on the anchor”—due to changing wind, tides or 

sea currents.  

To properly account for this, it is necessary to adjust the Cazzanti and Pallotta (2015) 

stopped vessel recognition algorithm. The algorithm adaptation for recognition of stop 

vessels under bunker operations is displayed in Figure 2 .The first step is to reduce 

the sample by recognizing the positions with a higher likelihood of being at anchorage. 

Such is the case for vessels with speed less than three knots, being positioned inside 

port waters polygons and staying more than one hour. This filter is important as 

DBSCAN recognizes position density by comparing distances; therefore, a reduced 

database helps in simplifying the algorithm while assuring that it does not hit a memory 

World Fleet Register database. The minimum stay criteria follows an analysis of the oil

bunkering tanker vessels' relative stay at port. From the results, bunker barges shows

in average to stay at port waters for 70% of the time as calculated from their AIS
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port waters polygons and staying more than one hour. This filter is important as

DBSCAN recognizes position density by comparing distances; therefore, a reduced
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wall due to bigger distances matrices. The implications of large databases in the 

DBSCAN algorithm are further analyzed as part of the empirical study on Section 1.4. 

Figure 2 

Procedure for stopped vessels recognition  

 
                             

Given the proximity of vessels’ positions on short timescales, the Euclidean distance 

calculation method (see Equation 1) is sufficiently accurate to build the distance matrix 

between all position combinations. 

wall due to bigger distances matrices. The implications of large databases in the

DBSCAN algorithm are further analyzed as part of the empirical study on Section 1.4.
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Given the proximity of vessels' positions on short timescales, the Euclidean distance

calculation method (see Equation 1) is sufficiently accurate to build the distance matrix

between all position combinations.
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(√(𝑙𝑙𝑙𝑙𝑙𝑙. 1 − 𝑙𝑙𝑙𝑙𝑙𝑙. )2 + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 1 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 2)2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 60𝑛𝑛𝑛𝑛 𝑥𝑥1852𝑚𝑚
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

(1) 

The calibration of the DBSCAN parameters follows the characteristics of a vessel 

anchored with allowance for some movement. For a cluster to be constructed it 

requires at least three positions and a threshold maximum separation of 210 meters. 

The chosen setting considers that a vessel may move with a constant upper speed of 

0.68 knots for ten minutes, equivalent to 0.11333 nautical miles (210 meters2) (see 

Equation 2), and still classify as a “stopped vessel”. The introduction of DBSCAN and 

recognition of a bunkering stoppage at anchorage is summarized from line 27 to 46 in 

the Algorithm 3 of Appendix A. 

 0.68𝑛𝑛𝑛𝑛𝑛𝑛10𝑚𝑚𝑚𝑚𝑚𝑚
60𝑚𝑚𝑚𝑚𝑚𝑚 = 0.11333𝑛𝑛𝑛𝑛𝑛𝑛1852𝑚𝑚𝑛𝑛𝑛𝑛 = 209.9𝑚𝑚 (2) 

A fix interval is necessary to support the assumption of a vessel movement driven by 

external forces. As Figure 3 illustrates, from the raw data most of the observations 

have a frequency of ten minutes. Therefore, this frequency is used to avoid large 

interpolations and to keep most of the original observations within the data. Any 

missing positions in the ten minutes interval can, for instance, be generated from the 

Prochazka and Adland (2019) maritime track interpolation method. Their method uses 

a prebuilt network of the world oceans constructed from a grid mesh and interpolates 

the vessel route by finding the closest route from origin to destination. However, as 

they recognized the model performs better for long distances, and given the closeness 

of the clustered points, the missing positions are here instead based on linear 

interpolation of the surrounding positions. 

 

 

 

 

 
2 The equivalent of 210m in decimal degrees is 0.00189. This works as a threshold for this level of 
accuracy only if the AIS positions have at least five decimals. 

( ) 60nm x1852m( l a t . 1 - lat.)2+ ( l o n g . l - long. 2)2 decimal degrees x-d- l_d _
ecima egreesxnm

(1)

The calibration of the DBSCAN parameters follows the characteristics of a vessel

anchored with allowance for some movement. For a cluster to be constructed it

requires at least three positions and a threshold maximum separation of 210 meters.

The chosen setting considers that a vessel may move with a constant upper speed of

0.68 knots for ten minutes, equivalent to 0.11333 nautical miles (210 meters2) (see

Equation 2), and still classify as a "stopped vessel". The introduction of DBSCAN and

recognition of a bunkering stoppage at anchorage is summarized from line 27 to 46 in

the Algorithm 3 of Appendix A.

0.68nmx10min 0.11333nmx1852m
- - - - - = - - - - - - - = 209.9m

60min
(2)

nm

A fix interval is necessary to support the assumption of a vessel movement driven by

external forces. As Figure 3 illustrates, from the raw data most of the observations

have a frequency of ten minutes. Therefore, this frequency is used to avoid large

interpolations and to keep most of the original observations within the data. Any

missing positions in the ten minutes interval can, for instance, be generated from the

Prochazka and Adland (2019) maritime track interpolation method. Their method uses

a prebuilt network of the world oceans constructed from a grid mesh and interpolates

the vessel route by finding the closest route from origin to destination. However, as

they recognized the model performs better for long distances, and given the closeness

of the clustered points, the missing positions are here instead based on linear

interpolation of the surrounding positions.

2 The equivalent of 210m in decimal degrees is 0.00189. This works as a threshold for this level of
accuracy only if the AIS positions have at least five decimals.
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Figure 3  

Frequency between positions at raw database 

Note. The rightmost vertical bar includes all frequency observations above 30 minutes.  

The stated maximum separation threshold is derived from the phenomena likely to 

affect the drift of a vessel. The movement of a vessel relative to its anchor position 

depends on external forces like the wind, tides and currents. The relative direction of 

seasonal winds and prevailing currents and the closeness of the defined anchorage 

areas to the coast define the dynamics of vessel movement at the anchoring position, 

but in here, the focus is on the effect of tidal currents3. Using data from 1986 to 2017, 

collected from surface drifters’ installed throughout the Mediterranean, Poulain et al. 

(2018) reported a maximum tidal current amplitude of 35 cm/s (0.68 knots) along 

Adventure Bank off western Sicily. This provides an upper bound to the external forces 

that could cause a rapid change in a vessel's position while at anchorage. This upper 

bound is the maximum allowed separation between points in the construction of the 

cluster and, thus, forms the basis for the epsilon parameter of the DBSCAN algorithm. 

In Section 1.4, a sensitivity analysis compares the performance of this selection on 

discovering anchoring shapes. To adjust the settings of the algorithm to different 

 
3 The effect of tidal streams can be replaced or used jointly with other external forces capable of causing 
rapid vessel drift while at anchor (e.g. Ro-Ro vessels has larger exposed surface to wind, hence, the 
maximum swing on anchor is likely caused by wind change.) 
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Note. The rightmost vertical bar includes all frequency observations above 30 minutes.

The stated maximum separation threshold is derived from the phenomena likely to

affect the drift of a vessel. The movement of a vessel relative to its anchor position

depends on external forces like the wind, tides and currents. The relative direction of

seasonal winds and prevailing currents and the closeness of the defined anchorage

areas to the coast define the dynamics of vessel movement at the anchoring position,

but in here, the focus is on the effect of tidal currents3. Using data from 1986 to 2017,

collected from surface drifters' installed throughout the Mediterranean, Poulain et al.

(2018) reported a maximum tidal current amplitude of 35 cm/s (0.68 knots) along

Adventure Bank off western Sicily. This provides an upper bound to the external forces

that could cause a rapid change in a vessel's position while at anchorage. This upper

bound is the maximum allowed separation between points in the construction of the

cluster and, thus, forms the basis for the epsilon parameter of the DBSCAN algorithm.

In Section 1.4, a sensitivity analysis compares the performance of this selection on

discovering anchoring shapes. To adjust the settings of the algorithm to different

3 The effect of tidal streams can be replaced or used jointly with other external forces capable of causing
rapid vessel drift while at anchor (e.g. Ro-Ro vessels has larger exposed surface to wind, hence, the
maximum swing on anchor is likely caused by wind change.)
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geographical regions, information about tidal streams can be found in Tidal Stream 

Atlases or Sailing Directions. 

1.3.4 Bunkering recognition 

Recognizing a stopped vessel and having the list of bunker barge prospects serve as 

the basis for identifying a bunkering operation. This section consolidates the results 

generated in previous sections as shown in Figure 4 (e.g. bunker barges list and 

anchoring clusters) to discover the rendezvous of an ocean going vessel and a bunker 

barge. Note that the algorithm can only recognize an ocean-going vessel supplied by 

a bunker barge and not vessels bunkering from shore connections. 

Figure 4 

Procedure for discovering the rendezvous of an ocean going vessel and a bunkering 
barge 

 

The stopped vessels’ AIS information includes positions and timestamps that allow 

identifying the vessel track. This track represents the drifting pattern of the vessel while 
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The stopped vessels' AIS information includes positions and timestamps that allow

identifying the vessel track. This track represents the drifting pattern of the vessel while
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at anchorage and results from the transformation of individual positions (points) to a 

single line string. The line string approximates the track that the vessel could have 

followed if positions were observed more frequently than the 10 minutes in the sample 

data (see Figure 5).  

Figure 5 

Line string construction from a vessel’s positions 

 

The next step is to generate a polygon around the track that represents the close 

quarters (i.e. immediate vicinity) of the vessel. A bunker barge that is alongside the 

ocean-going vessel will be positioned only meters away and match the time period of 

the ocean-going vessel while stopped. This constraint, together with the start and end 

time of the period at anchor, provides the conditions to test all bunker barges prospects 

with a PIP query. To avoid detecting barges that are simply passing by, their positions 

must remain within the “stopped vessel polygon” for at least one continuous hour. 

The results from this algorithm generates a database that includes information such as 

the ocean-going vessel information, the time of arrival and departure at the 

anchorage/berth, the timestamps for the bunkering service, bunker barge information 

and the location (port) of the bunkering event. 

1.3.5 Algorithm test 

I illustrate the algorithm performance by following two ocean-going vessels and visually 

validate their bunkering operations at the Algeciras port in Spain. The two plots shown 

in Figure 6 displays the arrival/departure of the vessels ‘Quetzal Arrow’ and ‘Liberty’ to 

the bay of Algeciras/Gibraltar and their servicing by bunker barges ‘S.P.A Bunker 

Cincuentayuno’ and ‘Hercules 100’, respectively.  
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The next step is to generate a polygon around the track that represents the close

quarters (i.e. immediate vicinity) of the vessel. A bunker barge that is alongside the

ocean-going vessel will be positioned only meters away and match the time period of

the ocean-going vessel while stopped. This constraint, together with the start and end

time of the period at anchor, provides the conditions to test all bunker barges prospects

with a PIP query. To avoid detecting barges that are simply passing by, their positions

must remain within the "stopped vessel polygon" for at least one continuous hour.

The results from this algorithm generates a database that includes information such as

the ocean-going vessel information, the time of arrival and departure at the

anchorage/berth, the timestamps for the bunkering service, bunker barge information

and the location (port) of the bunkering event.

1.3.5 Algorithm test

I illustrate the algorithm performance by following two ocean-going vessels and visually

validate their bunkering operations at the Algeciras port in Spain. The two plots shown

in Figure 6 displays the arrival/departure of the vessels 'Quetzal Arrow' and 'Liberty' to

the bay of Algeciras/Gibraltar and their servicing by bunker barges 'S.P.A Bunker

Cincuentayuno' and 'Hercules 100', respectively.
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Figure 6 

Plots of ocean-going vessels and bunker barges sample in the Bay of 
Gibraltar/Algeciras 

 

Assuming that the bunker barge list and port/anchorage polygons have already been 

constructed (from Algorithm 2 of Appendix A), the first filter (see Figure 7) removes the 

ocean-going vessel’s positions that are outside of the port waters and keeps the 

recorded positions with less than 3 knots speed. The result is a limited search sample 

that reduces the complexity of implementing the DBSCAN algorithm. 
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Assuming that the bunker barge list and port/anchorage polygons have already been

constructed (from Algorithm 2 of Appendix A), the first filter (see Figure 7) removes the

ocean-going vessel's positions that are outside of the port waters and keeps the

recorded positions with less than 3 knots speed. The result is a limited search sample

that reduces the complexity of implementing the DBSCAN algorithm.
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Figure 7 

Ocean-going vessels filtered positions inside local waters 

 

The DBSCAN adjusted parameters recognizes clusters by having at least three 

positions within 210 meters (0.00189 decimal degrees) of each other. As described in 

Ester et al. (1996), for the minPts parameter, a relatively low value must be used to 

include all points belonging to the same cluster. As one position cannot build a cluster 

and two positions can be confused with a vessel slowing down on maneuvers, the 

setting herein uses three positions as the minimum available option. This setting should 

remove, in a normal scenario, the positions not belonging to the cluster of anchored 

positions or swing radius of the vessel. The resulting cluster of anchored positions for 

the two ocean-going vessels are illustrated in Figure 8. Note that the resulting shape 

is irregular but most closely resembles the circle implied by a vessel swinging on 

anchor due to varying tidal streams or wind conditions. 
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The DBSCAN adjusted parameters recognizes clusters by having at least three

positions within 210 meters (0.00189 decimal degrees) of each other. As described in

Ester et al. (1996), for the minPts parameter, a relatively low value must be used to

include all points belonging to the same cluster. As one position cannot build a cluster

and two positions can be confused with a vessel slowing down on maneuvers, the

setting herein uses three positions as the minimum available option. This setting should

remove, in a normal scenario, the positions not belonging to the cluster of anchored

positions or swing radius of the vessel. The resulting cluster of anchored positions for

the two ocean-going vessels are illustrated in Figure 8. Note that the resulting shape

is irregular but most closely resembles the circle implied by a vessel swinging on

anchor due to varying tidal streams or wind conditions.
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Figure 8 

Ocean-going vessels anchoring positions as determined by the DBSCAN algorithm 

 

To compare the positions of barges against those of stopped ocean-going vessels 

requires the construction of base polygons for conducting a PIP query. The polygon 

construction starts from connecting the ocean-going vessel positions by lines. The 

polygon is then generated by extending a radius from the created line strings (lines 5-

8 in Algorithm 4 of Appendix A). The resulting polygon represents the potential areas 

within which a barge is expected when positioned alongside the vessel. Here, a radius 

of fifty meters represents the maximum distance between the two GPS positions 

(vessel and barge) for a large beam vessel4.  

The rendezvous of an ocean-going vessel and a bunker barge is recorded in a 

database with the specifications of both vessels. The entry is complemented with the 

time that the barge entered the stopped vessel polygon (the service start time) and the 

time of the last position inside the polygon (the service end time).  

To decide whether the barge-to-ship bunkering operation is undertaken at anchorage 

or at berth, a first investigation performed a PIP query against the high-resolution 

coastline polygons from the Global Self-consistent, Hierarchical, High-resolution 

 
4 In theory, a dynamic buffer adjustment can be done with the AIS information for both vessels. This 
would involve the distance to antennas (dimC and dimD), the vessels’ beam and the position of the 
barge alongside the larger vessel. Such a dynamic radius is not implemented here. 
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To compare the positions of barges against those of stopped ocean-going vessels

requires the construction of base polygons for conducting a PIP query. The polygon

construction starts from connecting the ocean-going vessel positions by lines. The

polygon is then generated by extending a radius from the created line strings (lines 5-

8 in Algorithm 4 of Appendix A). The resulting polygon represents the potential areas

within which a barge is expected when positioned alongside the vessel. Here, a radius

of fifty meters represents the maximum distance between the two GPS positions

(vessel and barge) for a large beam vessel4.

The rendezvous of an ocean-going vessel and a bunker barge is recorded in a

database with the specifications of both vessels. The entry is complemented with the

time that the barge entered the stopped vessel polygon (the service start time) and the

time of the last position inside the polygon (the service end time).

To decide whether the barge-to-ship bunkering operation is undertaken at anchorage

or at berth, a first investigation performed a PIP query against the high-resolution

coastline polygons from the Global Self-consistent, Hierarchical, High-resolution

4 In theory, a dynamic buffer adjustment can be done with the AIS information for both vessels. This
would involve the distance to antennas (dimC and dimD), the vessels' beam and the position of the
barge alongside the larger vessel. Such a dynamic radius is not implemented here.
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Geography Database from the National Geophysical Data Center of NOAA (2017). As 

the polygons are built on natural coastline features, some berths appear as artificial 

extensions of the coastline but are not properly identified as being part of the polygon. 

To conduct a proper PIP query, I therefore manually construct the berth polygons with 

the help of WPI port positions and identified the berthed vessels as those inside the 

polygons. 

It is important to discuss the concern that might arise with the proximity calculation 

when distances are measured from GPS positions. GPS is operated and maintained 

by the US Air Force Space Segment and they commit to broadcasting the GPS signal 

in space with a global average user range error (URE) or error from the signal in space 

of ≤7.8m (National Coordination Office for Space-Based Positioning, 2020). They have 

also declared that as from 2016, their performance is URE ≤0.715m, 95% of the time. 

Using earth-based correctors such as the Differential Global Positioning System5 

(DGPS), provided along most of the main shipping routes, might allow users to achieve 

accuracy of 1 to 3m (Kim, et al., 2017). Given that bunkering operations take place 

close to shore, typically within the range of DGPS signals, there is reason to believe 

that the position accuracy is satisfactory.  

Figure 9 illustrates how the algorithms identifies Quetzal Arrow as a stopped vessel at 

anchor, that the vessel is eventually joined by the bunker barge S.P.A Bunker 

Cincuentayuno, following which both vessels drift together as the bunkering operation 

takes place.  

 

 

 

 

 

 
5 Differential Global Positioning System is a system that improves location accuracy of GPS satellite 
signals by a calculation of fixed ground reference and the difference with the GPS positions. It 
broadcasts the adjustment on radio frequencies. 
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(DGPS), provided along most of the main shipping routes, might allow users to achieve

accuracy of 1 to 3m (Kim, et al., 2017). Given that bunkering operations take place

close to shore, typically within the range of DGPS signals, there is reason to believe

that the position accuracy is satisfactory.

Figure 9 illustrates how the algorithms identifies Quetzal Arrow as a stopped vessel at

anchor, that the vessel is eventually joined by the bunker barge S.P.A Bunker

Cincuentayuno, following which both vessels drift together as the bunkering operation

takes place.

5 Differential Global Positioning System is a system that improves location accuracy of GPS satellite
signals by a calculation of fixed ground reference and the difference with the GPS positions. It
broadcasts the adjustment on radio frequencies.
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Figure 9 

Ocean-going vessel and bunker barge rendezvous in bunkering position 

 

The most computationally intensive and complex part of the implementation of 

DBSCAN in this case is the distance matrix calculation for detecting the ‘stopped 

vessels’ position cluster. Computational improvements to the distance matrix 

generation can be achieved with parallel Graphics processing unit (GPU) acceleration 

(Man et al., 2011), which reduces the overall processing time of the DBSCAN 

algorithm. It is worth noting here that even though an efficient distance matrix 

calculation reduces the processing time, data features such as vessels having several 

visits and the large scale of the ship-barge matching makes executing a sequential 

algorithm a lengthy process. To reduce the cost of complexity, I assume that a vessel 

with over 6,500 observations (approx. 45days) inside a port polygon (a single visit) is 

no longer a vessel waiting for service but a laid-up vessel and the visit is not assessed 

as a prospective bunkering operation. This criterion is helpful to avoid long layovers, 

which are difficult to assess based on the assumptions of bunkering service calculation 

(e.g. waiting time calculation from vessel arrival until vessel served by a bunkering 

barge). Another convenient condition is that it precludes the algorithm from hitting 

memory barriers and bottlenecks in the computation that would be caused by large 

distance matrices.  
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The most computationally intensive and complex part of the implementation of

DBSCAN in this case is the distance matrix calculation for detecting the 'stopped

vessels' position cluster. Computational improvements to the distance matrix

generation can be achieved with parallel Graphics processing unit (GPU) acceleration

(Man et al., 2011), which reduces the overall processing time of the DBSCAN

algorithm. It is worth noting here that even though an efficient distance matrix

calculation reduces the processing time, data features such as vessels having several

visits and the large scale of the ship-barge matching makes executing a sequential

algorithm a lengthy process. To reduce the cost of complexity, I assume that a vessel

with over 6,500 observations (approx. 45days) inside a port polygon (a single visit) is

no longer a vessel waiting for service but a laid-up vessel and the visit is not assessed

as a prospective bunkering operation. This criterion is helpful to avoid long layovers,

which are difficult to assess based on the assumptions of bunkering service calculation

(e.g. waiting time calculation from vessel arrival until vessel served by a bunkering

barge). Another convenient condition is that it precludes the algorithm from hitting

memory barriers and bottlenecks in the computation that would be caused by large

distance matrices.
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Moreover, as the algorithm iterations do not need information from other processed 

vessels, it can be distributed to reduce the overall computational time. The DBSCAN 

used as the machinery of this algorithm is known to have a complexity of 𝑂𝑂(𝑛𝑛2) in the 

worst case (Ali et al., 2010). The prospect of having long processes also works in favor 

of the application of a distributed setting. Implementing the distributed setting requires 

separating the whole database in chunks grouped by vessel and assign a vessel per 

node. To avoid hitting the RAM memory limit of a computer in the cluster, because of 

the stored distance matrices, and to use the most of the CPU cores I use only the 

physical cores (12 out of 24) of 10 computers/node for 120 distributed operations. MPI 

performs the communication between cores and nodes and the assignment of vessels 

positions defined in an asynchronous process. This setting permits that the results of 

a core can be written in a central database while other processes in the remaining 

cores have not finished. This also permits that a new vessel to be processed can use 

an idle core.  

The use of additional cores increases the likelihood of having memory error shutdowns, 

as synchronous processes will claim resources from the same pool e.g. RAM. Memory 

error is a critical fault in a distributed process and causes the overall calculation to have 

an abrupt stop, should that occur. Such scenario might happen if any random allocation 

of processes (vessels per core) within nodes, demand more RAM than the local node 

capacity (47.3 GB) can supply. As DBSCAN matrices are the biggest objects in the 

algorithm6, having control on its generation works as a safety “relay”. The control is 

done programmatically by setting an upper bound (6,500 records) within the code, 

causing a limit in the memory consumption per node. This balance is necessary to 

assure that the solutions are given in a practical time and removing the risk of a 

shutdown and loss of information after processing for some time. 

 

1.4 Empirical study 
Using the algorithm outlined above, it is possible to build a database with bunkering 

event information from a dataset of raw AIS data. This section reports the empirical 

test of the algorithm and the results in the form of descriptive statistics for bunkering 

 
6 DBSCAN distance matrices of size (𝑛𝑛𝑛𝑛𝑛𝑛) with double precision floating points (8 bytes). 
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operations. Additionally, a sensitivity analysis with the DBSCAN parameters test the 

performance of different inputs in the recognition of anchoring shapes. 

The algorithm is fed with observations from an AIS database that comprises 1.3x109 

positions of vessels in the Mediterranean and Marmara Sea collected from February 

2013 to June 2019 and provided by Vesseltracker.com GmbH. I implemented it with 

Python 3.7 in an asynchronous distributed setting defined with Message Passage 

Interface (MPI). The distribution was conducted in a cluster of 10 computers with 24 

CPU cores (12 physical) each with 2.67 Ghz core frequency and non-shareable RAM 

memory of 47.3 GB. 

1.4.1  Derived statistics and discussion 

Running the algorithm results in 49,463 observations of bunkering operations in the 

Mediterranean and Marmara Seas, with more observations identified from 2015 

onwards (see Table 1) given higher accuracy and frequency of AIS positions from 

improved coverage of satellite and shore AIS receivers. 

Table 1 
Bunkering observations for the Mediterranean Sea and Marmara Sea per year 
Year Bunker.ops AIS Vessels positions 
2013 105 68x106 

2014 6160 145x106 

2015 9408 204 x106 

2016 9159 216 x106 

2017 9997 227 x106 
2018 9931 235 x106 

2019 4703 126 x106 

Note. Observations for 2019 available until June 

While there are few benchmark data available, the Gibraltar Port Authority (2019) 

provides some general bunkering statistics for comparison (see Table 2). The statistics 

shown in Table 2 suggests that with the better-quality AIS data available from 2015 

onwards, the algorithm is able to capture around 80% of reported operations in the 

Port of Gibraltar. 
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Table 2 
Bunkering operations in Gibraltar per year 
Year Gibraltar statistics Bunk. algorithm % of total 
2013 5988 101 1.7 
2014 5475 2745 47.8 

2015 5571 4452 80.0 

2016 5720 4261 74.4 
2017 6298 5112 81.1 

2018 5829 5176 88.8 

 

As seen in Table 3, in order of importance, the most used ports for bunkering are 

Gibraltar, Algeciras, Istanbul, Ceuta, Piraeus and Valetta. This result is consistent with 

the observation that the location of a port (being close to main trade routes) is an 

important factor when selecting the bunkering port, as pointed out by Vilhelmsen et al. 

(2014). Additionally, Table 3 shows the average waiting time for vessels served for 

bunkers. This variable can be interpreted as a measure of reliability and punctuality of 

the ports bunker suppliers. According to Lam et al. (2011), this is an important factor 

(ranked fourth after price competitiveness) for ship operators when selecting a 

bunkering port as prolonged bunkering operations could lead to disruption of vessels 

schedule. Their description suggest that a ship operator with a tight schedule would 

choose bunkers from the ports with lower waiting times. For instance, a vessel 

bunkering at anchor would choose Gibraltar (1.68 hours) instead of its close neighbor 

Algeciras (5.20 hours) when the bunkering decision is based on service efficiency and 

all else equal (e.g. price, distance, etc.). A more detailed decision model would 

incorporate the tradeoff of several variables, such as price, route and waiting time.  

 

 

 

 

Table 2
Bunkering operations in Gibraltar per year

Year Gibraltar statistics Bunk. algorithm % of total
2013 5988 101 1.7

2014 5475 2745 47.8

2015 5571 4452 80.0

2016 5720 4261 74.4

2017 6298 5112 81.1

2018 5829 5176 88.8

As seen in Table 3, in order of importance, the most used ports for bunkering are

Gibraltar, Algeciras, Istanbul, Ceuta, Piraeus and Valetta. This result is consistent with

the observation that the location of a port (being close to main trade routes) is an

important factor when selecting the bunkering port, as pointed out by Vilhelmsen et al.

(2014). Additionally, Table 3 shows the average waiting time for vessels served for

bunkers. This variable can be interpreted as a measure of reliability and punctuality of

the ports bunker suppliers. According to Lam et al. (2011), this is an important factor

(ranked fourth after price competitiveness) for ship operators when selecting a

bunkering port as prolonged bunkering operations could lead to disruption of vessels

schedule. Their description suggest that a ship operator with a tight schedule would

choose bunkers from the ports with lower waiting times. For instance, a vessel

bunkering at anchor would choose Gibraltar (1.68 hours) instead of its close neighbor

Algeciras (5.20 hours) when the bunkering decision is based on service efficiency and

all else equal (e.g. price, distance, etc.). A more detailed decision model would

incorporate the tradeoff of several variables, such as price, route and waiting time.

25



 

26 
 

Table 3 
Bunkering operations derived statistics from January 2013 to June 2019 

Notes. Barges are counted as belonging to the last port where they had a bunkering operation. Table 
includes ports with more than 100 operations from 2013 to June 2019. Service and waiting times are 
winsorized at the 10% level. 

A comparison between variables suggests weak linear relations, as shown in a 

correlation matrix in Appendix Table B.1, and a marginally moderate relation (0.30) 

between operations and number of barges. This could be interpreted as the variables 

changing based on different underlying dynamics not described in this study. The 

number of barges deployed in a port could result from a long-term fleet strategy or the 

fleet plan to fulfill an uncertain expected demand (future operations); the success of 

meeting that demand and its variance could be suggested by the moderate correlation 

coefficient (0.30). Waiting times might be driven by the tank capacity of the bunker 

barges, which result in the number of trips to a restock place, number of vessels waiting 

for bunkers, or vessel clearance of port requirements such as free pratique. The 

number of operations could result from a tradeoff in the port's proximity to main trade 

routes, bunker price and port efficiency (waiting time and service time). The relation 

Port Barges Service 
time 

(hours) 

Waiting 
time- 
berth 

(hours) 

Waiting 
time- 

anchor 
(hours) 

Ops. 
at 

berth 

Ops. at 
anchor 

Ops. % 

Gibraltar 40 6.63 3.88 1.68 323 23,794 24,117 48.92 
Algeciras 46 5.96 3.80 5.20 2,165 7,230 9,395 19.06 
Istanbul 23 3.37 6.95 4.02 43 3,797 3,840 7.79 

Ceuta 8 5.02 1.45 3.63 17 2,296 2,313 4.69 

Piraeus 59 4.90 4.35 5.73 1,145 825 1,970 4.00 
Valletta  17 6.32 4.11 2.32 1,246 245 1,491 3.02 

Barcelona 5 4.34 4.85 - 1,103 0 1,103 2.24 

Limassol 4 3.95 2.72 3.53 196 877 1,073 2.18 
Livorno 7 4.44 5.56 - 857 7 864 1.75 

Augusta 17 3.78 12.47 5.48 114 739 853 1.73 

Genova 10 3.92 6.46 - 665 0 665 1.35 
Valencia 5 4.91 4.35 6.05 534 20 554 1.12 

Napoli 11 3.18 5.03 7.25 298 25 323 0.66 

Syros Isl. 1 3.26 - 2.04 1 314 315 0.64 
Tanger 1 5.83 2.92 11.88 0 166 166 0.34 

Chioggia 2 3.14 9.75 9.36 150 0 150 0.30 

Mersin 11 6.22 3.46 11.69 101 6 107 0.22 

Total 267    8,958 40,341 49,299  
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(hours) (hours)

Gibraltar 40 6.63 3.88 1.68 323 23,794 24,117 48.92
Algeciras 46 5.96 3.80 5.20 2,165 7,230 9,395 19.06
Istanbul 23 3.37 6.95 4.02 43 3,797 3,840 7.79
Ceuta 8 5.02 1.45 3.63 17 2,296 2,313 4.69
Piraeus 59 4.90 4.35 5.73 1,145 825 1,970 4.00
Valletta 17 6.32 4.11 2.32 1,246 245 1,491 3.02
Barcelona 5 4.34 4.85 1,103 0 1,103 2.24
Lirnassol 4 3.95 2.72 3.53 196 877 1,073 2.18
Livorno 7 4.44 5.56 857 7 864 1.75
Augusta 17 3.78 12.47 5.48 114 739 853 1.73
Genova 10 3.92 6.46 665 0 665 1.35
Valencia 5 4.91 4.35 6.05 534 20 554 1.12
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Syros Isl. 1 3.26 2.04 1 314 315 0.64
Tanger 1 5.83 2.92 11.88 0 166 166 0.34
Chioggia 2 3.14 9.75 9.36 150 0 150 0.30
Mersin 11 6.22 3.46 11.69 101 6 107 0.22

Total 267 8,958 40,341 49,299

Notes. Barges are counted as belonging to the last port where they had a bunkering operation. Table
includes ports with more than 100 operations from 2013 to June 2019. Service and waiting times are
winsorized at the 10% level.

A comparison between variables suggests weak linear relations, as shown in a

correlation matrix in Appendix Table B.1, and a marginally moderate relation (0.30)

between operations and number of barges. This could be interpreted as the variables

changing based on different underlying dynamics not described in this study. The

number of barges deployed in a port could result from a long-term fleet strategy or the

fleet plan to fulfill an uncertain expected demand (future operations); the success of

meeting that demand and its variance could be suggested by the moderate correlation

coefficient (0.30). Waiting times might be driven by the tank capacity of the bunker

barges, which result in the number of trips to a restock place, number of vessels waiting

for bunkers, or vessel clearance of port requirements such as free pratique. The

number of operations could result from a tradeoff in the port's proximity to main trade

routes, bunker price and port efficiency (waiting time and service time). The relation
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might not be linear, as the weight of importance on the factors can be interpreted as 

conditional on fuel price and market conditions. Finally, the bunkering service time can 

be more related to bunker quantity loaded per operation and individual barges pumping 

rates. This last hypothesis is analyzed later in this chapter. 

Segmenting the results by vessel type shows an interesting outcome as seen in Table 

4. According to Acosta et al. (2011), the bunkering service provided to liner vessels in 

the strait of Gibraltar is dominated by the port of Algeciras. They argue that the quick 

turnaround of these vessels requires them to be served while alongside the container 

port terminal instead of deviating to the port of Gibraltar and adding the costs of 

deviation and possible waiting time. They also mention that non-liner vessels, such as 

bulk carriers or oil tankers prefer to be served at the port of Gibraltar while at anchor 

as a result of generally lower bunker prices and a lower value of time. The results in 

Table 4 confirm these qualitative statements with actual data derived from the 

algorithm. 

Table 4  
Top 10 preferred bunker ports per vessel type 

Liner vessels 
(Containers/Ro-Ro) 

Crude oil tankers Bulk Carriers 

 Port Bunk.  Port Bunk. Port Bunk. 
Algeciras 2,431 Gibraltar 658 Gibraltar 15,887 
Valetta 1,032 Algeciras 144 Algeciras 3,300 

Piraeus 973 Genova 23 Istanbul 1,879 

Barcelona 532 Augusta 17 Ceuta 1,317 
Valencia 503 Piraeus 13 Piraeus 273 

Livorno 455 Ceuta 6 Limassol 126 

Limassol 295 Limassol 6 Valetta 117 
Tanger 260 Valetta 4 Barcelona 92 

Genova 234 Livorno 3 Syros Isl. 82 

Gibraltar 203 Barcelona 1 Genova 44 

At anchorage 1,440 At anchorage 840 At anchorage 22,9371

 At berth 5,829 At berth 37 At berth 350 

The vessel service time is an important piece of information that helps to assess the 

effectiveness of the supplying barges in pumping the fuel, conducting the tanks survey 

and clearing the documentation that will let the vessel resume its voyage. The results 

shown in Figure 10 derives from the time difference of the first and last positions of the 
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bunker barge inside the stopped vessel polygon. This effectively assumes that the 

barge starts the bunkering operation as soon as it enters into the stopped vessel 

polygon and stops the service as it leaves the polygon, though in practice some time 

will be lost due to mooring arrangements and hose connection.  

Figure 10 

Service times approximation of the top five bunkering ports 

 

The service time is dependent on the pumping rate of the bunker barge and the 

quantity of fuel requested by a vessel. The first could be thought as being related to 

the barge’s age. Older bunker barges will tend to have lower pumping capacity, due to 

more sediments in their tanks, older lines and older pumps. Newer barges can also 

indicate suppliers’ willingness to invest in offering a better service, and so improving 

the overall port bunker servicing time. Figure 11 shows the difference in bunker barge 

fleet age distribution for the top five bunkering ports. The shadow region display part 

of the cumulative distribution where vessels are less than 15 years old (2005 laid 

barges or newer) with Livorno with 99%, Valencia with 83%, Algeciras and Ceuta with 

78%, and Istanbul with 76%. The ranking signals the need to offer faster services 

based on the short calls of the vessels calling their ports. Specifically, the reason for 

calling at these ports has to do with waiting for Bosporus Strait transit (Istanbul), 

servicing passenger vessels (Ceuta and Livorno), fast turnaround services e.g. Ro/Ro 

vessels at Livorno, and loading/unloading containers at the port of Algeciras and 
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The service time is dependent on the pumping rate of the bunker barge and the

quantity of fuel requested by a vessel. The first could be thought as being related to

the barge's age. Older bunker barges will tend to have lower pumping capacity, due to

more sediments in their tanks, older lines and older pumps. Newer barges can also

indicate suppliers' willingness to invest in offering a better service, and so improving

the overall port bunker servicing time. Figure 11 shows the difference in bunker barge

fleet age distribution for the top five bunkering ports. The shadow region display part

of the cumulative distribution where vessels are less than 15 years old (2005 laid

barges or newer) with Livorno with 99%, Valencia with 83%, Algeciras and Ceuta with

78%, and Istanbul with 76%. The ranking signals the need to offer faster services

based on the short calls of the vessels calling their ports. Specifically, the reason for

calling at these ports has to do with waiting for Bosporus Strait transit (Istanbul),

servicing passenger vessels (Ceuta and Livorno), fast turnaround services e.g. Ro/Ro

vessels at Livorno, and loading/unloading containers at the port of Algeciras and
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Valencia. Other drivers have to do with the individual behavior, expertise and 

sophistication of the bunker buyer. An approximation of fuel requirements could be 

estimated with knowledge of factors such as the duration of the next voyage, its 

expected speed, the total fuel oil tank capacity of the vessel, expected weather 

conditions, and draft restrictions. I assume these the very basic considerations that are 

made when requesting the necessary fuel for a vessel. 

Figure 11 

Empirical cumulative distribution function for bunker barges year of built at the top 
five bunkering ports 

 
Notes. Ports with five or more bunker barges. 

It is also of interest to investigate the factors influencing the bunkering servicing times. 

In a transparent market, all that would be needed is the quantity loaded and the 

pumping rate used. However, given that such data is unobservable due to the lack of 

publicly available bunker delivery notes, it is necessary to estimate the relationship 

using proxies.  Taking bulk carriers as an example (the vessel type with the most 

records in the AIS data), the criteria chosen were (with expected sign in parenthesis): 

fuel tanks maximum capacity (+), next two legs voyage distance (+), average speed of 

the next two legs (+), age of barge (+) at the time of the bunkering operation and a 

dummy variable denoting whether the vessel is laden or in ballast (-). The maximum 

capacity of the fuel tanks in the ocean-going vessel ought to be positively correlated 

with the volume of fuel taken onboard, though there is no information available on the 

Valencia. Other drivers have to do with the individual behavior, expertise and

sophistication of the bunker buyer. An approximation of fuel requirements could be

estimated with knowledge of factors such as the duration of the next voyage, its

expected speed, the total fuel oil tank capacity of the vessel, expected weather

conditions, and draft restrictions. I assume these the very basic considerations that are

made when requesting the necessary fuel for a vessel.

Figure 11

Empirical cumulative distribution function for bunker barges year of built at the top
five bunkering ports

0.8

- LIVORNO
,. . . . . , VALENCIA

-- ALGECIRAS

- · - • CEUTA
- • iSTANBUL

.f' 0.6

..c
(Il

..c
0.4a...

I -..
I- ..
I
I

0.2
- - - - - -- .. - - - - r i• ·•••·•

r _.• • •• • ••••  !Ii... ••: ! I- - - - - - -
1970 1980 1990 2000

I
2005 2010 2019

Year of built

Notes. Ports with five or more bunker barges.

It is also of interest to investigate the factors influencing the bunkering servicing times.

In a transparent market, all that would be needed is the quantity loaded and the

pumping rate used. However, given that such data is unobservable due to the lack of

publicly available bunker delivery notes, it is necessary to estimate the relationship

using proxies. Taking bulk carriers as an example (the vessel type with the most

records in the AIS data), the criteria chosen were (with expected sign in parenthesis):

fuel tanks maximum capacity(+), next two legs voyage distance(+), average speed of

the next two legs (+), age of barge (+) at the time of the bunkering operation and a

dummy variable denoting whether the vessel is laden or in ballast (-). The maximum

capacity of the fuel tanks in the ocean-going vessel ought to be positively correlated

with the volume of fuel taken onboard, though there is no information available on the
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amount of fuel remaining onboard. Similarly, the distance and speed of the next 

planned voyage serve as a proxy for expected consumption. It is worth noting that both 

variables will be known by the ship’s officers (or can be estimated with some certainty) 

at the time of bunkering based on their voyage plan. The greater speed, the higher the 

consumption per nautical mile (nm) of distance (Ronen, 1982). The age of the barge 

is likely to influence the pumping rate, with higher age typically implying lower pumping 

rates and therefore longer servicing times. The impact of the variables was estimated 

in a fixed effects regression and the results are shown in Table 5.   

Table 5 

Estimates of the service time 

Variables (1) 
Service Time 

(hours) 

(2) 
Service Time 

(hours) 

(3) 
Service Time 

(hours) 

Bunker capacity (m3)(/100) 0.060*** 
(0.005) 

0.055*** 
(0.004) 

0.056*** 
(0.005) 

Next voyage distance (nm)(/100) 0.008*** 
(0.001) 

0.007*** 
(0.001) 
 

0.007*** 
(0.001) 
 

Next voyage average speed (knots) -0.002 
(0.012) 

0.009 
(0.011) 

0.013 
(0.011) 

Barge age (years) 0.003 
(0.006) 

0.005 
(0.006) 

0.001 
(0.006) 

Laden vessel  -0.280*** 
(0.073) 

-0.302*** 
(0.071) 

-0.320*** 
(0.072) 

Constant 5.745*** 
(0.214) 

5.758*** 
(0.201) 

5.749*** 
(0.202) 

Barges Fixed Effects No Yes Yes 

Time Fixed Effects No No Month 

Number of observations 5176 5176 5176 

R2 0.067 0.067 0.067 

Notes. Robust standard errors. Significance levels are 1% (***), 5% (**) and 10% (*). Service time and 
next voyage average speed windsorized at the 10% level. Regression carried on bulk carriers’ records 
(23,294) with greater than or equal to two legs after the bunker stop (11,692) and non-empty values 
(6,392). 

While the explanatory power is low (R2 = 0.067), and could be interpreted as the 

independent variables can explain 7% of the service time variance, it is more important 

in the context of this analysis that the individual variables are highly significant and that 

the coefficient have a plausible sign, as a “common sense” validation of the variation 
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While the explanatory power is low (R2 = 0.067), and could be interpreted as the

independent variables can explain 7% of the service time variance, it is more important

in the context of this analysis that the individual variables are highly significant and that

the coefficient have a plausible sign, as a "common sense" validation of the variation
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in bunkering servicing times generated by the algorithm. This is acceptable in this 

study, considering that the tested variables are proxies of the underlying effect. 

Table 5 suggests that the fuel tank capacity of the ocean-going vessel and the 

upcoming voyage distance are significant at the 1% level. Their coefficients imply that 

100 𝑚𝑚3 additional bunker tank capacity on a vessel leads on average to 0.056 hours 

(3.4 minutes) change to the service time or 100 nautical miles for the next voyage, an 

increase of 0.007 hours (0.4 minutes). The age of barges turns out to be non significant 

at a 95% confidence interval. This could be explained by some barge-owners having 

a rigorous maintenance plan that can include overhauling the pumping arrangement of 

underperforming barges, regardless of age. The laden vessel dummy variable has a 

negative coefficient; the reason is that laden vessels will typically be close to their 

maximum permitted sailing draft and therefore have less allowance to load fuel, 

compared to ballasting vessels of the same size. The laden vessel coefficient shows 

that laden vessels will have, on average, 0.32 hours (19.2 minutes) less service time 

than ballast vessels. There is no improvement from including barge fixed effects. Such 

effects could include the respective Captains’/Chief Engineers’ pumping rate 

preferences.  

It is worth noting that certain robustness tests were also performed. First, the model is 

iterated with 100 random samples of 1000 records each (approx. 20% of total sample) 

to check that the significance of the variables is not a result of the sample size. By 

averaging the coefficients, standard deviations, and p-values, the results shows that 

the variables bunker capacity, next voyage distance and laden vessel remains to be 

significant and the sign coefficients are consistent with the interpretation of the relations 

to the service time. Second, the Breusch-Pagan test for residual homoscedasticity 

shows a value of 44.74 and p-value < 0.05. This implies the rejection of the null 

hypothesis of homoscedasticity and supports the use of robust standard errors as 

reported. Third, the independent variables do not suffer from multicollinearity as the 

Variance Inflation Factor is lower than five in all cases. Fourth, the independent 

variables show exogeneity when compared via Pearson's r correlation to the model’s 

residuals. Finally, the expected residual value is zero but the distribution is non-Normal. 

However, violating this assumption causes no significant problems as a comparison of 
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the kernel density approximation and the normal distribution suggests the difference is 

marginal. 

1.4.2 Sensitivity analysis on anchoring cluster detection 

A good selection of 𝜖𝜖 and minPts is critical for detecting anchoring shapes from 

DBSCAN clustering. Hou et al. (2016) suggest that a priori knowledge of the 

phenomena to be clustered can be advantageous for selecting parameters, and 

Karami and Johansson (2014) argues that obtaining prior knowledge of the density 

shapes is seldom achieved. For the phenomena of ships at anchor, such prior 

knowledge is reachable from environmental information, alike the estimated speed of 

an anchored vessel approximated by the external factors affecting it. 

Working with a single 𝜖𝜖 and a fix minPts helps in simplifying the parameter selection 

while maintaining a relatively stable performance. In order to prove such, this section 

includes a sensitivity analysis to compare among input changes of parameters on 

DBSCAN for the comparison of results to a synthetic database of anchoring shapes.  

The synthetic database is produced by selecting at random, five AIS positions samples 

per port with registered bunkering operations at anchor. These samples are aligned 

with the timestamps of records resulting from the bunkering algorithm. Also, the 

records are extended six hours before and after the service time in order to test the 

parameters fitness to detect noise points. For producing the anchor labels, the records 

at the synthetic database are manually classified as either anchor or noise positions 

as illustrated in Figure 12.  Note that the berthing records are removed, as the 

parameters that detects anchoring patterns, in theory, should also detect berth patterns 

where vessels are expected to move less. 
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as illustrated in Figure 12. Note that the berthing records are removed, as the

parameters that detects anchoring patterns, in theory, should also detect berth patterns

where vessels are expected to move less.

32



 

33 
 

Figure 12 

Selection of anchoring positions for performance testing 

 

The clustering performance is thereafter assessed by the Rand Index (RI). This 

measure appraises the accuracy of clusters matching records, ranging from zero when 

the clusters have no similarity and one when they are identical. In the case of the 

bunkering algorithm, such test  is carried between the result on the DBSCAN labels -

triggered by 𝜖𝜖 and minPts- and the synthetic data labels. RI is described in (Rand, 

1971) as: given 𝑁𝑁 points, 𝑋𝑋1,… , 𝑋𝑋𝑘𝑘 , and two clustering of them 𝐴𝐴 = {𝐴𝐴1,… , 𝐴𝐴𝑘𝑘} and 

𝐵𝐵 = {𝐵𝐵1,… , 𝐵𝐵𝑘𝑘}, then: 

𝑅𝑅(𝐴𝐴, 𝐵𝐵) =∑
𝛾𝛾𝑖𝑖𝑖𝑖
(𝑛𝑛2)

𝑁𝑁

𝑖𝑖<𝑗𝑗
 

(3) 

where,  

𝛾𝛾𝑖𝑖𝑖𝑖 =

{ 
 
  
1 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘′ 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑋𝑋𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑋𝑋𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝐴𝐴𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝑘𝑘  
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Running the sensitivity test in all ports results in an RI of 0.68 for the fix parameters 

used at the bunkering algorithm (0.00189 decimal degrees and three minPts). If 

compared to the maximum RI (0.74) at 𝜖𝜖 =0.00050, the difference as illustrated in 
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The clustering performance is thereafter assessed by the Rand Index (RI). This

measure appraises the accuracy of clusters matching records, ranging from zero when

the clusters have no similarity and one when they are identical. In the case of the

bunkering algorithm, such test is carried between the result on the DBSCAN labels -

triggered by E and minPts- and the synthetic data labels. RI is described in (Rand,

1971) as: given N points, Xv ... , X k , and two clustering of them A = { A v ... , Ak} and

B = {Bi, ..., Bk}, then:

N
" " ' Y i j

R(A, B) = Ä, (n)
i « ] 2

(3)

where,

(

1 if there exists k and k: such that both Xi and Xj are in both Ak and Bk

Yij = 1 if there exists k and k such that Xi is in both Ak and Bk
while Xj is in neither Ak or Bk
0 o.w

G) is the binomial coefficient

Running the sensitivity test in all ports results in an RI of 0.68 for the fix parameters

used at the bunkering algorithm (0.00189 decimal degrees and three minPts). If

compared to the maximum RI (0.74) at E =0.00050, the difference as illustrated in
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Figure 13 suggest that the fix parameter is within the best 𝜖𝜖 neighborhood. This is more 

evident when compared with higher values. For instance, running an 𝜖𝜖 of 0.0194, which 

is equivalent to seven knots, has an RI of 0.50 and the performance keeps reducing 

as higher 𝜖𝜖 are used.  

Figure 13 also illustrates the influence of minPts in the anchoring cluster detection. 

Higher minPts shift the best area to higher 𝜖𝜖 .This is likely the case as the DBSCAN 

should search more distant points to form a cluster. As the input data is discretized to 

have a ten minutes frequency between positions, the minPts can be interpreted as the 

minimum sample necessary to cluster an anchorage e.g. six points is a one-hour 

sample. Using higher minPts works as a lower bound constraint as it will condition the 

service times to be higher than the minPts sample in order to be detected as a 

bunkering operation. This is relevant as some ports might consistently show fast 

services that would go undetected on large minPts. 
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Using fix parameters also helps in avoiding undershooting the cluster shape. Too low

E can rapidly make the DBSCAN to underperform as displayed in Figure 13. For that

reason, it is more efficient to choose an above the best parameter in a close stable

neighborhood. As seen in Table 6, the E related to the max RI is different for every port,

suggesting that using a very low fixed E could end of being adverse on detecting
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anchoring clusters. By deriving an upper bound with external factors information, the 

bunkering algorithm 𝜖𝜖 will consistently be above the best 𝜖𝜖 within a close distance. The 

RI difference in Table 6 shows the distance in RI values of the fix 𝜖𝜖  used for the 

bunkering algorithm and the best 𝜖𝜖 for every port.   

Table 6 
Performance on clustering matching segmented by bunkering port on three minPts 
Port RI (0.68kts) Max RI RI difference 𝝐𝝐 for Max RI 
Augusta 0.94 0.96 0.02 0.00050 (0.18 kts) 
Ceuta 0.81 0.86 0.05 0.00120 (0.44 kts) 
Civitavecchia 0.6 0.66 0.04 0.00050 (0.18 kts) 
Gibraltar/Algeciras 0.78 0.85 0.07 0.00069 (0.25 kts) 
Istanbul 0.60 0.72 0.13 0.00042 (0.15 kts) 
Kalimnos 0.65 0.72 0.07 0.00030 (0.11 kts) 
Limassol 0.73 0.83 0.11 0.00030 (0.11 kts) 
Livorno 0.70 0.75 0.05 0.00042 (0.15 kts) 
Napoli 0.67 0.79 0.12 0.00050 (0.18 kts) 
Piraeus 0.84 0.88 0.04 0.00100 (0.36 kts) 
Rijeka 0.50 0.61 0.11 0.00061 (0.22 kts) 
Syros 0.72 0.84 0.11 0.00022 (0.08 kts) 
Tanger 0.47 0.46 0.03 0.00080 (0.29 kts) 
Valencia 0.94 0.98 0.03 0.00050 (0.18 kts) 
Valetta 0.67 0.83 0.15 0.00022 (0.08 kts) 
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This paper implements the DBSCAN algorithm to automatically recognize barge-to-

ship bunkering operations using high-frequency spatial data on ship positions from 

AIS. The algorithm is shown to reliably identify stopped ocean-going vessels, tanker 

vessels operating in local port waters as bunker barges, and a rendezvous between a 

bunker barge and a larger vessel. The algorithm is capable of detecting the irregular 

shape of vessel movement at anchor and can separate between bunkering performed 

at anchor and alongside a terminal during cargo operations. The framework is used to 

generate micro-level statistics for bunkering operations. The results include information 

such as the ranking of bunkering ports by activity and vessel type, bunker barge age 

distribution, waiting times and servicing times. A comparison with public data on the 

number of bunkering operations in the port of Gibraltar shows that the algorithm can 
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detect a high percentage of operations. The quality and accuracy of the results are 

highly dependent on the quality of the input data and port polygons.  

Shipping practitioners can benefit from the algorithm, as it is customizable to filter 

bunkering operations by specific vessels, vessel segments, geographical regions, or 

individual ports. Moreover, the results in this paper provide bunker suppliers with the 

framework to assess their position in intra- and inter-port competition. Port operators 

can judge if entering the bunker market and become a full-service maritime hub is 

beneficial versus focusing on cargo handling only. Finally, ship-owners can make more 

informed bunkering decisions by accounting for both waiting and servicing times as 

well as fuel prices and deviation. 

The results generated under this paper framework are aligned to the conclusions 

presented by Acosta et al. (2011) and Vilhelmsen et al. (2014), regarding bunkering 

competition and bunkering choice determinants. More importantly, the method helps 

to overcome the difficulty of generating bunkering information via qualitative methods 

in a standardized way that could be extended to different geographical regions. 

The services and waiting times, as generated in this paper, will be important input in 

the bunkering location optimization problems. Services times introduced from arbitrary 

distributions such as in the model of Aydin et al. (2017) proved to be a major factor in 

the selection of optimal bunkering ports for liner ships. Therefore, new research could 

extend the findings to the tramp case by exploring the importance of real service and 

waiting times on their selection of bunkering ports. 

Future research should extend this analysis of bunkering operations to a global scale, 

and investigate the interaction between bunkering competition and fuel prices. 

Importantly, the method described in this paper can help in discovering new activities 

via AIS, such as transit through Canals from the detection of anchoring patterns before 

transits. There is also room for improvement in the calibration of the settings of the 

algorithm, such as the use of real weather conditions to assess suitable distance 

thresholds for ships at anchor and the dynamic selection of parameters per bunkering 

port. 
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Appendices

Appendix A
Algorithms for bunkering operation recognition

Algorithm l Functions for Algorithm
I: function POLYGONRADIUS(coordinate, distance)
2: Generate Polygon out of coordinate point
3: return polygon with radius of distance
4: end function
5: function T!MERANGE(tirnestamp l,timestamp2)
6: Calculate the difference between timestamps
7: return hours range
8: end function
9: function SEQUENCETEST(iterator)

IO: Detect separate calls in same port. Test if sequence exist and assign unique number to sequence of True
values between False values

11: return set of unique sequence group values
I2: end function
13: function T!ME-POSTTIONINTERP0LATJON(Dataframe)
14: Detects discontinuity in the expected sequence of timestamps and interpolates the empty positions from

the previous and next available positions
15: Parameters:
16: timeranges--f0. Minutes, starting from the first position in the dataframe
17: return adjusted dataframe with interpolated positions
I 8: end function
19: function DBSCAN(positions iterator)
20: Creates clusters based on DBSCAN. -I is assigned to noise positions and a unique number to every cluster
21: Parameters:
22: minPts{-3.Minimum number of positions to generate a cluster
23: €{-0.00195. Decimal degrees maximum distance. From 0.68 kts upper bound or 0.Ll7NM allowance for

10 minutes movement.
24: return set of either unique clusterID or noise value
25: end function
26: function VESSELPOLYGONGENERATOR(positions iterator)
27: Generates linestrings from the sequence of ordered positions (lon,lat). Then creates a polygon as the radius

buffered from the Linestring
28: Parameters:
29: radius{-0.00045. Decimal degrees, Radius of 50 meters away from linesrring
30: return ocean-going vessel polygon
3 I: end function
32: function MERGESERVICE(dataframe)
33: Shift method that calculates the time difference between the last timestamp of a service ID and the first

timestamp of the next service ID. If the difference is less than a threshold then the services merges and
the first group service ID is absorbed by the following group

34: Parameters:
35: time{-24. Hours, considers a barge refueling cargo in the middle of the bunkering operation. The refueling

of the barge keeps counting as service as the vessel has to wait.
36: return dataframe with merged services
37: end function
38: function MERGEDATAFRAMES(dat.aframel ,dataframe2,leftlndex,rightlndex)
39: Merges dataframes by leftlndexerigtlndex
40: Parameters:
41: return merged dataframe with algorithm results and vessels characteristics. Named as dataframel.
42: end function
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Algorithm 2 Bunker barge prospects recognition
I: Inputs:

A dataframe with columns [portName,coordinate,berthPolygon], Ports;
A dataframe with columns [vesselsID,LengthOverALl,TypeOfVessel], VesselsSpecs;
A dataframe with columns [vesselID,positions,time]; AIS
An empty dataframe with columns [bargeID,portOfService]; Bargeslnfo
Default Parameters:
loa f-150, meters of length overall of ship
localThreshold f-0.70, minimum stay at local waters
minimumObs f-100, minimum observations to have a valid sample

2: set polygonGeometry as new column in Ports
3: for coordinate in Ports do
4: polygon f- call POLYGONRADIUS(coordinate, polygon)
5: store polygon to Ports.polygonGeometry
6: end for
7: for polygon in Ports.polygonGeometry do
8: for testPolygon in Ports.polygonGeometry do
9: if polygon overlaps testPolygon then

10: newPolygon t- merge polygon and testPolygon
11: remove polygon and testPolygon
12: store newPolygon to Ports.polygonGeometry
13: end if
14: end for
15: end for
16: set inLocaJWaters as new column in AIS
17: for vesselID in VesselsSpecs do
18: if vesselID in VesselsSpecs.LengthOverAU loa AND VesselsSpecs.TypeOfVessel=tanker then
19: filter position of vesselID in AIS
20: for polygon in Ports do
21: for position in AIS do
22: bool,polygonName t- call POINTINPOLYGON(position,polygonGeometry)
23: if bool = TRUE then
24: store [TRUE to AIS.inLocalWaters ; polygonName to AIS.portVisited]
25: else
26: store [FALSE to AIS.inLocaIWaters ; NULL to AIS.portVisited]
27: end if
28: end for
29: totalRows t- count total rows in AIS
30: filter positions in AIS WHERE AIS.inLocalWaters = TRUE
31: t.otalFilt.eredRows t- count total filtered rows in AIS
32: if totalkows> minimumObs AND totalFiJteredRows/totaIRows 2':localThreshold then
33: store [vesselID in Bargelnfo.bargelD ; AIS.portVisited in Bargelnfo.portOfService]
34: end if
35: end for
36: end if
37: end for
38: return Bargeslnfo
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Algorithm 3 Stopped vessel
I: Inputs:

A datafrarne with columns [portName,coordinate,polygonGeometry,berthPolygon], Pons;
A datafrarne with columns [vesselID,positions,time,speed], AIS;
An empty dataframe with columns[vesselID, initialStopTime, finalStopTime, at.Bert.h, call1D, clusterID,
stopPosition, portVisited, stoplD], Stops;
A sel of
Default Parameters:
maxSpeed f- 3, knots of vessel entering or leaving cluster
minStay f- I, hour. Minimum stay to be classified as stopped,
laidUp f- 1084, hours. Laid-up vessel with more than 45 days in port
noisePts f- -1. Assigment by DBSCAN to noise positions(not clustered positions)

2: listOfVesselsf- set of unique values of AIS.vessellD
3: listOfCallID f- empty set
4: listOfClusterlD f- empty set
5: set inLocalWaters, cal LID, clusterID, portVisited as new columns in AIS
6: set counter to 0
7: for uniqueVesselID in listOfVessels do
8: filter AIS WHERE AIS.vesselID=uniqueVessellD. Sort ascending by AIS.t.ime
9: for polygonGeometry in Ports do

10: for positions in AIS do
11: bool, polygonName f- call P0INTINPOLYG0N(positions,polygonGeomet.ry)
12: if bool=TRUE then
13: store [TRUE in AIS.inLocalWaters ; polygonName in AIS.portVisited]
14: else
15: store [FALSE in AIS.inLocalWaters ; NULL in AIS.portVisited]
16: end if
17: end for
18: end for
19: store [call SEQUENCEGENERAT0R(AIS.inLocalWaters)] in AIS.calllD
20: filter AIS WHERE AIS.inLoca!Waters=TRUE AND AIS.speedSmaxSpeed
21: store unique values of AIS.callID in listOfCaUID
22: for uniqueCalllD in listOfCallID do
23: filter AIS WHERE AIS.callID=uniqueCalllD
24: timeDifference f- call TIMERANGE(AIS.time[-1], AIS.time[O])
25: if timelfifferencep mirrSray AND timeffifference-claidl.Ip then
26: call TrME-P0SlTIONINTERP0LATION(AIS)
27: store [call D.BSCAN(AIS.positions)] in AIS.clusterlD
28: filter AIS WHERE AIS.clusterID,O:noisePts
29: store unique values of AIS.clusterID in listOfClusterID
30: for uniqueClusterID in listOfClusterlD do
3I: add I to counter
32: filter AIS W H E R E AIS.clusterlD=uniqueClusterlD
33: store [uniqueVesselID in Stops.vesselID ; AIS.time[0] in Stops.initialStopTime ; AIS.time[-!] in

Stops.fina!StopTime; uniqueClusterID in Stops.clusterff); uniqueCalllD in Stops.callID; AIS.portVisited[0]
in Stops.portVisited ; uniqueCaLUD in Stops.callID ; AIS.positions[0] in Stops.stopPosition, counter in
Stops.stopID]

34: for berthPolygon in Ports do
35: bool, f- cal l P0INTlNP0LYG0N(AIS.positions[0],berthPolygon)
36: if bool=TRUE then
37: store TRUE in Stops.atBerth
38: else
39: store FALSE in Stops.at.Berth
40: end if
41: end for
42: end for
43: end if
44: e n d for
45: end for
46: return Stops
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Algorithm 4 Bunkering recognition
I: Inputs:

A dataframe with columns [vesselID,positions,time], AJS;
A dataframe with columns[vessellD, initialStopTime, finaJStopTime, atBerth, callID, clusterID, stopPosition,
portVisited, stopID], Stops;
A dataframe with columns[bargelD,portOfService]; Bargeslnfo;
A dataframe with columns [vesselID,grossTonnage,TypeOfVessel,yearOffiuilt], VesselsSpecs;
An empty dataframe with columns [vesselID,positions,time], VesselAJS;
An empty dataframe with columns [vessellD,positions,time, alongsideVessel, servicelD], BargeAJS;
An empty dataframe with columns [bargeID, initialServiceTime, finalServiceTime, vesselID, initialStopTime,
finalStopTime, atBerth, calJID, clusterlD, stopPosition, portVisited, stoplD], Results;
Default Parameters:
minStay t- l, hour. Minimum stay of barge inside ocean-going vessel polygon

2: listOfStops t- set of values of AJS.stopID
3: listOffiarges t- empty set
4: listOfServices t- empty set
5: for uniqueStop in listOfStops do
6: filter Stops.stoplD=uniqueStop
7: VesselAJSt-filter AJS.vessellD=Stops.vesselID AND AJS.time:;:>:Stops.initiaJStopTime AND

AJS.timeStops.finalStopTime
8: vesselPolygon t- call VESSELP0LYG0NGENERAT0R(VesseJAlS.positions)
9: filter Bargeslnfo.portOfService=Stops.portVisited

IO: store unique values of Bargeslnfo.bargeID in listOffiarges
11: for uniqueBargelD in listOffiarges do
12: BargeAJSt-filter AJS.vessellD=uniqueBargeID AND AJS.time:;:>:Stops.initialStopTime AND

AIS.timeStops.finalStopTime
13: for positions in BargeAlS.positions do
14: boo), t- call P0INTINP0LYG0N(positions,vesseLPolygon)
15: if bool=TRUE then
16: store TRUE in BargeAIS.alongsideVessel
17: else
18: store FALSE in BargeAJS.alongsideVessel
19: end if
20: end for
21: store [call SEQUENCEGENERATOR(BargeAJS.alongsideVessel)] in BargeAJS.servicelD
22: filter BargeAJS WHERE BargeAJS.alongsideVessel=TRUE
23: call MERGESERVICE(BargeAJS)
24: store unique values of BargeAIS.serviceID in listOfServices
25: for service in listOfServices do
26: filter BargeAJS.servicelD=service
27: timeDifference t- call TIMERANGE(BargeAIS.time[-1], BargeAJS.time[0])
28: if timeDifference:;:>:minStay AND BargeAJS.vesselID,6Stops.vesselID then
29: store [BargeAJS.vesselID in Results.bargeID ; BargeAJS.time[O] in Results.initialServiceTime ; Barge

AJS.time[-!] in Results.finalServiceTime ; Stops.vesselID in Results.vesselID ; Stops.initiaJStopTime in
Results.initialStopTime ; Stops.finalStopTime in Results.finaJStopTime ; Stops.atBerth in Results.atBerth
; Stops.caUID in Results.caJIID ; Stops.clusterlD in Results.clusterID ; Stops.stopPosition in Re-
sults.stopPosition ; Stops.portVisited in Results.portVisited ; uniqueStop in ResuJts.stoplD]

30: end if
31: end for
32: end for
33: end for
34: call MERGEDATAFRAME(Results,VesselsSpecs,vessellD,vessellD)
35: call MERGEDATAFRAME(Results,VesselsSpecs,bargelD,vessellD)
36: return Results
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Appendix B 

Table B.1 
Correlation matrix for algorithm derived variables 

 Service time 
(hours) Operations 

Waiting time 
anchor 
(hours) 

Waiting time 
berth (hours) 

Available 
barges 

Service time 
(hours) 

1 0.09 -0.01 0,05 0.08 

Operations 0.09 1 -0.09 0.02 0.30 

Waiting time 
anchor 
(hours) 

-0.01 -0.09 1 -0.01 0.07 

Waiting time 
berth (hours) 

0.05 -0.02 -0.01 1 -0.02 

Available 
barges 

0.08 0.30 0.07 -0.02 1 

 

 

 

 

 

Appendix B

Table B.1
Correlation matrix for algorithm derived variables

Service time Waiting time Waiting time Available
(hours) Operations anchor berth (hours) barges(hours)

Service time 1 0.09 -0.01 0,05 0.08
(hours)

Operations 0.09 1 -0.09 0.02 0.30

Waiting time
-0.01 -0.09 1 -0.01 0.07anchor

(hours)

Waiting time 0.05 -0.02 -0.01 1 -0.02
berth (hours)

Available 0.08 0.30 0.07 -0.02 1
barges
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Abstract 

This study explores the influence of waiting times, both deterministic and stochastic, 

together with uncertain fuel price in the selection of bunker fuel stops for a ship-owner 

engaged in tramp shipping. We introduce stochastic bunkering waiting times in the 

bunkering optimization problem using scenarios constructed from vessels’ Automatic 

Information System (AIS) records and test their relevance to the optimal decision. We 

demonstrate that choosing a bunkering port solely based on the level of fuel prices can 

lead to suboptimal decisions. From our empirical results based on a case study of the 

Mediterranean Sea, Gibraltar and Valetta are the preferred bunkering options based 

on their relatively low fuel prices and short waiting times. 

Keywords: bunker management, tramp shipping, stochastic programming, bunker 

port efficiency 

2.1 Introduction 
In this study, we investigate the bunker (fuel) management problem for tramp shipping 

in an optimization model that integrates both waiting times (deterministic and 

 
* This research was partly financed by the Research Council of Norway under the project “Smart digital 
contracts and commercial management”, project number 280684. 
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stochastic) and stochastic fuel prices. We focus on a vessel trading in a tramp shipping 

setting under a voyage charter (contract). This implies that the shipowner pays the 

voyage costs, including the bunker costs. Therefore, our study focuses on the 

shipowner's position.  

For tramp shipping, reducing bunker costs is crucial as it might represent up to 70% of 

the ship’s operating cost (Rehmatulla & Smith, 2015). Better bunker management is 

one way for ship operators to maximize their voyage profit. According to Yao et al. 

(2012), bunker management refers to three interrelated components: Selecting a 

bunkering port, deciding on the bunker volume to order, and selecting the vessel's 

speed. Based on these elements, the vessel’s officers can prepare an efficient voyage 

plan. A voyage plan provides all details of the safest and most efficient route, including 

any deviation to a bunkering port, to fulfill the contracted voyage instructions.  

For a tramp vessel under a voyage contract, choosing where to bunker is a complex 

problem as the decision must balance the tradeoff between the local fuel price, 

deviation from the shortest route and the time spent in each potential bunkering port. 

Based on the wording in standard chartering contracts, the vessel is also legally limited 

to take on bunkers only on the ballast (empty) voyage leg. This tradeoff weighs the 

value of savings from cheaper bunkering ports versus the value of time resulting from 

the deviation to the bunkering port, the time spent there, the route taken, and the speed 

selection. In addition, voyage and vessel specific factors (e.g. vessel draft, 

consumption, speed, and remaining voyage distance) must be considered. 

The assessment of waiting times is relevant, as an owner might take on bunkers in a 

relatively faster bunkering port at the expense of paying a higher fuel price. Thus, the 

bunkering management decision could help to avoid cheap but inefficient ports that 

would subsequently cause the vessel to speed up in order to pick up the cargo within 

the contracted window (laycan1). Such an increase in speed would increase fuel 

consumption and emissions. In other words, the cost of the additional fuel consumption 

could outweigh the apparent savings of buying fuel in a cheap but inefficient port. In 

 
1 Laycan is short for Lay Days Cancellation Days. It is a time window agreed by the ship owner and the 
charterer at which the vessel must arrive and be ready to carry cargo operations in a port. Failure to 
reach this window gives the charterer the right to cancel the contract. 
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our study, we refer to an inefficient bunker port as one where large deviations, long 

waiting times and/or slow bunker barge pumping rates are observed. 

The bunker management problem can be considered using either an operational 

and/or a tactical approach. The tactical approach is about medium- and long-term 

decisions that help in controlling uncertainties (e.g., bunker contracts and fleet 

deployment). Conversely, the operational strategy uses short-term decisions based on 

expected outcomes or the observed voyage evolution (e.g., speed and route 

adjustment). Gu et al. (2019) showed that a higher performance can be obtained using 

a mix of both strategies in the liner case. Here, we follow a similar approach where an 

owner can choose to bunker in a port using either a forward (tactical) or spot 

(operational) contract or a combination of both. 

Pursuing a pure operational strategy implies that bunkering decisions are based on the 

spot fuel market. A complicating factor in this setting is that fuel prices demonstrate 

large differences across ports within a relatively close distance [see Yao et al. (2012) 

for a comparison]. Furthermore, as fuel oil is derived from crude oil, it inherits its global 

price volatility and is, additionally, exposed to local supply and demand dynamics. As 

the expected fuel price for a voyage is considered during freight rate negotiations, a 

realized large difference from the expected price could cause a substantial loss for a 

spot market strategy. 

To reduce such risks, owners can implement operational strategies to reduce fuel 

consumption, such as slow steaming, or reduce fuel price risk using financial hedging 

instruments such as oil futures or bunker swaps. A cautious owner would request all 

bunkers on a forward basis, even though she would also lose the opportunity of 

benefiting if lower prices materialize during the voyage. A halfway measure would be 

to decide that some of the required volume of bunkers, and the port in which to bunker, 

need to be nominated at the time of entering a new freight contract. This leaves the 

possibility of benefiting from future price drops and flexibility to deal with operational 

delays. 

We formulate the problem as a three-stage stochastic optimization model. In the first 
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stage, where the price of spot fuel prices is revealed and a spot bunker contract is 

secured. In stage three, after the waiting time is revealed at the bunkering port, an 

owner can have a recourse on the second stage decision and decide how much spot 

bunker to take onboard, paying a penalty for any unused volume and/or a penalty for 

late arrival in the ultimate loading ports. The late arrival penalty reflects the market 

state where, in a low freight market, time is perceived as less valuable than in a high 

freight market. 

In this study, we introduce a framework to solve the bunkering management problem 

in a tramp shipping environment. The framework is used in a case study which 

incorporates real data from fuel prices and waiting time estimations from 

Mediterranean bunkering ports. Our results and framework are relevant to ships 

operating under a voyage contract, as it offers the potential for more efficient voyage 

plans and emissions reduction. By using this model, we also analyze the effect of ports’ 

waiting times in the bunkering decision. 

The remainder of this paper is structured as follows. Section 2.2 contains the literature 

review. Section 2.3 describes our interpretation of the bunkering management 

problem, and Section 2.4 introduces our mathematical model and related assumptions. 

Section 2.5 introduces the details of our empirical case study. Section 2.6 presents the 

results and discusses their implications. Finally, Section 2.7 concludes and identifies 

prospects for future extensions. 

 

2.2 Literature review 
Bunker management strategies have been proposed in the literature as part of an 

increasing number of maritime operations research papers. The main division is 

between liner vessel which operate with fixed schedules and routes, and tramp vessels 

operating on an on-demand basis. 

Most of the literature proposes solutions to liner services, either for a single vessel or 

a fleet of vessels. Although the goal of reducing bunker costs is shared, these studies 

enrich the literature by a myriad of methods, modeling strategies or small objective 

additions (e.g. emissions reductions), some of which also apply to the tramp case. In 

a single liner vessel context, Yao et al. (2012) introduced empirical fuel consumption 

functions and concluded that the optimal fuel management decisions are strongly 
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influenced by the assumed relationship between speed and consumption. Kim (2014) 

introduced a carbon tax on vessel emissions, thus including environmental objectives 

as part of a bunkering problem. Sheng et al. (2014) used a multistage scenario tree to 

model the problem with stochastic consumption and prices. Additionally, they adopted 

a rolling horizon strategy to reduce the size of the scenario tree. Sheng et al. (2015) 

gave a comprehensive review of the general inventory management problem and 

compared it to the bunker management problem. Moreover, they modeled the bunker 

prices as a one-step Markovian process and the weather affecting the consumption 

with a normal truncated distribution, finding that the weather effect on consumption is 

significant in the bunkering decision. Ghosh et al. (2015) proposed a framework where 

vessels are supplied with fuel from both long-term contracts and the spot market. Aydin 

et al. (2017) modeled uncertain cargo handling times for liner ships in terminals and 

demonstrated that speed decisions are influenced by the time in port, a feature that is 

comparable to the bunkering waiting time in the tramp case. Wang. et al. (2018) 

modeled stochastic fuel prices with a distribution-free method, using the mean, 

variance, upper and lower bound of historical fuel prices. Gu et al. (2019) modeled risk 

preferences by introducing a Conditional Value at Risk (CVaR) constraint. 

The fleet case merges the tactical decision of vessel deployment with the bunkering 

policies of vessels belonging to a fleet liner service. Wang and Meng (2015) developed 

such a case by modeling a robust bunker management strategy under the worst-case 

bunker consumption scenario and introduced uncertain speed. Wang and Chen (2017) 

modeled the problem as non-linear, without the piecewise linearization of the 

consumption function as is commonly observed in other papers. However, the problem 

was simplified by avoiding price stochasticity. Wang et al. (2018) deviated from the 

traditional setting and develop a tactical model of bunker contract swaps as a two-

stage stochastic problem. The scenario tree to model the fuel prices was generated by 

an adjusted moment matching method from a distribution built from an mGARCH 

model. Liu et al. (2020) used a two-stage stochastic problem with recourse and 

included the uncertain container demand of a liner fleet. They approached the solution 

by both a Sample Average Approximation method (SAA) and an L-Shaped method, 

with the L-Shaped method outperforming the SAA. 

Liner vessels have the advantage–modeling wise–of having voyage plans defined in 

advance, removing the added complexity of deviations, and vastly reducing the 
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number of bunkering port options. The assumption taken by most liner vessel papers 

is that they can only be bunkered while in a cargo port that is a part of their schedule. 

Hence, as long as there are no unusual delays, we can surmise that the bunkering 

service time is not important in their case. Having to deviate for bunkers reinforces the 

importance of bunkering waiting times as a feature that influences the vessel speed 

and fuel consumption. 

Given that the bunker consumption is linked to the total voyage distance and voyage 

speed, it is natural to model the routing and bunkering problems together (Meng, et al., 

2015). Besbes and Savin (2009) modeled the bunker management problem and route 

selection for both the liner and tramp cases, recognizing the higher complexity in the 

tramp case (also noted by Fan et al. (2019)). They formulated the problem to be solved 

by heuristics of stochastic dynamic programming, with bunker prices generated by a 

combination of the forecast of crude oil prices based on a first-order autoregressive 

process, a global price adjustment factor, and a local correction factor. The results for 

the liner case suggest a “buy up to” policy where bunker quantity is requested based 

on the remaining fuel on board and the fuel price while stopped at scheduled ports. 

The tramp setting considered the bunker refueling decision and its interaction with the 

routing selection. They assumed an instantaneous bunkering time, fixed speed, and 

fixed consumption to avoid their influence in the model and to focus on assessing the 

influence of stochasticity in bunker prices on the selection of an optimal routing. They 

proved that, even in the absence of price dispersion, a modest degree of stochasticity 

in fuel prices causes a substantial degree of complexity in the optimal routing 

decisions.  

Oh and Karimi (2010) proposed speed as a decision variable in a mixed integer 

programming model for bunkering and routing decisions of multi-parcel tankers. The 

speed decision is affected by the consumption and the relation was modeled with 

discrete consumption rates for the different operations of a tanker vessel (e.g., 

steaming, cleaning tanks, loading and unloading cargoes, and a base consumption 

when it is not moving). In their case, the way multiparcel tankers operate permits 

modelling the tramp case as if it was a liner case with fixed routes, and no consideration 

is given to the operational features of the voyage (e.g., water depth, weather). To 

model the fuel prices, they used arbitrary equally probable scenarios and prices 

derived from historical data. 
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Vilhelmsen (2014) proposed a joint model with the scheduling, routing, and bunkering 

optimization of tramp vessels. The author introduced reformulation of bunker 

consumption based on cargo load and speed. To model the fuel prices, she made use 

of forward curves to have a full overview of the prices in subsequent ports. Here, the 

fuel consumption rate is not associated with a vessel speed function but depends 

simply on the vessel either being laden or in ballast. She also assumed a fixed 

bunkering time at every port. Hence, the service level’s influence within the model is 

not analyzed.  

While Vilhelmsen allowed deviation to bunker ports, Meng, et al. (2015) only 

considered bunkering at ports scheduled with cargo. However, the empirical work of 

Fuentes (2021) shows that deviations to perform pure bunkering operations are 

commonly observed in tramp shipping.  

From this review, we can recognize at least four gaps in the literature. Firstly, no model 

in the tramp case has considered the influence of bunkering waiting times on the 

bunker management problem, despite the demonstrated influence of cargo ports’ 

servicing time on the speed and consumption of a liner vessel. Secondly, important 

features of the voyage such as draft restrictions, the influence of weather on fuel 

consumption, and the relationship between the ordered fuel quantity and servicing 

times and waiting times have not been explicitly modeled. Thirdly, the literature has 

not analyzed the problem subject to the full set of standard contractual constraints for 

the tramp case (e.g., voyage charter party clauses regarding laycan and cargo intake 

optionality; bunker contracts; loading area, etc.). Finally, there are no studies which 

evaluate risk measures, such as CVaR, in a multistage tramp vessel bunkering model. 

To fill these gaps, the contribution of this paper is fourfold. Firstly, we model the 

bunkering management problem which incorporates stochastic bunkering waiting 

times and stochastic fuel prices. The waiting time scenarios are modeled from 

observed empirical distributions in bunkering ports in the Mediterranean Sea. 

Secondly, we introduce draft dynamics as a novel feature of the bunkering 

management problem and estimate the vessel consumption for the expected weather. 

Draft changes throughout the voyage because of fuel being gradually consumed are 

modeled by the tons per centimeter of immersion (TPC) function of a real vessel. 

Thirdly, we take assumptions regarding appropriate constraints from a standard 
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voyage charter. Finally, we evaluate the effect of risk aversion per stage in the 

shipowner’s decision. 

 

2.3 Problem description 
We consider the bunkering management problem of a tramp vessel under a voyage 

charter from the position of the shipowner. Under such freight contracts, the owner is 

responsible for purchasing bunkers and covering all related voyage costs. Additionally, 

the vessel’s captain (subject to the ship-owner’s instructions) must decide on the 

voyage route and the speed to reach the laycan as agreed in the charter party. 

The problem is formulated in a three-stage stochastic programming model as 

described in Figure 1. At stage one, the owner in liaison with the vessel’s captain, is to 

decide where to bunker, instruct on the vessel speed to the bunkering stop, and 

nominate the quantity of fuel to fix on a forward contract. The decision is taken subject 

to uncertain spot prices (that are revealed as the vessel approaches the bunker port) 

and uncertain waiting times for the bunkering operation. The vessel has the option to 

request fuel from a forward contract either at an intermediate bunkering port, directly 

from the loading port or as a combination of both. Fuel from the forward contract shall 

be received in full. In stage two, based on the consequences of the first stage decision, 

the owner must nominate how much spot bunkers to take on at the selected port given 

the revealed spot price. In stage three, the waiting time at the bunkering port is 

revealed and the owner can adjust on the quantity to receive from the spot bunker 

contract nomination, thus adjusting the service time for loading bunkers, and pay a 

penalty for the fuel not purchased. This recourse represents an adjustment to the 

waiting time in the bunkering port, leaving a buffer to potentially reduce the subsequent 

speed and still make the loading port laycan. Finally, the captain decides whether to 

take additional fuel at the loading port, while considering cargo quantity optionality2 

and vessel draft limitations. Note that the end of horizon (EOH) price at stage 3 has no 

consequence for the stage 3 decision but is introduced to condition the first and second 

stage orders. 

 
2 In a dry bulk voyage charter, it is common to include the option for owners to nominate more or less 
than the agreed cargo quantity for the voyage (usually +/- 5% or 10%). This gives flexibility to the captain 
to adjust the cargo intake based on the vessel’s navigational or stability considerations. As the freight 
revenue is paid as a function of cargo loaded, owners have the incentive to load as much as possible. 
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Figure 1 

Problem interpretation 

 

 

2.4 Modeling 
2.4.1 Assumptions 

We assume that every fuel purchase contract is drafted following BIMCO’s bunkering 

terms 2018. This means that the quotation, once accepted, is binding; the owner must 

arrive at the agreed delivery time and the supplier must supply the bunker quantity as 

agreed, irrespective of market conditions after the agreement is made. Refusing to fulfil 

the contractual terms could lead to a hefty fine–usually higher than the cost of the 

requested fuel. More importantly, it would entail the expenses of a Court of Arbitration 

and claims of loss/damages, not to mention the cost of a damaged reputation in a 

tightly woven industry. This underscores the importance of honouring first stage 
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commitments if a spot price lower than the forward price is revealed at the bunkering 

port while underway. 

Another important assumption is related to the permitted bunker stops. While Oh and 

Karimi (2010), and Vilhelmsen (2014) permit only one bunkering stop, we allow the 

vessel to take on bunkers both at an intermediate bunkering stop, time permitting, and 

to top up during cargo operations at the loading port. 

The following assumptions also apply: 

− Once a decision is made on stage 1, no deviation is permitted to other bunkering 

ports while sailing. 

− The vessel has access to forward bunkering contracts for physical supply at the 

time of voyage negotiations (Stage 1). 

− All potential bunkering ports have enough fuel to supply the vessel. 

− The vessel can choose any bunkering port and plan for a voyage deviation or 

steam directly to the loading port and refuel while loading cargo.  

− Only Heavy Fuel Oil is considered.  

− The value of the remaining fuel at the EOH is assumed to be the average spot 

price for bunkering ports within the nominated discharging cargo area at the 

expected time of discharging  

− The vessel is only allowed to load bunkers when empty (in ballast). This is 

industry practice as standard voyage contracts customarily include a clause that 

the vessel must steam with ‘utmost dispatch’ on the laden (loaded) leg. 

− New forward contracts are not available while the vessel is underway (Stage 2). 

− The vessel is not cancelled if it cannot meet the laycan window. Any delay is 

priced based on a Time Charter Equivalent (TCE) that is consistent with the 

agreed voyage freight rate and the average voyage time (including port stays). 

A good review of the TCE calculation can be found in Panayides (2018). 

 

 

 

 

 

commitments if a spot price lower than the forward price is revealed at the bunkering

port while underway.

Another important assumption is related to the permitted bunker stops. While Oh and

Karimi (2010), and Vilhelmsen (2014) permit only one bunkering stop, we allow the

vessel to take on bunkers both at an intermediate bunkering stop, time permitting, and

to top up during cargo operations at the loading port.

The following assumptions also apply:

- Once a decision is made on stage 1, no deviation is permitted to other bunkering

ports while sailing.

- The vessel has access to forward bunkering contracts for physical supply at the

time of voyage negotiations (Stage 1).

- All potential bunkering ports have enough fuel to supply the vessel.

- The vessel can choose any bunkering port and plan for a voyage deviation or

steam directly to the loading port and refuel while loading cargo.

- Only Heavy Fuel Oil is considered.

- The value of the remaining fuel at the EOH is assumed to be the average spot

price for bunkering ports within the nominated discharging cargo area at the

expected time of discharging

- The vessel is only allowed to load bunkers when empty (in ballast). This is

industry practice as standard voyage contracts customarily include a clause that

the vessel must steam with 'utmost dispatch' on the laden (loaded) leg.

- New forward contracts are not available while the vessel is underway (Stage 2).

- The vessel is not cancelled if it cannot meet the laycan window. Any delay is

priced based on a Time Charter Equivalent (TCE) that is consistent with the

agreed voyage freight rate and the average voyage time (including port stays).

A good review of the TCE calculation can be found in Panayides (2018).
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2.4.2 Mathematical formulation 

Before introducing the mathematical formulation, we list the notation as follows: 

Sets 

𝐼𝐼 Bunkering ports 

𝐿𝐿 Bunkering ports except for loading port 

𝑉𝑉 Discrete speed options for vessel on leg 1 (Departure port to 
bunkering port) 

𝑍𝑍 Discrete speed options for vessel on leg 2 (bunkering port to load port) 

𝑆𝑆 Scenarios with spot price, EOH price and waiting time 

 

Decision and derived variables 

 Stage 1 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹  
Agreed amount from forward contract at port 𝑖𝑖 and speed 𝑣𝑣 under 
scenario 𝑠𝑠 

𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹  Extra amount agreed from forward contract at loading port under 
scenario 𝑠𝑠 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 
Binary variable. 1 if selected port 𝑖𝑖 and speed 𝑣𝑣, 0 otherwise under 
scenario 𝑠𝑠 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 
Fuel remaining on board at bunkering port 𝑖𝑖 when speed 𝑣𝑣 is selected 
under scenario 𝑠𝑠 

 Stage 2 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾  Agreed amount from spot market at port 𝑖𝑖 and speed 𝑣𝑣 under scenario 

𝑠𝑠 
𝑚𝑚𝑠𝑠

𝐹𝐹 Received amount from forward contract under scenario 𝑠𝑠 
𝑢𝑢𝑠𝑠𝐹𝐹 Unused amount from forward contract under scenario 𝑠𝑠 

 Stage 3 

𝑚𝑚𝑠𝑠
𝛾𝛾 Amount received from spot contract under scenario 𝑠𝑠 

𝑢𝑢𝑠𝑠𝛾𝛾 Unused amount from spot contract under scenario 𝑠𝑠 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Binary variable. 1 if port 𝑖𝑖 and speed 𝑣𝑣 is selected at leg 1, speed 𝑧𝑧 for 
leg 2 under scenario 𝑠𝑠 , 0 otherwise. 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Cargo requested at loading port after bunkering at port 𝑖𝑖 with speed 𝑣𝑣 
at leg 1, speed 𝑧𝑧 at leg 2 under scenario 𝑠𝑠 

2.4.2 Mathematical formulation

Before introducing the mathematical formulation, we list the notation as follows:

Sets

I

L

v

z
s

Bunkering ports

Bunkering ports except for loading port

Discrete speed options for vessel on leg 1 (Departure port to
bunkering port)

Discrete speed options for vessel on leg 2 (bunkering port to load port)

Scenarios with spot price, EOH price and waiting time

Decision and derived variables

F
Zivs

F
Zes

F ivs

y
z i vs

mFs

0ivzs

Wivzs

Stage 1

Agreed amount from forward contract at port i and speed v under
scenarios

Extra amount agreed from forward contract at loading port under
scenarios

Binary variable. 1 if selected port i and speed v, 0 otherwise under
scenarios

Fuel remaining on board at bunkering port i when speed v is selected
under scenario s

Stage 2

Agreed amount from spot market at port i and speed v under scenario
s

Received amount from forward contract under scenario s

Unused amount from forward contract under scenario s

Stage 3

Amount received from spot contract under scenario s

Unused amount from spot contract under scenario s

Binary variable. 1 if port i and speed v is selected at leg 1, speed z for
leg 2 under scenarios, 0 otherwise.

Cargo requested at loading port after bunkering at port i with speed v
at leg 1, speed z at leg 2 under scenario s
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𝜑𝜑𝑠𝑠 Hours after laycan under scenario 𝑠𝑠 
𝐹𝐹𝑒𝑒𝑒𝑒 Fuel on board at arrival to load port under scenario 𝑠𝑠 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
Draught at loading port after loading cargo and bunkering at port 𝑖𝑖 with 
speed 𝑣𝑣 at leg 1 and speed 𝑧𝑧 at leg 2 under scenario 𝑠𝑠 

𝐺𝐺𝑠𝑠 
Quantity remaining on board at the end of problem horizon under 
scenario 𝑠𝑠 

 Risk variables 
ƞ𝑠𝑠𝜏𝜏 Value-at-risk (VaR) at stage 𝜏𝜏 under scenario 𝑠𝑠 
𝜎𝜎𝑠𝑠𝜏𝜏 Linearization variable for the risk constraint at stage 𝜏𝜏 under scenario 𝑠𝑠 

 

Parameters 

𝛼𝛼𝜏𝜏 Confidence level for CVaR at stage 𝜏𝜏; 𝜏𝜏 ∈ {2,3} 
𝜆𝜆 CVaR relative weight  

𝐾𝐾𝑖𝑖𝑖𝑖 Fuel consumption to port 𝑖𝑖 with speed 𝑣𝑣 

𝑡𝑡𝑖𝑖𝑖𝑖 Time to port 𝑖𝑖 with speed 𝑣𝑣 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  Maximum fuel tanks capacity 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  Minimum fuel on board at any time 

𝐹𝐹𝑜𝑜 Fuel on board at departure port 

𝜋𝜋 Freight rate ($/tonnes) 

𝐶𝐶(𝜋𝜋, 𝑅𝑅, 𝔼𝔼(cis
𝛾𝛾 (ξ2)) Time charter equivalent (prorated to hours) 

ciF Forward contract price at port 𝑖𝑖 ($/tonnes) 

cis
𝛾𝛾 (ξ2) Spot contract price at port 𝑖𝑖 under scenario 𝑠𝑠 
tisw(ξ3) Waiting time at port 𝑖𝑖 under scenario 𝑠𝑠 
ciP Penalty for amount not received from spot contract fuel 

𝐾𝐾𝑖𝑖𝑖𝑖𝑖𝑖 
Fuel consumption to port 𝑖𝑖 with speed 𝑣𝑣 at leg 1 and speed 𝑧𝑧 at leg 
2 

𝔼𝔼(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) Expected fuel consumption at leg 3 (loading port to discharging port) 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 
Time from port 𝑖𝑖 to loading port after speed 𝑣𝑣 at leg 1 and speed 𝑧𝑧 at 
leg 2 

𝑅𝑅 Time to end of laycan from departure port 

𝐻𝐻 Tonnes per centimeter of immersion (TPC) 

(f)s

Fes

divzs

Hours after laycan under scenario s

Fuel on board at arrival to load port under scenario s

Draught at loading port after loading cargo and bunkering at port i with
speed v at leg 1 and speed z at leg 2 under scenario s

Quantity remaining on board at the end of problem horizon under
scenarios

Risk variables

ri! Value-at-risk (VaR) at stage r under scenario s

CJJ Linearization variable for the risk constraint at stage r under scenario s

Parameters

ar Confidence level for CVaR at stage r; r E {2,3}

Å CVaR relative weight

Kiv Fuel consumption to port i with speed v

t iv Time to port i with speed v

Fmax Maximum fuel tanks capacity

Fmin Minimum fuel on board at any time

F0 Fuel on board at departure port

tt Freight rate ($/tonnes)

C(rr, R, IE(cis(2)) Time charter equivalent (prorated to hours)

c!"
l

Cis(z)

t ( 3 )

c!"
l

Kivz

IE(Kmin)

t ivz

R

H

Forward contract price at port i ($/tonnes)

Spot contract price at port i under scenario s

Waiting time at port i under scenario s

Penalty for amount not received from spot contract fuel

Fuel consumption to port i with speed v at leg 1 and speed z at leg
2

Expected fuel consumption at leg 3 (loading port to discharging port)

Time from port i to loading port after speed v at leg 1 and speed z at
leg 2

Time to end of laycan from departure port

Tonnes per centimeter of immersion (TPC)
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𝐵𝐵 Tonnes of ballast on board 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 Max draught 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚   Max weight (10% additional to cargo nomination) 

𝛽𝛽 Pumping rate of barge 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜  

𝑐𝑐𝑠𝑠𝑒𝑒(ξ3) 
Spot fuel price in the proximity of the discharge port at the expected 
arrival time 

The problem can be formulated as: 

𝑚𝑚𝑚𝑚𝑚𝑚∑𝑝𝑝𝑠𝑠 (∑∑[−𝑐𝑐𝑖𝑖𝑖𝑖𝐹𝐹 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ]
𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼 

− 𝑐𝑐𝑒𝑒𝐹𝐹𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 −∑∑𝑐𝑐𝑖𝑖𝑖𝑖
𝛾𝛾𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾

𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼
+∑∑[(𝑐𝑐 𝑖𝑖𝑖𝑖

𝛾𝛾 − 𝑐𝑐𝑖𝑖𝑃𝑃)𝑢𝑢𝑠𝑠
𝛾𝛾]

𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐿𝐿
+∑∑∑[𝜋𝜋𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑧𝑧∈𝑍𝑍 𝑣𝑣∈𝑉𝑉 𝑖𝑖∈𝐼𝐼
]

𝑠𝑠∈𝑆𝑆

+ ∑ ∑[𝜋𝜋𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗
𝑣𝑣∈𝑉𝑉 𝑗𝑗∈𝐼𝐼\𝐿𝐿

] + 𝑐𝑐𝑒𝑒𝐺𝐺𝑠𝑠 − 𝜑𝜑𝑠𝑠𝐶𝐶 + 𝜆𝜆 (ƞ𝑠𝑠2 −
1

1 − 𝛼𝛼2 𝜎𝜎𝑠𝑠
2 + ƞ𝑠𝑠3 −

1
1 − 𝛼𝛼3 𝜎𝜎𝑠𝑠

3))   

(1) 

subject to:   

CVaR Constraints:   

ƞ𝑠𝑠2 − (∑∑[−𝑐𝑐𝑖𝑖𝑖𝑖𝐹𝐹 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ]
𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼 

− 𝑐𝑐𝑒𝑒𝐹𝐹𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 −∑∑𝑐𝑐𝑖𝑖𝑖𝑖
𝛾𝛾𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾

𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼
) ≤ 𝜎𝜎𝑠𝑠2  ∀𝑠𝑠 ∈ 𝑆𝑆   (2) 

ƞ𝑠𝑠3 − (∑∑[−𝑐𝑐𝑖𝑖𝑖𝑖𝐹𝐹 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 ]
𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼 

− 𝑐𝑐𝑒𝑒𝐹𝐹𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 −∑∑𝑐𝑐𝑖𝑖𝑖𝑖
𝛾𝛾𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾

𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼

+∑∑[(𝑐𝑐 𝑖𝑖𝑖𝑖
𝛾𝛾 − 𝑐𝑐𝑖𝑖𝑃𝑃)𝑢𝑢𝑠𝑠

𝛾𝛾]
𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐿𝐿

+∑∑∑[𝜋𝜋𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑧𝑧∈𝑍𝑍 𝑣𝑣∈𝑉𝑉 𝑖𝑖∈𝐼𝐼

] + ∑ ∑[𝜋𝜋𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗
𝑣𝑣∈𝑉𝑉 𝑗𝑗∈𝐼𝐼\𝐿𝐿

]

+ 𝑐𝑐𝑒𝑒𝐺𝐺𝑠𝑠 − 𝜑𝜑𝑠𝑠𝐶𝐶(𝜋𝜋,𝑅𝑅, 𝔼𝔼(𝑐𝑐𝑒𝑒)) ≤ 𝜎𝜎𝑠𝑠3 

 ∀𝑠𝑠 ∈ 𝑆𝑆 (3) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖(𝐹𝐹𝑜𝑜 − 𝐾𝐾𝑖𝑖𝑖𝑖)  ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (4) 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (5) 

∑∑𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖
𝑣𝑣∈𝑉𝑉

= 1 
𝑖𝑖∈𝐼𝐼

  ∀𝑠𝑠 ∈ 𝑆𝑆 (6) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 + 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾 ≤ 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑜𝑜 + 𝐾𝐾𝑖𝑖𝑖𝑖)   ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (7) 

𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 −∑𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑧𝑧∈𝑍𝑍

= 0 ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (8) 

𝑢𝑢𝑠𝑠
𝛾𝛾 =∑∑[𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙

𝛾𝛾 ]
𝑣𝑣∈𝑉𝑉𝑙𝑙∈𝐿𝐿

− 𝑚𝑚𝑠𝑠
𝛾𝛾 ∀𝑠𝑠 ∈ 𝑆𝑆 (9) 

𝑢𝑢𝑠𝑠𝐹𝐹 =∑∑[𝑧𝑧𝑙𝑙𝑙𝑙𝑙𝑙𝐹𝐹 ]
𝑣𝑣∈𝑉𝑉𝑙𝑙∈𝐿𝐿

− 𝑚𝑚𝑠𝑠
𝐹𝐹 ∀𝑠𝑠 ∈ 𝑆𝑆 (10) 

B

d m a x

Wmax

Tonnes of ballast on board

Max draught

Max weight (10% additional to cargo nomination)

/3
. tonnesPumping rate of barge --

hour

Spot fuel price in the proximity of the discharge port at the expected
arrival time

The problem can be formulated as:

max L P s ( L L [ - c f v z f v s ]- c;z;s - LLC[sZivs + LL [ ( c s - cr)ur]+LLL[rrw;vzs]
sES i E l VEV iE l VEV iEL VEV iE l VEV zEZ

e C ( 2 l 2 3 l 3 ) )+ L L [rrwjvs]+ C Gs- ({Js + Å Ils - l_ a2 Cis + Ils - l_ a3 Cis
j E l \ L vEV

(1)

subject to:

CVaR Constraints:

I}: - (LL[-cfvzfvs] - c; z;s - LLC[sZivs) '-5,CJ;

t8 VEV <El VEV

I}: - (LL[-cfvzfvs] - c; z;s - LLC[sZivs
t8 VEV <El VEV

+ LL[(cs-cr)ur]
iEL VEV+LLL[rrwivzs]+ LL[rrwjvs]
iE l vEV zEZ j E l \ L vEV

+ cc, - .,C(rr, R,IB(c')) sa/

Vs ES (2)

Vs ES (3)

i E l VEV

zfvs + Zi,,s '.5:c.Ö;vsCFmax - Fa+ K;v)

«: - Ls . ; = 0
zEZ

ur= LL[zrvs1- mr
!EL VEV

Vi E / ,Vv E V, Vs ES (4)

Vi E / ,Vv E V, Vs ES (5)

Vs ES (6)

Vi E / , v E V, Vs ES (7)

Vi E L, '<Iv E V, Vs ES (8)

Vs ES (9)

uf= LL[zfvs]-mf
!EL VEV

Vs ES (10)
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(𝑚𝑚𝑠𝑠
𝐹𝐹 + 𝑚𝑚𝑠𝑠

𝛾𝛾) 1𝛽𝛽 ≤∑∑∑[𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑅𝑅 − 𝑡𝑡𝑙𝑙𝑙𝑙 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 − t𝑙𝑙𝑠𝑠w)]
𝑧𝑧∈𝑍𝑍𝑣𝑣∈𝑉𝑉𝑙𝑙∈𝐿𝐿

+ 𝜑𝜑𝑠𝑠 ∀𝑠𝑠 ∈ 𝑆𝑆 (11) 

𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡𝑗𝑗𝑗𝑗 ≤ 𝑅𝑅  ∀𝑗𝑗 ∈ 𝐼𝐼\𝐿𝐿 , ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (12) 

𝐹𝐹𝑒𝑒𝑒𝑒 = 𝐹𝐹𝑜𝑜 −∑∑𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝐾𝐾𝑖𝑖𝑖𝑖
𝑣𝑣∈𝑉𝑉𝑖𝑖∈𝐼𝐼

−∑∑∑𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾𝑙𝑙𝑙𝑙𝑙𝑙 +
𝑧𝑧∈𝑍𝑍𝑣𝑣∈𝑉𝑉𝑙𝑙∈𝐿𝐿

∑ ∑[𝑧𝑧𝐽𝐽𝐽𝐽𝐽𝐽𝐹𝐹
𝑣𝑣∈𝑉𝑉𝑗𝑗∈𝐼𝐼\𝐿𝐿

+ 𝑧𝑧𝐽𝐽𝐽𝐽𝐽𝐽
𝛾𝛾 ] +𝑚𝑚𝑠𝑠

𝐹𝐹 +𝑚𝑚𝑠𝑠
𝛾𝛾 

∀𝑠𝑠 ∈ 𝑆𝑆 (13) 

𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 ≤ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑒𝑒𝑒𝑒 ∀𝑠𝑠 ∈ 𝑆𝑆 (14) 

𝐹𝐹𝑒𝑒𝑒𝑒 − 𝐸𝐸(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 ≥  𝐺𝐺𝑠𝑠 ∀𝑠𝑠 ∈ 𝑆𝑆 (15) 

𝐹𝐹𝑒𝑒𝑒𝑒 ≥ 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  ∀𝑠𝑠 ∈ 𝑆𝑆 (16) 

𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = (𝑑𝑑𝑜𝑜 +
𝐹𝐹𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑜𝑜 − 𝐵𝐵 + 𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹

100𝐻𝐻 )𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑧𝑧 ∈ 𝑍𝑍, ∀𝑠𝑠 ∈ 𝑆𝑆 (17) 

𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗 = (𝑑𝑑𝑜𝑜 +
𝐹𝐹𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑜𝑜 − 𝐵𝐵 + 𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 + 𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹

100𝐻𝐻 ) 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗  ∀𝑗𝑗 ∈ 𝐼𝐼\𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (18) 

𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑧𝑧 ∈ 𝑍𝑍, ∀𝑠𝑠 ∈ 𝑆𝑆  (19) 

𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑗𝑗 ∈ 𝐼𝐼\𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (20) 

𝑤𝑤𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑧𝑧 ∈ 𝑍𝑍, ∀𝑠𝑠 ∈ 𝑆𝑆 (21) 

𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝛿𝛿𝑗𝑗𝑗𝑗𝑗𝑗𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑗𝑗 ∈ 𝐼𝐼\𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (22) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑠𝑠′𝐹𝐹 , 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑠𝑠′

𝛾𝛾 , 𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖𝑠𝑠′ , 𝑚𝑚𝑠𝑠
𝐹𝐹 = 𝑚𝑚𝑠𝑠′

𝐹𝐹 , 𝑢𝑢𝑠𝑠𝐹𝐹 = 𝑢𝑢𝑠𝑠′𝐹𝐹 ,
𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 = 𝑧𝑧𝑒𝑒𝑠𝑠′𝐹𝐹   

∀𝑠𝑠 = 𝑠𝑠′ ∈ 𝑆𝑆 𝑠𝑠. 𝑡𝑡. 𝜉𝜉𝑠𝑠𝑡𝑡 =  𝜉𝜉𝑠𝑠′
𝑡𝑡 , ∀𝜏𝜏 ∈ {1,2}  (23) 

𝜎𝜎𝑠𝑠𝜏𝜏 = 𝜎𝜎𝑠𝑠′𝜏𝜏  ∀𝑠𝑠 = 𝑠𝑠′ ∈ 𝑆𝑆 𝑠𝑠. 𝑡𝑡. 𝜉𝜉𝑠𝑠𝑡𝑡 =  𝜉𝜉𝑠𝑠′
𝑡𝑡 , ∀𝜏𝜏 ∈ {2,3} (24) 

𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (25) 

𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∈ {0,1} ∀𝑙𝑙 ∈ 𝐿𝐿, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑧𝑧 ∈ 𝑍𝑍, ∀𝑠𝑠 ∈ 𝑆𝑆 (26) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝐹𝐹 , 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾 ≥ 0 ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑠𝑠 ∈ 𝑆𝑆 (27) 

𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0  ∀𝑖𝑖 ∈ 𝐼𝐼, ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑧𝑧 ∈ 𝑍𝑍, ∀𝑠𝑠 ∈ 𝑆𝑆  (28) 

𝑤𝑤𝑗𝑗𝑗𝑗𝑗𝑗, 𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗 ≥ 0 ∀𝑗𝑗 ∈ 𝐼𝐼\𝐿𝐿, ∀𝑠𝑠 ∈ 𝑆𝑆 (29) 

𝑧𝑧𝑒𝑒𝑒𝑒𝐹𝐹 , 𝑢𝑢𝑠𝑠
𝛾𝛾, 𝑢𝑢𝑠𝑠𝐹𝐹, 𝐺𝐺𝑠𝑠,𝑚𝑚𝑠𝑠

𝛾𝛾,𝑚𝑚𝑠𝑠
𝐹𝐹, 𝜑𝜑𝑠𝑠 ≥ 0  ∀𝑠𝑠 ∈ 𝑆𝑆 (30) 

𝜎𝜎𝑠𝑠𝜏𝜏 ≥ 0 , 𝜏𝜏 ∈ {2,3} ∀𝑠𝑠 ∈ 𝑆𝑆 (31) 

 

The objective function (1) maximizes a multistage CVaR time consistent function as 

presented by Homem-de-Mello and Pagnoncelli (2016) and adapted for the 

maximization case by Bushaj et al. (2022). For our case, the model minimizes the cost 

of forward contracted fuels; the spot contracted fuels and penalties for not loading the 

agreed spot fuel3. The EOH fuel value and the voyage income generated by the cargo 

 
3 Note that forward fuel has no salvage value and the unused part of a forward fuel order is lost in full. 
This forces the use of forward fuel before using spot fuel. 
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The objective function (1) maximizes a multistage CVaR time consistent function as

presented by Homem-de-Mello and Pagnoncelli (2016) and adapted for the

maximization case by Bushaj et al. (2022). For our case, the model minimizes the cost

of forward contracted fuels; the spot contracted fuels and penalties for not loading the

agreed spot fuel3. The EOH fuel value and the voyage income generated by the cargo

3 Note that forward fuel has no salvage value and the unused part of a forward fuel order is lost in full.
This forces the use of forward fuel before using spot fuel.
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intake are added to the fuel costs. A penalty for arriving late to the laycan proxies the 

influence of the value of time under different market conditions. The CVaR importance 

to the objective function is controlled by 𝜆𝜆 and can be adjusted to compare the relative 

importance of CVaR against the expected value. The risk neutral problem equivalent 

is derived by 𝜆𝜆 being zero.  

Constraints (2) and (3) represents the risk attitude of the shipowner via CVaR 

constraints for the second and third stages. They are linearizations (together with 𝜎𝜎𝜏𝜏 
at the objective function) of the optimization formula for CVaR as per Rockafellar and 

Uryasev (2000).  

Constraint (4) is a bookkeeping constraint of fuel remaining on board at the bunkering 

port and at the loading port. Constraint (5) ensures that the vessel has always more 

fuel than a safe margin. Constraint (6) imposes that only one bunkering option is 

selected. For the resupply path (i.e. when the fuel is partly loaded at a bunkering port 

and topped up at the cargo loading port), this constraint could be interpreted as 

selecting the bunkering port where the first bunker order is taken.  

Constraint (7) limits any fuel order to the maximum capacity of the vessel’s fuel tanks. 

Constraint (8) links the port and speed decision on the first leg to the second leg speed 

decision. Constraints (9) and (10) derive the unused fuel from the spot and forward 

contracts, respectively. Constraint (11) reduces the pumped fuel quantity if the ordered 

bunker is so large that the vessel ends up being largely penalized for late arrival at the 

loading port. We introduce this soft constraint as a mechanism to assess the market 

conditions on the bunkering decision. By using this version instead of its hard constraint 

equivalent (i.e. where the laycan is enforced in all scenarios), we permit late arrivals to 

be penalized according to the market state. A hard constraint limits the options to ports 

with low waiting time and a fast vessel speed if, from their waiting time distribution, no 

scenario leads to infeasibility. The fast speed would not be a response to the 

uncertainty, but a way to avoid infeasibility with large extremes.  

Constraint (12) limits the vessel to arrive before the laycan when there is no deviation 

for bunkers. Constraint (13) is a bookkeeping constraint for fuel remaining on board at 

the loading port. Constraint (14) limits fuel orders to the bunkering tank max capacity, 

only at the loading port. Constraint (15) forces the EOH fuel quantity to be higher than 

the sum of the expected fuel consumption for the third leg (loading port to discharging 

intake are added to the fuel costs. A penalty for arriving late to the laycan proxies the

influence of the value of time under different market conditions. The CVaR importance

to the objective function is controlled by Å and can be adjusted to compare the relative

importance of CVaR against the expected value. The risk neutral problem equivalent

is derived by Å being zero.

Constraints (2) and (3) represents the risk attitude of the shipowner via CVaR

constraints for the second and third stages. They are linearizations (together with CJ-r

at the objective function) of the optimization formula for CVaR as per Rockafellar and

Uryasev (2000).

Constraint (4) is a bookkeeping constraint of fuel remaining on board at the bunkering

port and at the loading port. Constraint (5) ensures that the vessel has always more

fuel than a safe margin. Constraint (6) imposes that only one bunkering option is

selected. For the resupply path (i.e. when the fuel is partly loaded at a bunkering port

and topped up at the cargo loading port), this constraint could be interpreted as

selecting the bunkering port where the first bunker order is taken.

Constraint (7) limits any fuel order to the maximum capacity of the vessel's fuel tanks.

Constraint (8) links the port and speed decision on the first leg to the second leg speed

decision. Constraints (9) and (10) derive the unused fuel from the spot and forward

contracts, respectively. Constraint (11) reduces the pumped fuel quantity if the ordered

bunker is so large that the vessel ends up being largely penalized for late arrival at the

loading port. We introduce this soft constraint as a mechanism to assess the market

conditions on the bunkering decision. By using this version instead of its hard constraint

equivalent (i.e. where the laycan is enforced in all scenarios), we permit late arrivals to

be penalized according to the market state. A hard constraint limits the options to ports

with low waiting time and a fast vessel speed if, from their waiting time distribution, no

scenario leads to infeasibility. The fast speed would not be a response to the

uncertainty, but a way to avoid infeasibility with large extremes.

Constraint (12) limits the vessel to arrive before the laycan when there is no deviation

for bunkers. Constraint (13) is a bookkeeping constraint for fuel remaining on board at

the loading port. Constraint (14) limits fuel orders to the bunkering tank max capacity,

only at the loading port. Constraint (15) forces the EOH fuel quantity to be higher than

the sum of the expected fuel consumption for the third leg (loading port to discharging
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port), the fuel from the discharging port to the closest bunkering port, and a safety 

margin for the minimum fuel remaining. Constraint (16) ensures that the fuel remaining 

on board at the loading port is higher than the minimum fuel allowance. Constraint (17) 

defines the vessel’s draught at the loading port after any loaded bunker and cargo. 

Constraint (18) defines the vessel’s draught if the vessel travels directly to the loading 

port with no bunkering deviation. Constraints (19) and (20) limit the vessel draught to 

the maximum permitted draught. Constraints (21) and (22) limit the loaded cargo to 

less than the nominated quantity plus ten percent. Constraints (23) and (24) defines 

the non-anticipativity constraints. Constraints (25-31) define the domains of the 

decision variables. 

 

2.5 Empirical case study 
2.5.1 Case particulars 

We test the proposed mathematical formulation by introducing the case of a 

Supramax4 bulk carrier on a voyage contract. The owner has agreed the freight rate 

and voyage contract terms for a cargo of scrap from Boston, USA, to Iskenderun, 

Turkey.  The contract establishes that the vessel will be discharging in the Iskenderun 

area, without mentioning to what port. The vessel starts from Iskenderun, such that 

this is in effect a round trip voyage with a ballast leg from Iskenderun to Boston followed 

by a laden leg from Boston to Iskenderun. We assume that at the first stage the vessel 

has remaining fuel from a previous voyage and has been instructed on the contractual 

requirements (i.e. laycan). With this information, the decisions to be made at the first 

stage are: to what port to deviate for bunkers, the sailing speed, and the quantity of 

fuel to fix on a forward contract at the bunkering port. Figure 2 shows the available 

bunkering port options for the intended voyage and the direct route if no deviation for 

bunkering is considered. 

 
4 A Supramax is a class of bulkcarrier vessel ranging from 50,000 to 60,000 DWT 

port), the fuel from the discharging port to the closest bunkering port, and a safety

margin for the minimum fuel remaining. Constraint (16) ensures that the fuel remaining

on board at the loading port is higher than the minimum fuel allowance. Constraint (17)

defines the vessel's draught at the loading port after any loaded bunker and cargo.

Constraint (18) defines the vessel's draught if the vessel travels directly to the loading

port with no bunkering deviation. Constraints (19) and (20) limit the vessel draught to

the maximum permitted draught. Constraints (21) and (22) limit the loaded cargo to

less than the nominated quantity plus ten percent. Constraints (23) and (24) defines

the non-anticipativity constraints. Constraints (25-31) define the domains of the

decision variables.

2.5 Empirical case study
2.5.1 Case particulars

We test the proposed mathematical formulation by introducing the case of a

Supramax4 bulk carrier on a voyage contract. The owner has agreed the freight rate

and voyage contract terms for a cargo of scrap from Boston, USA, to lskenderun,

Turkey. The contract establishes that the vessel will be discharging in the lskenderun

area, without mentioning to what port. The vessel starts from lskenderun, such that

this is in effect a round trip voyage with a ballast leg from lskenderun to Boston followed

by a laden leg from Boston to lskenderun. We assume that at the first stage the vessel

has remaining fuel from a previous voyage and has been instructed on the contractual

requirements (i.e. laycan). With this information, the decisions to be made at the first

stage are: to what port to deviate for bunkers, the sailing speed, and the quantity of

fuel to fix on a forward contract at the bunkering port. Figure 2 shows the available

bunkering port options for the intended voyage and the direct route if no deviation for

bunkering is considered.

4 A Supramax is a class of bulkcarrier vessel ranging from 50,000 to 60,000 DWT
62



 

63 
 

Figure 2 

Bunkering port options 

 
Note: The Atlantic leg (after Gibraltar strait) is assumed a rhumb line route to Boston 

The first stage decisions should account for the possibility that the spot price might 

change while underway and an opportunity might open for buying bunkers at a lower 

price. Additionally, they should consider that the waiting time before loading bunkers 

might force the vessel to either reduce the bunker quantity loaded, paying a penalty, 

or arriving late to the loading port. In reality, a late arrival gives the right (but not the 

obligation) to the charterer to cancel the voyage contract, regardless of how far the 

vessel is from the port. For illustration, we assume that a late arrival is penalized by an 

hourly prorated Time Charter Equivalent (TCE), internally consistent with the agreed 

freight rate and the expected spot fuel price across the route This is one way of 

reflecting the value of time under different market conditions and the opportunity cost 

of not being available for a next voyage. It is also a proxy for the daily rate at which the 

vessel could be fixed again if the contract is cancelled. Overall, the hypothesis is that 

in strong markets, it would be more expensive to bunker at ports with long waiting 

times. Additional relevant parameters are summarized in Table 1. 
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Note: The Atlantic leg (after Gibraltar strait) is assumed a rhumb line route to Boston

The first stage decisions should account for the possibility that the spot price might

change while underway and an opportunity might open for buying bunkers at a lower

price. Additionally, they should consider that the waiting time before loading bunkers

might force the vessel to either reduce the bunker quantity loaded, paying a penalty,

or arriving late to the loading port. In reality, a late arrival gives the right (but not the

obligation) to the charterer to cancel the voyage contract, regardless of how far the

vessel is from the port. For illustration, we assume that a late arrival is penalized by an

hourly prorated Time Charter Equivalent (TCE), internally consistent with the agreed

freight rate and the expected spot fuel price across the route This is one way of

reflecting the value of time under different market conditions and the opportunity cost

of not being available for a next voyage. It is also a proxy for the daily rate at which the

vessel could be fixed again if the contract is cancelled. Overall, the hypothesis is that

in strong markets, it would be more expensive to bunker at ports with long waiting

times. Additional relevant parameters are summarized in Table 1.
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Table 1 

Parameters for the case study problem 

Parameter Value Comments 
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚  3,780 tonnes  
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 50 tonnes  

𝐹𝐹𝑜𝑜 
160 tonnes Enough fuel to reach Gibraltar at 12.5 knots + safe 

margin 

ciP 20.00 $
tonnes 

 

𝜋𝜋 20.5 $
tonnes 

 

𝔼𝔼(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚) 470 tonnes Based on 24 𝑀𝑀𝑀𝑀
𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥17𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(12.5𝑘𝑘𝑘𝑘𝑘𝑘) + 15% 

𝑅𝑅 
420 hours Voyage time. Equivalent to a direct route from 

Iskenderun to Boston at 12.5 kts. 
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 48,000 tonnes  

𝔼𝔼(cis
𝛾𝛾 (ξ2)) 400.9 $

tonnes 
Expected spot fuel prices across route options cis

𝛾𝛾 (ξ2) 

𝐶𝐶(𝜋𝜋, 𝑅𝑅, 𝔼𝔼(cis
𝛾𝛾 (ξ2))) 

1,397.98 $
hour 

𝐶𝐶

= 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋 − 2𝔼𝔼
(𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚)𝔼𝔼(cis

𝛾𝛾 (ξ2)) − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑅𝑅  

(32) 

 

𝐻𝐻 55 cm
tonnes 

 

𝐵𝐵 25,000 tonnes  
𝑑𝑑0 6.9 m  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 
11.5 m Maximum draught at Schnitzer Scrap Terminal, 

Boston. 
𝛽𝛽 𝛽𝛽 = 300 tonneshour   

𝛼𝛼2, 𝛼𝛼3 0.05 Expected return on the worst 5% scenarios 
𝜆𝜆 1 Value set to 0 is equivalent to the risk neutral problem 

2.5.2 Consumption estimation 

The bunker consumption is an important factor for the bunkering decision, as 

demonstrated by Yao et al. (2012). Some studies include consumption into the problem 

as discrete values, conditional on vessel activity (Oh and Karimi, 2010) or load 

condition (Vilhelmsen, 2014). Another approach would be to incorporate fuel 

consumption functions as part of the optimization model, such as with the empirical 

functions for container vessels introduced by Yao et al. (2012), or linear piecewise 

approximations (Wang and Meng, 2015; Gu et al., 2019) from traditional quadratic 

consumption functions (e.g., Ronen, 1982). 

The fuel consumption is estimated as the product of the power demand for the vessel’s 

route and the Specific Fuel Oil Consumption as derived from the Fourth IMO Green 

Table 1

Parameters for the case study problem

Parameter Value Comments

Fmax

Fmin

3,780 tonnes

50 tonnes

160 tonnes Enough fuel to reach Gibraltar at 12.5 knots + safe
margin

T[

IE(Kmin)

R

2 0 . 0 0 - $ -
tonnes

$
2 0 . 5 - -

tonnes
470 tonnes

420 hours

W m a x

c(t i , R, IE(cis( 2 ) ) )

H

B

do

d m a x

48,000 tonnes

4 0 0 . 9 - $ -
tonnes

$
1,397.98-h -our

cm
S S - -

tonnes
25,000 tonnes

6 .9m
11.5 m

MTBased on 2 4 - x 1 7 d a y s ( 1 2 . 5 k t s ) + 15%
d a y

Voyage time. Equivalent to a direct route from
lskenderun to Boston at 12.5 kts.

Expected spot fuel prices across route options ers(s2)

c
W m a x 1 T - 21E(Kmin)IE(crs(sz)) - port cost

= - - - - - - - - - - - - - -R
(32)

Maximum draught at Schnitzer Scrap Terminal,
Boston.

/3

Å

tonnes
/3= 3 0 0 - h - -our

o.os Expected return on the worst 5% scenarios
l Value set to Ois equivalent to the risk neutral problem

2.5.2 Consumption estimation

The bunker consumption is an important factor for the bunkering decision, as

demonstrated by Yao et al. (2012). Some studies include consumption into the problem

as discrete values, conditional on vessel activity (Oh and Karimi, 2010) or load

condition (Vilhelmsen, 2014). Another approach would be to incorporate fuel

consumption functions as part of the optimization model, such as with the empirical

functions for container vessels introduced by Yao et al. (2012), or linear piecewise

approximations (Wang and Meng, 2015; Gu et al., 2019) from traditional quadratic

consumption functions (e.g., Ranen, 1982).

The fuel consumption is estimated as the product of the power demand for the vessel's

route and the Specific Fuel Oil Consumption as derived from the Fourth IMO Green
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House Gas Study (2020). This approach is motivated by the vast literature on a 

vessel’s resistance calculation, nicely summarized by Zis et al. (2020), which 

incorporates the interaction of the vessel specific factors e.g., speed, displacement and 

draught, with the environmental effects, such as wind, currents and waves. As our 

objective is to simply a realistic physical environment for the route, our selection is 

based on the average weather and oceanographic conditions of the month of June 

between 2018 and 2021, this being the month with the least variance for the 

Mediterranean according to Barbariol, et al. (2021). A description of the estimation 

method used for this study can be found in the Appendix. The fuel consumption curves 

in June are 10% higher than when weather is not considered and represents an 

average weather margin for the month. We leave the evaluation of the impact of 

stochastic weather on the bunkering decision for future research.  

The fuel consumption is calculated on leg 1 from Iskenderun to every bunker port 

option and on leg 2 from every bunker port to the loading port (Boston). The time of 

departure for leg 2 is estimated as the arrival time at leg 1 resulting from the speed 

decision at 𝑉𝑉 plus the expected waiting time at the bunkering port. An example for a 

trip from Iskenderun to Boston is shown in Figure 3. 

House Gas Study (2020). This approach is motivated by the vast literature on a

vessel's resistance calculation, nicely summarized by Zis et al. (2020), which

incorporates the interaction of the vessel specific factors e.g., speed, displacement and

draught, with the environmental effects, such as wind, currents and waves. As our

objective is to simply a realistic physical environment for the route, our selection is

based on the average weather and oceanographic conditions of the month of June

between 2018 and 2021, this being the month with the least variance for the

Mediterranean according to Barbariol, et al. (2021). A description of the estimation

method used for this study can be found in the Appendix. The fuel consumption curves

in June are 10% higher than when weather is not considered and represents an

average weather margin for the month. We leave the evaluation of the impact of

stochastic weather on the bunkering decision for future research.

The fuel consumption is calculated on leg 1 from lskenderun to every bunker port

option and on leg 2 from every bunker port to the loading port (Boston). The time of

departure for leg 2 is estimated as the arrival time at leg 1 resulting from the speed

decision at V plus the expected waiting time at the bunkering port. An example for a

trip from lskenderun to Boston is shown in Figure 3.
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Figure 3 

Fuel consumption from Iskenderun to Boston for the case study Supramax vessel in 
ballast condition 

 
Note: Authors’ own calculations 

2.5.3 Scenario tree generation 

The model incorporates three stochastic parameters, the spot fuel oil price, the spot 

fuel price at the EOH, and the bunkering ports’ waiting times. The spot fuel oil price is 

sourced from historical records (April 2018 to July 2019) from daily HFO 380 bunker 

prices kindly provided by Bunker-Ex. A sample with the five cheapest ports at the 

Mediterranean is presented in Figure 4. Valetta is, on average, the port with the lowest 

fuel price, followed by Piraeus and Gibraltar. The tight relationship between Gibraltar 

and Algeciras prices suggests fierce competition between the two geographically close 

ports. The high volatility of fuel oil prices is derived from oil market dynamics and the 

local balance of supply and demand (Alizadeh et al., 2004). Gu et al. (2019) suggest 

that the fuel price development can be considered as a Lévy process with independent 

increments, referencing the crude oil models of Gencer and Unal (2012).  
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2.5.3 Scenario tree generation

The model incorporates three stochastic parameters, the spot fuel oil price, the spot

fuel price at the EOH, and the bunkering ports' waiting times. The spot fuel oil price is

sourced from historical records (April 2018 to July 2019) from daily HFO 380 bunker

prices kindly provided by Bunker-Ex. A sample with the five cheapest ports at the

Mediterranean is presented in Figure 4. Valetta is, on average, the port with the lowest

fuel price, followed by Piraeus and Gibraltar. The tight relationship between Gibraltar

and Algeciras prices suggests fierce competition between the two geographically close

ports. The high volatility of fuel oil prices is derived from oil market dynamics and the

local balance of supply and demand (Alizadeh et al., 2004). Gu et al. (2019) suggest

that the fuel price development can be considered as a Levy process with independent

increments, referencing the crude oil models of Gencer and Unal (2012).
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Figure 4 

HFO 380 fuel price for the five (on average) cheapest ports in the Mediterranean 

 

Note: Authors’ graph information sourced from Bunker Ex historical records 

Similar to the strategy employed by Gu et al. (2019) we generate distributions for fuel 

price increments from the difference between fuel price of port 𝑖𝑖 at day 𝑛𝑛𝑖𝑖 and days 

𝑛𝑛𝑖𝑖 +
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖
24𝑣𝑣 , ∀𝑣𝑣 ∈ 𝑉𝑉, ∀𝑖𝑖 ∈ 𝐼𝐼. Thereafter, the results are averaged per port and compiled.  

As the vessel’s sailing days to the bunkering port varies based on speed and distance, 

the time and space features of the fuel prices in the bunkering ports also show across 

the calculated increments. For instance, we expect that the ports closest to the 

departing position should have, on average, lower increments than those further away. 

This can be seen from the descriptive statistics in Table 2, as the lowest “increment” is 

observed in Limassol (the closest port), while the highest is in Boston (farthest away). 

However, this relationship is not consistent in all cases (e.g., Valetta and Augusta) as 

some ports’ prices might be more affected by local and regional dynamics and time. 

From Table 2 it is important to highlight the extreme values as potential scenarios to 

be observed in a voyage. The resulting joint empirical distribution and their underlying 

dynamics in our model are discretized by generating equiprobable scenarios via the 

Copulas scenario generation method (Kaut & Wallace, 2011). The mean and standard 
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Similar to the strategy employed by Gu et al. (2019) we generate distributions for fuel

price increments from the difference between fuel price of port i at day ni and days

n i + d i s t i , vv E V, Vi E / . Thereafter, the results are averaged per port and compiled.
24v

As the vessel's sailing days to the bunkering port varies based on speed and distance,

the time and space features of the fuel prices in the bunkering ports also show across

the calculated increments. For instance, we expect that the ports closest to the

departing position should have, on average, lower increments than those further away.

This can be seen from the descriptive statistics in Table 2, as the lowest "increment" is

observed in Lirnassol (the closest port), while the highest is in Boston (farthest away).

However, this relationship is not consistent in all cases (e.g., Valetta and Augusta) as

some ports' prices might be more affected by local and regional dynamics and time.

From Table 2 it is important to highlight the extreme values as potential scenarios to

be observed in a voyage. The resulting joint empirical distribution and their underlying

dynamics in our model are discretized by generating equiprobable scenarios via the

Copulas scenario generation method (Kaut & Wallace, 2011). The mean and standard
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deviations of the resultant spot prices after discretization are shown in the right section 

of Table 2. 

Table 2 

Descriptive statistics of empirical bunker price increments at Mediterranean ports and 

spot prices in stage 2 for the case study 

Bunker price increments Spot prices  

Port Mean Std.Dev Min Max Mean Std.Dev 

Boston -1.280 13.943 -36.00 30.14 396.43 13.50 

Valetta -0.918 15.170 -46.94 53.45 385.84 14.23 

Algeciras -0.853 14.842 -37.61 43.30 390.29 14.11 

Gibraltar -0.711 15.795 -53.35 57.5 386.53 15.38 

Ceuta -0.697 14.562 -38.98 46.15 388.83 14.02 

Syros Island -0.621 10.330 -32.44 33.79 429.79 9.92 

Augusta -0.559 15.569 -46.38 67.83 412.75 14.30 

Piraeus -0.260 14.507 -56.05 60.53 386.62 13.16 

Limassol -0.115 16.764 -83.98 50.23 430.96 14.62 

 

A similar strategy, incorporating time and space features, is used for generating the 

forward price 𝑐𝑐𝑖𝑖𝑖𝑖𝐹𝐹  parameter. To maintain consistency, we here assume that the forward 

price is a function of the expected spot price, such that: 𝑐𝑐𝑖𝑖𝑖𝑖𝐹𝐹 = 𝐸𝐸[𝑐𝑐𝑖𝑖
𝛾𝛾]𝑒𝑒(0.05

𝑡𝑡𝑖𝑖𝑖𝑖
8760). The 

selection of 0.05 is arbitrary and reflects the holding cost and the risk-free rate of the 

contract. We assume that the cost of carry principle holds, resulting in a forward curve 

that is in contango such that the futures price is higher than the spot price. Considering 

that bunker prices inherit the characteristics of the crude oil market, we acknowledge 

that backwardation (spot price higher than the future price) is also possible and would 

suggest the incentive to buy forward instead of spot. However, to avoid further 

complexity, we here consider only the more common contango situation. 

For modelling the waiting times at port, we replicate the method for generating 

bunkering statistics from AIS data by Fuentes (2021). In our case, we compile the 

waiting times for all vessels that had bunker operations at anchorage from January 

deviations of the resultant spot prices after discretization are shown in the right section

of Table 2.

Table 2

Descriptive statistics of empirical bunker price increments at Mediterranean ports and

spot prices in stage 2 for the case study

Bunker price increments Spot prices

Port Mean Std.Dev Min Max Mean Std.Dev

Boston -1.280 13.943 -36.00 30.14 396.43 13.50

Valetta -0.918 15.170 -46.94 53.45 385.84 14.23

Algeciras -0.853 14.842 -37.61 43.30 390.29 14.11

Gibraltar -0.711 15.795 -53.35 57.5 386.53 15.38

Ceuta -0.697 14.562 -38.98 46.15 388.83 14.02

Syros Island -0.621 10.330 -32.44 33.79 429.79 9.92

Augusta -0.559 15.569 -46.38 67.83 412.75 14.30

Piraeus -0.260 14.507 -56.05 60.53 386.62 13.16

Lirnassol -0.115 16.764 -83.98 50.23 430.96 14.62

A similar strategy, incorporating time and space features, is used for generating the

forward price cfvparameter. To maintain consistency, we here assume that the forward

price is a function of the expected spot price, such that: cfv= E[cr]e(0-05s:i:a)_The

selection of 0.05 is arbitrary and reflects the holding cost and the risk-free rate of the

contract. We assume that the cost of carry principle holds, resulting in a forward curve

that is in contango such that the futures price is higher than the spot price. Considering

that bunker prices inherit the characteristics of the crude oil market, we acknowledge

that backwardation (spot price higher than the future price) is also possible and would

suggest the incentive to buy forward instead of spot. However, to avoid further

complexity, we here consider only the more common contango situation.

For modelling the waiting times at port, we replicate the method for generating

bunkering statistics from AIS data by Fuentes (2021). In our case, we compile the

waiting times for all vessels that had bunker operations at anchorage from January
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2015 to January 2018. From Table 3, Gibraltar is shown as the bunkering port with the 

lowest waiting times, on average, followed by Syros Island and Valetta. It is important 

to highlight that looking only at the average waiting time does not ensure the shortest 

stay, as a port with lower waiting times might still have scenarios with higher extremes 

(i.e., Syros vs. Valetta). We explore the effects of the waiting time distribution by 

discretizing it in the scenario tree via the Copulas method. 

Table 3 

Waiting time (hours) per bunkering port from January 2015 to January 2018 

Port Mean St.Dev Median Max 

Gibraltar 1.68 0.41 1.62 3.22 

Syros Island 1.94 2.42 0.76 13.28 

Valetta 2.33 2.17 1.74 10.05 

Limassol 3.14 3.39 2.33 25.79 

Ceuta 3.36 2.94 2.71 20.32 

Augusta 5.56 5.36 3.46 25.83 

Algeciras 5.79 2.53 5.47 15.87 

Piraeus 6.42 6.15 3.90 26.23 

 

Our motivation for using copulas is threefold. First, the generation method is 

compatible with the empirical distributions used as input. In the absence of a 

parametric distribution that could fit our data, this is an important feature. Second, the 

copulas scenario generation method matches the first and second moments of our 

data empirical distribution, regardless of the tree size. Third, our scenarios can convey 

the relationship of price increments along the voyage and across bunkering options.  

A natural interpretation of the copula theory in this setting is that the copula function 

mapping the multivariate joint distribution–i.e. spot fuel prices and waiting times across 

ports–contains the dependence information of all ports’ variables and their marginal 

distributions. An additional gain, as suggested by Kaut (2014), the copulas generation 

method is a better scenarios generation method compared to other methods such as 

sampling and moment matching. This argument is based on the fewer scenarios 

needed to achieve stable solutions. This is an important feature in our context 

2015 to January 2018. From Table 3, Gibraltar is shown as the bunkering port with the
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to highlight that looking only at the average waiting time does not ensure the shortest
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compatible with the empirical distributions used as input. In the absence of a

parametric distribution that could fit our data, this is an important feature. Second, the

copulas scenario generation method matches the first and second moments of our

data empirical distribution, regardless of the tree size. Third, our scenarios can convey

the relationship of price increments along the voyage and across bunkering options.

A natural interpretation of the copula theory in this setting is that the copula function

mapping the multivariate joint distribution-i.e. spot fuel prices and waiting times across

ports-contains the dependence information of all ports' variables and their marginal

distributions. An additional gain, as suggested by Kaut (2014), the copulas generation

method is a better scenarios generation method compared to other methods such as

sampling and moment matching. This argument is based on the fewer scenarios

needed to achieve stable solutions. This is an important feature in our context
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considering that multistage models can become intractable if the scenario tree is too 

large.  

We propose an in-sample stability test (Kaut & Wallace, 2007) to verify that the results 

are not affected by the tree size. A stable result should have similar objective values 

across different trees constructed with the same generation method (Kaut & Wallace, 

2007). As our tree is generated with the Copulas method, which is based on an optimal 

assignment of scenarios as seen in Kaut (2014), we compare 11 different trees ranging 

from 50 to 100 scenarios. These trees are based on combinations of 10 to 15 scenarios 

at the second stage and 5 to 10 scenarios at the third stage. A summary of the tested 

scenario trees is introduced in Table 4. 

Table 4 

Objective values for scenario trees tested for the in sample stability analysis 

2nd stage 
scenarios 

3rd stage 
scenarios 

Objective value 

Stage compared: 

max (diff to min, diff to max) 

3rd stage 2nd stage All 

10 5 695,258.8 0.8% - 1.3% 

10 6 693,256.2 0.5% - 1.0% 

10 7 689,788.9 0.8% - 0.8% 

10 8 691,997.3 0.4% - 0.8% 

10 9 691,805.2 0.3% - 1.3% 

10 10 694,831.3 0.7% 1.3% 0.9% 

11 5 688,748.3 - 0.9% 1.2% 

12 5 687,075.0 - 1.1% 1.2% 

13 5 686,986.7 - 1.1% 1.0% 

14 5 686,039.0 - 1.3% 1.3% 

15 5 688,585.9 - 0.9% 0.9% 

 

From the results in Table 4, stability can be observed at the third stage with as few as 

five scenarios. This is based on slight changes in the objective values (within 0.8%) 

when the third stage is tested with 5 to 10 scenarios. These results are stable despite 

considering that multistage models can become intractable if the scenario tree is too

large.

We propose an in-sample stability test (Kaut & Wallace, 2007) to verify that the results

are not affected by the tree size. A stable result should have similar objective values

across different trees constructed with the same generation method (Kaut & Wallace,

2007). As our tree is generated with the Copulas method, which is based on an optimal

assignment of scenarios as seen in Kaut (2014), we compare 11 different trees ranging

from 50 to 100 scenarios. These trees are based on combinations of 10 to 15 scenarios

at the second stage and 5 to 10 scenarios at the third stage. A summary of the tested

scenario trees is introduced in Table 4.

Table 4

Objective values for scenario trees tested for the in sample stability analysis

Stage compared:
2ndStage 3rdStage

Objective value max (diff to min, diff to max)
scenarios scenarios

3rdStage 2ndStage All

10 5 695,258.8 0.8% 1.3%

10 6 693,256.2 0.5% 1.0%

10 7 689,788.9 0.8% 0.8%

10 8 691,997.3 0.4% 0.8%

10 9 691,805.2 0.3% 1.3%

10 10 694,831.3 0.7% 1.3% 0.9%

11 5 688,748.3 0.9% 1.2%

12 5 687,075.0 1.1% 1.2%

13 5 686,986.7 1.1% 1.0%

14 5 686,039.0 1.3% 1.3%

15 5 688,585.9 0.9% 0.9%

From the results in Table 4, stability can be observed at the third stage with as few as

five scenarios. This is based on slight changes in the objective values (within 0.8%)

when the third stage is tested with 5 to 10 scenarios. These results are stable despite
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the random assignment of EOH prices at the third stage. It also shows that the model 

is stable regardless of the EOH price and waiting times match in a scenario. Similarly, 

the second stage is tested by five trees from 10 to 15 scenarios, with a difference of 

1.3% between the trees’ objective values. Overall, all trees included have a difference 

within 1.3%, suggesting that a tree with 10 scenarios at the second stage and 5 

scenarios at the third stage is stable for our model in the current setting. 

 

2.6 Computational experiments and discussion 
2.6.1 Experiments description 

Our chosen experiments are based on distinct situations that a shipowner could face 

when choosing her bunkering plan. For all situations, the vessel decides on its next 

voyage while completing a cargo discharge at Iskenderun. For this next voyage, the 

owner takes a stance on risk aversion and such attitude is modeled by the CVaR 

measure.  

Our motivation for using CVaR is based on the observation that in a risk neutral setting 

with our contango assumption, a shipowner would always be better off (in expectation) 

buying bunkers from the spot market. This strategy seems obvious based on 

expectations, yet it has the risk of large losses when an adverse (higher) spot price is 

revealed. Introducing risk aversion in this setting helps to hedge against those adverse 

scenarios by reducing the expected solution variance. We test the effect on the solution 

when risk aversion is modeled for stage 2 and risk neutrality on stage 3, and when risk 

aversion is modeled for both stages. Based on our formulation, a shipowner could 

isolate risk-aversion levels per decision stage or transform the model back into a risk 

neutral setting. 

Situation 1 refers to our benchmark. In situation 2, we remove the waiting times and 

explore the effect on the proposed solution.  

Situation 3 explores the decision if instead of valuing the EOH fuel in a high price area 

(Iskenderun); we value the EOH fuel in the more price competitive Gibraltar Strait area 

(c.f. Table 2). Disclosing the discharge area is a customary practice for voyage 

charters. For this experiment, we explore the effect of using an EOH price different to 

that of our discharge area. This could be interpreted as the assessment a shipowner 

the random assignment of EOH prices at the third stage. It also shows that the model

is stable regardless of the EOH price and waiting times match in a scenario. Similarly,

the second stage is tested by five trees from 10 to 15 scenarios, with a difference of

1.3% between the trees' objective values. Overall, all trees included have a difference

within 1.3%, suggesting that a tree with 10 scenarios at the second stage and 5

scenarios at the third stage is stable for our model in the current setting.
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buying bunkers from the spot market. This strategy seems obvious based on

expectations, yet it has the risk of large losses when an adverse (higher) spot price is

revealed. Introducing risk aversion in this setting helps to hedge against those adverse

scenarios by reducing the expected solution variance. We test the effect on the solution

when risk aversion is modeled for stage 2 and risk neutrality on stage 3, and when risk

aversion is modeled for both stages. Based on our formulation, a shipowner could

isolate risk-aversion levels per decision stage or transform the model back into a risk

neutral setting.

Situation 1 refers to our benchmark. In situation 2, we remove the waiting times and

explore the effect on the proposed solution.

Situation 3 explores the decision if instead of valuing the EOH fuel in a high price area

(lskenderun); we value the EOH fuel in the more price competitive Gibraltar Strait area

(c.f. Table 2). Disclosing the discharge area is a customary practice for voyage

charters. For this experiment, we explore the effect of using an EOH price different to

that of our discharge area. This could be interpreted as the assessment a shipowner
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would have to make if she were considering repositioning her vessel after the current 

voyage. 

In situation 4, the voyage laycan is reduced (𝑅𝑅 = 380 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) to model the effect of a 

shortened laycan on the speed decision, the effect of the exponential fuel consumption 

function on depleting the fuel inventory and the ordered bunker quantity. Conversely, 

in situation 5, we refer to a pressing laycan (𝑅𝑅 = 800 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) and compare the results 

to situation 4. 

For situation 6 and situation 7, we explore the effect of freight and fuel market 

conditions on the bunkering decisions. This model evaluates the influence on changes 

to the TCE and the relative cost of time. For situation 6 we assume a high freight market 

(𝜋𝜋 = 30.9 $
tonnes) and a low freight market (𝜋𝜋 = 11.5 $

tonnes) for situation 7. 

2.6.2 Numerical results and discussion 

In this section we present and discuss the results for our experiments as run by 

modeling the problem in mpisppy (Knueven, et al., 2020).  This module works as an 

extension for solving stochastic Pyomo (Hart, et al., 2017) formulations. The numerical 

experiments were conducted on a single computer with 16GB RAM memory and 12 

virtual processors with 2.60 Ghz core frequency.  

2.6.2.1 Benchmark (Situation 1 and Situation 2) 

The results of situation 1 and situation 2 in Table 5 reflect the close competition of 

Valetta and Gibraltar. A review of their descriptive statistics in Table 2 (spot prices) and 

Table 3 (waiting times) reveals that Valetta is the cheapest port with a relatively short 

average waiting time (ranked 3rd) while Gibraltar has the shortest waiting times and the 

second cheapest price. Simplifying their profiles in this manner helps in judging 

whether the proposed decisions were driven by price (Valetta) or waiting time 

(Gibraltar). An interesting feature of our case study is that given that Valetta and 

Gibraltar are close to the direct route to the loading port, they cause similar deviations. 

Therefore, we could simplify their profiles without the concern of other parameters 

affecting the solution. Additional parameters that could cause different optimal 

decisions are the laycan, the penalty for fuel not taken from the order and barge 

pumping rates per port. We set them to be identical for all port options. 
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Table 5 

Numerical results in situation 1 and situation 2 under differerent risk level assumptions 

 Situation 1  Situation 2 Situation 1  Situation 2  

Risk-aversion (stage2, stage3) (0.95,0) (0.95,0.95) 

First stage     

Port - speed Valetta 13.3 Valetta 13.2 Gibraltar 13.2 Gibraltar 12.3* 

Forward fuel contracted 630.9 869.5 568.7 563.6 

Second stage     

Average spot fuel contracted 1,973.9 1,880.5 1,025.9 1,023.1 

Average unused forward fuel 0 0 0 0 

Third stage     

Average voyage consumption 272.8 270.8 265.1 263.3 

Average unused spot fuel 198.3 228.8 38.9 38.2 

Average fuel at EOH 1,523.0 1,640.3 680.6 675.0 

Expected total profit 695,258.80 698,761.30 673,257.37 673,643.79 

Total cost standard deviation 67,659.15 66,699.79 52,251.85 56,741.06 

* Speed reduction compared to situation 1 is caused by the option to “adjust” speed on the third leg and 

discretization of third leg speeds to every 0.5 knots. 

From Table 5, we observe that the cheapest port (Valetta) is selected when risk 

neutrality is assumed for stage 3. Here, the shipowner takes the following two actions. 

First, she speculates on the spot fuel as the EOH price of fuel (stage 3) is higher in the 

EOH area, in expectation. Second, they accept a longer stay in port (waiting time plus 

service time) caused by that “large” bunkering order. A large bunkering order results 

in a longer service time at a port that, together with long waiting times, could develop 

in too large penalties for late arrival. The waiting time affects the solution by limiting 

the bunker order to that necessary to reduce the penalties for late arrival at the load 

port. The cost of the expected “extra” profit from the EOH fuel outweighs the loss of 

the penalty of the expected delays caused by the waiting times.  

For a strategy that models risk aversion separately for stage 2 and stage 3, the decision 

is to take bunkers at the port with the smaller waiting time distribution (Gibraltar). The 
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the penalty of the expected delays caused by the waiting times.

For a strategy that models risk aversion separately for stage 2 and stage 3, the decision

is to take bunkers at the port with the smaller waiting time distribution (Gibraltar). The
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strategy also includes a smaller order from the forward market and the spot market. 

The forward fuel order is in place to hedge against spot price fluctuations, while the 

port selection and a smaller spot fuel order have two effects on stage 3 uncertainty. 

First, a smaller fuel order reduces the service times; therefore, the time penalty is on 

scenarios with larger waiting times. The larger waiting times are also reduced by 

choosing a port with a compact distribution of low waiting times. Second, the smaller 

order reduces the loss caused on scenarios where the EOH price was lower than the 

spot price. In this setting, the waiting times defines the port to choose, based on tighter 

distributions. 

Results for situation 2 (no waiting time used), reflects a stronger effect (when 

comparing the expected profit value) in Valetta than in Gibraltar (where almost no effect 

is observed). The reason is the lower average and more compact distribution for 

Gibraltar waiting times. For this situation, either Valetta or Gibraltar could be selected 

from a flat objective function caused by equal waiting times (0) and tight fuel prices 

differences. These differences are within the margins of our in sample stability test 

presented in Table 4. 

Based on these results, we can conclude that decisions based on prices alone will not 

cause a significant difference in profits if the cheap port has low waiting times. In our 

setting, the selection of one port or the other is mainly based on whether the shipowner 

is assumed to be risk averse or risk neutral on stage 3. Assuming risk neutrality on 

stage 3 results in a speculative strategy where the shipowner chooses the cheapest 

port, aiming for profit on the EOH fuel value while just assuming the effect of the 

expected waiting time on that strategy. Conversely, a strategy with risk aversion on 

stage 3 selects the port with lower waiting times and reduces the fuel order to hedge 

scenarios with longer waiting times and/or lower EOH prices. 

Special case (Situation 2 –no waiting time and Valetta is not available) 

In addition to the results in Table 5, we extend our experiments to assess a special 

case of Situation 2 where Valetta is not available, for instance due to fuel availability 

constraints. The optimal decision, based on this setting, is to bunker in Piraeus and 

sail there at 11.2 knots when risk neutrality is assumed in stage 3. The selection of 

Piraeus is based on three factors. First, as risk neutrality is assumed in stage three, 

the appetite for speculation on bunker orders promotes buying from the cheapest port. 
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Piraeus is based on three factors. First, as risk neutrality is assumed in stage three,

the appetite for speculation on bunker orders promotes buying from the cheapest port.
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Piraeus has the third lowest price on average and a lower standard deviation of prices 

compared to Gibraltar (see Table 2). Second, the port selection does not consider 

waiting times, thus, the lower speed is permitted. The inclusion of waiting times limits 

the selection of Piraeus otherwise. Finally, despite Piraeus having a larger deviation 

than Gibraltar, the difference in consumption is smaller due to the lower speed and fuel 

consumption being an exponential function of speed.  

Importantly, if the decision is evaluated in a tree that incorporates waiting times, this 

causes a loss of 4.1% in expected profits compared to the optimal decision’s expected 

profits. This highlights what can happen when a bunker option is selected based on 

price alone in an inefficient port. We note that sailing speed also proves to be important 

to compensate for large waiting times, with the large impact on fuel cost that this can 

have. 

We also evaluate the case of not having Valetta as an option for situation 2 when risk 

aversion is modeled separately on stage 2 and stage 3. Here, the decision would be 

to bunker at Gibraltar. However, the difference to Piraeus is smaller than in the stage 

3 risk neutrality case (1.0%). This is the case as there is less expected profit from the 

EOH fuel value. Therefore, the slight difference in spot price would have a lower effect 

than in the stage 3 risk neutrality case.  

Hedging on stage 3 has an additional implication for this case. From the results, the 

best option is to steam to Piraeus at 11.4 knots. If we plug this decision into a tree with 

waiting times, it results in a loss of 0.8% compared to situation 1 with risk aversion on 

stage 2 and stage 3 (c.f. Table 5). This result is consistent with our interpretation of 

smaller orders, reducing the cost of larger stays and reducing the losses on scenarios 

with an EOH price lower than the spot fuel price. 

From this special case, the results suggest that a decision based on prices alone could 

result in a significant loss if the selected port has long waiting times. More importantly, 

the waiting time has an effect on which port to choose. Speed is also an important 

decision to reduce the effect of long waiting times on the voyage time progression. Our 

experiment suggests that hedging for third stage decisions reduces the potential large 

losses observed when no risk measures are assumed in the third stage. Therefore, a 

strategy (midway solution), when waiting times are not available, is to model the 

problem so that decisions hedge against third stage risk. 
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2.6.2.2 EOH effect (Situation 3) 

By comparing expected values, we can infer that having a higher EOH price, such as 

in the Iskenderun area, would prompt the shipowner to buy fuel in the cheapest 

bunkering port so as to take maximum advantage of the price difference to the high 

price area. Such a case was observed in the form of a large spot order for situation 1 

when risk neutrality is assumed for stage 3. 

Here, we observe in Table 6 that the decision is to bunker at Valetta or Gibraltar when  

assuming risk neutrality or risk aversion on stage 3, respectively. The decisions, 

including speed, are consistent with our results for situation 1 and situation 25. 

Specifically, we observe a larger order of forward fuel but a small order from the spot 

market. This suggest that without the incentive to speculate, there is no case for buying 

fuel in the spot market and the required bunker for the voyage is taken in full from a 

forward contract. As the order is limited to cover the current voyage, the waiting time 

has an effect on the port selection only if assumed risk aversion is assumed. It turns 

out that the Valetta option, despite not having the lowest waiting times, still offers a 

good tradeoff of price vs. waiting time.  

 

 

 

 

 

 

 

 

 

 

 
5 A slower speed decision on the first stage is compensated by a faster speed on the third stage. The 
opposite is observed on situation 1 and situation 2. A way to prove such occurences is by comparing 
the average voyage consumption reported in Table 5 and Table 6. 
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assuming risk neutrality or risk aversion on stage 3, respectively. The decisions,
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Specifically, we observe a larger order of forward fuel but a small order from the spot

market. This suggest that without the incentive to speculate, there is no case for buying

fuel in the spot market and the required bunker for the voyage is taken in full from a

forward contract. As the order is limited to cover the current voyage, the waiting time

has an effect on the port selection only if assumed risk aversion is assumed. It turns

out that the Valetta option, despite not having the lowest waiting times, still offers a
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5 A slower speed decision on the first stage is compensated by a faster speed on the third stage. The
opposite is observed on situation 1 and situation 2. A way to prove such occurences is by comparing
the average voyage consumption reported in Table 5 and Table 6.
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Table 6 

Numerical results in situation 3 under differerent risk level assumptions 

 Situation 3 Situation 3 

Risk-aversion (stage2, stage3) (0.95,0) (0.95,0.95) 

First stage   

Port - speed Valetta 12.2 Gibraltar 12.5 

Forward fuel contracted 876.0 873.9 

Second stage   

Average spot fuel contracted 61.8 7.4 

Average unused forward fuel 0 0 

Third stage   

Average voyage consumption 266.0 263.9 

Average unused spot fuel 12.4 1.5 

Average fuel at the EOH 49.4 5.9 

Expected total profit 645,752.4 645,748.3 

Total cost standard deviation 3,452.42 346.60 

 

One could argue that this setting is more realistic given that a cargo-carrying vessel’s 

main business is not speculating on bunkers. However, it is important also in practice 

to assign an appropriate price to the fuel remaining on board at the end of the current 

voyage, and one way of doing so is use price information at the place where the vessel 

is likely open for a new contract.  

Taking situation 1 as an example and comparing it to situation 3, we can reason that if 

we do not consider the gain in value at the EOH, then an optimal decision would be to 

bunker the minimum required order. Such a decision is then reduced to a search space 

with the goal of finding a cheap bunker port with no excessive waiting times. There is, 

however, a win for the decision maker if the next voyage order has no such cheap 

option (e.g. transiting the Suez Canal to the Red Sea) and they have some additional 

fuel to counter the situation. However, this is beyond the end of our horizon.  
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we do not consider the gain in value at the EOH, then an optimal decision would be to

bunker the minimum required order. Such a decision is then reduced to a search space

with the goal of finding a cheap bunker port with no excessive waiting times. There is,

however, a win for the decision maker if the next voyage order has no such cheap

option (e.g. transiting the Suez Canal to the Red Sea) and they have some additional

fuel to counter the situation. However, this is beyond the end of our horizon.
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2.6.2.3 Laycan and voyage speed effect (Situation 4 and Situation 5) 

The laycan is an important information for chartering negotiations. For a voyage to be 

accepted, a shipowner will verify whether the vessel can realistically reach the load 

port on time and the fuel quantity they would need to do so. The exponential speed-

consumption relationship (c.f. Figure 3) implies that a pressing laycan will have 

important implications for the voyage order and the bunkering plan. First, a need for 

larger fuel orders to compensate for the higher consumption caused by the required 

higher speeds. Second, the resulting longer servicing times in the bunkering port 

caused by such larger orders. Third, the possibility that the vessel is unable to reach 

the farthest bunkering ports at the required high speeds with the initial fuel allocation 

onboard.  

For the case of a pressing laycan (𝑅𝑅 = 380 hours) in situation 4, the results in Table 7 

reflects the need for speeding up and the decision to reach the bunkering port offering 

the lowest waiting time.  
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Table 7 

Numerical results in situation 4 and situation 5 under different risk level assumptions 

 Situation 4 
𝜓𝜓 = 23.7 

Situation 5 Situation 4  
𝜓𝜓 = 22.4 

Situation 5 

Risk-aversion (stage2, stage3) (0.95,0) (0.95,0.95) 

First stage     

Port - speed Gibraltar 14.4 Valetta 7.0 Gibraltar 14.3 Piraeus 7.0 

Forward fuel contracted 187.7 292.3 611.1 237.0 

Second stage     

Average spot fuel contracted 1,899.9 2,121.6 1,024.8 1,298.2 

Average unused forward fuel 0 0 0 0 

Third stage     

Average voyage consumption 311.0 99.7 308.7 103.1 

Average unused spot fuel 109.4 180.8 39.1 62.2 

Average fuel at EOH 1,057.2 1,523.4 678.2 763.6 

Expected total profit 668,168.51 763,030.72 655,903.49 739,826.78 

Total cost standard deviation 68,835.90 71,850.61 56,244.95 55,537.70 

 

The decision to go Gibraltar is only possible if we permit to top up additional first stage 

fuel 𝜓𝜓 at the current spot price 𝑐𝑐𝜓𝜓 at the port of origin. By adding fuel, the vessel can 

sail at higher speeds to the more distant (cheaper) bunkering ports. This extension to 

our model could be interpreted as the shipowner requesting bunkers to be pumped 

while discharging its previous cargo at the time of negotiating a next voyage.  

If no topping up is allowed at Iskenderun or too much fuel is needed, then the decision 

will be to go to Valetta at 14.1 knots and maintain safe tank levels as per Constraints 

(4) and (5). Note that it is feasible to reach Valetta at such higher speeds as it is closer 

than Gibraltar (c.f. Figure 2). 

When risk aversion is assumed on stage 3, the spot order for situation 4 is reduced in 

the second stage and a larger order is secured from a forward contract. This result 

suggests that with due consideration of the third stage EOH price and waiting time risk, 

Table 7

Numerical results in situation 4 and situation 5 under different risk level assumptions
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Situation 5 Situation 4

VJ= 22.4

(0.95,0.95)
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Average spot fuel contracted

Average unused forward fuel

Third stage

Average voyage consumption

Average unused spot fuel

Average fuel at EOH

Expected total profit

Total cost standard deviation

Gibraltar 14.4

187.7

1,899.9

0

311.0

109.4

1,057.2

668,168.51

68,835.90

Valetta 7.0 Gibraltar 14.3

292.3 611.1

2,121.6

0

99.7

180.8

1,523.4

763,030.72

71,850.61

1,024.8

0

308.7

39.1

678.2

655,903.49

56,244.95

Piraeus 7.0

237.0

1,298.2

0

103.1

62.2

763.6

739,826.78

55,537.70

The decision to go Gibraltar is only possible if we permit to top up additional first stage

fuel l/Jat the current spot price cl/Jat the port of origin. By adding fuel, the vessel can

sail at higher speeds to the more distant (cheaper) bunkering ports. This extension to

our model could be interpreted as the shipowner requesting bunkers to be pumped

while discharging its previous cargo at the time of negotiating a next voyage.

If no topping up is allowed at lskenderun or too much fuel is needed, then the decision

will be to go to Valetta at 14.1 knots and maintain safe tank levels as per Constraints

(4) and (5). Note that it is feasible to reach Valetta at such higher speeds as it is closer

than Gibraltar (c.f. Figure 2).

When risk aversion is assumed on stage 3, the spot order for situation 4 is reduced in

the second stage and a larger order is secured from a forward contract. This result

suggests that with due consideration of the third stage EOH price and waiting time risk,

79



 

80 
 

the vessel is better off by securing more fuel from the forward contract than speculating 

on spot fuel. This is the case as the spot fuel prices at the EOH is likely going to be 

lower than the spot price for the purchased fuel, representing a loss according to our 

assumptions. Additionally, as a smaller order is secured, then the vessel can 

marginally save some fuel by reducing its speed. 

The case of a relaxed laycan (𝑅𝑅 = 800 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) in situation 5 highlights the opposite 

situation. With less time pressure, the decision is to bunker in cheap ports at the 

slowest permitted speed. An additional feature in this setting is that the slow speed 

results in small differences in bunker consumptions between Piraeus and Valetta, 

despite the difference in deviation.  

The results in these experiments suggest that the waiting time at a bunkering port has 

a stronger effect when there is a shorter time remaining to reach the laycan. While this 

may be an obvious result, a less obvious interpretation is that at higher speeds, the 

bunkering options are reduced to ports that are closer to the point of origin. Additionally, 

as the distance to a port increase in the first leg, the higher the speed and consumption 

is needed to reach it within our model constraints. 

2.6.2.4 Freight rate effect (Situation 6 and Situation 7) 

For situation 6 and situation 7, we observe in Table 8 that the decision in all cases is 

to bunker in Gibraltar. For situation 6 (high freight rate), bunkering at Gibraltar results 

from the relative value of time. From our TCE calculation (Equation 32), we note that 

a higher freight rate increases the TCE; therefore, late arrivals are penalized more 

strongly. A higher penalty for delays promotes short stays at port, so the effect of 

waiting times is stronger in high freight markets. A low standard deviation when 

compared to the expected profit, suggests that in strong freight markets a strategy that 

reduces bunkering costs is not as important as compared to a low freight market.  
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Table 8 

Numerical results in situation 6 and situation 7 under differerent risk level assumptions 

 Situation 6 Situation 7 

∗ 𝐌𝐌𝐌𝐌𝐌𝐌 𝐆𝐆𝐆𝐆𝐆𝐆 𝟓𝟓. 𝟓𝟓𝐞𝐞−𝟑𝟑 

Situation 6 Situation 7 

Risk-aversion (stage2, stage3) (0.95,0) (0.95,0.95) 

First stage     

Port - speed Gibraltar 12.4 Gibraltar 9.5 Gibraltar 13.2 Gibraltar 9.5 

Forward fuel contracted 225.8 0 606.2 505.2 

Second stage     

Average spot fuel contracted 1,777.6 2,058.3 967.5 964.6 

Average unused forward fuel 0 0 0 0 

Third stage     

Average voyage consumption 270.2 159.4 267.6 158.9 

Average unused spot fuel 102.5 80.4 59.1 24.8 

Average fuel at EOH 1,790.7 1,208.6 637.0 676.2 

Average time passes laycan (φ) 0.6 162.4 1.0 161.8 

Expected total profit 1,574,834.74 273,076.80 1,557,252.43 255,985.40 

Total cost standard deviation 62,810.04 77,255.16 52,251.85 60,066.36 

 

For situation 7 (low freight rate), the decision is to bunker at Gibraltar, though there are 

only slight differences between Valetta6 and Gibraltar in terms of expected total profit. 

This result is similar to situation 2 when no waiting time is considered. This suggest 

that the waiting time effect is negligible in low freight markets as the value of time is 

low 

If risk neutrality is assumed on stage 3, we observe that speculating with a large spot 

order and not taking fuel from a more expensive (in expectation) forward contract 

compensates for an expected low profit in a low freight market. Assuming risk aversion 

on stage 3 results in a lower standard deviation, signaling a better control of scenarios 
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with lower EOH fuel prices by increasing the forward bunkers order. Also, we observe 

a sharp decrease in the selected speed. This speed decrease results in longer voyage 

times, signaling the low value assigned to time.  

 

2.7 Conclusions 
In this study, we modeled the bunkering management problem for a tramp vessel in a 

voyage charter with due consideration of stochastic waiting times and stochastic fuel 

prices. We included voyage features, such as draft restrictions and weather conditions, 

and made use of contractual information as part of the problem. Additionally, we 

introduced risk measures to our multistage problem with the use of time consistent 

CVaR constraints. From this framework, we assessed the effect that stochastic waiting 

times have on the bunkering decision. 

Our results suggest that for the route examined in our case study, it does not make 

much difference to bunker in Valetta or Gibraltar given their “ideal” conditions for 

bunkering, i.e. low prices and short waiting times. Nonetheless, the various situations 

considered in our empirical results illustrate that when there is large uncertainty in 

waiting times, a decision driven solely by price could lead to significant losses. This is 

perhaps best highlighted by the observation that a traditional bunkering port such as 

Piraeus, which is an attractive option based on its price alone, can lead to losses due 

to adverse waiting times. With the benefit of hindsight, we acknowledge that an 

empirical case study based on a different geographical area with lower spatial 

integration of prices might have yielded a better illustration of the power of our model. 

We identified that the price of fuel and the deviation from the shortest route are the 

main factors for selecting a bunkering port. This is the same logic that would have 

resulted from a model with no waiting time. However, the waiting times add a new 

dimension to the problem, where there is a stronger effect for a bunkering port with low 

price if it is disproportionally less efficient than its competitors. We also show that with 

a tight laycan, the level of initial fuel on board become important. With a tight laycan, 

bunkering options are limited to nearby ports, as the high speed needed to compensate 

for the time at port and, hence, the high fuel consumption, does not allow for longer 

distances. Finally, we highlight the importance of a hedging strategy that accounts for 

uncertainty which is manifesting itself in different stages (time consistency). In our 
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bunkering options are limited to nearby ports, as the high speed needed to compensate

for the time at port and, hence, the high fuel consumption, does not allow for longer

distances. Finally, we highlight the importance of a hedging strategy that accounts for

uncertainty which is manifesting itself in different stages (time consistency). In our
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case, neglecting the time consistency is equivalent to not acknowledging the uncertain 

waiting times and EOH prices as individual risks from the spot fuel order. This results 

in a speculative strategy where the second stage decision is such as to expect a large 

profit from the EOH fuel price. 

Shipping practitioners can make use of our model to evaluate bunkering options and 

introduce the waiting time as a parameter in their bunkering procurement planning. 

Therefore, we propose that evaluating waiting times at bunkering ports must become 

part of standard practice. For implementation purposes, we propose that shipowners 

collect the underlying waiting time distribution from agents’ information or specialized 

software, and then base their decision on the tradeoff between the price differences 

and the waiting time differences valued by the prevailing TCE for the vessel. A midway 

solution, when no information of the underlying waiting time is available, is to hedge 

against potential large losses (from stage 3) via forward fuel contracts and make 

smaller orders on spot contracts.  

The proposed model has some limitations, mainly related to the underlying 

assumptions. First, we recognize that a linear penalty for surpassing the laycan could 

be refined by a more elaborate function that penalizes late arrivals as a non-linear 

function. This would better represent the real-life case, where minor infractions pass 

without penalty and larger delays disproportionally increases the chances of contract 

cancellation. Second, we assume a constant bunker barge pumping rate. This could 

be refined by introducing pumping rates per port, as the service provider in a port could 

compensate for longer waiting times with faster pumping rates (servicing times). There 

is also the argument that faster pumping rates, and therefore quicker turnarounds per 

vessel, would lead to lower waiting times. Third, the TCE could be modeled as a 

function of several decision variables (e.g. cargo quantity, fuel quantity, fuel port, etc.) 

as part of stage 3. Note that such a transformation results in a non-linear model. 

Our case study results are limited to a single route and a single vessel type. In general, 

the bunkering decision is conditional on the deviation distance from the main route and 

the exposure of the vessel type to the weather elements (e.g., a vehicle carrier is more 

exposed to wind than it is to waves and currents). An additional observation is that 

waiting time distributions could reflect more recent events or seasonal events. We use 

the historical waiting times estimation from January 2015 to January 2018 and it could 
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be that an initial inefficient service was later compensated by a better service not 

captured in our data. We are therefore cautious to generalize the results of this study, 

which are based on specific conditions. 

Future research should expand this study to consider stochastic fuel consumption 

based on weather. A potential way forward is expanding our model to a 4-stage 

problem where, instead of knowing beforehand the bunker volume to order, the 

shipowner could use some weather expertise and plan on the basis of seasonal and 

forecasted weather. Such a problem implies larger trees and potentially the use of 

heuristic approaches, such as the Progressive Hedging algorithm as proposed by 

Rockafellar and Wets (1991).  

Additionally, the relation of the forward/spot contracts is a consequence of our 

contango futures market assumption. A future study could evaluate the bunkering 

decision on different forward-spot contracts margins with real forward price 

information. 
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Table A.1 

Case study Supramax characteristics 

Notation Description Value 

𝐿𝐿 Length between perpendiculars 183.3 m 

∆ Displacement ∆𝑜𝑜= 65595 tonnes 

𝐷𝐷 Depth 18.5 m 

𝑃𝑃 Beam 30.4 m 

𝐾𝐾 Kilowatt-hour of vessel at design speed (16.7 knots) 100% 

𝐾𝐾𝐾𝐾 𝑀𝑀𝑀𝑀𝑀𝑀 

8,562 mKw 

𝐻𝐻𝑙𝑙 Tonnes per centimeter of immersion (laden) 57 

𝐻𝐻𝑏𝑏 Tonnes per centimeter of immersion (ballast) 52 

𝐴𝐴𝑆𝑆 Traverse superstructure area 272 m2 

𝑑𝑑 Vessel draught (Salt water 1025.9𝑘𝑘𝑘𝑘/𝑚𝑚3) 𝑑𝑑0 = 6.9 m 

 

To calculate the effects of the underlying environmental forces on the vessel, we 

assume  that the vessel positions along the route can be derived based on the speed 

and distance relationships described below. The procedure can be visually 

represented in Figure A.1. In step 1, the navigable area is populated with nodes and 

edges feeding a graph. This is motivated by the ocean mesh concept described by 

Prochazka and Adland (2019). Step 2 retrieves the shortest route from a sequence of 

nodes via the Dijkstra shortest path algorithm (Dijkstra, 1959). The resulting shortest 

path is thereafter smoothed in step 3 by comparing it to historical routes (i.e. sequences 

of AIS positions) of vessels of the same type with a similar draught  and retrieving the 

closest route based on their Symmetrized Segmented Path Distance (step 4). The 

algorithm to calculate this distance is introduced by Besse et al. (2016) and 

implemented by Fuentes and Adland (2020) for the interpolation of shipping routes.  
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Hb Tonnes per centimeter of immersion (ballast) 52

As Traverse superstructure area 272 m2

d Vessel draught (Salt water 1025.9kg/m3) d0 = 6.9 m

To calculate the effects of the underlying environmental forces on the vessel, we

assume that the vessel positions along the route can be derived based on the speed

and distance relationships described below. The procedure can be visually

represented in Figure A.1. In step 1, the navigable area is populated with nodes and

edges feeding a graph. This is motivated by the ocean mesh concept described by

Prochazka and Adland (2019). Step 2 retrieves the shortest route from a sequence of

nodes via the Dijkstra shortest path algorithm (Dijkstra, 1959). The resulting shortest

path is thereafter smoothed in step 3 by comparing it to historical routes (i.e. sequences

of AIS positions) of vessels of the same type with a similar draught and retrieving the

closest route based on their Symmetrized Segmented Path Distance (step 4). The

algorithm to calculate this distance is introduced by Besse et al. (2016) and

implemented by Fuentes and Adland (2020) for the interpolation of shipping routes.
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Figure A.1 

Shortest route generation method 

 

Having pre-defined the shortest route, it is possible to interpolate positions every hour 

based on different speed selections. The route is interpreted as 𝑛𝑛𝑡𝑡 ∈ 𝑁𝑁(𝑧𝑧), where 𝑛𝑛𝑡𝑡 is 

a node defined by latitude and longitude, with a subscript 𝑡𝑡 indexing its hourly 

increment from a set 𝑇𝑇, and 𝑁𝑁(𝑧𝑧) is a set of ordered nodes defining the shortest route 

with speed 𝑧𝑧 ∈ {7.0… ,14.5}7.  

The route is then iteratively compared to grids of wind and current data and filtered 

with the grids traversed by a ray 𝑛𝑛𝑡𝑡 → 𝑛𝑛𝑡𝑡+1. The grid values (wind and current vectors 

represented by 𝑢𝑢 and 𝑣𝑣 components) associated with 𝑛𝑛𝑡𝑡 → 𝑛𝑛𝑡𝑡+1 are assumed8 to 

happen at 𝑡𝑡. Information on currents and wind on a six-hour frequency are collected 

from the 0.083° grid Operational Mercator Global Ocean Analysis database and the 

0.25° grid Global Ocean Wind L4 database from the Copernicus Marine Environment 

Monitoring Service.  

With all necessary input on hand, new vessel variables are transformed for every 𝑛𝑛𝑡𝑡 →
𝑛𝑛𝑡𝑡+1, as: 

 
7 Speed 𝑧𝑧 is assumed to be fix. It could be intrepreted as RPM adjustments to mantain speed regardless 
of weather. 
8 The 𝑢𝑢 and 𝑣𝑣 components are averaged if more than one grid is crossed -i.e., due to routes interpolated 
by higher speed. 

Figure A.1

Shortest route generation method

Having pre-defined the shortest route, it is possible to interpolate positions every hour

based on different speed selections. The route is interpreted as ne E N ( z ) , where ne is

a node defined by latitude and longitude, with a subscript t indexing its hourly

increment from a set T, and N ( z ) is a set of ordered nodes defining the shortest route

with speed z E {7.0 ...,14.5}7.

The route is then iteratively compared to grids of wind and current data and filtered

with the grids traversed by a ray ne ne+i- The grid values (wind and current vectors

represented by u and v components) associated with ne ne+i are assumed8 to

happen at t. Information on currents and wind on a six-hour frequency are collected

from the 0.083° grid Operational Mercator Global Ocean Analysis database and the

0.25° grid Global Ocean Wind L4 database from the Copernicus Marine Environment

Monitoring Service.

With all necessary input on hand, new vessel variables are transformed for every ne

ne+i , as:

7 Speed z is assumed to be fix. It could be intrepreted as RPM adjustments to mantain speed regardless
of weather.
8 The u and v components are averaged if more than one grid is crossed -i.e., due to routes interpolated
by higher speed.
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ℎ𝑡𝑡(𝑛𝑛𝑡𝑡, 𝑛𝑛𝑡𝑡+1) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑋𝑋, 𝑌𝑌) (180°𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋)  
(A.1) 

where ℎ𝑡𝑡 is the vessel heading and: 

X = cos 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡  𝑠𝑠𝑠𝑠𝑠𝑠|𝑙𝑙𝑙𝑙𝑛𝑛𝑡𝑡+1 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑡𝑡| (A.2) 

Y = cos 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡+1 −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡  cos 𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡+1  𝑐𝑐𝑐𝑐𝑐𝑐|𝑙𝑙𝑙𝑙𝑛𝑛𝑡𝑡+1 − 𝑙𝑙𝑙𝑙𝑛𝑛𝑡𝑡| (A.3) 

Wind (𝑤𝑤) and current (𝑥𝑥) variables are transformed as: 

𝑍𝑍𝑖𝑖𝑖𝑖 = 1.94384 ktsm/s√𝑢𝑢𝑖𝑖𝑖𝑖
2 + 𝑣𝑣𝑖𝑖𝑖𝑖2 , ∀𝑖𝑖 ∈ {𝑤𝑤, 𝑥𝑥}; ∀𝑡𝑡 ∈ 𝑇𝑇 

(A.4) 

𝜙𝜙𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑢𝑢𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖𝑖𝑖) (
180°
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋) , ∀𝑖𝑖 ∈ {𝑤𝑤, 𝑥𝑥}; ∀𝑡𝑡 ∈ 𝑇𝑇 (A.5) 

where 𝑍𝑍 is the true speed in 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘, 𝜙𝜙 is the direction of the ocean current 𝑐𝑐 or wind 𝑤𝑤, 

𝑢𝑢 is the zonal velocity and 𝑣𝑣 is the meridional velocity.  

The wind, currents and waves (𝑞𝑞) relation with the vessel’s speed and heading are 

described as: 

𝐵𝐵𝑖𝑖𝑖𝑖 = {𝜙𝜙𝑖𝑖𝑖𝑖 − ℎ𝑡𝑡                  , 𝜙𝜙𝑖𝑖𝑖𝑖 − ℎ𝑡𝑡 ≥ 0 
360 + 𝜙𝜙𝑖𝑖𝑖𝑖 − ℎ𝑡𝑡     , 𝑜𝑜. 𝑤𝑤                 ; ∀𝑖𝑖 ∈

{𝑤𝑤, 𝑥𝑥, 𝑞𝑞}; ∀𝑡𝑡 ∈ 𝑇𝑇 (A.6) 

𝑍𝑍𝑖𝑖𝑖𝑖𝐴𝐴 = √𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑧𝑧 + 2𝑍𝑍𝑖𝑖𝑖𝑖𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵𝑖𝑖𝑖𝑖; ∀𝑖𝑖 ∈ {𝑤𝑤, 𝑥𝑥}; ∀𝑡𝑡 ∈ 𝑇𝑇  (A.7) 

𝜙𝜙𝑖𝑖𝑖𝑖𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (
𝑍𝑍𝑖𝑖𝑖𝑖 cos 𝐵𝐵𝑖𝑖𝑖𝑖 + 𝑧𝑧

𝑍𝑍𝑖𝑖𝑖𝑖𝐴𝐴
) ; ∀𝑖𝑖 ∈ {𝑤𝑤, 𝑥𝑥}; ∀𝑡𝑡 ∈ 𝑇𝑇  (A.8) 

where 𝐵𝐵 is the angle between the true wind/current/wave direction and the vessel’s 

heading, 𝑍𝑍𝐴𝐴 is the apparent speed, 𝜙𝜙𝐴𝐴 is the apparent direction and 𝑧𝑧 is the vessel’s 

speed in 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘. 

The vessel’s calm water resistance 𝑅𝑅𝑐𝑐 is estimated as: 

𝑅𝑅𝑡𝑡𝑐𝑐 =
𝐶𝐶𝑐𝑐𝜌𝜌𝑠𝑠𝑠𝑠𝑧𝑧2𝑊𝑊𝑡𝑡

𝑥𝑥

2  ; ∀𝑡𝑡 ∈ 𝑇𝑇   
(A.9) 

where 𝐶𝐶𝑐𝑐 is the total resistance coefficient, 𝜌𝜌𝑠𝑠𝑠𝑠 is the salt water density (1025.9 kg
m3), 

and 𝑊𝑊𝑥𝑥 is the wetted hull area estimated from the Denny-Mumford equation 

(Kristensen & Lützen, 2013): 

(A.1)

where he is the vessel heading and:

X= cos l a t e sinllonc+1 - loneI

Y = cos l a t esinlatc+i - s in la t ; cos latc+i cos llont+l - loneI

Wind (w) and current ( x ) variables are transformed as:

_ k ts 2 2 . .
Zit - 1.94384-1- ui t + vit•Vi E {w,x } , Vt E r

ms

(A.2)

(A.3)

(A.4)

(180°)cf>it = atan2(u i t , vie) rrrad , Vi E {w, x} ; Vt E T
(A.5)

where Z is the true speed in knots , cf>is the direction of the ocean current c or wind w,

u is the zonal velocity and v is the meridional velocity.

The wind, currents and waves (q) relation with the vessel's speed and heading are

described as:

B {cf>it - he
it = 360 + c/>it - he

¢· - h > 0' it t - •Vi E {w x q}·Vt E T,o .w , , , ,

Z = . j z i t + z + 2ZitZ cosBi6 Vi E {w,x } ; Vt E T

A ( Z i t cos Bit + z) .1>it = acos A ; V i E { w , x } ; V t E T
zi t

(A.6)

(A.7)

(A.B)

where B is the angle between the true wind/current/wave direction and the vessel's

heading, zA is the apparent speed, ¢A is the apparent direction and z is the vessel's

speed in knots .

The vessel's calm water resistance Rc is estimated as:

ccp zzw:x
Rc - SW t ; Vt E r

t - 2
(A.9)

where cc is the total resistance coefficient, p5w is the salt water density (1025.9 ; : ) ,

and wx is the wetted hull area estimated from the Denny-Mumford equation

(Kristensen & l.utzen, 2013):
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𝑊𝑊𝑡𝑡
𝑥𝑥 = ∆𝑡𝑡

𝑑𝑑𝑡𝑡
+ 1.7(𝑑𝑑𝑡𝑡𝐿𝐿) ; ∀𝑡𝑡 ∈ 𝑇𝑇   

(A.10) 

The function to estimate 𝐶𝐶𝑡𝑡 according to Kristensen and Lützen (2013) is: 

𝐶𝐶𝑐𝑐 = 𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑎𝑎𝑎𝑎 + 𝐶𝐶𝑟𝑟 + 𝐶𝐶𝑎𝑎𝑎𝑎 (A.11) 

where 𝐶𝐶𝑓𝑓 is the frictional coefficient, 𝐶𝐶𝑟𝑟 is the residual drag coefficient, 𝐶𝐶𝑎𝑎𝑎𝑎 is the air 

resistance coefficient, 𝐶𝐶𝑎𝑎𝑎𝑎 is the correction for the steering resistance coefficient. 𝐶𝐶𝑓𝑓 is 

a function of 𝑅𝑅𝑅𝑅 the Reynold’s number and 𝛾𝛾 is the coefficient of kinematic viscosity. 

The coefficient and relevant parameters are summarized in Table A.2. 

Table A.2 

Coefficients used for the vessel’s consumption estimation 

Coefficient Reference 

𝐶𝐶𝑟𝑟 = {0.0940, ballast
0.0016, laden  (Harvald, 1983) 

𝐶𝐶𝑓𝑓 = 0.075
(log10 𝑅𝑅𝑅𝑅 − 2)2

 (ITTC, 2021) 

𝐶𝐶𝑎𝑎𝑎𝑎 = 0.041𝑒𝑒−3 (Harvald, 1983) 

𝐶𝐶𝑎𝑎𝑎𝑎 = 0.071𝑒𝑒−3 ; for Handymax (Kristensen & Lützen, 2013) 

𝑅𝑅𝑅𝑅 = 𝑧𝑧𝑧𝑧
𝛾𝛾  (ITTC, 2021) 

𝛾𝛾 = 1.191𝑒𝑒−6𝑚𝑚2𝑠𝑠−1; for saltwater at 15°C (ITTC, 2011) 

 

 

Appended resistance from wind 𝑅𝑅𝑤𝑤 is estimated from: 

𝑅𝑅𝑡𝑡𝑤𝑤 = cos(𝜙𝜙𝑡𝑡𝑡𝑡𝐴𝐴 ) 𝐶𝐶𝑎𝑎𝑎𝑎
𝜌𝜌𝑎𝑎(𝑍𝑍𝑤𝑤𝑤𝑤𝐴𝐴 )2

2 𝑊𝑊𝑡𝑡
𝑎𝑎; ∀𝑡𝑡 ∈ 𝑇𝑇   

(A.12) 

where 𝜌𝜌𝑤𝑤 is the air density (1.225 kg
m3), 𝑊𝑊𝑤𝑤 is the vessel area exposed to air and can 

be estimated as: 

𝑊𝑊𝑡𝑡
𝑤𝑤 = 𝐴𝐴𝑆𝑆 + 𝑃𝑃(𝐷𝐷 − 𝑑𝑑𝑡𝑡); ∀𝑡𝑡 ∈ 𝑇𝑇   (A.13) 

  

 

lit
W{ = d e + 1.7(dcL); \ / t E T

The function to estimate Ccaccording to Kristensen and l.utzen (2013) is:

cc= c t + c= + e r + c=

(A.10)

(A.11)

where ct is the frictional coefficient, er is the residual drag coefficient, C?" is the air

resistance coefficient, C'" is the correction for the steering resistance coefficient. ct is

a function of Re the Reynold's number and y is the coefficient of kinematic viscosity.

The coefficient and relevant parameters are summarized in Table A.2.

Table A.2

Coefficients used for the vessel's consumption estimation

Coefficient Reference

er = f0.0940,
lo.0016,

ballast
laden (Harvald, 1983)

c t = o.o?s
(log10 Re - 2)2 (ITTC, 2021)

c a s = 0.041e-3

c a a = 0.071e-3 ; for Handymax

zL
R e = -

y

(Harvald, 1983)

(Kristensen & Lutzen, 2013)

y = l.191e-6m2s-1; for saltwater at 15°C

(ITTC, 2021)

(ITTC, 2011)

Appended resistance from wind Rw is estimated from:

p a ( z A )2
Rw = cos(A.A) C?" wt w : a . \ / t E rt - r t c 2 t ,

(A.12)

where pw is the air density (1.225 ; : ) , ww is the vessel area exposed to air and can

be estimated as:

Wt = A5 + P(D - de); \ / t E T (A.13)
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Appended resistance from current 𝑅𝑅𝑥𝑥 is estimated from: 

𝑅𝑅𝑡𝑡𝑥𝑥 = cos(𝜙𝜙𝑐𝑐𝑐𝑐𝐴𝐴 ) 𝐶𝐶𝑣𝑣
𝜌𝜌𝑠𝑠𝑠𝑠(𝑍𝑍𝑐𝑐𝑐𝑐𝐴𝐴 )2

2 𝑊𝑊𝑡𝑡
𝑥𝑥; ∀𝑡𝑡 ∈ 𝑇𝑇   

(A.14) 

𝐶𝐶𝑣𝑣 is the coefficient of viscous resistance and can be estimated as per ITCC (2017) 

as: 

𝐶𝐶𝑣𝑣 = 𝐶𝐶𝑓𝑓(1 + 𝑘𝑘) (A.15) 

and k is the form factor estimated as per Conn and Ferguson (1968): 

𝑘𝑘𝑡𝑡 = 18.7 (𝐶𝐶𝑏𝑏
𝑑𝑑𝑡𝑡
𝐿𝐿 )

2
 

(A.16) 

Appended resistance due to waves 𝑅𝑅𝑡𝑡𝑞𝑞 is based on the STAwave-2 empirical method 

(ITTC, 2014) which main function is summarized as follows: 

𝑅𝑅𝑡𝑡𝑞𝑞 = 2∫
𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔, 𝜁𝜁𝑡𝑡) + 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔, 𝜁𝜁𝑡𝑡, 𝑧𝑧)

𝜁𝜁𝑡𝑡2
∞

0
𝑆𝑆(𝜔𝜔)𝑑𝑑𝑑𝑑; ∀𝑡𝑡 ∈ 𝑇𝑇   (A.17) 

where 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 is the vessel motion induced resistance, 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 is the increase due to wave 

reflection, 𝜔𝜔 is the circular wave frequency, 𝜁𝜁 is the wave amplitude and 𝑆𝑆 is the 

frequency spectrum for ocean waves. 

Thereafter, required power 𝑃𝑃𝑃𝑃 is estimated as: 

𝑃𝑃𝑒𝑒𝑡𝑡 =
𝑧𝑧(𝑅𝑅𝑡𝑡𝑐𝑐 + 𝑅𝑅𝑡𝑡𝑥𝑥 + 𝑅𝑅𝑡𝑡𝑞𝑞)

1000 ; ∀𝑡𝑡 ∈ 𝑇𝑇   
(A.18) 

 

Engine load 𝑗𝑗 is: 

𝑗𝑗𝑡𝑡 =
Pet
𝐾𝐾 ; ∀𝑡𝑡 ∈ 𝑇𝑇   (A.19) 

Specific Fuel Oil Consumption 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑙𝑙 as a function of load (IMO,2020) is estimated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡𝑙𝑙 = 𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑏𝑏(0.455𝑗𝑗𝑡𝑡2 − 0.71𝑗𝑗𝑡𝑡 + 1.28)  ; ∀𝑡𝑡 ∈ 𝑇𝑇   (A.20) 

and SFOC base value as derived by IMO GHG 4th (2020) is 175 g
kwH 

Fuel consumption 𝐹𝐹𝑡𝑡 can then be estimated as: 

𝐹𝐹𝑡𝑡 = 𝑃𝑃𝑒𝑒𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡𝑙𝑙  ; ∀𝑡𝑡 ∈ 𝑇𝑇   (A.21) 

Appended resistance from current Rx is estimated from:

pswczA)2
R x = cos(A.A) cv ct W:X· \ / t E rt 'f' ct 2 t ,

(A.14)

cv is the coefficient of viscous resistance and can be estimated as per ITCC (2017)

as:

(A.15)

and k is the form factor estimated as per Conn and Ferguson (1968):

(A.16)

Appended resistance due to waves Ri, is based on the STAwave-2 empirical method

(ITTC, 2014) which main function is summarized as follows:

(A.17)

where RAwM is the vessel motion induced resistance, RAwRis the increase due to wave

reflection, w is the circular wave frequency, ( is the wave amplitude and S is the

frequency spectrum for ocean waves.

Thereafter, required power Pe is estimated as:

z ( R f + R f + Ri,)
Pet = lOOO ;Vt E T

(A.18)

Engine load j is:

(A.19)

Specific Fuel Oil Consumption SFOC1 as a function of load (IMO,2020) is estimated as:

SFOCi = SFOCb(0.455jr - 0.71jt + 1.28) ; Vt E T

and SFOC base value as derived by IMO GHG 4th (2020) is 175-kg
wH

Fuel consumption Fe can then be estimated as:

Fe = PecSFOCi ; Vt E T

(A.20)

(A.21)
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In this study, we investigate the impact on shipping emissions from improving 

operational efficiency in a maritime chokepoint such as a canal. We consider several 

scheduling proposals that allow for different levels of speed reduction for incoming 

vessels and estimate the resulting emission reduction compared to a benchmark 

established from ship position data. For our case study of the Panama Canal, we 

estimate that the canal could have removed up to 1.8 million tonnes of CO2e per year 

for the period of 2019 to 2021. Our findings suggest that emission reduction can be 

easier to obtain at intermediate points as many of the contractual barriers to improving 

operational efficiency do not apply. 
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3.1 Introduction 
According to the 4th International Maritime Organization (IMO) greenhouse gas (GHG) 

study (2020), shipping contributed to about 2.89% of global anthropogenic GHG 

emissions in 2018, equivalent to 1,056 million tonnes. Emissions generated by ships 

burning fossil fuels can have both a global effect on climate change, caused by Carbon 

Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O), and local effects on human 

health and the environment caused by Sulphur Oxides (SOx), Particulate Matter (PM) 

and Nitrogen Oxides (NOx). 

In 2018, the IMO as the international shipping regulator proposed an initial strategy for 

reducing GHG emissions from international shipping by at least 50% by 2050, 

compared to the 2008 level (MEPC 72/17, 2018). To reach this goal, they acknowledge 

that the reduction can be based on both technical and operational energy efficiency 

measures. Technical measures focus on aspects relevant to the vessel’s design and 

construction, e.g., hull design, use of alternative fuels, and improved propulsion. 

(Bouman et al., 2017). Operational measures improve energy efficiency by operational  

changes such as speed reduction, weather routing, and improved fleet management. 

Speed reduction is an operational measure with a high emissions reduction potential 

(Bouman et al., 2017). An important feature of its implementation is that a reduction of 

waiting time in port can be used (in part or in full) to reduce the sailing speed of arriving 

vessels without increasing the duration of the voyage. Despite its theoretical simplicity 

and its high potential for emission reduction, its implementation at the vessel or voyage 

level is often hindered by barriers such as misaligned incentives and contractual 

constraints (Rehmatulla and Smith, 2015) leading to unproductive waiting times at port 

(Johnson and Styhre, 2015; Jia et al., 2017). 

Until now, the challenges and benefits in implementing the concept of speed reduction 

due to operational efficiency has only been analyzed in the context of cargo-handling 

ports, that is, the end points of ships’ voyages. However, unproductive waiting time 

may also occur at intermediate points during a voyage, such as during bunkering stops 

and at maritime chokepoints such as canals and straits. Such waiting times could be 

caused by factors such as dynamic demand, lack of resources to serve the vessel, 

weather closures and restrictions on throughput etc. As any unproductive waiting can 

be considered an opportunity for improving operational efficiency and implementing 
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speed reduction measures, thereby reducing fuel consumption and emissions, this 

focus on cargo-handling ports creates a gap in the literature. Arguably, some maritime 

chokepoints are so central to global seaborne trade that they are as important to 

consider as very large ports and key trade lanes. 

A chokepoint refers to locations that limit the capacity of throughput and cannot be 

easily bypassed, if at all (Rodrigue, 2004). The primary contribution of this study is to 

expand the literature on emission mitigation from speed reduction due to improving 

efficiency to the case of maritime chokepoints, specifically the Panama Canal. There 

are at least two additional reasons why canals and straits should be considered 

separately from the literature on speed reduction and port efficiency. Firstly, as in the 

case of the Panama Canal, scheduling policies for transits (the equivalent of berthing 

during a port call) can be substantially more complex, involving not only a chronological 

queue of vessel arrivals but also Canal Authority discretion, pre-booked slots and rules 

determining priority by vessel type. Secondly, the centralization of authority matters for 

the ability to implement such measures successfully, compared to port operations 

where several stakeholders related to cargo, vessel and port interests determine the 

outcome. As a secondary contribution, we develop new algorithms, based on the 

processing of AIS vessel position data, to generate more accurate statistics for canal 

waiting times and transits by vessel type, size and direction. 

The rest of the paper is organized as follows: Section 3.2 presents our literature review. 

Section 3.3 introduces our strategies of implementation with due consideration of the 

Panama Canal Authority (PCA) transit scheduling rules. Section 3.4 includes the 

methods for estimating the transits and emission information. In section 3.5, we present 

the results derived from the algorithm. In section 3.6 we discuss the implications of 

speed reduction implemented by a chokepoint and report the limitations of the 

proposals. Finally, Section 3.7 concludes and proposes extensions for future research. 

 

3.2 Literature review 
Air pollution from ships is regulated by the International Maritime Organization (IMO) 

via the International Convention for the Prevention of Pollution from Ships (MARPOL) 

Annex VI. Annex VI was the last of the annexes to enter into force (May 2005) from 
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MARPOL and initially focused on reducing SOx via Emissions Control Areas and NOx 

by implementing marine engine emission standards.  

The literature on maritime emission reduction can broadly be divided into technical and 

operational measures. In a comprehensive review, Bouman et al. (2017) suggest that 

the highest individual abatement potential is observed for biofuels (technical) and 

speed optimization (operational). However, the highest overall emissions abatement 

effect requires combinations of individual reduction measures. They also acknowledge 

that there is low agreement among studies reporting on the abatement potential due 

to speed reduction, as evidenced by a larger observed variance compared to other 

measures.  

The potential of speed related measures in the emissions abatement is a popular topic 

in the academic literature as evidenced by the 26 studies summarized by Bouman et 

al. 2017, in part because the measure has a low burden of implementation (Lindstad 
et al. 2011). Additionally, it is found to be a cost-effective measure as the emission 

reductions can be achieved with zero or negative marginal abatement cost (Eide et al., 

2009; Corbett et al., 2009; Eide et al., 2011; Lindstad et al., 2011; Schwartz et al., 

2020). However, Corbett et al. (2009) suggest that the real marginal abatement cost is 

higher than reported in some studies as more vessels are needed to maintain a certain 

service frequency or level of trade, therefore increasing the cost for operating a fleet. 

Regardless of the interpretation of cost effectiveness, there is consensus in the 

literature of the high emissions reduction potential from speed reduction measures. 

Speed reduction could be enabled by an increased fleet size (Corbett et al., 2009; 

Cepeda et al., 2017) to compensate the loss in cargo transported or, alternatively, by 

reducing unproductive waiting times at port (Lavon and Shneerson, 1981; Psaraftis et 

al., 2009; Johnson and Styhre, 2015; Andersson and Ivehammar, 2017, Jia et al., 

2017). Our focus is on the latter concept, named by Johnson and Styhre (2015) as 

speed reduction due to port efficiency. The large emission reduction potential from 

implementing this concept was presented by Jia et al. (2017) in the case of Very Large 

Crude Carriers. As extensions to their study, they encouraged the introduction of 

algorithms to recognize waiting times with higher accuracy and expanding studies to 

other vessel sizes and types. Slack et al (2018) also recognized the absence of time 
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related metrics in port operations and related this to the difficulties of gathering 

consistent data from different stakeholders. 

Port efficiency has been extensively studied in the academic literature (see, Krmac and 

Mansouri, 2022, for a review) but mainly in the context of container port infrastructure 

(e.g. container throughput and vessel port calls). However, in our context, studies 

dealing with the barriers to increasing efficiency and the causes of inefficiency are more 

relevant. In the case of bulk carriers, Johnson and Styhre (2015) find that the main 

factors, in order of importance, are the port opening hours, early arrivals, congestion 

and clearance procedure, unspecific reasons, and waiting for pilot. Slack et al. (2018) 

suggest that the time in port could be attributed to local or regional factors, pointing out 

the role of port officials in the port waiting time. Poulsen and Sampson (2020) argue in 

a study of tankers port calls that dealing with a large group of stakeholders influences 

the causes of inefficiencies (e.g., waiting for berth, availability of cargo, waiting for 

surveyors, etc.) and the corresponding waiting times. Accordingly, Poulsen and 

Sampson (2020) observe that “best practices might be present when the same 

company owns terminals and cargoes and/or ships and ensures port stakeholder 

coordination”.  

There are several contractual barriers to the implementation of speed reduction in 

parallel with increasing port efficiency. Firstly, a vessel on a voyage charter currently 

has an incentive to tender the Notice of Readiness (NOR)1 to load as early as possible 

irrespective of the port availability to serve the vessel (Rehmatulla and Smith, 2015), 

both due to the First-in-first-out scheduling policy operated by most ports and to reduce 

the risk of contract cancellation due to late arrival (not meting the agreed laycan2).  

Poulsen and Sampson (2019) suggest that this rationale to “rush to wait” could also be 

attributed to the owners of ships engaged on voyage charters aiming for the counting 

of laytime to start as early as possible3. In theory, this increases the probability of 

claiming demurrage, yet the outcome is uncertain as the charterer can be so efficient 

 
1 NOR is a statement where the vessel declares it has arrived and is ready to commence cargo 
operations at the charterer’s disposal. It is an important declaration as it commences the laytime 
counting and is relevant to demurrage calculations. 
2 Laycan is short for Laydays/Cancelling and is an agreed range of days where the vessel must be at 
port. 
3 Laytime in voyage charters is the time allowed to charterers for loading and/or unloading the vessel. 
The laytime starts counting from the NOR been tendered. If the laytime is passed, the owner is entitled 
to claim for demurrage (damages per delay). 
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with cargo handling that demurrage is not payable. For a time-chartered vessel, they 

argue that the behaviour could be due to the perceived reduction in uncertainty of 

having a buffer of vessels ready in port. Note that this is the only barrier specified for 

time-chartered vessels. 

A second contractual barrier is the ‘utmost dispatch’ clause for voyage charters 

(Rehmatulla and Smith, 2015; Jia et al., 2017; Global Industry Alliance, 2020) that 

instructs the vessel to proceed to a destination port without delay4. Consequently, an 

owner is not generally free to reduce the sailing speed on the laden voyage in the 

interest of reducing emissions or fuel costs, unless an exemption clause exists to that 

effect. 

The third barrier is the split incentives problem arising from the principal-agent 

relationship in a voyage charter (Rehmatulla and Smith, 2015). Under such a 

contractual arrangement, the shipowner bears the cost of fuel and, therefore, has an 

incentive to increase operational efficiency. However, the charterer has no other 

concern for the vessel speed than the vessel arriving on time. We note that there is no 

split incentive in the time charter case, as the charterer is the one benefiting from the 

speed reduction as they cover the fuel cost. 

To our knowledge, there is not yet any literature on the impact and implementation of 

slow steaming as a consequence of increasing efficiency in maritime chokepoints such 

as canals and straits. 

 

3.3 Strategies for speed reduction on voyages to the Panama Canal 
Our proposals for implementing speed reduction measures are based on suggested 

changes to the existing Panama Canal scheduling rules. Therefore, in this section, we 

review the relevant scheduling rules from the PCA and the general modeling 

assumptions applied to our proposals. Thereafter, we present our four proposals for 

the speed reduction of inbound vessels 

 
4 Dockray (2013) review the most notorious cases where the utmost dispatch clause was disputed. 
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3.3.1 PCA transit scheduling rules 

The scheduling system for the Panama Canal transits is based on vessels assignment 

within two categories. 1) Non-booked transits and 2) Pre-booked transits. Vessels in 

the first category are scheduled at the PCA discretion, conditional on the number of 

pre-booked vessels and various operational factors (e.g. vessel type mix, daylight 

transits restrictions). The vessels in the second group (pre-booked vessels) pay an 

extra fee for ensuring a slot on a particular transit date, with their transit time on the 

day subject to operational discretion. Note that the last booking period closes two days 

before a transit date. 

An important feature of the reservation system is that vessels with booked transits must 

arrive at the canal before an arrival cutoff. Vessels not arriving at the cutoff time must 

pay a penalty, which is a function of how late the vessel is and equivalent to up to 

100% of the original booking fee. More importantly, they may not be able to re-book 

the same slot with the risk of waiting in a queue as a regular transit vessel. 

According to the PCA reservation system rules (2021b), the time limit for arrival is at 

2200 hours of the day before transiting for Neo-Panamax vessels except LNG’s, 0200 

hours for LNG Neo-Panamax and Super/Regular5 with restrictions and 1400 hours of 

the same day for Regular vessels. Also, in the transit reservation rules, a vessel 

becomes an arrived vessel for a booked transit when the vessel is physically sighted 

or is within eight nautical miles from either of the canal entrances. No reference is 

made to regular transit vessels; therefore, we assume that such “physical” arrival also 

is their trigger for being included in a day’s transit schedule. 

The scheduling rules make reference to priority based on vessel types or a customer 

ranking. For example, cruise vessels can book a reservation up to two years in 

advance while other vessel types can book at the earliest, one year in advance 

(Panama Canal Authority, 2021b). This implies that if policies need to be implemented 

in steps, then the PCA could easily segment their strategy (e.g., by market, vessel type 

or customer ranking). 

 
5 Vessels transiting the Panamax locks are subdivided for scheduling purposes in Supers higher or 
equal to 27.74m beam) and Regulars (lower than 27.74m beam). Neo-Panamax are vessels that can 
only transit through the Neo-Panamax locks or has a beam of more than 32.62m 
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3.3.2 General modeling assumptions 

There are two important modeling assumptions that are common across all of our 

strategies. First, we assume that the speed reduction is only implemented on the 

voyage leg before the canal and that the historically observed transit time for a vessel 

does not change. This is simply due to the huge complexity of generating alternative 

scenarios for the dynamic fleet movements through the canal that would remain 

feasible given the real-life constraints that the PCA operates under (e.g., vessels mix, 

daylight limitation, no simultaneous crossing of Neopanamax vessels in opposite 

directions, daily availability of pilots and tugs, etc.). We acknowledge that this limits the 

emission reduction potential compared to an optimization model that had more 

degrees of freedom, including the rescheduling of vessel transits in time. 

Second, we assume that a canal leg is composed of the interval of time that the vessel 

is within canal waters, starting with its wait at anchorage up to the time the vessel exits 

the canal locks at the opposing entrance. The canal waters are defined by the PCA 

(2019) and include anchorage, the access lanes and the transit lanes. 

3.3.3 Proposal 1: Coordinated voyage 

A coordinated voyage, as illustrated in Figure 1, implies that speed reduction is 

implemented for the full duration of the leg from the time vessels depart the last port  

until the arrival cutoff for the Panama canal transit as declared in the PCA transit 

reservation rules (2021b).  

Figure 1 

Coordinated voyage strategy principle 

 

Arguably, the strategy is unrealistic, as the canal would be unable to assign transits for 

vessels given the large uncertainty in ETAs for long voyages. However, our motive for 
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Arguably, the strategy is unrealistic, as the canal would be unable to assign transits for

vessels given the large uncertainty in ETAs for long voyages. However, our motive for

calculating the effects of this proposal is to investigate the limits of the speed reduction
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implementation and to estimate the theoretical upper bound based on our 

assumptions.  

3.3.4 Proposal 2: Just-in-time (JIT) speed orders 48 hours before arrival 

For a strategy based on JIT, a vessel is accepted as an arrived vessel without being 

sighted and instructed to reduce speed to arrive at a Required Time of Arrival (RTA). 

For the purpose of estimating the effect of this proposal, as illustrated in Figure 2, we 

assume the RTA is the time when the vessel leaves the anchorage prior to transit. We 

also assume there is no distinction between non booked and booked transits, and that 

vessels with less than 48 hours sailing reduce the speed upon leaving the last port.  

Figure 2 

JIT strategy principle 
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To avoid confusion with proposal 2, we refer to this proposal as ‘green slots’. 
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per day. These slots are only assigned by request from a booked vessel that is capable 

of transiting immediately upon arrival6; therefore, it is natural that some of them remain 

unused. According to PCA rules, they can assign up to four green slots for Supers 

(max two per direction) and two for Regulars without restriction (max one per direction). 

We propose that the PCA assigns the unused green slots based on a ranking of 

available vessels by the highest emission reduction. This highlights the benefit from 

involving fewer stakeholders (PCA and the vessel) compared to the challenge of 

 
6 This requires that the operational conditions are in place to transit the vessel directly on arrival (e.g. 
the vessel has free pratique, customs clearance, etc.). 
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3.3.5 Proposal 3: Green slots

This proposal is based on the existing rules that the Panama Canal has for JIT arrivals.

To avoid confusion with proposal 2, we refer to this proposal as 'green slots'.

In the current scheduling system, the PCA has a limited number of green slots to assign

per day. These slots are only assigned by request from a booked vessel that is capable

of transiting immediately upon arrival6; therefore, it is natural that some of them remain

unused. According to PCA rules, they can assign up to four green slots for Supers

(max two per direction) and two for Regulars without restriction (max one per direction).

We propose that the PCA assigns the unused green slots based on a ranking of

available vessels by the highest emission reduction. This highlights the benefit from

involving fewer stakeholders (PCA and the vessel) compared to the challenge of

6 This requires that the operational conditions are in place to transit the vessel directly on arrival (e.g.
the vessel has free pratique, customs clearance, etc.).
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implementing JIT in a port setting (Global Industry Alliance, 2020). We note that the 

difference between this and proposal 2 is that the green slots are allocated only to 

some vessels while the rest follow business as usual (i.e., arrive before an arrival cutoff 

or wait at anchorage for its transit assignment). 

3.3.6 Proposal 4: Blend of JIT 24 hours before transit and green slots 

This proposal is an alternative if the potential limitations in previous proposals (i.e. 

uncertainty of vessels’ ability to comply with the RTA for JIT with 48 hour notice or not 

being within the rules for JIT assignment), hinder their implementation. 

In this blended strategy, we propose that green slots be assigned as per proposal 3 

and that the remaining vessels reduce their speed from 24 hours before arriving at the 

canal. 

 

3.4 Methods 
3.4.1 Input data 

Our model relies on three sources of information: maritime geofences, including the 

Panama Canal and coastal lines; vessels specifications and AIS data.  

Geofences7 are virtual geographic boundaries that define an area and reduces the 

search space for recognizing a vessel operational phase (e.g. anchoring, at berth, 

maneuvering, slow transiting or normal cruising). For the Panama Canal estimations, 

we define the geofences including locks, ports and anchoring areas. Separately, for 

estimating emissions of the legs before and after the Canal, we make use of worldwide 

port positions from the World Port Index (WPI) (2019) and coastlines from the National 

Oceanic and Atmospheric Administration (2017).  

Detailed vessel specifications are important in order to segregate our Panama Canal 

statistics by vessel type and transit type, to filter out non-transiting vessels such as 

Panama Canal tugboats, and to estimate emissions using a bottom-up method. 

Similarly to the 4th IMO GHG study (2020) we use the IHS Markit database, which 

includes over 100,000 records of vessel, including scrapped vessels.  

 
7 The term geofences and polygons are used interchangeably in this study 
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We use satellite and terrestrial AIS data from the UN Global Platform encompassing 

worldwide vessel records (3.6 TB) from January 2019 to December 2021. The data for 

the Panama Canal statistics is filtered by querying the records within our manually 

constructed geofences for the Panama Canal. Data records for emissions calculation 

before and after transiting are filtered with geofences based on the WPI records. Our 

filtered data includes approximately 8.5 billion records of dynamic AIS reports (i.e. 

latitude, longitude, timestamp, course over ground (COG), speed over ground (SOG), 

heading, and draught) and static AIS records (i.e. IMO Number, vessel type, length 

and width). The processing of such a big data set is made possible by an Apache Spark 

machinery and Apache Sedona. 

3.4.2 Generating Panama Canal statistics 

The algorithm used in this study is adapted from Fuentes and Adland’s (2020) 

algorithm for recognizing transits in the Suez Canal. We estimate the waiting times by 

recognizing anchoring patterns before transits, and the transit times and time at ports 

are derived from the vessel track through the Canal and visits to the adjacent ports. 

We introduce our version of the algorithm for generating Panama Canal statistics in 

Figure 3. 
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Figure 3 

Framework for generating Panama Canal statistics 

 

The first step (polygons and time cutoff) is to recognize when a vessel leaves and 

enters a polygon. A detailed description of the polygons and time cutoff test is 

presented in Algorithm 1 of Appendix A. 
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The first step (polygons and time cutoff) is to recognize when a vessel leaves and

enters a polygon. A detailed description of the polygons and time cutoff test is

presented in Algorithm 1 of Appendix A.
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Also in step one; data is interpolated into fixed intervals of ten minutes. As shown in 

Figure 4, the frequency of positions, calculated as the difference between subsequent 

timestamps for the same vessel, is not fixed, causing some assumptions used in the 

algorithm, such as those for vessels swinging on the anchor, to be invalid if not tuned. 

A potential solution inside anchoring and port polygons is to do linear interpolation 

between observations; however, to make the best use of the data, we implement a 

Kalman filter corrected by positions, SOG and COG. The Kalman filter is an algorithm 

that estimates unknown variables given the measurements observed over time 

(Youngjoo & Hyochoong, 2018). For a detailed description, we refer to Kalman (1960). 

Figure 4 

Histogram of AIS time frequency between positions 

 

Note. The rightmost vertical bar includes all frequency observations above 120 minutes. 
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records inside the canal and its locks, we take advantage of the limited navigable 

options inside a canal and use historical transit routes, a method described in Fuentes 

and Adland (2020). 

After the frequency interpolation of anchorage records, in step two we derive the 

waiting times by recognizing the vessel at anchor using the Density-based Spatial 
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Another challenge is to recognize the time of entering the Canal based on a vessel

crossing the locks. A similar approach with Kalman filter has the risk of generating

spurious estimations if the latency between concurrent positions is too large to detect

fast turnarounds, as is commonly observed in canals. For interpolating the vessel

records inside the canal and its locks, we take advantage of the limited navigable

options inside a canal and use historical transit routes, a method described in Fuentes

and Adland (2020).

After the frequency interpolation of anchorage records, in step two we derive the

waiting times by recognizing the vessel at anchor using the Density-based Spatial
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Clustering of Applications with Noise (DBSCAN) algorithm. The DBSCAN hyper 

parameter 𝜖𝜖 is calibrated from the assumption that external natural forces are 

producing the movement of the vessel swinging on the anchor. For simplicity, we derive 

for each anchoring area, the maximum values of the sum of historical tidal streams and 

ocean current speed over the last three years using the Global Ocean Analysis 

database from the Copernicus Marine Environment Monitoring Service. Our use of 

ocean currents as a proxy for vessel movements while at anchorage is based on the 

discussion in Fuentes (2021). For port records (i.e. when the vessel is deemed to be 

alongside a quay) the DBSCAN cluster is defined by an arbitrary small 𝜖𝜖 (1𝑥𝑥10−6) to 

reflect small changes in the vessel position caused by slight inaccuracies in the AIS-

reported position.  

Thereafter, we create the transit cutoff by completing two tests. The first test, described 

in Algorithm 2 of the Appendix A, refines the anchorage clusters where consecutive 

visits could result from: 1) The time cutoff8 or 2) the polygon cutoff from the first step. 

The second test -described in Algorithm 3 of the Appendix A - depends on refinements 

from the first test and compares whether a consecutive visit to anchorage polygons on 

opposing sides of the Canals could be considered as a complete transit. The goal of 

the transit cutoff is to create a mapping of positions to recognize whether a vessel has 

separate transits through the canal. 

In step three, we use the interpolated position records from the first step and the 

mapping of transits from the second step to generate a full sequence of all positions 

that are part of a canal transit. A final refinement test in step three checks whether a 

minimum set of polygons (locks, transit and anchorage polygons) is visited by each 

vessel. This is important to ensure that the results are robust interpretations of the 

canal visit and reduce the risk of faulty records. 

Finally, in step four, we derive and record the required information per vessel transit: 

the waiting time before transiting, the transit time, transit direction, whether the vessel 

used the neo or regular locks, and any stop that the vessel had in between. The waiting 

time is the difference in time between the last and first DBSCAN clustered positions at 

the anchorage before transiting. The canal transit time is estimated as the difference 

between the time the vessel enters the first lock and the time when it exits the final lock 

 
8 Not to be confused with the arrival cutoff rule from the PCA. 
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the anchorage before transiting. The canal transit time is estimated as the difference

between the time the vessel enters the first lock and the time when it exits the final lock

8 Not to be confused with the arrival cutoff rule from the PCA.
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on the opposite side of the canal. Transit direction and the type of transit (neo or 

regular) is derived from what lock is visited first. In addition, consistent with PCA 

statistics, we estimated the Canal Water Time (CWT) as the time from when the vessel 

anchors until it completes transit less any stoppage at port. To test the performance of 

our algorithm, we compare in Appendix B the resulting CWT statistics to the official 

statistics of the PCA. 

3.4.3 Estimating emissions 

In this study, we estimate the canal-related emissions based on the assumptions of 

the bottom-up method used in the 4th IMO GHG study (2020). The canal-related 

emissions, in our context, refer to emissions during a vessel's canal transit and on the 

legs before and after a transit. The method derives emissions at the individual vessel 

level using position and speed data from AIS and the vessel’s technical specifications, 

enabling aggregation into various statistics as desired (e.g. per geographical region, 

time, vessel type, etc.). The bottom-up method has been extensively used in the 

literature for generating emissions inventory (see Andersson and Ivehammar, 2017; 

Chang et al., 2013; Chen et al., 2017; Coello et al., 2015; Jia et al., 2017; Toscano et 

al., 2021, Tran et al., 2021). The assumptions of the 4th IMO GHG study have been 

subject to quality control, have known limitations and enable comparison of results. 

We introduce the algorithm for generating vessel emissions in Figure 5. From step 
one, we retrieve vessel records six months before and after a vessel has transited the 

canal. The transit reference times are the time the vessel was anchored awaiting a 

transit and the time the vessel cleared the canal transit. These reference times are the 

first and last recorded positions of our transits recognition algorithm. Thereafter, we 

keep the records from the vessel's last port call before a transit until the first port call 

after the transit. Such port visits are assumed to occur when a vessel maintains a 

speed below 1 knot inside a port polygon for at least 6 hours, an assumption consistent 

with the IMO GHG study. Using a Kalman filter in this step helps to reduce the noise 

from faulty GPS readings in the data, unlike linear interpolation which can be more 

sensitive to such noise. 
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Figure 5 

Framework for estimating Panama Canal related emissions 

 
Note: Information in square brackets refers to the 4th IMO GHG study. ME stands for Main Engine, AE 

is for Auxiliary Engines and AB is Auxiliary Boilers 
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In step two, for positions outside the canal, we assign the operational phase of the 

vessel (i.e. at berth, at anchor, maneuvering, in slow transit or normal cruising) per the 

vessel’s position record. Note that records inside the canal are labelled as 

maneuvering, except for periods where, from our derived Panama Canal statistics, the 

vessel is at anchorage or is stopped at a local port. In these cases, the records are 

assigned to at anchorage and at berth, respectively. For the remainder of the voyage 

(i.e. the legs before and after the canal), we assign the operational phases according 

to the decision matrix described in the IMO GHG study (2020, pp. 80-81).  

Finally, in step three and step four, we replicate the estimation of the vessels’ engine 

power and the related emissions from the method used in the IMO GHG study. 

3.4.4 Coordinated voyage and JIT emissions reduction 

For generating the emissions reduction information, we assume every vessel is a 

booked vessel such that the date of transit is known. A different interpretation would 

be that a vessel is assigned a slot as it departs from the last pre-canal port, so no 

distinction is made between booked transits or regular transits.  

We assume that a vessel will only reduce speed if four conditions are fulfilled. First, 

the proposed RTA (i.e. the arrival cutoff for a coordinated voyage or heaving up anchor 

time for the JIT strategy), must be after our benchmark arrival time but no later than 

one hour before a transit begins. Second, we assume that vessels will not be instructed 

to reduce speed below the equivalent of 55% main engine load – a typical limit to slow-

steaming (Dere et al., 2022). This implies that very low speeds are not feasible and we 

avoid suboptimal loads that are potentially harmful to the main engine. Third, a vessel 

would have reduced emissions if the new emissions for the leg before the canal is 

lower than the benchmark emissions. It could be the case that a vessel speed reduction 

would end up with a higher consumption, particularly around the vessel optimal speed. 

Fourth, vessels that have no waiting time already arrive JIT and are excluded as they 

have no scope for emission reduction. 

3.4.5 Green slots emissions reduction 

Our proposal for green slots allocation is based on hindsight from the Panama Canal 

statistics, as presented in this study. In this case, we allocate the remaining (non-

requested) green slots for vessels in the 48 to 96 hours interval prior to transit. 

In step two, for positions outside the canal, we assign the operational phase of the
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to reduce speed below the equivalent of 55% main engine load - a typical limit to slow-

steaming (Dere et al., 2022). This implies that very low speeds are not feasible and we

avoid suboptimal loads that are potentially harmful to the main engine. Third, a vessel

would have reduced emissions if the new emissions for the leg before the canal is

lower than the benchmark emissions. It could be the case that a vessel speed reduction

would end up with a higher consumption, particularly around the vessel optimal speed.

Fourth, vessels that have no waiting time already arrive JIT and are excluded as they

have no scope for emission reduction.

3.4.5 Green slots emissions reduction

Our proposal for green slots allocation is based on hindsight from the Panama Canal

statistics, as presented in this study. In this case, we allocate the remaining (non-

requested) green slots for vessels in the 48 to 96 hours interval prior to transit.
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Our motive for using 96 hours as the start of our planning window is based on the PCA 

(2019) requirement for vessels to submit their intention of transiting at least 96 hours 

before arriving to the Canal waters. Vessels with a voyage time less than 96 hours, 

can submit their information as they depart from the last port preceding its transit. By 

using 48 hours as the end of the planning window, it follows that the last green slots 

are assigned on the final day of the booking period (2 days before transiting). 

The result for our proposed strategy is modeled using the following four steps. In step 
one, we estimate the emissions reduction for every vessel at time 𝑡𝑡 ∈ {96,72,48}. The 

emissions reduction per vessel is the difference between the pre-canal leg plus the 

canal leg emissions, estimated as of time 𝑡𝑡, and the benchmark estimates for the same 

legs. For step two, we estimate the non-available (used) green slots by counting those 

transits with lower waiting times than 30 minutes. In doing so, we assume that a vessel 

that did not stop before transit was allocated a green slot upon request.  From our 

anchoring recognition method, 30 minutes is the minimum detected cluster based on 

our assumptions. Finally, we calculate the per day and per direction green slots transits 

for Super, Regular and Neo-Panamax vessels and estimate the number of remaining 

slots according to the PCA rules. Note that according to the rules, Neo-Panamax 

vessels are not assigned green slots. Therefore, we assume that the Neo-Panamax 

JIT transits take the position of Supers’ green slots, transiting in the same direction. 

In step three, the slot assignment model matches candidates and available green slots 

based on the following mathematical model: 

Sets 

𝐷𝐷 Transit dates 
𝐵𝐵 Transit direction {𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ} 
𝑉𝑉 Transit type {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝑁𝑁𝑁𝑁𝑁𝑁} 
𝐼𝐼 Transit candidates  
𝐿𝐿 Transit candidates per day 𝐿𝐿 ⊂ 𝐼𝐼 
𝐹𝐹 Transit candidates per day per vessel type 𝐹𝐹 ⊂ 𝐿𝐿 
𝑆𝑆 Transit candidates per day per vessel type per direction 𝑆𝑆 ⊂ 𝐹𝐹 

Parameters 
𝑒𝑒𝑖𝑖 𝐶𝐶𝑂𝑂2𝑒𝑒 reduced on pre-canal leg plus canal leg from transit 𝑖𝑖 
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 Max green slots on day 𝑑𝑑, direction 𝑏𝑏 for transit type 𝑣𝑣 
𝑃𝑃𝑑𝑑 Max green slot for all transits on day 𝑑𝑑 

Decision variable 
𝛿𝛿𝑖𝑖 Binary variable. 1 if transit 𝑖𝑖 selected for a green slot, 0 otherwise 

Our motive for using 96 hours as the start of our planning window is based on the PCA

(2019) requirement for vessels to submit their intention of transiting at least 96 hours

before arriving to the Canal waters. Vessels with a voyage time less than 96 hours,

can submit their information as they depart from the last port preceding its transit. By

using 48 hours as the end of the planning window, it follows that the last green slots

are assigned on the final day of the booking period (2 days before transiting).

The result for our proposed strategy is modeled using the following four steps. In step

one, we estimate the emissions reduction for every vessel at time t E {96,72,48}. The

emissions reduction per vessel is the difference between the pre-canal leg plus the

canal leg emissions, estimated as of time t, and the benchmark estimates for the same

legs. For step two, we estimate the non-available (used) green slots by counting those

transits with lower waiting times than 30 minutes. In doing so, we assume that a vessel

that did not stop before transit was allocated a green slot upon request. From our

anchoring recognition method, 30 minutes is the minimum detected cluster based on

our assumptions. Finally, we calculate the per day and per direction green slots transits

for Super, Regular and Neo-Panamax vessels and estimate the number of remaining

slots according to the PCA rules. Note that according to the rules, Neo-Panamax

vessels are not assigned green slots. Therefore, we assume that the Neo-Panamax

JIT transits take the position of Supers' green slots, transiting in the same direction.

In step three, the slot assignment model matches candidates and available green slots

based on the following mathematical model:

Sets

D Transit dates
B Transit direction {North,South}
V Transit type {Super, Regular, Neo}
I Transit candidates
L Transit candidates per day L c I
F Transit candidates per day per vessel type F c L
S Transit candidates per day per vessel type per direction S c F

Parameters
ei C02e reduced on pre-canal leg plus canal leg from transit i

Rctbv Max green slots on day d, direction b for transit type v
Pd Max green slot for all transits on day d

Decision variable
oi Binary variable. 1 if transit i selected for a green slot, 0 otherwise
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𝑚𝑚𝑚𝑚𝑚𝑚∑𝛿𝛿𝑖𝑖𝑒𝑒𝑖𝑖

𝑖𝑖∈𝐼𝐼
 (3) 

s.t:  
∑𝛿𝛿𝑖𝑖 ≤ 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖∈𝑆𝑆

 ; ∀𝑑𝑑 ∈ 𝐷𝐷, ∀𝑏𝑏 ∈ 𝐵𝐵 , ∀𝑣𝑣 ∈ 𝑉𝑉  (4) 

∑𝛿𝛿𝑖𝑖
𝑖𝑖∈𝐿𝐿

≤ 𝑃𝑃𝑑𝑑 ; ∀𝑑𝑑 ∈ 𝐷𝐷 (5) 

∑𝛿𝛿𝑖𝑖
𝑖𝑖∈𝐹𝐹

≤ 𝑀𝑀𝑑𝑑𝑑𝑑 ; ∀𝑑𝑑 ∈ 𝐷𝐷 ; ∀𝑣𝑣 ∈ 𝑉𝑉 (6) 

𝛿𝛿𝑖𝑖 ∈ {0,1} (7) 
 

The objective function (3) maximizes the emission reduction from the green slot 

assignments. Constraint (4) limits the transits per day, direction, and time according to 

the PCA JIT assignment rules. Constraint (5) ensures that the maximum number of 

available slots per day is not surpassed. Constraint (6) limits the green slots per type 

per day. Constraint (7) defines the decision variable as a binary variable. Note that this 

model only assigns the vessels that may arrive JIT without being penalized (i.e. after 

the arrival cutoff). Therefore, the transit assignment is not changed from what was 

observed in our statistics. 

In step four, the resulting assigned green slots and related emissions reductions are 

stored. Thereafter, in a rolling horizon approach, the input parameters for candidates 

and options are updated, and the model is rerun. The iteration stops when no more 

slots are available, there are no more candidates, or after a solution is obtained for 𝑡𝑡 =
48. 

 

3.5 Results 
3.5.1 Panama Canal transits derived statistics 

Our algorithm generates 36,812 records of Panama Canal transits between January 

2019 and December 2021. Table 1 highlights the differences in waiting and transit 

times based on transit direction and lock size. As shown in Table 1, 26,853 records 

are vessels transiting the original Panamax locks and 9,959 are Neo-Panamax 

(3)

s.t: I s, Rdbv ; Vd E D, Vb E B, Vv E v
iES

L o i P d ; vd E D
iELI s, M d v ; Vd E D; Vv E v

iEF s,E {0,1}
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model only assigns the vessels that may arrive JIT without being penalized (i.e. after

the arrival cutoff). Therefore, the transit assignment is not changed from what was

observed in our statistics.

In step four, the resulting assigned green slots and related emissions reductions are

stored. Thereafter, in a rolling horizon approach, the input parameters for candidates

and options are updated, and the model is rerun. The iteration stops when no more

slots are available, there are no more candidates, or after a solution is obtained for t =
48.

3.5 Results
3.5.1 Panama Canal transits derived statistics

Our algorithm generates 36,812 records of Panama Canal transits between January

2019 and December 2021. Table 1 highlights the differences in waiting and transit

times based on transit direction and lock size. As shown in Table 1, 26,853 records

are vessels transiting the original Panamax locks and 9,959 are Neo-Panamax
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vessels. If subdivided by transit direction, 18,870 records were northbound9 transits 

(Gulf of Panama to Caribbean Sea) and 16,371 records were southbound transits 

(Caribbean Sea to the Gulf of Panama). The greater number of northbound vessels is 

also reflected in the waiting times, as southbound vessels average 33.6 hours waiting 

compared to 43.0 hours for northbound vessels, both with large variations. The 

variation in waiting times is in part driven by the booking system, where different types 

of vessels have different transit priorities and prevalence of paying a premium for faster 

transits via pre-booking or auctions.  

Table 1 

Derived statistics of Panama Canal transits 

 Mean St.Dev Median Min Max Sample 

Waiting Northbound (hours) 43.0 46.9 27.0 0 351.6 16,042 

Waiting Southbound (hours) 33.6 43.2 19.5 0 351.1 12,623 

Waiting Panamax (hours) 37.9 42.4 23.0 0 351.6 22,150 

Waiting Neo (hours) 42.2 54.2 20.1 0 351.1 6,875 

Transit time Northbound (hours) 9.8 5.3 8.1 5.5 47.9 18,870 

Transit time Southbound (hours) 11.8 6.2 9.0 5.6 49.3 16,371 

Transit time Panamax (hours) 9.4 4.2 8.0 5.6 47.9 26,016 

Transit time Neo (hours) 14.6 6.9 12.0 5.5 49.3 9,225 

The AIS-generated statistics has the advantage, compared to official statistics, that it 

can be customized based on selected criteria, e.g., vessel type, vessel size, transit 

direction, etc. As an example of this flexibility, we present a count of transits per vessel 

type (defined consistently with the 4th IMO GHG study) in Table 2. We can observe 

that bulkers have the most transits, mainly using the Panamax locks. This reflects how 

the canal is frequently used by medium-size bulk carriers on the US East Coast to Asia 

route, this being one of the most important trade routes connected by the canal 

(Panama Canal Authority, 2022). Neo-Panamax locks are mostly used by large 

containerships, followed by LPG and LNG tankers.  

 

 
9 Some readers might relate to a westbound route being a south transit and eastbound route been a 
north transit 
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Table 2 

Transits per vessel type  

Type of Vessel Transits Regulars Supers Neo-Panamax 
Bulk carriers 7,966 356 6,348 1,262 

Containers 7,176 562 2,554 4,060 

Chemical tankers 5,727 1,144 4,511 72 

LPG 3,934 441 1,138 2,355 

Others 2,859 1,008 1,568 283 

General cargo 2,137 1,424 705 8 

Vehicle 2,065 0 1,925 140 

Oil tanker 1,774 133 1,145 496 

Refrigerated bulk 1,641 1,577 64 0 

LNG 1,256 0 0 1,256 

Cruise ships 277 123 127 27 

 

The boxplot in Figure 6 shows there is a difference in waiting times depending on 

vessel types. For container vessels, 75% of values are within 10.8 hours, showing a 

compact distribution in expected waiting times. Cruise vessels have the lowest median 

with 7.0 hours, followed by container vessels with 7.1 hours and vehicle carriers with 

10.3 hours. Conversely, crude tankers and bulk carriers have the highest third quartile, 

with 79.7 and 77.6 hours respectively, as well as a larger standard deviation. The larger 

variance could result from the mix of strategies for requesting a transit slot: awaiting a 

turn to be assigned by the PCA, requesting a booked transit, participating in slot 

auctions, or requesting just-in-time slots. Other factors affecting the assignment of 

transit slots could be the mix of scheduled vessels under consideration and the 

customer ranking. A comprehensive description of the transit slot allocation process 

can be found in the rules for the Panama Canal transit reservation system (2021b). 
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Figure 6 

Waiting time per vessel type 

 

By comparing both the waiting times and the transits made per vessel type, we can 

infer that a policy based on green slots (limited to Supers and Regulars) could have a 

significant effect on emissions reduction from LPG tankers, chemical tankers, oil 

tankers and bulk carriers – the vessel types transiting mainly through the old locks.  

LNG tankers are also facing prolonged waiting times before transiting. While a strategy 

for green slots is not applicable in their case per the current canal rules, their inclusion 

could lead to important emission reductions if allowed to arrive JIT. We also note here 

that many use LNG as a fuel, and so there would not only be a reduction of CO2 

emissions but also methane (CH4), which is a powerful GHG as highlighted by the 

Global Warming Potential (GWP) of 25. The GWP can be interpreted as how much 

energy a gas will absorb over a period compared to one tonne of CO2 (United States 

Environmental Protection Agency, 2022). 
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By comparing both the waiting times and the transits made per vessel type, we can

infer that a policy based on green slots (limited to Supers and Regulars) could have a

significant effect on emissions reduction from LPG tankers, chemical tankers, oil

tankers and bulk carriers - the vessel types transiting mainly through the old locks.

LNG tankers are also facing prolonged waiting times before transiting. While a strategy

for green slots is not applicable in their case per the current canal rules, their inclusion

could lead to important emission reductions if allowed to arrive JIT. We also note here

that many use LNG as a fuel, and so there would not only be a reduction of CO2

emissions but also methane (CH4), which is a powerful GHG as highlighted by the

Global Warming Potential (GWP) of 25. The GWP can be interpreted as how much

energy a gas will absorb over a period compared to one tonne of CO2(United States

Environmental Protection Agency, 2022).
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3.5.2 Emissions from existing canal scheduling  

We derive the canal related emissions for 36,112 transits (98.1% of the reported 

transits) of our generated Panama Canal statistics10. The results are used to describe 

the current emissions generated and as a benchmark to compare our proposed 

strategies.  

The estimated emissions per leg and per year are summarized in Table 3. For the 

period under consideration (2019 - 2021), the voyages of vessels transiting the 

Panama Canal emitted approximately 101.9 million tonnes of CO2 equivalent (CO2e), 

of which 97.0% are emissions of CO2 and the rest are CO2e transformations11 of CH4 

and N2O. The share of CO2 to the total is consistent with the global estimates of the 4th 

IMO GHG study. The total, 31 million tonnes of CO2e for the year 2019, represents 

2.9% of shipping emissions in 2018 per the 4th IMO GHG study.   

Table 3 

Estimated emissions 

 CO2 𝒙𝒙𝟏𝟏𝟏𝟏𝟑𝟑 (tonnes) CH4 𝒙𝒙𝟏𝟏𝟏𝟏𝟑𝟑 (tonnes) N2O 𝒙𝒙𝟏𝟏𝟏𝟏𝟑𝟑 (tonnes) 
 Before Canal After Before Canal After Before Canal After 
2019 15,081.6 375.70 14,713.5 6.387 0.261 7.693 0.863 0.022 0.840 

2020 16,446.2 468.81 15,543.0 8.155 0.324 8.251 0.942 0.027 0.888 

2021 17,585.7 689.19 18,008.2 9.811 0.449 11.265 1.003 0.040 1.026 

Total 49,113.6 1,533.7 48,264.7 24.353 1.034 27.209 2.808 0.089 2.755 

 

In Table 3, it can also be observed how emissions are roughly even between the 

voyage legs before and after the canal transit, with slightly higher emissions occurring 

on the leg before.  

Emissions segregated by vessel types are presented in Table 4. The higher emitters 

are container vessels followed by LPG tankers, both transiting through the Neo-

Panamax locks. Container vessels emit approximately one third of the total, despite 

having the lowest waiting time before transiting (as seen in Figure 6). This is of course 

 
10 Some of our transits are not considered for the emissions inventory if, based on our assumptions, no 
port was identified either before or after the canal transit. 
11 Global Warming Potential on 100 year basis assumes a transformation factor of 25 for CH4 and 298 
for N2O 

3.5.2 Emissions from existing canal scheduling
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transits) of our generated Panama Canal statistics1°. The results are used to describe

the current emissions generated and as a benchmark to compare our proposed

strategies.
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period under consideration (2019 - 2021), the voyages of vessels transiting the

Panama Canal emitted approximately 101.9 million tonnes of CO2equivalent (CO2e),

of which 97.0% are emissions of CO2and the rest are CO2e transformations11 of CH4

and N2O. The share of CO2to the total is consistent with the global estimates of the 4th

IMO GHG study. The total, 31 million tonnes of CO2e for the year 2019, represents

2.9% of shipping emissions in 2018 per the 4th IMO GHG study.

Table 3

Estimated emissions
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Before Canal After Before Canal After Before Canal After

2019 15,081.6 375.70 14,713.5 6.387 0.261 7.693 0.863 0.022 0.840

2020 16,446.2 468.81 15,543.0 8.155 0.324 8.251 0.942 0.027 0.888

2021 17,585.7 689.19 18,008.2 9.811 0.449 11.265 1.003 0.040 1.026

Total 49,113.6 1,533.7 48,264.7 24.353 1.034 27.209 2.808 0.089 2.755

In Table 3, it can also be observed how emissions are roughly even between the

voyage legs before and after the canal transit, with slightly higher emissions occurring

on the leg before.

Emissions segregated by vessel types are presented in Table 4. The higher emitters

are container vessels followed by LPG tankers, both transiting through the Neo-

Panamax locks. Container vessels emit approximately one third of the total, despite

having the lowest waiting time before transiting (as seen in Figure 6). This is of course

10 Some of our transits are not considered for the emissions inventory if, based on our assumptions, no
port was identified either before or after the canal transit.
11 Global Warming Potential on 100 year basis assumes a transformation factor of 25 for CH4 and 298
for N2O
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mainly a result of their larger average vessel size, as indicated by the number of 

transits through the Neo-Panamax locks, larger main engines, and a higher average 

sailing speed (13.6 knots) than other vessel types such as bulk carriers (10.5 knots) 

and oil tankers (9.9 knots). For LPG tankers, their overall emissions are driven by their 

high speed (12.9 knots), number of transits and higher power demand from auxiliary 

engines from activities such as cargo liquefaction. The highest emitter for the Panamax 

locks is the bulk carrier segment, with the large number of transits being the main 

reason.  

Table 4 

Total estimated emissions per vessel and transit type (Top 10) 

 
Transit type 

CO2e 𝒙𝒙𝟏𝟏𝟏𝟏𝟔𝟔 (tonnes) 
 2019 2020 2021 Total 
Container Neo-Panamax 7.94 9.10 10.80 27.84 

Liquefied gas tanker (LPG) Neo-Panamax 3.43 3.77 4.47 11.67 

Bulk carrier Super 2.99 3.63 3.85 10.47 

Liquefied gas tanker (LNG) Neo-Panamax 2.82 3.27 3.93 10.02 

Chemical tanker Super 2.49 2.36 2.39 7.24 

Container Super 2.50 2.35 2.17 7.02 

Vehicle Super 1.74 1.35 1.66 4.75 

Bulk carrier Neo-Panamax 0.90 1.44 1.49 3.83 

Refrigerated bulk Regular 1.23 1.17 1.09 3.49 

Liquefied gas tanker (LPG) Super 0.70 0.90 1.50 3.10 

 

If we compare the emissions per vessel type to the waiting times presented in Figure 

7, there is seemingly a significant opportunity for reducing emissions from LPG and 

LNG via JIT and for bulk carriers and chemical tankers transiting the Panama locks via 

JIT and green slots. The potential mitigating effect on emissions from implementing 

arrival policies by vessel type is presented in the next section. 
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If we compare the emissions per vessel type to the waiting times presented in Figure

7, there is seemingly a significant opportunity for reducing emissions from LPG and

LNG via JIT and for bulk carriers and chemical tankers transiting the Panama locks via

JIT and green slots. The potential mitigating effect on emissions from implementing

arrival policies by vessel type is presented in the next section.
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Figure 7 

Waiting time and total CO2e emissions per vessel type 

 

If the implementation of a speed reduction strategy for vessels approaching the 

Panama Canal is limited to a subset of the relevant fleet for operational reasons, then 

an alternative PCA strategy could be to focus on vessels trading on the specific routes 

(or origin-destination port-pairs) that would have the highest impact on emissions. The 

results in Table 5 suggest that the highest-emitting routes are dominated by container 

routes from Asia to the East Coast of the USA, with the Busan-NY/NJ route producing 

the most emissions. If based on individual ports, an initial strategy should consider 

Busan port and the Port of Houston, covering four and two of the top routes, 

respectively. The idea of a per route focus is inspired in the proposal of green corridors 

presented by the Getting to Zero coalition (2021). Green corridors are “specific trade 

routes between major port hubs where zero-emission solutions have been 

demonstrated and are supported”- (Getting to Zero Coalition, 2021). Despite their 

criteria for selection of green corridors being based on more factors than just the 

emissions reduction potential (e.g., share of global trade, carbon intensity on route, 

national policy incentives and regulations, etc.), we recognize that a similar effect is 

achievable by the PCA in terms of leveraging favorable conditions for accelerated 

action and creating a spill-over effect to other maritime chokepoints and routes. 
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If the implementation of a speed reduction strategy for vessels approaching the

Panama Canal is limited to a subset of the relevant fleet for operational reasons, then

an alternative PGA strategy could be to focus on vessels trading on the specific routes

(or origin-destination port-pairs) that would have the highest impact on emissions. The

results in Table 5 suggest that the highest-emitting routes are dominated by container

routes from Asia to the East Coast of the USA, with the Busan-NY/NJ route producing

the most emissions. If based on individual ports, an initial strategy should consider

Busan port and the Port of Houston, covering four and two of the top routes,

respectively. The idea of a per route focus is inspired in the proposal of green corridors

presented by the Getting to Zero coalition (2021). Green corridors are "specific trade

routes between major port hubs where zero-emission solutions have been

demonstrated and are supported"- (Getting to Zero Coalition, 2021). Despite their

criteria for selection of green corridors being based on more factors than just the

emissions reduction potential (e.g., share of global trade, carbon intensity on route,

national policy incentives and regulations, etc.), we recognize that a similar effect is

achievable by the PGA in terms of leveraging favorable conditions for accelerated

action and creating a spill-over effect to other maritime chokepoints and routes.
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Table 5 

Top 10 estimated emissions per origin destination pair from Jan. 2019 to Dec. 2021  

Origin Destination CO2e 𝒙𝒙𝟏𝟏𝟏𝟏𝟔𝟔 
(tonnes) 

Main vessel 
type 

Busan port Port of New York and New Jersey 2.23 Container 
Busan port Port of Houston  1.98 Container 
Xiamen Port of New York and New Jersey 1.35 Container 
Hong Kong/ Shekou/ Yantian Port of Savannah 1.12 Container 
Busan port Port of Savannah 1.05 Container 
Port of Houston  Tokyo Bay ports 0.97 LPG/Chemical 
Busan port Kingston 0.94 Container 
Hong Kong/ Shekou/ Yantian Port of Houston  0.82 Container 
Port of Houston  Ulsan 0.80 LPG/Chemical 
Ulsan Port of Houston  0.73 LPG/Chemical 

Note: Estimates from vessel transiting the canal with no intermediate ports (i.e., Panama ports inside 

canal waters). Port of Houston incl. Galveston Bay, Trinity Bay and Houston Channel ports 

Reducing emissions at the canal anchorages is an additional benefit of the lower 

waiting times resulting from our proposals. As these anchoring areas are close to 

populated areas (Panama City and Colon), the benefit extends to the reduction of 

emissions related to health hazard such as Particulate Matter and Nitrogen Oxides. 

This is illustrated in Figure 8, showing the estimated emissions per operational phase 

and vessel type inside canal waters. While all vessels produce some emissions from 

auxiliary engines when awaiting transit, certain vessel types (i.e. LNG, LPG and 

refrigerated bulks) have higher auxiliary power demand related to cargo handling 

activities such as liquefaction for LNG and LPGs, and cooling for refrigerated cargo. 

The still significant emissions for vessel types with lower power demand from auxiliary 

engines (i.e., bulk carriers, chemical tankers, and oil tankers) are mainly driven by their 

longer anchorage stays before transiting and higher number of vessels. 
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Top 10 estimated emissions per origin destination pair from Jan. 2019 to Dec. 2021

Origin Destination C02e x106 Main vessel
(tonnes) type

Busan port Port of New York and New Jersey 2.23 Container
Busan port Port of Houston 1.98 Container
Xiamen Port of New York and New Jersey 1.35 Container
Hong Kong/ Shekou/ Yantian Port of Savannah 1.12 Container
Busan port Port of Savannah 1.05 Container
Port of Houston Tokyo Bay ports 0.97 LPG/Chemical
Busan port Kingston 0.94 Container
Hong Kong/ Shekou/ Yantian Port of Houston 0.82 Container
Port of Houston Ulsan 0.80 LPG/Chemical
Ulsan Port of Houston 0.73 LPG/Chemical

Note: Estimates from vessel transiting the canal with no intermediate ports (i.e., Panama ports inside

canal waters). Port of Houston incl. Galveston Bay, Trinity Bay and Houston Channel ports

Reducing emissions at the canal anchorages is an additional benefit of the lower

waiting times resulting from our proposals. As these anchoring areas are close to

populated areas (Panama City and Colon), the benefit extends to the reduction of

emissions related to health hazard such as Particulate Matter and Nitrogen Oxides.

This is illustrated in Figure 8, showing the estimated emissions per operational phase

and vessel type inside canal waters. While all vessels produce some emissions from

auxiliary engines when awaiting transit, certain vessel types (i.e. LNG, LPG and

refrigerated bulks) have higher auxiliary power demand related to cargo handling

activities such as liquefaction for LNG and LPGs, and cooling for refrigerated cargo.

The still significant emissions for vessel types with lower power demand from auxiliary

engines (i.e., bulk carriers, chemical tankers, and oil tankers) are mainly driven by their

longer anchorage stays before transiting and higher number of vessels.
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Figure 8 

Estimated emissions at the Panama Canal per operational phase from Jan. 2019 to 

Dec. 2021  

 
Note: Berth 𝐶𝐶𝑂𝑂2𝑒𝑒 emissions for container vessels only (21.4 tonnes) 

3.5.3 Emissions reduction from the speed reduction strategies 

Under proposal 1 (coordinated voyage), vessels could have saved 5.2 million tonnes 

of CO2e in total (5.2% reduction from current emissions) and an average of 1.8 million 

tonnes per year. (January 2019 to December 2021). The results are limited by our 

conservative assumptions of vessel not reducing speed below the 55% ME load and 

vessel arriving to their arrival cutoff before transiting. Yet despite the assumptions, 

17,132 transiting vessels (47% of transiting vessels) could have reduced their speed 

subject to coordination between the canal and the vessels since their departure from 

the last port. 

Details of the emission reduction per vessel segment are presented in Table 6. The 

biggest effect is observed from speed reduction for container vessels (1.16 million 

CO2e tonnes), despite its relatively low waiting time reduction. The effect is stronger 

for container vessels due to a larger speed reduction over a longer distance. LPG 

transits also benefit from the speed reduction, as evidenced by their 1 million CO2e 

tonnes savings. Notably, they reduce their waiting times on average by 26 hours. 
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Note: Berth CO2e emissions for container vessels only (21.4 tonnes)

3.5.3 Emissions reduction from the speed reduction strategies

Under proposal 1 (coordinated voyage), vessels could have saved 5.2 million tonnes

of CO2e in total (5.2% reduction from current emissions) and an average of 1.8 million

tonnes per year. (January 2019 to December 2021). The results are limited by our

conservative assumptions of vessel not reducing speed below the 55% ME load and

vessel arriving to their arrival cutoff before transiting. Yet despite the assumptions,

17,132 transiting vessels (47% of transiting vessels) could have reduced their speed

subject to coordination between the canal and the vessels since their departure from

the last port.

Details of the emission reduction per vessel segment are presented in Table 6. The

biggest effect is observed from speed reduction for container vessels (1.16 million

CO2e tonnes), despite its relatively low waiting time reduction. The effect is stronger

for container vessels due to a larger speed reduction over a longer distance. LPG

transits also benefit from the speed reduction, as evidenced by their 1 million CO2e

tonnes savings. Notably, they reduce their waiting times on average by 26 hours.
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Similarly, bulk carriers, LNG vessels and chemical tankers benefit from a reduction of 

relatively long average waiting times, affecting both average sailing speeds and 

removing emissions while at anchor. 

Table 6 

Emissions reduction (tonnes x ,000) and waiting time (hours) reduction per proposal 

Vessel type 
Coordinated 
voyage plan 

JIT 48 hours Green slots Green slots and 
JIT 24 hours 

AWTR* CO2e AWTR CO2e AWTR CO2e AWTR CO2e 
Container 2.0 1,163.2 2.5 291.8 0.1 9.8 2.0 219.0 
LPG 26.1 1,037.7 18.5 323.3 1.7 31.4 11.8 200.0 
Bulk carrier 21.7 965.3 16.2 393.3 3.5 91.0 12.1 289.4 
LNG 33.0 725.8 17.0 130.6 0 0 7.8 69.1 
Chemical tanker 18.0 554.4 15.0 274.4 3.7 78.0 11.5 216.4 
Oil tanker 21.9 217.8 15.1 87.9 2.2 13.7 10.6 60.4 
General cargo 14.4 210.9 12.5 74.5 3.2 24.2 9.6 58.0 
Ref. bulk 6.8 123.6 6.4 61.3 1.2 14.2 5.6 50.8 
Vehicle 3.2 102.2 5.7 66.3 0.8 10.4 4.2 47.4 
Other Neo vessels 50.6 39.1 16.6 7.9 0 0 8.3 4.6 
Other Panamax 7.8 19.6 5.1 9.4 0.7 2.4 3.5 7.2 
Cruise vessels 1.3 7.8 2.4 4.5 0 0 2.6 5.8 
Total CO2e       
(%)  

 5,167.4 
(5.2%) 

 1,725.2 
(1.7%) 

 275.1 
(0.3%) 

 1,228.1 
(1.2%) 

2019 CO2e        
(%) 

 1,423.4 
(4.6%) 

 544.4 
(1.8%) 

 79.3 
(0.3%) 

 364.6 
(1.2%) 

2020 CO2e       
(%) 

 1,860.0 
(5.6%) 

 570.1 
(1.7%) 

 92.8 
(0.3%) 

 392.4 
(1.2%) 

2021 CO2e        
(%) 

 2,051.2 
(5.5%) 

 644.6 
(1.7%) 

 101.7 
(0.3%) 

 445.9 
(1.2%) 

* Average Waiting Time Reduction (hours) 

From the results, we also highlight that for the two highest-emitting vessel types (LPG 

tankers and container vessels), implementing an incentive policy based on this 

strategy could be customized for vessel departing from specific origin ports.  

A strategy based on proposal 2 (JIT 48 hours before arrival) could have saved 1.7 

million tonnes of CO2e (1.7% reduction as compared to the benchmark) from 21,952 

transits and an average of 586 thousand tonnes of CO2e per year. As presented in 

Table 6, the largest reduction is caused by bulk carriers, followed by LPGs and 

container vessels. When compared to the coordinated voyage strategy, we note that 

the impact for container vessels is reduced, despite a higher waiting time reduction. 

This reaffirms that for some vessel types (i.e., container vessels and LNG) a significant 

effect is obtained by reducing speed over a longer distance. 

We also estimate that proposal 3 (green slots) could have saved 275,090 tonnes of 

CO2e (a 0.3% reduction as compared to the benchmark) an average of 91.3 thousand 

tonnes of CO2e per year, a lower reduction compared with the previous proposals. 

Similarly, bulk carriers, LNG vessels and chemical tankers benefit from a reduction of

relatively long average waiting times, affecting both average sailing speeds and

removing emissions while at anchor.

Table 6

Emissions reduction (tonnes x ,000) and waiting time (hours) reduction per proposal

Coordinated JIT 48 hours Green slots Green slots and
Vessel type voyage plan JIT 24 hours

AWTR* CO2e AWTR CO2e AWTR CO2e AWTR CO2e
Container 2.0 1,163.2 2.5 291.8 0.1 9.8 2.0 219.0
LPG 26.1 1,037.7 18.5 323.3 1.7 31.4 11.8 200.0
Bulk carrier 21.7 965.3 16.2 393.3 3.5 91.0 12.1 289.4
LNG 33.0 725.8 17.0 130.6 0 0 7.8 69.1
Chemical tanker 18.0 554.4 15.0 274.4 3.7 78.0 11.5 216.4
Oil tanker 21.9 217.8 15.1 87.9 2.2 13.7 10.6 60.4
General cargo 14.4 210.9 12.5 74.5 3.2 24.2 9.6 58.0
Ref. bulk 6.8 123.6 6.4 61.3 1.2 14.2 5.6 50.8
Vehicle 3.2 102.2 5.7 66.3 0.8 10.4 4.2 47.4
Other Neo vessels 50.6 39.1 16.6 7.9 0 0 8.3 4.6
Other Panamax 7.8 19.6 5.1 9.4 0.7 2.4 3.5 7.2
Cruise vessels 1.3 7.8 2.4 4.5 0 0 2.6 5.8
Total CO2e 5,167.4 1,725.2 275.1 1,228.1
(%) (5.2%) (1.7%) (0.3%) (1.2%)
2019 CO2e 1,423.4 544.4 79.3 364.6
(%) (4.6%) (1.8%) (0.3%) (1.2%)
2020 CO2e 1,860.0 570.1 92.8 392.4
(%) (5.6%) (1.7%) (0.3%) (1.2%)
2021 CO2e 2,051.2 644.6 101.7 445.9
(%) (5.5%) (1.7%) (0.3%) (1.2%)

* Average Waiting Time Reduction (hours)

From the results, we also highlight that for the two highest-emitting vessel types (LPG

tankers and container vessels), implementing an incentive policy based on this

strategy could be customized for vessel departing from specific origin ports.

A strategy based on proposal 2 (JIT 48 hours before arrival) could have saved 1.7

million tonnes of CO2e (1.7% reduction as compared to the benchmark) from 21,952

transits and an average of 586 thousand tonnes of CO2e per year. As presented in

Table 6, the largest reduction is caused by bulk carriers, followed by LPGs and

container vessels. When compared to the coordinated voyage strategy, we note that

the impact for container vessels is reduced, despite a higher waiting time reduction.

This reaffirms that for some vessel types (i.e., container vessels and LNG) a significant

effect is obtained by reducing speed over a longer distance.

We also estimate that proposal 3 (green slots) could have saved 275,090 tonnes of

CO2e (a 0.3% reduction as compared to the benchmark) an average of 91.3 thousand

tonnes of CO2e per year, a lower reduction compared with the previous proposals.
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However, this reduction results from just 1,924 new assignments of green slots. From 

Table 6, the largest reduction would arise from bulk carriers, chemical tankers, and 

LPGs; vessels with estimated long waiting times and more transits through the 

Panamax locks. A lower reduction is observed for container vessels, caused by the 

restriction that JIT slots are assigned just to vessel transiting the old Panamax locks. 

Finally, a strategy based on proposal 4 (blend of JIT 24 hours before transit and green 

slots) would save approximately 1.2 million tonnes of CO2e (1.2% reduction as 

compared to the benchmark) from 22,718 transits and an average of 401 thousand 

tonnes per year. To put this in perspective, this strategy saves more emissions than 

the highest emitting vessel type in the coordinated voyage strategy, a strategy that is 

perceived to be more difficult to implement. Importantly, the emission reduction is 

obtained with less uncertainty (i.e. whether the vessel would arrive on time) than when 

instructing a vessel to reduce speed over a long distance. 

 

3.6 Discussion and limitations 
From the analysis we observed that there is a tradeoff between the perceived 

complexity of implementation and the potential for emission reduction. Complexity in 

this context can be thought of as a measure of the number of vessels reducing speed 

and how early the speed reduction is enforced, leading to uncertainty regarding vessel 

arrival versus the proposed RTA. The most complex strategy is to implement a 

coordinated voyage plan, followed by JIT 48 hours before transit for all vessels, the 

blend of JIT 24 hours before transit and green slots, and the simplest strategy - a green 

slot assignment under the existing assignment rules. The reduction potential also 

follows this ranking.  

The complexity of implementation is in large part driven by the limitations of the 

strategies presented in this study. An important limitation is that of uncertainty of 

vessels arrival versus their RTA. The risk of late arrival becomes more probable the 

longer a speed reduction is enforced, such as in the coordinate voyage case. A too-

early instruction to reduce speed would in reality lead to higher sailing speeds than 

what is optimal in a deterministic setting to ensure that a vessel does not miss the 

assigned transit slot. To mitigate this limitation we propose that the implementation is 

instructed to vessels closer to the canal such as in the JIT 48 hours or green slots 

However, this reduction results from just 1,924 new assignments of green slots. From

Table 6, the largest reduction would arise from bulk carriers, chemical tankers, and

LPGs; vessels with estimated long waiting times and more transits through the

Panamax locks. A lower reduction is observed for container vessels, caused by the
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the highest emitting vessel type in the coordinated voyage strategy, a strategy that is

perceived to be more difficult to implement. Importantly, the emission reduction is

obtained with less uncertainty (i.e. whether the vessel would arrive on time) than when

instructing a vessel to reduce speed over a long distance.

3.6 Discussion and limitations
From the analysis we observed that there is a tradeoff between the perceived

complexity of implementation and the potential for emission reduction. Complexity in

this context can be thought of as a measure of the number of vessels reducing speed

and how early the speed reduction is enforced, leading to uncertainty regarding vessel

arrival versus the proposed RTA. The most complex strategy is to implement a

coordinated voyage plan, followed by JIT 48 hours before transit for all vessels, the

blend of JIT 24 hours before transit and green slots, and the simplest strategy - a green

slot assignment under the existing assignment rules. The reduction potential also

follows this ranking.

The complexity of implementation is in large part driven by the limitations of the

strategies presented in this study. An important limitation is that of uncertainty of

vessels arrival versus their RTA. The risk of late arrival becomes more probable the

longer a speed reduction is enforced, such as in the coordinate voyage case. A too-

early instruction to reduce speed would in reality lead to higher sailing speeds than

what is optimal in a deterministic setting to ensure that a vessel does not miss the

assigned transit slot. To mitigate this limitation we propose that the implementation is

instructed to vessels closer to the canal such as in the JIT 48 hours or green slots
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strategies. Another way to mitigate the uncertainty is to focus on specific market 

segments, vessels coming from ports where the emissions effect is the highest, or 

perhaps even based on past vessel reliability. This will give the PCA a buffer to 

maintain business as usual for the vessels that are not part of the proposed speed 

reduction strategy. A per-route policy could be developed in parallel to the Panama 

Canal becoming part of green corridors.  

An additional limitation is that a vessel needs to be “within sight” to be considered an 

arrived vessel and that it needs to be physically arrived before a cutoff time. This, of 

course, are effectively the same barriers to increasing efficiency that we have in ports, 

that is, the requirement to be able to tender NOR and meeting a laycan. We recognize 

that these regulations are enforced to maintain control of vessels' arrivals and a buffer 

for the daily transit schedule. Nonetheless, most of our proposals assume that these 

requirements are lifted. 

Clearly, scheduling strategies that imply speed reduction for only a small subset of 

vessels have a lower impact on emission reduction compared to other strategies with 

more flexibility. Such is the case for the green slot strategy which is limited to the 

assignment of any unused slots. A more balanced measure such as the blended 

strategy adds flexibility to the green slot assignment by instructing speed reduction to 

all vessels 24 hours before arrival. As the speed reduction is enforced closer to the 

time of transit, the Canal could provide accurate transit assignments based on updated 

information on their resource availability (e.g., pilots, tugboats, canal slots capacity due 

to weather, etc.). 

An additional observation from Table 4 is that many vessel types have a higher 

potential emission reduction in 2020 and 2021, despite having fewer overall transits as 

per the official statistics of the PCA (2021c). This suggests that a strategy for reducing 

emissions prior to a chokepoint has a stronger effect when there are inefficiencies 

caused by longer waiting times. It follows that for chokepoints with less waiting time 

uncertainty, such as the Suez Canal where the assignment is based on the time of 

arrival in a convoy system, there is less opportunity for reducing emissions. There may 

also be restrictions on reducing vessel speeds in neighboring areas for security 

reasons, such as piracy threats in the Gulf of Aden. 
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We recognize that there are additional barriers to improve efficiency in canal operations 

that are related to the broader discussion of contractual barriers to operational 

efficiency in shipping. Firstly, under the simplifying assumption that the time of transit 

does not change, our scheduling proposals – and the accompanying speed and 

emission reduction - would not affect the tendering of NOR in any subsequent loading 

port on the post-canal leg. However, we acknowledge that this restriction may not 

produce the overall societal optimal solution. 

Secondly, the utmost dispatch barrier in a voyage charter (Rehmatulla and Smith, 

2015; Jia et al., 2017; Global Industry Alliance, 2020) remains to be solved as a matter 

of contractual wording, typically including an exemption clause. However, the PCA 

could promote a fairer (to the charterer) exemption clause enforcement. It might be the 

case that the charterer is the carrier and held liable to the shipper for the cargo on 

board (Hague Visby Rules, 1979) and an unreasonable deviation, caused by speed 

reduction, would make them lose rights and liability limitations if an accident occurs. If 

the PCA enforces the rule that a vessel may reduce speed only under PCA instruction, 

then it gives the charterers assurance that the “deviation” is not an arbitrary decision  

to suit the shipowner’s commercial interests, but a matter of operational efficiency. On 

the charter party side, a new exemption clause could be drafted in the spirit of the Baltic 

and International Maritime Council Just in Time clause (2022).  

Thirdly, regarding the split incentives problem on a voyage charter (Rehmatulla and 

Smith, 2015), the charterer would remain unaffected as the speed reduction takes 

place before an expected stop and not on the final leg to the destination port. This 

assumes that the charterer has agreed to waive the utmost dispatch clause (if 

applicable), for the period the vessel is instructed to reduce speed. The same argument 

holds for the rush-to-wait behavior (Poulsen and Sampson, 2019) in the destination 

port, which is not affected by changes on the pre-canal leg. 
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earning demurrage, and split incentives for fuel cost savings, are broadly mitigated in 

the case of intermediate stops such as a canal transit. This highlights how changes to 

scheduling policies in the Panama Canal can be an important source of emission 

reduction in shipping that has hitherto not been considered in the literature. 

An additional argument supporting this finding is that canal authorities are usually in 

control of most decisions affecting the transit of a vessel, reducing or removing the 

inefficiencies caused by the interaction among several stakeholders (Global Industry 

Alliance, 2020; Poulsen and Sampson, 2020; Slack et al., 2018). 

In our Panama Canal case study, we measured the effect of implementing speed 

reduction measures from increasing operational efficiency in the canal. Our results 

show potential reductions from 275,090 tonnes to 5.2 million tonnes of CO2e emissions 

from January 2019 to December 2021 (an average of  91,000 to 1.8 million tonnes of 

CO2e per year) by promoting speed reduction measures based on four separate 

proposals with due consideration of their scheduling rules. Our study also highlights 

the tradeoff between effect and perceived complexity of implementation, and shows 

how proposals could be implemented gradually by market segmentation.  

As a methodological contribution, we introduced a framework for estimating the 

Panama Canal operational statistics and derived emissions from AIS data. We also 

adapted the bottom-up method in the 4th IMO GHG study to fit our case study. 

This study is limited to emissions reduction on the pre-canal leg of a voyage. We 

acknowledge that in order to also reduce post-canal emissions, a proposal should also 

include a scheduling model for assigning transits. The logic is that, as a community 

planner, the canal could assign, within their operational constraints, the best transit mix 

with due consideration to the emissions savings both before and after a transit. As we 

do not have access to the details of such operational constraints, this is not pursued 

here.  

Future research should make a similar assessment for other maritime chokepoints, 

such as the Suez Canal and Bosphorus Strait, and consider the impact of changes to 

their existing scheduling rules. Ideally, a more advanced model would also consider 

optimization of the entire voyage, as well as arrival uncertainty caused by weather and 

operational constraints within the canal. With the help of our empirical methodology, 

earning demurrage, and split incentives for fuel cost savings, are broadly mitigated in

the case of intermediate stops such as a canal transit. This highlights how changes to

scheduling policies in the Panama Canal can be an important source of emission

reduction in shipping that has hitherto not been considered in the literature.

An additional argument supporting this finding is that canal authorities are usually in

control of most decisions affecting the transit of a vessel, reducing or removing the

inefficiencies caused by the interaction among several stakeholders (Global Industry

Alliance, 2020; Poulsen and Sampson, 2020; Slack et al., 2018).

In our Panama Canal case study, we measured the effect of implementing speed

reduction measures from increasing operational efficiency in the canal. Our results

show potential reductions from 275,090 tonnes to 5.2 million tonnes of CO2e emissions

from January 2019 to December 2021 (an average of 91,000 to 1.8 million tonnes of

CO2e per year) by promoting speed reduction measures based on four separate

proposals with due consideration of their scheduling rules. Our study also highlights

the tradeoff between effect and perceived complexity of implementation, and shows

how proposals could be implemented gradually by market segmentation.

As a methodological contribution, we introduced a framework for estimating the

Panama Canal operational statistics and derived emissions from AIS data. We also

adapted the bottom-up method in the 4th IMO GHG study to fit our case study.

This study is limited to emissions reduction on the pre-canal leg of a voyage. We

acknowledge that in order to also reduce post-canal emissions, a proposal should also

include a scheduling model for assigning transits. The logic is that, as a community

planner, the canal could assign, within their operational constraints, the best transit mix

with due consideration to the emissions savings both before and after a transit. As we

do not have access to the details of such operational constraints, this is not pursued

here.

Future research should make a similar assessment for other maritime chokepoints,

such as the Suez Canal and Bosphorus Strait, and consider the impact of changes to

their existing scheduling rules. Ideally, a more advanced model would also consider

optimization of the entire voyage, as well as arrival uncertainty caused by weather and

operational constraints within the canal. With the help of our empirical methodology,
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future studies could also consider the strengths and weakness of the Canal for being 

part of a green corridor and propose a strategy for improving such weaknesses. 
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Appendices
Appendix A

Tests for generating Panama Canal statistics

Algorithm l Time and polygon cutoff
I: Inputs:

Z s [ i - j h x s ({il:i E { l , ..., J} / \ i EZ}; j E {polygon,time,cutoff,group,groupPosition})
sES; S is a set of vessels
A is a set of anchorage polygons

2: Default Parameter:
timeCutoff 48, hours between ordered records to declare a time cutoff

3: f o r s E S do
4: set Ys +- 0 M x 5
5: Z i j + - Z s

6: Y m j 4 - Y s
7: me-O
8: for i E { l , ....,I} do
9: Zi ,groupPos i t ion + - 0

10: if Z i , t i m e - Z i - l , t i m e > timeCutoff V Zi ,po lygon1=Zi- l ,po lygon then
11: Zi , cu to f J+- l
12: Zi ,groupPos i t ion 4 - l
13: Zi-1,gr<YU.pPosition+-2
14: else
15: Zi , cu to f J + - O
16: end if
17: end for
18: for i E { l , ...,I} do
19: Zi,gr·oup+- E!=l Zt , cu lo f f
20: if Zi,polygon EA /\ ( z i , g r o u p P o s i t i o n =l V Zi ,groupPos i t ion =2) then
21: m+-m+l
22: Ym,,+-Zi,,
23: end if
24: end for
25: end for
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Algorithm 2 Transits cutoff - Test I (Merge of anchor visits)
I: Inputs:

Y.+-[m-jhfas ({mim E {l, ..., M } / \ m EZ}; j E {polygon,time,cutoff,group,groupPosition});
from Algorithm I
Z.+-[i-j]NxS ({il:i E { l , ..., N}/ \ i EZ}; j E {polygon,time,cutoff,group,groupPosition})
sES; S is a set of vessels

2: Default Parameter:
timeCutoff +- 48, hours between consecutive visits to a same polygon

3: fors E S do
4: set X, +- Ovxs
5: Y m j + - Y s
6: X v j + - X s
7: v+-0
8: for m E {l , ..., M} do
9: if Ym,polygon 'FYm-1 ,po lygon then

I0: Ym , c u t o f f+- l
11: else
12: Y m , c u l o f 1 + - 0
13: end if
14: end for
15: for m E {l , ..., M} do

"'m16: Ym,g, ·oup+- L . , t = l Y t , c u t o f f
17: end for
18: for m E {l , ..., M} do
19: if Ym,g, ·oup" 'Ym-1,grov.p I\ Ym,g, ·ov.pPosi t ion=I then
20: if Ym,time-Ym-1,time'."StimeCutoff then
21: if call PORTINBETWEEN(Ym-1,time,Ym,time,Zs)=TRUE then
22: Y m - l , c u t o f j + - - 1
23: Ym.-2 ,cuto / 1 + - - l
24: eJse
25: Y m - 2 , c u t o f J+- 1
26: Y m - l , c u t o J J + - - 1
27: Y m , c u t o f f +--2
28: end if
29: end if
30: end if
31: end for
32: for m E {l , ..., M} do
33: if Ym,cu to j f ° ' 20 then
34: ve-v-el
35: x,.,,,+-Ym,,
36: end if
37: end for
38: end for
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Algorithm 3 Transits cutoff - Test 2 (Transits recognition)
I: Inputs:

X s [ v - j ] M x S ({viv E { l , ..., V}/\v EZ}; j E {polygon,time,cutoff,group,groupPosition});
from Algorithm 2
Z s [ i - j ] N x S ({il:i E { l , ..., N}/\i EZ}; j E {polygon,time,cutoff,group,groupPosition})
sES; S is a set of vessels

2: fors E S do
3: set G s O p . , 5
4: X 1 1 j X s

5: g p 1 G s
6: p O
7: for v E { l , ..., V} do
8: if Xm,po lygon=Xv-1 ,po lygon I\X,. , ,g, ·oupPosition=I then
9: X v , c u t o f J I

10: else
11: Xv,cu to f f O
12: end if
13: end for
14: for v E { l , ..., V} do
15: x,.,,g,-oup L = l Xt ,cu to f f
16: end for
17: row--D
18: for v E { l , ..., V} do
19: if Xv,cutof 1= I then
20: rowt--!
21: else
22: r o w r o w +l
23: if r o w > 4 / \ x , , , g r o u p P o s i t i o n = 1 then
24: if (X11,t ime-X11-l , t ime)<(x, ,_2, t ime-X11-3, t ime) then
25: X v - 2 , c u t o f f 1
26: else
27: Xv,cu to f f I
28: end if
29: end if
30: end if
31: end for
32: for v E { l , ..., V} do
33: Xv,group L = l Xt ,cu to f f
34: end for
35: rowe-O
36: for v E { l , ..., V} do
37: if X11,cutoff= I then
38: rowt--!
39: else
40: r o w r o w +l
41: if row=4 then
42: p p + l
43: g p , : X v - 3 , :
44: p p + l
45: g p , : X v , :
46: end if
47: end if
48: end for
49: end for
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Appendix B  
Performance testing for the algorithm that generates the Panama Canal transit 

statistics 

The PCA (2021a) publishes a summary of their operations in monthly reports as part 

of their Advisories to Shipping. The performance of our algorithm relate mainly to the 

ability to generate timely statistics, yet it is also important that the generated statistics 

are robust as a correct representation of the operations. To verify the robustness, we 

test our results against official statistics from the PCA for canal transits. 

In Figure B.1, we observe the comparison of the number of transits as calculated by 

our algorithm to monthly transits as reported by the PCA. Overall, our algorithm 

discovers fewer transits than officially reported. The difference between the values is 

on average 33.3 transits per month and the algorithm accuracy ranges from 88.9% to 

99.8%. As the algorithm aims for accuracy to build a representative sample of 

variables, such as waiting times and service times, the difference is expected and is 

caused by the algorithm not reporting vessels with incomplete sequences. Vessels with 

incomplete sequences are potentially caused by the height of the AIS antennas on 

smaller vessels or environmental factors affecting the AIS radio signal.  

Figure B.1 

Monthly Panama Canal transits from the algorithm and official statistics 
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Figure B.2 shows the relation of statistics for the monthly in transit time (ITT). ITT is 

the time lapsed from the moment a vessel enters the first lock until it exits the last lock 

(Panama Canal Authority, 2021b). Our algorithm has a close fit to the true values, as 

the algorithm results are within 97.1% and 99.9% from the official statistics records. 

Importantly, the algorithm generated information for "blind" months (March and April 

2020), where official statistics were not reported.  

Figure B.2 

Monthly Panama Canal In transit time (ITT) from the algorithm and official statistics

 

Note: PCA missing values as months not reported in their Monthly Operations Summary. 

Similar to ITT, the PCA reports CWT as a measure of service performance. CWT is 

the time lapsed from the moment a vessel is declared "ready" for transit until it 

completes transit. Therefore, it is a measure of waiting time before transit, plus ITT. 
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anchoring period, as recognized by our algorithm, and ends when the vessel clears 

the last lock. It might be the case that PCA is reporting that a vessel is ready after being 

cleared for transit, such as after finishing inspection by PCA boarding officers. Figure 

B.3 shows that our algorithm is compatible with the official records. The fit between 

both values is of an R2 of 0.84 and the difference is on average 15.52 hours, which is 
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Note: PCA missing values as months not reported in their Monthly Operations Summary.

Similar to ITT, the PCA reports CWT as a measure of service performance. CWT is

the time lapsed from the moment a vessel is declared "ready" for transit until it

completes transit. Therefore, it is a measure of waiting time before transit, plus ITT.

This measure encompasses the whole service where the PCA is responsible, and can

be considered a proxy of service quality. As the interpretation of a ready vessel is not

publicly defined by the PCA, we assume the period starts at the beginning of the

anchoring period, as recognized by our algorithm, and ends when the vessel clears

the last lock. It might be the case that PCA is reporting that a vessel is ready after being

cleared for transit, such as after finishing inspection by PCA boarding officers. Figure

B.3 shows that our algorithm is compatible with the official records. The fit between

both values is of an R2of 0.84 and the difference is on average 15.52 hours, which is
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likely the average time taken to clear a vessel for transit after it has arrived at 

anchorage.  

Figure B.3 

Monthly Panama Canal water times from the algorithm and official statistics 

 

Note: PCA missing values as months not reported in their Monthly Operations Summary. 
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Note: PCA missing values as months not reported in their Monthly Operations Summary.

From this evaluation, we can conclude that our generated statistics are suitable proxies

of the underlying operations at the Panama Canal.
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