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Finding Indicators to Predict How Breast Cancer Will Respond to Decitabine 

Treatment Based on the Drug's Mode-of-action 

 

By Brianne Cruickshank 

 

Abstract 

 

The Canadian Cancer Society estimates that 13 Canadian women will die from breast 

cancer every day. Epigenetic modifications, like aberrant DNA methylation contribute to 

breast cancer progression and must be addressed to improve patient outcomes. DNA 

hypermethylation can inhibit the expression of tumor suppressor genes (TSGs), which 

contributes to the development and progression of cancer. Using a de-methylating agent 

such as decitabine (5-aza-2'-deoxycytidine), results in the re-expression or induction of 

TSGs. Although this effect has been well documented in cancer, it may not be the main 

contributor to decitabine sensitivity. Other aspects of decitabine treatment, such as the 

induction of an interferon response have also been suggested as contributors to decitabine 

sensitivity. Using a representative panel of breast cancer cell lines with varying 

sensitivities to decitabine, these possible effects of decitabine will be evaluated to reveal 

their value in predicting decitabine response. Using quantitative polymerase chain 

reaction (qPCR), expression of genes associated with TSG induction and the interferon 

response were analyzed to reveal the predominate class of genes that are induced upon 

treatment. It was found that neither class of gene was indicative of decitabine sensitivity. 

Alternative factors that might predict decitabine sensitivity were evaluated; these factors 

all have well-established roles in decitabine’s mode-of-action. Decitabine must be 

imported, processed and incorporated into the DNA. It was found that incorporation into 

the DNA is also not predictive of decitabine sensitivity. Next, genes associated with 

import/export, processing and de-methylating effects of decitabine were evaluated for 

any association with decitabine sensitivity. Relatively strong correlations with the import 

gene SLC28A1, the processing gene DCK as well as the DNMT1A and DNMT3B de-

methylating genes were found. This suggests that these four genes may be important 

mediators of decitabine sensitivity in breast cancer, and could be useful in predicting 

patient response to this new therapy. 
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INTRODUCTION 

 

1.1 The Role of Epigenetics in Cancer 

Cancer is a disease characterized by the uncontrolled growth and division of cells. 

In normal tissues, cellular mechanisms prevent unlimited cell division by carefully 

regulating different phases of the cell cycle. If an irreparable problem (e.g. DNA damage, 

nutrient deprivation, hypoxia, viral infection) is identified within the cell, normal cells 

will initiate regulated cell death (apoptosis) or will be identified by the immune system 

for destruction. Cancer cells evade these processes and continue through the cell cycle, 

producing too many cells, and often making errors in DNA replication and chromosome 

segregation. It is the accumulation of mutations and segregation errors in cells which 

result in the development of cancer-like characteristics such as unlimited replicative 

potential and the ability to evade apoptosis1. As cancer progresses, mutations accumulate 

and lead to further aberrant regulation of genes controlling cell communication, DNA 

repair, cellular growth, and apoptosis. These affects further contribute to the development 

and progression of the tumour1.  

 

While cancer is often associated with mutations, epigenetic modifications (which 

occur "on top" of the DNA) also contribute to the development of cancer2. One such 

epigenetic modifier is DNA methylation, which occurs when a methyl group is added to a 

cytosine residue to form 5-methylcytosine. In normal cells, DNA methylation is vital in 

controlling gene expression and methylation patterns can change depending on the needs 

of the cell3. For example, methylation can be used to repress the expression of repetitive 

DNA sequences and provides stability to the DNA by decreasing the probability of 
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genomic rearrangement4. DNA methylation also influences the expression of genes 

coding for important proteins. Since all the cells in the body share the same genetic 

material, genes must be turned “on” or “off” depending on development of different cell 

types, or changes in physiological state. Genes important in the development of 

myocardial tissue should therefore not be expressed by liver cells; this is reflected in the 

vastly different methylation patterns between tissue types5. Controlling gene expression 

via silencing specific genes and contributing to genome stability are the essential roles of 

DNA methylation; both of which are dysregulated in cancer cells6,7. 

In cancer, both hypo- and hypermethylation can play a role in driving tumor 

growth and progression8. If repetitive DNA elements and non-coding regions (which are 

typically methylated to aid in genomic stability) become hypomethylated, chromosomal 

mutations such as rearrangements, may occur and lead to the formation of cancer6. Cells 

use DNA methylation to maintain stable expression patterns of protein coding genes. In 

tumours, aberrant hypermethylation can silence the expression of tumor suppressor genes 

(TSGs), which normally down-regulate cell division. Since TSGs are important in 

preventing the development of cancer, repression of these genes via hypermethylation-

mediated silencing contributes to cancer development 2,4. TSGs are involved in growth-

inhibiting pathways and act as “gatekeepers” to control progression through the cell 

cycle. They are directly implicated in growth, differentiation, and survival. When TSG 

expression is diminished (by DNA methylation for example), the gene products that 

govern the cells response to growth signals are lost and uncontrollable cell division is 

more easily achieved. Silencing TSGs via DNA hypermethylation has been observed in 
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many solid tumors9-11. Within the last decade, hypermethylation has been accepted as an 

important player in the processes of cancer initiation and progression8-12. 

Initial studies of DNA methylation in cancer were limited to testing known TSGs 

for hypermethylation13. One example is CCNDN2, a TSG that is often hypermethylated 

in some renal cell cancers (RCC)13. The protein product of CCNDN2 is myopodin, an 

actin-bundling protein which is important in controlling and regulating the cell cycle. In 

kidney cancer, aberrant methylation of the promotor region of CCNDN2 is correlated 

with significantly lower mRNA expression of this gene and consequently its gene 

product, myopodin, when compared to normal tissue13. In kidney tumors, myopodin 

levels can predict tumor progression and growth; lower levels of myopodin are associated 

with more aggressive RCCs14. In patients who received chemotherapy, hypermethylation 

of this gene resulted in an increased probability of recurrence as well as decreased overall 

survival rates13. CCNDN2 in kidney cancer is therefore a prime example of a 

hypermethylated tumor suppressor gene which is important in driving tumor growth as 

well as treatment response. There are many similar examples of tumor suppressor genes 

silencing in other cancers by hypermethylation, which leads to more aggressive disease 

progression and resistance to therapy. 

DNA methylation is a plastic modification and inhibitors of the DNA methylation 

machinery are being actively investigated. For example, DNA methyltransferases 

(DNMTs) are required for DNA methylation and inhibitors of DNMTs are promising 

cancer therapies given that global effects can be avoided and the tumor itself can be 

targeted. These DNMT inhibitors reduce DNA methylation levels and therefore resurrect 

the expression of TSGs6. Decitabine (5-aza-2'-deoxycytidine) is a DNMT inhibitor that is 
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used successfully as a therapy in myelodysplastic syndrome (MDS)15. MDS is a blood 

disorder, often considered a pre-cancerous stage of leukemia, and the effectiveness of 

decitabine as an MDS-therapeutic is now attributed to decitabine’s ability to de-methylate 

genes in these pre-cancerous cells15. These genes have not yet been identified. Given the 

success of DNMT inhibitors like decitabine in MDS, the efficacy of these treatments is 

being explored as therapies for solid tumors. To this end, decitabine is currently being 

investigated in clinical trials as a cancer treatment for solid tumors found in tissues such 

as the kidney, lung, skin, bladder and breast4 (Figure 1). 
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Figure 1. As of the year 2000, clinical trials using decitabine have been increasing for both 

myelodysplastic syndrome (MDS) and solid tumors. (A): Clinical trials for MDS using decitabine 

peaked between 2010-2015 (total number of studies=97) (B): Compared to MDS, more clinical trials 

have been based off solid tumors (totally number of studies=174) (C): Decitabine has been 

implemented as a successful treatment for MDS therefore less focus is placed on MDS and more is 

being placed on solid tumors (total number of studies=22, data compiled from North American 

clinical trials database, clinicaltrials.gov). 
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1.2 Potential Anti-Cancer Mechanisms of Decitabine 

Decitabine was first developed as a cytotoxic agent to target rapidly dividing 

cancer cells. As a cytosine analog, decitabine induces cell death through DNA damage 

after it incorporates during the DNA synthesis phase of the cell cycle16. To act, decitabine 

must first be imported into the cell where it is processed into a triphosphorylated 

nucleotide. It must then be incorporated into the DNA upon DNA synthesis. DNMTs 

then bind decitabine creating a protein/DNA adduct which leads to degradation of 

DNMTs. This has several potential effects including de-methylation and re-expression of 

aberrantly silenced TSGs and the de-methylation of endogenous retroviral elements 

resulting in dsRNA/anti-viral responses. The induction of the DNA damage response by 

protein/DNA adduct formation, cytotoxicity induced by global de-methylation, and the 

de-methylation of silenced tumor-associated antigens increasing anti-tumor immune 

responses have also been reported as “downstream” effects of decitabine 17-20. Before any 

of these are possible, decitabine must 1) be imported into the cell, 2) be phosphorylated 

into its active form and 3) be incorporated into the DNA (Figure 2).  
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Figure 2. For decitabine (DAC) to exert an effect it first must be imported into the cell, 

phosphorylated, and incorporated into the DNA. This may lead to several downstream effects 

such as TSG induction, DNA damage, apoptosis and the anti-tumor immune response. (Bases: 

yellow = cytosine, blue= guanine, green =adenine, red = thymine). 
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Even though many TSGs have been found to be hypermethylated, we lack a 

complete understanding of their role and significance in relation to the development of 

new cancer treatments21-23. Current research is focused on genes with known tumor-

suppressor function and evaluating whether they are methylated and if de-methylating 

agents can induce their expression24-26. Re-expression of TSGs is a desirable goal in 

cancer therapy and many studies that show TSG re-expression is correlated with a 

decrease in the growth of a tumor27-30. For example, Garzon et al. 2009 show that 

lowering levels of DNMTs led to a decrease in global methylation and a re-expression of 

TSG p15INK4b 16 resulting in the restoration of some regulatory mechanisms. Although the 

re-expression of TSGs is a well-known effect of de-methylating agents, the key TSGs 

involved in this effect and their contribution to sensitivity to de-methylating agents have 

yet to be identified27.  

In addition to induction of TSGs, other anti cancer mechanisms of decitabine have 

been reported. One of which is called the interferon response which suggests that DNMT 

inhibitors trigger immune responses through viral mimicry pathways18. Endogenous 

retro-viral (ERV) sequences are elements derived from retroviruses that have been 

inserted into the human genome, and these elements have been silenced via DNA 

methylation during human evolution. DNMT inhibitors like decitabine activate 

expression of hypermethylated ERV sequences leading to the production of viral RNA. 

The cell interprets these events as a viral attack, which then triggers the interferon 

response18. The interferon response results in immune recognition of cancer cells leading 

to the subsequent elimination of the cancer cells by programmed cell death.  
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1.3 Current Clinical Limitations on DNA De-methylating Therapy 

Methylation is important in driving tumor growth and progression and de-

methylating agents should be highly effective as cancer therapeutics7,13,31. Despite all 

evidence pointing to their potential efficacy, clinical trials have had limited success. This 

could be a result of a poor understanding of the mechanisms present in the cancer cells 

that make them resistant or sensitive to de-methylating agents like decitabine. It is 

unclear if mechanisms required for decitabine processing (e.g. DCK an enzyme needed 

for phosphorylation of decitabine) or the downstream effectors of decitabine-response 

(ex. tumor suppressor gene induction, DNA damage response, apoptosis and viral 

mimicry) are most critical in determining response of the cancer cell to decitabine32,33. 

The development of novel techniques allowing for the determination of de-methylating 

agents’ mode-of-action in cancer cells hold promise in improving the clinical application 

of this class of drugs. I propose to use breast cancer cell lines as a model system to 

identify key determinants of response to DNA de-methylating therapy in breast cancer. 

Breast cancer lends itself to the study of DNA de-methylating agents because 

DNA methylation is highly dysregulated in this disease12. One example as shown by 

Ottaviano et al. (1994) found that estrogen receptor (ER) expression is downregulated 

because of hypermethylation in cancerous breast tissues7. The estrogen receptor is a 

common target for hormone therapy in breast cancer. Without estrogen receptor 

expression, patients are unresponsive to hormone-based chemotherapeutics7. 

1.4 Breast Cancer 

Breast cancer typically begins in the ducts of the breast which carry milk from the 

lobules to the nipple but can also develop in the lobules themselves. Ductal carcinomas 
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account for approximately 83% of all breast cancers whereas lobular carcinomas account 

for only 13%34. Some breast cancers are more aggressive than others. Triple-negative 

breast cancers are defined as lacking the three hormone receptors which drive the growth 

of most breast cancers. Specifically, triple-negative breast cancers do not overexpress 

HER2 receptors (plasma membrane tyrosine kinase receptors), and lack estrogen and 

progesterone receptors. These breast tumors are also associated with a less favourable 

prognosis since they cannot be treated with receptor-targeted therapy and show limited 

responses to generic cytotoxic chemotherapy35,36. Since breast tumors clearly are not 

identical, treatment must be tailored to each individual case.   

Understanding decitabine’s mode-of-action may allow us to develop more precise 

treatments for patients with triple-negative breast cancer. Further, using expression of 

certain genes as predictors of drug response may allow for more efficient use of 

decitabine. A literature search suggests that expression of decitabine-associated genes can 

predict decitabine sensitivity37. Specifically, the expression levels of genes implicated in 

import/export of the drug, processing of the drug, and de-methylation may be potential 

biomarkers for a favourable response to decitabine. As an example, insufficient 

decitabine import proteins would render patients resistant to the drug. This phenomenon 

is observed in acute- myeloid leukemia (AML), where levels of equilibrative transporter 

(ENT-1), which mediates the uptake of nucleosides, correlate with sensitivity to 

decitabine in mononuclear cells taken from 50 patients with AML27.  

I hypothesize that determining the factors which dictate response to 

decitabine will reveal potential biomarkers that will predict the effectiveness of 

decitabine as a cancer treatment. For this purpose, I have identified a panel of seven 
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breast cancer cell lines with a wide range of sensitivity to decitabine (Figure 3). These 

cell lines include the triple-negative breast cancer cell lines MDA-MB-231, MDA-MB-

468, SUM159, SUM149 and Hs578t cells, the estrogen and progesterone receptor 

positive cell line MC7F cells and the HER2 overexpressing cell line SKBR3. Therefore, 

the cell lines used in this paper represent a diverse panel with a strong emphasis on triple-

negative breast cancers which we and others prioritize as needing new therapy options. I 

propose the following three aims to test my hypothesis using this panel of seven cell 

lines:  
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Figure 3. Breast cancer cells have varying sensitivity to decitabine. Cells were 

treated with increasing amounts of decitabine to determine the concentration of 

drug (nM) needed to kill 50% of the cells. (Thomas et al. unpublished data) 
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Aim 1: Identify whether the genes induced by decitabine treatment in 

various tumour cell lines correlate with their sensitivity to decitabine.   I will 

compare expression levels of known decitabine response genes in the panel of seven 

breast cancer cell lines. The panel of 8 genes that will be assessed include, 

hypermethylated tumor suppressor genes and interferon response genes. Using real-time 

quantitative polymerase chain reaction (RT-qPCR), gene expression levels will be 

compared in no treatment cells and cells treated with increasing amounts of the 

decitabine. The analysis of all seven cell lines cells will reveal the predominate class(es) 

of genes induced by decitabine at different doses and if sensitive versus resistant cell 

lines have differing responses.  

I hypothesize that induction of TSGs resurrects cell division regulation 

mechanisms within the cancer cells—the implication of this is that TSG induction should 

be observed in cell lines that are sensitive to decitabine.  

It was found that genes associated with the interferon response were upregulated 

in ovarian and colorectal cancer cell lines when treated with decitabine18. It is possible 

that this phenomenon exists in breast cancer cell lines, where decitabine-sensitive breast 

cancer cell lines induce interferon response genes. Therefore, I also hypothesize that 

decitabine-sensitive breast cancer cell lines may have upregulated interferon response 

genes after decitabine treatment. 

Aim 2: Investigate if replication rate determines breast cancer sensitivity to 

decitabine. Since decitabine incorporation is dependent upon DNA synthesis, a 

determining factor in sensitivity may be the cell division rate of the breast cancers. Cell 

lines that grow quickly should be incorporating decitabine at a higher rate than slowly 
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dividing cell lines. This means that the faster dividing breast cancer cell lines should be 

more sensitive to decitabine than the slower dividing breast cancer cell lines. Therefore, I 

will investigate the division of the seven cell lines, over four days, without decitabine 

treatment. This will reveal if cell division rate is correlated with decitabine sensitivity. I 

hypothesize that the faster growing cell lines will be more sensitive to decitabine than the 

slower growing cell lines.  

 Aim 3: Identify potential biomarkers to predict patient response. Expression 

levels of 16 genes implicated in decitabine import/export, processing and DNA de-

methylation will be examined. Non-treated cells will be collected and RNA isolated. 

qPCR will determine expression levels of these genes in seven different cells lines with 

varying sensitivity to decitabine. From analyses of the genes in untreated cells, I may be 

able to determine if high or low expression of uptake, export, drug processing and de-

methylation are important predictors of breast cancer sensitivity to decitabine. I 

hypothesize that cell lines with high expression of these genes will be more sensitive to 

decitabine treatment than cell lines with low expression of these genes. 

In conclusion, my aims are to identify factors which dictate decitabine 

sensitivity in breast cancer and to evaluate these factors as decitabine biomarkers. This 

should improve the application of this drug in breast cancer treatment and promote the 

development of a precision medicine approach when administering de-methylating 

therapies. Given the ongoing decitabine clinical trials in solid tumors and breast cancer, 

these findings will be very timely. 
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MATERIALS AND METHODS 

2.1 Cell Culture Conditions 

MDA-MB-468, MDA-MB-231, MCF7, SKBR3, SUM159, SUM149 and Hs578t 

cells were purchased from ATCC Cell Lines; these breast cancer cell lines were isolated 

by research groups (e.g., MD Anderson Cancer Center) from patients with breast cancer 

and licensed to ATCC for sale. These 7 cell lines were chosen for two main reasons. 

First, the status of estrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor-2 (Her2) differs among cell lines. Five of the seven cell 

lines are from “triple negative” breast cancers, while the MC7F is an ER and PR positive 

cell line and SKBR3 is a cell line with overexpression of HER2 (Table 1). Second, the 

selection of cell lines was also based on their colony-forming capacity—since colony-

forming ability was the metric by which decitabine sensitivity was measured 

(unpublished data; Thomas et al.), only cell lines with efficient colony formation were 

used in this study (Table 1). 
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Table 1. General description of seven breast cancer cell lines. Seven different types of  breast cancer 

cell lines, their hormone receptor status (eostrogen receptor (ER), progesterone recepetor (PR) and human 

epidermal growth factor receptor-2 (Her2)) and clinical data (patient age and race)38,39. 

Cell Line  Hormone Receptor Status      Clinical Data 

 ER PR Her2  

Hs 578t  - - - 74 years, Caucasian 

female 

 

MDA-MB-231  - - - 51 years, Caucasian 

female 

 

SUM159PT 

 

 - - - Not Available 

 

MDA-MB-468 

 

 

  

- 

 

- 

 

- 

 

51 years, Black female 

 

SUM149PT 

 

 

 - - - Not Available 

 

SKBR3 

 

 - - + 43 years, Caucasian 

female 

 

MCF7  + + - 69 years, Caucasian 

female 
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The MDA-MB-468, MDA-MB-231, MCF7 and SKBR3 cells were cultured using 

complete media which consisted of Dulbecco's Modified Eagle Media (DMEM; 2mM L-

glutamine, 4.5g/L D-glucose, and 25mM HEPES buffer; Gibco) with the addition of 10% 

fetal bovine serum (FBS; Invitrogen) and 1X antibiotic/antimycotic (AA; Gibco). Hs578t 

cells were cultured using DMEM with the addition of 10% FBS, 1X AA and 0.01mg/mL 

bovine insulin (Invitrogen). SUM159 and SUM149 cells were cultured using Ham’s F12 

Nutrient Mixture (F12; Gibco), 1X HEPES buffer (2-[4-(2-hydroxyethyl)piperazin-1-

yl]ethanesulfonic acid; Gibco), 1 µg/mL hydrocortisone (Invitrogen) and 5 µg/mL human 

insulin (Invitrogen). Cells were incubated with 5% CO2 at 37°C and subcultured/passaged 

using 0.05% (MDA-MB-468, MDA-MB-231, SKBR3, MCF7) or 0.25% (Hs578t, 

SUM159, SUM149) EDTA-trypsin (Invitrogen) (Table 2). All cell lines were cultured as 

suggested by the ATCC guidelines40. 
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Table 2. Cell culture conditions for the panel of seven breast cancer cell lines used in this study39-41. 

Cell Line Base Medium Additives Conditions Passaging 

 

MDA-MB-468 

 

DMEM 

 

10% FBS, 1X AA 

 

5% CO2 

 

0.05% EDTA-

trypsin 

 

MDA-MB-231 DMEM 10% FBS, 1X AA 5% CO2 0.05% EDTA-

trypsin 

 

MCF7 DMEM 10% FBS, 1X AA 5% CO2 0.05% EDTA-

trypsin 

 

SKBR3 DMEM 10% FBS, 1X AA 5% CO2 0.05% EDTA-

trypsin 

 

Hs578t        DMEM 10% FBS, 1X AA, 
0.01 mg/mL bovine 

insulin 

5% CO2 0.25% EDTA-

trypsin 

 

SUM159        F12 10% FBS, 1X AA, 

1X HEPES buffer, 

1 µg/mL 

hydrocortisone 

5 µg/mL human 

insulin 

 

5% CO2 0.25% EDTA-

trypsin 

SUM149       F12 10% FBS, 1X AA, 

1X HEPES buffer, 

1 µg/mL 

hydrocortisone 

5 µg/mL human 

insulin 

5% CO2 0.25% EDTA-

trypsin 
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Cells were thawed from previously frozen stocks, cryopreserved in appropriate 

media with 5% dimethyl sulfoxide (DMSO) and then kept in liquid nitrogen (Sigma). 

Thawed samples were revived on 10cm cell culture-treated plates (Corning) with 

approximately 12mL of the appropriate media; 24hrs post-thawing, the media was 

refreshed. Cells were passaged once the plate reached 80% confluency; depending on 

growth rate of the specific cell line, passaging occurred every 3-6 days. To ensure 

adequate growth conditions were maintained, media was refreshed every third day if the 

plate was not yet ready to be passaged. To complete the experiments outlined below, cell 

lines were cultured for a maximum of two months (or 10-20 passages). After two months, 

cells were discarded and a new frozen stock was thawed.  

2.2 Quantifying Growth Rate of Breast Cancer Cells 

Day 1: From an 80% confluent 10cm cell culture plate, the monolayer of cells 

was rinsed twice with phosphate buffer saline solution (PBS, pH=7.4; Invitrogen) and 

dissociated using the corresponding concentration of trypsin- EDTA (Table 2). Cells 

were collected and a 10µL representative sample was quantified using 0.4% Trypan Blue 

Solution and a Bright-Line Hemacytometer (Gibco) which facilitates the counting of cells 

with the use of grids. The number of cells per milliliter was then calculated using 

Equation 1:  

Equation 1. Calculation of cells/mL from a representative sample. 

 

The appropriate number of cells were then placed on a cell-cultured treated 6-well plate 

(Corning) with triplicate technical replicates and 2 mL of the corresponding, fresh media 

was added (Table 1,3). 
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Table 3. Cells seeded per well for seven breast cancer cell lines. Cells are seeded at different 

concentrations since growth rates vary between cells lines; similar confluence was reached after three days 

of growth. 

Cell Line Cells Seeded per Well on Day 1 

MDA-MB-468 50, 000 

MDA-MB-231 50, 000 

MCF7 100, 000 

SKBR3 100, 000 

Hs578t 200,000 

SUM159 25, 000 

SUM149 100, 000 
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Day 4: After three days of growth, cells were washed, trypsinized, and counted 

using the methods outlined for Day 1. Using the number of cells seeded and the number 

of cells counted after three days, a natural growth rate can be calculated using Equation 2:  

Equation 2. Calculation of division rate. 

Division Rate =  

To determine the number of cell divisions per day, division rate was divided by the 

number of days the cells grew (4 days). 

2.3 Determining Expression of Decitabine-Associated Genes 

Two possible “downstream effects” of decitabine, tumor suppressor gene (TSG) 

induction and the interferon response were evaluated as potential indictors of decitabine 

sensitivity in a panel of seven breast cancer cell lines. There has been evidence to show 

that 1μM decitabine (the dose recommended by most of the decitabine cancer literature) 

is toxic and results in the death of cells that may have induced potential sensitivity 

genes36. If this is the case, then measuring gene expression changes in the surviving cells 

will generate deceptive data where gene expression levels are not changing as a result of 

decitabine’s de-methylating effect. To eliminate this possible error in interpretation of 

gene expression data, a sub-cytotoxic dose (unpublished data; Thomas et al.) of 

decitabine (0.01μM) was included in both analyses. 

Each breast cancer cell line was seeded in a 6-well plate (with the cells seeded per 

well value given above in Table 3), allowed to adhere for 24 hours and then either treated 

with fresh media, 0.01 µM or 1µM decitabine (DAC; Sigma) for 72 hours, refreshing the 
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media daily. The media was then suctioned off and cells were detached/re-suspended in 

1mL of TRIzol (Invitrogen) per sample.  

RNA was extracted using the PureLink RNA MiniKit (Life Technologies) as per 

the manufacturer’s guidelines. RNA was quantified by measuring absorbance at 260nm 

with a SpectraMax Microplate Reader technologies using SoftMax Pro software. 

Complementary DNA (cDNA) was made by reverse transcribing 0.25μg of RNA using 

iScript RT Supermix (BioRad) as per manufacturer’s guidelines.  

Using gene specific primers (Table 3), cDNA was amplified using SYBR Green 

Supermix (BioRad) in a CFX96 RT-qPCR thermocycler (BioRad). Primer specificity was 

ensured through PrimerBLAST analysis (NCBI) where primers associated exclusively 

with the genes of interest were designed (Supplemental Methods 1). In addition, only 

primers with melt curves indicating a single amplified product were used; it is therefore 

unlikely that this product is anything other than the gene interest. The efficiency of each 

primer was determined via standard curve analysis (Supplemental Methods 2).  

Real-time qPCR (RT-qPCR) measures the PCR product after each round of 

amplification via a fluorescent dye (SYBR green) that attaches itself directly or indirectly 

to the accumulating DNA molecules. During each cycle of the reaction, fluorescence 

values are recorded. These values are directly proportional to DNA concentration. The 

threshold values are the points at which the fluorescence is first detected above a set 

threshold fluorescence and is proportional to the amount of starting cDNA of the gene of 

interest. Cycle threshold (Ct) values were collected and analyzed using the CFX Manager 

Software (BioRad). Two qPCR analyses were performed: 1) expression of decitabine-

inducible genes (Table 4; relative to no treatment control for each individual cell line) 
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and 2) expression of decitabine processing, transport and de-methylation genes (Table 4; 

comparing no treatment samples between the seven cell lines). 

To measure expression of decitabine-inducible genes, qPCR procedures as 

outlined above were used. Expression was normalized by using glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and B2M (Beta-2-microglobulin) as reference genes 

that were chosen because the expression of these two genes does not change with 

decitabine treatment2. Prior to statistical analysis, the normalized expression of the 

decitabine-inducible genes was standardized relative to the expression of these genes in 

the untreated sample of each cell line.  

 Expression of decitabine processing, transport and de-methylation genes was also 

normalized to GAPDH and B2M as reference genes.  
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Table 4. qPCR primer sequences of genes analyzed. qPCR primer sequences for decitabine processing, 

transport, de-methylation genes, hypermethylated tumor suppressor genes, and interferon response genes. 

Association Gene Name Primer Sequence 

 

 

 

 

 

Import/Export 

 Forward Reverse 

Solute carrier family 

29 member 1 
(SLC29A1) 

 

ATGACAACCAGTCAC

CAGCC 

GTTCCCAGACCCAG

CATGAA 

Solute carrier family 

28 member 1 

(SLC28A1) 

AAGGGTGTTTGGAAA

GGAGGT 

CCCAGATGATGTGC

CGAAGA 

Multi-drug Resistance 

1 (MDR1) 

 

GAGAGATCCTCACCA

AGCGG 

ATCATTGGCGAGCC

TGGTAG 

 

 

 

 

Decitabine 

processing 

Deoxycytidine kinase 
(DCK) 

AGAAGCTGCCCGTCT

TTCTC 

GCAGCGATGTTCCC

TTCGAT 

Cytidine/uridine 

monophosphate kinase 

1 

(CMPK1) 

TCTCCTCTGCTCTCC

ACGTC 

GCAGAAAGGTGTGT

GTAGCC 

Nucleotide 

diphosphate kinase A 

(NME1) 

ATCGTCTTTCAAGGC

GAGGG 

CCCCATCTGGTTTG

ATCGCA 

Nucleotide 

diphosphate kinase B 

(NME2) 

GACCGACCATTCTTC

CCTGG 

TTGGTCTCCCCAAG

CATCAC 

Cytidine aminase 
(CDA) 

ATCGCCAGTGACATG

CAAGA 

GTACCATCCGGCTT

GGTCAT 

 

 

 

 

 

 

 

 

De-Methylation 

Proliferating cell 

nuclear antigen 
(PCNA) 

AGGTGTTGGAGGCAC

TCAAG 

CCAAAGAGACGTGG

GACGAG 

E3 ubiquitin-protein 

ligase (UHRF1) 

GACAAGCAGCTCATG

TCGATG 

AGTACCACCTCGCT

GGCATCAT 

tet methylcytosine 

dioxygenase 1 (TET1) 

CCCTCCTCTCCACCT

AACCA 

TACCAGGCAATGTT

GGCAGT 

tet methylcytosine 

dioxygenase 2 (TET2) 

TTGGATACACCTGTC

AAGACTCAAT 

ACGCCATGTGTCTC

AGTACATT 

 tet methylcytosine 

dioxygenase 3 (TET3) 

CCTCGGAGTTGGGAC

TCACT 

GGACCTGCCAGGCC

TTTATG 

DNA 

methyltransferase 1 

alpha (DNMT1A) 

CGGCCTCGTCATAAC

TCTCC 

TGAACCGCTTCACA

GAGGAC 

DNA 

methyltransferase 3 

beta 
(DNMT3B) 

TGTGGGGAAAGATCA

AGGGC 

ATGCCAGACATAGC

CTGTCG 
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TNF receptor 

associated factor 6 
(TRAF6) 

GCGCACTAGAACGAG

CAAG 

GCCACACAGCAGTC

ACTTTC 

 

 

 

Tumor 

Suppressor 

Gene Induction 

Ras association 

domain family 

member 1 (RASSF1A) 

ACAAGGGCACGTGAA

GTCAT 

AAAGAGTGCAAACT

TGCGGG 

runt related 

transcription factor 

3 (RUNX3) 

CTTTGGGGACCTGGA

ACGG 

TTCCGAGGTGCCTT

GGATTG 

BRCA1, DNA repair 

associated 

(BRCA1) 

GGAAGAAACCACCAA

GGTCCA 

GACACCCTGTGGGC

ATGTT 

cadherin 1 

(CDH1) 

GGAGAGCGGTGGTCA

AAGAG 

AGTCCTGGTCCTCT

TCTCCG 

 

 

 

 

Interferon 

Response Genes 

interferon regulatory 

factor 7  

(IRF7) 

GTGGACTGAGGGCTT

GTAG 

TCAACACCTGTGAC

TTCATGT 

2'-5'-oligoadenylate 

synthetase like (OASL) 

GCAGAAATTTCCAGG

ACCAC 

CCCATCACGGTCAC

CATTG 

ISG15 ubiquitin-like 

modifier 
(ISG15) 

GCCTCAGCTCTGACA

CC 

CGAACTCATCTTTG

CCAGTACA 

retionic acid- inducible 

gene 1 (RIG1) 

CCAGCATTACTAGTC

AGAAGGAA 

CACAGTGCAATCTT

GTCATCC 
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2.4 Statistics 

All graphs were made using GraphPad Prism 5 Software. Growth rate (as 

calculated above) significance was determined via one way ANOVA tests and individual 

relationships analyzed via a Tukey’s multiple comparison test. Changes in gene 

expression between cell lines and treatments are analyzed via one-way ANOVA and 

multiple comparisons assessed via Dunnett’s post-hoc test. Stars indicate the strength of 

the relationship (p<0.05*, p<0.01**, p<0.001***). 
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RESULTS 

3.1 Tumor Suppressor Gene and Interferon Response Gene Induction 

It was hypothesized that induction of TSGs resurrects cell division regulation 

mechanisms within the cancer cells—the implication of this is that TSG induction should 

be observed in cell lines that are sensitive to decitabine. Therefore, I predicted that 

expression of TSGs in decitabine-sensitive cell lines (ex. MDA-MB-468) may be 

upregulated upon decitabine treatment. Four TSGs that were identified by comparing 

methylation status between normal and cancerous breast tissue were selected to be 

studied.  

   None of the four tumor suppressor genes (TSGs); RASSF1, RUNX3, BRCA1 and 

CDH1 were induced upon 0.01μM or 1μM decitabine treatment in the most sensitive cell 

line (Figure 4, F2,4=4.598, p=0.82). Surprisingly, 1μM decitabine treatment induced two 

TSGs (RUNX3 and CDH1) in the most resistant cell line, SUM159 (Figure 4B, D, 

F2,4=19.96, p=0.01). RUNX3 normally encodes a transcription factor that can activate or 

supress transcription which is often silenced in cancer. CHD1 encodes an important 

calcium-dependant- cadherin protein42.Using a one-way ANOVA and a Dunnett’s 

Multiple Comparisons Test it was determined that no other TSGs were upregulated in 

any of the other six cell lines upon 1μM or 0.01μM decitabine treatment (Figure 4).  
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Figure 4. The induction of four known TSGs by decitabine (DAC) in seven breast cancer cell 

lines in order from left to right (most sensitive to most resistant). Significance determined via 

one-tailed ANOVA and individual relationships determined via Dunnett’s Multiple Comparisons 

Test. Error bars represent 95% confidence intervals (CI), n=6, **p<0.001, ***p<0.0001. 
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Chiappinelli et al. (2015) reported that cancer cells undergo apoptosis when 

treated with demethylating agents via the interferon response which triggers the immune 

system18. They found that genes associated with the interferon response were upregulated 

in ovarian and colorectal cancer cell lines when treated with decitabine. It is possible that 

this phenomenon exists in breast cancer cell lines, where decitabine-sensitive breast 

cancer cell lines induce interferon response genes. 

Each gene selected for study has been implicated differently in the interferon 

response. IRF7 encodes for an interferon regulatory transcription factor which controls 

the transcriptional activation of virus-associated genes. ISG15 encodes a ubiquitin-like 

protein that targets intracellular proteins. RIGI encodes a RNA helicase that can alter the 

structure of the RNA itself. Lastly, OASL is a protein coding gene that is need for proper 

immune signalling42. I predicted that these genes would increase in expression upon 

decitabine treatment in the most sensitive cell line. Instead, all four interferon response 

genes (IRF7, ISG15, RIGI, OASL) were induced in the most resistant cell line, SUM159 

(Figure 5, F2,4=39.54, p<0.0001) after 1μM decitabine treatment.  

Through Dunnett’s Multiple Comparisons Test it was found that two cell lines 

that are intermediately resistant (SKBR3) and sensitive (MCF7) induced one interferon 

response gene each upon addition of 1μM decitabine. An increase in IRF7 expression 

was observed in the MCF7 cell line whereas an increase in the expression of RIGI was 

observed in the SKBR3 cell line upon 1μM treatment (Figure 5A/D.). No other cell lines 

showed increases in any interferon response genes after either 0.01μM or 1μM decitabine 

treatment. No significant differences were detected in any breast cancer cell lines after 

0.01μM decitabine. 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The induction of four known interferon response related genes by decitabine 

(DAC) in seven breast cancer cell lines in order from left to right (most sensitive to most 

resistant). Significance determined via one-tailed ANOVA and individual relationships 

determined via Dunnett’s Multiple Comparisons Test. Error bars represent 95% confidence 

intervals (CI), n=6, *p<0.05 **p<0.001, ***p<0.0001. 
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3.2 Growth Rates of Breast Cancer Cell Lines 

For decitabine to be effective, it must be incorporated into the DNA as a cytosine 

analog. This process is dependent on DNA synthesis which occurs before cellular 

division. Therefore, faster growing cell lines should be incorporating decitabine at a 

higher rate than slowing dividing cell lines. It was found that growth rates differed 

between the seven breast cancer cell lines through a one-tailed, one-way ANOVA (Figure 

6, F7,3=36.41, p<0.0001). The fastest growing cell line, SUM159 has a growth rate of 

about 0.94 replications per day whereas the slowest growing cell line has a growth rate of 

approximately 0.12 replications per day (Figure 6A). The fastest dividing cell lines 

(SUM159, MDA-MB-468) represent the most sensitive (MDA-MB-468) and the most 

resistant (SUM159) breast cancer cell lines in the panel studied. The growth rates of the 

cell lines do not correlate with the previously observed sensitivities (Figure 6B, r= -0.25, 

p=<0.0001). 
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Figure 6. Growth rates of seven breast cancer cell lines and their correlations with the 

concentration of decitabine needed to kill 50% of the cells (IC50). A) Replication rate 

(replication/day) day 4 NT; Error bars represent 95% CI, n=4, p<0.0001. B) Correlation analysis of 

non-linear regression, r2= 0.00093. 
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3.3 Induction of Genes Associated with Decitabine’s “Upstream” Mediators 

 

To begin to use decitabine effectively, it is essential to develop “biomarkers” that 

allow a clinician to predict if a patient would benefit from treatment. To test the 

predictive value of decitabine’s “upstream” mediators, expression levels of genes 

associated with 1) import/export, 2) processing, and 3) de-methylation were analyzed 

without decitabine treatment. 

It was found that SLC29A1 and MDR1 genes which are associated with the import 

and export of decitabine were not able to accurately predict sensitivity of the seven breast 

cancer cell lines used in this study (Figure 7). Spearman’s correlational analysis revealed 

non-significant, weak correlations between the SLC29A1 and MDR1 genes (Figure 7B/C, 

r= -0.03, p= 0.9, r= -0.14, p=0.78). Interestingly, the SLC28A1 gene has a stronger 

correlation but is not significant (Figure 7A, r= -0.77, p=0.18). It should be noted that the 

most resistant breast cancer cell line, SUM159 had such low levels of SLC29A1 that is 

was not detectable. 
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Figure 7. Expression of genes implicated in decitabine import/export correlated with breast 

cancer cell line sensitivity. IC50 represents the concentration of drug needed to kill 50% of cells; 

log transformations of these values are used as a measure of sensitivity. Spearman’s correlational 

analysis was used to determine significance of non-normally distributed data, n=6. A) r2= 0.23, B) 

r2= 0.01, C) r2=9.2x10-5. 
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Genes associated with the processing of decitabine yielded similar results (Figure 

8). The DCK, CMPK1 and NME1 genes have relatively large Spearman’s correlations, 

but none of them are significant (Figure 8A, r= 0.71, p= 0.08; 8B, r=0.57, p= 0.2; 8D, r= 

0.42, p=0.35). The DCK gene produces the strongest, negative correlation in relation to 

all the other processing-related genes (Figure 8A). The other two processing genes which 

are CDA and NME2 produce weak correlations and are not significant (Figure 8C, r= 

0.21, p= 0.66; 8E, r=-0.21, p = 0.65).  
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Figure 8. Expression of genes related to decitabine processing correlated with seven breast 

cancer cell lines. IC50 represents the concentration of drug needed to kill 50% of cells; log 

transformations of these values are used as a measure of sensitivity.  Spearman’s correlational 

analysis was used to determine significance of non-normally distributed data, n=6. A) r2= 0.37, B) r2= 

0.26, C) r2=0.01, D) r2=0.18, E) r2=0.16. 
 
Figure 9. Expression of genes related to decitabine de-methylation correlated with seven breast 

cancer cell lines. IC50 represents the concentration of drug needed to kill 50% of cells. Spearman’s 

correlational analysis was used to determine significance of non-normally distributed data, 

n=6.Figure 10. Expression of genes related to decitabine processing correlated with seven breast 

cancer cell lines. IC50 represents the concentration of drug needed to kill 50% of cells. Spearman’s 

correlational analysis was used to determine significance of non-normally distributed data, n=6. A) 

r2= 0.37, B) r2= 0.26, C) r2=0.01, D) r2=0.18, E) r2=0.16. 
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Eight genes associated with de-methylation were assessed and correlated with 

decitabine sensitivity of seven breast cancer cell lines. It was found that TET3, DNMT1A, 

DNMT3B and TRAF6 had the strongest correlations but none of them were significant 

(Figure 9E, r= -0.42, p= 0.9; 9F/G, r= -0.5, p=0.26; 9H, r= -0.39, p= 0.39). The other four 

genes; PCNA, UHRF1, TET1 and TET2 all had very weak correlations that also were not 

significant (Figure 9A/B, r= -0.14, p= 0.78; 9D, r= -0.07, p= 0.90; 9C, r= 0, p= 0.75).  
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Figure 9. Expression of genes related to decitabine de-methylation correlated with seven breast 

cancer cell lines. IC50 represents the concentration of drug needed to kill 50% of cells; log 

transformations of these values are used as a measure of sensitivity. Spearman’s correlational analysis 

was used to determine significance of non-normally distributed data, n=6. A) r2= 0.08, B) r2= 0.01, C) 

r2=0.0008, D) r2=0.02, E) r2=0.23, F) r2=0.19, G) r2=0.23, H) r2= 0.1467 
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DISCUSSION 

4.1 Tumor Suppressor Genes and Decitabine Sensitivity in Breast Cancer 

Loss of tumor suppressor gene expression is associated with the development of 

breast cancer41. Hypermethylation in the promotor region of tumor suppressor genes 

(TSGs) has been established as an important event for gene inactivation in breast 

cancer—and almost every tumor type43.These types of methylation events occur genome- 

wide and identifying which ones are important for tumorigenesis has been a difficult task 

for researchers43. Initial studies identifying hypermethylated tumor suppressor genes 

compared normal tissue to cancerous tissue to reveal differentially methylated cancer-

associated regions. The conclusion was that genes which are hypermethylated in cancer 

tissue but not in normal tissue, must be important in cancer development and progression 

and were putatively identified as TSGs. Four commonly accepted hypermethylated TSGs 

(RASSF1, CDH1, BRCA1 and RUNX3) were identified using this method and were used 

as representative members of TSG in breast cancer in the current study. 

With the development of de-methylating agents for cancer therapy, it was 

assumed that re-expression of these hypermethylated TSGs was a key indicator that the 

new de-methylating drugs were effective. It was a popular hypothesis that the 

responsiveness of patients resulted from the re-expression of these hypermethylated 

TSGs44. To evaluate TSG induction and its role in determining sensitivity, researchers 

began to look at established, functional TSGs and whether they were methylated45. 

However, the hypothesis that re-expression of these known TSGs contributed to de-

methylating agent response was never tested. In fact, initial clinical trials with these drugs 

found that tumors that did respond, did not increase expression of these well-known 
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TSGs. So, while there is conjecture in the literature that induction of TSGs contributes to 

decitabine sensitivity, this has not yet been shown in a solid tumor model.  

If TSG induction does indicate sensitivity, the most sensitive breast cancer cell 

lines should induce known TSGs upon decitabine treatment. Contrary to our hypothesis, 

the most resistant cell line, SUM159 induced two TSGs (RUNX3, CDH1), while none of 

the TSGs were induced in any other cell line (Figure 4). Like other studies, it was found 

that induction of TSGs (e.g. p15) was not indicative of sensitivity to decitabine46. There 

are three main reasons that explain this finding; 1) evaluating individual genes is not 

robust enough to explain overall TSG induction, or 2) the TSGs evaluated are not the 

main contributors to de-methylating therapy response or, 3) changes to the epigenomic 

machinery itself have a greater impact on decitabine sensitivity than TSGs. 

  It is possible that the induction of multiple TSGs is needed to influence 

sensitivity, and that examining individual genes is not robust enough to capture the 

interplay of overall TSG induction. The de-methylating effects of decitabine cannot be 

limited to specific genes of interest; its treatment can affect any hypermethylated gene in 

fast proliferating cells47. The present study analyzed the change in expression of four 

TSGs; the cumulative effect of multiple TSGs (which may have been changed upon 

decitabine treatment) was not assessed. Therefore, the induction of these four, individual 

TSGs was perhaps not sufficient to indicate a response to decitabine, and additional TSGs 

should be studied. 

Using a gene expression profile composed of many TSGs, we may be able to 

accurately predict sensitivity to decitabine. However, this strategy will not work if the 

selected TSGs are not the key mediators in de-methylating agent responsiveness. The 
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four used in this study (RASSF1, RUNX3, BRCA1, CDH1) — which were identified by 

comparing DNA methylation of normal versus cancerous tissue — may not be the main 

hypermethylated TSGs necessary for breast cancer development. It is therefore necessary 

that future studies should include alternative TSGs that were not identified in this way. In 

addition, the use of more TSG This will aid in the process to find the most influential 

TSGs which dictate decitabine response.  

Perhaps TSG induction is not the main contributor that influences decitabine 

response, but instead the changes to the epigenomic machinery itself are the key 

epigenomic events. With thousands of epigenetic events occurring during cancer 

development, it is difficult to understand the exact mechanisms by which a cancer cell 

develops epigenetic abnormalities, and which of these are most important48. Initial 

alterations to the epigenomic machinery create an accumulation of aberrant changes 

which occurs earlier on in cancer growth48,49. It could therefore be reversal of these early 

unknown epigenetic events which would more clearly indicate a response to decitabine.  

4.2 Interferon Genes and Decitabine Sensitivity in Breast Cancer 

Interferons are proteins that are released in response to virus entry into the cell18. 

In breast cancer, the presence of interferon inducible genes such as guanylate binding 

protein (GBP) have been associated with better prognosis for fast proliferating tumors as 

it seems to be a marker for an efficient T-cell response51. Immunotherapy, or enhancing 

the immune system’s anti-cancer response is an increasingly popular anti-cancer 

strategy52. Pharmacological methods for improving the immune system’s anti-cancer 

response are highly sought after, and decitabine has been suggested as such an agent. 
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Endogenous retroviral elements (ERVs) are viral elements in the human genome 

that closely resemble retrovirsues18. ERVs are usually hypermethylated in human tissue 

and de-methylation via decitabine treatment induces their expression. ERVs stimulate the 

transcription of immune response genes which trigger an interferon response leading to 

cancer cell death18. Although the idea of using interferons in cancer therapy has been 

established for some time, this specific anti-cancer mechanism was not suggested until 

recently18. Four known interferon genes (IRF7, OASL, RIGI, ISG15) were used to 

determine if interferon response indicates sensitivity. Similar results were found for the 

interferon response as was for TSG induction; the most resistant cell line, SUM159 

showed significant induction of all four interferon genes.  

The interferon response is still relatively poorly understood in relation to 

decitabine treatment. Although the pathway is clear, the timing and types of cells that 

respond remain unknown18. The genes IRF7 and OASL are well-established in the 

interferon response and both genes were induced upon decitabine treatment in some 

epithelial ovarian cancers (EOCs)13. When IRF7 is “knocked-down” in these cell lines, 

the observed interferon response is reduced signifigantly13. In the ovarian cancer cells, 

the interferon response was somewhat delayed and significant induction of IRF7 and 

OASL was not observed until seven to ten days after decitabine treatment. In the current 

breast cancer study, expression was analyzed immediately after 72 hours of decitabine 

treatment. It is possible that induction of IRF7 and OASL may be occurring in other cell 

lines, but only after a significant delay (similar to the ovarian cancer study)18. Therefore, 

we were not able to replicate the results of this study using a breast cancer model either 
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because induction of these genes is time dependent or because these genes are not the 

main mediators of the interferon response.  

It is possible that the interferon genes are observed in the response of the EOC 

cell lines to decitabine only because these cells have a hypermethylated IRF7 gene. De-

methylation of this gene and not the induction of ERVs could be driving the interferon-

related decitabine response. The observed increase in expression of the IRF7 gene in the 

SUM159 breast cancer cell line could be due to de-methylating effects rather than the 

expression of ERVs; and IRF7 does not have a functional role in decitabine sensitivity.  

4.3 Growth Rates 

Most chemotherapies work by targeting quickly proliferating cells51,57. Decitabine 

also abides by these rules and must be incorporated into the DNA as a cytosine analog to 

be effective. Although many studies have shown that decitabine treatment decreases 

tumour growth, no one has quantified the importance of natural proliferation rates to 

sensitivity before this study53-57. It was hypothesized that faster proliferating cell lines 

would incorporate decitabine more quickly and therefore these cell lines would be more 

sensitive. It was first established that the seven breast cancer cell lines had different 

proliferation rates (Figure 6). Overall, no correlation was found between sensitivity and 

growth rate. Surprisingly, growth rate does correlate with sensitivity in all the cell lines 

except for the most resistant, SUM159. This indicates that importing decitabine into the 

cell and incorporating it into the DNA is in fact a vital step of its effectiveness. The 

SUM159 cell line may not follow this pattern because of an over-powering resistance 

mechanism.  

 



50 

 

4.3 Identifying Potential Biomarkers 

To use any chemotherapy more effectively, it is advantageous to predict which 

patients will respond before the treatment is administered. To do this, we must 

understand the biology behind why they are responding. To efficiently use decitabine as a 

cancer therapeutic, the development of “biomarkers” of this drug are essential. In other 

words, indicators from patients need to be identified to tailor therapy to individual patient 

cases. One way to begin the implementation of this type of treatment is to look for 

potential biomarkers of drug response. This project evaluated representative members of 

three classes of genes which include 1) import/export, 2) processing of decitabine, and 3) 

de-methylation. We hypothesized that patients who have high expression of the genes 

necessary for decitabine import/export, processing and de-methylation would be more 

sensitive to the drug. Therefore, our most sensitive cell line should have high expression 

of the genes associated with this process. It was found that most of the 16 genes 

evaluated could not predict sensitivity in either of the seven cell lines evaluated (Figure 

7-9). More specifically, most genes selected for import/export, processing and de-

methylation were not correlated with the sensitivities of the seven cell lines used. Most of 

their individual effects were not sufficient to have predictive value. However, it was also 

found that the expression of four genes showed strong correlations and at least one gene 

from each functional category was correlated with decitabine sensitivity.  

I found that the import/export gene SCL28A1 was negatively correlated with 

decitabine sensitivity. The product of this gene, which is a sodium-coupled nucleoside 

transporter is important in transporting decitabine into the cell; therefore, high expression 

indicates increased decitabine uptake and increased sensitivity to this drug (Figure 7A). 
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This transporter efficiently transports nucleosides, so we predicted that this transporter 

would import decitabine (a cytosine analog) efficiently. Other members of this family, 

like the SLC29A1 have lower affinity for nucleotide-like compounds explaining the lack 

of correlation found in this study58. These findings have been replicated in many other 

decitabine-related studies showing that high levels of these transporters contribute to 

increased decitabine sensitivity in AML and non-small cell lung cancer59-61. However, 

this has never been reported in breast cancer. Interestingly, the degree of sensitivity 

predicted by transport levels can be influenced by levels of DCK61. 

I also found that the DCK gene correlated with decitabine sensitivity. This finding 

has been reported in other cancers such as pancreatic cancer62. This is not surprising 

given that its protein product, the deoxycytodine kinase enzyme, is required for 

phosphorylation of cytidine. In addition, DCK has been reported as a rate determining 

step in molecular processing, therefore more DCK leads to more efficient decitabine 

processing and incorporation62. However, the direction of the correlation found in the 

breast cancer model differed from other studies62. In breast cancer, as expression of this 

gene increases, so does resistance of the breast cancer cells. For some reason, that has yet 

to be understood, this gene may contribute to decitabine resistance. Perhaps the enzyme 

has higher specificity for cytosine-like molecules and will preferentially process the 

cytosine molecule rather than its analog.  

Lastly, I found that both DNMT1A and DNMT3B are negatively correlated with 

decitabine sensitivity. Since these genes transcribe the proteins that catalyze the addition 

of a methyl group onto the promotor region, and are directly inhibited by decitabine, it is 

logical to predict that increased expression of these genes produces less resistance. 
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Perhaps cell lines with high expression of DNMTs rely much more on their functioning 

than cell lines that have low expression of DNMTs. When decitabine degrades them, it is 

possible that the cell lines with high expression are effected more because of their 

dependency on DNMT function. Alternatively, a clinical trial which was conducted to 

assess decitabine’s effectiveness as a treatment for AML did not find a correlation 

between DNMT1A levels and patient response62. However, this study had a sample size 

of only three which limits the generalizability of their result.  

Identifying these four genes that are potentially important in predicting patient 

responsiveness contributes to our understanding of how decitabine works and which 

patients will benefit from its use. To further understand the effects of these four genes 

(SCL28A1, DCK, DNMT1A, DNMT3B) “knock-down clones” will be made in the breast 

cancer cell lines to study the direct effect of these genes on decitabine response. Treating 

these “knock-down” cell lines with decitabine will allow us to assess the gene’s direct 

effect on cellular growth.  

4.4 Future Directions 

The goal of this study was to predict which breast cancer patients would respond 

to the de-methylating agent decitabine, based on its mode-of-action. It is now clear that to 

accurately predict response the influence of multiple genes must be considered as many 

of the factors currently studied, affect each other. 

For example, proliferation rate, although important for decitabine incorporation, is 

not the main contributor of sensitivity in breast cancer possibly because a combination of 

effects like import and export of the drug and incorporation which, work together to 

decrease growth rate or initiate apoptosis44. The rate of decitabine uptake has been 



53 

 

significantly correlated with the amount of decitabine incorporated into cancer cells. This 

suggests that these two processes work in coordination to ensure decitabine’s 

effectiveness within the cell44. In addition to this, the rate of decitabine incorporation has 

not been found to be genotoxic in myeloid leukemias which do in fact benefit from 

decitabine treatment44. Instead, other anti-cancer mechanisms of decitabine can occur 

because of the incorporation. In other words, a cascade of events such as TSG induction 

and the interferon response may be triggered after decitabine is incorporated into the 

cell44. Accurately predicting responsiveness to this drug, needs a holistic approach where 

multiple factors are taken into consideration. 

The next step would be to look at the influences of the large classes of genes such 

as tumor suppressors and interferon genes as well as all the incorporation, processing and 

de-methylating genes simultaneously. Most clinical tests involve more than one gene so it 

is possible that finding a pattern instead of a marker may be a powerful approach.  

Overall, the evolution of our search for indicators of decitabine response reflects 

the same process used in epigenetic research in general. Initially, the role and function of 

specific genes are analyzed leading to a more comprehensive understanding of how these 

factors interact with each other and what variables are most important. We are still at the 

beginning of understanding how decitabine works and which aspects influence sensitivity 

and responsiveness. The current study has helped to find what aspects of decitabine’s 

mode-of-action are important in determining sensitivity in breast cancer cells. So far, 

there have been studies that used a single cell line treated with decitabine to understand 

what cellular pathways are altered by decitabine. These types of studies are important in 

understanding decitabine’s effects but not at assigning importance to any individual 
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pathway. By using a variety of cell lines with different sensitivities, we could observe the 

differences among cell lines in relation to how decitabine works. In the future, a 

microarray on all the different cell lines would allow us to look for larger differences in 

gene expression instead of focusing on three very specific hypotheses. 

So far, there is no clear answer to what factors are indicative or predictive of 

decitabine sensitivity. This fact simply underlines the complex nature of this drug and the 

need for further research to understand the biology of breast cancer epigenetics. Doing so 

will allow us to more efficiently and effectively treat breast cancer patients based on their 

individual tumor characteristics.  
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Supplemental 

 

1 Primer Design Protocol  

1. Go to: http://www.ncbi.nlm.nih.gov/ 

 

2. Search your gene of interest (our example is COL16A1). When making primers, 

you are looking for the nucleotide sequences on the database. 

 
 

3. Select for human sequences only: 

 
 

4. Select for mRNA sequences only: 

 
 

5. The resulting list will contain several things 

  

http://www.ncbi.nlm.nih.gov/
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a) Known mRNA sequences. There may be several transcript variants 

depending on the exon splicing etc. 

 
b) Predicted sequences that have not been confirmed. The “x” before 

transcript variant indicates that it is an unconfirmed mRNA sequence. 

There are 11 potential transcript variants for COL16A1 here.  

 
 

6. Click on a known mRNA. CtrL+F for “cds” and find those two number to the side 

of it. This is the coding sequence. Write these down or Ctrl+C 

 
 

7. On the left panel of options click “Pick Primers”: 

 
 

8. On PrimerBlast your accession code will already be entered if you followed the 

previous steps. You can Ctrl+V in the FASTA code from your gene of interest. 

Enter your cds values to find primers within the coding region. 

 
 

9. Set your PCR product length and melting temperature. For QPCR it should be 

between 75-125 bases in size. Limit the temp to 1C around optimal temperature 

of 60C with a max difference between forward and reverse primers of 0.5C. 
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10. Select GO. 

 

11. You will then get a list of potential primers. Check that the primer on your 

intended target is fully matched with the template. 

 
 

12. Below your intended targets are potentially unintended targets. It is important to 

check that your intended targets are ONLY YOUR GENE OF INTEREST- these 

can be predicted or known splice variants. If there are unintended hits, it’s better 

to move down the list of primer pairs to see if you have a more specific primer 

set.  

 
13. Save the primer sequences (distinguish F and R) and order. 
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2 Primer Efficiency  

Primer efficiencies determined via standard curve analysis: 

Gene Efficiency (%) 

BRCA1 99.5 

CDA 124.7 

CDH1 126.7 

CMPKI 92.2 

CTPS 121.6 

DCK 87 

DNMT1 109.1 

DNMT3B 108.0 

IRF7 98.5 

ISG15 82.7 

MDR1 99.5 

NME1 82.7 

NME2 89.2 

OASL 89.9 

PCNA 100.5 

RASSF1 110.1 

RIGI/DDX58 106.2 

RUNX3 104.9 

SLC28A1 106.2 

SLC29A1 100.0 

TET1 124.5 

TET2 116.9 

TET3 90.1 

TRAF6 107.2 

UHRF1 97.1 

 

 
 

 

 


