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Extracellular DNAses Facilitate Antagonism and Coexistence in
Bacterial Competitor-Sensing Interference Competition

Aoi Ogawa,c Christophe Golé,b Maria Bermudez,a Odrine Habarugira,a Gabrielle Joslin,a Taylor McCain,a Autumn Mineo,a

Jennifer Wise,a Julie Xiong,a Katherine Yan,a Jan A. C. Vriezena

aDepartment of Biological Sciences, Smith College, Northampton, Massachusetts, USA
bDepartment of Mathematical Sciences, Smith College, Northampton, Massachusetts, USA
cDepartment of Statistics and Data Sciences, Smith College, Northampton, Massachusetts, USA

ABSTRACT Over the last 4 decades, the rate of discovery of novel antibiotics has
decreased drastically, ending the era of fortuitous antibiotic discovery. A better under-
standing of the biology of bacteriogenic toxins potentially helps to prospect for new
antibiotics. To initiate this line of research, we quantified antagonists from two different
sites at two different depths of soil and found the relative number of antagonists to cor-
relate with the bacterial load and carbon-to-nitrogen (C/N) ratio of the soil. Consecutive
studies show the importance of antagonist interactions between soil isolates and the
lack of a predicted role for nutrient availability and, therefore, support an in situ role in
offense for the production of toxins in environments of high bacterial loads. In addition,
the production of extracellular DNAses (exDNases) and the ability to antagonize corre-
late strongly. Using an in domum-developed probabilistic cellular automaton model, we
studied the consequences of exDNase production for both coexistence and diversity
within a dynamic equilibrium. Our model demonstrates that exDNase-producing isolates
involved in amensal interactions act to stabilize a community, leading to increased coex-
istence within a competitor-sensing interference competition environment. Our results
signify that the environmental and biological cues that control natural-product forma-
tion are important for understanding antagonism and community dynamics, structure,
and function, permitting the development of directed searches and the use of these
insights for drug discovery.

IMPORTANCE Ever since the first observation of antagonism by microorganisms by
Ernest Duchesne (E. Duchesne, Contribution à l’étude de la concurrence vitale chez les
microorganisms. Antagonism entre les moisissures et les microbes, These pour obtenir
le grade de docteur en medicine, Lyon, France, 1897), many scientists successfully
identified and applied bacteriogenic bioactive compounds from soils to cure infection.
Unfortunately, overuse of antibiotics and the emergence of clinical antibiotic resist-
ance, combined with a lack of discovery, have hampered our ability to combat infec-
tions. A deeper understanding of the biology of toxins and the cues leading to their
production may elevate the success rate of the much-needed discovery of novel anti-
biotics. We initiated this line of research and discovered that bacterial reciprocal an-
tagonism is associated with exDNase production in isolates from environments with
high bacterial loads, while diversity may increase in environments of lower bacterial
loads.

KEYWORDS competition models, exDNases, cellular automaton, coexistence,
secondary metabolites, antibiotics, soil, antagonism, soil microbiology

The evolutionary arms race of effective antimicrobial development and subsequent
development of antibiotic resistance in microbes has become a hindrance in our

pursuit of new and effective antimicrobials (1). In a commentary in Nature Microbiology,
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Kolter and van Wezel (2) argued that the era of novel antibiotic discovery via brute force
has ended. New approaches are needed to sample the underexploited niches in environ-
ments like soil, e.g., those developed by Ling et al. (3). In addition, approaches based on
biological and ecological insights may lead us to antagonist bacteria with a reduced
probability of rediscovering what is already known. Due to their disputed roles (4), many
of these insights remain unknown. However, in recent years, several studies have
addressed polymicrobial communities from different environments to further our under-
standing of dynamic interactions between bacteria and the consequences for diversity.
Interactions can be cooperative, neutral, or antagonist, unidirectional or reciprocal, symmet-
rical or asymmetrical, social or asocial, transitive or nontransitive, sympatric or allopatric,
structured or unstructured and are used in (mathematical) models to predict structure, sta-
bility, and diversity (5–15). Although varied in their specifics, all studies acknowledge inher-
ent problems in testing that are hard to solve. For example, the culture dependence of the
bacterial isolates may not be representative of in situ populations. Furthermore, the choice
of media, nutrient availability, experimental design, and source of isolates vary between
studies, resulting in often mixed or highly selective populations and making it difficult to
directly compare results (5, 7, 11, 14). Studies attempting to more deeply understand the
consequences of interactions within populations of antagonists are scarce, e.g., social versus
asocial, sympatric and allopatric, the medium used, or in vitro versus in vivo studies (5, 8, 9,
11); however, comparative studies between populations are limited, and further exploration
is warranted.

Although the role of bacteriogenic toxins in their environment is still up for debate,
the anthropocentric point of view is that bioactive compounds are produced as offensive
mechanisms against competitor bacteria. However, secreted bioactive compounds
undergo diffusion and the resulting ambient concentrations are too low to inhibit
growth on realistic length and time scales (16), while hormesis affects phenotypes (17).
Regardless of the true in situ role, toxins that kill or inhibit growth at high concentrations
lead to negative consequences to neighboring cells when in close proximity to antago-
nists (18, 19). Therefore, we hypothesize that an increased bacterial load will lead to
greater benefits for the antagonists, resulting in an elevated presence of said antago-
nists. Additionally, recent work showed that interactions are overrepresented intergen-
erically and are inversely related to phylogenetic, metabolic, and functional distance (7,
11, 14). As a result, with an increasing bacterial load, one expects a decrease in the diver-
sity of antagonists and a decrease in the ability to find novelty. These arguments echo
the theoretical considerations published by Curtis and Sloan (20).

Various bacterial competition models exist; however, in this paper, we will focus on
the following two models: exploitation and interference competition (21). Exploitation
competition is practiced by bacteria able to efficiently use resources, while interference
competition is practiced by those that produce toxins to ward off competitors. Russel
et al. (11) studied the trade-off between exploitation competition and interference
competition and found that antagonists that practice interference have a wider meta-
bolic-niche space and a larger network. Within the general theoretical realm of interfer-
ence competition, the cue for antagonism is either environmental or competitive.
Theoretically, it is possible to distinguish between competitor-sensing interference
competition (CSIC model) and nutrient deprivation-sensing interference competition
(NDSIC model). In the case of the former, microbial populations in environments with
higher bacterial loads are expected to have a higher connectance (10) than popula-
tions from environments with low bacterial loads. In contrast, in the latter, one expects
an increase in antagonism with a decrease in available nutrients. These theoretical con-
templations are addressed in this study.

Many bioactive compounds come in the form of enzymes, e.g., colicins and pyocins
(22). These proteinaceous, toxic compounds are often produced against closely related
strains; e.g., colicins kill Escherichia coli and pyocins kill pseudomonads. Many of these
compounds have DNase activity (22), indicating a role for DNases in competition. This
is further illustrated in several studies showing that extracellular DNases (exDNases)
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and effectors of these have roles in hydrolyzing extracellular DNA (exDNA) in situations
like biofilm development, toxin production in the presence of exDNA, in enriched plant
root-associated bacteria (23–27), and are even differentially selected for by crop plants
(28). Therefore, we further hypothesize that exDNase production has an important role
in the structure of bacterial interaction networks.

In the study presented here, we compare two populations of antagonists and pro-
vide support for the CSIC model. In addition, we also determine the role of exDNase
production in coexistence using mathematical modeling approaches.

RESULTS
Bacterial load and incidence of antagonism correlate positively. In order to

obtain support for the CSIC or the NDSIC model, it was initially hypothesized that with
an increasing bacterial load in an environment, the relative presence of antagonists
increases due to closer proximity of competing bacteria, which would benefit antago-
nists. This would result in an increased presence of these antagonists. In order to probe
whether the presence of competitors is a compulsive factor for toxin production, as
would be the case in a CSIC model, the effect of the environmental bacterial load on
the relative number of antagonists on Staphylococcus CWZ226 or E. coli MC4100 was
determined. Soil samples from the Smith College MacLeish Field Station in Whately,
MA (29), were retrieved from the grassland surface (GS; 3-cm depth), the grassland sub-
surface (GSS; 15- to 20-cm depth), the organic (O) horizon from hemlock forest soil (FS;
3-cm depth), and the forest subsurface (FSS; A/B horizon, 15- to 20-cm depth). To eluci-
date key factors distinguishing soil environments and their impacts on the bacterial
load and percentage of antagonists, we determined edaphic characteristics like pH,
percent nitrogen (%N), percent carbon (%C), carbon-to-nitrogen ratio (C/N), tempera-
ture, water content, CFU/g dry soil, and percentage of antagonists (Table S2-1 in the
supplemental material). Principal component analysis (PCA) showed that principal
component 1 (PC1) and PC2 explained 78.7% of the variation and that there was no
overlap between FSS and GS samples (Fig. 1A). The bacterial load in each environment,
expressed in CFU per gram (dry) weight, decreased from (4.41 6 0.26) � 106 (mean 6

standard error of the mean [SEM]) in GS to (3.12 6 0.29) � 106 in GSS and from (1.68 6

0.73) � 106 in FS to (5.01 6 0.10) � 105 in FSS. The bacterial load in GSS was lower
than that of soil taken from the surface (t test, P , 0.02). Similarly, the bacterial load in
the hemlock O horizon was higher than that in the A/B horizon (one-sided heterosce-
dastic t test, P , 0.12). Furthermore, grassland samples always had a higher bacterial
load than forest samples (Table S2-1). Moreover, culturability for GS and FSS was
0.53% 6 0.08% and 1.12% 6 0.19%, respectively (P = 0.01, t test). The total viability
results also indicate that GS had a higher bacterial load than FSS (Fig. 1C). The differ-
ences in CFU/g dry soil determined on 10% tryptic soy agar (TSA) plates, though
compromised, reflected the in situ bacterial loads.

To determine the relative numbers of antagonists, 517, 494, 492, and 462 (n = 5 different
dilution series per sample site) colonies from GS, GSS, FS, and FSS, respectively, were trans-
ferred to indicator lawns containing Staphylococcus or E. coli. Of these colonies, 10.3%, 9.3%,
5.7%, and 5.4% (53, 46, 28, and 25 isolates) inhibited the indicator lawn (P, 0.06 for GS ver-
sus FSS, F test) (Fig. 1B). The results obtained from mock communities showed that the
method employed gave the expected ratios and, thus, allowed us to conclude that the level
of antagonism reflected the soil community (Text S1).

The difference between GS and FSS was always substantial for pH, %N, %C, and the
C/N ratio, with P values of ,0.002 (heteroscedastic), ,0.05, ,0.01, and ,0.001 respec-
tively (t test). However, as expected, only the C/N ratio strongly reflected the sample
sites and bacterial loads (Fig. 1B). The C/N ratios were 12.6 and 13.0 in GS and GSS,
respectively (P = 0.24), whereas the samples from the forest soils had C/N ratios of 25.9
and 27.2 (P = 0.26). The C/N ratio is a well-known parameter indicating bacterial load,
and the results support the hypothesis that available nitrogen and other quality
nutrients allow a higher bacterial load (30–35), leading to increased competition that
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FIG 1 Visualization of the quantification of soil edaphic characteristics. (A) PCA of the soil samples
using the edaphic characteristics pH, %N, %C, C/N ratio, temperature, water content, CFU/g dry soil,
and % antagonists. Colored ovals represent the 95% confidence interval (CI). (B) Averages of CFU/g
dry soil of samples (light gray) and C/N ratio (dark gray). Error bars represent SEM (n = 3). Black bars
represent the pooled % antagonist values. The data show strict correlation between CFU/g dry soil,
pooled % antagonists, and C/N ratio. (C) Estimation of total viable bacterial cells in GS and FSS and
the culturability of these populations on 10% TSA. Error bars represent SEM (n = 6). In E. coli, the
culturability was 95.5% 6 13.5% (n = 12).
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boosts the population of toxin-producing bacteria. Separating the parameters of com-
petitor presence and nutrition depletion to more clearly understand the cues for bacte-
rial toxin production warranted further study. To do so, we contrasted the GS and FSS
populations for their connectance, response to nutrients, and ability to coexist, since
these populations represented the two samples with the greatest deviations in terms
of CFU/g dry soil, percentage of antagonists, and C/N ratio.

Support for CSIC. To further obtain support for the CSIC or the NDSIC model, the
presence of a competitor and the role of available nutrients in toxin production by the
GS and FSS populations were determined. To do so, we (i) determined the connec-
tance of both populations and (ii) determined if these populations responded differen-
tially to a reduction of available nutrients (Fig. 2). The connectance was 41.2% 6 0.9%
for the GS population and 30.6% 6 4.2% for the FSS population (P = 0.03) (Fig. 2B). To
address the response to nutrients (Fig. 2D), the isolates from both populations were
tested on 100%, 50%, and 10% TSA. On 100% TSA, the difference between the FSS and

FIG 2 Differentiation of the CSIC and NDSIC models. (A) Theoretical considerations and hypothetical outcome for connectance when competitor sensing
(yellow bars) or environmental sensing (green bars) is the major cue for bacteriogenic toxin production. (B) The empirical connectance in both populations
with interaction types in the total and exDNase-producing populations (black bars, GS48; white bars, FSS23). The data indicate a higher connectance in the
GS population than in the FSS population, thus giving support for the CSIC model. The rates of neutral (0,0), one way antagonism (0/-), and reciprocal
antagonistic interactions (-/-) indicate more reciprocal interactions in the GS population than in the FSS population. This difference is not found in the
exDNAse-producing population. (C) Theoretical considerations and hypothetical outcome to a response to a decrease in nutrients when competitor sensing
(yellow line) or environmental sensing (green line) is the major cue for toxin production. (D) Responses of the GS and FSS populations to a decrease in
nutrient strength and to nutrient complementation, as well as to DNA plates to test for DNA availability and DNase activity. Error bars represent the SEM
(n = 3).
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GS populations was negligible (P = 0.39). The relative amount of antagonists in the FSS
population decreased from 58.9% to 48.4% on 100% and 10% TSA, respectively
(P , 0.14, sign and t test). The relative amount of antagonists in the GS population
decreased from 55.6% to 20.8% on 100% and 10% TSA, respectively (P , 1 � 1028,
sign test, or P = 0.02, t test). The reduced nutrient content in a complex medium like
TSA and the corresponding reduction in antagonist activity may be caused by deple-
tion of a number of nutrients. Therefore, we tested whether the addition of 100 mM
glucose, 120 mM ribose, 200 mM pyruvate, 50 mM NH4NO3, or 100 mM K3PO4 would
complement the lack of C, N, or P in the 10% TSA plates and restore the levels of antag-
onism. Indeed, the addition of glucose or ribose to 10% TSA increased the antagonism
to levels like those on 100% TSA, mainly for the GS population (P = 0.05 for GS on glu-
cose). Interestingly, pyruvate did not complement the reduced sugar content in 10%
TSA. Inorganic phosphate also failed to increase the levels of antagonism to the levels
on 50% or 100% TSA. Ammonium nitrate also did not do so for the GS population
(P = 0.5), and only an effect for the FSS population was observed (P = 0.06). Although
there was a correlation with available nutrients, the data indicated that it was the
increase of select nutrients that supported antagonist activity, not a decrease as
expected in the NDSIC model.

In order to test whether the aggressiveness of a population correlated with its abil-
ity to produce a zone of inhibition (ZOI), we determined the aggressiveness index (AI)
for all strains according to Zapien-Campos et al. (15) and contrasted the average AI of
those strains producing a ZOI to the average AI of those not able to produce a ZOI
(Table 1). We expected those populations producing a ZOI to have a higher aggressive-
ness index than those that did not. Accordingly, populations able to produce a ZOI

TABLE 1 Aggressiveness index values of populations of isolates producing a zone of inhibition on different media

Medium or test
Soil
source

Value witha:

P valueb

No ZOI ZOI

AI SEM
No. of
isolates AI SEM

No. of
isolates

% TSA
100 GS 20.8 3.6 19 0.4 2.0 29 NS

FSS 22.3 3.4 8 1.2 1.4 15 0.2. P. 0.1
50 GS 23.5 2.0 24 3.4 3.0 24 P, 0.05

FSS 22.6 3.9 7 1.5 1.4 15 0.2. P. 0.1
10 GS 21.3 1.9 42 8.7 6.7 6 P, 0.05

FSS 0.3 1.9 12 20.3 2.4 11 NS

10% TSA plus:
Glucose GS 21.2 2.4 20 0.7 2.7 28 NS

FSS 23.4 2.7 8 1.8 1.6 15 P, 0.05
NH4NO3 GS 0.4 2.1 42 24 2.3 5 NS

FSS 24.7 1.8 9 3 1.7 14 P, 0.01
K3PO4 GS 0.7 1.9 43 23.6 9.6 4 NS

FSS 23.2 1.9 12 3.5 1.9 11 P, 0.02

DNA platec

Test for killing GS 23.1 4.2 10 0.7 2.1 38 NS
FSS 1.4 2.3 11 21.3 1.9 12 0.2. P. 0.1

Test for DNase
activity

GS 25 4.1 10 1.2 2.1 38 0.1. P. 0.05
FSS 1.3 2.6 10 21 1.8 13 NS

Test for killing in
DNase producing
populations

GS 219 1 2 1.1 2 36 P, 0.02
FSS 10 NA 1 20.8 1.1 12

aZOI, zone of inhibition; AI, aggressiveness index.
bReturn is from the homoscedastic, one-sided t test. NS, not significant with P. 0.2.
cUsing DNA-plates seeded with Staphylococcus CWZ226 allows to test for a ZOI and the ability to hydrolyze DNA in the whole populations, as well as the exDNase producing
populations.
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almost always had a higher AI (0.4 to 8.7) than those strains not producing a ZOI on
100% TSA, 50% TSA, and 10% TSA (20.8 to 23.5). Even though the number of GS iso-
lates producing a ZOI on 10% TSA was limited (n = 6), the AI of this population stood
out (8.7) compared to the AIs of the rest (0.4 to 3.4). The main outlier was the FSS pop-
ulation when tested on 10% TSA, for which the population producing a ZOI had a neg-
ative AI (20.3) and the population not producing a ZOI had a positive AI (0.3, P = not
significant). Only in this population, when tested on 10% TSA, was the expected corre-
lation of ZOI and AI not observed.

The addition of glucose to 10% TSA restored the AIs to the levels found for the pop-
ulations producing a ZOI for the GS and FSS populations, with the AIs found to be like
those of populations tested on 50% and 100% TSA. In contrast, when NH4NO3 was
added to 10% TSA, the AI of the FSS population was very much restored, and the dif-
ference in AIs of populations able and unable to produce a ZOI increased even more
than found on 100% TSA (P , 0.01). However, NH4NO3 strongly negatively affected the
AI of the GS population, and the expected correlation between AI and the ability to
produce a ZOI was not observed. Most interestingly, the GS populations producing a
ZOI on 10% TSA and 10% TSA plus NH4NO3 must have been different populations even
though the levels of antagonism were similar in both populations. Indeed, the two
populations had only two isolates in common (Tables S3-1 to S3-3). Therefore, we con-
cluded that although the addition of sugar to 10% TSA restored the AI for both popula-
tions, it was nitrogen availability under low-nutrient conditions that regulated the pro-
duction of toxins in subpopulations derived from the GS soil.

While exDNA may act as an important source of nutrients (27), it also indicates the
presence of competing bacteria (28). Given this association, we hypothesized that if
competitor sensing was the primary instigator for toxin production (over nutrient avail-
ability) in the GS and FSS populations, then antagonism would increase when these
populations were plated on DNA plates (Difco) compared to the antagonism on 100%
TSA. We found substantial support for the idea that exDNase production was impor-
tant in antagonism. First, a strong correlation between the ability to produce a ZOI on
Staphylococcus and exDNase activity was observed in both GS and FSS populations
(P = 9.84 � 10212 for GS and P = 7.75 � 1027 for FSS). Almost all isolates that antago-
nized on DNA plates were also exDNase producers (Tables S3-1 to S3-3). Second, sub-
stantially more GS isolates antagonized Staphylococcus on DNA plates than on TSA
(76.5% versus 62.3% respectively), which was reversed for the FSS population (52.0%
on DNA plates and 64.0% on 100% TSA) (Fig. 2D), indicating the larger role for
exDNases in a high-bacterial-load and low-C/N-ratio environment than in a low-bacte-
rial-load and high-C/N-ratio environment.

The AI levels obtained for the GS populations producing a ZOI or hydrolyzing
exDNA on DNA plates were higher than those of the populations not producing a ZOI
(P = not significant) or hydrolyzing DNA, exactly as expected (P , 0.1). However, for
the FSS population, this was reversed. Even when the DNase-producing populations
only (GS38 [the 38 exDNase-producing isolates in the GS population] and FSS13) were
analyzed, these relationships did not change.

Reciprocal amensal interactions are underrepresented in the FSS population.
In addition to the high connectance in the GS population, the total amount of recipro-
cal (two-way amensal) interactions was higher in the GS population (20.1% 6 0.5%)
than in the FSS population (10.3%6 0.5%, P = 0.01) (Fig. 2B), while the level of amensal
interactions was very similar in both populations (42.8% to 43.6%, P = 0.43) (Fig. 2B).
However, in the GS population, the percentage of reciprocal interactions, estimated by
taking the square of the amensal interactions (0.4362 = 19.0% 6 0.7%), was almost
equal to the number of observed interactions (20.1% 6 0.5%, P = 0.13). Interestingly,
in the FSS population, the estimated percentage of reciprocal interactions (0.4282 =
18.3% 6 3.1%) was higher than the observed percentage of reciprocal interactions
(10.3% 6 2.4%, P = 0.05). Therefore, the reciprocal amensal interactions were underre-
presented in the FSS population. In addition, exDNase activity was increased in the
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isolates involved in reciprocal interactions, which for the FSS population were 10.3% 6

2.4% and 24.4% 6 3.8% (P , 0.02) of the total and DNase-producing populations,
respectively. For the GS population, the amounts were 20.1% 6 0.5% and 25.4% 6

0.8% of the total and exDNase-producing population, respectively (P , 0.01) (Fig. 2D).
The relative amounts of exDNase-producing isolates involved in reciprocal antagonism
were very similar (Fig. 2B) (P, 0.46).

Coexistence is differentially affected by DNase production. Competitive (12, 14)
and (a)social interactions in combination with media (5) positively affect coexistence.
Additionally, killing is a means to promote diversity (16), and connectance as well as re-
ciprocal interactions were higher in the GS than in the FSS population. Therefore, we
predicted coexistence in the GS population to be higher than in the FSS population. In
order to test for coexistence, we employed an in domum-developed probabilistic cellu-
lar automaton (ProbCA) (Text S4). Due to differences in starting sizes, the GS48 popula-
tion was simulated twice in series, as follows: (i) the population as a whole (48 � 48

FIG 3 Diversity and coexistence in GS and FSS populations pre- and postsimulation. (A) Estimated
diversity and coexistence pre- and postsimulation for the whole (23 isolates) and the DNase-producing
(13 isolates) population using a probabilistic cellular automaton (ProbCA) and the interaction matrices
(Tables S3-1 to S3-3). The forest subsurface (FSS23) population was composed of 23 isolates, and the
grassland surface (GS23) population was composed of the 23 best-surviving isolates selected after a
pilot run with the full data set. Coexistence is the number of isolates present in the dynamic
equilibrium. Shannon diversity was based on the resulting isolate distribution after simulation. Error
bars represent the SEM (n = 100). SEMs in the GS13 and FSS13 populations were too small to show. (B)
Interaction types and relative abundances of exDNase-producing isolates pre- and postsimulation in the
23-strain and 13-exDNase-producing-strain-only matrices. *, heteroscedastic t test; all others were
homoscedastic.
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comparisons) and (ii) GS23, consisting of the 23 best-surviving isolates, representing
99.2% of all cells occupied at the end of the first simulation. As shown by the data in
Fig. 3A, a 350 � 350 matrix seeded with GS23 or FSS23 led to a decrease in coexistence
in both populations in which 16.9 6 0.2 and 15.8 6 0.1 isolates coexisted, respectively,
although the difference in coexistence was only 1.1 isolates (7%, heteroscedastic one-
sided t test, n = 100, P , 1 � 1027). Shannon diversity decreased in both populations
relative to that in the not-simulated mock population of 23 at time zero (T = 0) and
was lower in the FSS23 population than in the GS23 population (1.16 and 1.77 respec-
tively, P , 1 � 102136). Because the contributions of exDNase populations from GS and
FSS to reciprocal interactions were essentially the same (P = 0.46) (Fig. 2B), we expected
simulations of the exDNase-producing populations from both samples to lead to similar
levels of coexistence. Indeed, the occupancy (number of cells occupied by exDNase-pro-
ducing isolates divided by the total number [350 � 350 = 122,500]) of exDNase isolates
increased in both populations after the simulations. In the GS23 population, this increased
from 73.9% to 99.5% (a 34.6% increase), and in the FSS23 population, it increased from
56.5% to 65.6% (a 16.1% increase) (Fig. 3B). Clearly, producing exDNases was an advant-
age; however, the advantage was greater in the GS population.

To examine the consequences of antagonism by exDNase-producing isolates only,
simulations were run using the 13 exDNase isolates from the FSS population (FSS13)
and the best-surviving 13 isolates from the GS population (GS13), representing 99.6% of
the 38 exDNase-producing isolates in the GS population (GS38; FSS13 is 100%) after a
pilot run. Compared to the results of the GS23 and FSS23 simulations, three major differ-
ences can be observed (Fig. 3A). (i) The coexistence of the GS13 population was
unchanged compared to the start situation and remained 13 (Fig. 3A, gray bars). (ii)
The Shannon diversity of GS23 (1.8 6 0.002) increased in GS13 despite starting with
fewer isolates and was 2.08 6 0.0004 (P , 1 � 10297). Therefore, the GS23 diversity was
positively affected by the exDNase-producing population. In contrast, (iii) the Shannon
diversity in FSS23 (1.16 6 0.001) was higher than that in FSS13 (0.28 6 0.003)
(P , 1 � 102123), while the coexistence was low (three strains). Two opposite effects
were observed in both populations: in the GS population, exDNase production sup-
ported diversity and coexistence, while in the FSS population, it did not.

The low coexistence in the dynamic equilibrium in the FSS13 simulations, not seen
in the FSS23 (15.8 strains), GS23 (16.9 strains), and GS13 (13 strains) simulations (Fig. 3B),
was associated with a low rate of neutral interactions and more amensal and reciprocal
interactions in the FSS13 population only (Fig. 3B). In contrast, the higher rate of neutral
interactions and lower rates of amensal and reciprocal interactions in the GS23, FSS23,
and GS13 populations led to higher levels of coexistence. Using the Dixon test, we iden-
tified the reciprocal interactions in the FSS13 populations as lower than in any of the
other sample origins (P . 0.30), as well as the rate of 28.2% of neutral interactions
(0.05 . P, 0.10). For the amensal interactions, the outlier was GS13 (0.2 . P, 0.1).

Phylogenetic distance negatively affects the rate of amensalism. To model pat-
terns of amensalism and reciprocal amensalism, we first determined the genera of the
isolates using 16S rRNA sequencing followed by BLAST searches of the complete-
genome databases at NCBI. The results (Table S5-1) showed that the GS population
consisted of 1 Gram-negative isolate and 47 Gram-positive isolates in four genera. The
FSS population consisted of 8 Gram-negative isolates and 15 Gram-positive isolates in
five genera. Based on genus, GS was less diverse than FSS, having 48 isolates from four
genera while FSS contained 23 isolates from five genera (Fig. 4). In both populations,
Bacillus was predominant, comprising 42 (87.5%) and 11 (47.8%) isolates in the GS and
FSS populations, respectively. The second predominant genus was Paenibacillus, with
three and four isolates from GS and FSS, respectively. The GS population contained
two Lysinibacillus isolates and a Variovorax isolate, and the FSS population contained
four Paraburkholderia, three Collimonas, and one Dyella isolate.

To compare the variations of patterns of inhibition of the indicator strains, PCA
plots were created using the interaction matrices. As shown by the data in Fig. 4A and
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B, PC1 and PC2 explained 44.2% and 43.3% of the variation for GS and FSS, respec-
tively. The vast majority of isolates, regardless of genus, fell within the 95% confidence
interval (CI) of Bacillus in both populations. We found 90% of all Bacillus isolates in
both populations to produce exDNases. Bacillus thuringiensis is known to produce tox-
ins in the presence of DNA and is a species in the Bacillus cereus group known for toxin
producers to which many of our isolates are related (Table S5-1). Furthermore, many
Bacillus species produce lipopeptides, compounds with antimicrobial activity involved
in biofilm restructuring (36). When including the third component, .52% of the varia-
tion could be explained in both populations, and the same conclusions were sup-
ported (Fig. S6).

The interaction diagrams indicating inter- and intrageneric interactions, as well as
those that were exDNase mediated, showed that the majority of intrageneric interac-
tions was within the genus Bacillus in both populations (Fig. 4C to E) but was much
more profound in the GS than in the FSS population. The number of interactions
between Gram-positive producers on Gram-positive indicators was overrepresented.
Gram-positive producers and Gram-negative indicators, as well as Gram-negative

FIG 4 Visualization of interactions in the GS48 and FSS23 populations using PCA (A and B) and schematic models (C, D, and E). The GS48 and FSS23 majority
rule consensus interaction matrices were used as input for the PCA using default settings. (A) First and second component of the PCA analysis of the GS48
interaction matrix. All variation falls within the 95% CI of Bacillus (red line). (B) First and second components of the PCA analysis of the FSS23 interaction
matrix. All variation falls within the 95% CI of Bacillus (red line). (C) Explanatory diagram of the meaning of the interactions between different genera in
panels D and E. (D) Interaction diagram of the GS48 population. (E) Interaction diagram of the FSS23 population. A, amensal interactions; R, reciprocal
interactions. In black are all interactions, and in purple are all exDNase-associated interactions.
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producers and indicators, were underrepresented in both populations (x2, df = 3,
P, 0.001).

In both populations, the observed amensal and reciprocal interactions were different
from the expected (x 2, df = 3, P , 0.001). Most intergeneric interactions took place
between Bacillus and Paenibacillus in both populations. Furthermore, intrageneric recip-
rocal interactions were overrepresented in both populations (x 2, df = 3, P , 0.01). This
was especially clear in the FSS population, where the reciprocal interactions between
the Bacillus isolates (36.4%), as well as the Paenibacillus (33.3%) and the Paraburkholderia
(16.7%) isolates, were overrepresented relative to the intergeneric interactions (4.9%)
and total number of reciprocal interactions (12.6%). Surprisingly, in the GS population,
all intrageneric reciprocal interactions were found in the Bacillus genus alone (24.2%).
The intergeneric interactions were 9.4%, and total interactions were 20.0%.

Modeling did not affect the genera present even though the number of isolates
present in the dynamic equilibrium decreased compared to the starting condition.

DISCUSSION

At the outset of this work, our theoretical contemplations based on theoretical soil
microbial and diversity models, such as presented by Curtis and Sloan (20), and the
competition models reviewed by Hibbing (21), were considered insufficient; however,
they provided a framework for hypothesis development and testing. After the initiation
of this project, we found a strong correlation between the CFU/g dry soil and the per-
centage of antagonists. Although this correlation supports a CSIC over an NDSIC model
for the production of toxins, a correlation with the C/N ratio was also found. Though
the C/N ratios strongly support the relative order of CFU/g dry soil, the results lay bare
a conundrum: is the main cue to toxin production the nutrient status of the soil or the
presence of competitors? Resolution of this conundrum is provided by (i) the increase
in connectance in the population with a higher bacterial load (GS), (ii) the reduction of
antagonist activity with decreasing nutrients, (iii) the higher rate of reciprocal amensal
interactions in the population derived from a high bacterial load, and (iv) the frequency
with which pathways for the production of secondary metabolites become cryptic out-
side the context of their natural environment—e.g., storage in glycerol or growth on
agar plates (attenuation) lowers toxin expression (37–39), but toxin expression is rees-
tablished when the correct conditions are met, including the presence of a competitor.
Here, for example, of the 78 (53 1 25) isolates tested, 97.4% produced a ZOI on indica-
tor isolates within the same population (Tables S3-1 to S3-3), which was an increase
from the 44.0% to 64.4% on Staphylococcus only. (v) Finally, isolates producing a ZOI
tended to have a higher aggressiveness index (AI) than the strains not producing a
ZOI, especially for the GS population on TSA and DNA plates.

However, the complementation studies showed that nutrients did play a role at
lower nutrient levels in the media. Glucose and ribose restored the levels of antago-
nism for mainly the GS population, while NH4NO3 did this for the FSS population.
Interestingly, NH4NO3 addition reversed the AI in the GS population, with a higher AI
for those strains not producing a ZOI than for those producing a ZOI. This may be
explained by the C/N status of the soils the isolates were derived from. Because of the
low C/N status of the GS soil, the addition of different nitrogen sources selectively
leads to an antagonist population with low AI when available nutrients are scarce. This
probably is a condition under which an antagonist with low AI can get the opportunity
to proliferate in a competitive environment. This contrasts with the FSS population.
Being isolated from a soil poor in available nitrogen already, nitrogen availability estab-
lishes the correlation of AI and the ability to produce a ZOI when available nutrients
are limited. This is the condition under which antagonists with high AIs can take the
advantage in an otherwise less competitive environment. We have not been able to
find support for these models in the literature. In addition, although we obtained an
expected order of bacterial loads, which tended to correlate well with the active micro-
bial biomass and enzyme activity (40), CFU/g dry soil on 10% TSA may not be an
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accurate reflection of the total in situ bacterial load. And yet, our data do support that
the CFU/g dry soil reflected the total viable bacterial populations in GS and FSS,
although with low culturability. Furthermore, while the rates of amensal interactions
were the same in the GS and FSS populations (Fig. 3A), more reciprocal interactions
were observed in the GS population than in the FSS population, which can be
explained as a consequence of random amensal interactions. In contrast, reciprocal
amensalism in the FSS population is underestimated and may be selected against.
Since participation in reciprocal antagonism is a consequence of the rate of amensal-
ism and randomness, reciprocal antagonism is a more appropriate term than competi-
tion, which infers a purpose. This is counterintuitive to the hypothesis that the produc-
tion of toxins is selected for (e.g., see reference 13). This discrepancy can be explained
by the experimental design. De Vos et al. (14) and Kehe et al. (7) did their testing in
nonstructured environments as opposed to testing within structured environments (8,
9; this study). In structured environments, the concentrations of toxin are distance de-
pendent, explaining the phenomena we observed. When we assume the distribution
between bacteria in soil is homogeneous and only 0.53% and 1.13% of the total soil
microbial populations form colonies on 10% TSA, then the average distance between
bacterial cells is 12.1 and 32.1 mm for GS and FSS, respectively (Table S7-1). This is well
within the range Raynaud and Nunan (41) estimated (0.3 to 532.4 mm) using simula-
tions of thin sections of soil. If the percentages of antagonists of the colony-forming
populations are also an accurate estimate in the nonculturable populations, then the
average distances between antagonists are 25.8 and 85.0 mm for GS and FSS, respec-
tively. When estimating the volume of a sphere using these distances as the radius, the
volume in the FSS sphere is 35.8-fold larger than that of the GS sphere. If these bacteria
produce the same amounts of toxin, and the toxin is evenly distributed in this sphere,
then the toxin concentration in the FSS sphere is 2.8% (1/35.8) of that in the GS sphere.
When the estimated connectance is also corrected for, the volume in the FSS sphere is
48.2-fold larger than that of the GS sphere and the toxin concentration only 2.1% of
that in the GS sphere. Compellingly, to be an effective toxin producer requires substan-
tially more effort for the FSS population. Furthermore, we observed that the number of
interactions was increased intra- rather than intergenerically, which would further
dilute the target in the populations that are more diverse, reducing effective toxin pro-
duction even further.

Our observation that populations were reduced in antagonist activity under decreas-
ing nutrient content (Fig. 2D) supports the observation by Russel et al. (11) of the trade-
off between exploitation and interference competition. However, most isolates were
antagonistic at high nutrient content with a competitor present. Therefore, antagonists
may be specialists under different conditions and the trade-off in cost is environment de-
pendent (grassland versus forest soils) rather than primarily lifestyle dependent (meta-
bolic, physiologic, or phylogenetic). This is exemplified by our complementation and AI
studies, which also show differential responses to C, N, and P availability depending on
the source of the population. Although the FSS environment may contain more special-
ists and exploiters and the GS population more generalists and antagonists, on the level
of populations of antagonists, this discussion is futile: All isolates are antagonists. The ob-
servation that both populations showed a decrease in antagonism with decreasing nutri-
ent content but that there was a more profound decrease in the GS population than in
the FSS population (P = 0.02) suggests that antagonists in the FSS population are able to
produce toxins at low nutrient availability better than those populations from an envi-
ronment of high nutrient availability. This again illustrates that the trade-off cost
between exploitation and antagonism is not one-size-fits-all.

Our data also indicate a role for exDNase production in the soil environment. The
production of exDNases correlated with the ability to inhibit Staphylococcus and was
higher in the GS population than in the FSS population. Furthermore, exDNase pro-
ducers had higher AIs and were competitive in simulations using the GS population,
which was not seen in the FSS population. This was also exemplified when populations
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were tested for antagonism and AI on DNA plates. The strong correlation between
toxin production and exDNase activity suggests a functional linkage between, on one
hand, increasing the pool of exDNA in the environment and, on the other hand, the
utilization of available exDNA. That inorganic phosphorus did not affect the levels of
antagonism in both populations supports the idea that organic phosphorus may be
the main target of toxin production. In the GS population, this linkage was associated
with competition and coexistence. Since our exDNase assay only determined the
observable hydrolysis of exDNA, exDNA in soil is considered the target for these
exDNases. Various sources of exDNA have been identified, e.g., the sloughing of plant
cells from the root tip or, alternatively, the consequence of lysis of bacteria (42), there-
fore providing the functional linkage. At an increased bacterial load, more isolates may
produce compounds with antimicrobial activity by lysing bacterial cells. Lipopeptides
produced by Streptomyces, Pseudomonas, and Bacillus (36) kill by forming pores in
membranes, lysing competing bacteria, which in turn provide the substrate for the
exDNases. In Bacillus, lipopeptides are associated with biofilm restructuring and canni-
balism (43). Disruption of biofilms allows better access for antimicrobials to otherwise
recalcitrant cells. Variation in geographic lipopeptide production by Bacillus was
observed previously (44), and they have a role in competition (36).

Although naturally competent, Bacillus is a genus not particularly known for the
production of exDNases (24). However, their importance is illustrated by the following.
With a decreasing C/N ratio, it is increasingly likely that phosphorus is limiting, result-
ing in competition for available organic phosphorus. Similar observations were made
by Mulcahy et al. (27), Turk et al. (45), and Kamino and Gulden (28), who isolated
exDNase-producing Bacillus strains mainly from soils of low C/N ratios and low phospho-
rus. Therefore, we hypothesize that a low C/N ratio results in generalist, exDNase-produc-
ing Bacillus isolates with high aggressiveness scavenging for organic phosphorus. A high
C/N ratio results in fewer of these isolates. Consequently, more and fewer exDNase-medi-
ated reciprocal amensal interactions between closely related bacteria were observed,
respectively (7, 11, 14).

Although these explanations are plausible, genetic linkage or coregulation of the
expression of toxin and exDNase and the consequences for competitiveness and coex-
istence are yet to be established. Studies with strains isogenic for exDNase activity
have shown a role for exDNases in fitness and virulence (25–27).

On the genus level, diversity was higher in the FSS population than in the GS popu-
lation pre- as well as postsimulation. However, since competitive (12, 14) and social (5)
interactions positively affect diversity and both connectance and reciprocal amensal
interactions were higher in the GS than in the FSS population, on the isolate level, we
predicted coexistence in the GS population to be higher than in the FSS population.
This is exactly what we found, but with only a marginal difference in coexistence (1.1
isolate). We found that coexistence increased in populations with more reciprocal
(GS23 . FSS23) (Fig. 4A) and fewer neutral interactions. In support of this, compared to
the not-simulated mock community (Mock13), in the GS13 simulations, the level of coex-
istence remained at 13 isolates. This indicates that the population of exDNase-produc-
ing antagonists coexists well, which also corresponds to a slight increase in reciprocal
interactions compared to the level in GS23.

In contrast, the large decrease in coexistence in the FSS13 simulations, not seen in
the FSS23, GS23, and GS13 simulations, could potentially be caused by an increase in tax-
onomically different isolates, as proposed by de Vos et al. (14) and Kehe et al. (7).
Alternatively, a change from neutral interactions in the FSS23 population (from ;47%
in FSS23 to ;30% in FSS13) (Fig. 3B) to reciprocal interactions in FSS13 (from ;10% in
FSS23 to ;27% in FSS13) (Fig. 3B), not observed in the GS23 and GS13 populations, may
explain the decrease in coexistence.

The first phenomenon is unlikely since the main variation in antagonist activity in
both populations was largely represented by Bacillus only, and thus, the populations
were not taxonomically different on the genus level. In the second phenomenon, the
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shift to higher reciprocal interactions and fewer neutral interactions was relatively
small, and therefore, the high number of amensal interactions in the GS23, FSS23, and
GS13 populations led to a high coexistence, while in the FSS13 population, it was the
high rate of reciprocal and low rate of neutral interactions that led to low coexistence.
This again does not support findings that competition is important for coexistence in
an environment as structured as soil (5), but it supports the work by Mougi (10), whose
in silico work showed that asymmetry in interactions supports stability. According to
these models, the FSS23 population is expected to be relatively stable because of fewer
reciprocal interactions in this population. In contrast, in the exDNase-only populations,
the increase in reciprocal amensal interactions in the FSS13 population relative to the
levels in the FSS23 and GS13 populations would lead to low coexistence. Both these
consequences were observed. Therefore, we conclude that observable exDNase-pro-
ducing isolates involved in amensal interactions stabilize a community, leading to an
increase in coexistence in competitor-sensing interference competition in a structured
environment.

MATERIALS ANDMETHODS
Strains, soil isolates, and culture conditions. All strains were stored in tryptic soy broth (TSB) (cata-

log number 211825; Difco) with 20% glycerol at 280°C. Staphylococcus sp. strain CWZ226 (46),
Escherichia coli strain MC4100 (47), and Serratia sp. strain CWZ222 (Fig. S8-1) were provided by Dr. C.
White-Ziegler (Smith College) and maintained on 100% tryptic soy agar (TSA) (catalog number DF0369-
17-6; Difco). Lysobacter antibioticus strain CVAP#2 (L. antibioticus strain ATCC 29479 [48]; provided by
Dr. J. Handelsman) and Pseudomonas sp. strain CVAP#3 (46) and all isolates from the soil were main-
tained on 10% TSA (from 100% TSA amended with agar [catalog number DF0812-17-9; Difco]; the final
agar concentration was 1.5%). All strains were incubated for 36 to 48 h at 25°C and kept at 4°C until use
for a maximum of 1 week.

Field sites and sampling. Samples were taken from the Smith College MacLeish Field Station in
Whately, MA (29), on 21, 22, and 24 September in 2015. The geographic coordinates for the grassland
soil samples are N42°26.9839, W072°40.8209. The hemlock forest soil samples were taken at coordinates
N42°27.3289, W072°40.9269 (Garmin eTrex 20x). Soil and air temperatures were taken at the moment of
sampling. Soil samples were taken using a sterile spatula or spoon while wearing alcohol-sterilized
gloves. The samples were stored in sterile wide-mouth Mason jars (450 mL) and frozen at 220°C upon
arrival in the laboratory after subsamples were taken for bacterial counts.

Determination of CFU/g dry soil and identification of isolates that produced bioactive com-
pounds.Within 6 h of taking the sample, 1 g of soil was weighed and a suspension was made in 9 mL of
sterile phosphate-buffered saline (PBS) (product number 2810305; MP Biomedicals) in a sterile 15-mL
conical tube (7). Amounts of 100 mL of a 10-fold dilution series were spread on 10% TSA (6, 29) and incu-
bated for 36 to 48 h at 25°C, after which CFU were counted and plates were stored at 4°C till further use.
All plates, with an average number per dilution of 30 5 CFU 5 300, were used to determine the bacterial
load (49). The bacterial counts were corrected for water content, and the bacterial load in CFU/g dry soil
was calculated for every plate. Subsamples, dilution series, and plate counts originating from the same
soil sample were pooled. The resulting average values per sample site were used to calculate a grand av-
erage for an estimation of CFU/g dry soil for a sample period.

To identify the level of antagonism in a soil, colonies originating from the dilution plates used for
counting were transferred to master plates made of 10% TSA. Colonies were picked randomly with a
sterile flat toothpick. Only plates with fewer than 300 colonies were sampled. Up to 125 colonies from a
dilution series representing one sample were transferred to the master plate (10% TSA) and incubated
at 25°C for 36 to 48 h. Indicator plates were seeded as follows: a colony was resuspended in 1.0 mL PBS
with a sterile synthetic-tipped applicator (catalog number 23-400-122; Fisherbrand), spread over the sur-
face of an agar plate, and dried. Drying is required to prevent swarming of colonies and contamination of
neighboring colonies. After drying, Staphylococcus and E. coli were transferred onto the indicator plates as
negative controls. L. antibioticus and Pseudomonas sp. strain CVAP#3, which inhibit Staphylococcus, were
used as positive controls. Plates were stored at 4°C for 3 to 5 days and incubated at 25°C overnight.
Isolates inhibiting an indicator lawn were purified at least twice, retested, stored at280°C in TSB with 20%
glycerol, and given an identifying number (Chris Vriezen antibiotic producer number [CVAP#]). The rela-
tive number of antagonists was determined by dividing the final number of isolates producing a ZOI
by the original number transferred and tested. All data from the same sample period and site were
pooled (7, 12, 14).

Estimation of the total viable cells and culturability. Culturability is the fraction of CFU relative to
the total population of viable bacterial cells in a sample (50). In order to estimate the culturability in the
samples derived from the grassland surface, the forest subsurface, and E. coli suspensions in PBS, we
determined the number of viable cells using live/dead stain (BacLight bacterial viability kit, product
number L7012; Molecular Probes). On 26 and 28 August 2022, soil samples were taken and dry weight
determined as described above. Soil suspensions (1:10) were made in 1� PBS. The suspensions were
vortexed for 30 s, and CFU/g dry soil determined. In addition, 100 mL resuspended soil was mixed 1:1 in
PBS containing 3 mL Syto9 and 3 mL propidium iodide per mL. Using a Neubauer counting chamber, the
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number of bright green cells was counted at �200 or �400 total magnification on a Leica DM5500B
using the I3 filter cube. Only bright fluorescent green cells were counted. At least three different sub-
samples were counted for every suspension. At least three frames per sample were completely counted,
with a minimum of 100 cells per prep. This resulted in six estimates per soil. Control suspensions of
E. coli strain MC4100 growing on 10% TSA in PBS were treated in a similar manner.

Determination of basic soil edaphic properties. To determine the water content, three soil sub-
samples for each original sample were weighed, stored at 55°C for 2 to 4 days, and weighed again. The
water content is the weight lost after drying divided by the original weight and expressed as a percent-
age. Dried samples were sieved (product number 04-881G; Fisher Scientific), and the percent nitrogen
(%N), percent carbon (%C), and C/N ratio determined using a vario micro select CHNOS element analyzer
(51). These measurements were carried out at the Center for Aqueous Biogeochemistry Research at
Smith College. For pH determination, dried soil was diluted 1:9 (wt/wt) in demineralized water. After 2 h,
the pH was measured using an Accumet model 10 with Accumet probe 13-620-285.

Nutrient and DNase activity determination. The following media were used to test the response
of the soil isolates: 100% TSA (catalog number DF0369-17-6; Difco) and 50% and 10% TSA (from 100%
TSA amended with agar [catalog number DF0812-17-9; Difco], final agar concentration of 1.5%).
Nutrient complementation studies were performed by the addition of 100 mM glucose, 120 mM ribose,
200 mM pyruvate, 50 mM NH4NO3, or 100 mM K3PO4 to 10% TSA, and the pH was set at 7.3 using HCl or
NaOH as needed.

To test for antagonist activity toward Staphylococcus and for exDNase activity, DNA plates (catalog
number 263220; Difco) were seeded with Staphylococcus as described above, and soil isolates were
tested for their ability to inhibit Staphylococcus and to break down DNA in the agar plates. The positive
control for exDNase activity was Serratia sp. CWZ222, or Pseudomonas sp. strain CVAP#3 for a ZOI on
Staphylococcus (Fig. S8-1), and the negative-control Staphylococcus colonies were transferred and spot-
ted on the plate using a sterile flat toothpick. Plates were incubated overnight at 25°C, and the zone of
inhibition (ZOI) was determined, as well as the exDNase activity by flooding the plate with 1 N HCl (23).

Determination of connectance and AI. To determine the connectance (10) of a population, a col-
ony used as the indicator was used to seed a 100% TSA plate as described above. Soil isolates were
transferred onto this indicator strain along with controls, and plates were stored at 4°C for 3 to 5 days.
After overnight incubation at 25°C, the plates were analyzed for the appearance of a ZOI. Data were
recorded as positive (1) when a ZOI was produced or negative (2) when no ZOI was produced. This pro-
cedure was done with the GS53 population (53 � 53) and the FSS25 population (25 � 25). The experiments
were repeated three times and quality control (QC) performed, leading to the inclusion of 48 isolates in
the GS48 population and 23 isolates in the FSS23 population (Table 2). The connectance was determined by
the number of positive results (an isolate producing a ZOI on an indicator) divided by the total tests
performed.

The aggressiveness index (AI) was determined for every strain by taking the number of other strains
antagonized by a given strain and subtracting the number of other strains antagonizing it (15).

Estimation of coexistence using a ProbCA. We developed a probabilistic cellular automaton
(ProbCA) in Mathematica (11.3.0.0). The details of the development and code are provided in Text S4.
The initial grid (350 � 350) was randomly and uniformly seeded. Each cell was chosen as the focal cell in
random order and interacted with a randomly chosen neighbor cell according to the interaction matrix,
and 100 simulations of 100 iterations were run.

Coexistence (richness) is the number of isolates present in the dynamic equilibrium at the end of the
simulation and is used in microbiology as a measure of diversity that seems to correlate with other regu-
larly used diversity indices. In addition, for reasons described in Text S4, the distribution of isolates in
the population in the dynamic equilibrium was used to estimate Shannon diversity.

The input matrices and simulations. The three replicate interaction matrices were used to create a
consensus binary interaction matrix using the majority rule. After quality control, five strains from the GS
and two from the FSS matrices were removed for being compromised in quality (.10% of the data
inconclusive or not tested) or lacking antagonist activity on any indicator, compromising the simulation.
Preliminary results showed that coexistence is not necessarily a reliable measure, since coexistence
increases with increasing grid size (Text S4). Due to this concern, isolates not involved in any antagonist
interactions were excluded from the analysis. The forest subsurface (FSS23) population was composed of
23 isolates (529 tests), and the grassland surface (GS48) population was composed of 48 isolates (2,304

TABLE 2 Explanation of the different GS and FSS populations and annotations of antagonists

Annotation of
populations Explanationa

GS53, FSS25 Total populations (53 and 25 isolates) of isolated antagonists
GS48, FSS23 Populations of antagonists after QC
GS23, FSS23 Representatives of the quality-controlled population of antagonists used to seed

the ProbCA
GS38, FSS13 Total population of exDNase-producing antagonists after QC
GS13, FSS13 Representatives of the exDNase-producing population of antagonists used to

seed the ProbCA
aQC, quality control.
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tests). To ensure a good direct comparison between simulations using the GS48 and FSS23 populations
(Table 2), the simulations were first seeded using the consensus interaction matrix to determine the 23
best-surviving isolates, followed by running the simulation using these 23 isolates (Table 2). Preliminary
experiments indicated that no significant differences were found in ranking and relative presence of the
isolates if only this subset of isolates was reseeded and the simulations run again. A similar procedure
was applied to identify 13 exDNase-producing isolates from the 38 exDNase isolates in the GS popula-
tion (GS38) (Table 2).

Microbial identification using a partial 16S rRNA sequence. To determine the genera of the soil
isolates, we amplified the 16S rRNA genes and determined their sequences. To amplify the 16S rRNA
gene, cells from a single colony were suspended in 100 mL sterile 1� PBS using a sterile toothpick. Five
microliters of this suspension was used as the template in colony PCR using Illustra PuReTaq Ready-To-
Go PCR beads (catalog number 46-001-014 [Fisher Scientific]) with 1 mL of forward primer (pA, 27F, or
bac8F, 20 mM, 59-AGAGTTTGATCCTGGCTCAG-39) (12, 52, 53), 1 mL of reverse primer (1492R, 20 mM, 59-
GGTTACCTTGTTACGACTT-39) (53), and 23 mL water, totaling 30 mL. Primers were purchased from IDT.
Amplification was achieved using the following program: 94°C for 10 min, 30 cycles of 94°C for 30 s,
58°C for 30 s, 72°C for 1 min 50 s, and finally, 72°C for 10 min. All reactions were performed in an MJ
Research PTC-200 Peltier thermal cycler in the Center for Molecular Biology at Smith College. After
amplification, a 5-mL sample was tested for the correct fragment size using 1.0% (wt/vol) agarose (CAS
Registry Number [CAS RN] 9012-36-6; AmericaBio) gels in 1� Tris-acetate-EDTA (TAE) electrophoresis
buffer with SYBR green (catalog number S3312; Invitrogen). The products were cleaned using an
EdgeBio Performa DTR gel filtration cartridge (product number 42451; EdgeBio) and Sanger sequenced
with the following reaction mixture and program: 1 mL BigDye (catalog number 4337454; Applied
Biosystems), 5 mL double-distilled water (ddH2O), 0.5 mL primer (15 pM), and 3.5 mL template. The pri-
mers used were pA or 27F (59-AGAGTTTGATCCTGGCTCAG-39) (12, 52, 53) and 806R (59-
GGACTACHVGGGTWTCTAAT-39) (54). The thermocycler program for labeling was 96°C for 5 min,
0.7°C/s to 96°C, 96°C for 10 s, 0.7°C/s to 50°C, 50°C for 5 s, 0.7°C/s to 60°C, 60°C for 4 min, repeat 27
times, 1°C/s to 4°C, 4°C forever. After the labeling reaction, the samples were cleaned using gel filtra-
tion and the nucleotide sequence determined using an Applied Biosystems 3130xl Genetic Analyzer
in the Center for Molecular Biology at Smith College. 16S rRNA gene sequence quality control (QC)
was completed using 4Peaks 1.7.1 (nucleobytes.com). Alignments of the 16S rRNA gene sequences
were made in the Lasergene package SeqMan Pro (version 15.3.0 Intel), and a consensus sequence
was generated from at least three sequences from at least two different PCRs and sequenced in
reverse and forward directions, unless indicated otherwise. A majority rule with quality weights for
consensus calling of 66% was used, and an average of 470 nucleotides/isolate was obtained. The con-
sensus was used as the query for molecular identification using the NCBI databases. The Basic Local
Alignment Search Tool was used to navigate through databases and compare nucleotide sequences
from the bacterial 16S rRNA gene consensus sequences to a library of published sequences. The NCBI
search option “complete genomes” was employed. The first published result with the highest percent
identity, highest maximum score, and highest total score was recorded (55–57).

Mathematical manipulations and statistical analysis. All statistical tests confirmed the theory
explained in Kanji’s 100 Statistical Tests (58). All statistical tests involving the t test were executed in
Excel using the one-sided, homoscedastic t test, unless mentioned differently. The F test was used to
estimate significance in variation, and the Poisson test was used to estimate the significance between
two observations. Furthermore, the binomial sign test and the Dixon Q test for outliers were performed
in Excel. To determine if the interactions were equally distributed or differed from an expected popula-
tion, the expected random distributions were calculated, and the observed data were tested against the
expected using the x 2 test in Excel. PCA was done online using default settings (59).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 6.5 MB.
SUPPLEMENTAL FILE 2, MP4 file, 0.6 MB.
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