On generalized averaged Gaussian formulas

Miodrag M. Spalević ${ }^{1}$
${ }^{1}$ University of Belgrade, Faculty of Mechanical Engineering, Department of Mathematics, mspalevic@mas.bg.ac.rs

Recently, we proposed a new $(2 \ell+1)$-point quadrature rule $\widehat{G}_{2 \ell+1}$, referred to as a generalized averaged Gaussian quadrature rule. This rule has $2 \ell+1$ nodes and the nodes of the corresponding Gauss rule G_{ℓ} with ℓ nodes form a subset. This is similar to the situation for the $(2 \ell+1)$-point Gauss-Kronrod rule $H_{2 \ell+1}$ associated with G_{ℓ}. An attractive feature of the $\widehat{G}_{2 \ell+1}$ is that it exists also when the $H_{2 \ell+1}$ does not. The numerical construction, on the basis of recently proposed effective numerical procedures, of $\widehat{G}_{2 \ell+1}$ is simpler than the construction of $H_{2 \ell+1}$. A survey of these formulas and their applications will be presented.

References

[1] F. Peherstorfer, Positive quadrature formulas III: Asymptotics of weights, Math. Comp. 77 (2008), 2241-2259.
[2] L. Reichel, M. M. Spalević and T. Tang, Generalized averaged Gauss quadrature rules for the approximation of matrix functionals, BIT Numer. Math. 56 (2016), 1045-1067.
[3] M. M. Spalević, On generalized averaged Gaussian formulas, Math. Comp. 76 (2007), 1483-1492.
[4] M. M. Spalević, A note on generalized averaged Gaussian formulas, Numer. Algorithms 76 (2007), 253-264.
[5] M. M. Spalević, On generalized averaged Gaussian formulas. II, Math. Comp. 86 (2017), 1877-1885.

