
Chapter 4

Code Optimization for Strapdown Inertial Navigation
System Algorithm

Ivana Todić and Vladimir Kuzmanović

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71732

Provisional chapter

Code Optimization for Strapdown Inertial Navigation
System Algorithm

Ivana Todić and Vladimir Kuzmanović

Additional information is available at the end of the chapter

Abstract

Inertial navigation systems are in common use for decades due to its advantages. Since
INS outputs are usually used for inputs in different control algorithms (depending on
applications), INS will induce certain errors and limitations. This chapter deals with
optimization of the inertial navigation algorithm against limitations due to the accuracy
and stability of signals from the sensors and constraints resulting from the integration
step and processor speed used for embedded applications. Inertial navigation consid-
ered here is “strapdown” inertial navigation system (SINS) which assumes a fixed
inertial measurement unit (IMU). In this chapter, fundamentals of strapdown inertial
navigation will be presented as well as three different algorithms which will be analyzed
in regard to numerical stability, time consumption and processor load criteria.

Keywords: strapdown inertial navigation system, quaternions, forward Euler
integration, code optimization, code analyses

1. Introduction

INS is inertial navigation system, the system that determines the position based on the output
of the motion sensors: accelerometers and gyroscopes. The first INS was based on accelerom-
eters mounted on gimbal platform, to ensure measurement of acceleration in navigational
frame. Nowadays “strapdown” inertial navigation system (SINS) is in common use, due to its
mechanical simplicity, reduced size and price compered to platform INS. Strapdown inertial
navigation system implies a fixed inertial measurement unit (IMU), whereby the analytical
picture of the navigation system is obtained from the integration of the gyroscope rates.

The main problem that arises when SINS is used is the exact determination of the orientation
based on the gyroscopes outputs. Every error made in this stage will affect the error of
projection of the gravitational acceleration. Accelerations are integrated twice in order to

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71732

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



determine the position, so any errors made when determining the orientation will cause the
error in position determination to increase exponentially with integration time.

Errors when determining orientation are caused by the gyroscope performance and precision,
as well as signal processing methods used for processing gyroscope outputs. Besides hardware
limitations of the gyroscopes, algorithms used for orientation calculation also cause errors.
This chapter focuses only on errors caused by applied algorithms and on optimization of these
algorithms in terms of time consumption and processor load.

2. Fundamentals of inertial navigation

The basic idea of inertial navigation is based on the integration of acceleration measured by the
accelerometers; see [1]. The accelerometers measure the specific force that can be represented as:

f ¼ a� g (1)

where a is the absolute acceleration, acceleration in relation to the inertial coordinate frame, g is
the gravitational acceleration.

In this chapter, the effect of the rotation of the Earth (which can simply be introduced into
equations for the needs of systems operating in a longer time interval) is neglected.

In accordance with the previous assumption, the following relationship between acceleration
and velocity in relation to the inertial coordinate frame is:

a ¼ dV
dt

��
I

dV
dt

��
I ¼ dV

dt

��
N þωN �V

(2)

where dV
dt

��
N is the speed derivative relative to the navigation coordinate frame, ωN is the

absolute angular velocity of the navigation coordinate frame.

In the inertial navigation algorithm, for the navigation coordinate frame, the ENUp coordinate
frame has been adopted; see [2]. This choice ismade due to the desire to have the height coordinate
positive and on the other hand in order to more accurately determine the azimuth numerically.

In accordance with the ENUp coordinate frame, the following relations apply:

f E ¼ dVE

dt
þ ωNVup � ωupVN

f N ¼ dVN

dt
� ωEVup þ ωupVE

f up ¼
dVup

dt
þ ωEVN � ωNVE þ g

(3)

As a result of the WGS84 standard for the Earth shape (see [3]), projection of angular speeds of
the ENUp coordinate frame has been adopted in the following form:

Space Flight60



ωE ¼ � VN

Rϕ þ h

ωN ¼ VE

Rλ þ h

ωup ¼ VE

Rλ þ h
tanϕ

(4)

where h is the height above the reference ellipsoid, Rϕ,Rλ is the radius of the curvature of the
reference ellipsoid in the north-south and east-west directions, respectively.

Rϕ ¼ Re 1� e2
� �

1� e2 sin 2ϕ
� �3

2

Rλ ¼ Re

1� e2 sin 2ϕ
� �1

2

(5)

where Re is the equatorial radius of the Earth, e2 ¼ 1� b2
a2 is the eccentricity of the reference

ellipsoid.

As the accelerometers measure acceleration in the coordinate frame related to the object, it is
necessary to determine the transformation matrix from the body frame (see [4]) into the
navigation frame, using information from the gyroscopes.

The navigation algorithm adopted here can be divided into two parts. The first part that works
with higher frequency plays the role of determining velocity and angle increments, while the
other part of the algorithm that works eight times slower provides information on the position
and the speed in the navigation coordinate frame (usually required by the guidance law in the
case of the missile application). Such algorithm is advantageous from the point of optimization
of the calculation time in the control computer, which can be divided into eight different steps.
Also, this SINS algorithm proved to be mathematically more stable in relation to others, in
determining the quaternion position at the same sampling time. Namely, when integrating
angular velocities in order to obtain the angular position, depending on the size of the integra-
tion step, the quaternion error increases over time, and in addition to renormalization, it also
affects the overall error in position and velocity. This error does not occur with this algorithm.

2.1. Determination of angular increments and transformation matrix

The first step in determining the transformation matrix is the determination of angular inclu-
sions, and as explained above, this process is repeated with the basic integration step which in
this example is ts = 2 ms:

αxb, yb, zb ¼
ðtkþts

tk
ωxb, yb, zb dt (6)

where ωxb, yb, zb is the gyroscope signals in the body coordinate frame.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

61



The process of calculating the position quaternion or the transformation matrix is also divided
into two parts.

The first part is the calculation of the quaternion between the navigation coordinate frame and
the body frame, assuming that the navigation coordinate frame can be considered inert during
one step of integration.

The second part is used for the quaternion correction due to the rotation of the navigation
coordinate frame.

If we compare these two transformations, we can conclude that the first transformation is the
rotation of “fast” motion. One of the reasons why this algorithm proved to be numerically
more stable is the separation of the integration of the “fast” rotation from the integration of the
“slow” rotation.

If we compare the angular rates of those two motions, we can conclude that the “slow”
rotation rates are four or more times lower than the “fast” rotation rates which leads to
numerical integral errors when these two rotations are combined.

In accordance with the above, the following relations apply:

qI
nþ1 ¼ qnΔqf

qnþ1 ¼ Δqsq
I
nþ1

(7)

where qI is the quaternion of rotation from the body to the inertial coordinate frame, q is the
quaternion of rotation from the body to the navigational coordinate frame, Δqf is the quater-
nion of fast rotation increment, Δqs is the quaternion of slow rotation increment.

The quaternion of fast rotation can be represented in the form of a rotary vector as follows:

Δqf ¼

Δqf 0

Δqf 1

Δqf 2

Δqf 3

2
6666664

3
7777775
¼

cos
ΔΦ
2

ΔΦxb

ΔΦ
sin

ΔΦ
2

ΔΦyb

ΔΦ
sin

ΔΦ
2

ΔΦzb

ΔΦ
sin

ΔΦ
2

2
6666666666664

3
7777777777775

(8)

The following relationship holds for small angles:

ΔΦ ¼
ðtnþtm

tn
ωdtþ 1

2

ðtnþtm

tn
Φ�ωð Þdt (9)

where tm = 8ts is the slow integration step.

To solve the previous equation, a four-step algorithm will be used (Conning correction [5–7]):

Space Flight62



ΔΦ ¼
ΔΦxb

ΔΦyb

ΔΦzb

2
664

3
775 ¼

X4
j¼1

αxb jð Þ

X4
j¼1

αyb jð Þ

X4
j¼1

αzb jð Þ

2
6666666666664

3
7777777777775

þ 2
3

P1

αxb 2ð Þ
αyb 2ð Þ
αzb 2ð Þ

2
664

3
775þ P3

αxb 4ð Þ
αyb 4ð Þ
αzb 4ð Þ

2
664

3
775

0
BB@

1
CCA

þ 1
2

P1 þ P2ð Þ
αxb 3ð Þ
αyb 3ð Þ
αzb 3ð Þ

2
664

3
775þ

αxb 4ð Þ
αyb 4ð Þ
αzb 4ð Þ

2
664

3
775

0
BB@

1
CCAþ 1

30
P1 � P2ð Þ

αxb 3ð Þ
αyb 3ð Þ
αzb 3ð Þ

2
664

3
775�

αxb 4ð Þ
αyb 4ð Þ
αzb 4ð Þ

2
664

3
775

0
BB@

1
CCA

(10)

where

α jð Þ ¼ αk tsð Þ þ αk�1 tsð Þ

Pj ¼
0 �αzb jð Þ αyb jð Þ

αzb jð Þ 0 �αxb jð Þ
�αyb jð Þ αxb jð Þ 0

2
64

3
75

If we return to the quaternion of slow rotation, the following relationship is valid:

Δqs ¼

cos
Ωtm
2

�Ωx

Ω
sin

Ωtm
2

�Ωy

Ω
sin

Ωtm
2

�Ωz

Ω
sin

Ωtm
2

2
66666666664

3
77777777775

(11)

where. Ωx,Ωy,Ωz is the projections of the absolute angular velocity of the navigation coordi-
nate frame on its axes.

If we neglect the rotation of the Earth, the following applies:

Ωx ¼ �Vy

Ry
� Vx

a
e2b13b23

Ωy ¼ Vx

Rx
þ Vy

a
e2b13b23

Ωz ¼ 0
1
Rx

¼ 1
a

1� e2
b332

2
þ e2b132 � h

a

� �

1
Ry

¼ 1
a

1� e2
b332

2
þ e2b232 � h

a

� �

(12)

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

63



where bij are members of the transformation matrix from the Earth-coordinate frame (ECEF)
into the navigation coordinate frame Bn

ECEF.

The Poisson equation for the transformation matrix from the coordinate frame related to the
Earth (ECEF) in the navigation coordinate frame can be written in the following form:

_B
ECEF
n ¼ BECEF

n Δωn�ECEF

Bn
ECEF ¼ BECEF

n

� �T

Δωn�ECEF ¼

0 0 Ωy

0 0 �Ωx

�Ωy Ωx 0

2
6664

3
7775

(13)

The recursive solution of the Poisson equation can be represented in the following way:

b12 Nð Þ ¼ b12 N � 1ð Þ �Ωyb32 N � 1ð Þtm
b22 Nð Þ ¼ b22 N � 1ð Þ þΩxb32 N � 1ð Þtm
b32 Nð Þ ¼ b32 N � 1ð Þ þ Ωyb12 N � 1ð Þ �Ωxb22 N � 1ð Þ� �

tm

b13 Nð Þ ¼ b13 N � 1ð Þ �Ωyb33 N � 1ð Þtm
b23 Nð Þ ¼ b23 N � 1ð Þ þΩxb33 N � 1ð Þtm
b33 Nð Þ ¼ b33 N � 1ð Þ þ Ωyb13 N � 1ð Þ �Ωxb23 N � 1ð Þ� �

tm

b31 Nð Þ ¼ b12 Nð Þb23 Nð Þ � b22 Nð Þb13 Nð Þ

(14)

With the quaternion of fast and the quaternion of slow rotations defined above, on the basis of
Eq. (7), the quaternion of total rotation can be determined and with its direct cosine matrix
representing the transformation from the body to the navigation coordinate frame. This matrix
will be updated with the time step of the slow integration:

Cn
b ¼

1� 2 q2
2 þ q3

2
� �

2 q1q2 � q0q3
� �

2 q0q2 þ q1q3
� �

2 q1q2 þ q0q3
� �

1� 2 q1
2 þ q3

2
� �

2 q2q3 � q0q1
� �

2 q1q3 � q0q2
� �

2 q0q1 þ q2q3
� �

1� 2 q1
2 þ q2

2
� �

2
664

3
775 (15)

2.2. Determination of speed and position in space

Previously defined method used for determining the angle increments based on measured gyro-
scope signals can now be used in the same way to define the speed increments based on signals
from the accelerometer. These increments are also determined by the fast integration step ts:

ΔWxb,yb, zb ¼
ðtkþts

tk
axb, yb, zb dt (16)

where axb, yb, zb is the signals from the accelerometer in the body coordinate frame.

Space Flight64



The absolute acceleration can be written in the following form:

dV
dt

����
I
¼ dV

dt

����
b
þωb �V (17)

where dV
dt

��
b is the total speed derivatives with respect to the body coordinate frame, dVdt

��
I is the

total speed derivatives with respect to the inertial coordinate frame, ωb is the absolute angular
velocity of the body coordinate frame.

The specific force projections acting in the body coordinate frame are obtained from the
accelerometer. Accordingly, the integration will be performed in the body coordinate frame,
and the previous equation can be written like

dV
dt

����
b
¼ dV

dt

����
I
�ωb �V (18)

If we apply integration with the slow integration step to the previous equation, we obtain the
following:

Ð tkþtm
tk

d~Vxb

dt
dt ¼

ðtkþtm

tk

dVxb

dt
dtþ

ðtkþtm

tk
ωzbVyb � ωybVzb

� �
dt

Ð tkþtm
tk

d~Vyb

dt
dt ¼

ðtkþtm

tk

dVyb

dt
dtþ

ðtkþtm

tk
ωxbVzb � ωzbVxbð Þdt

Ð tkþtm
tk

d~Vzb

dt
dt ¼

ðtkþtm

tk

dVzb

dt
dtþ

ðtkþtm

tk
ωybVxb � ωxbVyb

� �
dt

(19)

The recursive solution of the previous equations is done in eight steps (sculling correction; see
[5–7]) from which the step of slow integration was adopted as tm = 8ts:

Wxb,k ¼ Wxb,k�1 þWyb,k�1αzb, k �Wzb,k�1αyb, k þ ΔWxb,k

Wyb, k ¼ Wyb,k�1 þWzb,k�1αxb, k �Wxb,k�1αzb, k þ ΔWyb,k

Wzb, k ¼ Wzb,k�1 þWxb,k�1αyb, k �Wyb,k�1αxb, k þ ΔWzb,k

Wzb, k ¼ Wzb,k�1 þWxb,kαyb, k �Wyb,kαxb, k þ ΔWzb,k

Wyb, k ¼ Wyb,k�1 þWzb,kαxb, k �Wxb,kαzb, k þ ΔWyb,k

Wxb, k ¼ Wxb,k�1 þWyb,kαzb, k �Wzb,kαyb, k þ ΔWxb,k

(20)

The initial values in each new step of slow integration are Wxb =Wyb =Wzb = 0.

After calculating the velocity increments in the body coordinate frame, it is possible to deter-
mine the increment of the velocities in the navigation coordinate frame, since the matrix of
transformation between the body and the navigational coordinate frame has already been
defined:

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

65



ΔWx

ΔWy

ΔWz

2
664

3
775 ¼ Cn

b

Wxb

Wyb

Wzb

2
664

3
775 (21)

The speed of the object relative to the Earth in the navigation coordinate frame can now be
represented by the following relations, with the remark that the Earth’s rotation that is neglected:

Vx ¼ Wx �
Ð t
t0
VzΩydt

Vy ¼ Wy þ
Ð t
t0
VzΩxdt

Vz ¼ Wz �
Ð t
t0

VyΩx � VxΩy þ g
� �

dt

(22)

whereΩx,Ωy,Ωz is the projections of the absolute angular velocity of the navigation coordinate
frame on its axes, Wx,Wy,Wz is the sums of projections of velocity increments in the naviga-
tional frame.

The determination of the position in the navigation coordinate frame can be solved in two
ways: by integration of the velocities, which is the case in determining the height, or by the
relationship between the matrix defined by Poisson’s equation and its definitions:

Bn
ECEF ¼

� sinφ cosλ sin ε� sinλ cos ε sinφ sinλ sin εþ cosλ cos ε cosφ sin ε

� sinφ cosλ cos εþ sinλ sin ε � sinφ sinλ cos ε� cosλ sin ε cosφ cos ε

cosφ cosλ cosφ sinλ sinφ

2
664

3
775 (23)

where φ is the latitude, λ is the longitude, ε is the azimuth.

Geographical navigation parameters can be determined from the relation of the preceding
equation and Eq. (14):

ϕ ¼ arctan
b33
b0

�90;þ90½ �

λ ¼ arctan
b32
b31

�180; 180½ �

ε ¼ arctan
b13
b23

0; 360½ �

b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b132 þ b232

p

(24)

As the azimuth is now defined, projections of speed in the ENUp coordinate frame can be
determined:

VN ¼ Vy cos εþ Vx sin ε
VE ¼ �Vy sin εþ Vx cos ε

(25)

The position in the ENUp frame can be determined as

Space Flight66



E ¼ 180
π

λ� λ0ð Þ cos φ0

� �
a

N ¼ 180
π

φ� φ0

� �
a

h ¼ Ð t
t0
Vzdt

(26)

Similarly, using the matrix definition from the navigation coordinate frame and the body
frame, we can get to the relations for angular positions:

ψ ¼ arctan
Cb

n 1; 1ð Þ
Cb

n 2; 1ð Þ
� �

φ ¼ arctan
Cb

n 3; 2ð Þ
Cb

n 3; 3ð Þ
� �

θ ¼ arcsin Cb
n 3; 1ð Þð Þ

(27)

3. Strapdown INS (SINS) algorithms

Three SINS algorithms based on previously defined mathematical model will be presented here.

The basic solution of SINS is forward Euler method applied to the main equations for rotation
and translation. Block diagram of this method is presented in Figure 1. In this algorithm there
is no division to the fast and the slow rotation, and all calculation is done in each step.

Figure 1. Forward Euler SINS algorithm block diagram.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

67



The other solution of SINS algorithm—the regular SINS—based on mathematical model pre-
viously defined is presented in Figure 2 as block diagram. The regular SINS algorithm calcu-
lates the velocity and angle increments eight times, and in the last step, Conning and Sculling
corrections are implemented including all the other equations in Figure 2.

Figure 2. Regular SINS algorithm block diagram.

Space Flight68



Figure 3. Divided SINS algorithm main flowchart.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

69



The last solution that is considered is SINS algorithm divided in eight steps. This eight-step
algorithm naturally arose as a consequence of Conning equation, and it is presented in the
following flowcharts.

From Figure 3, it can be seen that in each step, the main algorithm will call IMU and naviga-
tion procedures. This means that in each step, some part of calculation will be completed.

FromFigure 4, it can be seen that sculling correctionwill be calculated in each step (Figures 5 and 6).

Figure 4. IMU procedure flowchart—part one.

Space Flight70



Similar to the IMU algorithm, the navigation procedure is also divided into several steps
shown in Figure 7.

Availability of output data calculated by all three SINS algorithms is presented in Table 1.

From Table 1, it can be seen that forward Euler algorithm provides all SINS output values in
every step unlike regular and divided SINS which will provide outputs eight times slower.

Figure 5. IMU procedure flowchart—part two.

Figure 6. IMU procedure flowchart—part three.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

71



Generally, guidance and autopilot algorithms do not require inputs with such high fre-
quency, and both regular and divided SINS will usually satisfy requirements; see [8]. On the
other hand, if we compare the regular and the divided SINS algorithm, we can see that in the

Figure 7. Navigation procedure flowchart.

Algorithm step 0 1 2 3 4 5 6 7

Forward Euler method Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Regular SINS — — — — — — — Vxyz,
Bn
ECEF,

H,
lat, lon,
Cn

b ,
ϕ,θ,ψ

Divided SINS Vx, Vy, Vz,
H

Cn
b ,

ϕ,θ,ψ
Bn
ECEF,

lat, lon
— — — — —

Table 1. Comparison of available data in each step for different SINS algorithms.

Space Flight72



case of the divided SINS algorithm, the entire mission algorithm can be optimized in these
eight steps.

The regular and the divided SINS algorithms are based on the same numerical integration,
and the results of those two algorithms are equal in time. On the other side, we can compare
quaternion stability of forward Euler integration and regular SINS algorithm in time. Qua-
ternion norm which needs to be equal to one for quaternion of rotation is sensitive to the
integration step for forward Euler integration. Both algorithms were implemented in
MATLAB Simulink. Norm of quaternion is presented in Figure 8 for the same integration
step of 2 ms and for the same input data of gyroscopes presented in Figure 9. From Figure 8
it can be seen that the quaternion norm will be affected whenever there is significant move-
ment of the object.

Quaternion norm error will further affect all outputs of SINS algorithm, and that will lead to
error accumulation over time. Figure 10 represents angle errors for the same simulation.

Figure 8. Quaternion norm error comparison.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

73



Figure 9. Input data from gyroscopes used for simulation.

Figure 10. Angle error accumulation in time.

Space Flight74



4. Time consumption and processor load comparison of the regular
SINS, the divided SINS and the forward Euler algorithms

Forward Euler algorithm, regular SINS algorithm and SINS algorithm divided into eight differ-
ent steps presented here were compared in terms of processor load and time it takes for all
necessary calculations to complete. PC with Intel Core 2 Duo P8600 processor and 4 GB of RAM
was used as a testbed for comparison of the three mentioned algorithms. Ubuntu 16.04 LTS
operating system in real-time mode was used for time measurements and result generation.

Instead of using real sensors to feed the data to the algorithm, the data were read from the files
that contained recorded sensor outputs from INS tests previously performed. All the data were
memory mapped to avoid any loss of time due to IO operations, thus making the algorithm
exclusively CPU bound. Real-time interval timer set to 2 ms was used as the time frame
generator for the INS algorithm in order to mimic real-life operation. Every 2 ms, an interrupt
would occur causing the next piece of data to be fed to the algorithm, and the next step of the
algorithmwould be performed. In the case of the regular SINS algorithm, the entire quaternion
calculation will be performed in every eighth step. In the case of the divided SINS algorithm, a
piece of that calculation will be calculated in all of those seven middle steps as well as in the
final eighth step, thus optimizing processor load and dividing calculation time across all steps
in the algorithm evenly.

Statistics that are compared after the completion of the two SINS algorithms are the total time
spent in every eight steps of the algorithm, average amount of time spent in every step and
average processor load in each of the steps of the algorithm. Total time spent in every step of
the algorithm depends on the number of steps and as such is not important as a performance
measure. Average time and average processor load in each step of the algorithm are used for
performance comparison. In Linux, there are three distinct time measures of process execution.
Those are wall clock time, user time and system time.

Wall clock time is the amount of calendar time that elapsed from starting the process or the
stopwatch until moment “now”. Thus, wall clock time includes the time the process has spent
waiting for its turn on the CPU besides the time it actually spent running on the CPU. User
time is the time the process spent executing on the CPU in user mode, while system time is the
time the process spent executing on the CPU in system or kernel mode. User and system time
measure the actual time the process spent using the CPU, and total amount of time spent on
the CPU is calculated as the sum of these two time measurements.

All of these considered, wall clock represents the time that would be measured using a
stopwatch. Although wall clock time heavily relies on the operating system load, on the
scheduling policy used by the operating system and on the number of cores the CPU has, it
can be used as a measure of time since all versions of the algorithm are subjected to the same
conditions during the testing procedure. Even though the wall clock time is measured, it is not
actually used in time comparison of the two mentioned algorithms. Instead, user and system
time are used for comparison, because they rely only on the performance of the CPU, and the
actual time it takes for calculations in the algorithm is the sum of these two times.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

75



All times mentioned are given in microseconds. Total amount of time spent in the step of the
algorithm is calculated as the sum of user and system time. Average processor load is calcu-
lated as

PL ¼ uþ s
t

(28)

where u is the average user time, s is the average system time, t is the time sample duration.

The results obtained after time measurements of the regular SINS algorithm are presented in
Table 2.

The results obtained after time measurements of the divided SINS algorithm are presented in
Table 3.

Results presented in the tables are not comparable to the execution times on faster or slower
processors. Even though exact times are not comparable when a switch to a different CPU is
made, their ratio will still hold. Relative time gain and processor load gain of the divided SINS
over the regular SINS are presented in Table 4.

For the sake of completeness, forward Euler version of the SINS algorithm that performs all
calculations in each timer interrupt was also taken into consideration. Every 2 ms both quater-
nions are calculated as well as navigation parameters. Basically, this approach has no notable
steps, so the previous method of time measurement is not applicable here. Instead, the average
time necessary for the calculation of both quaternions and navigation parameters is taken as
the performance measure.

On average, it takes 6.16023 μs for the forward Euler algorithm to perform all calculations.
This translates to average processor load of 0.00308 which is significantly worse compared to

Algorithm step 0 1 2 3 4 5 6 7

Elapsed time (μs) 2.07395 2.17831 3.11257 2.71898 2.04108 2.00986 2.06820 4.82662

Processor load 0.00104 0.00109 0.00156 0.00136 0.00102 0.00100 0.00103 0.00241

Table 2. Measured time of the regular SINS.

Algorithm step 0 1 2 3 4 5 6 7

Elapsed time (μs) 2.08052 2.19571 3.09868 3.07395 2.07148 2.10682 2.27033 2.35067

Processor load 0.00104 0.00109 0.00154 0.00153 0.00103 0.00105 0.00113 0.00115

Table 3. Measured time of divided SINS.

Algorithm step 0 1 2 3 4 5 6 7

Time (%) +0.32 +0.80 �0.45 +13.05 +1.49 +4.82 +9.77 �51.30

Processor load (%) +0.00 +0.00 �1.3 +12.5 +0.98 +5.00 +9.71 �52.28

Table 4. Regular and divided SINS time and processor load ratio.

Space Flight76



the regular SINS algorithm and even more so compared to the divided SINS algorithm.
Processor load and time spent calculating in each step of the regular and the divided SINS
algorithms vary from step to step, whereas the time it takes for the forward Euler algorithm to
do its calculations can be considered as constant. Relative time gain (T) and processor load
gain (PL) of the divided SINS (DSINS) and the regular SINS (RSINS) algorithm over the
forward Euler algorithm are presented in Table 5.

5. Conclusion

In this chapter, navigation algorithm based on strapdown inertial navigation system algorithm
optimized for coding in eight steps is presented. This algorithm proved to be a good option in
situations where time and processor speed are limiting factors. Average time necessary for the
regular SINS algorithm to complete all the steps and perform one full calculation is
21.02957 μs, whereas the divided SINS algorithm needs 19.24816 μs to perform the same
operation, which scales to 8.47% improvement in time consumption. Even more important
than time consumption improvement is the processor load in each timer interval, which is
more uniformly distributed across all the steps in the divided SINS algorithm. Uniformly
distributed processor load allows for easier design and development of multithreaded appli-
cations, as well as more free resources for the control computer to gather information about its
surroundings and to issue commands to other devices in the control chain accordingly.

Also this algorithm proved to be mathematically more stable in term of quaternion norm,
which mean that there is less error in angle computation and cumulatively in trajectory
calculation.

Author details

Ivana Todić1* and Vladimir Kuzmanović2

*Address all correspondence to: itodic@mas.bg.ac.rs

1 Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Republic of Serbia

2 Faculty of Mathematics, University of Belgrade, Belgrade, Republic of Serbia

Algorithm step 0 1 2 3 4 5 6 7

RSINS T (%) �66.33 �64.64 �49.47 �55.86 �66.87 �67.37 �66.43 �21.65

RSINS PL (%) �66.23 �64.61 �49.35 �55.84 �66.88 �67.35 �66.56 �21.75

DSINS T (%) �66.23 �64.36 �49.70 �50.01 �66.37 �65.80 �63.14 �61.84

DSINS PL (%) �66.23 �64.61 �50.00 �50.32 �66.56 �65.91 �63.31 �62.66

Table 5. Regular and divided SINS processor load and time gains over the forward Euler algorithm.

Code Optimization for Strapdown Inertial Navigation System Algorithm
http://dx.doi.org/10.5772/intechopen.71732

77



References

[1] Titterton DH, Weston JL. Strapdown Inertial Navigation Technology. IEE Radar, Sonar,
Navigation and Avionic Series. Vol. 17. 2nd ed. 2004. 576 p. ISBN: 0-86341-358-7

[2] Salychev O. Inertial Systems in Navigation and Geophysics. 1st ed. Moscow: Bauman
MSTU Press; 1998. 352 p. ISBN: 5-7038-1346-8

[3] NIMA TR8350.2: Department of Defense World Geodetic System 1984, Its Definition and
Relationship with Local Geodetic Systems. 3rd ed

[4] AIAA R-004: “Atmospheric and Space Flight Vehicle Coordinate Systems”. American
Institute of Aeronautics and Astronautics (AIAA); 1992. 69 p

[5] Salychev O. Applied Inertial Navigation: Problems and Solutions. Moscow: Bauman
MSTU Press; 2004. 306 p. ISBN: 5-7038-2395-1

[6] Savage PG. Strapdown inertial navigation integration algorithm design Part1: Attitude
algorithms. Journal of Guidance, Control, and Dynamics. 1998;21(1):19-28

[7] Savage PG. Strapdown inertial navigation integration algorithm design part 2: Velocity
and position algorithms. Journal of Guidance, Control, and dynamics. 1998;21(2):208-221

[8] Siouris GM. Missile Guidance and Control Systems. 1st ed. New York: Springer; 2004. 666 p.
ISBN: 0-387-00726-1

Space Flight78


	Chapter 4
Code Optimization for Strapdown Inertial Navigation System Algorithm

