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Abstract: Color sorting is a technological operation performed with the aim of classifying compliant
and noncompliant agricultural products in large-capacity industrial systems for agricultural product
processing. This paper investigates the application of the YOLOv3 algorithm on raspberry images as a
method developed for the detection, localization, and classification of objects based on convolutional
neural networks (CNNs). To our knowledge, this is the first time a YOLO algorithm or CNN has
been used with original images from the color sorter to focus on agricultural products. Results
of the F1 measure were in the 92–97% range. Images in full resolution, 1024 × 1024, produced
an average detection time of 0.37 s. The impact of the hyperparameters that define the YOLOv3
model as well as the impact of the application of the chosen augmentative methods on the model are
evaluated. The successful classification of stalks, which is particularly challenging due to their shape,
small dimensions, and variations, was achieved. The presented model demonstrates the ability to
classify noncompliant products into four classes, some of which are appropriate for reprocessing.
The software, including a graphic interface that enables the real-time testing of machine learning
algorithm, is developed and presented.

Keywords: machine learning; deep learning; YOLO; color sorting; inspection; agriculture

1. Introduction

Since digitalization of agriculture contributes to increased efficiency in primary pro-
duction processes [1–3], current technologies in industrial processing systems demand
innovation. Serbia is one of the three greatest raspberry producers in the world; therefore,
any loss during processing is a global-level loss. Raspberry fruit can be frozen, sorted, and
processed as whole, whole and broken, crumbled, or used as raw material for puree pro-
duction. As for the cold processing of raspberry, the requirements for machine inspection
concerning extra class are as follows: the fruits must be whole, clean, fresh, and seemingly
healthy, without any defects and foreign materials. In addition, they must be uniform in
maturity level and firm enough to withstand handling and transport. Certain deviations,
up to 5%, are permissible. For premium-class raspberries, some deviations are tolerated
regarding fruit development and size (up to 10%); however, fruits must not be over-ripe.

Industrial systems for machine inspection of agricultural products are mostly stan-
dardized. Each machine has its control system and algorithm to define the criteria and
perform the selection of products. Output accuracy of the color sorter ranges commonly
from 91 to 98%. One operator services the machine and generates recipes for each product
being processed separately. When generating a recipe, a certain amount of product is
allowed to pass through the machine, screened with available optical devices. In general,
the external quality of fruits and vegetables is assessed using the physical characteristics
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of color, texture, size, shape, and visual defects [4–6]. The operator obtains the output
parameters that refer, for the most part, to the color and shape. On the basis of differences
in parameter values for compliant and noncompliant products, critical criteria and their
values are selected and adjusted, i.e., a recipeis generated. Noncompliant products are
products whose physical characteristics do not conform to the Class Specification Regula-
tions, or that contain foreign materials found during sorting, such as soil, wood, plastics,
glass, metal, leaves, animal and insect parts, etc.

The promotion of machine vision was contributed to mostly by deep learning al-
gorithms. During the investigation of the latest research in the machine vision field,
convolutional neural networks seemed to be the best approach for resolving some of the
aforementioned issues during color sorting. On the other hand, with many training images,
algorithms can learn quickly and, after some time, the efficiency and accuracy of overall
human capabilities may be calculated.

Although there are no scientific papers directly related to the application of machine
and deep learning on machines for color sorting and inspection in industrial production, a
considerable number of research studies indicate the potential for inspection and assess-
ment of fruits [7–9], vegetables, the quality of cereals [10,11], legumes, detection of bruises
and diseases [12,13], and in primary agricultural production [14–17]. Initial investigations
of the YOLO (you only look once) [18] algorithm implementation, as a widely used algo-
rithm that can operate in real time, were related to autonomous vehicles and detection of
objects and pedestrians [19,20] or insect classification [21]. Very soon, these algorithms were
applied in other areas [22–25], including in fruit and vegetable recognition [26,27]. The
closest comparison to our research is found in [28]. Here, the authors designed databases
of raspberry images which are ready for industrial inspection. The focus of this paper is
evaluating the largest amount of fruit possible and not a single sample. Therefore, the
difference from our dataset is that our data come directly from the machine referred to as
the color sorter, where raspberries or other fruits are mostly evenly distributed on the belt.
For the future, it could be interesting to train those datasets with our proposed flow and
web application.

YOLO is most commonly used for application in real time and combines object lo-
calization and classification into a regression problem. Test results on the largest datasets
and comparisons with previous algorithms such as RCNN are presented in the work
by Redmon et al. [18], as well as on their official website, providing detailed analyses
(https://pjreddie.com/darknet/yolo/ (accessed on 10 June 2021)).

YOLOv3 is also good enough for small object detection with Darknet-53, which
possesses several improvements from Darknet-19 [29]. Regarding diseases or bruises in
agricultural products, some authors have improved YOLOv3 by modifying or adding
a particular network layer [13,30]. However, there have not been a larger number of
investigations of agricultural product detection of any size in industrial processing plants.

Liu et al. [14] presented the idea of an algorithm for tomato detection and segmentation
in a greenhouse. In addition, a comparison was made with several algorithms, including
YOLO. Both algorithms, in addition to the proposed YOLO, produced excellent results
under the same conditions.

Fruit detection in the orchard in real time represents one of the essential methods in
growth stage and yield assessment. Size, color, fruit density on the crown, and other charac-
teristics of fruits and vegetables change during growth and ripening. The YOLO algorithm
can be adapted to various growth stages of agricultural products, for example, in apple
detection in an orchard [16]. Traditional methods mainly detect a specific condition using a
single model. A modified/improved YOLO model is proposed for apple detection in the
orchard, at different growth stages, with fluctuating illumination, complex backgrounds,
apples located on top of one another, and apples partially covered by branches or leaves.

The aim of this paper is to find a new approach to optimize the number of the criteria
and complexity of the detection algorithm while, at the same time, creating the definition
of a good product. As mentioned, deep learning algorithms produce excellent results in the

https://pjreddie.com/darknet/yolo/


Appl. Sci. 2022, 12, 12817 3 of 17

recognition of different types of objects, and the challenge in industrial processing of agri-
cultural products is that automatic inspection must be performed in real time. This was the
main reason for choosing the YOLOv3 algorithm over its previous versions and other deep
learning algorithms. In addition to YOLOv3, both YOLOv4 [31] (April 2020) and YOLOv5
(May 2020) were subsequently developed. Although some investigations have shown
that the latest versions achieve somewhat better results compared to YOLOv3 [32–34], the
authors agreed to use it for initial investigation because the problem dynamics are not
complex. In the case of YOLOv3, the input data include the entire image, and the algorithm
itself detects a set of common characteristics obtained as training data and classifies them;
raspberry variations, in the form of color and shape, are not complex, although a stalk
represents a special challenge. The authors concluded that implementation of deep learning
algorithms in industrial systems for various products’ inspection is the next logical step,
and research results indicated that there is a theoretical possibility of their application.

The remainder of the paper is organized as follows: Section 2 presents the detailed
methodology, followed by a visual representation of the flow of data. Section 3 first presents
the results, then a detailed discussion, and the developed web application is described and
proposed. Finally, Section 4 provides a final discussion and conclusions about results.

2. Materials and Methods

Input data used as a basis for investigation are digital images of raspberry obtained
by screening with an Optyx 3000 color sorter during industrial processing. The system for
color sorting and inspection is part of an automatic line for inspection and packaging, of
3 t/h capacity, in the ITN Eko Povlen plant, Serbia. Color sorter and the schematic process
of color sorting are represented in Figure 1.
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Figure 1. (a) Optyx 3000 color sorter in plant; (b) schematic representation of the process of
color sorting.

The system is screening images of the resolution 1024 × 1024 pixels in RGB format,
and the screening speed is 4000 Hz. The machine recognizes compliant bioproducts and
detects noncompliant bioproducts based on prior generated recipe. The recipe contains
criteria that define the compliant product, while the color sorter, by means of a pneumatic
ejector, eliminates products that do not meet the set criteria. Figure 2 summarizes processes
after dataset collected.

Raspberry images of the resolution 224 × 224 pixels, saved in .jpg format, were used
for input data. Input training images need not be in a specific resolution, it is only required
that the image size is divisible by 32 [18]. Color components remained in RGB format.
As reported in [35], many works related to fruit classification using detection algorithms
selected an RGB camera as primary sensory detector.
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Figure 2. Overview of the performed methods. Training and evaluation pipeline.

Classification was performed within the dataset. An example is provided in Figure 3.
Five possible classes were defined: raspberry (compliant raspberry) example is provided in
Figure 3a, noncompliant (noncompliant/moldy raspberry), noncompliant + stalk (noncom-
pliant/moldy raspberry with a stalk) and stalk were provided in Figure 3b, and defective
material (contaminated material) is shown in Figure 3c.
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Figure 3. (a) Compliant raspberry (class: raspberry), (b) noncompliant raspberries (class: stalk,
noncompliant, noncompliant + stalk), (c) defective materials (class: defect. mat.).

The original set contained 99 images of compliant raspberries and 66 images of non-
compliant raspberries, as well as defective material. After numbering the images, the set
was divided into the training set, validation set, and test set. The validation set included
20 randomly selected images, and the test set included 20 selected representative im-
ages containing a specific number of possible appearance variations of compliant and
noncompliant raspberries, as well as defective material. A total of 55 objects of interest
were included.

Data augmentation was performed with the training set, using techniques such as
brightness level, rotation, blurring, gamma correction, mirror effect, and noise (Figure 4).
The final set size was 4000 images (Table 1).
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Table 1. Table with input data.

Training Set Compliant Raspberries Noncompliant Raspberries Total Raspberries

Number of original images 79 46 125
Brightness: +10, +20, +50, +100, 150, −10,

−20, −50, −100 711 414 1125

Gamma: 0.5; 0.7; 0.9; 1.2; 1.5; 1.7; 2.0 553 322 875
Gaussian noise: 0.2; 0.5; 1.0; 1.5; 2.0 395 230 625

Rotation: 90 cw, 90 ccw, 180 237 138 375
Mirror 158 92 250

Blur: 0.2; 0.4; 0.6; 0.8; 1.0 395 230 625
Total 4000

These techniques are ideal for the training set augmentation of the research subject
and for other practical reasons. During the inspection process, the object is not always
in the same position. In particular, the raspberry does not have a regular shape, so it can
occupy several different positions due to shape variations. Illumination that is used by the
color sorter is extremely strong; however, in real production some of the lamps may fail.
Therefore, there is a possibility of reduced brightness level until the lamps are replaced,
which can take several days. The image blurring technique Gaussian blur was utilized
for several reasons. During agricultural products’ inspection on the color sorter, there is a
possibility—albeit very unlikely—that the glass, located above the conveyor belt but below
the camera for product screening, may become blurred or dirty. The reasons for this may
range from temperature changes in the plant to uncontrolled product motion along the belt
at high speeds of fruit transport. Therefore, this technique has found its application for
that purpose.

Further, manual labelling of the original training images, images augmented by ro-
tation, and mirror effect were executed. The program LabelImg (https://tzutalin.github.
com/heartexlabs/labelImg/ (accessed on 10 May 2021)) was used for this purpose because
it has the capacity of image labelling and automatic saving in the format demanded by
Yolo and PascalVOC [36]. The program stores an image and a text file with the coordinates
of the labelled object of interest and its assigned class.

A php script was created for other sets of augmented images. This script automatically
copies the text file from the original training images, because coordinates of the object of

https://tzutalin.github.com/heartexlabs/labelImg/
https://tzutalin.github.com/heartexlabs/labelImg/
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interest are identical. Only image exposures were changed, not the object position in the
image, e.g., in the case of rotation and mirror effect.

The first step for initialization and technical setup was to create an account on a
virtual machine and to install YOLOv3 environment. Here, YOLO implementation is based
on Python programming language (https://github.com/ultralytics/yolov3 (accessed on
24 August 2021)). A virtual machine, “Deep Learning”, was used for the needs of algorithm
training, leased on the Google Cloud platform (https://cloud.google.com (accessed on
1 September 2021). A virtual machine was used instead of a classic computer system for
the following reasons:

• convolutional networks’ training on computers with average graphics card is slow,
and even unusable;

• virtual machine comes with preinstalled software, which shortens the environment
time-alignment;

User can configure multiple items such as: number of processors, graphics card type,
disk size, preinstalled software, region of server location, etc. Configuration of the training
computer used for research involves the following:

• GPUs: 1 × NVIDIA Tesla K80;
• CPU platform: Intel Haswell, 4 vCPUs, 15 GB memory;
• SSD hard disk.

Repository on all configurations is available online at any time at the following
link: https://github.com/IvaMark/YoloV3-Raspberry/ (accessed on 1 September 2020).
The total of 9 trainings were executed with different hyperparameters to determine the
best performances.

The following hyperparameters were changed: number of epochs, batch size, and
learning rate. The basic ideas and guidelines in the choice of these hyperparameters are
defined by Le Cun in his works [37,38]. Figure 5 shows a network used by YOLOv3 and a
method of calculating the coordinates.
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Figure 5. YOLOv3 network, DarkNet 53 and calculation of the coordinates adapted from Ref. [18].
2018, Joseph Redmon and Ali Farhadi.

Detection on different layers solves defects of detecting small objects in the image.
Upsampling layers concatenated with previous layers retains tiny characteristics that assist
in detecting small objects. Figure 6 represents a simplified depiction of YOLOv3 network
in order to show scaling and number of anchor boxes used.

https://github.com/ultralytics/yolov3
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Figure 6. YOLOv3 network, simplified representation.

In trainings 1, 3, 4, 5, 6, and 7, pre-defined dimensions of Anchor boxes trained on
the COCO dataset [39] were used, and in trainings 2, 8, and 9, new anchor boxes were
trained using k-means algorithm on the original training set. The evaluation of the results
was performed through the value of F-measure, GIoU, mAP, and test loss. The training
time, detection time, and individual influence of augmentation techniques are shown and
compared in tables and graphics.

Table 2 shows the parameters used for each training. It can be noted that hyperparam-
eters for training 1 and 3 are identical; however, the difference lies in subsequent revision,
where a series of errors was observed related to the incorrect assignment of a class to an
object. Thus, a modified training test was subsequently used.

Table 2. Training parameters.

Number of Epochs Learning Rate Batch Size Anchors

Training 1 100 0.001 with default alignment 64 COCO
Training 2 150 0.001 with default alignment 64 trained
Training 3 100 0.001 with default alignment 64 COCO
Training 4 130 0.001 with default alignment 32 COCO
Training 5 130 0.001 with default alignment 128 COCO
Training 6 110 0.1 with default alignment 64 COCO

Training 7 110

initial 0.01, 0.001 after '60 epochs
(3700 iterations), 0.0001 after '25 epochs
(1500 iterations), 0.00001 after '25 epochs
(1500 iterations)

64 COCO

Training 8 150 initial 0.001, change after '60, '25, '25 epochs 32 trained
Training 9 150 0.001 with default alignment 128 trained

Result evaluation was carried out through the value of F1 measure, GIoU, mAP, and
test loss. The accuracy of predicted localization is affected by IoU, GIoU, confidence, and
mAP, whilst classification is affected by F1 measure and classification. The model’s total
performance, i.e., output errors, are represented by train and test loss.

2.1. F1 Measure

F1 measure is a measure most commonly used to define the success of a model [40]. It
is calculated based on recall (R) and precision (P):

R, recall, is the relation between correctly classified objects (TP: true positive) and the
total number of objects in that class.

R = TP/(TP + FN) (1)

where TP (true positive) are correctly positively classified objects of interest, and FN (false
negative) are incorrectly negatively classified objects of interest.
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P, precision, is a measure that indicates the relation between true positives in a certain
class and objects classified in that class, and is calculated according to the following formula:

P = TP/(TP + FP) (2)

where FP (false positive) denotes incorrectly positively classified objects of interest.
And the F1 measure can be further calculated using the formula:

F1 = 2 ∗ R ∗ P/(P + R) (3)

2.2. Mean Average Precision—mAP

Average precision (AP) refers to the area under the precision/recall (P/R) curve for
each class. Mean value of average precision of individual classes is mean average precision
and is defined in more detail in [41]. In the original YOLO work [42], authors report that
they do not make the distinction between AP and mAP.

2.3. Generalized Intersection over Union—GIoU

In neural networks, any loss function must be differentiable so as to execute learning
by the backpropagation method. IoU has value 0 in cases when the predicted bounding
box does not intersect with the real box; therefore, there is no derivative. On the other hand,
GIoU is always differentiable, and its range is from −1 to 1. It covers the smallest possible
area between the predicted and the real box. Therefore, it measures how close the predicted
shape is to the real one, although they do not intersect, because some boxes are farther, and
others are closer. An example is provided in Figure 7.
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Input: two arbitrary shapes: A, B ⊆ S ∈ Rn. Output: GIoU
A, B represent the predicted and real bounding box. C is the smallest convex envelope

that includes A and B.

IoU =

∣∣∣∣A∩ B
A∪ B

∣∣∣∣ (4)

GIoU = IoU− |C\(A∪ B)|
|C| (5)

2.4. Total Error on the Training and Test Set—Train and Test Loss

The loss function is one of the criteria for evaluating model performances. As men-
tioned above several times, the primary goal is to minimize the value of this function and,
through the training itself, to find the predicted values of weight factors, which coincide
with real output values. The loss function, i.e., the total error of model, is defined in
YOLO as the sum of coordinate prediction errors Errorcoor, trust level errors ErrorIoU, and
classification errors Errorclc:

Loss = Errorcoor + Erroriou + Errorclc (6)

Finally, a comparison of training time and detection time, as well as the effect of each
augmentation technique, was performed.

3. Results and Discussion

Table 3 summarizes the results of all eight trainings. The F1 measures and GIoU
demonstrated the best values during the second training, after using the trained anchor
boxes (anchors = 24,26; 29,46; 31,80; 38,60; 42,45; 45,66; 46,81; 64,75; 66,42.). These anchor
boxes were chosen and trained using the k-means algorithm on the original training set.
The best values of mAP = 0.996 and test loss = 0.138 were obtained during the fifth training,
after the batch size was augmented to 128. Some training employed the dimensions of
anchor boxes trained on the COCO dataset [37] (anchors = 10,13; 16,30; 33,23; 30,61; 62,45;
59,119; 116,90; 156,198; 373,326).

Table 3. Summarized training results.

Training GIoU Train Loss Precision Recall mAP F1 Test Loss

1 0.0732 0.142 0.866 0.995 0.992 0.923 0.157
2 0.0577 0.122 0.941 0.995 0.993 0.967 0.142
3 0.0733 0.136 0.871 0.997 0.995 0.928 0.163
4 0.0624 0.11 0.899 0.998 0.994 0.943 0.145
5 0.0635 0.119 0.899 0.998 0.996 0.944 0.138
6 0.0643 0.114 0.884 0.996 0.994 0.935 0.149
7 0.0647 0.116 0.899 0.996 0.994 0.942 0.14
8 0.0635 0.14 0.913 0.998 0.996 0.953 0.163

Figure 8 shows examples of the results for detection, localization, and classification by
YOLOv3 algorithm implementation.

To assess the effects of each technique applied for training set augmentation on
the model performances, a model was designed (training 9) with new combinations of
hyperparameters based on previous trainings: initial learning rate was 0.001; with first
reduction, the learning rate was 0.0001 after 3200 iterations, and the learning rate after the
second reduction was 0.00001 after 3600 iterations, with a batch size of 128, and with trained
anchor boxes. The results are displayed in a graphical (Figure 9) and tabular (Table 4) form
in the next section.
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Table 4. Summarized results for effects of other applied augmentation techniques.

Training Detection Time (in Hours) GIoU Train Loss mAP F1 Test Loss

Original set—training 9 9.061 0.0579 0.125 0.995 0.965 0.146
Without brightness set 6.474 0.0692 0.156 0.992 0.953 0.183
Without gamma set 7.074 0.0728 0.16 0.991 0.945 0.192
Without rotation set 8.175 0.047 0.092 0.995 0.981 0.125
Without mirror effect set 8.685 0.057 0.109 0.994 0.975 0.143
Without blur set 7.607 0.069 0.161 0.991 0.933 0.206
Without noise set 8.094 0.065 0.142 0.994 0.97 0.156

Based on the table of obtained values (Table 4), it can be concluded that elimina-
tion of data produced by the rotation technique yields better results for test loss = 0.125,



Appl. Sci. 2022, 12, 12817 11 of 17

F1 = 0.981, and GIoU = 0.047, whereas the highest positive effect was achieved by the
blurring technique, and better results were also produced by other techniques.

3.1. Training and Detection Time

Table 5 presents the average network training time with training data, as well as
the average time required to detect a single test image for the aligned parameters of
the aforementioned trainings. Figure 10 shows a diagram with the comparative average
detection time in each figure of the trainings 1–9.

Table 5. Average network training time for each training and test image.

Training 1 2 3 4 5 6 7 8 9

Network training 3.48 h 9.15 h 3.5 h 7.788 h 7.754 h 4.89 h 4.88 h 9.141 h 9.061 h
Test images 0.045 s 0.047 s 0.056 s 0.043 s 0.043 s 0.042 s 0.044 s 0.042 s 0.044 s

Appl. Sci. 2022, 12, 12817 12 of 18 
 

aforementioned trainings. Figure 10 shows a diagram with the comparative average de-

tection time in each figure of the trainings 1–9. 

Table 5. Average network training time for each training and test image. 

Training 1 2 3 4 5 6 7 8 9 

Network training 3.48 h 9.15 h 3.5 h 7.788 h 7.754 h 4.89 h 4.88 h 9.141 h 9.061 h 

Test images 0.045 s 0.047 s  0.056 s  0.043 s 0.043 s  0.042 s 0.044 s 0.042 s 0.044 s 

Detection time was also measured in full-resolution images (1024 × 1024) obtained 

from an Optyx 3000 color sorter. The average time amounted to 0.37 s per image. The 

maximum conveyor belt speed in an Optyx 3000 color sorter is 3 m/s, i.e., ≈0.33 s duration 

for one image captured, considering that one pixel screened is 1 mm. If YOLOv3 detec-

tion time in a full-resolution image (1024 × 1024) is ≈0.37 s, it can be concluded that this 

algorithm could be applied on these machines for its stated purpose. It should be noted 

that network training time depends on the processing unit used for training. Network 

training can be executed through GPU (graphics processing unit), where graphics card 

power is utilized, or CPU (central processing unit), where processor power is used. 

Training of convolutional neural networks is more convenient through GPU. As men-

tioned at the beginning of this paper, the power of the NVIDIA Tesla K80 graphics card 

was used, and this represents a middle class for training of deep learning algorithms. For 

example, when a deep learning virtual machine is created on Google Cloud, this card is 

set as default. The training set for this research did not require extensive computer re-

sources; however, network training time would certainly be shorter if a more powerful 

graphics card was used. 

 

Figure 10. Comparative representation of detection time, in seconds, in 20 test images for all 

trainings. 

Furthermore, the number and size of data in the training set, in addition to the 

above-mentioned hyperparameters, affect the length of training duration. 

Figure 10. Comparative representation of detection time, in seconds, in 20 test images for all trainings.

Detection time was also measured in full-resolution images (1024 × 1024) obtained
from an Optyx 3000 color sorter. The average time amounted to 0.37 s per image. The
maximum conveyor belt speed in an Optyx 3000 color sorter is 3 m/s, i.e., ≈0.33 s duration
for one image captured, considering that one pixel screened is 1 mm. If YOLOv3 detection
time in a full-resolution image (1024 × 1024) is ≈0.37 s, it can be concluded that this
algorithm could be applied on these machines for its stated purpose. It should be noted that
network training time depends on the processing unit used for training. Network training
can be executed through GPU (graphics processing unit), where graphics card power is
utilized, or CPU (central processing unit), where processor power is used. Training of
convolutional neural networks is more convenient through GPU. As mentioned at the
beginning of this paper, the power of the NVIDIA Tesla K80 graphics card was used,
and this represents a middle class for training of deep learning algorithms. For example,
when a deep learning virtual machine is created on Google Cloud, this card is set as
default. The training set for this research did not require extensive computer resources;
however, network training time would certainly be shorter if a more powerful graphics card
was used.
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Furthermore, the number and size of data in the training set, in addition to the above-
mentioned hyperparameters, affect the length of training duration.

3.2. Web Application

After the results were obtained, a simple web application was created in the form of
a graphical interface for training weight coefficients for new agricultural products. The
application contains predefined weight factors trained using the YOLOv3 algorithm for
raspberries, as shown in Figure 11.

Appl. Sci. 2022, 12, 12817 13 of 18 
 

3.2. Web Application 

After the results were obtained, a simple web application was created in the form of 

a graphical interface for training weight coefficients for new agricultural products. The 

application contains predefined weight factors trained using the YOLOv3 algorithm for 

raspberries, as shown in Figure 11. 

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 11. (a) Front page of the application for the selection of weight coefficients and images, (b) 

inserting an image, (c) detection results, (d) creating a new class, (e) labeling objects of interest. 

The application is open source and was set up on a GitHub development platform at 

the following link: https://github.com/ultralytics/yolov3 (accessed on 24 August 2021.). 

Image detection, by using trained weight factors, is executed through a command-line 

interface. After starting, a selection of images from a default input folder is produced, as 

shown in Figure 11b. A background algorithm with predefined weight factors performs 

the labeling of objects in the image (Figure 11c) and saves the labeled image in a default 

output folder. The input and output folder can be forwarded as a command argument. 

Figure 11. (a) Front page of the application for the selection of weight coefficients and images,
(b) inserting an image, (c) detection results, (d) creating a new class, (e) labeling objects of interest.

The application is open source and was set up on a GitHub development platform at
the following link: https://github.com/ultralytics/yolov3 (accessed on 24 August 2021).
Image detection, by using trained weight factors, is executed through a command-line
interface. After starting, a selection of images from a default input folder is produced, as
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shown in Figure 11b. A background algorithm with predefined weight factors performs
the labeling of objects in the image (Figure 11c) and saves the labeled image in a default
output folder. The input and output folder can be forwarded as a command argument.
Web application is written in the Flask web framework based on the Python programming
language. The original application code and configuration training are stored in the GitHub
repository at the following link: https://github.com/IvaMark/YoloV3-Raspberry. The
application is packed in a Docker container; therefore, the user does not need to install the
application and dependencies manually. The only requirement is the installation of the
Docker software (https://www.docker.com/(accessed on 1 August 2021)).

Once Docker is successfully installed, the GitHub repository needs to be cloned and
brought to the docker-application directory. Further, the following commands must be
executed in order to create applications in the local environment:

• docker-compose build
• docker-compose up -d

The application is currently available on the web through the following address:
http://localhost:43311/ (accessed on 20 September 2021).

In addition to weight factors trained on the raspberry example, image detection
can be executed by using weight factors trained on the COCO dataset (330,000 images,
80 classes) created for YOLOv3, YOLOv3-spp, and YOLOv3-tiny. It is possible to add
a larger number of predefined parameters and, therefore, to extend the assortment of
agricultural products that can be tested. The next possibility for the application is for
the selection of the predefined classes’ representation for specific agricultural products.
The developed application represents a beta version that can be adapted to various
agricultural products.

3.3. Discussion

The information and results provided above present the theoretical possibility of the
YOLOv3 algorithm’s real application in industrial production for the needs of agricultural
products’ sorting and inspection.

As mentioned, the literature considered does not include works directly related to the
subject of this research. To our knowledge, this is the first time that research employs real
images from a color sorter, and we intended to initially contribute and open the theme for
future research and application of deep learning algorithms in the industrial conditions
of inspection.

In [14,32,33,43], only one or two classes were used as an output [44]. In relation to the
more complex variations of the object of interest and the number of classes in our work,
it can be concluded that the results obtained in this research are more significant because
5 classes are defined in our work and the results are promising: F1 as a measure of the
proposed algorithm amounted to 92–97%, and the machine’s current accuracy is 91–98%.

Research study [16] defines multiple apple classes according to growth stages. Results
of F1 measure indicated that the number of classes affects model output performances. On
the other hand, the training set in this paper involves compliant raspberries with different
ripeness levels, but they are defined as a single class, and there were no errors of this type
on the test set. It should be noted that in their study, YOLOv3 is modified by the DenseNet
method, the aim of which is to better preserve and use significant characteristics with the
YOLO network; therefore, this network produced better results in their research compared
to the standard YOLOv3 network, whilst our work did not employ additional promotion
of the network.

The same group of researchers used the above-mentioned improved version of YOLOv3
to detect anthracnose apples [13]. This study can represent the confirmation of the success
of the YOLO algorithm in identifying infected fruit, as was carried out in this work, where
only one disease is separated in three stages; however, our work is concerned with the
examples of moldy raspberry, as well as different types of additional damages.

https://github.com/IvaMark/YoloV3-Raspberry
https://www.docker.com/(accessed
http://localhost:43311/
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In [43], the authors highlighted the advantages of YOLOv5 in terms of lightweight
and better real-time performance. However, YOLOv3 produced exactly the same results
as YOLOv5 for F1, mAP, recall, and precision. A result of approx. 100% would have been
achieved in our work also, if the aim had been to detect raspberry only. Here, we wanted to
formulate a realistic scenario of agricultural products’ industrial inspection and to highlight
multiple challenges of detection, e.g., stalk detection.

In [45], the authors report that YOLO algorithms are continuously studied, and a table
is shown containing the total number of created improved versions of different basic YOLO
algorithms over a five-year period. Studies of the literature indicate small differences
in precision results between YOLOv3 and later versions, but these are most evident in
detection speed and the time needed for network training. In this context, if any other
YOLO algorithm had been applied to our dataset, it would not have significantly affected
our conclusions on potential applicability in industrial processing of agricultural products.
Another reason for our belief that the application of CNN networks would produce good
results in this field is that potential flaws of the application of networks such as CNNs
include the fact that they do not encode the position and orientation of the object, and
a great amount of training data is required, easily leading to a zero level with the use
of augmentative methods such as rotation (or others), and to the easy processing of a
large dataset in a short period of time. Furthermore, the industrial conditions of machine
inspection are near-experimental: during product screening, in passing through a color
sorter, the camera is always screening the product from the same distance, at the same
angle, and the background does not change. At the very outset, the greatest challenges for
detection algorithms were avoided.

The application of CNNs can represent the optimization of the process defining an
acceptable product and a product intended for processing, such as a raspberry with a stalk.
A major advantage of the YOLOv3 algorithm is the possibility of detection, localization,
and classification in real time where the image is used as an input. It is certainly possible
to create more easily the final model and weight factors with a specific number of images
and for each defined class. The output accuracy would be equal or greater than the
accuracy of current color sorters, which is presented in the work as theoretically possible
but with additional advantages provided by deep learning algorithms. By developing the
beta version of the proposed software, where trained weight factors can be stored, the
desired agricultural product can be easily tested before it becomes the object of industrial
color sorting.

4. Conclusions

Results of the work show that convolutional neural networks, specifically the YOLOv3
algorithm on the raspberry example, achieve accuracy and speed at a high level in de-
tection, localization, and classification. In all 9 trainings, the model accuracy, according
to F1 measure, ranged between 92 and 97%. The impact of hyperparameters defining
the YOLOv3 model was assessed. Learning rate did not have significant influence on
model performances. The training set size is assumed to be the reason. The number of
epochs, trained anchor boxes, and the choice of batch size influenced performances and the
classification precision of the model. It is also possible to obtain good results with default
hyperparameters and anchor boxes. The effects of augmentation techniques on model
performances are significant, according to the results. The augmentation technique that
produced the greatest positive impact on the final defined model was blurring, while the
rotation technique had a negative impact.

There are two significant findings. The first one is that the detection and classification
of an object such as a stalk represents one of the significant results of YOLOv3 algorithm
application due to its shape, small dimensions, and variations. Detection, localization, and
classification of noncompliant raspberries that had various types of damage and shape,
and were classified into a single class, can be also considered an outstanding result of the
YOLOv3 algorithm implementation.
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Since various results define how successful an algorithm is (e.g., precision, training
time, speed detection, etc.), the results are not influenced only by the choice of the algorithm
type but also by the hardware. The reliable result and algorithm choice can be confirmed
only by direct use on the machine.

Authors agree that this method can be useful as a nondestructive method for detection,
localization, and classification of agricultural products during machine inspection. Average
detection time in full resolution images (1024 × 1024) amounts only to 0.37 s with the
selected middle-class software components. With a better graphics card and overall system,
this time can be additionally reduced. The application of this method can largely promote
the accuracy of object identification, accelerate the efficiency of agricultural products’
sorting, increase objectivity in decision making (i.e., machine learning), and ensure greater
economic benefits of the entire process.

The paper also presents a developed model of software solution in the form of a
graphical interface that allows for testing of the machine learning algorithms and potential
application during real processing of agricultural products. Future development of the
application functionality would include forwarding new images intended for training
through online services, after which a new version of the weight factor could be sent to
the application.

The next direction of development of this topic would involve investigation of the
unsupervised learning algorithm application, where the possibility of processing a larger
amount of data in real time would be increased. In general, it is necessary to set out and
create solutions that apply deep learning in such systems of industrial production. A
general improvement in the new area of deep learning and convolutional neural networks
is evident, and essential for further investigation and application in smart and sustain-
able agricultural production, as well as for achieving greater precision and safety in the
food industry.
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