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Finite Element and Analytical Modelling of Ship Unloader

Zrnié Nenad'", Gasi¢ Vlada!, Urosevi¢ Marko', Arsi¢ Aleksandra'
"Faculty of Mechanical Engineering, Department of Material Handling Constructions and Logistics, University of
Belgrade, Belgrade (Serbia)

The paper deals with the mathematical modelling of the dynamic behaviour of the structure of the ship unloader. It
is given the procedure for formulation of the reduced dynamic model which retains the main aspects of the behaviour of the
structure and yet is simple enough to be performed with standard engineering tools. The approach is applied on the real
bridge-type grab ship unloader but can also be used on similar complex structures. Initially, the complete structure is
modelled with finite element software where the natural frequencies were obtained. This 3D model is reduced to an
equivalent plane model of the sea-side part of the boom. The postulation of the analytical approach is based on the model
of a simple beam with an overhang where dynamic analysis is concerned with the Rayleigh Ritz method for estimating the
adopted admissible functions. The results of the modal analysis of the reduced mathematical model showed a small
difference from the results of finite element analysis which stands for the verification of the presented approach.
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1. INTRODUCTION Table 1: Main technical characteristics of observed ship

Ship unloaders are machines located in ports and unloader
docks to facilitate bulk material exportation. These cranes Capacity, (Q) 400t/h
are used to transfer, continually, solid bulk material from Maximum load capacity, (M) 12 ¢
the ship to the shore and conversely such as iron ore, coal, Lifting height above the rail level, (H,) 20 m
fertilizers, and grains. Reach from water side leg, (L,,) 32m

Over time, from 1959 [1] until today, the size, Reach from land side leg, (L;) 26 m
mass, and strength of the crane structures have increased Span between the legs, (L) 28m
due to the increasing size of ships and the constant growth Width between the 1eg’s ( g) 14m
of goods traffic in ports. However, the structures of the Total height, (H) : ~5im

cranes remained relatively slender, i.e. their stiffness did
not increase proportionally. Therefore, the movement of 2. NUMERICAL MODEL
the trolley over the boom, as well as the lifting of the grab
with material, can cause unacceptable deflection of the
structure, especially in the vertical plane, [2]. According to

In order to perform a modal analysis of the
mathematical model of the ship unloader, it is necessary to

hese f: he d . Ivsis i . ¢ form its numerical model on the basis of which the natural
these SCtS’.t N dyna;mlc ana Btlstlﬁ 15 necessary mfp rocesstod frequencies will be obtained, which will later be used to
projecting in order to prevent the occurrence of unwante verify the results of the mathematical model.

stress states and deformations that can greatly reduce the Initially, a 3D FE model — Model 1 of the entire
productivity of these systems. ’

A detailed numerical analysis of the moving load
problem for the lifting boom of a ship unloader is given in
[3,4]. To analyze the dynamic response of the crane boom
structure due to moving mass, the first step should be to
create a reliable finite element (FE) model which will give
corresponding natural frequencies and the vibration mode
shapes of the crane structure, [5].

Creating a mathematical model plays an important
role when it is impossible to perform experimental
analyzes of the dynamic behaviour of the structure, and
can also enable the optimization of the structure by
varying the design parameters of the crane while
maintaining maximum utilization of its capacity, [6].

In this paper, a numerical and mathematical model
of the real construction of a ship unloader for obtaining its
natural frequencies is developed. It is a project of the
company Ceretti Tanfani S.p.A. Milano [7] for the needs
of the Port of Bar. The construction of the boom is made
of two girder (double girder boom) and box cross-section,
which is connected to the pillar with one forestay and one Figure 1: View of the Model 1
backstay. Main technical characteristics of this crane is
given in Table 1.

crane was developed (Figure 1). This model is used as a
reference for the verification of reduced numerical models.
The values of natural frequencies of the structure for the
first five modes are given in Table 2.
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Table 2: Values of the natural frequencies for the first five

modes
MODES | Frequencies [Hz] | Periods [s]
1 0.5308 1.8839
11 0.6049 1.6532
111 1.108 0.9025
v 1.7362 0.576
\ 2.1569 0.4636

Figure 2 shows that in the fifth mode, the boom
vibrates practically independently from other parts of the
structure. Based on this the part of the boom on the
waterside leg can be adopted as a representative to
describe the behavior of the entire crane structure, [8].

Figure 2: The fifth mode of the vibration of the ship
unloader

According to the previous assumption Model 2 was
created as an equivalent 2D, non-linear FE model of the
boom from the hinge to its end and forestay (Figure 3).
Support A is modelled as a hinge and represents the real
connection between the boom and the rest of the structure.
Table 3 gives all the geometric and physical characteristics
of Model 2.

Forestay (m, A, E)

y
Forestay support
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Figure 3: Equivalent 2D FE model of the ship unloader —
Model 2

In Figure 1 it can be seen that the stiffness of the
pillar in the horizontal and vertical directions is not
negligible, so it is taken into account in Model 2 through
the springs of the corresponding equivalent stiffnesses ¢,
and ¢, . By introducing external unit loads (force F) into
the corresponding nodes of Model 1, the displacements of
the structure &,,,, 6py, and 6, &,,, In the
corresponding directions were obtained. By calculating the
arithmetic values (1) and (2) of the obtained
displacements, the stiffness values ¢, , and ¢, ,, (3) and (4)
were determined.

Opx, +0

X
5 — DX

o P22 = 69351902+ 10" m M

Opy, +0
8py = 5% = 63263967410 m ®)
= F = 14419200 N 3
Cpx = By = m (3)
= F = 158067900 N 4)
oy = Syy m
Table 3: Geometric and physical characteristics of Model
2
Boom length, (L) 3413 m
Distance from support A to support
of the forestay, (L) 18464 m
Forestay length, (Ly) 25.025 m
Equivalent mass per unit meter of 1007 kg
the boom, (m,, (x)) ‘m
Equivalent mass of the forestay, 4010 kg
(my)
N
Young's modulus of elasticity, (E) 2.1-1011 —
m
Equivalent section area of the 0.09504 m?
boom, (Aeq,p)
Equivalent section area of the 0.01562 m?
forestay, (Aeq,r)
Equivalent axial moment of inertia 4
of the boom, (I,) 0.0207498 m

The next reduction is the approximation of the
forestay by a spring (Model 3) which stiffness is
determined by the characteristics of the forestay geometry
(5). The forestay mass is reduced to the points of its

supports. Model 3 is shown in Figure 4.
E-Aeqr N
g = ——— =131076923,1 — )
Lf m

L, If %

Figure 4: View of the Model 3

Model 4 (Figure 5) is a model in which a three-
spring system is replaced by a single spring of equivalent
stiffness. Since the stiffness of the springs is a
characteristic of the system and does not depend on the
mass and stiffness of the boom and the mass of the
forestay, all masses are neglected, while the stiffness of
the boom is taken as an infinite value. By entering the unit
load in the direction of the forestay, the displacement in
the same direction 8y is obtained, on the basis of which
the values of equivalent stiffness ¢; ., can be determined

by (6).

F N
e =5~ = 18773134.72 — (6)
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L, }‘ ks

L
Figure 5: View of the Model 4

Model 5 is a reduced model in which the spring
with the stiffness ¢, ¢4 is divided into two springs with the
stiffnesses ¢y g and ¢y q, in the horizontal and vertical
directions, respectively. The concentric mass of the
forestay in the upper support is neglected, which is shown
in Figure 6. The procedure for determining the stiffnesses
of the new springs is the same as in Model 4, while their
numerical values are determined according to:

Fox N
_ : = 50760449.52 — 7
Cleqx 631+ sina — 63, " cos al m "
o Fory — 918133446~ (8)
Leay = |55, - cos a + 8y - sinal om

where F_, is projection of the force in the spring on the
X-axis, Fcl‘y is projection of the force in the spring on the
y-axis, 03, sina is projection of the corresponding
displacement perpendicular on the forestay direction on
the x-axis, 85, - cos« is projection of the corresponding
displacement parallel on the forestay direction on the
x-axis, 034 cosa is projection of the corresponding
displacement perpendicular on the forestay direction on
the y-axis, &, - sina is projection of the corresponding
displacement parallel on the forestay direction on the y-
axis and « is an angle between forestay and boom.

y

Figure 6. View of the Model 5

By applying a unit force F in the vertical direction
at support B, the displacement in the same direction §,, is
obtained. This reduces the system of two springs to one
equivalent spring whose stiffness c., is determined
according to (9). The newly made system - Model 6 is
shown in Figure 7.

_F
Ceq = 6—];

Model 6 represents a beam with an overhang of
total length L = 34.1 m whose left support A presents a
cylindrical joint while at a distance of L1 = 18.5m it is
supported by a vertical spring. M; = 8695 kg is lumped
mass originating from the forestay weight and forestay
support construction. The boom is modelled as a system
with distributed mass where m, is mass per unit length
and E1, is the flexural rigidity of the boom structure.

N
=11900399.16 — ©)
m

¥
Support B E*[=E*(x)
™ m,=m,(x)
g G, /{A
A A »’ y
L ]I
L

Figure 7: View of the Model 6

Model 2 - Model 6 were verified by comparing the
obtained oscillation period of the first mode in the vertical
direction with the corresponding mode of Model 1 (mode
V from the Table 2). Oscillation period values and relative
deviations are shown in Table 4, where relative deviations
are obtained according to:

=] - 100%, n=23456. (10)

where T, is oscillation period of corresponding reduced
numerical model and T; is oscillation period of Model 1.

Table 4: Comparative table of values of the oscillation
period for the first mode of oscillation in the vertical plane

Model | Period [s] | Dev. [%]
2 0.4405 4.98
3 0.4405 4.98
4 0.4363 5.89
5 0.432 6.81
6 0.48 3.54

As can be seen from Table 4, the relative deviations
are acceptable from the aspect of engineering accuracy on
the basis of which Model 6 can be adopted as a reference
model for forming a mathematical model of ship unloader.

The first mode in the vertical plane of Model 6 is
shown in Figure 8, while the higher frequency modes are
shown in Figures 9-12.

\%\

Figure 8: First mode in vertical plane — Model 6,
f=20926Hz T =048s

Figure 9: Second mode, f = 4.8963 Hz, T = 0.2042 s
Figure 10: Third mode, f = 13.854 Hz, T = 0.0722 s

Figure 11: Fourth mode, f = 27.357 Hz, T = 0.0365 s

Figure 12: Fifth mode, f = 46.31 Hz, T = 0.0216 s
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3. MATHEMATICAL MODEL

As the system shown in Figure 6 is not a “classical”
system whose ready-made analytical solutions can be
found in the literature, it is necessary to use one of the
approximate methods for determining the natural
frequencies of the model. In the following text, the
procedure for solving this problem using the Rayleigh-Ritz
method will be presented.

The Rayleigh-Ritz method is based on solving the
equation of the form (11), which also represents the
function of moving the points on the structure.

e =Zai-®i (11)
i=1

,a, are unknown coefficients
determined from the boundary conditions, and
@4, @5, ..., B, rtepresent n linearly independent admissible
functions. By this procedure, a continuous system with an
infinite number of degrees of freedom (DoF) is reduced to
a discretized system with n DoF.

The Rayleigh-Ritz method is an extension of the
Rayleigh method which determines the fundamental
frequency of the system. In the first approximation, the
Rayleigh method can adopt a test admissible function in

the form @, (x) = % which represents the upper limit of the

In (11) a4,a,, ..

first eigenvalue, as shown in [9]. In the next
approximation, the Rayleigh-Ritz method performed an
additional reduction of the obtained value of the basic
function as well as the formation of a test function that is
sufficiently close to the form of the first mode of
oscillation of the adopted mathematical model.

The determination of higher frequencies of the
system is based on the definition of additional permissible
functions, which reduces the system to a system with a
finite number of DoF. According to [10] from an
engineering point of view the number of 5 admissible
functions describes the dynamic behavior of the system
with sufficient accuracy.

After several iterations, the admissible functions
that satisfy all geometric boundary conditions were
adopted, while some of them also satisfy the natural
boundary conditions in the left support A of the boom and
have the following shape:

0,00 =7 (12)
0,(x) = sin - (13)
;(x) = smzLﬂ (14)
0,(x) = sin?)LLx (15)
9s(x) = sin“Lﬂ (16)

It can be shown that the coefficients of mass and
stiffness are obtained through the kinetic and potential
energy of the system in the form:

L

my = [ mad (0,00 e Mg LG (1T)
0

dx +Ceq¢i(L1)¢j(L1) (18)

L
_ 02¢i(x) 02¢;(x)
¢y = ) Bl dx? dx?
0
For the specific values of the parameters from
Table 3, the following coefficients of mass and stiffness

were obtained and presented in matrix form:

1401-10*  1.561-10* -6.669-103 —709.282 —421.673
[ 1.561-10* 2.574-10* —2.194-10% -7.989-103 4.243-10° ]
M=1-6669-10° —2.194-10% 1.776-10*  2.05-10° —1.089- 103 (19)
—709.282 —7.989-10% 2.05-103 2.466-10* —3.964- 103J
—421.673 4.243-10% -1.089-103 —3.964-10% 1.93-10*
[ 3.482-10° 6.384-10° —1.638-10° —5.964-10° 3.168-10° ]
6.384 - 10° 1.704-107 —3.003-10° -1.093-107 5.808-10°
C=1-1.638-10° -3.003-10° 8.616-107 2.805-10° —1.49-10° (20)
—5.964-10° —1.093-107 2.805-10° 4.425-10%8 —5.426-10°
3.168-10° 5.808-10° —1.49-10° —5.426-10° 1.369-10°
The solution of the frequency equation has the 0.628
form: -0.777
A= w? 1) EGV2 = —0.05 , (25)
where w is a circular frequency and has a shape: 1; 323 '_ 11%_4
cij —0.6857
il (22) 0.355
J EGV3 =-0.629 (26)
By further calculation, the following concrete —0.094
values were obtained for the first five circular frequencies L 0.016 4
w [s™1], natural frequencies f [Hz] and eigenperiods T [s]: [ 0691 1
12.921 2.056 0.486292 —0.517
[ 30.006 ] [ 4776 ] [0.209395] EGV4 =1 0.284 @7
w=|84672 | f =|13476|, T =|0.074206 (23) —0.415
176.348 28.067 0.03563 0048
310.909J 49.483 l0.020209J 0 506
Eigenvectors which also represent the coefficients EGVs = | — O 249 (28)
a4, a,, as ,ay, as have the values: 0.i16
_()0;’86 L0437
Eevi=| 3 03'_ 10-3 (24) By substituting the specific values o_f _the
_ 6.. 679 - 10-3 coefficients a; - as as well as the adopted admissible
1211 -10-3 functions in (11), the following functions y,(x) are

obtained:
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Y1 () = =0.96 %+ 028 sin"* + 3.03- 107 - sin 2= = 6.679 - 1073 - sin 7= + 1.211- 107 sin == (29)

3nx 41X

Y2(x) = 0.628 -2 0.777 - sin™* - 0.05 - sin == +1.152 - 107 - sin == — 5.23 - 107 - sin = (30)
Y3(x) = —0.685 -2+ 0355 - sin ™ — 0.629 - sin == — 0.094 - sin == + 0.016 - sin = 31)
Y4(x) = 0.691-X— 0517 - sin == + 0.284 - sinz? —0.415 - sin% —0.048 - sin“% (32)
Ys5(x) = —0.691 -2+ 0.506 - sin ™ — 0.249 - sin 2= + 0.116 - sin = + —0.437 - sin "= (33)
4. RESULTS AND DISCUSSION '
The oscillation forms of the mathematical model of o3t AT .
the ship unloader obtained by the Rayleigh-Ritz method 3);{; / "
are presented in Figure 13. r: E:&H E i
1 T T — i 05k & _
i 05 —“"/‘l/; Il) — J’:l) 2‘(! f‘![]
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Figure 13: The first five modeﬁ of vibration obtained by
Rayleigh-Ritz method

Values of eigenperiods for the first five modes of
oscillation in the vertical plane obtained by the Rayleigh-
Ritz method (23) were verified by their comparing with
corresponding periods from the numerical results of FE
Model 6 (Figures 8 - 12). Their percentage deviations are
given in Table 5, while Figures 14-18 present the graphical
comparisons of the corresponding modes of vibration.

Table 5: Percentage deviations of the eigenperiods of
Model 6 and mathematical model

MODES | Eigenperiods [s] Dev.
Math. model | Model 6 | [%]
I 0.486292 0.48 131
11 0.209395 0.2042 2.54
11 0.074206 0.0722 278
v 0.03563 0.0365 238
\ 0.020209 0.0216 6.44
L -%}‘*m\,_{ _
o5 ‘x.,\_\‘
“1(Snode)-001 ™~ 7]
038 =1
] . . .
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XX node

Figure 14: Comparison of the normalized first mode of
vibration of the mathematical and FE model
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Figure 15: Comparison of the normalized second mode of
vibration of the mathematical and FE model

Figure 16: Comparison of the normalized third mode of
vibration of the mathematical and FE model
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Figure 17: Comparison of the normalized fourth mode of
vibration of the mathematical and FE model

T T T

’5[‘nodr)

\

Xy

1 1 1
0 10 20 0

X+ Xpode

Figure 18: Comparison of the normalized fifth mode of
vibration of the mathematical and FE model

As can be observed in Figures 14 - 18, there is very
good matching of the first three normalized modes of
oscillation between mathematical and numerical model,
while slightly larger deviations occur only in the fourth
and fifth modes. This shows that the adopted admissible
functions can be considered as a sufficiently accurate
approximation of the real eigenfunctions of the dynamical
system and that the number of 5 adopted admissible
functions is sufficient to obtain reliable results from the
aspect of engineering accuracy.

5. CONCLUSION

Given that this type of construction is not widely
used as, e.g. overhead traveling cranes, the dynamic
problems that occur during their exploitation are still not
sufficiently examined and discussed in the available
literature. The aim of this paper was to present the
procedure of modal analysis which gives the first insights
into the dynamic behaviour of the structure and as such
can be used already in the design phase of these structures.

The paper shows that the complex structure of a
ship unloader can be reduced to a relatively simple 2D

Finite Element and Analytical Modelling of Ship Unloader
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system of a beam with an overhang, supported on one
fixed and one elastic support, while completely preserving
the nature of the behaviour of the real structure. As can be
seen from Table 4 and Table 5 numerically and
mathematically calculated results are in very close
agreement which means that the presented approach can
be considered acceptable from the aspect of engineering
accuracy.

The mathematical model formed in this way can be
used as a basis for further analysis of dynamics problems
that occur on structures of this type (moving load problem,
fatigue, etc.).
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