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Abstract

Free vibration of structures composed of rigid bodies and elastic beam seg-

ments are considered, assuming that the mass centers of rigid bodies are

not located on the neutral axes of undeformed elastic beam segments. It is

assumed that the rigid bodies of the system perform planar motion in the

same plane and that their mass centers are located in that plane. The elastic

beam segments are treated as the Euler-Bernoulli beams. In order to de-

termine natural frequencies of the system, modification of the conventional

continuous-mass transfer matrix method has been done. The order of the

overall transfer matrix has been reduced by this modification. Theoretical

considerations are accompanied by two numerical examples.
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1. Introduction

Studies of free oscillations of systems composed of elastic beam segments

and rigid bodies are of critical importance in structural system modeling. In

the literature, the most frequently analyzed case is that of the systems com-

posed of a single rigid body and two elastic beam segments (see papers [1–7])

as well as of the systems that have the shape of elastic cantilever beam with

a rigid body attached to its free end (see papers [8–13]). Using two different

approaches (transfer matrix and direct approaches), two dimensional struc-

tures composed of two-part elastic beam-rigid body elements are analyzed in

[14]. The transfer matrix method is also applied in [15] to analyze the oscil-

lations of complex-form shafts. Further, [16] analyzes vibration characteris-

tics of so-called hybrid elastic beam carrying several elastic-supported rigid

bodies. All above mentioned references use analytical approach in treating

the problems considered. On the other hand, in reference [17], within the

framework of finite elements theory, two-dimensional frame structures with

arbitrarily distributed rigid beam segments are analyzed using elastic and

rigid combined beam elements. The common characteristic of references

above given is that considerations in these references are based on the as-

sumption that the mass centers of the rigid bodies are located on the neutral

axes of elastic beams.

The objective of our paper is to extend the existing results to the case

of free vibration of structures composed of elastic beam segments and rigid

bodies, where mass centers of rigid bodies are not located on the neutral

axes of elastic beam segments. In this case, all elastic segments are in

the same plane where, while the system is oscillating, rigid bodies are per-

forming planar motion. To the authors’ best knowledge of the literature, a
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special case of thus described system was considered in references [18, 19].

Specifically, these studies consider the case of a single rigid body which is

fixed at the ends of two elastic rods, whose axes are parallel in undeformed

state of the rods. Studies of free oscillations of thus defined system employ

the method that is a modification of the continuous-mass transfer matrix

method (CTMM) from [20]. Our modification of the CTMM gives the coef-

ficient of lower order determinant as compared to the determinant obtained

by using the original CTMM from paper [20]. This fact is of importance

in terms of numerical procedures in systems with a large number of elastic

beam segments and rigid bodies.

2. Description of the system and equations of motion

Figure 1 shows a system of rigid bodies (Vi) (i = 1, . . . , n) interconnected

by homogeneous elastic beam segments (BSi) (i = 1, . . . , n) where Ci repre-

sents the mass center of body (Vi), αi is the angle made by the longitudinal

axes of undeformed adjacent segments (BSi) and (BSi+1), and Oi is the

point of body (Vi) representing the intersection point of the longitudinal

axes of undeformed adjacent segments (BSi) and (BSi+1). Elastic segments

are positioned in a plane where rigid bodies are performing planar motion.

The left and right ends of the beam segment (BSi) are denoted by Bi,L

and Bi,R, respectively. In Fig. 1, the beam segments (BSi)(i = 1, . . . , n)

are shown in their undeformed states. The stationary inertial coordinate

frames {xiyizi}(i = 1, . . . , n) are introduced and positioned in a such way

that, in the undeformed state of the segments (BSi)(i = 1, . . . , n), the

left ends Bi,L(i = 1, . . . , n) are positioned at the origins of the frames

{xiyizi}(i = 1, . . . , n), respectively, the axes zi(i = 1, . . . , n) coincide with
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the neutral axes of the segments (BSi)(i = 1, . . . , n), respectively, and the

coordinate planes yizi (i = 1, . . . , n) coincide with the plane of planar motion

of the rigid bodies. Besides, wi(zi, t) represents the transverse displacement

in the yi direction, ui(zi, t) is the axial displacement in the zi direction, and

−→
i i,
−→
j i, and

−→
k i are the unit vectors of the axes xi, yi, and zi, respectively.

Figure 1: System of interconnected rigid bodies and elastic beam segments

In further considerations the following quantities will be used to de-

scribe the material and geometric characteristics of the segments (BSi) (i =

1, . . . , n): Ei is the modulus of elasticity, Ix(i) is the cross-sectional area mo-

ment of inertia about axis xi passing through the center of the cross section,

Ai is the cross-sectional area, Li is the length of the ith beam segment, %i

is the mass density. It is assumed that the beam segments are treated as

the Euler-Bernoulli beams (rotary inertia and shear effects are ignored) [21]

and that deformations ui(zi, t) (i = 1, . . . , n) and wi(zi, t) (i = 1, . . . , n) as

well as rotations w′i(zi, t) (i = 1, . . . , n) are small.

The partial differential equations for bending and axial vibrations of the
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beam segments (BSi) (i = 1, . . . , n) read [21]:

EiIx(i)w
′′′′(zi, t) + %iAiẅi(zi, t) = 0, i = 1, . . . , n, (1)

%iAiüi(zi, t)− EiAiu
′′(zi, t) = 0, i = 1, . . . , n, (2)

where primes denote differentiation with respect to z and dots with respect

to time t.

Using the method of separation of variables, the displacements wi(zi, t)

and ui(zi, t) can be written as

wi(zi, t) = Wi(zi)T (t), (3)

ui(zi, t) = Ui(zi)T (t), (4)

where Wi(zi) (i = 1, . . . , n) and Ui(zi) (i = 1, . . . , n) are the normal modes

in free bending and axial vibrations, respectively. Based on Eqs. (3) and

(4), Eqs. (1) and (2) can be rewritten as the following system of 2n + 1

ordinary differential equations

W ′′′′i (zi)− k4iWi(zi) = 0, i = 1, . . . , n, (5)

U ′′i (zi) + p2iUi(zi) = 0, i = 1, . . . , n, (6)

T̈ (t) + ω2T (t) = 0, (7)

where ω is the natural frequency of vibration of the entire system and
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k4i =
%iAi

EiIx(i)
ω2, p2i =

%i
Ei
ω2, i = 1, . . . , n. (8)

From Eq. (8) it is obvious that the following relation can be established

between the quantities ki and pi:

pi =

√
Ix(i)

Ai
k2i , i = 1, . . . , n. (9)

Taking that k1 = k and p1 =
√
Ix(1)/A1k

2, from Eqs. (8) and (9) it follows

that:

ki = 4

√
E1Ix(1)%iAi

%1A1EiIx(i)
k, pi =

√
E1Ix(1)%i

%1A1Ei
k2, i = 2, . . . , n, (10)

and

ω =

√
E1Ix(1)

%1A1
k2. (11)

The general solutions of Eqs. (5) and (6) can be expressed as [21]:

Wi(zi) = C1(i) cos(kizi)+C2(i) sin(kizi)+C3(i) cosh(kizi)+C4(i) sinh(kizi), i = 1, . . . , n,

(12)

Ui(zi) = C5(i) cos(pizi) + C6(i) sin(pizi), i = 1, . . . , n. (13)

3. Boundary conditions

3.1. Boundary conditions at the left end of beam segment (BS1)

Let the segment (BS1) be clamped at the left end B1,L. Based on this,

the following boundary conditions hold:
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w1(0, t) = 0, w′1(0, t) = 0, u1(0, t) = 0, (14)

which, taking into account Eqs. (3), (4), (12), and (13), can be written in

the developed form as follows:

C1(1) + C3(1) = 0, (15)

k1C2(1) + k1C4(1) = 0, (16)

C5(1) = 0. (17)

Based on Eqs. (15), (16), and (17) the following matrix relation can be

formed:

C1 = T0C0 (18)

where:

C1 =
[
C1(1) C2(1) . . . C6(1)

]T
, (19)

C0 =
[
C1(1) C2(1) C6(1)

]T
, (20)

T0 =



1 0 0

0 1 0

−1 0 0

0 −1 0

0 0 0

0 0 1


. (21)
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Note that, in the case of pinned left end B1,L, the following boundary con-

ditions hold:

w1(0, t) = 0, w′′1(0, t) = 0, u1(0, t) = 0, (22)

and, in this case, the matrices C0 and T0 have the following components:

C0 =
[
C2(1) C4(1) C6(1)

]T
, (23)

T0 =



0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1


. (24)

3.2. Boundary conditions influenced by the body (Vi)

In Fig. 2, the free-body diagram of the body (Vi) is shown where C∗i

and C∗∗i represent the perpendicular projections of the mass center Ci to

the directions Bi,ROi and Bi+1,LOi, respectively.

In further considerations the following quantities will be used to de-

scribe the material and geometric characteristics of the rigid bodies (Vi) (i =

1, . . . , n): body mass mi, mass moment of inertia about centroidal axis Ji,

Bi,RC∗i = ei, C∗∗i Bi+1,L = ai, CiC∗i = di, CiC∗∗i = bi, OiBi,R = `i(1),

OiBi+1,L = `i(2). The slopes of the displacements at the ends Bi,R and

Bi+1,L of the segments (BSi) and (BSi+1) equal the angle of rotation of the

body (Vi) (see Fig. 2), that is,
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Figure 2: Free-body diagram of the body (Vi)

w′i(Li, t) = w′i+1(0, t) (25)

or in developed form:

ki
(
−C1(i) sin kiLi + C2(i) cos kiLi + C3(i) sinh kiLi + C4(i) cosh kiLi

)

= ki+1

(
C2(i+1) + C4(i+1)

)
. (26)

Further, according to the assumption on small elastic deformations of beam

segments, the displacement vector of point Oi determined based on the

displacement of point Bi,R and the slope w′i(Li, t) reads:

−−−−→
(Oi)0Oi =

(
wi(Li, t) +Bi,ROiw

′
i(Li, t)

)−→
j i + ui(Li, t)

−→
k i. (27)

Also, the displacement vector of point Oi can be expresed through the dis-

placement of point Bi+1,L and the slope w′i+1(0, t) as follows:
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−−−−→
(Oi)0Oi =

(
wi+1(0, t)−Bi+1,LOiw

′
i+1(0, t)

)−→
j i+1 + ui+1(0, t)

−→
k i+1. (28)

Equating the expressions (27) and (28) and taking dot product of such

obtained expression by the vectors
−→
j i and

−→
k i, respectively, yields:

ui(Li, t) = ui+1(0, t) cosαi +
[
wi+1(0, t)− `i(2)w′i+1(0, t)

]
sinαi, (29)

wi(Li, t)+`i(1)w
′
i(Li, t) = −ui+1(0, t) sinαi+

[
wi+1(0, t)− `i(2)w′i+1(0, t)

]
cosαi,

(30)

or in developed form:

C5(i) cos piLi + C6(i) sin piLi = C5(i+1) cosαi

+
[
C1(i+1) + C3(i+1) − `i(2)ki+1(C2(i+1) + C4(i+1))

]
sinαi, (31)

C1(i) cos kiLi + C2(i) sin kiLi + C3(i) cosh kiLi + C4(i) sinh kiLi

+`i(1)ki
(
−C1(i) sin kiLi + C2(i) cos kiLi + C3(i) sinh kiLi + C4(i) cosh kiLi

)

= −C5(i+1) sinαi +
[
C1(i+1) + C3(i+1) − `i(2)ki+1

(
C2(i+1) + C4(i+1)

)]
cosαi.

(32)

The angular acceleration and the acceleration of the mass center Ci of

the body (Vi), respectively, read:

10



εi = ẅ′i+1(0, t) = −ω2ki+1

(
C2(i+1) + C4(i+1)

)
T (t), (33)

−→a Ci = −→a Bi+1,L
+−→ε i ×

−−−−−−→
Bi+1,LCi (34)

where −→a Bi+1,L
is the acceleration of point Bi+1,L and −→ε i = εi

−→
i i+1. In

Eq. (34), on account of the assumption about small deformations of the

segments, the term −→ω i × −→ω i ×
−−−−−−→
Bi+1,LCi representing normal acceleration

of the mass center Ci is ignored. In that case −→ω i = ẇ′i+1(0, t)
−→
i i+1 is the

vector of angular velocity of the body (Vi). Now, Newton-Euler differential

equations of motion [22] of the body (Vi) read:

Jiεi = Mf(i) −Mf(i+1) + Ft(i)ei + Fa(i)di + Ft(i+1)ai − Fa(i+1)bi, (35)

mi (üi+1(0, t) + biεi) = Fa(i+1) − Fa(i) cosαi + Ft(i) sinαi, (36)

mi (ẅi+1(0, t)− aiεi) = Ft(i+1) − Fa(i) sinαi − Ft(i) cosαi, (37)

where Ft(i) and Ft(i+1) are the shear forces of beam segments (BSi) and

(BSi+1), respectively, defined as:

Ft(i) = −EiIx(i)w
′′′
i (Li, t), (38)

Ft(i+1) = −Ei+1Ix(i+1)w
′′′
i+1(0, t), (39)

Fa(i) and Fa(i+1) are the axial forces of beam segments (BSi) and (BSi+1),

respectively, defined as:
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Fa(i) = EiAiu
′
i(Li, t), (40)

Fa(i+1) = Ei+1Ai+1u
′
i+1(0, t), (41)

and, finally, Mf(i+1) and Mf(i) are the bending moments of beam segments

(BSi) and (BSi+1), respectively, defined as:

Mf(i) = −EiIx(i)w
′′
i (Li, t), (42)

Mf(i+1) = −Ei+1Ix(i+1)w
′′
i+1(0, t). (43)

Based on above relations, Eqs. (35)-(37) can be written in developed form

as follows:

−ω2Jiki+1

(
C2(i+1) + C4(i+1)

)
= −EiIx(i)k

2
i

[
−C1(i) cos kiLi − C2(i) sin kiLi

+C3(i) cosh kiLi + C4(i) sinh kiLi

]
+ Ei+1Ix(i+1)k

2
i+1

(
−C1(i+1) + C3(i+1)

)

−EiIx(i)eik
3
i

(
C1(i) sin kiLi − C2(i) cos kiLi + C3(i) sinh kiLi + C4(i) cosh kiLi

)

+EiAidipi
(
−C5(i) sin piLi + C6(i) cos piLi

)
−Ei+1Ix(i+1)aik

3
i+1

(
−C2(i+1) + C4(i+1)

)

−Ei+1Ai+1bipi+1C6(i+1), (44)

−miω
2
[
C5(i+1) + biki+1

(
C2(+1) + C4(i+1)

)]
= Ei+1Ai+1pi+1C6(i+1)
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−EiAipi
[
−C5(i) sin piLi + C6(i) cos piLi

]
cosαi

−EiIx(i)k
3
i

[
C1(i) sin kiLi − C2(i) cos kiLi + C3(i) sinh kiLi + C4(i) cosh kiLi

]
sinαi,

(45)

miω
2
[
−C1(i+1) − C3(i+1) + aiki+1

(
C2(i+1) + C4(i+1)

)]

= Ei+1Ix(i+1)k
3
i+1

(
C2(i+1) − C4(i+1)

)
+EiAipi

(
C5(i) sin piLi − C6(i) cos piLi

)
sinαi

+EiIx(i)k
3
i

[
C1(i) sin kiLi − C2(i) cos kiLi + C3(i) sinh kiLi + C4(i) cosh kiLi

]
cosαi.

(46)

Equations (26), (31), (32), (44), (45), and (46) can be written in the matrix

form as follows:

TiLCi = TiRCi+1 (47)

where Ci =
[
C1(i) C2(i) . . . C6(i)

]T
, Ci+1 =

[
C1(i+1) C2(i+1) . . . C6(i+1)

]T
,

and where components of the matrices TiL ∈ R6×6 and TiR ∈ R6×6 are

given in Appendices A and B. Finally, based on Eq. (47), the following

recurrence relation can be written:

Ci+1 = TiCi, i = 1, . . . , n− 1 (48)

where Ti ∈ R6×6(i = 1, , . . . , n − 1) is the transfer matrix between the

integration constants for beam segments BSi and BSi+1 determined as:
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Ti = T−1iRTiL, i = 1, . . . , n− 1. (49)

After n − 1 successive application of the recurrence relation (48) it is ob-

tained:

Cn = Tn−1Tn−2 · · ·T1T0C0. (50)

Figure 3: Free-body diagram of the body (Vn)

3.3. Boundary conditions at the right end of the beam segment (BSn)

Now, let us assume that the rigid body (Vn) is attached to the end of

elastic beam segment (BSn). Based on the free-body diagram of body (Vn)

(see Fig. 3), Newton-Euler differential equations of motion of the body (Vn)

read:

Jnεn = Mf(n) + Ft(n)en + Fa(n)dn, (51)
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mn (ün(Ln, t) + dnεn) = −Fa(n), (52)

mn (ẅn(Ln, t) + enεn) = −Ft(n), (53)

where

εn = ẅ′n(Ln, t) = −ω2kn
(
−C1(n) sin knLn + C2(n) cos knLn

+C3(n) sinh knLn + C4(n) cosh knLn

)
T (t). (54)

Developed form of Eqs. (51)-(53) reads:

−ω2Jnkn
(
−C1(n) sin knLn + C2(n) cos knLn + C3(n) sinh knLn + C4(n) cosh knLn

)

= −EnIx(n)k
2
n

(
−C1(n) cos knLn − C2(n) sin knLn + C3(n) cosh knLn + C4(n) sinh knLn

)

−EnIx(n)k
3
nen

(
C1(n) sin knLn − C2(n) cos knLn + C3(n) sinh knLn + C4(n) cosh knLn

)

+EnAndnpn
(
−C5(n) sin pnLn + C6(n) cos pnLn

)
, (55)

mnω
2
[
C5(n) cos pnLn + C6(n) sin pnLn + dnkn

(
−C1(n) sin knLn + C2(n) cos knLn

+C3(n) sinh knLn + C4(n) cosh knLn

)]
= EnAnpn

(
−C5(n) sin pnLn + C6(n) cos pnLn

)
,

(56)

−mnω
2
[
C1(n) cos knLn + C2(n) sin knLn + C3(n) cosh knLn + C4(n) sinh knLn
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+enkn
(
−C1(n) sin knLn + C2(n) cos knLn + C3(n) sinh knLn + C4(n) cosh knLn

)]

= EnIx(n)k
3
n

(
C1(n) sin knLn − C2(n) cos knLn + C3(n) sinh knLn + C4(n) cosh knLn

)
.

(57)

The last three equations can be represented by the following matrix equa-

tion:

TnCn = 03×1 (58)

where the components of the matrix Tn ∈ R3×6 are given in Appendix C.

For the case when the particle is attached to the end Bn,R or the end Bn,R

is free, it should be taken in previous relations, respectively, that:

Jn = 0, en = 0, dn = 0, (59)

or

Jn = 0, en = 0, dn = 0, mn = 0. (60)

Finally, in the case of pinned or clamped end Bn,R, instead of Newton-

Euler equations (51)-(53) the following relations are used, respectively:

un(Ln, t) = 0, wn(Ln, t) = 0, w′′n(Ln, t) = 0, (61)

un(Ln, t) = 0, wn(Ln, t) = 0, w′n(Ln, t) = 0. (62)

For these boundary conditions, the corresponding components of matrix Tn

are given in Appendices D and E.
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3.4. Frequency equation and mode shapes

Taking into account Eq. (50), it follows from Eq. (58) that:

TC0 = 03×1 (63)

where T ∈ R3×3 represents overall transfer matrix determined by the fol-

lowing expression:

T = TnTn−1 · · ·T1T0. (64)

Equation (63) represents a matrix form of the homogeneous system of equa-

tions for unknown components of the matrix C0. In order that this system

can have non-trivial solutions, it is needed to hold that:

detT = 0. (65)

The last relation represents the frequency equation for the problem ana-

lyzed. Once the natural frequencies ωi(i = 1, 2, 3, . . .) are obtained, the

components of the matrix C0 corresponding to each natural frequency one

may obtain from Eq. (63). After that, applying Eq. (18) and the recurrence

relation (48) yields the components of remaining matrices Ci(i = 1, . . . , n).

Finally, introducing values of the constants C1(i), . . . , C6(i) (i = 1, . . . , n)

into Eqs. (12) and (13), the mode shapes are determined.

Based on above considerations, it is now possible to explain what our

modification of CTMM from reference[20] consists of. Namely, unlike the

approach in [20], our approach uses straightaway boundary conditions at

the end B1,L, whereby in forming further relations, instead of the matrix

C1 using the matrix C0 is achievable, which has two times smaller dimen-

sion than the matrix C1. This further implies that the dimension of overall
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transfer matrix T, too, and therefore the coefficient determinant detT are

reduced by two times as compared to the dimension that would be obtained

by using standard CTMM from [20]. For the case of the systems considered

in references [1, 2, 4, 7, 14, 16, 17], when only bending vibrations are con-

sidered and where α1 = 0, d1 = b1 = 0, and C∗1 ≡ C∗∗1 ≡ O1 = C1 holds,

the application of our approach should be restricted only to Eqs. (25), (30),

(35), (37), (51), and (53), and in this case we have that T ∈ R2×2.

4. Numerical examples

4.1. Free vibration analysis of a elastic beam carrying a rigid body

Figure 4 shows an elastic uniform hybrid beam composed of two elastic

beam segments and one rigid body. The beam segments have circular cross

sections. Vibrations characteristics of thus described system are studied

in [7]. In [7] analysis was carried out on the effects of various boundary

conditions as well as parameters of the rigid body such as dimensions, mass,

mass moment of inertia, and mass center position along neutral axis of the

undeformed beam segment on the values of the first three frequencies.

Figure 4: Elastic beam carrying a rigid body

The aim of this subsection is to show the effect of the positions of the

mass center of the rigid body on the values of frequencies for the case when

the mass center of the body is not located on the neutral axes of undeformed
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beam segments. For that purpose, the following values of the parameters

of the system are used: Young’s modulus E1 = E2 = 2.069 × 1011 N/m2,

mass density %1 = %2 = 7.8367×103 kg/m3, diameters of the beam segments

D1 = D2 = 0.05 m, reference length LR = 2 m, lengths of the beam segments

L1 = 0.4LR and L2 = 0.6LR, the rigid body mass m1 = 0.5%1A1LR, moment

of inertia J1 = 0.1%1A1L
3
R. Note that, for the considered example one

has that: C?
1 ≡ C??

1 ≡ O1, d1 = b1, e1 = `1(1) = 0.2LR, α1 = 0, and

a1 = `1(2) = 0.1LR. For various values of the parameter d1 and three type

of boundary conditions (clamped-clamped, clamped-pinned, and clamped-

free), the values of the first three dimensionless frequency coefficients λr =

krLR = 4

√
ω2%1A1L4

R/(E1Ix(1)) of the system are determined and presented

in Table 1. Based on data from Table 1, it can be deduced that as the

values of the parameter d1 increase, the values of the first three dimensionless

frequency coefficients decrease.

Table 1: The lowest three dimensionless frequency coefficients

d1 Methods clamped-clamped clamped-pinned clamped-free

λ1 λ2 λ3 λ1 λ2 λ3 λ1 λ2 λ3

0.0 Present 3.49611 4.7166 8.25012 2.8207 4.7166 7.00126 1.42212 3.80242 4.72232

Ref. [7] 3.4961 4.7166 8.2501 2.8207 4.7166 7.0013 1.4221 3.8024 4.7223

0.2 Present 3.48254 4.68626 8.24532 2.81093 4.68603 6.99522 1.41935 3.79667 4.68999

0.4 Present 3.44168 4.60772 8.23324 2.78216 4.60473 6.98017 1.41119 3.77885 4.60539

0.6 Present 3.37411 4.50858 8.21849 2.73616 4.49633 6.96207 1.39805 3.74765 4.49667
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4.2. Free vibration analysis of a two-member open frame carrying two rigid

bodies

Figure 5 shows a two-member open frame composed of two elastic beam

segments (BS1) and (BS2) and two rigid bodies (V1) and (V2). The beam

segment (BS1) is horizontal, while the beam segment (BS2) is inclined from

the horizontal by angle α. The rigid bodies (V1) and (V2) represent, respec-

tively, homogeneous thin circular and rectangular plates.

Figure 5: Two-member open frame with rigid bodies

The aim of this subsection is to show the effect of the value of angle α on

the values of the first five frequencies of the system considered. A special case

of this system are systems considered in references [23, 24] where there is not

a body (V1), and instead of the body (V2) there is a particle. Furthermore,

the same values are used for material and geometric characteristics of the

beam segments as those of the previous subsection, whereas for the rigid

bodies (V1) and (V2) one has that: R = 0.14 m, m1 = 1 kg, J1 = m1R
2/2,

C1 ≡ O1, d1 = b1 = 0, e1 = a1 = `1(1) = `1(2) = R, m2 = 5 kg, LR1 =

0.7 m, LR2 = 0.35 m, J2 = m2(L
2
R1 + L2

R2)/12, e2 = 0.35 m, d2 = 0.15 m.
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For certain values of the angle α, the values of the first five dimensionless

frequency coefficients λr = krLR = 4

√
ω2%1A1L4

R/(E1Ix(1)) of the considered

open frame structure are determined and presented in Table 2 where LR =

2 m.

The effect of the angle α on the dimensionless frequency coefficients is

shown in Fig. 6. This effect is considered on the interval [−5π/6, 5π/6]. For

α = π/3, corresponding mode shapes are presented in Fig. 7. By observing

Fig. 6 it can be concluded that in the neighborhood of α = 0 the second,

third, fourth and fifth dimensionless frequency coefficients achieve maximum

value, while the first frequency coefficient achieves minimum value. In in-

creasing and decreasing the angle α with respect to the value at which the

second, third, fourth and fifth dimensionless frequency coefficients achieve

the maximum value, the values of these frequency coefficients are decreased.

This trend exists up to a certain value of the angle α and afterwards there

is a regrowth of the values of these coefficients. On the other hand, the

value of the first frequency coefficient is permanently growing. In the fourth

frequency coefficient, the change of angle α in the interval [−2, 2] causes

very small changes of its values. Also, it is noticeable in Fig. 6 that the

graphs of changes of the first, second, third and fourth frequency coeffi-

cients are roughly symmetric in character. The reason for this lies in the

fact that for d2 = 0 positive values of the angle α are corresponded by the

system configurations that are, relative to the axis z1, symmetrical to the

system configurations corresponding to the negative values of the angle α.

For d2 6= 0 this symmetry is disturbed as can be seen in Fig. 6.
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Figure 6: The effect of angle α on the lowest five dimensionless frequency coefficients

5. Conclusions

The paper considers free vibrations of structures composed of rigid bod-

ies and elastic beam segments. It is assumed that the axes of undeformed

beam segments are not collinear and that the mass centers of rigid bodies

are not located on them. To meet the needs of analysis on the vibrations of

considered system, CTMM modification from reference [20] has been done.

Utilization of this modification allows for reducing the overall transfer matrix

dimension by two times with respect to the dimension that would be ob-

tained by using the original CTMM from [20]. The transfer matrix T can be

easily formed by using some of the programming environments for symbolic
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calculations such as Mathematica, Maple, Maxima etc. Using the automated

procedure, developed in this paper, the left side of Eq. (65) can be obtained

in analytical form that provides the possibility to analyze dependencies of

frequencies of any of the parameters that they depend on. The obtained

results represent generalization of the results from references [7, 14, 16, 17].

Also, our approach provides the possibility to obtain the results that can be

used for testing the accuracy of different numerical methods in the analysis

of vibrations of various structures composed of elastic segments and rigid

bodies. Note that considerations in this paper do not include the cases for

parallel axes of adjacent beam segments, however these cases, too, can be

treated by slight changes of relations (29) and (30) in forming matrices TiL

and TiR.
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Appendix A. COMPONENTS OF THE MATRIX TiL (i = 1, . . . , n−

1)

T11(iL) = −ki sin kiLi, T12(iL) = ki cos kiLi, T13(iL) = ki sinh kiLi,

(A.1)

T14(iL) = ki cosh kiLi, T15(iL) = T16(iL) = 0, (A.2)
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T21(iL) = T22(iL) = T23(iL) = T24(iL) = 0, T25(iL) = cos piLi, T26(iL) = sin piLi,

(A.3)

T31(iL) = cos kiLi − `i(1)ki sin kiLi, T32(iL) = sin kiLi + `i(1)ki cos kiLi,

(A.4)

T33(iL) = cosh kiLi + `i(1)ki sinh kiLi, T34(iL) = sinh kiLi + `i(1)ki cosh kiLi,

(A.5)

T35(iL) = T36(iL) = 0, (A.6)

T41(iL) = −Ix(i)k2i cos kiLi + Ix(i)eik
3
i sin kiLi, (A.7)

T42(iL) = −Ix(i)k2i sin kiLi − Ix(i)eik3i cos kiLi, (A.8)

T43(iL) = Ix(i)k
2
i cosh kiLi + Ix(i)eik

3
i sinh kiLi, (A.9)

T44(iL) = Ix(i)k
2
i sinh kiLi + Ix(i)eik

3
i cosh kiLi, (A.10)

T45(iL) = Aidipi sin piLi, T46(iL) = −Aidipi cos piLi, (A.11)

T51(iL) = Ix(i)k
3
i sin kiLi sinαi, T52(iL) = −Ix(i)k3i cos kiLi sinαi, (A.12)
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T53(iL) = Ix(i)k
3
i sinh kiLi sinαi, T54(iL) = Ix(i)k

3
i cosh kiLi sinαi, (A.13)

T55(iL) = −Aipi sin piLi cosαi, T56(iL) = Aipi cos piLi cosαi, (A.14)

T61(iL) = −Ix(i)k3i sin kiLi cosαi, T62(iL) = Ix(i)k
3
i cos kiLi cosαi, (A.15)

T63(iL) = −Ix(i)k3i sinh kiLi cosαi, T64(iL) = −Ix(i)k3i cosh kiLi cosαi,

(A.16)

T65(iL) = −Aipi sin piLi sinαi, T66(iL) = Aipi cos piLi sinαi. (A.17)

Appendix B. COMPONENTS OF THE MATRIX TiR (i = 1, . . . , n−

1)

T11(iR) = T13(iR) = T15(iR) = T16(iR) = 0, T12(iR) = T14(iR) = ki+1, (B.1)

T21(iR) = T23(iR) = sinαi, T22(iR) = T24(iR) = −`i(2)ki+1 sinαi, (B.2)

T25(iR) = cosαi, T26(iR) = 0, T31(iR) = T33(iR) = cosαi, (B.3)
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T32(iR) = T34(iR) = −`i(2)ki+1 cosαi, T35(iR) = − sinαi, T36(iR) = 0,

(B.4)

T41(iR) = −Ei+1

Ei
Ix(i+1)k

2
i+1, T42(iR) =

ω2Jiki+1

Ei
+
Ei+1

Ei
Ix(i+1)aik

3
i+1,

(B.5)

T43(iR) =
Ei+1

Ei
Ix(i+1)k

2
i+1, T44(iR) =

ω2Jiki+1

Ei
−Ei+1

Ei
Ix(i+1)aik

3
i+1, (B.6)

T45(iR) = 0, T46(iR) = −Ei+1

Ei
Ai+1bipi+1, T51(iR) = T53(iR) = 0, (B.7)

T52(iR) = T54(iR) =
miω

2biki+1

Ei
, T55(iR) = miω

2, T56(iR) =
Ei+1

Ei
Ai+1pi+1,

(B.8)

T61(iR) = T63(iR) =
miω

2

Ei
, T62(iR) = −miω

2aiki+1

Ei
+
Ei+1

Ei
Ix(i+1)k

3
i+1,

(B.9)

T64(iR) = −miω
2aiki+1

Ei
− Ei+1

Ei
Ix(i+1)k

3
i+1, T65(iR) = T66(iR) = 0. (B.10)

Appendix C. COMPONENTS OF THE MATRIX Tn FOR THE

CASE OF A RIGID BODY FIXED TO END Bn,R
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T11(n) =

(
ω2Jnkn
En

+ Ix(n)k
3
nen

)
sin knLn − Ix(n)k2n cos knLn, (C.1)

T12(n) = −
(
ω2Jnkn
En

+ Ix(n)k
3
nen

)
cos knLn − Ix(n)k2n sin knLn, (C.2)

T13(n) =

(
Ix(n)k

3
nen −

ω2Jnkn
En

)
sinh knLn + Ix(n)k

2
n cosh knLn, (C.3)

T14(n) =

(
Ix(n)k

3
nen −

ω2Jnkn
En

)
cosh knLn + Ix(n)k

2
n sinh knLn, (C.4)

T15(n) = Andnpn sin pnLn, T16(n) = −Andnpn cos pnLn, (C.5)

T21(n) = −mnω
2dnkn
En

sin knLn, T22(n) =
mnω

2dnkn
En

cos knLn, (C.6)

T23(n) =
mnω

2dnkn
En

sinh knLn, T24(n) =
mnω

2dnkn
En

cosh knLn, (C.7)

T25(n) =
mnω

2

En
cos pnLn +Anpn sin pnLn, (C.8)

T26(n) =
mnω

2

En
sin pnLn −Anpn cos pnLn, (C.9)
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T31(n) = −mnω
2

En
cos knLn +

(
mnω

2enkn
En

− Ix(n)k3n
)

sin knLn, (C.10)

T32(n) = −mnω
2

En
sin knLn −

(
mnω

2enkn
En

− Ix(n)k3n
)

cos knLn, (C.11)

T33(n) = −mnω
2

En
cosh knLn −

(
mnω

2enkn
En

+ Ix(n)k
3
n

)
sinh knLn, (C.12)

T34(n) = −mnω
2

En
sinh knLn −

(
mnω

2enkn
En

+ Ix(n)k
3
n

)
cosh knLn, (C.13)

T35(n) = T36(n) = 0. (C.14)

Appendix D. COMPONENTS OF THE MATRIX Tn FOR THE

CASE OF PINNED END Bn,R

T11(n) = T12(n) = T13(n) = T14(n) = 0, T15(n) = cos pnLn, T16(n) = sin pnLn,

(D.1)

T21(n) = cos knLn, T22(n) = sin knLn, T23(n) = cosh knLn, (D.2)

T24(n) = sinh knLn, T25(n) = T26(n) = 0, (D.3)
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T31(n) = −k2n cos knLn, T32(n) = −k2n sin knLn, T33(n) = k2n cosh knLn,

(D.4)

T34(n) = k2n sinh knLn, T35(n) = T36(n) = 0. (D.5)

Appendix E. COMPONENTS OF THE MATRIX Tn FOR THE

CASE OF CLAMPED END Bn,R

T11(n) = T12(n) = T13(n) = T14(n) = 0, T15(n) = cos pnLn, T16(n) = sin pnLn,

(E.1)

T21(n) = cos knLn, T22(n) = sin knLn, T23(n) = cosh knLn, (E.2)

T24(n) = sinh knLn, T25(n) = T26(n) = 0, (E.3)

T31(n) = −kn sin knLn, T32(n) = kn cos knLn, T33(n) = kn sinh knLn,

(E.4)

T34(n) = kn cosh knLn, T35(n) = T36(n) = 0. (E.5)
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Table 2: The lowest five dimensionless frequency coefficients and corresponding values of

the natural frequencies ωi(rad/s) (i = 1, . . . , 5)

α λ1 λ2 λ3 λ4 λ5

(ω1) (ω2) (ω3) (ω4) (ω5)

−5π/6 1.885 3.37409 5.00522 8.2001 10.7292

(57.054) (182.8) (402.263) (1079.697) (1848.41)

−2π/3 1.75603 3.09807 4.83066 7.9815 10.6675

(49.5139) (154.115) (374.694) (1022.9) (1827.21)

−π/2 1.62183 3.11272 4.84134 7.95696 10.6977

(42.2352) (155.576) (376.353) (1016.62) (1837.57)

−π/3 1.52429 3.27755 5.03102 7.97492 10.8027

(37.3077) (172.489) (406.421) (1021.21) (1873.82)

−π/6 1.469 3.44422 5.53163 8.01644 11.0629

(34.6503) (190.478) (491.326) (1031.87) (1965.18)

0 1.45297 3.47102 6.07214 8.02761 11.2333

(33.8982) (193.454) (592.035) (1034.75) (2026.18)

π/6 1.47487 3.34107 5.76586 7.96294 10.7787

(34.9278) (179.24) (533.816) (1018.15) (1865.51)

π/3 1.53663 3.14453 5.25283 7.96652 10.5789

(37.9142) (158.772) (443.048) (1019.06) (1796.986)

π/2 1.64121 3.0043 4.96526 8.01541 10.5252

(43.2506) (144.927) (395.865) (1031.61) (1778.79)

2π/3 1.77972 3.03394 4.83305 8.12743 10.5144

(50.8589) (147.801) (375.065) (1060.65) (1775.14)

5π/6 1.9015 3.38361 4.86668 8.48105 10.5532

(58.0572) (183.833) (380.303) (1154.95) (1788.27)
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(a) (b)

(c) (d)

Figure 7: The lowest four mode shapes of the system shown in Fig. 5: (a) First mode,

(b) Second mode, (c) Third mode, and (d) Fourth mode.
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