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Abstract
A new approach for the determination of the global minimum time for the case of the brachistochronic motion of the
Chaplygin sleigh is presented. The new approach is based on the use of the shooting method in solving the correspond-
ing two-point boundary-value problem and defining either the crossing points of surfaces or the crossing points space of
curves in a three-dimensional space of two costate variables and the time of the brachistochronic motion of the sleigh.
A number of examples for multiple extremals of the Chaplygin sleigh brachistochrone problem are provided. In these
examples, the global minimum is the solution to which the minimum time of motion corresponds.

Keywords
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1. Introduction

In Jeremić et al. [1] and Šalinić et al. [2,3], considerations of the brachistochronic motion of a particle
involve the application of the shooting method [4] in solving a corresponding two-point boundary-value
problem (TPBVP). The shooting method in these papers is reduced to solving a corresponding system
of nonlinear algebraic equations, where the unknowns are values of some state and costate variables at
characteristic instants. Depending on the number of unknowns, the solution of the considered system of
algebraic equations could be geometrically represented in the form of intersection of the corresponding
surfaces or hypersurfaces.
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Obradović et al. [5] consider a general case of brachistochronic motion of the rheonomic mechanical
system with linear rheonomic nonholonomic constraints, a sledge moving along a horizontal block of
ice being taken as an example, and its law of motion is known. The considered paper introduces a single
control, and the TPBVP is reduced to solving a four-parameter shooting, where it is not possible to
claim with certainty that the obtained solution is optimal if it is taken into account that there is not a
general procedure for determining all possible solutions of the TPBVP in a four-parameter shooting.
The final value of the sledge angle was p=4. Radulović et al. [6] consider the brachistochronic motion of
the mechanical system with a nonlinear nonholonomic constraint. In the considered work, the particles,
with the imposed constrained motion in the form of perpendicularity of velocities by means of two
Chaplygin knife edges, are connected by a light mechanism. The brachistochrone problem is formulated
as a task of optimal control by introducing two controls, where the TPBVP is also reduced in this case
to solving a four-parameter shooting, where it was not possible to estimate the interval of values of the
unknown quantities lx and ly.

In the present paper, a visual representation of the TPBVP is used to explore the possibility of multi-
ple extremal occurrence in the problem of the brachistochronic motion of the Chaplygin sleigh consid-
ered by Šalinić et al. [7]. In the case of multiple extremals the choice corresponds with the extremals to
which the minimum time of brachistochronic motion corresponds. The process of defining the number
of possible extremals and defining the extremal to which the minimum time of motion corresponds will
be henceforth referred to as the determination of the global minimum time.

Taking into account that it is not possible to provide a general procedure for estimating the interval
of values of the missing parameters when solving the TPBVP in the brachistochronic motion of nonho-
lonomic mechanical systems with arbitrary initial and final position, nor is there a theorem on the exis-
tence and uniqueness of the TPBVP solution, it makes sense to raise the following questions not
considered by Šalinić et al. [7]: Is there at all the solution of a corresponding TPBVP at known initial
and final position of the Chaplygin sleigh? Is it possible to estimate the interval of values of the missing
parameters? Is there a procedure for determining all possible solutions of the TPBVP? The significance
of the above questions, so that it can be claimed with certainty that a solution of the TPBVP exists and
that the obtained solution is optimal too, motivated the authors to write the present paper.

Now, we can refer to the technical application of the results obtained within the framework of this
paper, with the possibility of real application. The obtained results, on one hand, can be applied to the
problems of determining optimal motion of nonholonomic mechanical systems (not only to determining
optimal motion of the Chaplygin sleigh, but also to all nonholonomic mechanical systems described by
the same equations of state, such as the simplified vehicle model presented by Radulović et al. [8]), as
well as in vertical rolling of a disk without slipping (see Bloch [9]), with a technical requirement posed in
the form of determining the optimal trajectory of motion, so that the considered nonholonomic mechan-
ical system moves from a known initial position to a final defined position in a minimum time. On the
other hand, the results obtained in this paper can be applied in general when determining all possible
solutions of the TPBVP, which is reduced to solving a three-parameter shooting, where it is possible to
estimate the interval of values of the missing parameters. Also, two procedures for realizing the brachis-
tochronic motion of the Chaplygin sleigh are proposed.

Prior to deriving differential equations of motion the Chaplygin sleigh [10], shown in Figure 1, as well
as for the needs of further considerations, two Cartesian coordinate reference systems have to be intro-
duced. The immovable coordinate system Oxyz has a coordinate plane Oxy that coincides with the hori-
zontal plane of motion and the movable coordinate system Ajhz that is stiffly attached to the knife
edge, so that the coordinate plane Ajh coincides with the Oxy -plane, where the Aj-axis coincides with
the orientation of the edge. Unit vectors of the movable coordinate system axes are ~l,~m and ~n, respec-
tively. The configuration space for the Chaplygin sleigh is the Lie group SE(2) locally parameterized by
the coordinates (generalized coordinates) q = x, y,uð Þ on Q =R

2 × S
1. Further analysis involves the case

when point A is not allowed to move in the direction perpendicular to the edge, causing the occurrence
of horizontal reaction of the immovable surface ~R = R~m. Such restriction implies the nonholonomic
constraints

c [ � _x sinu + _y cosu = 0: ð1Þ
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Such imposed constrained motion means that the velocity ~V of point A of the knife edge has the direc-
tion of the axis Aj, so the relation (1) can be expressed in the form

_x = V cosu, _y = V sinu, ð2Þ

where V =~V �~l. As in Caratheodory [11], Neimark and Fufaev [12] and Ruina [13], we consider the case
when the centre of mass of the sleigh, point C, is positioned on the Aj-axis, that is, C 2 Aj, at the dis-
tance AC = a. Note that in Chaplygin [10] a more general case was considered with the point C lying in
the plane Ajh such that C 62 j and C 62 h. The mass of the sleigh is m, whereas IC is the moment of iner-
tia around the principal central axis of inertia perpendicular to the Oxy-plane.

Differential equations of the sleigh motion will be created based on the general theorems of dynamics,
that is, the rate of change of linear momentum as well as the rate of change of angular momentum about
the centre of mass of the sleigh:

d~K

dt
=~Fs

R,
d~LC

dt
= ~Ms

C, ð3Þ

where the sleigh linear momentum is ~K = m~VC = m V~l + a _u~m
� �

, and the sleigh angular momentum

about the centre of mass is ~LC = IC _u~n. The principal force vector is ~Fs
R =~F +~R, whereas the principal

moment of forces about the centre of mass of the sleigh is ~Ms
C = CA

�!×~R = � aR~n. Observe that the con-

trol force ~F =~F1 +~F2 is acting at point C. Also, in the case of brachistochronic motion, the power of

the control force equals zero, ~F � ~VC = 0(see e.g. Čović et al. [14]).
The following scalar differential equations correspond to vector equations (3) relative to the movable

coordinate system Ajhz :

m _V � a _u2
� �

= F1,

m a €u + V _uð Þ= F2 + R,

IC €u = � aR:

ð4Þ

The Lagrangian of the system has the following form [9]:

L xC, yC,uð Þ= 1

2
m _x2

C + _y2
C

� �
+

1

2
IC _u2, ð5Þ
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(a) (b)

Figure 1. The Chaplygin sleigh.
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where the coordinates of the centre of mass of the sleigh are xC = x + a cosu and yC = y + a sinu, so after
a brief rearrangement the following is obtained:

L x, y,uð Þ= 1

2
m _x2 + _y2 + a2k2 _u2 + 2a _u � _x sinu + _y cosuð Þ
� �

, ð6Þ

where k2 = 1 + IC=(ma2).
Now, differential equations of the sleigh motion will be created based on Lagrange’s equations of the

second kind with undetermined multipliers [15]:

d

dt

∂L

∂ _qa �
∂L

∂qa
= ~Qa + l

∂c

∂ _qa , a = 1, 2, 3, ð7Þ

where l is Lagrange’s multiplier of the constraint, whereas ~Qa are generalized control forces. Based on
(1), (6) and (7) the following is obtained:

m €x� a €u sinu� a _u2 cosu
� �

= F1 cosu� F2 sinu� l sinu,

m €y + a €u cosu� a _u2 sinu
� �

= F1 sinu + F2 cosu + l cosu,

ma ak2 €u + _u _x cosu + _y sinuð Þ
� �

= aF2:

ð8Þ

If it is taken into account that the velocity of point A of the edge is

V = _x cosu + _y sinu, ð9Þ

after differentiation with respect to time of the constraint equation (1), and of relation (9), respectively,
the following relations are obtained:

V _u = � €x sinu +€y cosu, _V =€x cosu +€y sinu: ð10Þ

Now, based on (8)–(10), the following system of equations can be formed:

m _V � a _u2
� �

= F1,

m a €u + V _uð Þ= F2 + l,

m ak2 €u + _uV
� �

= F2:

ð11Þ

System (11) is equivalent to the system of equations (4), where Lagrange’s multiplier of the constraint
equals the reaction of a nonholonomic constraint l = R.

The proposed procedure for creating differential equations of motion based on the general theorems
of dynamics, as shown, is considerably simpler compared to classical procedures of forming nonholo-
nomic systems based on the analytical mechanics [15].

The thus determined brachistochronic motion can be realized in general by the control forces, whose
total power during brachistochronic motion equals zero ~Qa _qa = 0, which can be presented in the form of
the active control forces, the constraint reaction forces or their mutual combinations. One of the man-
ners of realizing the brachistochronic motion of a system, as shown, has been achieved by the active con-
trol force ~F =~F1 +~F2, which is acting at point C (see Figure 1(a)). Note that in Antunes and Sigaud [16]
the control of the Chaplygin sleigh motion is achieved by a single active force applied at point C and a
single torque of active forces. Systems (4) or (11) are used as a basis for determining the laws of change
of the control forces F1 and F2, as well as the reaction of the nonholonomic constraint R as a function
of defined quantities and their derivatives:

F1 = m _V � av2
� �

, F2 = m ak2 _v + Vv
� �

, R = � IC

a
_v, ð12Þ

where ~v = _u~n and~e = €u~n are the vectors of angular velocity and angular acceleration of the sleigh.
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Another possible manner of realizing the brachistochronic motion of a system with two degrees of
freedom (2 DOF) motion is the subsequent imposition to the system of one holonomic stationary ideal
mechanical constraint (obviously, this is about the original Bernoulli’s idea of realizing the control forces
– the reaction force will replace the action of the active control force ~F), in accordance with previously
determined brachistochronic motion, but without the action of other active forces (see Šalinić et al. [7]).
The mechanical constraint has been realized by means of a smooth guide whose path-line coincides with
the trajectory of point C, so that the parametric equations of the guide line are

xC tð Þ= x tð Þ+ a cosu tð Þ,
yC tð Þ= y tð Þ+ a sinu tð Þ:

ð13Þ

Section 4 shows the laws of change of the control forces, as well as the trajectory of point C, at differ-
ent values of the final angle of the Chaplygin sleigh in accordance with (12) and (13).

Note that in solving the system of nonlinear algebraic equations that emerged in Jeremić et al. [1] and
Šalinić et al. [2,3], in the application of the shooting method, it was necessary to estimate the values of
the costate variables, which is often difficult because the costate variables usually have no physical inter-
pretations. In this regard, the most convenient is the approach from Obradović et al. [17], which does
not require the estimation of the values of costate variables. However, the application of the approach
from Obradović et al. [17] to a considered brachistochronic motion of the Chaplygin sleigh would
require considerations of the intersection of hypersurfaces in four-dimensional (4D) space x, y,u, tf

� �
,

where tf is the time of the brachistochronic motion of the sleigh, which would disable us from the possi-
bility of geometric visual representation. In this paper modification of the approach from Šalinić et al.
[7] has been done by introducing two controls instead of a single one. This modification enables clear
geometric estimation of the values of costate variables to be shown below.

2. Formulation of the brachistochrone problem and optimality conditions

Based on (2), controlled equations for the Chaplygin sleigh read

_x = u1 cosu, _y = u1 sinu, _u = u2, ð14Þ

where the control variables u1( � ) : ½t0, tf � ! R and u2( � ) : ½t0, tf � ! R, respectively, represent the
speed V of point A and the angular velocity of the Chaplygin sleigh:

u1 = V , u2 = v: ð15Þ

Such choice of control variables u1 and u2 can provide a clear physical interpretation, bearing in mind
that they represent physical quantities. Also, it is possible, to be shown in Section 3, to determine the
domain of definiteness of the control variables u1 and u2. Unlike the five state equations used by Šalinić
et al. [7] with a single control variable representing the angular velocity of the sleigh, introducing two
control variables has enabled here to reduce the number of state equations from five to three. Let the
values of the state variables and the kinetic energy of the sleigh be specified at the beginning of motion
as well as the terminal boundary conditions as follows:

t0 = 0, x t0ð Þ= 0, y t0ð Þ= 0, u t0ð Þ= 0, T t0ð Þ= T0, ð16Þ

t = tf , x tf
� �

= xf , y tf

� �
= yf , u tf

� �
=uf , ð17Þ

where T0 2 R denotes the initial kinetic energy of the sleigh and tf 2 R is the final time. The sleigh is
moving under the influence of control forces, their determination being not the subject of this paper
(for more details on the problem of determination of these forces refer to Šalinić et al. [7]), whose power
is equal to zero. Since the power of the control forces is equal to zero during the sleigh motion, the con-
servation of total mechanical energy of the system holds:

F V ,vð Þ[ V 2 + a2k2v2 � 2T0

m
= 0, ð18Þ

Radulović et al. 5



or, in accordance with incorporated control variables:

F u1, u2ð Þ[ u2
1 + a2k2u2

2 �
2T0

m
= 0: ð19Þ

In order to show that the power of control forces equals zero, we will first differentiate with respect to
time relation (18) where it is obtained

dF

dt
= V _V + a2k2v _v = 0, ð20Þ

whereas, on the other hand, the power of control forces F1 and F2, taking into account (12) and (20), is
determined by

~F � ~VC = F1V + F2av = m V _V + a2k2v _v
� �

= 0: ð21Þ

The brachistochronic motion problem of the Chaplygin sleigh consists in determining the controls u1

and u2 and the state variables x, y and u, so that the sleigh transfers in the minimum time tf from the ini-
tial state (16) to the terminal state (17). This can be expressed as the minimization of the following action
functional:

J q, uð Þ=
ðtf
t0

dt, ð22Þ

where u = u1, u2ð Þ, subject to (14), (16), (17), and the control constraint (19), where tf is free.
To solve the optimal control problem formulated by Pontryagin’s maximum principle [18], the aug-

mented (extended) Hamiltonian [19] is formed as

H q, u,lð Þ= l0 + lxu1 cosu + lyu1 sinu + luu2 + mF u1, u2ð Þ, ð23Þ

where the sum of the first four terms in (23) represents the Hamilton–Pontryagin Hamiltonian [18],
l0 = const:� 0, lx( � ) : ½t0, tf � ! R, ly( � ) : ½t0, tf � ! R and lu( � ) : ½t0, tf � ! R are the costate vari-
ables associated with x, y and u, respectively, and m( � ) : ½t0, tf � ! R is the Lagrange multiplier. Hence,
the corresponding costate equations [18,19] read

_lx = � ∂H

∂x
= 0, _ly = � ∂H

∂y
= 0, _lu = � ∂H

∂u
= lx sinu�ly cosu
� �

u1, ð24Þ

with the transversality condition H(tf ) = 0 associated with the final time tf .
The Legendre necessary conditions of optimality of the Hamiltonian H with respect to the controls u1

and u2 read [19]

∂H

∂ui

	 

uopt

= 0,
∂2H

∂ui∂uj

	 

uopt

uiuj� 0, i, 2j = 1, 2ð Þ: ð25Þ

Since the Hamiltonian has no explicit time dependence, then a first integral of the motion is
H tð Þ= const:, or, taking into account (19) and H tf

� �
= 0:

l0 + lxu1 cosu + lyu1 sinu + luu2 + mF u1, u2ð Þ= 0: ð26Þ

From (24)1,2 it follows that lx = const:, ly = const: for t 2 t0, tf
� �

. Now, based on (25)1, it is obtained
that

lx cosu+ ly sinu = � 2mu1, lu = � 2ma2k2u2, ð27Þ

while from (19) it follows that
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u2
1 + a2k2u2

2 =
2T0

m
: ð28Þ

Introducing (27) and (28) into (26) yields the expression for the multiplier m:

m =
l0m

4T0

: ð29Þ

Now, if one takes l0 = 0 one has an abnormal brachistochrone problem [19]. Let us show that the con-
sidered brachistochrone problem is not abnormal. If l0 = 0 then from (27) and (29) it follows that
m(t) [ 0, lu(t) [ 0, lx [ 0 and ly [ 0, that is, all costate variables are identically equal to zero.
Consequently, the necessary conditions of Pontryagin’s maximum principle [18] are not satisfied using
l0 = 0, since all costate variables cannot be identically zero. Next, the normal brachistochrone problem
is considered where, according to Pontryagin et al. [18], it can be taken that l0 = � 1. Now, based on
(25)1 and (29), the expressions for the control variables can be written as

u1 =
2T0

m
lx cosu+ ly sinu
� �

, u2 =
2T0

m

1

a2k2
lu: ð30Þ

Finally, introducing the initial conditions (16) and the relations (29) and (30) into (26) gives

lu t0ð Þ= 6ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2T0

� l2
x

r
: ð31Þ

3. Formulation of a two-point boundary-value problem

In accordance to the above relations, the TPBVP corresponding to the brachistochrone problem consid-
ered is determined by the following differential equations:

_x =
2T0

m
lx cosu + ly sinu
� �

cosu,

_y =
2T0

m
lx cosu + ly sinu
� �

sinu,
ð32Þ

_u=
2T0

m

1

a2k2
lu,

_lu =
2T0

m
lxcosu + lysinu
� �

lx sinu�ly cosu
� �

,

ð33Þ

with the initial boundary conditions

t0 = 0, x t0ð Þ= 0, y t0ð Þ= 0, u t0ð Þ= 0, lu t0ð Þ= 6ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2T0

� l2
x

r
: ð34Þ

Now, based on (12), (30) and (33) one can determine the laws of change of the control forces F1 and F2

as well as the reactions of nonholonomic constraint R:

F1 = � 2T0

m1=2ak

	 
2

lx sinu� ly cosu +
1

ak2
lu

	 

lu,

F2 =
4T 2

0

ma
lx cosu + ly sinu
� �

lx sinu� ly cosu +
1

ak2
lu

	 

,

R = � IC

a

2T0

mak

	 
2

lx cosu + ly sinu
� �

lx sinu� ly cosu
� �

:

ð35Þ

Radulović et al. 7



The numerical procedure for solving this TPBVP is based on the shooting method [4]. Namely, solving
the corresponding Cauchy’s problem (32) and (33) with the conditions (34), the following relations can
be established in a numerical form:

xf = fx lx, ly, tf

� �
, yf = fy lx, ly, tf

� �
, uf = fu lx, ly, tf

� �
: ð36Þ

Each of the relations (36) can be graphically represented by a surface in R
3 with axes lx,ly and tf and

the intersection of these surfaces represents the solution of the system of equations (36). In the case of
several crossing points (several solutions of the TPBVP) occurring in the part of the space corresponding
to allowable values of the quantities and lx, ly and tf , the global minimum time at the brachistochronic
motion of the Chaplygin sleigh corresponds to the crossing point with the minimum time tf . When sol-
ving the TPBVP in the thus described manner, a need is naturally imposed to estimate the interval within
which the values of quantities lx and ly range. For the considered problem, this estimation is easy to
perform. Namely, from the condition that the expression under the radical in (31) must be nonnegative
(zero or positive), there follows the estimation of the interval of values of the quantity lx:

�
ffiffiffiffiffiffiffi
m

2T0

r
� lx�

ffiffiffiffiffiffiffi
m

2T0

r
: ð37Þ

Based on the quadratic form of control (19), one can determine the domain of definiteness of the con-
trols u1 and u2:

�
ffiffiffiffiffiffiffi
2T0

m

r
� u1�

ffiffiffiffiffiffiffi
2T0

m

r
, �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0

ma2k2

r
� u2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2T0

ma2k2

r
: ð38Þ

Now, based on (30) and (38), the following dual inequality can be derived:

�
ffiffiffiffiffiffiffi
m

2T0

r
� lx cosuf + ly sinuf �

ffiffiffiffiffiffiffi
m

2T0

r
: ð39Þ

Taking into account (37) and (39) one can perform estimation of the interval of values of the quantity
ly, which is necessary to provide in applying the shooting method, depending on the final angle of the
edge uf :

�
ffiffiffiffiffiffiffi
m

2T0

r
cot

uf

2
� ly�

ffiffiffiffiffiffiffi
m

2T0

r
cot

uf

2
, 8uf 6¼ 0: ð40Þ

Note that at the final angle value of the edge uf = 0, as well as at the value uf = p, the estimation of
the interval of values of the quantity ly cannot be provided, and therefore these cases will be separately
considered in the next section.

Now, taking into account the estimation of the interval of values (37) and (40), where tf � 0, it can be
asserted that all solutions of the corresponding TPBVP fall within the defined interval of values.

Based on the above considerations, it is possible now to determine the intersections of the surfaces
(36) as

pf = fx lx, ly, tf

� �
\ fy lx, ly, tf
� �

, qf = fx lx,ly, tf
� �

\ fu lx, ly, tf
� �

, ð41Þ

where pf and qf are space curves represented by the following dependencies in the numerical form:

pf = fp lx, tf
� �

, qf = fq lx, tf
� �

: ð42Þ

Now, the solutions of the TPBVP can be represented by the geometric crossing points of curves (42)
as

fp lx, tf
� �

\ fq lx, tf
� �

= M1,M2, . . . ,Mn: ð43Þ

8 Mathematics and Mechanics of Solids



The number of elements of the set (43) is equal to the number of all possible solutions of the TPBVP.
From the viewpoint of how easy it is to observe the crossing points Mi and to visually estimate their

coordinates, the described method is better to use than the surface crossing method (used by Jeremić et
al. [1]). In the next section we will see how a comparative presentation of both methods is given.

Now, it is possible by applying the surface crossing method (36) or the space curves crossing method
(42) to perform the estimation of the values of coordinates l�x , l�y , t�f

� �
of all crossing points (43). The

estimated values of coordinates l�x, l�y , t�f

� �
of the crossing points can be used as initial iteration for

finding accurate values of the quantities lx,ly and tf by applying the shooting method, whose detailed
description is presented in the Appendix.

In the work, the implementation of the crossing of curves (42) is achieved by using the built-in
ContourPlot3D() Mathematica function (see e.g. Ruskeepää [20]).

4. Numerical examples

In this section, the TPBVP formulated in Section 3 is solved for the following values of the sleigh para-
meters: m = 2kg, a = 1m, xf = 1m, yf = 1m, k = 1:5, T 0 = 200 kg m2

s2
, and the influence of the final position

of u, uf on the appearance of multiple extremals in the Chaplygin sleigh brachistochrone problem is
examined.

4.1. The case of the value uf = p=2

In order to compare the results obtained in the present paper with the results obtained by Šalinić et al.
[7] and to show that the obtained solution is optimal, we will first consider the case when uf = p=2.

Based on (37) and (40), the following estimations can be made:

� 0:0707� lx� 0:0707, � 0:0707� ly� 0:0707: ð44Þ

From Figures 2 and 3, taking into account that the corresponding surfaces and space curves, respec-
tively, are crossing only at one point, it can be claimed with certainty that there is a solution of the
TPBVP for the case uf = p=2, as well as that it is optimal. Figure 2(a) shows the crossing of surfaces
(36) in the interval 0� tf � 0:6, while Figure 2(b) shows the crossing of surfaces for a narrower interval,
so as to make the crossing point of surfaces more visible. Figure 3 shows the crossing of space curves p
and q, where crossing point M is clearly visible, whose coordinates in three-dimensional (3D) space
lx, ly, tf

� �
correspond to the TPBVP solution. Visual estimation of the values of coordinates of the

AQ4
Figure 2. Crossing of surfaces xf = fx lx, ly, tf

� �
, yf = fy lx, ly, tf

� �
and uf = fu lx, ly, tf

� �
for uf = p=2:
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crossing point M from Figure 3 are 0, 0, 0:2ð Þ, which represent the initial iteration for finding accurate
values by applying the shooting method.

Applying the procedure from Section 3 it is obtained that tf = 0:199832 s, lx = 0:0303507s=m and
ly = 0:0303507s=m. This result coincides with the one obtained by Šalinić et al. [7].

The trajectory of point A as well as the graph of speed V is shown in Figure 4.
The laws of change of the control forces F1 and F2, based on (35), for realizing the Chaplygin sleigh

brachistochronic motion are shown in Figure 5.
The law of change of the reaction of nonholonomic constraint R and the trajectory of point C are

shown in Figure 6. In Figure 6 point C0 represents the initial, whereas point Cf represents the final posi-
tion of point C of the edge.

4.2. The case of the value uf = p=30

Taking into account that we cannot make estimation of the value of quantity ly when the final angle
value of the edge is uf = 0, we will first perform estimation, as well as the solutions of the corresponding
TPBVP, at a close value of the final angle of the edge uf = p=30.

Figure 3. Crossing of curves pf = fp lx, tf
� �

and qf = fq lx, tf
� �

for uf = p=2:

Figure 4. The trajectory of point A and graph of speed V for uf = p=2:
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In this case, from (37) and (39) it follows that

� 0:0707� lx� 0:0707, � 0:6765 + 9:5144lxð Þ� ly� 0:6765� 9:5144lx, ð45Þ

respectively, based on (40) it is

� 1:3492� ly� 1:3492: ð46Þ

Graphical representation of the estimations (45) is given in Figure 7.
The shaded region in Figure 7 corresponds to the estimations given by (45).
In Figures 8 and 9 the crossing of surfaces (36) and the crossing of curves (42), respectively, are

shown. We can observe from Figures 8 and 9 that the solution of the TPBVP is not unique. To find all
possible solutions of the TPBVP, it is more convenient to use a graphic analysis of the solution in 3D
space of the missing parameters, as shown in Figures 8 and 9.

Visual estimation of the values of coordinates of the crossing points M1,M2 and M3, respectively, from
Figure 9 are 0, 0:1, 0:2ð Þ, 0, 0:15, 0:4ð Þ and 0, 0:2, 0:4ð Þ.

All solutions of the TPBVP in the interval 0� tf � 0:6, shown in Table 1, which are represented by
the crossing points M1,M2 and M3 of the space curves p and q, are given in Figure 9. The trajectories
and velocities of point A corresponding to the crossing points M1,M2 and M3 are shown in Figure 10. In

Figure 5. Control forces F1 and F2 for uf = p=2:

Figure 6. Reaction of the nonholonomic constraint R and trajectory of point C for uf = p=2:
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Figure 10, A0 represents the initial and Af the final position of point A. Based on the values shown in
Table 1, it can be concluded that the global minimum time is achieved in the case of the first solution
(point M1 shown in Figures 8 and 9) and it equals tf = 0:229455 s.

Two stopping points correspond to the solutions M1 and M2, whereas three stopping points corre-
spond to the solution M3, that is, the positions where the velocity of the contact point between the knife
edge and the horizontal plane equals zero.

Figure 7. Estimation of the quantities lx and ly for uf = p=30:

Figure 8. Cross-section of surfaces xf = fx lx, ly, tf
� �

, yf = fy lx, ly, tf
� �

and uf = fu lx, ly, tf
� �

at uf = p=30:
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Figure 11 shows the laws of change of the control forces F1 and F2 corresponding to the solutions
given in Table 1.

Figure 12 shows the law of change of the reaction of nonholonomic constraint R and the trajectories
of point C corresponding to the solutions presented in Table 1.

4.3. The case of the value uf = 0

For the value of the angle uf = 0, based on (40), only the value of the quantity lx, highlighted in Section
4.2, can be estimated. Due to the closeness of values uf = 0 and uf = p=30, the estimation for ly from
Section 4.2 was used.

Figure 9. Crossing of curves pf = fp lx, tf
� �

and qf = fq lx, tf
� �

for uf = p=30:

Table 1. The two-point boundary-value problem solutions for the case of the value uf = p=30.

Solutions lx 2s=m½ � ly 2s=m½ � tf 2s½ �

First solution (M1) 20.042973 0.138484 0.229455
Second solution (M2) 0.0526389 0.151529 0.361141
Third solution (M3) 20.0113855 0.198418 0.368861

Figure 10. The trajectories and speeds of point A for uf = p=30 corresponding to the solutions shown in Table 1.
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In Figures 13 and 14, respectively, the crossing of surfaces (36) and the crossing of curves (42) are
shown. We can observe from Figures 13 and 14 that the TPBVP solution is not unique. Visual estima-
tion of the values of coordinates of the crossing points M1,M2 and M3, respectively, from Figure14 are
0, 0:15, 0:2ð Þ, 0, 0:15, 0:4ð Þ and 0, 0:2, 0:4ð Þ.
Based on Figures 13 and 14, all the TPBVP solutions in the interval 0� tf � 0:6 are shown in Table 2.

The trajectory and velocity of point A, respectively, corresponding to the crossing points M1,M2 and M3

are presented in Figure 15. The global minimum time in the brachistochronic motion of the sleigh corre-
sponding to the terminal value uf = 0 is determined by the first solution (point M1 shown in Figures 13
and 14) and it equals tf = 0:239187s.

Two stopping points correspond to the solutions M1 and M2, whereas four stopping points correspond
to the solution M3.

Figure 16 shows the laws of change of the control forces F1 and F2 corresponding to the solutions pre-
sented in Table 2.

Figure 17 shows the laws of change of the reactions of nonholonomic constraint R and the trajectories
of point C corresponding to the solutions presented in Table 1.

4.4. The case of the value uf = p

As mentioned above, at the final angle value of the edge uf = p, the estimation of the interval of values
of the quantity ly cannot be made. In this case, estimation will be deployed for the interval of values of

Figure 11. Control forces F1 and F2 for uf = p=30 corresponding to the solutions shown in Table 1.

Figure 12. Reactions of the nonholonomic constraint R and trajectories of point C for uf = p=30 corresponding to the solutions
shown in Table 1.
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the quantities lx, ly given in (44). From Figures 18 and 19, taking into account that the corresponding
surfaces and space curves, respectively, are crossing only at one point, it can be asserted that the
obtained solution of the TPVBP for the case uf = p is optimal. Visual estimation of the values of coor-
dinates of the crossing point M from Figure 19 are 0, 0, 0:3ð Þ, which represent the initial iteration for
finding the accurate values by applying the shooting method. The solutions of the TPBVP for the case
uf = p in the interval 0� tf � 0:6 are tf = 0:199832 s, lx = 0:0303507s=m and ly = 0:0303507s=m. The
trajectory of point A, as well as the graph of speed V, is shown in Figure 20.

Figure 13. Crossing of surfaces xf = fx lx, ly, tf
� �

, yf = fy lx, ly, tf
� �

and uf = fu lx, ly, tf
� �

for uf = 0:

Figure 14. Crossing of curves pf = fp lx, tf
� �

and qf = fq lx, tf
� �

for uf = 0:
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One position corresponds to the case uf = p, where the velocity of the contact point between the knife
edge and the horizontal plane equals zero.

The laws of change of the control forces F1 and F2 for realizing the Chaplygin sleigh brachistochronic
motion for the final angle value uf = p are shown in Figure 21.

The law of change of the reaction of nonholonomic constraint R as well as the trajectories of point C
for the final angle value uf = p are shown in Figure 22.

5. Conclusions

This paper presents a new procedure for the determination of the global minimum time in the brachisto-
chronic motion of the Chaplygin sleigh. The new procedure is based on previous estimation of the

Table 2. The two-point boundary-value problem solutions for the case of the value uf = 0.

Solutions lx 2s=m½ � ly 2s=m½ � tf 2s½ �

First solution (M1) 20.0391831 0.137402 0.239187
Second solution (M2) 0.0666096 0.137803 0.364262
Third solution (M3) 20.0111406 0.198342 0.379927

Figure 15. The trajectory and speed of point A for uf = 0 corresponding to the solutions shown in Table 2.

Figure 16. Control forces F1 and F2 for uf = 0 corresponding to the solutions shown in Table 2.
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Figure 17. Reactions of the nonholonomic constraint R and trajectories of point C for uf = 0 corresponding to the solutions
shown in Table 2.

Figure 18. Crossing of surfaces xf = fx lx, ly, tf
� �

, yf = fy lx, ly, tf
� �

and uf = fu lx, ly, tf
� �

for uf = p:

Figure 19. Crossing of curves pf = fp lx, tf
� �

and qf = fq lx, tf
� �

for uf = p:
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Figure 20. The trajectory of point A and graph of speed V for uf = p:

Figure 21. Control forces F1 and F2 for uf = p:

Figure 22. Reaction of the nonholonomic constraint R and trajectory of point C for uf = p:
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interval of values of the unknown quantities lx and ly, where tf � 0, so that all solutions of the corre-
sponding TPBVP fall within the defined interval of values. For the case of multiple solutions of the
TPBVP, the global minimum time is that solution which corresponds to the minimum time.

Since the TPBVP is reduced to the solving of three-parameter shooting, all solutions of the TPBVP
can be graphically represented in R

3 with axis lx, ly and tf as an intersection of corresponding space
curves (42). In that case, the number of crossing points equals the number of all possible solutions,
whereas the coordinates of the crossing points represent the solutions of the TPBVP.

This method is more convenient than the method of the crossing of surfaces (36) because the method
of the crossing of surfaces often causes difficulties, which refers to the clear observation of the number
of crossing points and their coordinates. Unlike the case of uf = p=2 considered by Šalinić et al. [7], for
uf 6¼ p=2 during the brachistochronic motion of the sleigh there are sleigh positions, where the velocity
of the contact point of the knife edge with the horizontal plane equals zero. Exactly this position corre-
sponds to the instant stopping position of point A of the edge, that is, the position where point A
changes the direction of motion. Also, two modes are presented for the realization of the Chaplygin
sleigh brachistochronic motion, where the laws of change of the control forces are determined too and
guide path-lines for different values of the edge final angle.
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[5] Obradović, A, Čović, V, Vesković, M, et al. Brachistochronic motion of a nonholonomicrheonomic mechanical system.

Acta Mech 2010; 214: 291-304.
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Appendix

Application of the shooting method in solving the two-point boundary-value problem and an intersec-
tion of corresponding surfaces (36) and space curves (42)

(*Numerical data*)
m=2;
a=1;
T0=200;
k=1.5;
CC=2*T0/m;
A=a*k;

(*Estimation of the values of quantities lx and ly*)

nn=1/sqrt[CC];
nn1=cot[fif]/sqrt[CC];

Manipulate[{
ss=First[NDSolve[{

x#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*cos[fi[t]],
y#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*sin[fi[t]],
fi#[t]==CC*lfi[t]/A^2,
lfi#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*(lx*sin[fi[t]]-ly*cos[fi[t]]),
x[0]==0,y[0]==0,fi[0]==0,lfi[0]==A*sqrt[1/CC-lx^2]
},{x,y,fi,lfi},{t,0,tf}]],Plot[Evaluate[{{y[t],x[t],fi[t],a,fif}/.ss}],{t,0,tf},PlotRange-. {0,3.5}]
},

{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6}]

xx1[lx_?NumberQ,ly_?NumberQ,tf_?NumberQ]:=

First[x[tf]/.NDSolve[{

x#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*cos[fi[t]],
y#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*sin[fi[t]],
fi#[t]==CC*lfi[t]/A^2,
lfi#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*(lx*sin[fi[t]]-ly*cos[fi[t]]),
x[0]==0,y[0]==0,fi[0]==0,lfi[0]==A*sqrt[1/CC-lx^2]

},{x,y,fi,lfi},{t,0,tf}]]

xx2[lx_?NumberQ,ly_?NumberQ,tf_?NumberQ]:=

First[y[tf]/.NDSolve[{

x#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*cos[fi[t]],
y#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*sin[fi[t]],
fi#[t]==CC*lfi[t]/A^2,
lfi#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*(lx*sin[fi[t]]-ly*cos[fi[t]]),
x[0]==0,y[0]==0,fi[0]==0,lfi[0]==A*sqrt[1/CC-lx^2]

},{x,y,fi,lfi},{t,0,tf}]]
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xx3[lx_?NumberQ,ly_?NumberQ,tf_?NumberQ]:=

First[fi[tf]/.NDSolve[{

x#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*cos[fi[t]],
y#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*sin[fi[t]],
fi#[t]==CC*lfi[t]/A^2,
lfi#[t]==CC*(lx*cos[fi[t]]+ ly*sin[fi[t]])*(lx*sin[fi[t]]-ly*cos[fi[t]]),
x[0]==0,y[0]==0,fi[0]==0,lfi[0]==A*sqrt[1/CC-lx^2]

},{x,y,fi,lfi},{t,0,tf}]]

(*Solutions of corresponding TPBVP are determined in the manner as follows*)

FindRoot[{xx1[lx,ly,tf]==xf,xx2[lx,ly,tf]==yf,xx3[lx,ly,tf]==fif},{{lx, lx*},{ly,ly*},{tf, tf*}}]

(*where xf, yf and fif are defined final values of the edge state coordinates, whereas lx*,ly*and tf*are
visually estimated values of the crossing points coordinates from Figures 3, 9, 14 and 19*)

(*Surfaces (36) can be numerically represented as follows*)

xx11[lx_,ly_,tf_]:=xx1[lx,ly,tf]-xf;
xx22[lx_,ly_,tf_]:=xx2[lx,ly,tf]-yf;
xx33[lx_,ly_,tf_]:=xx3[lx,ly,tf]-fif;

(*whereas the intersection of corresponding space curves (42), whose results are shown in Figures 3, 9, 14
and 19, can be defined as*)

Show[ContourPlot3D[xx11[lx,ly,tf]==0,{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6},AxesLabel-
. {Subscript[l,x],Subscript[l,y],Subscript[t,f]},LabelStyle-.Directive[12],MeshFunctions-
. {Function[{lx,ly,tf},xx22[lx,ly,tf]]},MeshStyle-. {{Thick,Blue}},Mesh-. {{0}},ContourStyle-
.None,BoxRatios-. {1,1,1}],
ContourPlot3D[xx11[lx,ly,tf]==0,{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6},AxesLabel-
. {Subscript[l,x],Subscript[l,y],Subscript[t,f]},LabelStyle-.Directive[12],MeshFunctions-
. {Function[{lx,ly,tf},xx33[lx,ly,tf]]},MeshStyle-. {{Thick,Red}},Mesh-. {{0}},ContourStyle-
.None,BoxRatios-. {1,1,1}]]

(*Intersection of corresponding surfaces (36), whose results are shown in Figures 2, 8, 13 and 18, can be
defined as*)

Show[{ContourPlot3D[xx1[lx,ly,tf]==xf,{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6},AxesLabel-
. {Subscript[l,x],Subscript[l,y],Subscript[t,f]},LabelStyle-.Directive[12],ContourStyle-.Red,Mesh-
.None,BoxRatios-. {1,1,1}],
ContourPlot3D[xx2[lx,ly,tf]==yf,{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6},AxesLabel-

. {Subscript[l,x],Subscript[l,y],Subscript[t,f]},LabelStyle-.Directive[12],ContourStyle-.Blue,Mesh-

.None,BoxRatios-. {1,1,1}],

ContourPlot3D[xx3[lx,ly,tf]==fif,{lx,-nn,nn},{ly,-nn1,nn1},{tf,0,0.6},AxesLabel-
. {Subscript[l,x],Subscript[l,y],Subscript[t,f]},LabelStyle-.Directive[12],ContourStyle-
.Green,Mesh-.None,BoxRatios-. {1,1,1}]}]
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