
  

Abstract—One of the major aspects of Industry 4.0 is enabling 

the manufacturing entities to operate in the dynamical systems 

autonomously. Therefore, to be autonomous, manufacturing 

entities need to have sensors to perceive their environment and 

utilize that information to make decisions regarding their 

actions. Having that in mind, in this paper, the authors propose a 

mobile robot decision-making system based on the integration of 

visual data and mobile robot pose. Mobile robot pose (current 

position and orientation) is integrated with two images gathered 

by two cameras and utilized to predict the possibility of gripping 

the part to be manufactured. A decision-making system is 

created by utilizing the deep learning model Resnet18 with an 

additional input for the mobile robot pose. The model is trained 

end-to-end and experimental evaluation is performed by using 

the mobile robot RACIO (Robot with Artificial Intelligence 

based COgnition). 

 
Index Terms—Decision-making system, mobile robots, deep 

learning.  

 

I. INTRODUCTION 

Enabling mobile robots to operate in the manufacturing 

environment autonomously represents one of the fundamental 

requirements regarding Industry 4.0 concepts [1]. To fulfill 

this requirement, mobile robots need to localize themselves 

within the environment and use sensors to perceive the current 

state of the manufacturing system. In this paper, the authors 

propose to include both visual information and mobile robot 

pose in the make-decision process regarding future mobile 

robot actions. Mobile robot pose (Fig. 1), represented by 

position (x and y) and orientation (θ), is combined with image 

data to make a decision regarding the probability of successful 

gripping of the manufacturing part. The mobile robot's task is 

to move relatively close to the machine (marked with red 

color in Fig. 1) and decide if the current pose is adequate for a 

part (presented with a blue color in Fig. 1) picking process. 
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Fig. 1. Mobile robot in the environment with machine tool and part. 

 

The related work regarding the mobile robot decision-

making system is as follows. The determination of the next-

best-view for environment exploring and mapping algorithm 

is proposed in [2]. The multi-objective decision criterion for a 

mobile robot with a 360° laser scanning sensor is proposed 

and evaluated in simulation. The proposed strategy showed 

superior performance compared to the other two strategies 

from the literature. The reinforcement learning approach for 

developing a mobile robot decision-making system is 

proposed in [3]. The mobile robot was equipped with an 

RGBD camera utilized to detect the obstacles. The learning 

approach was divided into three subtasks (i) reaching the 

target pose as fast as possible, (ii) obstacle avoidance, and (iii) 

not losing the target. According to the learned policy, a 

mobile robot can decide between five actions to reach the 

desired goal. The proposed system is verified within four 

simulation studies, and the results show that the proposed 

system achieves better results compared to the three state-of-

the-art strategies.  

The learning approach used for mobile robot navigation in 

both unknown and known environments is proposed in [4]. 

The model utilized for the mobile robot decision-making 

system is based on Developmental Networks. An incremental 

learning paradigm is implemented, allowing mobile robots to 

learn as they move in the new environment. Experimental 

results show that the proposed system enables mobile robots 

to utilize already learned cognitive functions in new 

environments.   

A mobile robot decision-making system for outdoor path 

planning is proposed in [5]. The mobile robot utilizes the 
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information gathered by the lidar sensor to obtain the optimal 

path in the uneven and obstacle-rich hill environment. In the 

offline stage, the robot learns in simulation the correlation of a 

good path with lidar data and utilizes that information in the 

online stage. The simulation results show the applicability of 

the proposed methodology for the path selection process. 

Different from other approaches, in this paper, the authors 

propose the end-to-end trainable deep learning model capable 

of integrating image information and current mobile robot 

pose to predict the accuracy of the gripping process.  

II. THE DEEP LEARNING-BASED DECISION-MAKING SYSTEM 

The everlasting challenge within the deep learning-based 

robotic research domain is developing an adequate 

methodology for adapting heterogeneous data into deep 

learning models [6]. Examples of such data are different 

sensor measurements with uncertainty, a priory logical 

conclusions, or a mobile robot pose. 

In this paper, the authors present deep learning-based 

decision-making system developed by modifying Resnet18 

architecture [7]. The first input in the Resnet model is an 

image created by combining images generated by two mobile 

robot cameras. Images are stacked on top of each other to 

produce an image with the same width and height dimensions. 

Afterward, the additional vector input is added to the network 

utilized to represent the mobile robot pose (1): 
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where v represents mobile robot translation velocity, and ω is 

mobile robot angular velocity. 

The deep neural network architecture is presented in Fig. 2. 

Additional input is represented as one pixel in the image. 

When the feature maps are flattened just before the 

classification layer, the unchanged value of the mobile robot 

pose (from the input layer) is concatenated with the rest of the 

features and utilized in the classification process. The utilized 

Resnet18 model is created with basic and bottleneck blocks of 

layers with skip connections after each one; details regarding 

the implementation of this model can be found in [8].  

Dataset for mobile robot training is generated as follows. 

The mobile robot is positioned to the predefined pose in the 

laboratory model of the manufacturing environment. 

Afterward, the mobile robot is set in motion until it reaches 

the pose close to the machine. The achieved pose is measured 

according to the data gathered by two wheel encoders. Then, 

the achieved pose is saved in the text document and two 

images are generated, combined, and saved. The gripping 

procedure is initiated, and if the mobile robot manages to grip 

the part, all the saved data is moved to the "successful grip" 

category and vice versa.  

 
Fig. 2. Graphical representation of the proposed CNN model. 

 

After the dataset is acquired, the training process begins. 

This problem belongs to the category of the binary 

classification process, with two outcomes "successful grip" 
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and "unsuccessful grip". The classification is performed with 

softmax fitness function (3), and the loss function is defined 

with (4): 
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Where y represents the output of CNN model, i represents the 

i-th element of the output vector, N is a number of classes, c 

represents one-hot class vector. 

The training is performed by stochastic gradient descent 

with momentum training algorithm with a batch size of one. 

Initial experiments are performed to determine the best 

training parameters for Resnet18 model. The learning rate 

varies from 0.0001 to 0.001, and the momentum is set to 

range from 0.7 to 0.9. The best performance on the training 

set is achieved with a learning rate of 0.0005 and momentum 

of 0.9. 

III. EXPERIMENTAL RESULTS 

The experimental evaluation is done by using the mobile 

robot RAICO (Robot with Artificial Intelligence based 

COgnition). RAICO is set to an initial pose in the laboratory 

model of the manufacturing system, and the movement 

command is activated. The pose RAICO achieves is relatively 

close to the machine where the part needs to be picked up; 

however, the pose is never the same due to slight differences 

in both the initial pose and movement process. Afterward, the 

final pose is calculated and integrated into the combined 

image generated using images from the right and left cameras. 

Then, the whole input is passed through the CNN network. 

The output represents the class (i.e., grip or no_grip) and the 

confidence in the class prediction. The gripping process is 

activated, and the outcome (successful or unsuccessful grip) is 

recorded. The experiment is repeated 10 times, and the results 

can be found in Table I.  

TABLE I 

THE EXPERIMENTAL RESULTS OF THE DECISION-MAKING MODEL 

Exp. 

No. 

Prediction  Confidence 

[%] 

Successful 

gripping? 

1 Grip 76 No 

2 Grip 93 Yes 

3 No_grip 83 No 

4 No_grip 84 No 

5 Grip 95 Yes 

6 No_grip 85 No 

7 Grip 85 No 

8 No_grip 83 No 

9 Grip 80 No 

10 Grip 97 Yes 

As shown in Table I, the mobile robot decision-making 

system adequately predicts the outcome of the gripping 

process in 70% of cases. Moreover, in all the cases where the 

prediction accuracy of the deep learning model for successful 

gripping is over 93%, the mobile robot actually manages to 

grip the part. Therefore, the high prediction confidence is 

highly correlated to the gripping success. Images generated by 

a mobile robot with prediction accuracy are shown in Fig. 3. 

 

 

 
Fig. 3. Two input images for mobile robot decision-making system. 

  

One more important piece of information that can be seen 

in Fig. 3 is the inference time of the developed deep learning 

model. Even though the proposed model has more layers and 

parameters than the original Resnet18, it can be used in real-

time (around 60 FPS).  
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Moreover, the images of the mobile robot RAICO in the 

laboratory model of the manufacturing system during the 

testing of the decision-making system are presented in Fig. 4. 

 
Fig. 4. Mobile robot RAICO in the pose close to the machine tool during the 
unsuccessful gripping process. 

IV. CONCLUSION 

In this paper, the authors propose a decision-making system 

based on the Resnet18 deep learning model. The input 

represents the images from the stereo camera pair and the 

pose of the mobile robot. The Resnet model is trained on the 

custom dataset to produce the binary classification output 

regarding the success of the griping process. The experimental 

results show that the model accurately predicts gripping 

success in 70% of cases. Moreover, it is experimentally 

verified that high confidence (93%+) in the prediction of 

accurate gripping has a strong correlation to the real-world 

successful griping process. The future research directions will 

include the extensive testing of the processed system with 

different state-of-the-art deep learning models that will enable 

a higher level of accuracy. 
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