

Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION X New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 26-27. September 2022. Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION X New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Technical Sciences of SASA Institute for Testing of Materials Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Serbia, Belgrade, 26-27th September 2022.

Book title: Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION X Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society

Editors:

Dr. Nina Obradović Dr. Lidija Mančić

Technical Editors:

Dr. Suzana Filipović Dr. Adriana Peleš Tadić Dr. Jelena Živojinović

Printing:

Serbian Ceramic Society, Belgrade, 2022.

Edition:

120 copies

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SRPSKO keramičko društvo. Conference Advanced Ceramics and Application : New Frontiers in Multifunctional Material Science and Processing (10 ; 2022 ; Beograd)

Program ; and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application X New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 26-27. September 2022. ; [editors Nina Obradović, Lidija Mančić]. - Belgrade : Serbian Ceramic Society, 2022 (Belgrade : Serbian Ceramic Society). - 96 str. : ilustr. ; 30 cm

Tiraž 120.

ISBN 978-86-915627-9-3

а) Керамика -- Апстракти б) Наука о материјалима -- Апстракти в) Наноматеријали -- Апстракти

COBISS.SR-ID 74827529

expression pattern and infiltrated tissue composition were observed between covalent and LbL coated BCP particles but also between coated compared to uncoated BCP particles in examined time points. This suggests that both approaches may be used for coating of biomaterials with aim to modulate and guide the biomaterial-induced tissue response and regenerative processes.

P41

Characteristic of photodiode based on vanadium oxide-TiO₂ nanotubes/CH₃NH₃PbI₃

<u>Jelena Vujančević</u>¹, Vladimir Blagojević², Pavao Andričević³, Vera P. Pavlović⁴, Endre Horváth⁵, László Forró³, Branislav Vlahović⁶, Vladimir B. Pavlović⁷, Dorđe Janaćković⁸

¹Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia ²TBP soft, Solunska 11, 11000 Belgrade, Serbia

³Ecole Polytechnique Fédérale de Lausanne, Laboratory of Physics of Complex Matter (LPMC), CH-1015 Lausanne, Switzerland

⁴University of Belgrade, Faculty of Mechanical Engineering, Kraljice Marije 16, 11120 Belgrade, Serbia

⁵Haute école du paysage, d'ingénierie et d'architecture de Genève – HEPIA, Genève, Switzerland

⁶North Carolina Central University, Department of Physics, 1801 Fayetteville St Durham, North Carolina 27707, USA

⁶NASA University Research Center for Aerospace Device Research and Education and NSF Center of Research Excellence in Science and Technology Computational Center for Fundamental and Applied Science and Education, North Carolina, USA

⁷University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Belgrade-Zemun, Serbia ⁸University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia

The aim of this study was to investigate the influence of the deposition of vanadium oxide epitaxial layer on the photoresponse of $TiO_2/CH_3NH_3PbI_3$ heterojunction. TiO_2 nanotube array was synthesized via anodization of titanium foil at three different voltages. After annealing at 450 °C, vanadium oxide was deposited by direct deposition from vanadyl(IV) sulfate solution. Microstructure analysis has been used for the investigation of the influence of different voltages of anodization on tube diameter. Spectroscopy measurements pointed out the red shift in diffusion reflectance spectra after deposition of vanadium oxide. The presence of V⁵⁺ oxidation state has been detected on the surface of nanotube arrays by chemical analysis. CH₃NH₃PbI₃ monocrystal was dry pressed on top of the nanotubes in order to make a photodiode. The current-voltage characteristics of the photodiode were recorded and it was observed that the sample with the smallest wall thickness and higher amount of vanadium has the best photocurrent response.