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Abstract: Twenty-one experienced runners completed three treadmill running sessions on different
days. Each session consisted of three consecutive 2 min trials at self-selected speeds (RPE = 3, 5,
and 7). An eight-camera marker-less motion capture system and instrumented pressure treadmill
(TM) collected data over the final ~25 s at each speed. Lower extremity joint angles (ankle, knee,
and hip) and segmental angles (pelvis and trunk) were computed for each trial with foot contact
and toe off being kinematically determined. Spatiotemporal metrics (ground contact time, step
length, and cadence) were measured via TM and compared to their kinematically derived counter-
parts. All spatiotemporal metrics demonstrated excellent agreement (ICCs > 0.98). Both intra-trial
and inter-session variability, averaged across the entire running cycle, for all lower extremity joint
angles in all planes were low (intra-trial: sagittal = 2.0◦, frontal = 1.2◦, and transverse = 1.9◦; inter-
session: sagittal = 1.4◦, frontal = 0.8◦, and transverse = 1.3◦). Discrete measures of lower extremity
joint and segmental angles were evaluated for inter-session reliability at foot contact, toe off, and
peak value during the stance phase. On average, discrete measures demonstrated good reliability
(ICCsagittal = 0.85, ICCfrontal = 0.83, and ICCtransverse = 0.77) with average standard error of measure-
ment < 1◦. Marker-less motion capture reliably measured treadmill running kinematics in a group of
runners demonstrating heterogenous foot strike patterns (13 rearfoot strike and 8 non-rearfoot strike)
across a range of speeds (2.67–4.44 m/s).

Keywords: kinematics; marker-less; reliability; foot strike detection

1. Introduction

Three-dimensional (3D) motion capture within human biomechanics typically involves
the use of infrared cameras and retro-reflective markers affixed to participants. This
methodology, which can track 3D marker location at the sub-millimeter level depending
on the capture volume, is commonly accepted as the nearest method to approach the “gold
standard” fluoroscopy approach [1]. Although these marker-based methods are widely
used in clinical and research domains, several limitations may challenge their practicality
for certain applications.

Fundamentally, motion capture aims to measure movement of the skeletal system.
Retro-reflective markers placed on the skin of key bony landmarks (e.g., lateral malleolus)
may move relative to the underlying skeletal system (i.e., bones) due to the movement
of clothing (if present), skin, and soft tissue (e.g., adipose) [2]. Several methodological
approaches have sought to minimize the influence of these artifacts; however, they cannot
eliminate them [3]. As such, participants are typically asked to wear minimal or tight
clothing to reduce this error source. Further, when data collection periods are long or
participants sweat profusely (e.g., the maximal aerobic capacity running test), the propen-
sity for markers moving or falling off is heightened. Both situations would compromise
data fidelity.
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Markers placed on the participant are used to define a biomechanical model of the
skeletal system. For example, markers are commonly placed on the femoral condyles with
the vector connecting them representing the knee joint axis (i.e., the axis about which flexion
and extension occur). The placement of the marker on the exact location of the condyle is
subject to both random and systematic error as placement in research investigations can
vary both between and within researchers [4–6] (i.e., repeated measures design). Thus,
although markers can be tracked precisely, their location relative to the underlying skeletal
system is approximate, inducing data variability and compromising reliability.

From a pragmatic standpoint, the time required to securely fixate markers to partici-
pants is a serious drawback to the ease of use and clinical adoption of marker-based motion
capture. Accurately fixing markers to a participant could take between 20 and 30 min for
a skilled researcher in addition to the time required to prepare the markers prior to the
data collection session. The presence of the markers on the body/clothing may also raise
the specter that the participant will be cognizant of their presence and potentially alter
their movement.

Marker-less (ML) motion capture systems are similar to marker-based systems in that
they seek to accurately and repeatably measure the 3D human segmental motion. Funda-
mentally, both approaches attempt to simplify the complex representation of the human
skeletal system with a simplified biomechanical model. ML systems do not require markers
to be placed on the participant and rely on synchronized 2D video cameras to obtain a 3D
reconstruction. The obviation of markers has (i) vastly reduced the time and complexity for
subject preparation, (ii) is non-invasive, and (iii) allows for data collection in non-laboratory
settings (e.g., sporting games). With recent technological advances in computational speed
and an apparent commercial market for ML systems, several software packages are avail-
able for purchase (e.g., Theia3D, DariMotion, and The Captury) or available as open source
(e.g., OpenPose and OpenCap). It is beyond the scope of this manuscript to provide a
comprehensive review dissecting similarities and/or differences between ML software
approaches that each take towards generating 3D pose representations of the biomechanical
model; however, the reader is pointed towards Wade et al. [7] for a comprehensive review.

Theia3D (Theia Marker-less Inc., Kingston, ON, Canada), a commercial provider of ML
motion capture, utilizes a machine-learning based approach to solve the 3D biomechanical
model representation from synchronized and calibrated 2D video. Kinematics measured
with Theia3D and concurrently with the gold standard marker-based motion capture have
compared favorably for treadmill walking gait, overground walking gait, baseball pitching,
and boxing [8–11]. In particular, walking gait spatial metrics (e.g., stride length, step length,
and stride width) determined from Theia3D had good comparisons to marker-based motion
capture and fell below the minimal detectable change for these parameters [12]. Sagittal
and frontal plane lower body joint angles determined from Theia3D deviated from marker-
based motion capture by between 2.6 and 11◦, while transverse plane lower body joint
angles deviated up to 13◦ for walking gait [10]. However, a follow-up study determined
the inter-session repeatability for walking lower extremity joint angles determined from
Theia3D was less than 2.5◦ across all joint angles which outperforms traditional marker-
based motion capture [13]. For upper extremity sporting motions (baseball pitching and
boxing), Theia3D’s joint angle determination differed more substantially from the gold
standard with reduced agreement occurring along the internal/external joint axes [9,14].
Despite the differences, segment velocities compared favorably, and patterns were similar
enough to warrant consideration for future applications. To date, no investigation has
reported the reliability of treadmill running gait kinematics when assessed with ML motion
capture over multiple sessions.

Determination of key event markers (e.g., foot strike and toe off) is critical for the
biomechanical analysis of running gait. In experimental and clinical setups without a
force plate, these event markers can either be determined via visual inspection of a video
recording or by kinematic algorithms. Kinematic algorithms using marker-based motion
capture have achieved an absolute error of less than 24.7 ms for foot contact (using a
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rearfoot strike) and less than 5.3 ms for toe off when compared to kinetic outputs [15].
Milner and Paquette [16] also reported excellent agreement between event timings from a
force plate and their foot contact algorithm which utilizes the vertical velocity of the pelvis
segment. The algorithm’s accuracy was assessed for all foot strike types (rear, mid, and
forefoot) during overground running.

To date, no investigation has reported the repeatability of ML motion capture (Theia3D)
for the determination of kinematics (e.g., joint angles) and subsequent detection of key gait
events during treadmill running across a range of speeds. Therefore, the following specific
aims are proposed for this study:

(1) To determine the level of agreement between spatiotemporal metrics (stance time,
step length, and cadence) derived from automatic detection of foot strike and toe off
during running to a gold standard assessment (an instrumented pressure treadmill).

(2) To determine the intra-trial variability, inter-session variability, and variability ratio
of lower extremity joint angles (hip, knee, and ankle) computed from an ML motion
capture system across the entire running gait cycle.

(3) To determine the inter-session repeatability, standard error of measurement, and
minimal detectable change of 15 key discrete biomechanical metrics of the stance
phase of running.

2. Materials and Methods

All study procedures were approved by the University’s Institutional Review Board
and conducted in accordance with the Declaration of Helsinki. Participants were required
to (i) be between the ages of 18 and 30 years, (ii) run at least 16 km per week for at least
three consecutive months prior to testing, (iii) have a minimum of three years of running
experience, and (iv) be familiar with treadmill running. Additionally, participants were
required to be free of any history of major medical problems, including metabolic or car-
diovascular disease, endocrine disorders, thermoregulatory disorders, or musculoskeletal
injuries within the previous eight weeks. Twenty-one healthy, adult runners (14 females
and 7 males; age: 19.5 (1.4) years; height: 1.72 (0.08) m; mass: 64.2 (12.2) kg; running
experience: 7.3 (2.4) years) met the above criteria, granted informed consent, and were
included within the current investigation.

2.1. Instrumentation

A stadiometer (Tanita Corporation; Arlington Heights, IL, USA) was used to record
each participant’s mass and standing height prior to the first data collection session. A Phys-
Tread Pressure Treadmill (Noraxon USA, Scottsdale, AZ, USA) containing 3120 sensors
collected force and pressure data (100 Hz) during the running trials. Eight Sony RX0 II
cameras (Sony Corporation; Minato, Japan; 120 Hz) were synchronized via Sony cam-
era control boxes and positioned to accommodate a capture volume of approximately
2.4 × 2.4 × 3.1 m dimensions with the treadmill centralized (Figure 1). The cameras were
moved minimally throughout the entire investigation, but they were recalibrated prior to
each day of data collection. The treadmill was moved between sessions; however, tape
placed on the floor allowed the treadmill position to be nearly identical. Participants were
permitted to use any running footwear that they desired (Table 1); however, footwear
was maintained across the three testing sessions. Participants were instructed to wear
their “normal” running attire such that it consisted of shorts (or short tights) and a shirt,
which was to be tucked into the shorts. Previous work has reported that clothing type only
induced negligible influences during overground walking with the ML motion capture
software used in this study [17].
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USA; Scottsdale, AZ) was centrally located and the floor was marked so it could be placed in the 
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effort (trial 2), and a 7 out of 10 in effort (trial 3). The speeds were held constant over the 
next two testing days. The last ~25 s at each speed were recorded by the eight video cam-
eras and the pressure-sensitive TM. Video and TM data were not synchronized but re-
cordings were started and stopped at approximately the same time by two researchers 
using “Go” and “Stop” commands. 

2.3. Data Processing and Analysis 
Noraxon MyoPressure software (Noraxon USA, Scottsdale, AZ, USA) collected and 

processed force and pressure TM data. Data were filtered with a 4th order Butterworth 
lowpass filter (50 Hz) prior to bilateral stance time, step length, and cadence being com-
puted and subsequently averaged for each trial. Visual observation of foot strike and eval-
uation of center of pressure mapping was used to classify foot strike into rearfoot strike 
(RFS) and non-rearfoot strike patterns. 

Theia3D ML motion capture software (Theia Marker-less Inc., Kingston, ON, CA) 
determined three-dimensional human segment location based upon the eight video re-
cordings per trial. The derived 19-segment kinematic model consisted of an upper extrem-
ity and lower extremity kinematic chain. Lower extremity joints (hip, knee, and ankle) 
connecting neighboring segments within the kinematic chain were modeled as having 
three rotational degrees of freedom. 

Kinematic data (4 × 4 segment rotation matrices) and locations of virtual bilateral heel 
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Figure 1. Eight synchronized Sony RXO II cameras (Sony Corporation; Minato, Japan) (120 Hz) were
arranged on a truss 2.9 m from the floor in a horseshoe design (5.5 × 5.5 m) to establish a capture
volume of approximately 2.4 × 2.4 × 3.1 m. A Noraxon PhysTread Pressure Treadmill (Noraxon
USA; Scottsdale, AZ) was centrally located and the floor was marked so it could be placed in the
same location for each testing day.

2.2. Procedures

This repeated measures research investigation featured three distinct data collection
days with at least one day and no more than ten days between visits. Each participant
ran for a total of six minutes on the instrumented pressure-sensitive treadmill (TM) at
three distinct speeds that were self-selected by the participant based upon their rating of
perceived effort. The speeds corresponded to a 3 out of 10 in effort (trial 1), a 5 out of
10 in effort (trial 2), and a 7 out of 10 in effort (trial 3). The speeds were held constant over
the next two testing days. The last ~25 s at each speed were recorded by the eight video
cameras and the pressure-sensitive TM. Video and TM data were not synchronized but
recordings were started and stopped at approximately the same time by two researchers
using “Go” and “Stop” commands.

2.3. Data Processing and Analysis

Noraxon MyoPressure software (Noraxon USA, Scottsdale, AZ, USA) collected and
processed force and pressure TM data. Data were filtered with a 4th order Butterworth low-
pass filter (50 Hz) prior to bilateral stance time, step length, and cadence being computed
and subsequently averaged for each trial. Visual observation of foot strike and evaluation
of center of pressure mapping was used to classify foot strike into rearfoot strike (RFS) and
non-rearfoot strike patterns.

Theia3D ML motion capture software (Theia Marker-less Inc., Kingston, ON, CA)
determined three-dimensional human segment location based upon the eight video record-
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ings per trial. The derived 19-segment kinematic model consisted of an upper extremity and
lower extremity kinematic chain. Lower extremity joints (hip, knee, and ankle) connecting
neighboring segments within the kinematic chain were modeled as having three rotational
degrees of freedom.

Kinematic data (4 × 4 segment rotation matrices) and locations of virtual bilateral heel
markers were exported and subsequently processed with Visual3D Professional (C-Motion
Inc.; Germantown, MD, USA). Data were filtered with a GCVSPL filter with a 12 Hz cutoff
frequency [18]. A built-in Visual3D model with segment properties (segmental mass and
center of mass location) derived from previous work [19–21] was applied to determine full
body center of mass (COM) location throughout each trial.

The Z-coordinate (vertical direction) of the distal endpoint of the toe segment was
utilized to determine the toe-off gait event for each running gait cycle. A two-frame offset
preceding when the Z-coordinate switched from the local minima to superior vertical
movement was tagged as toe off (Figure 2). The vertical velocity of the COM (vCOMz) was
utilized to determine foot contact. This algorithm, similar to Milner and Paquette [16] who
utilized the peak inferiorly directed pelvis segment velocity to detect foot strike, determined
foot contact to be the data frame preceding the minima of vCOMz (Figure 3). Stance time,
cadence, and step length computed and based on these kinematical-derived gait events
were then compared to instrumented TM data from the 21 participants across the three
respective speeds (63 trials) from the first data collection session.
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Figure 2. The toe-off gait event was determined for each footfall utilizing the distal endpoint of
the toe segment derived from the ML motion capture data. A two-frame offset preceding the local
minima (red circle) of the Z-coordinate position was tagged as toe off.
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Figure 3. The foot strike gait event was determined for each footfall utilizing the vertical velocity of
the whole-body center of mass. The data frame preceding the local minima (red and green circles)
was tagged as foot strike alternating between left and right. The local minima represent the transition
from downward trajectory of the COM to upward trajectory.

Lower extremity joint angles (hip, knee, and ankle) were calculated between adjacent
segments in all planes via Visual3D software using a standardized approach (Cardan
rotation sequence: X-Y-Z) consistent with the joint coordinate system [22]. Segmental
angles of the pelvis and trunk were computed relative to the laboratory coordinate system.
Each gait cycle within the 25–30 s trials was time normalized (100 points) and exported
to a custom Python software (ver. 5.3.3) script for final analysis. Time normalization was
performed separately using the ML kinematic-derived gait events. All trials exceeded
seven gait cycles, which has been reported to increase the confidence level to 90% (R > 0.9)
for running kinematic data [23].

The timing of gait events derived from ML kinematics was compared to those from an
instrumented TM for agreement using three metrics: (1) mean differences (MD),
(2) Bland–Altman limits of agreement (LoA) over 95% confidence intervals, and (3) intr-
aclass correlation coefficients (ICCs) with a two-way mixed effects model and mean of k
measurements with absolute agreement. Correlations were classified as poor, moderate,
good, and excellent for ICC values below 0.5, between 0.5 and 0.75, between 0.75 and 0.9,
and over 0.9, respectively [24].

Two distinct reliability analyses (time series of full gait cycle and discrete variables)
were conducted. Reliability across the entire gait cycle was assessed via intra-trial and
inter-session variability based upon the work of Schwartz et al. [25] and Kanko et al. [13]
(Figure 4). Intra-trial reliability was defined as the average standard deviation across all
the gait cycles (total > 30) within a trial. This average standard deviation within each trial
was then averaged across all speeds and runners (n = 63) to arrive at an average intra-trial
reliability value. Data from the first data collection session were used for this analysis. The
intra-trial variability reflects the typical joint movement fluctuations that may be associated
with TM running and ML motion capture. Inter-session variability was defined as the
standard deviation of each joint angle across the time series (multiple gait cycles) for
each speed and runner. Inter-session variability may reflect methodological fluctuations
that arise from differences in camera calibration, participants’ clothing, lighting, etc. A
variability ratio was then computed as the quotient of the inter-session variability and the
intra-trial variability. A ratio greater than one would indicate methodological variances
between sessions that exceed the typical variance within a TM running trial.
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Figure 4. Intra-trial variability (n = 63) was computed as the average standard deviation over the
entire gait cycle for each joint angle and then averaged across all participants (n = 21) and speeds
(n = 3). Inter-session variability was computed as the average standard deviation over the entire gait
cycle between the joint angle mean waveforms between the three sessions. The variability ratio was
the ratio of inter-session to intra-trial variability.

As clinical running gait analysis typically focuses on discrete variables, inter-session
reliability was also assessed for kinematic variables at foot contact, toe off, and peak joint
angles during the stance phase. Reliability for these variables was assessed using ICC3,1,
standard error of measurement (SEM), and minimum detectable change (MDC). JASP
software (ver. 0.16.4) was utilized for all statistical computations.

3. Results

Twenty-one participants completed all study procedures with 6.5 ± 3.2 days between
visits. Participants demonstrated varied foot strikes (13 rearfoot and 8 non-rearfoot) while
wearing an assortment of footwear across a range of TM speeds (2.67–4.44 m/s) (Table 1).
On average, participants completed 37.6 ± 4.6 running cycles per trial.



Appl. Sci. 2023, 13, 1702 8 of 15

Table 1. Twenty-one participants completed the study procedures with sex, footwear and foot strike
breakdown below. Foot strike was determined from visual inspection and center of pressure data.

Rearfoot Strike Non-Rearfoot Strike Full Population

n % n % n %

Sex
Female 10 47.6% 4 21.1% 14 66.7%
Male 3 14.3% 4 21.1% 7 33.3%

Footwear
Adidas 1 4.8% 0 0.0% 1 4.8%
Asics 2 9.5% 0 0.0% 2 9.5%

Brooks 0 0.0% 2 10.5% 2 9.5%
Hoka 3 14.3% 1 5.3% 4 19.0%

Mizuno 1 4.8% 0 0.0% 1 4.8%
New Balance 2 9.5% 1 5.3% 3 14.3%

Nike 1 4.8% 2 10.5% 3 14.3%
On Cloud 2 9.5% 0 0.0% 2 9.5%
Saucony 1 4.8% 2 10.5% 3 14.3%

3.1. Spatiotemporal Metrics

Spatiotemporal metrics computed from events determined through ML kinematics
were compared to these same metrics computed from the instrumented TM. Mean cadence
(ML: 170.6 ± 9.0 steps·min−1; TM: 170.4 ± 9.0 steps·min−1; MD = −0.13; LoA: (−0.80, 0.54);
and ICC = 1.0), mean stance time (ML: 0.234 ± 0.019 s; TM: 0.233 ± 0.021 s; MD = −0.001;
LoA: (−0.014, 0.011); and ICC = 0.982), and mean step length (ML: 1.22 ± 0.12 m; TM:
1.22 ± 0.12 m; MD = 0.02 cm; LoA: (−0.80, 0.83); and ICC = 1.0) demonstrated excellent
agreement between ML motion capture and instrumented TM when averaged across all
trials (n = 63).

3.2. Intra-Trial Variability

Average intra-trial variability for all lower extremity joint angles was less than 3◦

(Table 2, Figure 5). When averaged across all joints and planes, intra-trial variability was
1.7◦. Maximum variability (4.7◦) occurred for knee flexion during the swing phase.

Table 2. Average and maximum variation metrics across entire running cycle within individual trial
and between testing sessions. Variability ratio computed as quotient between average inter-session
variability divided by average intra-trial variability.

Intra-Trial Inter-Session Variability
RatioAverage (◦) Maximum (◦) Average (◦) Maximum (◦)

Ankle
Plantar/Dorsi 1.8 3.4 1.2 2.0 0.67
Ad/Abduction 1.5 2.4 1.0 1.6 0.67

Int/Ext.
Rotation 2.2 3.4 1.5 2.0 0.68

Knee
Flex/Ext 2.6 4.7 1.5 2.3 0.58

Ad/Abduction 1.1 1.8 0.7 1.2 0.62
Int/Ext.
Rotation 2.1 3.0 1.4 1.8 0.67

Hip
Flex/Ext 1.6 2.5 1.4 1.9 0.88

Ad/Abduction 1.1 1.4 0.6 0.8 0.55
Int/Ext.
Rotation 1.3 1.6 1.0 1.3 0.77
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3.3. Inter-Session Variability

Average inter-session variability for all lower extremity joint angles was less than 2◦

(Table 2, Figure 5). When averaged across all joints and planes, inter-session variability was
1.1◦ with knee flexion/extension demonstrating the greatest variability (2.3◦) between the
three data collection sessions.

3.4. Variability Ratio

Inter-session variability for all joints and planes was less than intra-trial variability
resulting in all variability ratios being less than 1. When averaged across all joints and
planes, the variability ratio was 0.67.
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3.5. Reliability of Discrete Metrics

At initial foot contact, all sagittal plane variables demonstrated either good or excellent
reliability (ICC3,1 range: 0.781–0.956; Table 3). In the frontal plane, both the knee and trunk
variables demonstrated excellent reliability, while the ankle, hip, and pelvis variables
demonstrated moderate reliability (ICC3,1 range: 0.674–0.745). In the transverse plane,
the knee, pelvis, and trunk variables demonstrated either good or excellent reliability
(ICC3,1 range: 0.791–0.952), while the ankle and knee demonstrated moderate and good
reliability, respectively. Across all planes, SEM values were low, ranging from 0.43 to 1.31◦

and averaging 0.68◦.

Table 3. Reliability of key kinematic metrics at initial foot contact across three distinct sessions and
three distinct speeds in 21 runners.

Initial Foot Contact.

Mean (SD) [Deg.]
ICC(3,1)

95% CI SEM
[Deg.]

MDC
[Deg.]Day 1 Day 2 Day 3 Lower Upper

Ankle
Dorsiflexion −0.2 (6.1) 0.5 (5.8) −0.1 (6.2) 0.936 0.904 0.958 1.31 3.6

Rearfoot Inversion 8.3 (2.4) 7.9 (2.4) 8.3 (3.1) 0.721 0.613 0.809 0.58 1.6
External Rotation 10.8 (3.1) 11.4 (2.7) 10.3 (3.3) 0.734 0.630 0.819 0.66 1.8

Knee
Flexion 15.9 (3.6) 15.9 (3.7) 15.8 (3.6) 0.881 0.826 0.922 0.80 2.2

Adduction 0.0 (1.8) 0.1 (1.9) 0.1 (2.2) 0.908 0.864 0.940 0.43 1.2
Internal Rotation 15.7 (4.8) 16.5 (3.9) 16.1 (4.2) 0.791 0.704 0.860 0.94 2.6

Hip
Flexion 24.9 (3.8) 24.9 (3.8) 25.1 (4.4) 0.862 0.800 0.909 0.88 2.4

Adduction 8.0 (1.4) 7.7 (1.6) 8.0 (1.8) 0.745 0.644 0.827 0.35 1.0
Internal Rotation 2.7 (2.3) 2.9 (2.4) 3.0 (2.5) 0.688 0.572 0.785 0.52 1.4

Pelvis
Anterior Tilt 4.0 (3.5) 4.0 (2.7) 4.3 (3.4) 0.781 0.691 0.853 0.70 1.9

Drop 2.3 (1.1) 2.1 (1.1) 2.5 (1.3) 0.674 0.555 0.774 0.26 0.7
Ipsilateral Rotation 3.6 (2.8) 3.6 (2.9) 3.7 (2.9) 0.855 0.790 0.904 0.62 1.7

Trunk
Forward Lean 7.7 (4.2) 7.8 (4.6) 7.9 (4.3) 0.956 0.934 0.972 0.95 2.6

Ipsilateral Flexion −1.3 (1.7) −1.3 (2.0) −1.2 (1.9) 0.931 0.898 0.956 0.40 1.1
Ipsilateral Rotation 13.9 (3.6) 14 (3.9) 13.9 (3.7) 0.952 0.928 0.969 0.81 2.3

Note: SD = standard deviation; ICC = intraclass correlation coefficient; CI = confidence interval; SEM = standard
error of measurement; MDC = minimal detectable change.

All kinematic peak angles during stance demonstrated either good or excellent relia-
bility (ICC range: 0.760–0.958), except for transverse plane rotations of the ankle and hip
which demonstrated moderate and poor reliability, respectively (Table 4). Across all planes,
SEM values were low (<1.1◦), averaging 0.67◦.

Table 4. Reliability of peak joint angles during stance across three distinct sessions and three distinct
speeds in 21 runners.

Peak Angles During Stance

Mean (SD) [Deg.] ICC(3,1)
95% CI SEM

[Deg.]
MDC
[Deg.]Day 1 Day 2 Day 3 Lower Upper

Ankle
Dorsiflexion 23.3 (3.6) 23.9 (3.1) 23.6 (3.3) 0.760 0.663 0.837 0.73 2.0

Rearfoot Inversion 0.5 (2.9) 0.4 (2.6) 0.2 (2.5) 0.825 0.750 0.884 0.58 1.6
External Rotation 7.1 (2.7) 7.5 (3.2) 7.3 (2.7) 0.619 0.488 0.732 0.63 1.7
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Table 4. Cont.

Peak Angles During Stance

Mean (SD) [Deg.] ICC(3,1)
95% CI SEM

[Deg.]
MDC
[Deg.]Day 1 Day 2 Day 3 Lower Upper

Knee
Flexion 41.1 (4.0) 41.1 (3.8) 41.2 (4.2) 0.902 0.856 0.936 0.87 2.4

Adduction 2.7 (2.9) 2.3 (2.5) 2.6 (2.8) 0.922 0.884 0.949 0.60 1.7
Internal Rotation 11.2 (4.5) 11.4 (4.8) 11.5 (4.6) 0.842 0.772 0.895 1.01 2.8

Hip
Flexion 26.6 (4.6) 26.9 (4.9) 27.0 (5.4) 0.916 0.877 0.946 1.09 3.0

Adduction 11.7 (2.4) 12.0 (2.2) 12.1 (2.4) 0.908 0.865 0.940 0.52 1.4
Internal Rotation 5.0 (2.0) 4.9 (2.0) 5.0 (1.7) 0.487 0.338 0.626 0.41 1.1

Pelvis
Anterior Tilt 8.1 (3.3) 8.2 (2.7) 8.5 (3.3) 0.662 0.540 0.765 0.68 1.9

Drop 4.6 (1.7) 4.7 (1.5) 5.0 (1.9) 0.871 0.812 0.915 0.37 1.0
Ipsilateral Rotation 5.5 (2.2) 6.1 (2.3) 6.0 (2.3) 0.783 0.693 0.854 0.50 1.4

Trunk
Forward Lean 6.9 (4.4) 6.7 (4.7) 6.5 (4.4) 0.958 0.937 0.973 0.98 2.7
Contralateral

Flexion 1.9 (1.3) 1.9 (1.4) 2.4 (1.3) 0.831 0.758 0.888 0.29 0.8

Ipsilateral Rotation 13.9 (3.6) 14.0 (3.9) 13.9 (3.7) 0.952 0.928 0.969 0.81 2.3

Note: SD = standard deviation; ICC = intraclass correlation coefficient; CI = confidence interval; SEM = standard
error of measurement; MDC = minimal detectable change.

At toe off, all kinematic metrics in the sagittal plane demonstrated excellent reliability
(ICC range: 0.917–0.956), except for the hip and pelvis variables (ICC = 0.659, 0.669) (Table 5).
All kinematic metrics in the frontal plane demonstrated either good or excellent reliability
(ICC range: 0.831–0.911), except for the ankle variable (ICC = 0.644). All kinematic metrics
in the transverse plane demonstrated either good or excellent reliability (ICC range: 0.827–
0.940), except for the ankle and hip variables (ICC = 0.501, 703). Across all planes, SEM
values were low (<0.4◦), averaging 0.27◦.

Table 5. Reliability of key kinematic metrics at toe off across three distinct sessions and three distinct
speeds in 21 runners.

Toe Off

Mean (SD) [Deg.] ICC(3,1)
95% CI SEM

[Deg.]
MDC
[Deg.]Day 1 Day 2 Day 3 Lower Upper

Ankle
Plantarflexion 27.1 (4.0) 27.8 (3.6) 28.1 (3.7) 0.917 0.878 0.946 0.36 1.0

Rearfoot Inversion 10.8 (1.7) 10.7 (1.7) 10.8 (1.8) 0.644 0.518 0.752 0.23 0.6
External Rotation 11.7 (2.4) 13.0 (2.3) 13.1 (2.8) 0.501 0.353 0.638 0.42 1.2

Knee
Flexion 10.3 (3.9) 10.0 (4.1) 9.6 (4.8) 0.917 0.878 0.946 0.35 1.0

Adduction 0.4 (1.7) 0.5 (1.9) 0.4 (1.8) 0.911 0.869 0.942 0.13 0.4
External Rotation 22.1 (4.7) 22.3 (4.4) 22.7 (4.6) 0.827 0.752 0.885 0.39 1.1

Hip
Extension 18.3 (3.7) 18.7 (3.1) 18.9 (3.5) 0.659 0.536 0.763 0.26 0.7
Adduction 1.7 (2.5) 1.9 (2.4) 2.2 (2.8) 0.860 0.797 0.908 0.20 0.6

Internal Rotation 2.3 (2.9) 2.0 (2.7) 2.7 (2.6) 0.703 0.591 0.796 0.25 0.7
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Table 5. Cont.

Toe Off

Mean (SD) [Deg.] ICC(3,1)
95% CI SEM

[Deg.]
MDC
[Deg.]Day 1 Day 2 Day 3 Lower Upper

Pelvis
Anterior Tilt 7.7 (3.3) 7.8 (2.5) 8.0 (3.1) 0.669 0.548 0.770 0.21 0.6

Drop 5.2 (1.9) 5.0 (2.1) 5.2 (2.1) 0.831 0.758 0.888 0.17 0.5
Ipsilateral Rotation 0.7 (3.3) 1.4 (3.6) 1.1 (3.9) 0.873 0.815 0.917 0.31 0.9

Trunk
Forward Lean 7.2 (4.5) 6.9 (4.7) 6.6 (4.4) 0.956 0.934 0.972 0.23 0.6
Contralateral

Flexion 1.9 (1.3) 1.8 (1.5) 2.4 (1.3) 0.835 0.762 0.89 0.17 0.5

Contralateral
Rotation 15.2 (3.2) 15.1 (3.0) 15.6 (3.2) 0.940 0.910 0.961 0.36 1.0

Note: SD = standard deviation; ICC = intraclass correlation coefficient; CI = confidence interval; SEM = standard
error of measurement; MDC = minimal detectable change.

4. Discussion

Distinguishing between measurement error and true change in repeated measures
study design (clinical or research application) requires reliable data sources. The aim of the
present study was to assess the reliability of an ML motion capture system to measure key
biomechanical metrics during TM running. In the current investigation, spatiotemporal
metrics derived from the automatic detection of foot strike and toe off from ML kinematics
demonstrated excellent agreement (ICC = 0.982) with the same metrics derived from an
instrumented pressure TM. Mean differences in stance time were less than 10 milliseconds
(less than the sampling interval of the instrumented TM) indicating that the automated
kinematic-based algorithms detected stance time within one frame of force data. These
results are within the error tolerance reported for automated event detection methods
from marker-based motion capture of TM running [15,16]. As this study’s sample of
runners included a variety of foot strikes utilizing various footwear and running speeds,
the proposed ML kinematic algorithms appear to be quite robust and possibly viable as an
alternative for clinics/labs without a force measurement device.

The average intra-trial variation of lower extremity joint angles in all planes during
TM running was small (<3◦). This is smaller than the intra-trial variability demonstrated
during overground walking using the same ML motion capture system [13]. The reduced
variation can most likely be attributed to a more consistent velocity obtained during TM
gait versus overground gait. Another potential reason for the reduced variation was that
the present investigation used more than 30 gait cycles per trial, while an overground trial
would only include 2–3 gait cycles. The increased number of gait cycles may better capture
the normal variability during gait and reduce the influence of the extreme gait cycles. The
maximum variability in the joint kinematics was 4.7◦ for knee flexion during the swing
phase. Although it would be challenging to discern what percentage of this measured
variance is due to intrinsic (natural variation) versus extrinsic (ML motion capture software)
factors, increased knee flexion variability has been previously reported during terminal
swing in running [26]. The greatest variations over the entire gait cycle during TM running
occurred for the sagittal plane joint angles (average 2.0◦). The frontal plane joint angles
demonstrated the least variance (average 1.2◦).

The variability between sessions was less than the variability within a running TM
trial, and as a result, the variability ratio for all lower extremity joint angles was less than
one. This indicates that performing multiple sessions with an ML motion capture system
(while being deliberate about methodological consistency) does not increase kinematic
variability. This demonstrates one of the advantages of an ML motion capture system over
a marker-based motion capture system. With a marker-based motion capture system, the
placement of the reflective and the movement of the skin/clothing present potential sources
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of error [27]. However, with an ML motion capture system, participants can be instructed
to maintain footwear between sessions and wear typical running clothes (as in the current
study) without increasing measurement variability. Keller et al. [17] reported that clothing
choice produced, on average, root-mean-square-differences of 2.6◦ within lower extremity
joint angles during overground walking while using the same ML motion capture system
used in this study. This magnitude exceeded inter-session differences for the current study
and highlights that some standardization of clothing (i.e., “running clothes”) may reduce
inter-session variability for TM running.

The final objective of the current investigation was to examine the reliability of discrete
measures typically reported within research investigations or clinical assessments. Good or
excellent agreement was noted in over 70% (30/45) of measures and moderate agreement in
27%. Only peak hip internal rotation excursion during stance demonstrated poor agreement
(ICC3,1 = 0.487) over the three sessions. On average, discrete measures demonstrated good
reliability across all planes with sagittal and frontal plane metrics slightly better than
transverse plane metrics (ICCsagittal = 0.849, ICCfrontal = 0.828, and IC-Ctransverse = 0.770).
Bramah et al. [28] reported similar findings (ICCsagittal = 0.788, ICCfrontal = 0.833, and
ICCtransverse = 0.771) in their investigation of the repeatability of TM running using a
marker-based motion capture system. In the current study, the transverse plane angles of
the ankle and hip had the worst reliability (ICC = 0.618, 0.620) and were lower than values
(ICC = 0.759, 0.752) reported by Bramah et al. [28]. Measurement of transverse plane angles
has been noted as a challenge for ML motion capture with previous investigations reporting
reduced performance in their accurate measurement [9,10]. Overall, an ML motion capture
system can reliably measure key discrete metrics of TM running biomechanics over multiple
sessions in a manner similar to using a marker-based system.

The average SEM for discrete measures at initial contact (0.68◦), peak stance phase
angle (0.67◦), and toe off (0.27◦) gave an indication of the precision of an ML motion
capture system in assessing kinematics at these events. Additionally, the MDC reported
for these metrics is required to ascertain whether biomechanical changes surpass clinical
thresholds. On average, both the SEMs and MDCs reported are low; however, as noted
by Bramah et al. [28], future work would need to be conducted to determine if such small
changes have practical significance as they relate to either running injury or performance.

Several limitations should be noted with regards to the current investigation. The
ML motion capture system was not synchronized with the instrumented TM. Although
data collection of the respective hardware was started and stopped at approximately the
same time, it was not exactly matched. However, this limitation is mitigated slightly by the
inclusion of some metrics that rely only on a change in time (e.g., stance time) and not the
time value itself. The sampling frequency of the instrumented TM was low (100 Hz), thus
reducing its resolution to 10 milliseconds in the determination of stance time. This could
explain the minimal deviations that were noted in stance times between systems. Future
work should collect synchronized data with an instrumented TM capable of collecting
at a higher sampling rate to evaluate the accuracy of event marker detection algorithms
introduced within this investigation. The current work was also delimited to (i) TM running,
(ii) 0% incline, and (iii) healthy runners. Caution is warranted when applying the current
results to testing environments (e.g., overground running) outside of these confinements.

5. Conclusions

Marker-less motion capture can reliably measure key biomechanical joint and segment
angles and spatiotemporal metrics during treadmill running. On average, discrete measures
of kinematics demonstrated good reliability across all movement planes (ICC values:
sagittal = 0.849; frontal = 0.828; and transverse = 0.770). Across the entire gait cycle,
inter-session variability was less than the variability demonstrated during individual trials.
Given the substantial time saving during data collection using a marker-less motion capture
system [7], clinicians and researchers should consider marker-less motion capture in test–
retest scenarios to evaluate for changes in running biomechanics. Future work should be
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aimed at determining the meaningfulness of these changes as they relate to running injuries
and performance.
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