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Abstract
A pursuit-evasion differential game of countably many pursuers and one evader is 
investigated. Integral constraints are imposed on the control functions of the players. 
Duration of the game is fixed, and the payoff functional is the greater lower bound of 
distances between the pursuers and evader when the game is completed. The pursu-
ers want to minimize, and the evader to maximize the payoff. In this paper, we find 
the value of the game and construct optimal strategies for the players.

Keywords Pursuit-evasion games · Dynamical systems · The value of the game

1  Introduction and preliminaries

Differential game theory comes into play when one wants to study procedures in 
which others pursue one controlled object. There are several types of differential 
games, and one type is called the pursuit-evasion game. Many books developed 
mathematical foundations for the theory of differential games [1–6]. Pursuit-evasion 
games have several applications in robotics, such as motion planning in adversarial 
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settings (e.g., playing hide-and-seek) or defining the requirements to achieve a goal 
in the worst-case performance of robotic systems [7].

Designing the player’s optimal strategies and finding the value of the game are 
of specific interest in studying differential games with various types of constraints 
on control functions of the players, see, for example, [8–22]. Some other investi-
gations were dedicated to study of differential games with integral constraints on 
control functions of the players in which the main result is the value of the game, 
see, for example, [8, 10, 16–18, 21–24]. These works are most relevant to the 
study of this paper.

In [24] and [17] pursuit-evasion differential g ames i n w hich m any p ursuers 
chased a single evader are studied. All players perform simple motions with the 
duration of the game fixed. T he c ontrols o f a  g roup o f p ursuers a re s ubject t o 
integral constraints, whereas the controls of the remaining pursuers and that of 
the evader are subject to geometric constraints. The payoff o f t he g ame i s t he 
distance between the evader and closest pursuer at the instant the game is over. 
In both papers, optimal strategies of the players are constructed, and the value of 
the game is found using different approaches. In the latter paper, countably many 
number of pursuers were considered in place of a finite number in the former.

Salimi and Ferrara [16] and Ibragimov and Kuchkarov [20] all studied the 
pursuit-evasion game of plenty pursuers and one evader. Players dynamics obey 
simple motion with control functions of players subject to integral constraints. In 
these two studies, optimal strategies of the players are constructed, and the value 
of the game is obtained under different conditions.

Ibragimov and Salimi [10] studied a pursuit-evasion game problem of fixed 
duration and infinitely many pursuers and one evader. Players’ dynamic equations 
are given by second-order differential equations of a specific type in the Hilbert 
space l2. The players’ control functions are subject to integral constraints. They 
obtained sufficient conditions for finding the game’s value and constructed opti-
mal strategies for the players. Ibragimov et al. [18] improved the result obtained 
in [10] by eliminating a condition under which the value of the game is obtained 
in the former paper. Furthermore, the game problem studied in [10] but with 
geometric constraints on control functions of the players is studied in [19] and 
obtained the game value.

Badakaya studied differential game problems involving a countable number of 
pursuer and one evader in [22]. In this work, players’ motions obey first-order dif-
ferential equations with some functions contained in the homogeneous terms, and 
integral constraints on control functions of the players are considered. The payoff 
functional is the greatest lower bound of distances between pursuers and the evader. 
The paper’s main results are a formula for computing the value of the game and 
players’ optimal strategies.

The paper [21] is also concerned with the problem of finding the value of the 
game and the construction of optimal strategies of players. The problem considered 
in this paper consist of countably many pursuers and one evader. The dynamic of 
each of the pursuers is governed by the first-order and that of the evader by a sec-
ond-order differential equation. The control function for each of the players satisfies 
an integral constraint. The distance between the evader and the closest pursuer at the 
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stoppage time of the game is the payoff of the game. The goal of the pursuers is to 
minimize the distance to the evader, and that of the evader is the opposite.

Badakaya and his coauthors [25] studied a pursuit-evasion differential game prob-
lem with countable number pursuers and one evader in the Hilbert space l2. Players’ 
dynamic equations described by certain nth order ordinary differential equations. 
Control functions of the players are subject to integral constraints. They obtained the 
value of the game and constructed optimal strategies for the players. This problem 
but with geometric constraints on control functions of the players is studied in [26].

This present work discusses an optimal pursuit-evasion differential game with 
countably many pursuers and one evader in Hilbert space l2 . The control function 
of the pursuers and the evader has integral constraints. The game is completed at 
time � . We obtain a sufficient condition to find the game value and make an optimal 
strategy for the pursuer, which guarantees to capture the evader. We also show the 
admissibility of the suggested strategy.

2  Formulation of the problem and result

In l2 consisting of components a = (a1, a2,… , ak,…), with 
∑∞

k=1
a2
k
< ∞ , and inner 

product (a, b) =
∑∞

k=1
akbk , the movements of the pursuer Pi, i ∈ I = {1, 2, 3,…} 

and the evader E are introduced by the hybrid system of differential equations

where n < m and pi, p
0
i
,… pn−1

i
,�i, e, e

0,… em−1, � ∈ l2, � = (�i1,�i2,…) and 
� = (�1, �2,…) are the control variables for the pursuer P and the evader E, respec-
tively. Let the duration of the game be denoted by a fixed positive number �.

We define B(p0, �) = {p ∈ l2 ∶ ‖p − p0‖ ≤ �} as a ball with radius � centered at
p0.

Definition 2.1 An admissible control of the pursuer is a function �i(⋅), 
�i ∶ [0, �] → l2, where �ik ∶ [0, �] → R1, k = 1, 2,… , are measurable functions and

where �i is a fixed positive number.

Definition 2.2 An admissible control of the evader is a function �(⋅), � ∶ [0, �] → l2, 
where �k ∶ [0, �] → R1, k = 1, 2,… , are measurable functions and

(2.1)

Pi ∶
dnpi

dtn
= �i(t), pi(0) = p0

i
,

dpi

dt
(0) = p1

i
, … ,

dpn−1
i

dtn−1
(0) = pn−1

i
,

E ∶
dme

dtm
= �(t), e(0) = e0,

de

dt
(0) = e1, … ,

dem−1

dtm−1
(0) = em−1,

‖�i(⋅)‖22 =
�

�
0

‖�i(s)‖2 ds ≤ �2
i
, ‖�i‖2 =

∞�
k=1

�2
ik
,
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where � is a fixed positive number.

For admissible controls �i(⋅) and �(⋅) of pursuer and evader, the corresponding 
movements pi(⋅) and e(⋅) are defined as

One could observe that pi(⋅), e(⋅) ∈ C(0, �;l2), such that C(0, �;l2) is the space of 
functions

in which the following properties are valid 

(I) Fk(t), 0 ≤ t ≤ �, k = 1, 2,… , are absolutely continuous functions;
(II) F(t),  0 ≤ t ≤ �, is a continuous function with norm of  l2.

Definition 2.3 A strategy of the pursuer  P is a function �i(t, pi, e, �), 
�i ∶ [0,∞) × l2 × l2 × l2 → l2, in which the system

has a unique answer (pi(⋅), e(⋅)), with pi(⋅), e(⋅) ∈ C(0, �;l2), for an arbitrary admis-
sible control � = �(t), 0 ≤ t ≤ �, of the evader E. A strategy �i is admissible if each
control obtained by this strategy is admissible too.

For the admissible control �i(t) = (�i1(t),�i2(t),…), 0 ≤ t ≤ � , of the pursuer
Pi , according to (2.1) we have

‖�(⋅)‖2
2
=

�

�
0

‖�(s)‖2 ds ≤ �2, ‖�‖2 =
∞�
k=1

�2
k
,

pi(t) = (pi1(t), pi2(t),… , pik(t),…), e(t) = (e1(t), e2(t),… , ek(t),…),

pik(t) = p0
ik
+ tp1

ik
+

t2

2!
p2
ik

+⋯ +
tn−1

(n − 1)!
pn−1
ik

+ ∫
t

0
∫

t1

0

…∫
tn−1

0

�ik(s) dtn−1 ⋯ dt1 ds,

ek(t) = e0
k
+ te1

k
+

t2

2!
e2
k
+⋯ +

tm−1

(m − 1)!
em−1
k

+ ∫
t

0
∫

t1

0

⋯∫
tm−1

0

�k(s) dtm−1 … dt1 ds.

F(t) = (F1(t),F2(t),… ,Fk(t),…) ∈ l2, t ≥ 0,

dnpi

dtn
= �i(t, pi, e, �), pi(0) = p0

i
,

dpi

dt
(0) = p1

i
, …

dpn−1
i

dtn−1
(0) = pn−1

i
,

dme

dtm
= �, e(0) = e0,

de

dt
(0) = e1, …

dem−1

dtm−1
(0) = em−1,
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where pi0 = p0
i
+ �p1

i
+⋯ +

�(n−1)

(n−1)!
p
(n−1)

i
 . Also, for the evader the same argument can 

be written in this way

where e0 = e0 + �e1 +⋯ +
�(m−1)

(m−1)!
e(m−1) . Therefore, rather than the game (2.1) one 

can use an equivalent game, with same payoff function, as the following:

The main idea of the above estimations is borrowed from [2], page 9.

Proposition 2.0.1 The closed ball B
(
pi0,

(
�2n−1

2n−1

)1∕2
�i

(n−1)!

)
 is the obtainability 

domain of the pursuer Pi at time � from the initial position pi0.

Proof By Cauchy-Schwartz inequality we obtain

Let p̄ ∈ B

(
pi0,

(
𝜃2n−1

2n−1

)1∕2
𝜌

(n−1)!

)
. If the pursuer Pi uses the control

pi(�) = pi0 + ∫
�

0 ∫
t1

0

…∫
tn−1

0

�i(s) ds dtn−1 … dt1

= pi0 + ∫
�

0

(� − t)n−1

(n − 1)!
�i(t) dt,

e(�) = e0 + ∫
�

0 ∫
t1

0

…∫
tm−1

0

�(s) dtm−1 … dt1

= e0 + ∫
�

0

(� − t)m−1

(m − 1)!
�(t) dt,

(2.2)
Pi ∶ ṗi(t) =

(𝜃 − t)n−1

(n − 1)!
𝜇i(t), pi(0) = pi0,

E ∶ ė(t) =
(𝜃 − t)m−1

(m − 1)!
𝜂(t), e(0) = e0.

‖pi(�) − pi0‖ =
����

�

�
0

(� − s)n−1

(n − 1)!
�i(s) ds

����

≤
�

�
0

����
(� − s)n−1

(n − 1)!
�i(s)

���� ds

≤
⎛⎜⎜⎝

�

�
0

�
(� − s)n−1

(n − 1)!

�2

ds

⎞⎟⎟⎠

1∕2

.

⎛⎜⎜⎝

�

�
0

‖�i(s)‖2 ds
⎞⎟⎟⎠

1∕2

≤
�

�2n−1

2n − 1

�1∕2
�i

(n − 1)!
.
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then we obtain

The above pursuer’s control is admissible. Indeed,

◻

Proposition 2.0.2 The closed ball B
(
e0,

(
�2m−1

2m−1

)1∕2
�

(m−1)!

)
 is the obtainability 

domain of the evader E at time � from the initial position e0.

Proof We have

𝜇i(t) =
(2n − 1)(n − 1)!

𝜃2n−1
(𝜃 − t)n−1(p̄ − pi0), 0 ≤ t ≤ 𝜃,

pi(𝜃) = pi0 +

𝜃

∫
0

(𝜃 − t)n−1

(n − 1)!
𝜇i(t) dt,

= pi0 +

𝜃

∫
0

(2n − 1)(𝜃 − t)2n−2

𝜃2n−1
(p̄ − pi0) dt,

= pi0 +
2n − 1

𝜃2n−1
(p̄ − pi0)

𝜃

∫
0

(𝜃 − t)2n−2 dt = p̄.

𝜃

�
0

‖𝜇i(t)‖2 dt =
𝜃

�
0

����
(2n − 1)(n − 1)!

𝜃2n−1
(𝜃 − t)n−1(p̄ − pi0)

����
2

dt

≤
�
(2n − 1)(n − 1)!

𝜃2n−1

𝜌i

(n − 1)!

�2
𝜃2n−1

2n − 1

𝜃

�
0

(𝜃 − t)2n−2dt = 𝜌2
i
.

‖e(�) − e0‖ =
����

�

�
0

(� − s)m−1

(m − 1)!
�(s) ds

����

≤
�

�
0

����
(� − s)m−1

(m − 1)!
�(s)

���� ds

≤
⎛⎜⎜⎝

�

�
0

�
(� − s)m−1

(m − 1)!

�2

ds

⎞⎟⎟⎠

1∕2

.

⎛⎜⎜⎝

�

�
0

‖�(s)‖2 ds
⎞⎟⎟⎠

1∕2

≤
�

�2m−1

2m − 1

�1∕2
�

(m − 1)!
.
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Let ē ∈ B

(
e0,

(
𝜃2m−1

2m−1

)1∕2
𝜎

(m−1)!

)
. If the evader E uses the control

then we obtain

The above evader’s control is admissible. Indeed,

◻

The problem is to make a winning strategy for the pursuer in the game (2.1) with 
pi0 ≠ e0. That is to find winning strategy of the pursuer Pi that guarantees the equal-
ity pi(�) = e(�) , for any admissible control of the rival. Let

where 𝛽j =

{
𝜃2(m−n)

(n!)2
(𝜌2

i
− 𝜃2m𝜎2), 𝜃 ≥ 1,

𝜃2n−1

(n!)2
(𝜌2

i
− 𝜎2), 𝜃 < 1.

Theorem 1 If e(�) ∈ X (phase constraint), then the pursuer has a winning strategy.

Proof Let’s define the following strategy as a winning strategy for the pursuer

𝜂(t) =
(2m − 1)(m − 1)!

𝜃2m−1
(𝜃 − t)m−1(ē − e0), 0 ≤ t ≤ 𝜃,

e(𝜃) = e0 +

𝜃

∫
0

(𝜃 − t)m−1

(m − 1)!
𝜂(t) dt

= e0 +

𝜃

∫
0

(2m − 1)(𝜃 − t)2m−2

𝜃2m−1
(ē − e0) dt

= e0 +
2m − 1

𝜃2m−1
(ē − e0)

𝜃

∫
0

(𝜃 − t)2m−2 dt = ē.

𝜃

�
0

‖𝜂(t)‖2 dt =
𝜃

�
0

����
(2m − 1)(m − 1)!

𝜃2m−1
(𝜃 − t)m−1(ē − e0)

����
2

dt

≤
�
(2m − 1)(m − 1)!

𝜃2m−1
𝜎

(m − 1)!

�2
𝜃2m−1

2m − 1

𝜃

�
0

(𝜃 − t)2m−2dt = 𝜎2.

(2.3)Xi =

�
q ∈ l2 ∶ 2(e0 − pi0, q) ≤ �j + ‖e0‖2 − ‖pi0‖2, e0 ≠ pi0

�
,

�(t) =
(e0 − pi0)n!

�n
+

(n − 1)!

(m − 1)!
(� − t)m−n�(t), 0 ≤ t ≤ �.
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We show that the above strategy is admissible. Since the evader is satisfied to the 
phase constraint, we have

Using the above inequality we have the following:

Indeed,

Thus, taking contribution of above inequality we have,

Note that for this deduction we use the fact that (noting that t ∈ [0, �])

2
�
e0 − pi0, e(�)

� ≤ �j + ‖e0‖2 − ‖pi0‖2.

2

⎛
⎜⎜⎝
e0 − pi0,

�

�
0

(� − t)m−1

(m − 1)!
�(t) dt

⎞
⎟⎟⎠
≤ �j − ‖e0 − pi0‖2.

2

⎛⎜⎜⎝
e0 − pi0,

�

�
0

(� − t)m−1

(m − 1)!
�(t) dt

⎞
⎟⎟⎠
=2

�
e0 − pi0, e(�) − e0

�

=2
�
e0 − pi0, e(�)

�
− 2

�
e0 − pi0, e0

�

=2
�
e0 − pi0, e(�)

�
− 2‖e0‖2 + 2(e0, pi0)

≤�j + ‖e0‖2 − ‖pi0‖2 − 2‖e0‖2 + 2(e0, pi0)

=�j − ‖e0‖2 − ‖pi0‖2 + 2(e0, pi0)

=�j − ‖e0 − pi0‖2.

(2.4)

�

�
0

‖�(t)‖2 dt =
�

�
0

����
(e0 − pi0)n!

�n
+

(n − 1)!

(m − 1)!
(� − t)m−n�(t)

����
2

dt

=

�

�
0

����
(e0 − pi0)n!

�n

����
2

dt + 2

�

�
0

�
(e0 − pi0)n!

�n
,
(n − 1)!

(m − 1)!
(� − t)m−n�(t)

�
dt

+

�

�
0

����
(n − 1)!

(m − 1)!
(� − t)m−n�(t)

����
2

dt

≤ ‖e0 − pi0‖2
�2n−1

(n!)2 +
2n!(n − 1)!

�n

⎛⎜⎜⎝
e0 − pi0,

�

�
0

(� − t)m−n

(m − 1)!
�(t) dt

⎞⎟⎟⎠

+

�

�
0

(� − t)2(m−n)‖�(t)‖2dt

≤ ‖e0 − pi0‖2
�2n−1

(n!)2 +
(n!)2

�n

�
�j − ‖e0 − pi0‖2

�
+ �2m�2

.
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For the case � ≥ 1 and noting that n < m, then from inequality (2.4) we achieve the
admissibility of the wining strategy of the pursuer as follows:

In the other hand, for the case 𝜃 < 1 then we the admissibility of the wining strategy 
of the pursuer from the following

Therefore the strategy � is admissible.
Now we show that � is a winning strategy for the pursuer. Indeed,

◻

3  Main result

Now consider the game (2.1). We will solve the optimal problem under the follow-
ing assumption.

𝜃

�
0

(𝜃 − t)2(m−n)‖𝜂(t)‖2dt ≤
𝜃

�
0

𝜃2m‖𝜂(t)‖2dt < 𝜃2m𝜎2.

�

�
0

‖�(t)‖2 dt ≤‖e0 − pi0‖2
�2n−1

(n!)2 +
(n!)2

�n

�
�2(m−n)

(n!)2
(�2

i
− �2m�2) − ‖e0 − pi0‖2

�
+ �2m�2

≤‖e0 − pi0‖2
�2(n−m)

(n!)2 +
(n!)2

�2(n−m)

�
�2(m−n)

(n!)2
(�2

i
− �2m�2) − ‖e0 − pi0‖2

�
+ �2m�2

=�2
i
.

�

�
0

‖�(t)‖2 dt ≤‖e0 − pi0‖2
�2n−1

(n!)2 +
(n!)2

�n

�
�2n−1

(n!)2
(�2

i
− �2) − ‖e0 − pi0‖2

�
+ �2m�2

≤‖e0 − pi0‖2
�2n−1

(n!)2 +
(n!)2

�2n−1

�
�2n−1

(n!)2
(�2

i
− �2m�2) − ‖e0 − pi0‖2

�
+ �2m�2

=�2
i
.

p(�) = pi0 +

�

∫
0

(� − t)n−1

(n − 1)!

(
(e0 − pi0)n!

�n
+

(n − 1)!

(m − 1)!
(� − t)m−n�(t)

)
dt

= pi0 +
(e0 − pi0)n!

�n(n − 1)!

�

∫
0

(� − t)n−1 dt +

�

∫
0

(� − t)m−1

(m − 1)!
�(t) dt

= pi0 + e0 − pi0 +

�

∫
0

(� − t)m−1

(m − 1)!
�(t) dt = e(�).
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Assumption 1 There exits a nonzero vector z such that (e0 − pi0, z) ≥ 0 for all i ∈ I . 
Let

Theorem 2 If Assumption 1 is true for all i ∈ I , then the number � given by (3.1) is 
the value of the game (2.1).

Proof of the above theorem relies on the following lemmas. Consider the sphere 
S(e0, r) and finitely or countably many balls B(pi0,Ri) and B(e0, r) , where pi0 ≠ e0
and r and Ri , i ∈ I are positive numbers.

Lemma 1 See [8]. Let

If Assumption 1 is valid and

then B(e0, r) ⊂
⋃

i∈I Xi.

Lemma 2 Let infi∈I Ri = R0 > 0 . If Assumption 1 is true and for any 0 < 𝜀 < R0 the 
set 

⋃
i∈I B(pi0,Ri − �) does not contain the ball B(e0, r) , then there exists a point 

ē ∈ S(e0, r)such that ‖ē − pi0‖ ≥ Ri.

Proof of Theorem 2. We prove this Theorem in three parts.
(1) Pursuers’ Strategies construction. We introduce dummy pursuer zi , whose 

motions obey the equations

(3.1)

𝛾 = inf

{
l ≥ 0 ∶ B

(
e0,

𝜎

(m − 1)!

(
𝜃2m−1

2m − 1

) 1

2

)

⊂

∞⋃
i=1

B

(
pi0,

𝜌i

(n − 1)!

(
𝜃2n−1

2n − 1

) 1

2

+ l

)}
.

(3.2)Xi =

�
z ∈ l2 ∶ 2(e0 − pi0, z) ≤ R2

i
− r2 + ‖e0‖2 − ‖pi0‖2

�
.

(3.3)B(e0, r) ⊂
⋃
i∈I

B(pi0,Ri),

żi(t) =
(𝜃 − t)n−1

(n − 1)!
w𝜀
i
, zi(0) = pi0,

(3.4)

⎛⎜⎜⎝

𝜃

�
0

‖w𝜀
i
(s)‖2ds

⎞⎟⎟⎠

1

2

≤ 𝜌i(𝜀) = 𝜌i + 𝛾(n − 1)!
�
2n − 1

𝜃2n−1

� 1

2

+
𝜀(n − 1)!

ki

�
2n − 1

𝜃2n−1

� 1

2

,
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where ki = max{1, �i} , � is positive number such that � ∈ (0, 1). It is clear that the 
attainability domain of the dummy pursuer zi at time � from an initial state pi0 is the

ball B
(
pi0, r

∗
)
, where r∗ =

𝜌i(𝜀)

(n − 1)!

(
𝜃2n−1

2n − 1

) 1

2

=
𝜌i

(n − 1)!

(
𝜃2n−1

2n − 1

) 1

2

+ 𝛾 +
𝜀

ki
.

The strategies of the dummy pursuers zi, i ∈ I are defined as follows:

where ��
i
∈ [0, �] , is the time for which the dummy zi exhausted its energy. That is

if such a time exists. Using the strategy of the ith dummy pursuer, we define strategy 
of the real pursuer pi as follows.

where �̄�i = �̄�i(0) = 𝜌i + 𝛾(n − 1)!
(

2n−1

𝜃2n−1

) 1

2 and

where �i ∈ [0, �] , is the time for which

That is, wi(t) is obtained from (3.5) at � = 0 . Since �̄�i(𝜀) > �̄�i, then

Therefore 𝜏𝜀
i
> 𝜏i.

(2) The game value � is true for the pursuers. We shall show that strategies (3.7)
of pursuer ensure that

(3.5)w𝜀
i
(t) =

⎧
⎪⎨⎪⎩

(e0 − pi0)n!

𝜃n
+

(n − 1)!

(m − 1)!
(𝜃 − t)m−n𝜂(t), 0 ≤ t ≤ 𝜏𝜀

i
,

0, 𝜏𝜀
i
< t ≤ 𝜃,

(3.6)

𝜏𝜀
i

∫
0

‖w𝜀
i
(s)‖2ds = 𝜌i

2(𝜀),

(3.7)𝜇i(t) =
𝜌i

𝜌i
wi(t), 0 ≤ t ≤ 𝜃,

(3.8)wi(t) =

⎧
⎪⎨⎪⎩

(e0 − pi0)n!

𝜃n
+

(n − 1)!

(m − 1)!
(𝜃 − t)m−n𝜂(t), 0 ≤ t ≤ 𝜏i,

0, 𝜏i < t ≤ 𝜃,

(3.9)

𝜏i

∫
0

‖wi(s)‖2ds = 𝜌i
2.

(3.10)

𝜏𝜀
i

∫
0

‖w𝜀
i
(s)‖2ds = 𝜌i

2(𝜀) > 𝜌2
i
=

𝜏i

∫
0

‖wi(s)‖2ds.

(3.11)sup
�(⋅)

inf
i∈I

‖e(�) − pi(�)‖ ≤ � .
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In accordance with the definition of the number � , we have

Denote

where A1 =
�i

(n − 1)!

(
�2n−1

2n − 1

) 1

2

 and A2 =
�

(m − 1)!

(
�2m−1

2m − 1

) 1

2

.

According to the condition of the theorem (e0 − pi0, q) ≥ 0 for all i ∈ I . Then by
Lemma 1 it follows from (3.12) that

Consequently, for the point e(�) ∈ B

(
e0,

�

(m−1)!

(
�2m−1

2m−1

) 1

2

)
 we have the inclusion 

e(�) ∈ X�
s
 for some at some s ∈ I. If e(�) ∈ Xs ∩ X�

s
 and for pi0 ≠ e0 we have by the

Theorem 1 and for the strategies (3.5) of dummy pursuers, zs(�) = e(�) . Then taking 
into account of (3.4) and (3.7), we get

We now estimate right-hand side of the above inequality. Firstly, we show that

for all i ∈ I and some constant K. Indeed, as we noted above that 𝜏𝜀
i
> 𝜏i and accord-

ance to (3.5) and (3.8) w�
i
(t) = wi(t) for 0 ≤ t ≤ �i ∶ wi(t) = 0 for t > 𝜏i,w

𝜀
i
(t) = 0 for

t > 𝜏𝜀
i
 , then we have

(3.12)

B

(
e0,

𝜎

(m − 1)!

(
𝜃2m−1

2m − 1

)1∕2
)

⊂

∞⋃
i=1

B

(
pi0,

𝜌i

(n − 1)!

(
𝜃2n−1

2n − 1

) 1

2

+ 𝛾 +
𝜀

ki

)
,

(3.13)

X�
i
=

�
q ∶ 2(e0 − pi0, q) ≤ �

A1 + � + �∕ki
�2

− A2
2
+ ‖e0‖2 − ‖pi0‖2

�
,

(3.14)B

(
e0,

𝜎

(m − 1)!

(
𝜃2m−1

2m − 1

) 1

2

)
⊂

∞⋃
i=1

X𝜀
i
.

(3.15)

‖e(𝜃) − ps(𝜃)‖ = ‖zs(𝜃) − ps(𝜃)‖

=
����

𝜃

�
0

(𝜃 − t)n−1

(n − 1)!

�
w𝜀
s
(t) −

𝜌s

𝜌s
ws(t)

�����

≤
𝜃

�
0

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

s
(t) − ws(t)‖dt +

𝜃

�
0

(𝜃 − t)n−1

(n − 1)!
‖ws(t) −

𝜌s

𝜌s
ws(t)‖dt.

(3.16)

�

�
0

(� − t)n−1

(n − 1)!
‖w�

i
(t) − wi(t)‖dt ≤ K

√
�,
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where K is some positive number and does not depend on i ( ki ≥ 1 and 0 < 𝜀 < 1 ). 
Thus, we have shown the inequality (3.16). For the second integral of (3.15) we have

where �̄�s = 𝜌s + 𝛾

(
(2n−1)

𝜃2n−1

) 1

2 or �̄�s − 𝜌s = 𝛾

(
(2n−1)

𝜃2n−1

) 1

2.
It follows then from (3.15) that

Thus, if pursuers use strategies (3.7), then inequality (3.11) holds. So the result � is 
guaranteed for the pursuers.

(3) The game value � is true for the evader. Let us constant the evader’s strat-
egy ensuring that

𝜃

�
0

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

i
(t) − wi(t)‖dt =

𝜏i

�
0

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

i
(t) − wi(t)‖dt

+

𝜏𝜀
i

�
𝜏i

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

i
(t) − wi(t)‖dt +

𝜃

�
𝜏𝜀
i

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

i
(t) − wi(t)‖dt

=

𝜏𝜀
i

�
𝜏i

(𝜃 − t)n−1

(n − 1)!
‖w𝜀

i
(t)‖dt

≤ 1

(n − 1)!

�
𝜃2n−1

2n − 1

� 1

2

⎛⎜⎜⎜⎝

𝜏𝜀
i

�
0

‖w𝜀
i
(t)‖2dt −

𝜏i

�
0

‖w𝜀
i
(t)‖2dt

⎞⎟⎟⎟⎠

1

2

=
1

(n − 1)!

�
𝜃2n−1

2n − 1

� 1

2 �
�̄�2
i
(𝜀) − �̄�2

i

� 1

2

=
1

(n − 1)!

�
𝜃2n−1

2n − 1

� 1

2

.

�
𝜀(n − 1)!

ki

�
(2n − 1)

𝜃2n−1

� 1

2

�
2𝜌i + 2𝛾(n − 1)!

�
(2n − 1)

𝜃2n−1

� 1

2

+
𝜀(n − 1)!

ki

�
(2n − 1)

𝜃2n−1

� 1

2

�� 1

2

≤ K
√
𝜀,

����

𝜃

�
0

(𝜃 − t)n−1

(n − 1)!

�
1 −

𝜌s

�̄�s

�
ws(t)

���� ≤
�
1 −

𝜌s

�̄�s

� 𝜃

�
0

(𝜃 − t)n−1

(n − 1)!
‖ws(t)‖dt

≤
�
1 −

𝜌s

�̄�s

�⎛⎜⎜⎝

𝜃

�
0

�
(𝜃 − t)n−1

(n − 1)!

�2

dt

⎞⎟⎟⎠

1

2 ⎛⎜⎜⎝

𝜃

�
0

‖ws(t)‖2dt
⎞⎟⎟⎠

1

2

=

�
1 −

𝜌s

�̄�s

�
1

(n − 1)!

�
𝜃2n−1

2n − 1

� 1

2

�̄�s = 𝛾 .

‖e(�) − ps(�)‖ ≤ � + K
√
�.

Final edited form was published in   
"Japan journal of industrial and applied mathematics : JJIAM" 39, 653–668. ISSN: 1868-937X 

https://doi.org/10.1007/s13160-022-00501-6

13 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



where �1(⋅),… ,�m(⋅),… are arbitrary admissible controls of the pursuers. If � = 0 , 
then inequality (3.17) is obviously valid for any admissible control of the evader. By 

the definition of � and for any �∗ ∈ (0, a), where a = inf
i∈I

{
�i

(n − 1)

(
�2n−1

2n − 1

) 1

2

+ �

}
,

the set

does not contain the ball B
(
e0,

�

(m−1)!

(
�2m−1

2m−1

) 1

2

)
. Then, by Lemma 2 there exists a 

point ē ∈ S

(
e0,

𝜎

(m−1)!

(
𝜃2m−1

2m−1

) 1

2

)
 , such that ||||ē − pi0

|||| ≥ 𝜌i

(n − 1)

(
𝜃2n−1

2n − 1

) 1

2

+ 𝛾 . In

view of this, we have

The control

supplies validity of the inequality (3.17), since for this control we have

Then the game value is not less than � , and inequality (3.17) holds. The proof of the 
theorem is complete.

(3.17)inf
�1(⋅),…,�m(⋅),…

inf
i∈I

‖e(�) − pi(�)‖ ≥ � ,

(3.18)
∞⋃
i=1

B

(
pi0,

�i

(n − 1)

(
�2n−1

2n − 1

) 1

2

+ � − �∗

)
,

(3.19)

‖ē − pi(𝜃)‖ ≥ ‖ē − pi0‖ − ‖pi(𝜃) − pi0‖

≥
�

𝜃2n−1

2n − 1

� 1

2

+ 𝛾 −

�
𝜃2n−1

2n − 1

� 1

2

= 𝛾 .

𝜂(t) =
(2m − 1)(m − 1)!

𝜃2m−1
(𝜃 − t)m−1(ē − e0), 0 ≤ t ≤ 𝜃,

e(𝜃) = e0 +

𝜃

∫
0

(𝜃 − t)m−1

(m − 1)!
𝜂(t) dt

= e0 +

𝜃

∫
0

(2m − 1)(𝜃 − t)2m−2

𝜃2m−1
(ē − e0) dt

= e0 +
2m − 1

𝜃2m−1
(ē − e0)

𝜃

∫
0

(𝜃 − t)2m−2 dt = ē.
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4  Conclusion

This paper discussed a fixed duration pursuit-evasion problem with countably many 
pursuers and one evader in Hilbert space l2. Dynamic equation of each pursuer con-
sidered to be a certain nth order differential equation and that of the evader as mth 
order differential equation (where n < m ). The controls of pursuers and the evader 
are subject to integral constraints. An admissible strategy for the pursuer that guar-
antees to capture the evader was constructed. Besides, we took into account a con-
tribution from an auxiliary differential game and guessed the value of the game, and 
then we proved the accuracy of our guess. Furthermore, finding the admissible strat-
egy and value of the game for hybrid system differential equations where n > m may 
constitute the object of future studies.
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