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Using Heterogeneous Computing Resources
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Database Technology Group, Technische Universitiat Dresden, Dresden, Germany
{tomas.karnagel,dirk.habich,wolfgang.lehner}@tu-dresden.de

Abstract. The hardware landscape is changing from homogeneous
multi-core systems towards wildly heterogeneous systems combining dif-
ferent computing units, like CPUs and GPUs. To utilize these hetero-
geneous environments, database query execution has to adapt to cope
with different architectures and computing behaviors. In this paper, we
investigate the simple idea of partitioning an operator’s input data and
processing all data partitions in parallel, one partition per computing
unit. For heterogeneous systems, data has to be partitioned according to
the performance of the computing units. We define a way to calculate
the partition sizes, analyze the parallel execution exemplarily for two
database operators, and present limitations that could hinder significant
performance improvements. The findings in this paper can help system
developers to assess the possibilities and limitations of intra-operator par-
allelism in heterogeneous environments, leading to more informed deci-
sions if this approach is beneficial for a given workload and hardware
environment.

Keywords: Intra-operator parallelism - Heterogeneous systems
Dataflow parallelism - Data partitioning - GPU

1 Introduction

In the recent years, hardware changes shaped the database system architecture
by moving from sequential execution to parallel multi-core execution and from
disk-centric systems to in-memory systems. At the moment, the hardware is
changing again from homogeneous CPU systems towards heterogeneous systems
with many different computing units (CUs), mainly to reduce the energy con-
sumption to avoid Dark Silicon [5] or to increase the system’s performance since
homogeneous systems reached several physical limits in scaling [5].

The current challenge for the database community is to find ways to uti-
lize these systems efficiently. Heterogeneous systems combine different CUs, like
CPUs and GPUs, with different architectures, memory hierarchies, and inter-
connects, leading to different execution behaviors. Homogeneous systems can be
utilized by using uniformly partitioned data for all available CUs. The original
idea was presented in GAMMA [4] as dataflow parallelism, where data is split
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and processed on multiple homogeneous processors. There, data partitioning is
easy, while skew in the data values, data transfers, and result merging already
complicate the approach.

We want to evaluate the same approach to heterogeneous systems in a fixed
scenario. Different from homogeneous systems, CUs in heterogeneous systems
have different execution performances depending on the operator and data sizes.
Therefore, we first define a way to find the ideal data partitioning according
to the different execution performances of the given CUs. Afterwards, the par-
titioned data is used to execute an operator, which computes a partial result.
Finally, the partial results of all CUs have to be merged. In this paper, we
analyze this approach for two operators, selection and sorting, on two different
heterogeneous systems to evaluate the advantages and disadvantages. We present
performance insides as well as occurring limitation to intra-operator parallelism
in heterogeneous environments. As a result, we show that the actual potential
of improvements is small, while the limitations and overheads can be significant,
sometimes leading to an even worse performance than single-CU execution.

In Sect.2, we present intra-operator parallelism in more detail, before pre-
senting the operators and hardware environments for our analysis in Sect. 3.
Afterwards, we analyze the selection operator in Sect. 4 and the sort operator in
Sect. 5, before presenting learned lessons in Sect. 6.

2 Intra-operator Parallelism

As intra-operator parallelism in heterogeneous environments, we define the goal
of minimizing an operator’s execution by using all available heterogeneous com-
pute resources. This means dividing input data into partitions, executing the
operator on the given CUs, and merging the result in the end.

In the following, we discuss the general idea, an approach to find ideal par-
tition sizes, and the possible limitations of intra-operator parallelism.
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Fig. 1. Operator execution on a single computing unit.
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2.1 General Idea

Our starting point is the general operator execution on an arbitrary computing
unit as shown in Fig.1. We assume that the input data is initially stored in
the system’s main memory and that output data has to be stored in the same.
Therefore, all our assumptions and tests include input and output transfer, if the
CU is not accessing the main memory directly. We also assume that the operator
implementation is inherently parallel and utilizes the complete CU, which should
normally be the case when the operator is implemented with CUDA or OpenCL.

Having a system with heterogeneous resources, parallel execution between
multiple CUs becomes possible. At this point, we focus on single operator exe-
cution, therefore, we want to execute the same operator concurrently on multiple
CUs, each CU working on its own data partition. During operator execution, we
want to avoid communication overhead through multiple data exchanges, so we
choose an approach, where we partition the input data, execute the operator
atomically on each CU with the given partitions, and merge the result in the
end. Figure 2 illustrates this approach for two CUs.

While this approach is well studied for many operators in homogeneous sys-
tems, where multiple CPU cores or multiple CPU sockets are used, there is not
much information about heterogeneous systems. In a homogeneous setup, the
input data can be divided uniformly, since every CU needs the same amount
of execution time. In a heterogeneous system, different CUs perform differently,
so data has to be divided differently and multiple limitations could hinder the
execution. Mayr et al. [9] looked at intra-operator parallelism for heterogeneous
CPU clusters with the goal to prevent underutilization of available resources.
They also present a detailed overview of related work. We, however, look at het-
erogeneity within one node with CUs like CPUs and GPUs, leading to different
approaches and limitations.
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Fig. 2. Operator execution on two computing units.
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2.2 Determining the Partition Size

In a first assessment, we want to look at the potential of intra-operator paral-
lelism together with possible ways to determine the best data partition size.

The intuitive approach would be: when both CUs execute an operator with
the same runtime, then the data is divided by two (50/50) and the potential
speedup could be 2x. However, heterogeneous CUs usually show different exe-
cution behavior for an operator. There, even a slower CU can help improving
the overall runtime by processing a small part of the work, however, different
scenarios need to be considered. Figure 3 shows three scenarios of heterogeneous
execution. The execution time for different data sizes is given for cuA and cuB.
The goal for all three scenarios is to execute an operator with 80 MB of data
and to partition the input data to achieve the best combined runtime.

100 : 100 : 100
g 80 : 3 80 g 8
£ 60 £ 60 A : £ 60
© N V% AR © |.-—/ ©
£ w04, £ 404 / £
2 20 B 2 2 B : 2 20
0 : 0 - : 0 :
I I I I I I I I I I I I I I I I I I
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
data size (MB) data size (MB) data size (MB)
(a) 1.74x speedup (42/58) (b) no speedup (0/100) (c) 2.25x speedup (46/54)

Fig. 3. Given two CUs (A, B) to simulate execution behavior in different setups. In
this example, 80 MB need to be partitioned on cuA and cuB.

In Fig. 3a, both CUs show equal execution time at 80 MB, however, the best
partition is not 50/50, but 42/58. This is caused by the slope of the execu-
tion behavior, resulting in different execution times for smaller data sizes. For
example, when dividing 50/50, cuA runs for 50s and cuB for 40s, therefore,
the concurrent execution would be 50s (the maximum of both single-CU execu-
tions). This partitioning is not ideal. The goal is to achieve the same runtime
on both CUs, which is 46 s when using 42/58 as partitioning. The speedup com-
pared to a single-CU execution is 1.74x. Please note, for the remainder of the
paper, speedups are always relative to the best single-CU execution.

Figure 3b shows a similar scenario with a different outcome. Here no data
partition size is beneficial to improve the best single-CU execution. Parallel
execution has no potential to improve the runtime and should be avoided. On
the other side, if the execution behavior is exponential (Fig.3c) then larger
improvements are possible.

The question is how to calculate the best data partition size for heterogeneous
CUs. Assuming we have k different CUs and we know the execution time (execy)

4

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden



Final edited form was published in "Advances in Databases and Information Systems: 20th East European Conference.
Prag 2016", S. 291-305, ISBN 978-3-319-44039-2
http://dx.doi.org/10.1007/978-3-319-44039-2_20

of an operator for different data sizes (partitiony), we can calculate the total
execution time (execiorqr) for a given input data size (data_size) by:

eTeCrotal = lrglgécn(execk (partitiony))

with Z partition = input_data_size
1<k<n

Finally, we have to minimize execiotq; by adjusting the partition sizes
(partitiony,) to achieve the best result. Essentially, this function finds the par-
tition sizes, where the execution for multiple CUs takes the same time. If that
is not possible, this function also allows single-CU execution if one partition
size is equal to input_data_size. Execution times for different data sizes can be
collected through previous test runs or can be estimated by using estimation
models [8].

2.3 Possible Limitations

While the presented function calculates ideal data partition sizes for ideal parallel
execution, there are many factors involved with parallel execution that could
potentially increase the overall runtime:

1. Under Utilization. For small data sizes, an operator might not be parallel
enough to fully utilize a CU, e.g., highly parallel CUs like GPU and Xeon
Phi, leading to slow execution. In that case, executing the operator with less
input data leads to only small runtime reductions (e.g., cuA in Fig. 3b).

2. Synchronization Overhead. Parallel executions have to be synchronized in
order to merge their results (as shown in Fig. 2). This synchronization could
lead to delays and communication overheads.

3. Merge Overhead. After synchronizing the executions, the intermediate
results have to be merged to generate a final result. This merge step strongly
depends on the operator. Some operators, like selection or projection, do not
have a time consuming merge step, while others, like joins or sortings, rely on
complex compute intensive merges, reducing the potential of intra-operator
parallelism significantly.

4. Shared HW Resources. CUs within one system are most likely to use
shared resources that could become a bottleneck when using all CUs simulta-
neously. This could be interconnects to the host memory, the memory or DMA
controller, or computing resources. When a workload produces contentions on
these resources, the performance might suffer.

5. Thermal Budget. Modern CUs reduce their frequency, and therefore their
performance, when a certain temperature threshold is reached. This is usually
caused by the CU itself, however, the temperature can also increase indirectly
through other CUs. The best example are tightly-coupled systems, where it
is possible through parallel execution, that both CUs produce enough heat
to force each other to reduce the frequency.
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With the possible limitations in mind, we analyze the parallel intra-operator
execution of two operators in two different heterogeneous systems.

3 Operator Implementation and Hardware Setup

To evaluate the potential and limitations of intra-operator parallelism in het-
erogeneous environments, we use two operators with different characteristics in
execution time, result size, and merging overhead. In detail, we choose a selec-
tion operator and a sort operator, however, our findings can be applied to other
operators by anticipating possible overheads, which are presented in this work.
We want to analyze parallel execution relative to its single-CU execution, so
the actual operator implementation is not the focus of our work, however, we
briefly present the implementation for completeness. All operators are imple-
mented in OpenCL, enabling them to be executed on all OpenCL-supporting
CUs, including most CPUs and GPUs. The operators are implemented as an
operator-at-a-time approach with column oriented data format.

Our selection operator scans an input column of 32 bit values and produces
a bitmap indicating values that satisfy the search condition. The implementation
is taken from Ocelot! [6], an OpenCL based extension to MonetDB [3]. During
execution, each thread accesses 8 values from the input column, evaluates the
given search condition, and writes a one byte value to the output bitmap. Since
we are working with 32 bit values, the output is 1/32 of the size of the input.
Merging results of multiple runs can be done simply by aligning the results
contiguously in memory, which should introduce no additional merging overhead
for parallel execution.

Our sort operator is based on the radix sort from Merrill and Grimshaw [10].
The actual OpenCL implementation is taken from the Clogs library?, which has
been implemented and evaluated by Merry [11]. In our evaluation, we only sort
keys without payload, to avoid additional transfer costs. The operator execution
is more compute-intensive than the selection operator and data transfers are also
more significant, since the operator is not reducing the input values, leading to the
same data size for input and output. To merge two sorted results, we implement a
light-weight parallel merge for two CPU threads, where one thread starts merging
from the beginning and another thread starts merging from the end. Both threads
only merge the result until they processed half of the resulting values. We choose
this way of merging, to avoid overheads of highly parallel approaches like signifi-
cantly more comparisons (Bitonic Merge [2]) or defining equally sized correspond-
ing blocks in both sorted results [12].

For the analysis, we choose two different heterogeneous systems, to allow
a broad evaluation: a tightly-coupled system using an AMD Accelerated Process-
ing Unit (APU) that combines a CPU and an integrated GPU and a loosely-
coupled system using an Intel CPU and Nvidia GPU. Both systems combine a
CPU and a GPU, which is the most common setup for current heterogeneous

! https://bitbucket.org/msaecker /monetdb-opencl.
2 http://clogs.sourceforge.net.
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Table 1. Tightly-coupled test system.

Type | Model Frequency | Cores | Memory | Connection
CPU | AMD A10-7870K 3900 MHz 4 |32GB |host
GPU | integrated AMD Radeon R7| 866 MHz | 512 |32GB | host

Table 2. Loosely-coupled test system.

Type | Model Frequency | Cores Memory | Connection
CPU | Intel Xeon E5-2680 v3 | 3300 MHz |12 (24 with HT) 64GB | host
GPU | Nvidia Tesla K80 875 MHz | 2496 12GB | PCIle3

systems. The tightly-coupled system consists of an APU combining two CUs on
one die (Table1). The GPU shares the main memory with the CPU, so it can
actually access the CPU’s data directly, however, for our tests we noticed that
it is more beneficial to copy the data to the GPU region of the main memory
before execution. This way, the GPU data can not be cached by the CPU, avoid-
ing expensive cache snooping during GPU execution. The loosely-coupled system
combines two CUs as shown in Table 2. The Tesla K80 actually has two instances
of the same GPU on one GPU board, however, to isolate effects between hetero-
geneous CUs (CPU and GPU), we do not use the second GPU instance (Table 2
presents a single GPU instance).

4 Analysis of the Selection Operator

We begin with the analysis of the selection operator. In the following, we present
the initial test results and discuss general performance issues before examining
the executions on each CU separately in more detail.

4.1 General Observations

For the initial experiment, we execute the operator on each CU with input sizes
from 1024 values (4 KB) up to around 268 million values (1 GB). We capture the
execution behavior and apply our calculations from Sect.2.2 to determine the
data partitioning. The calculated partitions are then used for the intra-operator
execution. To see the effects of data partitioning, we force the execution to use
at least a small part of data on each CU, not allowing single-CU execution, even
if our calculations would suggest it.

The test results are shown in Fig. 4. Single-CU execution behavior is similar
for both systems. For small data sizes, the execution time of a single CU does
not differ much, because the CUs are underutilized and show a constant OpenCL
initialization overhead. For larger data sizes, all CUs show linear scaling. Interest-
ingly, for both systems the best choice CU changes between 1 and 4 MB of data.
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(a) Tightly-coupled system. (b) Loosely-coupled system.

Fig. 4. Selection operator executed on both test systems with different data sizes.

In the tightly-coupled system, the GPU is better for large data, because of the lim-
ited computational power of the CPU. For the loosely-coupled system, the CPU
is better because of the expensive data transfers to the GPU.

For both systems, the parallel version is generally not as good as expected.
For small data sizes, we see the same setup as previously discussed in Fig. 3b.
There is no potential for efficient parallel execution through the bad scaling
of each single-CU execution. Since we force data partitioning to avoid single-
CU execution, we observe at least the worst case performance of the two CUs
caused by static overheads and, additionally, we see a constant overhead for data
partitioning, CU synchronization, and final cleanup.

For large input data, these overheads should not be significant because of
the longer execution time and the better single-CU scaling. However, we still do
not achieve a significant performance improvement. In the following, executions
with large data sizes are examined separately for both systems.

4.2 Selection Operator on the Tightly-Coupled System

For large data sizes, limitations like underutilization or missing potential do
not apply, however, the parallel execution performance is worse than expected.
Therefore, we choose one setting, specifically 1 GB of input data, and analyze the
execution in more detail. We execute the operator with the fixed data size using
different partition ratios (CPU/GPU) from 100/0 to 0/100, i.e. from 100 % of
the data on the CPU to 100 % on the GPU. The result is shown in Fig. 5a. The
parallel execution does not show the expected performance of our calculations
and differs from the calculations especially for partition ratios where it should
be beneficial.

Is the Calculation Wrong? To evaluate if the problem lies in our calculations,
we rerun the experiment without parallel execution. That means we use the
data partitioning but execute the operators separately on each CU, not allowing
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Fig. 5. Extensive analysis of the parallel selection operator on the tightly-coupled
system (fixed to 1 GB of data, except for (f)).
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parallel execution. Figure 5b shows that the calculation and the actual execution
are similar, confirming our calculation approach. Therefore, the performance
difference has to be caused by parallel execution itself.

Is Heat a Problem? Since our first test system is a tightly-coupled system,
we would expect the additional heat of parallel execution to be a problem,
forcing both CUs to reduce their frequency and therefore decrease in perfor-
mance. For evaluation, we rerun the three most interesting configurations mul-
tiple times while monitoring the frequencies of the CPU (using lscpu) and the
GPU (using aticonfig). Figure 5¢ shows the result. For the CPU, the peak fre-
quency is 3900 MHz, while it will reduce the frequency to 1700 MHz when idle.
For the GPU, the peak frequency is 866 MHz and 354 Mhz when idle. The results
show for each CU that peak frequencies are always used when a CU is executing
the operator, not supporting our the theory of reduced frequencies caused by
heat problems.

Are CU Synchronizations Interfering with Each Other? The OpenCL
calls are submitted asynchronously, therefore the parent thread is not blocking
for each function call, however, the parent thread has to synchronize in the end
in order to wait for the execution to finish. This synchronization might interfere
with execution, if multiple CUs are used. We profiled the CPU usage on thread
level, for more insides. The result is shown in Fig. 5d. One thread can use up to
100 % of one core, and since the system has four CPU cores, the total core usage
of all threads can not exceed 400 % (calculation similar to the Unix-tool top). The
presented numbers are averages over many measuring points for each partition
size, therefore, a low percentage can represent a thread running on 100 % for a
short time, while being idle for the rest of the execution. In Fig. 5d, the black line
represents CPU workers of OpenCL. There are four threads (one per core) with
similar execution behavior, so only one line is plotted, showing the average of
all 4 threads. For large data partitions on the CPU, the threads work constantly
at 100 %. For small CPU partitions, the runtime is defined by GPU execution,
and therefore the CPU runs at 100 % shortly, while being idle the rest of the
time, hence, the smaller core usage. So far, this is as expected. Surprisingly, the
parent thread has nearly no CPU usage, showing that the synchronization is not
the problem because, apparently, it is implemented using suspend and resume
instead of busy waiting.

In Fig. 5d, we see another thread which has not been created explicitly but,
however, has a significant CPU usage. We tested the same setup with single-CU
execution, noticing that this thread is only occurring when the GPU is used. We
suspect this thread to be a GPU control thread, that manages the GPU queues
and execution from the CPU side. With small data partitions on the GPU, this
thread is only running shortly, while it has a constant 60 % core usage, when
using the GPU for a longer time. This thread leads to contention on the CPU
resources. The interference is not significant for the skewed execution times, e.g.
for 90/10 the GPU runs only shortly, therefore the GPU thread interferes only
shortly, while for 10/90 the CPU ruus shortly leaving the resources to the GPU
thread. However, for similar execution times of CPU and GPU, the interference
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is large, leading to a performance decrease of CPU and GPU. The CPU can not
use all its resources, hence, the slow down. The GPU, has a queue consisting of
input transfer, execution, and output transfer, where the queued commands are
not executed on time if the GPU thread is interrupted.

How to Avoid the Interference? Since we can not avoid the GPU controlling
thread, we could either accept the contention on the CPU resources and have the
operating system handle the thread switching, or we could reduce the number
of CPU cores used by OpenCL. This can be done with OpenCL device fission,
where we reduce the number of used cores by one. Other papers also propose
to leave one core idle for controlling CPU and GPU execution [7]. Figure 5e
shows the execution with only three CPU cores. Here, parallel execution and
calculation are similar. We can see that the CPU execution is about 25 % slower
with three cores instead of four, as it is expected. However, this also influences
the ideal data partition and the potential to achieve a speedup. With four cores,
the calculated speedup would be 1.54x while with three cores it is only 1.41x.
Adding the interference of CPU and GPU, parallel execution takes 181 ms with
four cores (35/65) and 164 ms with three cores (30/70), leading only to a small
difference. This effect can be seen when rerunning our initial experiment with
three CPU cores in Fig. 5f, which, unfortunately, does not show a significant
difference to the initial results.

4.3 Selection Operator on the Loosely-Coupled System

For the loosely-coupled system, we see different performance results as for the
tightly-coupled system. When looking at 1 GB of data with different partition
ratios, we see a nearly ideal performance according to our calculations (Fig. 6a).
The GPU runtimes are slightly unstable because different data sizes result in
a different degree of parallelism, leading to divergent GPU-internal scheduling,
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(a) Observation of parallel execution. (b) Execution with 23 out of 24 CPU cores.

Fig. 6. Selection operator executed on the loosely-coupled test system with 1 GB of
data and different partitions.
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which, in this case, is more visible on the Nvidia GPU than on the AMD GPU.
Additionally, the GPU runtime is slightly higher than expected. To solve this, we
did the same sequence of tests as for the previous test system. Our calculations
are correct according to the single-CU execution and power or heat issues are
unlikely, because the system is loosely-coupled, therefore, does not share a direct
power budget. When looking at the CPU utilization of each thread, we see
the same effect as before: one additional thread is controlling the GPU, and
therefore fighting for CPU resources. On the CPU side, there is no effect visible
because one additional thread does not interfere significantly in a 24 core system
(12 cores with Hyper-Threading). For the GPU, a delayed control thread leads to
delays in the queuing and longer execution times. We apply the same solution as
before: reducing the number of OpenCL CPU cores by one to 23 cores (Fig. 6b).
This improves the GPU performance while the CPU slowdown is not significant
(theoretically about 4 %). However, the GPU improvements are only marginal,
leading to no substantial improvements for the overall execution.

5 Analysis of the Sort Operator

The sort operator differs from the selection operator in many ways. In general,
the execution takes longer since there is more computation and multiple data
accesses. Therefore computational power and data bandwidths to the CUs dedi-
cated memories become important. On the other side, when executing in parallel,
the merge step can be significant for the performance.

5.1 Sort Operator on the Tightly-Coupled Systems

Figure 7a shows the evaluation result for tightly-coupled systems. The GPU is
always better than the CPU because the computational workload is more suited
for the GPUs parallelism. For small data, the CUs are bound by underutilization
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(a) Different data sizes. (b) Different partitions for 1 GB of data.

Fig. 7. Sort operator executed on the tightly-coupled test system.

12

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden



Final edited form was published in "Advances in Databases and Information Systems: 20th East European Conference.
Prag 2016", S. 291-305, ISBN 978-3-319-44039-2
http://dx.doi.org/10.1007/978-3-319-44039-2_20

254

T T T T T
—— CPUonly P —e— parallel execution * merge overhead |
1000 4= — GPU only P — calculated o
- - parallel exec. w/ merge s - - CPU part
- parallel exec. w/o merge 2.0 4~ - GPUpart B

100 —

runtime (ms)
runtime (sec)

0.01 0.1 1 10 100 1000 100/0 80/20 60/40 40/60 20/80 0/100
data size (mb) Data Partition Size CPU/GPU (%)
(a) Different data sizes. (b) Different partitions for 1 GB of data.

Fig. 8. Sort operator executed on the loosely-coupled test system.

leading to no potential for parallel execution. For larger data, the parallel execu-
tion lies between the two single-CU executions, with the merge step seeming not
significant. In a closer analysis using 1 GB of data (Fig. 7b), the reason for the
parallel execution performance becomes obvious: the runtime between the CUs
differs by one order of magnitude, so that parallel execution does not rectify the
means of synchronization and merging. For this system, it would be best to use
only the GPU, without executing the operator in parallel.

5.2 Sort Operator on the Loosely-Coupled System

For the loosely-coupled system, the results are different since both CUs seem to
be equally good in executing the sort operator (Fig. 8a), which is ideal for parallel
execution. However, we see a significant overhead through merging for larger data
sizes. The close analysis in Fig. 8b illustrates the extent of the merge step through
the dotted lines above the actual CU executions. Please note, the merge step is
more significant for the overall runtime than with the tightly-coupled system
because, here, the execution is faster on each CU, while the runtime of the
merge is comparable for both systems. The calculated runtime bases on single-
CU execution without any merging overhead. The execution on the GPU varies
from the calculation, because of the additional GPU controlling thread. However,
optimizing the GPU execution would lead to only minor improvements because
the main difference between the single-CU parts and the actual execution is
caused by the merge step. It might be possible to optimize the merge further by,
e.g., adding range partitioning [1], however, the merge itself is unavoidable.

6 Lessons Learned

Concluding our analysis of two operators on two different evaluation systems, we
have encountered most limitations explained in Sect. 2.3. Underutilization and
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shared HW resources could be seen for every test. For the latter, only contention
on CPU cores was noticeable and especially for the tightly-coupled system the
impact was significant. Reserving one CPU core for controlling is a possible
solution, however, CPU performance suffers if there is only a small amount
of cores. Additionally, we have seen no potential if the single-CU differs too
much or if the merge step is too large compared to the actual execution. These
findings can be applied to many database operators or heterogeneous system, by
quantifying the merge overhead or CU performance.

Ideally for parallel execution, we need to have (1) CUs that perform an oper-
ator equally fast, (2) one CPU core reserved for controlling, and (3) a merge step
with no significant impact on the total execution time. If a merge step is needed,
however, it will always be an additional overhead compared to single-CU execu-
tion. To avoid this overhead, we thought about partitioning input data once and
run multiple operators in parallel on each others partial results without merg-
ing in between. While it is possible in homogeneous systems with uniform data
partitions, in heterogeneous systems, each operator needs differently sized data
partitions because different CUs execute an operator differently. For example,
the tightly-coupled system with 1 GB of data needs a 35/65 partition for the
selection and a 18/92 partition for the sort operator. Executing both operators
after each other using one global partitioning would lead to a skewed execution
time for CPU and GPU. It might be possible to find a partitioning for a chain
of operators, so that all CUs finish this chain at the same time, however, this
would only be possible if intermediate results do not need to be merged and it
is unclear if a the final execution time, using suboptimal partition sizes for the
single operators, is worth the effort.

All in all, we learned two major lessons from our experiments. (1) Given
the limited potential and possible limitations, it is hard to achieve any speedup
through intra-operator parallelism in heterogeneous environments and even for
ideal cases we only achieved a speedup of 1.52x (Selection on the loosely-coupled
system). It should always be considered if intra-operator parallelism is beneficial
or should be avoided. (2) During our analysis, we have seen different single-CU
execution behavior like different ideal CUs for the selection or always better CUs
for sorting on tightly-coupled systems. If parallel execution is not beneficial, at
least the placement of the execution should be considered, e.g., for the selection
on the tightly-coupled system changing from CPU execution on small data sizes
to GPU execution for large data sizes.

7 Conclusion

In this paper, we analyzed intra-operator parallelism for heterogeneous comput-
ing resources. We proposed an initial way to calculate good partition sizes and
presented possible limitations that could hinder parallel execution. In our analy-
sis, we used two operators with two different hardware setups and showed that
especially underutilization, shared resources, different execution performance,
and the merging step limit parallel execution. Therefore, it should be care-
fully considered if intra-operator parallelism between heterogeneous resources

14

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden



Final edited form was published in "Advances in Databases and Information Systems: 20th East European Conference.
Prag 2016", S. 291-305, ISBN 978-3-319-44039-2
http://dx.doi.org/10.1007/978-3-319-44039-2_20

can achieve a performance improvement, which is worth the effort, or if the
resulting performance is worse and partitioning it should be avoided.
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