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I do not know what I may appear to the world, but to myself I seem to have been only like a

boy playing on the sea-shore, and diverting myself in now and then finding a smoother

pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered

before me.

Ð Sir Isaac Newton. [SM20]

If I were forced to sum up in one sentence what the Copenhagen interpretation says to me,

it would be "Shut up and calculate!" But I won’t shut up. I would rather celebrate the

strangeness of quantum theory than deny it, because I believe it still has interesting things

to teach us about how certain powerful but flawed verbal and mental tools we once took for

granted continue to infect our thinking in subtly hidden ways. Mathematics must therefore

remain an essential element of the knowledge and abilities which we have to teach, of the

culture we have to transmit, to the next generation.

Ð N. David Mermin. [Mer89]

Dedicated to my loved ones.





A B S T R A C T

Hard-core bosons are versatile and useful in describing several physical systems due
to their one-to-one mapping with spin-1/2 operators. We propose two frameworks
where hard-core boson mapping not only reduces the complexity of the original
problem, but also captures important features of the physcs of the original system
that would have implied high-computational procedures with not much profound
insight in the mechanisms behind its behavior.

The first case study comprising part i is an approach to the description of the
phases 2D Lattice Gauge Theories, the Quantum 6-Vertex Model and the Quantum
Dimer Model using one fluctuating electric string as an 1D precursor of the whole
2D systems[HAMS19]. Both models and consequently the string are described by
the Rokhsar-Kivelson Hamiltonian with parameter v measuring the competition
of potential versus kinetic terms. The string can be mapped one-to-one onto a 1D
system of hard-core bosons that can be solved exactly for the Quantum 6-Vertex
Model, and offers footprints of the phase diagram of the Quantum Dimer Model in
the region close to the Rokhsar-Kivelson point v = 1, especially when |v| ≤ 1.

The second case study we have discussed in part ii is an extension of higher-
dimensional bosonization techniques in Landau Fermi liquids to the case of nodal
semimetals where the Fermi surface shrinks to a point, so the description of
particle-hole interactions as fluctuations of the Fermi surface is not available [MS20].
Additionaly, we focus our analysis on the Q = 0 sector where the electron and the
hole have opposite momenta ±k, so they are mapped into a hard-core boson located
at a site k in the reciprocal lattice. To test our extension we calculate nonperturbative
corrections to the optical conductivity of 2D Dirac fermions with electron-electron
interactins described as a Coulomb potential, obtaining results consistent to the
literature and the experimental reports where corrections are small even in strong
coupling regimes.

Part iii discusses further ideas derived from parts i and ii, including a brief
discussion on addressing the weak coupling instability in bilayer graphene using
the bosonization extension that offers a picture of hard-core bosons describing
Q = 0 excitons that undergo a Bose-Einstein condensation resulting in a ground
state adiabatically disconnected from the noninteracting case.
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his opponent, to do harm to others. We need to have the spirit of science in
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to find the right solution, the just solution of international problems, not
the effort by each nation to get the better of other nations, to do harm to

them when it is possible.
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1
I N T R O D U C T I O N

The measure of greatness in a scientific idea is the extent to which it stimulates

thought and opens up new lines of research.

Ð Paul A. M. Dirac [Dir72]

The many-body behavior of particles constituting matter is mainly dic-
tated by their statistics. According to Particle Data Group review [Zyl+20],
the universe is composed by a set of fermions and bosons with a finite
number of flavors. The lowest-energy modes relevant to condensed matter
research are the electron and the photon manifesting as electromagnetic
electron interactions (usually Coulomb repulsions). The different atomic
arrangements in materials offer structured environments where electrons
can exhibit a large class of collective behaviors, going from the well-known
Fermi gas and Landau Fermi liquid[AGD12], passing through the Bardeen-
Cooper-Schrieffer (BCS) superconductors [BCS57] and semimetals[Kat12], to
the Resonant Valence Bond (RVB) and spin ice states[Fra13]. However, ap-
proaching these problems might imply enormous computational resources
because of the exponential growth of the Hilbert spaces involved. So, it is
required to reduce the difficulty by doing sensible mappings of the relevant
degrees-of-freedom (DOF) of the original systems onto simpler ones that still
keep the low-energy behavior.

Some of these mappings can be done using Hard-core Bosons (HCBs)[Fra13;
CS16]. First implemented in the problem of superfluid Helium II in a lattice
model, HCBs have the following commutation relations[MM56; MM57]:

[b²
i , b²

j ] = [b²
i , b²

j ] = 0, [b²
i , b²

j ] = δij(1− 2ni), (1.1)

where the bosons fulfill the hard-core constraint, i. e., ni = b²
i b²

i only takes
values 0 and 1, This constraint can be obtained from a strongly interacting
bosonic system described by the Hamiltonian

HHCB = ∑−t(b²
i bi+1 + h.c.) + Uni(ni − 1), (1.2)

with U → ∞ projecting out multiply occupied sites. This kind of interaction
have been experimentally implemented in ultracold atoms as a tunable
contact potential [BDZ08; Par+04; Chi+10]. This is also found in composite
bosons, where an even number of fermions form a bound state and the Pauli
exclusion is mapped into the hard-core constraint [CS16].

The main interest we have in HCBs in this work comes from their exact one-
to-one mapping with spin-1/2 operators[MM56; MM57]. We have employed
the HCB mapping in the frameworks of Lattice Gauge Theories (LGTs), more

1
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specifically in 2D Quantum Link Models (QLMs) [Hor81; OR90] discussed
in part i, and in a new bosonization framework for interacting particle-hole
excitations (PHEs), or excitons, in nodal semimetals in part ii [Fuc+10; Li+12;
Goe11], where excitons emerged as HCBs allow to reexpress the fermionic
Hamiltonian as quadratic in HCB picture. The implementation of such a
mapping not only yields more viable strategies to address the problems
outlined above, but also gives a new picture where the fluctuations of
the string in a 2D QLMs, or the PHEs in nodal semimetals, can be easily
understood as scalar particles fulfilling the hard-core constraint ni = {0, 1}
as discussed below. The following sections present a brief discussion about
QLMs and bosonization of PHEs with special focus in 2D systems, and the
problems we address implementing HCBs in a straightforward way.

1.1 quantum link models and fluctuating electric strings

.

�

.

(a)

.

	

.

(b)

Figure 1.1: Electric string con-
necting two defects in a square
lattice in a S = 1/2 QLM in the
Gauss’ law sector. The string
γ is embedded in a lattice
where Qr = 0 except at the
defects Q∂γ = ±2. (a) and (b)
are the two states |⟲⟩ and |⟳⟩
states of flippable plaquettes in
QLM.

The first framework we address in this work con-
sists in the description of the phases of an electric
string parametrized along a directed path γ, as
shown in FIG. 1.1, connecting two charges Q∂γ

at the boundaries of γ called defects for reasons
discussed below, by mapping of the string onto
a 1D HCB chain [HAMS19]. The string is embed-
ded in a square lattice where each site is assigned
with a quantum number Qr counting the number
of ingoing and outgoing electric lines Er,ℓ along
the four links (r, ℓ) connecting each site with its
Nearest Neighbors (NNs) (see FIG. 1.1). The back-
ground configuration of Qr is determined by two
rules: Qr = 0 for every lattice site, case shown in
FIG. 1.1 and called Gauss’ law sector [IM14]; and
Qr = ±2, with positive and negative signs form-

ing a checkerboard lattice (a site in sublattice A or B is assigned with +2
or −2, respectively). Hence, the sources Q∂γ are defect where the rules are
violated (depicted as fat dots in FIG. 1.1).

The previous problem is one type of LGT, quantum mechanical lattice
models with local conservation laws suited to simulate the physical vacuum
of our universe [Kog79], and also give rise to unconventional phases of
matter [Fra13; Wen04]. LGTs consist on placing the matter fields at the sites
r of a lattice, and the segments joining the sites r and r + ℓ (where ℓ are
the primitive lattice vectors) are oriented links (r, ℓ) with quantum numbers
nr,ℓ ∈ Z counting the number of electric field lines Er,ℓ |nr,ℓ⟩ = nr,ℓ |nr,ℓ⟩ along
the link. At each site we can define a charge Qr determined by the difference
between the ingoing and outgoing links touching it, that is the divergence
of the electric field, ∇ · Er = Er,x − Er−x̂,x + Er,y − Er−ŷ,y to have a lattice
expression of the Gauss’ law ∇ · Er = Qr [IM14; Wie13; CW97; Hor81].
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Further, the QLMs comprise one realization of compact LGTs, in which the
electric lines along the links have a Hilbert space which is finite-dimensional,
i. e., each link can saturate and nr,ℓ reaches maximum values (nr,ℓ = −S, ..., S),
similarly to angular momentum states [IM14]. In the case of a QLM with
S = 1/2, each link can be represented by a spin-1/2, and the minimal electric
circulation loops called flippable plaquettes, which have two states, |⟲⟩ and
|⟳⟩ (see the FIG. 1.1). The dynamics of the system is described by the
Rokhsar-Kivelson (RK) Hamiltonian [RK88]:

H = ∑
P

−t(|⟲⟩⟨⟳|+ |⟳⟩⟨⟲|) + V(|⟲⟩⟨⟲|+ |⟳⟩⟨⟳|), (1.3)

inicially proposed in the context of high-temperature superconductors,
where the first term produces |⟲⟩↔ |⟳⟩ fluctuations and the second one
counts the number of flippable plaquettes, i. e., states |⟲⟩ , |⟳⟩ in the lat-
tice. At V = t, the RK point, the Hamiltonian becomes a sum of projectors
(|⟲⟩ − |⟳⟩)(|⟲⟩ − |⟳⟩), a positive definite operator whose lowest eigenvalue
corresponds to a zero mode consisting in the superposition of all possible
configurations of flippable plaquettes [Fra13].

Although QLMs has finite-dimensional Hilbert spaces at each link, the
configuration of ingoing and outgoing links at each vertex is not fixed. We
can propose the constraint ∇ · Er = Qr at each lattice and choose one Hilbert
subspace of QLM[IM14]. As discussed in the first paragraph of this section,
the case studies selected for this work are Qr = 0 for every lattice site, and
Qr = ±2 per each sublattice [HAMS19].

Figure 1.2: Ices rules:
Representation of
the location of pro-
tons in water ice.

To understand the Gauss’ law sector Qr = 0, we
briefly discuss the Bernal-Fowler ice rules [MR11b], histor-
ically first observed in the internal disposition of water
molecules H2O in ice [BF33] (see FIG. 1.3). There are six
different orientations for the two protons H of the water
molecule, so the molecule can be mapped as four arrows
at the corners of a tetrahedron, where two arrows point
inwards, corresponding to the protons, and two outgoing
arrows pointing towards the protons of molecules in the
neighboring corner-sharing tetrahedra, as depicted in FIG.
1.3 [MTS04; BH20; LMM11].

These systems can be studied using the Q6VM consisting of a square lat-
tice where each site has two ingoing and two outgoing links to fulfill the
divergenceless condition, allowing only six possible vertices. The Q6VM was
proposed as a 2D ice model by Pauling to calculate the water ice entropy
at the zero-temperature limit[Pau35], followed by Slater to study ferro-
electric materials [Sla41]. The model was solved exactly by Lieb obtaining
the entropy-per-molecule S = kB ln W[Lie67], where W is the Lieb’s square

constant W = (4/3)
3/2.

Different rare-earth Ferromagnetic (FM) materials[GM14] have presented
a similar behavior [Har+97; Ram+99], whose rare-earth cations form a
sublattice of corner-sharing tetrahedra in a Face-Centered Cubic (FCC) lattice
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(a) (b)

√N× 2 × 2 ∼ × 2

RK

V/t1−0.374

VcNéel plaquette quasi−collinear

(c)

Figure 1.4: 2D pyrochlore XXZ Heisenberg model as Q6VM: (a) Mapping of the XXZ Heisenberg
model on a checkerboard lattice (a,a) to the Q6VM (a,b) and (b) phase diagram as a
function of the parameter v = V/t in Hamiltonian (1.4). [Adapted by permission
from the American Physical Society (Shannon et al. [SMP04]) Copyright (2004);
https://doi.org/10.1103/PhysRevB.69.220403].

called pyrochlore lattice (see FIG. 1.3a) [LMM11], with an anisotropic exchange
that force them to fulfill the ice rules for spin systems: two-in-two-out (see
FIG. 1.2). Further, Hermele, Fisher & Balents in [HFB04] showed that a
spin-1/2 Heisenberg antiferromagnet in the pyrochlore lattice, with the easy-
axis anisotropy that aligns the spins following the ice rule, has a U(1) spin
liquid phase whose fractionalized excitations produces an emergent effective
Quantum Electrodynamics (QED). Moreover, Castro Neto, Pujol & Fradkin
in [CNPF06] used the Q6VM to study electrical properties of water ice by
allowing the existence of defects Qr = ±1, violations of the ice rules for
protons H, finding an effective U(1) gauge description with H-insulator
and H-plasma as confined and deconfined phases. Jaubert & Udagawa
have recently published a review on spin ices [UJ21] discussing from the
very basics to the last developments on the subject such as nonequilibrium
properties, experimental explorations for the monopole Coulomb phase, or
artificial spin ices.

(a) (b)

Figure 1.3: Q6VM from the wa-
ter ice: Pictorical representation
of the Quantum 6-Vertex Model
(Q6VM) as a 2D model of the wa-
ter ice in a maximally polarized
(ferroelectric) state.

The Q6VM exhibits different phases depend-
ing on the value of the parameter v = V/t of
the RK Hamiltonian (1.4) tuning the two com-
peting terms: the kinetic term that produces
fluctuations with parameter t, and the RK poten-
tial V counting the number of flippable paque-
ttes. Thanks to Lieb’s solution [Lie67], there is a
general agreement in the matter. At v = 1, the
RK point, the Hamiltonian (1.4) becomes a sum
of projectors (|⟲⟩ − |⟳⟩)(|⟲⟩ − |⟳⟩), a posi-
tive definite operator whose ground state is the
equal-weight superposition of any zero-energy
state, constituting a gappless phase [SMP04].
On the Right Hand Side (RHS) of the RK point (see FIG. 1.1 and 1.4), the
region v > 1, the Hamiltonian produces a ferromagnetic phase, no flip-
pable plaquettes are found, all the links pointing towards the same di-
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Figure 1.5: Candidate phase diagram of the Quantum Dimer Model (QDM): (a), (b) and (c) show
the four inequivalent columnar, plaquette RVB and staggered configurations in
the dual sublattices (A,B,C,D). The phase diagrams (d) summarize the different
proposals in the literature (read the text for details). [Taken by permission
from the American Physical Society (Banerjee et al. [Ban+14]) Copyright (2014);
https://doi.org/10.1103/PhysRevB.90.245143].

rection [MR11a], as shown in FIGs. 1.1, and the system presents a sub-
dimensional deconfinement of the defects violating the ice rules [BT04;
SMP04]. On the Left Hand Side (LHS) of RK point, the region v < 1, the
ground states in the square lattice are broken symmetry phases, in which
the charges are confined from the gauge theory point of view [Pol87]. These
two phases, separated by a critical point vc ∼ −0.4 indicated in FIG. 1.4,
are an Antiferromagnetic (AFM) Néel state in the checkerboard lattice for
v < vc that breaks the point group, and a plaquette phase that presents
translational symmetry and power-law correlations.

The second case we study, the staggered background Qr = ±2 is suited
to describe the celebrated QDM, proposed by Rokhsar & Kivelson [RK88],
following Pauling’s RVB [Pau53] and Anderson’s work, advocating that spin-
1/2 AFM Hamiltonians not always have an AFM ground state (Néel state),
instead, a phase of resonating valence-bond pairs of lattice-NN electrons in
the spin-singlet state covering the lattice along the links as hard-core dimers
that resonate with the empty links [And73] (see FIG. 1.5). The RK Hamiltonian
was originally expressed in terms of dimers as follows:

H = ∑
P

−t
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, (1.4)

where we have included the flippable plaquettes in order to map the parallel
dimers as circulating loops of electric lines in QLM.

In contrast to the Q6VM where we count with Lieb’s solution [Lie67], the
phase diagram of the QDM is not accurately known in the region |v| <
1. Leung et al. in [LCR96] proposed a phase diagram with three phases:
columnar, plaquette RVB and staggered (see FIG. 1.5). When v → −∞ the
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ground state is the gapped columnar solid [LCR96; Fra+04] (see FIG. 1.5(a)),
with four degenerate configurations of long-range correlated parallel dimers,
two horizontal and two vertical depending on the relative position of dimers
respect to the sublattices. On the contrary, when v→ +∞ the plaquettes are
absent in the gapped staggered solid, also fourfold degenerate as shown in
FIG. 1.5(c) [LCR96; Fra+04]. At the RK point v = 1 the ground state is the
RVB state, an equal-weight superposition of all possible dimer coverings of
the lattice [Fra13], but the region between columnar and RK point is still
a matter of debate. First, Banerjee et al. in [Ban+14], and Oakes, et al. in
[Oak+18] by means of Montecarlo procedures found no phase between the
columnar solid and the RK point, as displayed in FIG. 1.5(d)1. Syljuåsen in
[Syl06], as well as Leung et al. in [LCR96], found the existence of the plaquette
solid, a staggered configuration of flippable plaquettes of RVB depicted in
FIG. 1.5(b), although they dissagree in the value of the critical v of the
columnar-to-plaquette transition in FIG. 1.5(d)2. Lastly, Ralko et al. propose
in [RPM08] a mixed phase continuously interpolated between the columnar
solid and the plaquette RVB in the region 0 < v < 1 (FIG. 1.5(d)3).

Figure 1.6: Background configura-
tion for the electric string in QDM:
The sublattice A(B) has vertices
Qr = ±2, 1-in-3-out (viceversa).
The dimer locates in the link
flowing inwards sublattice A.

In this context, part i of this work discusses
in detail the proposal by Herzog-Arbeitmann,
Mantilla & Sodemann [HAMS19]. We address
the problem of the phase diagram of the Q6VM
and the QDM in a unified framework given by
the Abelian QLM in a periodic square lattice
Lx × Ly. As already discussed, the Q6VM can be
obtained by imposing the condition Qr = 0 at
every lattice site, while the QDM by Qr = ±2
in a staggered pattern. Additionally, the wind-
ing numbers Wx,y of the system, i.e., the sum
of horizontal (vertical) links along one vertical

(horizontal) non-contractible loop, work as two additional good quantum
numbers to select one topological sector for each system[Fra13; Hoo78].
These sectors are chosen so as the resulting configuration the string is em-
bedded in is a ground state in the region at the RHS of the RK point, excluding
any flippable plaquette from the background. The construction of the Q6VM
selects the maximally polarized sector Wx,y = Lx,y, depicted in FIG. 1.1 for
Lx,y = 3, while the QDM takes the Wx = Lx and Wy = 0, resulting in a
staggered horizontal configuration of dimers (see FIG. 1.6). A string is then
introduced in the system by reversing the orientation of the links along
a path γ ending at the defects Q∂γ. The flip of the links along γ creates
flippable plaquettes at the turning points or kinks of the string (FIG. 1.1),
where the kinetic term of the RK Hamiltonian in (1.4) produces quantum
fluctuations that modify the path γ.

We proceed to calculate the ground states of the electric string to propose
a phase diagram for each model in function of v = V/t so that the string
can act as a 1D precursor of the phases found in the whole Q6VM and QDM,
manifesting by the number of kinks, i.e., flippable plaquettes, the string has.
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Figure 1.7: Phase diagram of the electric string in Q6VM: The FM, gapless paramagnetic and
AFM correspond to different paths γ describing the string.

The methodology consists in mapping the string onto a 1D chain occupied
by HCB ruled by a bosonic Hamiltonian that embodies the dynamics of the
string in terms of HCB hoppings and potential terms. Our results suggest
the existence of at least three phases with three critical points: 1) a FM phase
minimizing the number of flippable plaquettes, corresponding to the less-
kinked path γ of the electric string (RHS of FIG. 1.7), 2) the high-symmetry
RK point where any string configuration contributes to the ground state,
3) a gapless paramagnetic phase with ground state described by the path
γ that maximizes the number of flippable plaquettes (the point v = 0 is
a high-symmetry point for the Q6VM), 4) a critical point around v ∼ −1
suggesting an infinite-order Kosterlitz-Thouless (KT) transition; and 5) a
gapped AFM state with ground state corresponding to the maximally kinked
path (LHS of FIG. 1.7). We can interpret the phases at the limits v → ±∞

with the solids of the 2D models and the liquid-like phase in the region
|v| < 1 with the plaquette RVB as closely-packed strings because strings can
at most intersect yielding a 2-in-2-out or staggered vertex without flippable
plaquettes that block further crossings, producing closed resonating strings
in direct resemblance of the phase depicted in FIG. 1.5(b). The chapters 2, 3

and 4 discuss extensively the framework of LGTs, its realization in QLMs and
the subsectors of Q6VM and QDM on the problem of the phase diagram of
the fluctuating electric string.

1.2 bosonization of particle-hole excitations in 2d dirac

fermions

The second framework we address in this work is the problem of describing
Q = 0 PHEs in nodal semimetals with graphene as a case study (see FIG. 1.8).
The nonperturbative effects of interactions in a 2D Dirac fermion system
are captured by a bosonizaton formalism proposed in this work, in which the
creation of particle-hole pair at momentum k in the Q = 0 is mapped as the
flip of the pseudospin sk of the electron, initially oriented towards the Dirac
Point (DP) (see FIG. 1.8). The pseudospin sk is reexpressed in terms of HCBs
b²

k, b²
k by means of the Holstein-Primakov (HP) transformations, as well as the

associated Hamiltonian which is expanded up to second order in bk yielding
a quadratic bosonic Hamiltonian with hopping and pairing terms in the
reciprocal lattice. The new effective system is a collection of excitons bounded
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by the effective Coulomb attraction between the electron and the hole. As
an application of this framework, we calculate the optical conductivity
of graphene, obtaining results in agreement with the experiments and
numerical approaches.

Figure 1.8:
Low-energy
band and
pseudospin
pictures of
monolayer
graphene.

Bosonization is a technique to address nonperturbative
physics in fermionic systems successfully implemented in 1D.
It proceeds in a way that fermionic Hamiltonians involving two-
fermion operators (such as the kinetic terms) and 4-fermion
operators (interaction terms) can be reexpressed as quadratic
in the new bosonic basis so that not only its diagonalization
is straightforward but also that it is remarkably successful in
capturing the nonperturbative features of 1D systems [Gia03].

The first work in this direction might be Bloch’s proposal
in [Blo33] on studying excited states of a Fermi gas as sound
waves, oscillations in the density of the collection of electrons
in replacement of the original excited electron and hole DOF.
Tomonaga in [Tom50] formalizes Bloch’s idea for 1D systems
consistently, and Frölich in [Frö53] proposes an extension to 3D Fermi gas
in the context of superconductivity. Giamarchi’s textbook on physics of 1D
quantum system [Gia03] discusses in detail 1D bosonization, Bethe Ansatz,
among other methods.

Figure 1.9: Shell of validity for
bosonization in any dimension.
The fermionic DOF outside
the shell kF − λ/2 < |k| <
kF + λ/2 are integrated out
to obtain an effective model
where the low-energy excita-
tions are bosonized.

Motivated by the successful description of 1D
systems using bosonization, extensions to higher-
dimensional systems have been attempted. Luther
in [Lut79] extends Tomonaga’s bosonization to
3D systems for excitations whose momentum vec-
tor Q is normal to the Fermi surface. Later, Hal-
dane, in a series of lectures during the Interna-
tional School of Physics "Enrico Fermi" [Hal94]
presented how multidimensional fermionic sys-
tems can be bosonized by interpreting excita-
tions as deformations of the Fermi surface so
as its volume remains intact after interactions
are included, in accordance to Luttinger’s the-
orem [Lut60], approach followed by Houghton &
Marston in [HM93] which include a calculation of
the contribution T3 ln(T) to the specific heat of 3D
Fermi liquids to do small-angle scatterings, and in
later work with Kwong [HKM94] they study the

stability of the bosonized Fermi liquid with electron-electron interactions.
In the series of articles [CNF94b; CNF94a; CNF95], Castro Neto & Fradkin
present a framework to perform bosonization in any number of dimensions
within the limit of long wavelengths by bosonizing the low-energy excita-
tions in a shell closely surrounding the Fermi surface (see FIG. 1.9). The
previous developments are contained and discussed in detail in the review
[HKM00] done by Houghton, Kwong & Marston.
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In brief, higher-dimensional bosonization departs from considering the cre-
ation of a particle-hole pair c²

k+Q/2c²
k−Q/2 with total momentum |Q| ≪ kF

inside the shell depicted in FIG. 1.9. These are promoted to bosonic operators
bk,Q whose commutators are approximated as a number. The new bosonized
Hamiltonian couples bosonic modes with momentum Q to bosons with
either +Q or −Q, and no other channels are dynamically connected. In
other words, a particle hole-pair with momentum Q = Q1 + Q2 cannot
scatter into two particle-hole pairs with momenta Q1,2. Only particle-hole
pairs with momentum Q can scatter into pairs with the same Q or cre-
ate pairs with momentum +Q and −Q. Indeed, the higher-dimensional
bosonization approach to PHEs close to the Fermi surface is crucially based
on the assumption of separability of the Hilbert space in subspaces labeled
by Q, with the hypothesis that it is an asymptotically correct description of
such excitations in Landau-Fermi liquids for |Q| ≪ kF.

Figure 1.10: Shear sound in Fermi
liquids. Fermi surface deformation,
and density/current fluctuations of
zero (a,c) and shear (b,d) sound.
[Adapted by permission from the
APS (Khoo et al. [KSV19]) Copyright
(2014); https://doi.org/10.1103/

PhysRevB.99.075434].

Further works in higher-dimensional
bosonization in different contexts are the
description of (2 + 1)-dimensional nonrela-
tivistic fermions using bosonization [Bar+00];
quantum Hall effect [BO00]; bosonization
via hydrodynamic variables [Set06] and non-
commutative field theory [Pol06]; topologi-
cal insulators [Cha+13; CRS17]; 2D Fermi liq-
uids in weak magnetic fields [BFR18]; trans-
verse fluctuations called shear sound in 2D
Fermi liquids [KSV19] where the excitations
are tranverse waves instead of longitudinal
density fluctuations as shown in FIG. 1.10;
and Q = 0 PHEs in two-band systems with
Fermi surfaces shrunken to a point such as
graphene and topological insulators [MS20].

In this context, part ii of this work dis-
cusses in detail the proposal done by Mantilla & Sodemann [MS20]. Higher-
dimensional bosonization, as stated in the previous works, is not valid for
PHEs with momentum Q = 0 since these excitations do not exist in ordi-
nary one-band Fermi liquids (see FIGs. 1.8 and 1.9). Even more, in nodal
semimetals, where the Fermi surface shrinks to a point, for instance, Weyl
or massless Dirac semimetals, do not admit a description of modes close
to the shrunken Fermi surface. We address the problem of developing a
systematic bosonization approach to the sector Q = 0 for gapless semimetals.
Although our proposal is attempted to be valid in higher dimensions, as
a first approach, we focus our discussion only on 2D Dirac fermions, for
instance, low-energy modes on the surface of 3D topological insulators or
in monolayer graphene, where the latter is our study case. In a few words,
we propose a mapping of the interacting PHEs, or excitons, in Q = 0 sector
onto a spin-like picture based on the pseudospin operator that comprises
the kinetic terms of the fermionic Hamiltonian. The pseudospin is then
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mapped as HCBs representing the excitons, and yielding a new bosonic
quadratic Hamiltonian, whose diagonalization is straightforwards using
Bogoliubov-Valatin (BV) transformations [Val58; Bog58].

Figure 1.11: Exciton operators:
The new bosonic operators
b
(²)
k describe PHEs of 2D Dirac

fermions as HCBs in the lattice.

We take borrowed from higher-dimensional
bosonization the assumption of separability of
the Hilbert space by sectors labeled by Q and
assume that the optical PHEs, i.e., with Q = 0,
are decoupled from pairs with finite Q. At low
energies, we expect this simplification is valid
in phases adiabatically related to free fermions,
similarly to how such decoupling allows the
description of Fermi liquids which are adiabat-

ically connected to free fermions in the higher dimensional bosonization
of Fermi surfaces. Nevertheless, for our formalism, we present a solid and
very explicit connection to the conventional Feynman diagrammatic pertur-
bation theory by proving that the solution of our effective bosonic Hamil-
tonian for optical particle-hole pairs is exactly equivalent to the Kadanoff-
Baym (KB) Self-Consistent Hartree-Fock (SCHF) resummation [BK61; Bay62]
of the particle-hole propagator at Q = 0, associated with the self-consistent
Hartree-Fock (HF) approximation to the single particle-particle Green’s func-
tion (for further details Appendix B discusses this procedure in detail).

Figure 1.12: Absorbance and sheet conduc-
tivity of graphene: Absorption spectra
for three different samples of graphene
over the range of photon energies be-
tween 0.5 and 1.2 eV. [Adapted by
permission from (a) the American
Physical Society (Mak et al. [Mak+08])
Copyright (2008); https://doi.org/

10.1103/PhysRevLett.101.196405].

As an application of our approach we
will compute the interaction corrections
to the optical conductivity σ(ω) of 2D
Dirac fermions with Coulomb interac-
tions, whose strength is parametrized
by the effective fine structure constant
α = e2/ϵv, where v is the velocity of the
Dirac fermions and ϵ the dielectric con-
stant of the surrounding medium. This
optical conductivity at low energies is de-
termined by fundamental constants of na-
ture and given by σ0 = e2/16h̄ per Dirac
cone [Lud+94; AZS02]. Its zero-frequency
limit is not expected to be renormalized
by interactions, but Coulomb interactions
can produce a slow flow as a function
of frequency to such value wirh a non-
trivial non-analytic frequency dependence
at low energies. The first perturbative
approaches done by Mishchenko [Mis08] and Herbut, JuričiÂc & Vafek
[HJV08] were in mutual dissagreement. Subsequent studies by Sheehy &
Schmalian, [SS09], Abedinpour et al. [Abe+11], Sodemann & Fogler [SF12],
and Teber & Kotikov [TK14; TK18] among others [Gaz+13; Bar+14a], vali-
dated Mishchenko’s result. Our approach [MS20] recovers the same result
in the perturbative limit, with the advantage that nonperturbative values
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of α are also accesible, filling this gap in the scarse literature. A Quantum
Monte Carlo approach done by Boyda et al. on computing σ(ω) concluded
that interaction corrections remain relatively small even at α ∼ 2, with the
support of our approach. To conclude, experimental measurements of optical
properties in graphene done by Li et al. [Li+08], Mak et al. [Mak+08] (see
FIG. 1.12), and Nair et al. [Nai+08] have reported σ(ω) in close agreement
with the noninteracting value σ0, results reproduced by our approach up to
α ∼ 5 with corrections no larger than 4% of σ0.

1.3 structure of the document

The document is divided into three parts, the first two, Parts i and ii each
subdivided into three chapters comprising the main body, and the last one,
Part iii, devoted on exploring new ideas and the conclusions derived from
the main body. In the end, a set of short Appendices is added to complement
the content:

• Part i Quantum link models and fluctuating electric strings

contains Chapters 2, 3 and 4.

± Chapter 2 outlines briefly the Abelian formulation of LGTs and
QLMs, as well as to establish the notation used in Chapters 3 and 4.
The reader familiarized with LGTs can skip this chapter and return
in case of need.

± Chapter 3, based in [HAMS19], studies the phases of an electric
string connecting two static sources in the Q6VM, a quantum ice
model in the checkerboard lattice, by mapping it into a 1D system
of HCBs, mapped further into a XXZ chain.

± Chapter 4, following [HAMS19], continues the study of the phases
of one electric field line but in the QDM, as a 1D precursor of the
phases of the whole QDM discussed in the literature.

• Part ii Bosonization of Particle-Hole Excitations in 2D Dirac

fermions: contains Chapters 5, 6 and 7.

± Chapter 5 presents summarily the origin of the effective model of
2D Dirac fermions from the tight-binding model of the honeycomb
lattice due to sp2 hybridization of carbon atoms. It also sets the
notation used in Chapters 6 and 7. The reader familiarized with
the matter can skip this chapter and also return in case of need.

± Chapter 6, based in [MS20], introduces a bosonization technique
to study PHEs in the Q = 0 sector as an extension to the previous
techniques for higher-dimensional systems.

± Chapter 7 discusses the calculation of the optical conductivity of
graphene including nonperturbative effects of interations as an
application to the bosonization formalism presented in chapter 6

and in [MS20], with a comparison to the results with the literature.
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• Part iii New Perspectives and Conclusions: contains Chapters 8 and
9.

± Chapter 8 discusses current and further developments based in
Chapter 6, specifically in describing the weak coupling instability
of bilayer graphene derived from electron interactions.

± Lastly, Chapter 9 outlines the findings in the implementation of
HCBs in the contexts of electric strings in 2D LGTs and Q = 0 PHEs
in graphene.

• Part iv Appendices: contains further information and details cited
through the main parts.

± App. A has a very brief discussion on Bethe Ansatz and expres-
sions of the ground state energy of the 1D XXZ chain used in
Chapter 3.

± App. B shows the explicit calculation of the KB SCHF approxima-
tions of the particle-hole propagator used in Chapter 6.

± App. C presents a pedagogical calculation of the optical conductiv-
ity of Dirac fermions with the method of pseudospin precession,
cited in Chapter 7.

± App. D discusses the procedure to reconfigurate lattice in which
we proposed the bosonization in Chapter 6 from a square to a
polar lattice, manifestly displaying the rotational symmetry of the
thermodynamic limit of interacting electrons in Chapter 7.

The reader interested in the implementation of HCBs in LGTs is invited
to focus their reading on Part i. Similarly, the reader interested in the
bosonization of 2D Dirac fermions can skip Part i and focus on Part ii and
Chapter 8.



Part I

Q UA N T U M L I N K M O D E L S A N D F L U C T UAT I N G
E L E C T R I C S T R I N G S

This part is focused in studying the phases of one electric field string
between two static sources as a system to implement hard-core bosons
described by the Rokhsar-Kivelson (RK) Hamiltonian in a 2D Abelian
Lattice Gauge Theory (LGT). Chapter 2 presents the basic framework of
source-free U(1) LGTs in 2D and the Quantum Link Model (QLM) up to
the construction of the RK Hamiltonian, solved in the chapters 3 and 4

for the problem of the electric field line in the Quantum 6-Vertex Model
(Q6VM) and the Quantum Dimer Model (QDM), respectively, as two
subsectors of the U(1) LGT.





2
A B R I E F I N T R O D U C T I O N T O L AT T I C E G AU G E
T H E O R I E S

Besides language and music, it [mathematics] is one of the primary manifestations of the

free creative power of the human mind, and it is the universal organ for world

understanding through theoretical construction.

Ð Hermann Weyl [Zei11]

The concept of symmetry lies at the very center of physics as a modern
science, in its classical but especially in the quantum formulation where
the systems are described by complex functions that allow to encompass
more directly the sets of transformations, or groups, that leave the systems
invariant[ED79]. The symmetries of a physical system can be discrete or
continuous, global or local, spatio-temporal or internal, etc., but one of the
most fruitful frameworks correspond to the formulation of theories that are
described by local internal symmetries, called gauge theories.

Although gauge theories were first built in continuous space[JO01], their
formulation in a lattice gives several advantages such as the existence of a
natural UV-cutoff or their natural implementation in atomic and condensed
matter systems characterized by space point groups. Their Hamiltonians are
also defined by local terms whose parameters can display many different
phases that explain from quark confinement and hadronization in Quantum
Chromodynamics (QCD)[KS75; Wil74], spin ice materials[GM14; BHR21],
atomic systems[Aid+22; ZCR15] among others.

This chapter is devoted to do discuss the background and notation used
to study the problem of a single electric line connecting two static sources
in the Quantum 6-Vertex Model (Q6VM) and the Quantum Dimer Model
(QDM) in [HAMS19], from the very statement of invariance under local
gauge transformations in §2.1, through the formulation of the Abelian
Lattice Gauge Theory (LGT) in §2.2, to the introduction of the Quantum Link
Model (QLM) and the Rokhsar-Kivelson (RK) Hamiltonian in §2.3, in order
to address the problem of a fluctuating electric string in the Q6VM and the
QDM as sectors of a QLM in chapters 3 and 4, respectively.

2.1 continuous formulation of u(1) gauge theories

The introduction of electromagnetic fields using the Abelian gauge group
U(1) is done by imposing the invariance of the equation of motion of a free
particle under the local transformation

ψ(x)→ V(χ(x))ψ(x) = eieχ(x)ψ(x), (2.1)

15
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where x = (r, t), V(χ(x)) ∈ U(1), and e is the coupling constant that controls
the strength of the interaction. The new terms coming from V(χ(x)) are
cancelled out when the gauges at x and x′ are adequately connected with
the introduction of gauge parallel transporters U(x′, x) ∈ U(1)[PS95]:

ψ(x)→ ψ(x′) = U(x′, x)ψ(x), (2.2)

called as phase-compensators since it shifts the phase of ψ(x) when evaluated
at the points x and thereafter at x′ to keep the gauge invariance. The
expression of the gauge transporter U(x′, x) is (using relativistic notation
[xµ] = (t, r) with [ηµν] = diag(+−−−))[Rot12]:

U(x′, x) = P exp
[

ie
∫

C
Aµ(x)dxµ

]

, (2.3)

where [Aµ] = (Φ,−A) is the gauge connections with components Φ and
A the scalar and vector potentials, respectively, and P is a path-ordering
operator depending on the affine parameter used to map the path C starting
from x and ending at x′. In order to keep the transformation rule in (2.1), the
gauge transporter must gauge transform as U′(x′, x) = V(x′)U(x′, x)V²(x),
yielding that the connection has the gauge transformation rule:

Aµ(x)→ Aµ(x) + ∂µχ(x), (2.4)

(where [∂µ] = (∂t,∇)). As an important definition, the evaluation of the
transporter (2.3) along a closed loop defines the Wilson loop[CMV14]:

L = P exp
[

ie
∮

C
Aµ(x)dxµ

]

, (2.5)

which is gauge invariant and encodes the dynamics of the connections as it
is briefly presented in §2.1.1. Lastly, the equations of motion are modified
by replacing ∂t and ∇ by the covariant derivatives:

∂µ → ∂µ − eAµ =

{

∂t − eΦ,
∇− eA,

(2.6)

The gauge transporter is one of the key elements used in the lattice
formulation of gauge theories since it contains the transformation rules for
finite intervals fixed by the lattice parameters. Similarly, the Wilson loop is
fundamental to describe gauge fields in the lattice.

2.1.1 Gauge field equations

The gauge connections a.k.a. potentials are dynamical entities whose equa-
tions of motion are expressed in terms of the gauge curvature Fµν, obtained
as the commutator of the covariant derivatives

[

Dµ, Dν

]

ψ(x) = ieFµνψ(x) ,
where the antisymmetric tensor is given by[Ryd96]

Fµν = ∂µ Aν − ∂ν Aµ. (2.7)
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Another way to reach the curvature is by evaluating the transporter (2.3)
along an infinitesimal closed loop C = ∂S enclosing a surface S, employing
the Stokes’ theorem[CMV14]:

P exp
[

ie
∮

∂S
Aµ(x)dxµ

]

= exp
[

ie
∫

S
Fµν(x)dσµν

]

, (2.8)

and extracting the change of the wave-function when it is parallel trans-
ported along C as ψ′(x)− ψ(x) = ie

2 FµνSµν, finding that it is proportional to
the area Sµν of the surface enclosed by C contracted with the curvature Fµν,
i.e., the flux of the component Fµν through the infinitesimal surface Sµν.

The components of Fµν are

Ftj = −∂t Aj − ∂jΦ = Ej, Fij = ∂i Aj − ∂j Ai = ϵijkBk, (2.9)

being E and B the electric and the magnetic fields, respectively, both gauge
invariant from the very definition of the Wilson loop (2.5) and explicitely
visible in the definition of Fµν in (2.7).

As a consquence of the Jacobi identity applied on the commutators of the
covariant derivative, the curvature Fµν fulfills the Bianchi identities, that yield
the the homogeneous Maxwell equations [Ryd96]:

∂µFνρ + ∂νFρµ + ∂ρFµν = 0→
{

∇ · B = 0,
∇× E = −∂tB,

(2.10)

as geometric constrains in the fields. On the other hand, the Lagrangian
containing the kinetic term of the gauge fields and the coupling with the
sources, the 4-current [Jµ] = (ρ,−J), is given by[Ryd96]:

L = −1
4

FµνFµν − Jµ Aµ =
1
2

(

E2 − B2
)

− ρΦ + J ·A, (2.11)

and yields the inhomogeneous Maxwell equations

∂µFµν = Jν →
{

∇ · E = ρ,
∇× B = J + ∂tE,

(2.12)

where ρ(x) = ψ²(x)ψ(x) and J are the matter density and current, respec-
tively. Notice that the the conservation law is automatically fulfilled since
∂µ∂νFµν = ∂ν Jν = 0 because of Fµν = −Fνµ.

From the Lagrangian (2.11) it is also possible to obtain the conjugated
momentum fields of Φ and A as[Ryd96]:

πV =
∂L

∂∂tΦ
= 0, πk

A =
∂L

∂∂t Ak
=
(

∂kΦ− ∂t Ak
)

= Ek. (2.13)

We found that A has the πA = −E as conjugate momentum (the minus sign
comes from the fact that in (2.13) πk

A is conjugate to Ak = −Ak), while Φ
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has no conjugate momentum implying that the Euler-Lagrange equation
associated to Φ:

0 = ∇ · ∂L
∂∇Φ

− ∂L
∂Φ

= ∇ · E− ρ = 0, (2.14)

is, in fact, an equation of constrain that ensures the Gauss law in (2.12)
[Kle16], with Φ as the Lagrange multiplier[Wie13]. These facts are going to
be crucial when studying gauge fields in a lattice.

Lastly, the Hamiltonian density of the electromagnetic field can be ob-
tained as the time-time component of the stress-energy tensor Tµν associated
to the Lagrangian (2.11), given by[Ryd96]

Tµν = FµρF
ρ

ν −
1
4

ηµνFρσFρσ, (2.15)

from where we obtained the Hamiltonian density H = Ttt and, in this way:

HEM =
∫

d3xH =
∫

d3x(E2 + B2). (2.16)

The Hamiltonian can also be obtained as the Legendre transform of the
Lagrangian (2.11) with the conjugate momentum field (2.13). The definition
(2.16) and the conjugate pair (A,−E) in (2.13) are the cornerstones of the
construction of the lattice formation of gauge theories.

2.1.2 Gauss’ law as generator of the gauge transformations

When the Hamiltonian of the electromagnetic field in (2.16) is quantized,
the canonical fields A(r) and E(r) are associated with quantum operators
obbeying the commutation relations[Ryd96; PS95]:
[

Âi(r), Âj(r
′)
]

=
[

Êi(r), Êj(r
′)
]

=0,
[

Âi(r), Êj(r
′)
]

=−iδ3(r− r′)δij, (2.17)

along with the corresponding commutation relations for the matter fields
(bosons or fermions):

[

ψ̂(r), ψ̂(r′)
]

±= [ψ̂²(r), ψ̂²(r′)]±= 0, [ψ̂(r), ψ̂²(r′)]±= δ3(r− r′), (2.18)

The constraint of the Gauss’ law in (2.14) can also be formulated in terms
of the operator[IM14; Wie13]

Q̂(r) = ∇ · Ê(r)− ρ̂(r). (2.19)

Q̂(r) represents the total charge at the site r, and since it commutes with the
quantized Hamiltonian obtained from (2.16):

[

Q̂(r), Ĥ
]

= 0, (2.20)

it constitutes a good quantum number q(r) that separates the Hilbert space in
disconnected sectors Q̂(r) |q(r)⟩ = q(r) |q(r)⟩ depending on the eigenvalues
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associated to Q̂(r), which are constants of motion and conserved at each
site r. Actually, the sector defined as physical corresponds to Q̂(r) |q(r)⟩ = 0,
fulfilling the Gauss’ law ∇ · Ê(r) |q(r)⟩ = 0. It turns out that the conserved
charge of a local gauge symmetry is its generator itself, so we can build the
operator[IM14; HAMS19]

Û = exp
(

i
∫

d3x′χ(r′)Q̂(r′)
)

, (2.21)

that acts on any other operator as Ô(r, r′, ...)→ ÛÔ(r, r′, ...)Û ², and selects
the suited gauge transformation at the points (r, r′, ...). For instance, the
matter fields transform as follows under U :

ψ̂(r)→ Û ψ̂(r)Û ² = Û Û ²ei
∫

d3x′χ(r′)δ(3)(r′−r)ψ̂(r) = eieχ(r)ψ̂(r) = V(r)ψ̂(r),

recovering (2.1), and similarly for gauge transporter in (2.3):

Û(r, r′)→ ÛÛ(r, r′)Û ² = eieχ(r)Û(r, r′)e−ieχ(r′) = V(r)Û(r, r′)V²(r′),

The total charge operator Q̂(r) and the gauge transformation Û will play
an essencial role in the selection of sectors studied in the next sections and
chapters.

2.2 u(1) gauge theories on a lattice

The discretization of the underlying space yields a lattice of sites r connected
with a finite number of sites by the links (r, ℓ) where the first component
indicates the site where the link starts and the second its direction. For
example, in a square lattice the sites are labelled as r = (x, y), and the links
as (r, ℓ) where ℓ = {x̂, ŷ} represents the unit vectors of length a (which
indeed represents a UV cutoff), so that each site has only two links associated
in the positive x- and the y-directions, as shown in FIG. 2.1a.

x̂

ŷ
r

r+ ŷ

r+ x̂

r r+ `

ψr
ψr+`Er,`

θr,`

(a) Labelling convention.

Ur,x

Ur+x̂,y

U
†
r+ŷ,x

U
†
r,y L

†
P

U
†
r,x

U
†
r+x̂,y

Ur+ŷ,x

Ur,y L
†
P

(b) Plaquette operators.

Figure 2.1: 2D square lattice labelling rule and plaquette operators.: The figure shows (a) the
labelling rule respect to the site r and (b) the plaquette operators in the lattice.
Notice each site labels the up- and right-Nearest Neighbor (NN) sites,and gauge
connections along the links labelled as (r, ℓ) with ℓ = {x̂, ŷ}. Moreover, LP

increases by a unit the magnetic quantum flux through the cell enclosed by the
loop P.

The matter fields ψr, bosons or fermions, are located on each site r, and
their kinetic terms are defined as hoppings to the neighboring sites as
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ψ²
r ψr+ℓ. On the other hand, the gauge field Ar,ℓ is defined along the links

playing the role as the connection between the sites when they are gauged
locally ψr → Vrψr where Vr ∈ U(1), and its conjugate momentum Er,ℓ, the
electric field, is also defined along each link (r, ℓ) (FIG. 2.1a).

The finite distance between the different sites enforces that the local gauge
transformations have to be compensated not by covariant derivatives, but
instead by gauge transporters (2.3) in the lattice:

Ur,ℓ = exp
[

ie
∫ x′

ℓ
+a

x′
ℓ

Aℓ(r)dx′
ℓ

]

= exp [iθr,ℓ] , (2.22)

where the connection is integrated along the link defining a new angular
variable, θr,ℓ ∈ [0, 2π), that replaces Ar,ℓ and controls the transporter. In this
way, ψ²

r+ℓ
ψr is replaced by ψ²

r+ℓ
Ur,ℓψr.

2.2.1 Gauge field Hamiltonian

The gauge field Hamiltonian is built using the electric fields Er,ℓ, and the
transporters Ur,ℓ in a shape that is gauge invariant, it is, comprising a lattice
analogue of the Wilson loop (2.5) along the smallest non-trivial closed loops
P in the lattice, given by[Wie13; IM14]:

P = (r, x) ∪ (r + x̂, y) ∪ (r + ŷ, x) ∪ (r, y), (2.23a)

LP = Ur,xUr+x̂,yU²
r+ŷ,xU²

r,y. (2.23b)

The loop P is called a plaquette, and LP is a plaquette operator that creates a
magnetic flux through the surface enclosed by P as shown in FIG. 2.1b (note
that L²

P reverses the evaluation along the plaquete). With these elements, the
gauge field Hamiltonian can be expressed as[IM14]:

HEM =
e2

2a ∑
r,ℓ

E2
r,ℓ +

1
2e2a ∑

P

(

LP + L²
P

)

(2.24)

that reduces to (2.16) when taking the continuous limit a → 0 with the
following rules to renormalize the elements[IM14]:

Er,ℓ →
a2

e
Eℓ(r), Ur,ℓ → eieaAℓ(r) ≈ 1 + ieaAℓ(r), (2.25a)

LP + L²
P → eiea(∂i Aj(r)−∂i Aj(r)) + h.c. ≈ 2− e2a4F2

ij, (2.25b)

with the limits ∑r , ∑P → 1
a2

∫

d2x and δrr′ → a2δ(2)(r− r′).

2.2.2 Cylindrical algebra from LGT

The canonical variables (Ar,ℓ, Er,ℓ) and the commutation relations in (2.17) are
then replaced in the lattice by (θr,ℓ, Er,ℓ) with the commutation relations[IM14;
Wie13]:

[

θ̂r,ℓ, Êr′,ℓ′
]

= iδrr′δℓℓ′ , (2.26)
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which suggest to express Êr′,ℓ′ in the angular basis as Êr,ℓψ(r) = −i ∂
∂θr,ℓ

ψ(r).
In terms of the transporter, the commutation relations are

[Êr,ℓ, Ûr′,ℓ′ ] = +δrr′δℓℓ′Ûr,ℓ, [Êr,ℓ, Û²
r′,ℓ′ ] = −δrr′δℓℓ′Û

²
r,ℓ. (2.27)

This algebra then defines two reciprocal bases, |θr,ℓ⟩ and |nr,ℓ⟩, each one
eigenbasis of conjugate operators:

Û(θr,ℓ) |θr,ℓ⟩ = eiθr,ℓ |θr,ℓ⟩ , Êr,ℓ |nr,ℓ⟩ = nr,ℓ |nr,ℓ⟩ , (2.28)

where nr,ℓ ∈ Z counts the discrete number of electric lines along the link
(r, ℓ) because θr,ℓ ∈ [0, 2π) is compact. They are Fourier-conjugated with
the rule ⟨θr,ℓ |nr,ℓ⟩ = einr,ℓθr,ℓ/

√
2π. The |nr,ℓ⟩ state can then be expressed

as[IM14]

|nr,ℓ⟩ =
∫

dθr,ℓ√
2π

einr,ℓθr,ℓ |θr,ℓ⟩ = einr,ℓ θ̂r,ℓ

∫

dθr,ℓ√
2π
|θr,ℓ⟩

= einr,ℓ θ̂r,ℓ

∫

dθr,ℓ√
2π
|θr,ℓ⟩ = einr,ℓ θ̂r,ℓ |nr,ℓ = 0⟩ = (Ûr,ℓ)

nr,ℓ |nr,ℓ = 0⟩ .
(2.29)

where the identity 1 =
∫

dθr,ℓ |θr,ℓ⟩⟨θr,ℓ| was used. Consequently, the state
|nr,ℓ⟩ can be created by acting nr,ℓ times with Ûr,ℓ along the link (r, ℓ), and
then Ûr,ℓ (and also Û²

r,ℓ) acts as a raising (lowering) operator of the electric
field line Er,ℓ boundlessly, so the Hilbert space is infinite.

(a) S = 35/2. (b) S = 7/2. (c) S = 1/2.

Figure 2.2: Cylindrical limit from QLM

The algebra of Êr,ℓ, Ûr′,ℓ′ is isomorphic
to the cylindrical group[Gil12]:

[L̂z
r,ℓ, P̂±r,ℓ] = ±P̂±r,ℓ, [P̂+

r,ℓ, P̂−r,ℓ] = 0,

by corresponding {Ûr,ℓ, Û²
r,ℓ, Êr,ℓ} with

{P̂+
r,ℓ, P̂−r,ℓ, L̂z

r,ℓ}, where Lz is the rotation
about z, and P± are the generators of

translations along the axis of a cylinder parallel to z in the positive and
negative directions. This group constitute the İnönü-Wigner contraction of
so(3), generated by the usual angular momentum algebra[İW53; KW88]:

[Sz
r,ℓ, S±r,ℓ] = ±S±r,ℓ, [S+

r,ℓ, S−r,ℓ] = 2Sz
r,ℓ. (2.31)

If S±r,ℓ are expressed as S±r,ℓ = U
(²)
r,ℓ /S with S the magnitute of the angular mo-

mentum, by evaluating large S limit keeping the spacing level ∆S constant,
the commutator [Ûr,ℓ, Û²

r,ℓ] = 2Sz
r,ℓ/S2 → 0 vanishes and the commutation

relations (2.27) of LGT are recovered (see FIG. 2.2).

2.2.3 Generator of gauge transformations

In the lattice, the total charge operator Q̂(r) in (2.19) is expressed as follows:

Q̂r =
(

Êr,x − Êr−x̂,x + Êr,y − Êr−ŷ,y
)

− ρ̂r, (2.32)
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where the term in parentheses represents the 2D discrete divergence of
the electric field operator ∇ · Êr = Êr,x − Êr−x̂,x + Êr,y − Êr−ŷ,y along the
links connected to the site r, and ρr is the matter densities at the site r.
Similarly, the operator Q̂r commutes with the lattice gauge Hamiltoanian
(2.24) providing a good quantum number qr that separates the Hilbert space
in disconnected sectors; the physical sector is also labelled by qr = 0 ensuring
the fulfillment of the Gauss’ law.

The gauge transformation Û of (2.21) in the lattice is

Û = exp

(

i ∑
r′

χr′Q̂r′

)

, (2.33)

and acts suitably on matter and gauge transporter operators

ψ̂r → Û ψ̂rÛ ² = Vrψ̂r, Ûr,ℓ → ÛÛ(r, r′)Û ² = VrÛr,ℓV²
r′ . (2.34)

2.3 abelian quantum link model

The cylindrical algebra of the gauge potential and the electric field shown in
(2.30), in the previous section, invites to invert the İnönü-Wigner contraction
so(3)→ se(2) and consider the links (r, ℓ) as quantum spin-like degrees-of-
freedom (DOF) S where S = 1/2, 1, 3/2, ..., with a 2S + 1-dimensional Hilbert
space, and a set of operators Sr,ℓ = (Sx

r,ℓ, S
y
r,ℓ, Sz

r,ℓ), in the framework called
Quantum Link Model (QLM) [Hor81], also called quantum magnets [OR90].
Under this perspective, the lattice operators (gauge transporter and electric
field) are expressed as follows:

Êr,ℓ = Ŝz
r,ℓ/S, Ûr,ℓ = Ŝ+

r,ℓ = Ŝx
r,ℓ + iŜ

y
r,ℓ, Û²

r,ℓ = Ŝ−r,ℓ = Ŝx
r,ℓ − iŜ

y
r,ℓ, (2.35)

where Ŝ± are the rising and lowering operators of the z-component Sz.
Based on the algebra [Sa

r,ℓ, Sb
r′,ℓ′ ] = iδrr′δℓℓ′S

c
r,ℓ with a, b, c = x, y, z, the

commutation relations (2.27) are recovered with the addition of the new
commutator [Ûr,ℓ, Û²

r′,ℓ′ ] = 2δrr′δℓℓ′ Êr,ℓ, thus fixing the range of states from
−S to +S so that Ûr,ℓ annihilates a state with Sz

r,ℓ = S, and similarly with
Û²

r,ℓ and Sz
r,ℓ = −S:

U²
r,ℓ |S, Sz = −S⟩ = 0, Ur,ℓ |S, Sz = +S⟩ = 0. (2.36)

The LGT-limit corresponds to taking S → ∞ keeping the level spacing to
recover the commutativity of Ûr,ℓ with Û²

r,ℓ and the interpretation of Û
(²)
r,ℓ

as the discrete translators of the state upwards (downwards) the z axis of
the cylinder, and indeed increasing (decreasing) the electric line quantum
number boundlessly (see FIG. 2.2).

It is important to remark that the local gauge symmetry is warrantied by
the covariant action of the operator Û in (2.33) on the operators as shown in
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(2.34), as well as its commutativity with the Hamiltonian in (2.24). Under
the uncontracted algebra so(3), the generator Q̂r is now expressed as

Q̂r = Ŝz
r,x − Ŝz

r−x̂,x + Ŝz
r,y − Ŝz

r−ŷ,y, (2.37)

and since the commutation relations of Êr,ℓ with Û²
r,ℓ remain intact, the local

gauge symmetry holds in the QLM framework and then conforming also a
lattice gauge theory.

2.3.1 QLMs with S = 1/2

The simplest realization of a QLM consist of choosing S = 1/2 spanned by
the Pauli matrices {σ+

r,ℓ, σ−r,ℓ, σz
r,ℓ}, in which each spin-like link has only two

states, |+⟩ and |−⟩, interpreted as an electric field line directed forward or
backwards along the link, respectively (see FIG. 2.3a). The corresponding
electric field operators are then expressed as[HAMS19]:

Êr,x = σz
r,x , Êr,y = σz

r,y. (2.38)

Similarly, the generator Q̂r of the gauge transformations (2.32), and the
gauge transformation operator Û in (2.33) are expressed in terms of the
z-Pauli matrix acting on the spins-like links:

∇ · Êr = σz
r,x − σz

r−x̂,x + σz
r,y − σz

r−ŷ,y ≡ Q̂r, (2.39)

The gauge transporter, on the other hand, is expressed using the rais-
ing/lowering operators[HAMS19]:

Ûr,ℓ = σ+
r,ℓ , Û²

r,ℓ = σ−r,ℓ , (2.40)

which transforms suitably under the action of U :

Ûσ±r,ℓ Û ² =
(

e±2iχ
r+ℓ̂

)

σ±r,ℓ

(

e∓2iχr

)

= e±2i(χ
r+ℓ̂
−χr)σ±r,ℓ. (2.41)

supporting the idea of understanding the transporters expressed in terms
of σ±r,ℓ as charge-hopping or dipole creation operators of the form c²

r+ℓ
cr,

endowing these operators with a notion of directionality (see FIG. 2.3a).
The concatenation of gauge transporters in a line operator L̂ in (2.49) are

built in QLM framework as

L̂± = ∏
(r,ℓ)∈γ

Û
(²)
r,ℓ = ∏

(r,ℓ)∈γ

σ±r,ℓ, (2.42)

where L̂ is evaluated along a directed path γ in the lattice starting at the site
r to end at r′. Similarly, the gauge invariance of these operators is warrantied
when the path γ closes to obtain a Wilson loop. The expression of this
operators along the smallest non-trivial closed loop in (2.23) are

L̂P = σ+
r,xσ+

r+x̂,yσ−r+ŷ,xσ−r,y, L̂²
P = σ−r,xσ−r+x̂,yσ+

r+ŷ,xσ+
r,y, (2.43)

and are represented in FIG. 2.3b.
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(a) Fundamental link operators.
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(b) Plaquette operators.

Figure 2.3: Link and plaquette operators in the S = 1/2 QLM: The gauge transporters as quantum
spin operators along the links in QLM allows to associate a notion of directionality
in the link depending on the state of the electric line at the link. The associated
plaquette operators are therefore conformed by the four links forming the
minimal loop with net circulation.

(a) (b)

Figure 2.4: Dual of the electric field: The integral Gauss’ law in (2.44) that calculate the total
electric flux through the boundary ∂S (dotted) of the region S is transformed
into an Ampère law of the dual electric field E . Note that E exists on the links of
the dual lattice (white points).

2.3.2 ’t Hooft operators and winding number sectors

Due to the fact that Q̂r in (2.39) is a locally conserved quantity, its integral
on a region S is also a conserved quantity of the system corresponsing to
the number of oriented electric lines piercing the boundary ∂S, resembling
the 2D integral Gauss’ law

ΦE =
∫

S
∇ · E = ∑

r∈S

∇ · Er = ∑
r∈∂S

n̂ · Er =
∮

∂S
(n̂dℓ) · Er (2.44)

where n̂ is the normal vector to the region S, and the closed integral is
evaluated along the boundary ∂S. The flux integral can be reinterpreted by
defining the dual electric field E r,ℓ[HAMS19]:

E r,ℓ = Er,ℓ × ẑ, (2.45)

which resides in the links of the dual lattice, allows to reexpress (2.44) as an
Ampère law, the circulation of E along the oriented path ∂S as follows (see
FIG. 2.4):

ΦE =
∫

S
∇ · E =

∮

∂S
(dℓ× ẑ) · Er =

∮

∂S
dℓ · E , (2.46)

so that the circulation of the dual electric field over the contractible closed
loop ∂S, equal to the electric flux, is also a constant of motion.
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Wy

Wx

(a) (b)

Figure 2.5: ’t Hooft operators: In a periodic lattice, the line integral of the dual electric
field E r,ℓ in (2.45) along noncontractible loops count the number of times the
electric lines winds around the orthogonal axes. In a 2D lattice, Ŵx integrates
Er,x components along y to yield the winding number around the x axis, and
similarly with Ŵy[HAMS19], easily seen in the torus T

2 as the two clasees of
noncontractible loops.

The line integral in (2.46) is specially useful when spaces with nontrivial
topologies are taken into account. In the case of a torus T

2 = S1 × S1 (see
FIG. 2.5), there are two classes of non-contractible loops for which the
Gauss’ law described above is not valid anymore. However, the fact that
the Hamiltonian (2.24) is expressed as a sum of local terms, and that it is
gauge invariant in the way that [HEM, Q̂r] = 0, the Hamiltonian will also
commute with the operators associated to the line integrals in (2.46) along
non-contractible loops[Fra13], known also as ’t Hooft operators[Hoo78] or
winding operators.

In the case of the torus T
2 with two classes of non-contractible loops,

those ones winding the torus along the x-direction and those ones along the
y-direction, there are two ’t Hooft operators:

Ŵx = +
∮

dℓyÊr,x = ∑
↑

Êr,x, Ŵy = −
∮

dℓxÊr,y = ∑
←

Êr,y, (2.47)

Note that Ŵx sums Êr,x components in the y-direction, and Ŵy sums Êr,y
components in the negative x-direction, as shown in FIG. 2.5.

The ’t Hooft operators commute with the Hamiltonian of the gauge theory
since the latter is gauge invariant under the transformation generated by
(2.39), and also consists on the sum of local terms. This result implies that
Ŵx,y label subspaces of the Hilbert space called winding sectors that are
dinamically disconnected. The invariance under the action of Ŵx,y then
presents a global symmetry alongside the local gauge symmetry, described
by the group U(1)X ⊗U(1)Y with elements given by:

G(θx, θy) = exp
(

iθxŴx + iθyŴy

)

. (2.48)

The algebra spanned by the ’t Hooft operators is based in the commutators
of the operators in (2.27). In this way, Ŵx,y and any line operator L̂ defined
as the concatenation of gauge transporters along a path:

L̂± = ∏
(r,ℓ)∈γ

Û
(²)
r,ℓ , (2.49)
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have the associated commutator:

[Ŵℓ, L̂] = [Êr′,ℓ′ , Û
(²)
r′,ℓ′ ] ∏

ℓ ̸=ℓ′
Û

(²)
r,ℓ = ±L̂. (2.50)

where the sign is associated to the orientation of L̂. There are two cases
depending on the topology of the path followed by L:

1) if γ is a contractible loop, i.e., L̂ is a Wilson loop such as LP in (2.23), it
commutes with Ŵx,y because they intersect an even number of times
that compensate each non-vanishing commutation,

2) if γ is an open path or a noncontractible loop, L̂² will behave as a rais-
ing/lowering operator of Wx,y, then connecting sectors with different
winding numbers.

To finish this section, a good picture to understand these results is based on
the transformation law of the transporters Û

(²)
r,ℓ in (2.49) as charge-hopping

or dipole creation operators. The action of L̂ along the path of links γ,
consisting on raising or lowering the electric quantum numbers at each link,
can be understood as the creation or addition of two opposite charges at
the endpoints of the path, ∂γ, connected by the electric line created by L̂.
In case of L̂ operators along noncontractible loops, it is, with a winding
number different from zero, they are interpreted as the creation of the
charge-anticharge pair and their annihilation after being transported along
the noncontractible path, resulting in the change of the winding number.

The two models that are addressed in the next chapters, the Q6VM and the
QLM, are two Abelian QLMs in different winding sectors given by[HAMS19]:

Ŵx = ∑
↑

σz
r,x, Ŵy = ∑

←
σz

r,y. (2.51)

In the Q6VM the winding numbers are assigned as Wx = Lx and Wy = Ly

which fulfill the divergenceless condition ∇ · Êr = Q̂r = 0, and in the QDM
the winding numbers are Wx = Lx and Wy = 0 to fulfill the staggered
background ∇ · Êr = Q̂r = ±2. The selection of these sectors is justified in
the next section after the construction of the RK Hamiltonian.

2.3.3 Construction of the QLM Hamiltonian

From the fact that QLMs associate spin operators Ŝ
µ
r,ℓ to the gauge fields

Êr,ℓ, Ûr,ℓ as shown in (2.35), the gauge field Hamiltonian is then expressed
as

HEM =
e2

2a ∑
r,ℓ
(σz

r,ℓ)
2 +

1
2e2a ∑

P

(

LP + L²
P

)

, (2.52)

where L²
P is defined as in (2.40). In the realization S = 1/2, the electric

field terms of the Hamiltonian in (2.24) will reduce to a constant term
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(a) |0⟩

.

�

.

(b) | ⟳⟩P

.

	

.

(c) | ⟲⟩P

Figure 2.6: Example of an electric field line with a flippable plaquette: (a) Ground state of a
periodic 3× 3 square lattice in the maximal winding number sector. (b) Creation
of an electric line with defects at the boundaries. (c) Single time step after acting
with the Hamiltonian (2.56). Notice the change of the relative orientation of the
flippable plaquette

(σz
r,ℓ)

2 = 1r,ℓ which can be ignored. Regarding the magnetic terms, a new

term quadratic in L
(²)
P is added, the RK term [Wie13; RK88; Fra13]:

HPot = V ∑
P

(

LP + L²
P

)2
= V ∑

P

(

L²
PLP + LPL²

P

)

. (2.53)

The terms L
(²)2
P annihilate any state by fliand can be withdrawn. The remain-

ing number-like operators L²
PLP and LPL²

P are projectors of the electric field
lines along P. For instance[HAMS19]:

L²
PLP =

(

1− σz
r,x

2

)

(

1− σz
r+x̂,y

2

)(

1 + σz
r+ŷ,x

2

)

(1 + σz
r,y

2

)

, (2.54)

Then, the projectors L²
PLP and LPL²

P select one configurations of electric
field lines circulating along P. The plaquettes that are not annihilated by
the projectors L²

PLP and LPL²
P are called flippable plaquettes, existing in two

possible states denoted by | ⟲⟩ and | ⟳⟩[HAMS19].
As an example, the FIG. 2.6 depicts three states in a torus with Lx,y = 3

sites along x, y in the maximal winding sector Wx,y = Lx,y = 3, as shown
in the vacuum state |0⟩ of FIG. 2.6a where all the electric lines point in the
same direction, winding the torus along x, y three times. Notice that |0⟩ in
the sectors Wx,y = ±Lx,y fulfills the Gauss’ law (2.39) Q̂r |0⟩ = 0. The FIGs.
2.6b and 2.6c, on the other hand, show one flippable plaquette each, both
created after the action onto the vacuum of a Wilson line (2.42) along the
blue bold paths, yielding a pair of defects where Q̂r = ±1. The state of
the electric line is described by the plaquette created when the electric line
changes its direction.

In this way, the action of the operators L
(²)
P is

LP | ⟳⟩ = | ⟲⟩ , L²
P | ⟲⟩ = | ⟳⟩ , (2.55)

so that the magnetic terms in (2.52) induce fluctuations | ⟲⟩ → | ⟳⟩ at each
plaquette P, and consequently makes the electric string in FIG. 2.6 fluctuate
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between the two states in FIGs. 2.6b and 2.6c. This fact yields the following
expression for the kinetic part of the Hamiltonian:

HKin = −t ∑
P

(

LP + L²
P

)

= −t ∑
P

(|⟲⟩⟨⟳|+ |⟳⟩⟨⟲|) . (2.56)

The new potential term in (2.54) counts the number of flippable plaquettes in
the system, and can be expressed as projectors as follows[HAMS19; Fra13]:

HPot = V ∑
P

(

L²
PLP + LPL²

P

)

= V ∑
P

(|⟲⟩⟨⟲|+ |⟳⟩⟨⟳|) . (2.57)

Consequently, the Hamiltonian that describes the dynamics of the Abelian
QLM is the RK Hamiltonian[HAMS19; RK88; Fra13]:

H = ∑
P

−t(|⟲⟩⟨⟳|+ |⟳⟩⟨⟲|) + V(|⟲⟩⟨⟲|+ |⟳⟩⟨⟳|), (2.58)

poposed by Rokhsar & Kivelson in [RK88], and extensively used in the
study of QDMs as a model for high-temperature supercondutivity. The phase
diagram of this system can be described by the unique parameter v ≡ V/t
that controls the physics of the system. After a direct inspection, it is noticed
that in the limit v = 1, also called the RK point, the Hamiltonian is a sum of
projectors

H = ∑
P

−t (|⟲⟩ − |⟳⟩) (|⟲⟩ − |⟳⟩) , (2.59)

a positive definite operator with zero as minimum eigenvalue, corresponding
to a equal-weighted superposition of all the possible configurations of
flippable plaquettes in the lattice. This point then separates the phase space
in two regions: at the Right Hand Side (RHS) of the RK point any state
with flippable plaquettes is penalized with an energy cost V, therefore the
gound state is the superposition of all the configurations with no flippable
plaquettes (the winding number sectors discussed at the end of the previous
sections are grounds states in this regime); and at the Left Hand Side (LHS)
of the RK the number of flippable plaquettes is preferred since it implies
a lowering in the total energy of the system, and in the limit v → −∞ the
states with the maximal number of flippable plaquettes contributes to the
ground state. The section 2.2 contains a brief discussion on the phases of the
Q6VM and the QDM.

2.4 conclusions

This chapter presents the basic framework needed to address the study cases
discussed in chapters 3 and 4. Departing from §2.1 where we briefly discuss
an Abelian gauge theory, §2.2 introduces LGTs in a square lattice to later
address the the QLM and the RK Hamiltonian in §2.3. The next chapters 3

and 4 discusses in detail the problem of a fluctuating electric string in the
sectors corresponding to the Q6VM and the QDM, described both as QLMs
with the dynamics given by the RK Hamiltonian (2.58).
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In both cases Nature seems to take advantage of the simple mathematical

representations of the symmetry laws. When one pauses to consider the elegance and

the beautiful perfection of the mathematical reasoning involved and contrast it with the

complex and far-reaching physical consequences, a deep sense of respect for the power

of the symmetry laws never fails to develop.

Ð Chen-Ning Yang [Yan57]

Figure 3.1: Ices rules: Pictorical
representation of the location of
protons in water ice and their
displacement vectors.

The crystaline structure of water at standard
pressure (105 Pa)[PC09] is described by a hexag-
onal lattice where the oxigen ions O2− conform
the vertices, and the protons H+ the edges.
Each vertex can be understood as a tetrahe-
dron containing one water molecule (see FIG.
3.1), where O is located at the center and sur-
rounded by four H, two closer to O (1.72Å)
bonded covalently and two farther (2.85Å) re-
sulting from the weakness of the hydrogen
bonds of O with H located in Nearest Neigh-
bor (NN) tetrahedra[Isa+99]. This fact is de-
scribed by the ice rules[BF33]: 1) there is one
proton along each O−O line, and 2) 2-near-2-
far protons per O atom. The ice rules then imply disorder in the location
of protons when water molecules form the ice, giving six different options
to accomodate the water molecule in each tetrahedron. This was taken
into account by Linus Pauling to calculate the finite entropy of water ice
at zero temperature resulting from a macroscopically degenerated ground
state[Pau35].

Similar entropic behavior at low temperatures have been found in rare-
earth Ferromagnetic (FM) materials[GM14] such as Ho2Ti2O7[Har+97] or
Dy2Ti2O7[Ram+99], where the rare-earth cations (Ho and Dy) are arranged
in a pyrochlore lattice of corner-sharing tetrahedra in a Face-Centered Cubic
(FCC) lattice[LMM11] (see FIG. 3.2a). The existence of a strong anisotropic
Ising coupling along the diagonals of the cube (111) alignes the spins of
the atoms at the corners of the tetrahedra in a 2-in-2-out rule (see FIG.
3.1), resembling the ice rules observed in water. In fact, measurements of
low-temperature entropy of Dy2Ti2O7 is consistent with the Pauling entropy
calculated for water ice[Ram+99].

The disorder of proton position, or spin orientation, in ices can also be
understood as a gauge symmetry from the fact that rotating the internal

29
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(a) 3D pyrocholore lattic (b) 2D checkerboard (c) Reduction to vertices

Figure 3.2: Quantum 6-Vertex Model (Q6VM) as a 2D description of water/spin ice: (a) The
orientation of the spins can be mapped one-to-one to the position of protons in
water ice in a pyrochlore lattice. (b) The 3D lattice of corner-sharing tetrahedra
can be projected onto the plane (100) to obtain a 2D effective model that can be
reduced to (c) the Q6VM.

orientation of the tetrahedron does not affect the dynamics of the system. In
this way, a Gauss’ law emerges from the 2-in-2-out rule in a lattice gauge
description where excited states corresponding to 3-in-1-out or viceversa can
be understood as charges that propagate throughtout the lattice and interact
by means of a Coulomb-like potential[CMS08].

The mapping from 2-close-2-far in water ice into 2-in-2-out in rare earth
ferromagnets can be seen in FIG. 3.1 where the spins are mapped as dis-
placement vectors of the protons, going inward the tetrahedron for near H
to O, and going outwards for far H located in neighboring tetrahedra. A
simplified structure of the pyrochlore lattice is depicted in FIG. 3.2a (no-
tice the spin/corner sharing by NN tetrahedra). We can then project this
system on the (100) plane as shown in FIG. 3.2b to obtain an effective 2D
checkerboard lattice model, and finally it can be mapped to the Q6VM by
corresponding a link in a square lattice to each spin (see FIG. 3.2c), used by
Pauling to calculate the residual entropy of ice at zero temperature when
the six possible vertices (see FIG. 3.3b) have the same energy weights. Com-
plementarily, when the first two vertices in FIG. 3.3b (where the flux does
not changes direction) have the lowest energy weight, the ground state will
consist on a highly polarized state typical of ferroelectric materials[Sla41].

The present chapter, based in [HAMS19], discusses the behavior of one
electric line or string connecting two defects (vertices violating ice rules) on a
2D periodic lattice Lx × Ly, in the maximally polarized background where
the winding numbers (2.51), describing the overall orientation of the links, is
maximal (Wx,y = Lx,y) to define a unique ground state. This constraint results
in the fulfilment of the ice rules as a Q6VM in the polarized background
sector. The electric line is mapped through Hard-core Bosons (HCBs) into
a 1D XXZ chain that allows to give a complete description of the phases,
resembling a precursor for studying the phases of the whole 2D Q6VM.
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(a) Ice rules for water molecules. (b) Gauss’ law sector ∇ · Er = 0.

Figure 3.3: Equivalence between the ice rules and Q̂r = 0: The structure of the water molecule
constrain the configuration of vectors under the 2-in-2-out rule, (b) directly
mapped in a square lattice gauge theory where the constrain Q̂r = 0 is fulfilled,
resulting in six possible configuration of electric lines used to build the Q6VM.

3.1 realization of the q6vm in the S = 1/2 qlm

The Q6VM can be described as a Quantum Link Model (QLM) in a Lx × Ly

square lattice with the superselection rule:

∇ · Er = Qr = 0, (3.1)

that is, the Gauss’ law is satisfied for the absence of charged matter sources
and then restricting electric lines at the nodes or vertices of the lattice to one
of the six configurations depicted in the FIG. 3.3 and equivalent to the ice
rules applied in the checkerboard lattice[RF04]. However, the rule (3.1) is not
enough to have a unique ground state in the system as was discussed in the
introduction of this chapter. This is solved with the subsidiary conditions
that the system is periodic and the winding numbers defined in (2.47) are:

Wx = Lx, Wy = Ly, (3.2)

i.e., the maximal winding in which all the electric lines point upwards or
rightwards. In this state the ground state is unique since it sets that every
electric line is in the +1 state:

σr,ℓ = +1, ∀r, ℓ = x, y, (3.3)

which is also a zero energy eigenstate, because of the absence of flippable
plaquettes depicted in FIG. 2.6, of the Rokhsar-Kivelson (RK) Hamiltonian
(2.58):

H = ∑
P

−t(|⟲⟩⟨⟳|+ |⟳⟩⟨⟲|) + V(|⟲⟩⟨⟲|+ |⟳⟩⟨⟳|), (3.4)

where the first term is the kinetic magnetic term coming from the U(1)
Lattice Gauge Theory (LGT) and the second term is the RK potential counting
the number of flippable plaquettes.

The state (3.3) is going to be the background on top of which we define a
path γ to create an electric field line using the operator L± in (2.42):

L̂± = ∏
(r,ℓ)∈γ

Û
γ
r,ℓ = ∏

(r,ℓ)∈γ

σ±r,ℓ, (3.5)
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(a) State with five flippable plaquettes.
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(b) State with seven flippable plaquettes.

Figure 3.4: Two dynamically-connected states of an electric string and mapping to a 1D system: (a)
The state at t = 0 has five flippable plaquettes with a potential energy energy of
5V. Below there is the equivalent configuration in the HCB chain. (b) The state at
t = 1 has seven flippable plaquettes with potential energy energy 7V. This is
also a maximally kinked state corresponding to a Charge Density Wave (CDW)
in the HCB picture[HAMS19].

containing at the boundary ∂γ two static defects where Q∂γ = ±2. The
electric line is the dynamical system that evolves under the Hamiltonian
(3.4) acting on each ones of the flippable plaquettes created at the vertices
where the path γ changes its direction, as it is shown in the FIG. 3.4 where
we can see how the electric line changes after one time step.

3.2 mapping the electric string to the X X Z chain

We can map the electric field line onto a conventional 1D system by unfolding
the string into a chain of L ≡ ℓx + ℓy sites labeled by i, containing HCBs
defined by the following commutation relations

[bi, bj] = [b²
i , b²

j ] = 0, i ̸= j (3.6a)

{bi, b²
i } = 1 , (3.6b)

in such a way that every vertical segment is mapped into a occupied site
and every horizontal into an empty site. Since the string does not change its
length, there is a global U(1) symmetry associated to the conservation of L,
and indeed, of the total number of particles give by

Nb = ∑
i

b²
i bi = ℓy, (3.7)

that suggests the definition of the filling fraction

ν =
Nb

L
=

1
1 + ℓx/ℓy

. (3.8)

The Hamiltonian (3.4) is mapped into a 1D HCB system as

H6v =
L

∑
i=1
−t(b²

i bi+1 + h.c.) + V(ni − ni+1)
2. (3.9)
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The first term corresponds to the kinetic magnetic term describing the
plaquette flipping, where the horizontal and vertical segments comprising
the corner are interchanged, corresponding to the hopping of a boson onto
the NN sites. The second term, describing the RK potential that counts the
total number of corners, i.e., of flippable plaquettes, implies the change of
direction of the electric string. This change of direction is mapped as the
difference of occupation number in the bosonic picture ∆ni = ni− ni+1, thus
each flippable plaquette corresponds to the existence of an occupied site
next to an empty site.

Although the bosonic Hamiltonian (3.9) is exactly solvable by means of
the Bethe Ansatz, it can be further transformed into a physical system well
studied in the literature: the XXZ spin chain. The 1D HCB Hamiltonian (3.9)
can be mapped one-to-one onto spin 1/2 degrees of freedom:

ni = sz
i +

1
2

, b²
i = s+i , b²

i = s−i , (3.10)

where s±i = (sx
i ± is

y
i )/2, and s

x,y,z
i fulfill the spin commutation relations:

[

s
µ
i , sν

i

]

= 2iϵµνρs
ρ
i . (3.11)

The new Hamiltonian in terms of spin operators is

H6v = −J
L

∑
i=1

(

sx
i sx

i+1 + s
y
i s

y
i+1 + vsz

i sz
i+1 −

v

4

)

(3.12)

where J = 2t is the exchange energy, and v = V/t the z−axis anisotropy.
This is a generalization of the XY Hamiltonian obtained in [Orl92] to non-
zero values of v. This is the well-known XXZ spin chain which is an exactly
solvable model [YY66b; YY66c; YY66d].

3.3 phases of the electric string from the xxz chain

At zero magnetization, i.e., half filling, there are three phases and three
critical points for XXZ model (see Appendix A):

1. 1 < v: a gapped FM phase with ground state in the sector |M| ̸= 1
given by:

|0↑↓⟩ =
L0
⊗

i=1

|↑i⟩
L

∏
i=L0+1

|↓i⟩ , |0↑↓⟩ =
L0
⊗

i=1

|↑i⟩
L

∏
i=L0+1

|↑i⟩ , (3.13)

where L0 is the position of the domain wall.

2. v = 1: RK point, a gapless isotropic FM with SU(2) symmetry in the
spin picture. At this point, the two terms of the RK Hamiltonian (3.4)
consists on a sum of projectors that produce the ground state maximally
degenerate where all the states have zero energy. where domain walls
appear because the magnetization is conserved.
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Figure 3.5: Exact phase diagram of the electric string from the XXZ chain at M = 0: The exact
mapping of the electric string to the XXZ chain yields the whole phase diagram
of the string, comprising a gapped AFM phase, a gapless XY-like phase and a
gapped FM phase. The string is a 1D precursor of the whole 2D Q6VM without
the prescription of the winding numbers (3.2). Adapted from [HAMS19].

3. −1 < v < 1: a gapless XY-like paramagnetic phase with power-law
correlations. At v = 0 the system is describable by free fermions using
the Jordan-Wigner (JW) transformations.

4. v = −1: Kosterlitz-Thouless (KT) point, a gapless isotropic Antiferromagnetic
(AFM) phase showing an infinite-order phase transition.

5. −1 < v: a gapped AFM phase with two degenerate ground states:

|0↑↓⟩ =
L
⊗

i=odd

|↑i↓i+1⟩ , |0↓↑⟩ =
L
⊗

i=odd

|↓i↑i+1⟩ . (3.14)

The FIG. 3.5 shows a pictorical representation of the phase diagram indicat-
ing the three critical points.

According to Yang & Yang article series [YY66a; YY66b; YY66c; YY66d],
the energy density of the ground state of the XXZ chain can be expressed as

E(v, M) = f (v, M)L + O(L−1),

M =
2
L ∑

i

sz
i =

ℓy − ℓx

L

(3.15)

where M is the conserved magnetization and f (v, M) is the free energy
density. In [YY66c] there is a rigorous and self-contained calculation of
f (v, M) for the different phases using the Bethe Ansatz (some expressions
are shown in Appendix A). We have applied some results to describe the
phase diagram of the electric string.

3.3.1 v > 1: FM insulator

Let us begin from the Right Hand Side (RHS) of the RK point. For the sector
|M| = 1, the ground state E = 0 is the trivial fully polarized state (3.13) with
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Figure 3.6: Electric string in Q6VM in the FM phase 1 < v: In the region 1 < v, the string
assumes a configuration that minimizes the number of flippable plaquettes,
those are one of the two paths, (a) and (b), along the bounding rectangle whose
opposite vertices are the defects Q = ±2. and the corresponding bosonic picture
is a phase separation[HAMS19].

L0 = L, that is, no domain walls. On the other hand, when |M| < 1, the
system develops in its ground state one domain wall located at L0 ∈ {1, L}
in a way that the magnetization is conserved. This domain wall is manifested
as a phase separation in the bosonic picture, which indeed corresponds to
the electric string approaching to the rectangular boundary whose corners
are the defects Q± 2 as displayed in FIG. 3.6 (notice the representation of
the boson phase separation below each square lattice).

We can use a semiclassical continuum description to model the domain
wall when its width is largerthan the lattice parameter, i.e., v→ 1. Using the
remaining symmetry U(1) hold by the z-axis anisotropy, we can describe
the spin in the xz plane in terms of θ, the parameter of U(1), as follows:

sz
i → cos θ(x), sx

i → sin θ(x). (3.16)

This parametrization allows us to express the total energy, in units where
the lattice spacing is one, as

E =
∫ L

0
dx

(

ρ

2

(

dθ

dx

)2

− λ cos2 θ

)

, (3.17)

where ρ = J and λ = J(v − 1). Then the problem becomes variational
and consists on finding the function θ(x) such that E(θ(x)) is stationary (a
minimum in this case). Using the Euler-Lagrange equations[Arn89], we can
find the solution in terms of the Jacobi amplitudes for finite L, that in the
limit L→ 0 yields that

sz(x) = tanh
x− x0

w
, (3.18)

where w is the width of the domain wall:

w =
1

√

2(v− 1)
(3.19)

and its position x0 fixes the magnetization as

x0

L
=

1−M

2
. (3.20)



36 electric string in q6vm as a xxz chain

The solution indeed has the asymptotes θ(x) = 0, π consistent with the
phase separation in the bosonic picture except in the region |x− x0| ≲ w, the
domain wall, that contributes to the system energy as O(L0), up to leading
order, given by

E ≈ 2
√

2J
√

v− 1. (3.21)

This results can be interpreted as a subdimensional deconfinement of the
defects to the RHS of the RK point, in the staggered phase[SMP04; BT04],
because the displacement of the defects along the horizontal and vertical di-
rections, that is, following the direction of the polarized background (see FIG.
3.6), there is no energy cost. On the other hand, and in contrast to fracton
models such as [Cha05; Haa11; Yos13; VHF15; Pre17], the diagonal displace-
ment of the defects implies crossing polarized lines in the background and
the creation of a new domain wall with cost of 2

√
2J
√

v− 1.

3.3.2 v = 1: RK point

At the RK point we have U(1)→ SU(2), the isotropic FM Heisenberg chain
with symmetry SU(2) is restored from the XXZ one. The new ground state
has energy E = 0 and is given by (3.13), a tensor product of spins alingned in
the same directon, but without domain wall, i.e., the spins can smoothly cant
in any direction without energy cost so that they keep aligned. In terms of the
electric string, this result means that, in the ground state, we will have E = 0
energy cost for any displacement of the defects Q = ±2, implying a form of
perfect charge deconfinement in contrast to the usual deconfiment where the
string tension vanishes for large charge separations in the thermodynamical
limit.

This results can also me understood in terms of the original RK Hamil-
tonian (3.4), which comprises a sum of projectors at the RK point and all
the zero-energy states are ground states of the system[Fra13]. The back-
ground configuration we have considered by setting the winding numbers
Wx,y = Lx,y also belongs to the set of ground states, so there is no energy
cost when we displace the charges and energy dependence on the distance,
implying that the electric string as exactly zero tension.

3.3.3 −1 < v < 1: Gapless phase

At the Left Hand Side (LHS) of the RK point and the RHS of the KT transition,
(|v| < 1), we have a gapless phase with power-law correlations where the
magnetic kinetic term of the RK Hamiltonian (3.4) dominates, implying the
occurrence of strong resonances between the plaquette states |⟲⟩ ↔ |⟳⟩.
This region can be understood by examining the system at the critical point
v = 0, where the bosonic Hamiltonian (3.9) has no interaction and the
system can be described as free fermions after having mapped it into a 1D
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Figure 3.7: Electric string in Q6VM in the gapless phase −1 < v < 1: The region |v| < 1 is
dominated by the magnetic kinetic term of the Hamiltonian (3.4) with strong
quantum fluctuations around the maximally kinked path along the diagonal of
the bounding rectangle.

fermion chain using the JW transformations. The energy of the ground state
is then

f (0, M) = − J

π
cos

π

2
M, (3.22)

whose minimum corresponds to f (0, M = 0) = 0. The zero-magnetization
state corresponds in the electric string picture to the maximally kinked paths
along the diagonal of the bounding rectangle (see FIG. 3.7).

Before crossing the KT point into the AFM phase, it is important to note
that in te gapless phase, the strong plaquette resonances, corresponding to
boson hoppins in the bosonic picture, can be interpreted as a 1D precursor of
the full 2D zero-winding phase of resonating plaquettes. However, because
the electric strings interact strongly under the Hamiltonian (3.4), the gapless
phase found for a single string can correspond to the plaquette crystalline
phase found numerically by [SMP04; Ban+14].

3.3.4 v ≤ −1: KT transition and AFM insulator

Further in the LHS sector of the RK point, aat v = −1, the system undergoes
a form of the KT transition and the free energy is smooth to all orders
[YY66c]. We found another SU(2) symmetry in this point by rotating the
spins on alternating sites to flip the sign of the XY terms (see Appendix
A). In consequence, Hv=1 = −Hv=−1, and the ground state at v = −1,
corresponding to a spin singlet (3.14), is the highest excited state at v = 1
with grouns state given by the fully polarized spin configuration expressed
in (3.13).

After overpassing the KT point, when v < −1 the gap reopens and the
system becomes AFM for the rest of the parameter space. This state corre-
sponds to the CDW in the bosonic picture, and in the string picture to the
maximally kinked path approaching the diagonal of the bounding rectangle
(see FIG. 3.8) with its quantum fluctuations freezing out for larger |v|. This
state is similar to the preferred path of the electric string in FIG. 3.7 with the
big difference in the relevance of quantum fluctuations since the phase is
gapless at v = 0.
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Figure 3.8: Electric string in Q6VM in the AFM phase v < −1: When v < −1, the energy is
minimized by maximizing the number of flippable plaquettes. Thus, the system
displays a ground state describeg by the maximally kinked string with supressed
quantum fluctuatins (in contrast to FIG. 3.7), approaching the diagonal of the
bounding rectangle whose opposite vertices are the defects Q = ±2. and the
corresponding bosonic picture is a CDW[HAMS19].

3.4 numerical approach : drude weight and system size ef-
fects

Althought the electric string in the Q6VM has been exactly mapped to the
XXZ chain, we complement the analytical results obtained in the previous
sections with explicit numerical solutions using exact diagonalization for
a periodic system with sizes L = 3, ..., 8. Since the linear momentum is
conserved in the sytem, this constitutes a good quantum number and allow
block-diagonalization. Additionally, we add a sligth modification in the
kinetic part of the Hamiltonian (3.9), where the hopping term that connects
the last site L with the first one is multiplied by a phase ϕ as follows:

H6v,closed = H6v,open + eiϕtb²
1bL + h.c. (3.23)

This phase shift does not imply a breaking of the translational invariance
since ϕ can be splitted throughout the whole chain by changing the gauge
via a unitary transformation

b²
j → ei

jϕ
L b²

j , (3.24)

leading to a complex hopping coefficient teiϕ/L. Then, we numerically diago-
nalize the Hamiltonian (3.23) for different values of ϕ, we extract the lowest
eigenvalue E0 as a function of ϕ. FIG. 3.9 shows the dependence of the two
lowerst energy eigenvalues on v with ϕ = 0 after having block-diagonalized
the Hamiltonian in the eight momentum sectors. We can see a sharp discon-
tinuity in the first derivative of the eigenenergies respect to v at the RK point,
v = 1, indicating the expected emergence of the zero-energy manifold from
the Hamiltonian (3.4). A different case is observed at the KT point, where the
transition is slightly visible by the change of concavity of the eigenenergies
around v = −1. The expected gap openings for the limits v→ ±∞ is satis-
factorily shown, consistent with insulating-conducting-insulating transitions
obtained from the analytical results of the previous sections.
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Figure 3.9: Two lowest energy levels vs. v in Q6VM: Lowest energies levels for a ring with L = 7
and ϕ = 0. When v→ −∞ the k = 0 and π CDW states become degenerate, and
a gap opening for domain walls as lowest energy excitations. The gaps close at
v = 0 in agreement to free fermion description. There is a sharp discontinuity at
v = 1 corresponding to the RK point, followed by the gap opening of the phase-
separated states with all the k sectors becoming degenerate as v→ ∞[HAMS19].

The phase transitions can also be found if we calculate the Drude weight[Koh64]:

D ≡ L
d2E0

dϕ2 , (3.25)

interpreted as the stiffness of the system respect to the twisting of the
boundary conditions, represented by the phase ϕ. The Drude weight is a
good parameter to characterize how much conducting or insulating a phase
is, in a way that vanishing values of D for certain parameters (for instance,
v → ∞) imply an insulating phase, and viceversa. In FIG. 3.10 we can see
the Drude weight D calculated numerically from the Hamiltonian (3.23) as
a function of v, with an inset in the top right showing the second derivative
of D respect to v as a parameter since abrupt changes in the concavity of
D(v) indicate phase transitions.

As expected, FIG. 3.10 displays results in good agreement with the analyt-
ical results obtained from the XXZ chain: an insulating phase for v > 1, a
condunting phase in the region |v| < 1 and an insulating phase for v < −1.
The sharpness of the transitions depends on the system size, being difficult
to notice for L = 3 and improved as L gets larger (notice the transition at
the RK point where a sharp drop of D can be found for L = 8). On the
other hand, the infinite-order transition at the KT point v = −1 shows a
slower convergence for larger system sizes, so the conducting-to-insulating
transition at the LHS of the RK points is more difficult to notice. Also the
drop of D with v → −∞ is slower, suggesting that the system is able to
conduct for v lower than −1.
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Figure 3.10: Phase diagram at M = 0 and Drude weight in the Q6VM: Drude weight for systems
of size L = 3, . . . , 8 using exact diagonalization. At the RK the transition is
evident due to D → 0 at v = 1. For the infinite order KT transition the
convergence is slower at v = −1 and the transition is less evident. The inset
shows d2D

d2v
where sign changes roughlt indicate the phase transitions.

3.5 summary and discussion

We have studied the phase diagram of one fluctuating electric string in the
Q6VM described by the RK Hamiltonian (3.4) as the Wilson path connecting
two defects Q = ±2 on a background corresponding to the fully polarized
system set by the maximal winding numbers Wx,y = Lx,y and fulfill the ice
rules Qr = 0 (except for the defects). The background is actually a ground
state of the Hamiltonian (3.4) at the RHS of the RK point, where (3.4). We
have describe the electric string connecting the defects Q = ±2 by exactly
mapping it onto a 1D system of HCBs, that we mapped further onto the
spin-1/2 XXZ chain, an exactly solvable system whose ground state has beed
studied in detail.

The phases of the electric string are summarized in the FIGs. 3.5 and 3.10,
and more slightly in FIG. 3.8 by the gap opening between the two lowest
energy levels. The phase diagram consists on a gapped AFM phase at the LHS
(v < −1) of the KT point (v = −1), a gapless XY system in the region |v| < 1,
and a gapped Ising FM at the RHS of the RK point (v > 1). The phases of the
1D electric string are natural 1D precursors to the full 2D phases, seen in
numerical studies of the Q6VM [SMP04; Ban+13].
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The ability to reduce everything to simple fundamental laws does not imply the ability

to start from those laws and reconstruct the universe.

Ð P. W. Anderson. [And72]

Figure 4.1: Background configu-
ration for the electric string in
Quantum Dimer Model (QDM):
The sublattice A(B) has vertices
Qr = ±2, 1-in-3-out (viceversa).
The dimer locates in the link
flowing inwards sublattice A.

The previous chapter has discussed the prob-
lem of a fluctuating electric string in the
Quantum 6-Vertex Model (Q6VM) based on the
formalism of Lattice Gauge Theories (LGTs) we
briefly review in chapter 2. The Q6VM was ob-
tained as an Abelian Quantum Link Model
(QLM) fulfilling the ice rules Qr = 0 with the
subsidiary condition of the maximal winding
numbers. The second study case we proposed
in the introduction and chapter 2 was the QLM
described by a staggered charge background
Qr = ±2 where one sublattice violates the ice
rules with three links goung inwards and one

goung outwards, and viceversa for the other sublattice as shown in FIG. 4.1.
This configuration allows us to address the problem of the electric string in
the context of the QDM.

QDMs were proposed by Rokhsar & Kivelson in [RK88] based on the ideas
of Pauling [Pau53] and Anderson [And73] in the search of a ground state
for a spin-1/2 Antiferromagnetic (AFM) Hamiltonian made up of spin-singlet
pairs of Nearest Neighbor (NN) electrons in the lattice, represented by the
Einstein-Podolsky-Rosen (EPR) state [Fra13]:

|(ij)⟩ = 1√
2

(

|↑i↓j⟩ − |↑j↓i⟩
)

. (4.1)

This statement can be realized by proposing a lattice model with hard-core
dimers along the links representing the electron pairs in the EPR and the
empty links as electron paris with no correlation.

The dynamics of this system is dictated by the Rokhsar-Kivelson (RK)
Hamiltonian [RK88]:

H = ∑
P

−t
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)

, (4.2)

where each flippable plaquette is mapped as two parallel dimers, and the
relative orientation of the dimer pair corresponds to the states |⟲⟩ and

41
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|⟳⟩ of the flippable plaquettes (see FIG. 4.2). In this way, the Hamiltonian
makes each parallel dimer pair resonate between its horizontal and vertical
configurations, while the RK potential penalizes each plaquette with an
energy cost V.

⟲⟲⟲⟲⟲

↔

⟳⟳⟳⟳⟳

Figure 4.2: The dimer resonance
process in the QLM: The kinetic
term of the RK Hamiltonian in
(4.2) makes the parallel dimers
switch between the horizon-
tal and vertical configurations,
mapped from the |⟲⟩ and |⟳⟩ in
QLMs.

As already discussed in the introduction, at
the RK point, v = V/t = 1, we find that the
ground state is described by the Resonant Va-
lence Bond (RVB) state, the equal-weight super-
position of all closely-packed dimer configura-
tions in the square lattice [Fra13]. Similarly, by
direct inspection on the RK Hamiltonian we can
expect that the phase in the limit v→ ∞, at the
Right Hand Side (RHS) of the RK point, contains
no flippable plaquettes so as its energy is mini-
mal as shown in FIG. 4.1, called staggered phase;
and the phase in the limit v→ −∞, at the Left
Hand Side (LHS) of v = 1, maximizes the number of flippable plaquettes,
yielding a long-range configuration of parallel dimers known as columnar
phase. Both constitute two classes of valence-bond crystalline phases [Fra13].
In the introduction we have also briefly reviewed some of the different
proposals in describing the phases in the region |v| ⪅ 1 between the two
crystalline phases where there are proposals going from the transition of
the columnar to the staggered phase at the RK point without any phase in
between [Ban+14; Oak+18], to the existence of intermediating phases in the
region |v| ⪅ 1: one suggestes that a plaquette solid, a staggered configuration
of flippable plaquettes of RVB, exists at the LHS of the RK point, starting from
some critical value vc up to v = 1 [Syl06; LCR96]; and the other brings the
idea of a mixed phase continuously interpolated between the two crystalline
phases in the region 0 < v < 1[RPM08]. It is recommended to examine FIG.
1.5 to get a better understanding in the controversy involving the phase
diagram of the QDM.

In this chapter we study in detail the phases of the fluctuating electric
string in a very similar fashion as presented in chapter 3 but in the charge
staggered background Qr = ±2 and with the subsidiary conditions in the
winding numbers to obtain the configuration displayed in FIG. 4.1.

4.1 realization of the qdm in the S = 1/2 qlm

Following the same methodology proposed for the Q6VM in chapter 3,
the QDM can be realized as a QLM in a Lx × Ly square lattice with the
superselection rule:

∇ · Er = Qr = 2(−1)x+y, (4.3)

instead of satisfying the Gauss’ law (and the ice rules in terms of the Q6VM),
the lattice is filled with positive and negatives charges at the sites of the
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Figure 4.3: Vertices consistent with Qr = 2(−1)x+y: The staggered configuration of charges
in the 2D square lattice yields four possible vertices with one electric line going
in the opposite direction respect to the other three, so that the dimer is assigned
to that link in order to map the QLM onto the QDM.

sublattices, called A when Qr = +2 and B when Qr = −2. The A sublattice
thus contains vertices with three outgoing electric lines and one ingoing line,
and the contrary for the B sublattice. So, we asign the existence of a dimer
to the link that is distinguishable from the other three and flows from the
sublattice B to the sublattice A (see FIG. 4.3). In this way, the condition (4.3)
waranties that every site in the lattice will be touched by only one dimer,
dimer overlapping is forbidden and the allowed configurations of the electric
lines are in one-to-one correspondance to a closely packed configuration of
dimers covering the lattice.

The condition (4.3) is also supplemented defined by the winding numbers
(2.51):

Wx = 0, Wy = Ly, (4.4)

i.e., the vertical lines get the maximal winding with all the electric lines
point upwards, while the horizontal lines add up to zero from a staggered
configuration, as shown in FIG. 4.1. In this sector the ground state is unique
since it sets that every electric line is described as follows:

σr,x = (−1)x, σr,y = +1, ∀r, ℓ = x, y. (4.5)

The absence of flippable plaquettes in the staggered vacuum makes it an
exact zero-energy eigenstate of the the RK Hamiltonian (4.2) at the RHS of
the RK point. The RK Hamiltonian rules the dynamics of an electric string
added when we modify the background staggered charge configuration by
acting with a path operator L± defined in (2.42):

L̂± = ∏
(r,ℓ)∈γ

Û
γ
r,ℓ = ∏

(r,ℓ)∈γ

σ±r,ℓ, (4.6)

that, in contrast to the case studied in the previous chapter, has to satisfy
special conditions to be a valid path, as discussed in the next section.

4.2 construction of an electric string in the qdm

The path is set to begin from and end in the sublattice A, where the back-
ground charges are Qr = +2. It is possible to begin the paths from the
sublattice B but the last portions of the electric string will remain static
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Figure 4.4: Construction of an electric string on the staggered vacuum of QDM: (a) A path is
traced following a sequence of dimer occupied and empty links between two
sites in the sublattice A. (b) the electric lines in the links along the path are
revered to create the string, and the dimers are dragged to the left. (c) a new
dimer configuration is obtained with parallel dimers[HAMS19].

under the action of the Hamiltonian (4.2) because of the absence of flippable
plaquettes at the ends of the string. Then, we select a site of the sublattice
A where we place a defect Qr f = +4, and draw a directed path that goes
always against the flow of the background electric lines given by (4.5) (have
into account that going with the flow does not create an electric string distin-
guishable from the background). Such paths will pass through a sequence of
links alternating the presence or absence of a dimer, so that a path including
two consecutive empty links (without dimer) will be considered invalid. The
path ends at the sublattice A with the creation of a defect Qr0 = 0 (see FIG.
4.4a).

When the path is complete, we reverse the direction of the electric lines of
every link crossed, so that Qr f = +4 is the source of the string and Qr0 = 0
the sink. The reassignation of the electric lines changes the orientation of the
electric lines given by (4.5) and consequently of the dimers by shifting the
empty and occupied sites, as depicted in FIG. 4.4b. This can also be seen as
the dimers crossed by the string are dragged towards the sink defect Qr0 = 0,
leaving the site of the source Qr f = +4 untouched by any dimer and the
site of Qr0 with two dimers overlapping. The reassignation of dimers in the
new positions will give us a configuration containing dimer plaquettes, each
one with an energy cost of V under the action of the potential term of the
RK Hamiltonian (4.2) (see FIG. 4.4c). These elements also fluctuate between
the horizontal and vertical configurations, corresponding to the fluctuations
|⟲⟩ ↔ |⟳⟩ produced by the kinetic term.



4.3 mapping the electric string in qdm to a two-leg ladder 45

4.3 mapping the electric string in qdm to a two-leg ladder

4.3.1 QLM in a triangular lattice

The electric string built in the previous section and depicted in the FIG. 4.5
with the new dimer configuration can be mapped into a QLM in a triangular
lattice where the ice rules are satisfied and the three directions defined
at each site are polarized (see the triangular lattice in FIG. 4.4a where
the background links have not being modified). This mapping consists on
shrinking the dimers of the background configuration to points that form a
triangular lattice. The rules assigned in (4.3) and (4.5) transform into new
ice rules for a triangular lattice Q△ = 0 and the maximal winding number
used for the Q6VM in chapter 3.

In addition to the flippable plaquettes found in the Q6VM associated to
corners or kinks in the path, in the triangular lattice a horizontal path
produces two flippable plaquettes above and below the path, as shown in
FIG. 4.5b. The existence of horizontal path is an intermediate state between
the two kinked configurations observed in the Q6VM and shown in FIG. 3.4,
because each cell of the square lattice is divided into two triangular cells.
This fact implies that the length of the electric string is not conserved under
the action of the RK Hamiltonian (4.2), and the mapping to a 1D chain will
not be straightforward as in the Q6VM.

4.3.2 From the triangular lattice to the two-leg ladder

The existence of these two different kinds of paths requires to implement a
mapping onto a 1D chain with two classes of sites, even and odd, which can
also be seen as an asymmetric two-leg ladder, and a Hard-core Boson (HCB)
placed in an even or odd site does not have the same dynamics under
the action of (4.2). As shown in FIGs. 4.4c or 4.5, the chain is obtained by
projecting the triangular lattice onto the horizontal axis, creating the 1D
lattice. The two classes of sites in the horizontal chain are projected as ticks
that indicate the sites of the triangular lattice (similar to the Q6VM) and are
called odd sites, while the triangular links are represented as short segments
(new sites in between of the 1D chain found for the Q6VM) and are called
even sites (see FIGs. 4.4c or 4.5 for clarification).

The placement of HCBs in the 1D chain will be more complex than in the
Q6VM where the vertical segments of the string correspond to a HCB in a
certan site and for a horizontal segments the site is left empty. In this case,
the rules are the following (observe FIG. 4.5 as the instructions are given):

• an upward segment of the string (observe the arrow) corresponds to a
HCB occuping an odd site (short segments).

• a downward segment of the string corresponds to an empty site.
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Figure 4.5: Successive states of an open string under the action of the RK Hamiltonian (4.2): (a)
Inicial state of the string with two flippable plaquettes. (b) First state after the
action of (4.2) in the right plaquette. Notice the horizontal path in the triangular
lattice and the intermediate hopping to an even site in the 1D chain. (c) Second
step after the action of (4.2) in the same plaquette (right top). The horizontal line
is now kinked downwards and the boson has hopped to an odd site[HAMS19].

• a horizontal segment in the triangular lattice corresponds to a HCB
placed in an even site (ticks) (FIG. 4.5b).

The positions of the defects in the dimer lattice are assigned as (0, 0) for
Qr0 = 0 and (2ℓx, ℓy) for Qr0 = +4, where we count each horizontal link
as 1/2 (in FIG. 4.5 Qr f is located at (4, 0) where ℓx = 2 and ℓy = 0). Then,
the number of sites in the 1D chain is L = 4ℓx − 1 and the total number of
bosons is ℓx − ℓy (in FIG. 4.5 we have L = 7 and N = 2).

4.3.3 Construction of the 1D bosonic Hamiltonian

The kinetic term of the RK Hamiltonian in (4.2) is easily mapped into simple
single-particle hopping terms:

Hhop = −∑
i

tb²
i bi+1 + h.c., (4.7)

where each hopping is associated to a change in the configuration of the
electric string, that is, the flip of a plaquette (in the dimer configuration
changing the orientation of the parallel dimers, and in the triangular as the
flipping between horizontal and kinked segments (see FIG. 4.5). However, in
contrary to the Q6VM, the mapping to the 1D chain of HCBs is not one-to-one
in the QDM. We are required to project out configurations that are possible
in the bosonic picture. The following items include terms to the bosonic
Hamiltonian by examining minuciously each one of the conditions we need
to have a fair mapping of the electric string onto the 1D chain:

• two bosons cannot occupy NN sites with one site being even (tick) and
the other site being odd (segment), and similarly two bosons cannot
be in consecutive even sites because they do not have associated dimer
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configuration (see FIG. 4.5b representing bosons at even sites in the
closest configuration). Then we add the term

Hcon = U ∑
i

nini+1 + U ∑
i even

nini+2, U → ∞, (4.8)

where U → ∞ projects out the aforementioned bosonic configurations.

• every flippable plaquette in the triangular lattice given by a kinked
segment of the string is mapped as a boson occuping an odd site for the
upward segment of the string and an odd empty site for the downward
segment (see FIG. 4.5), so the change of occupation for the odd sites is
penalized by an energy of V, similar to the mapping for the Q6VM in
(3.9):

Hpot,1 = V ∑
i odd

(ni − ni+2)
2. (4.9)

• every horizontal segment of the string has two adjacent flippable
plaquettes (see FIG. 4.5b) so is penalized by 2V. This term can be
included as a chemical potential counting only bosons in even sites:

Hpot,2 = 2V ∑
i even

ni. (4.10)

• there is one less flippable plaquette when a horizontal segment of
the string meets with a downward segment. In the bosonic picture
it corresponds to a configuration where two bosons occupied sites
separated by three units, so we have to subtract one penalization of V
for such configurations:

Hpot,3 = −V ∑
i

nini+3. (4.11)

The resulting bosonic Hamiltonian that maps the electric string in the
QDM onto the 1D chain is

Hdimer = Hhop + Hpot,1 + Hpot,2 + Hpot,3 + Hcon. (4.12)

It is a generalization of the bosonic Hamiltonian (4.2) for the Q6VM and
imply a series of consequences that difficult the analytical resolution of the
problem. For instance, when V = 0, (4.12) cannot be mapped as free fermions
anymore due to the constraint (4.8) that warranties the representability of
bosonic configurations in the dimer picture.

Regarding the symmetries of the two-ladder chain, the Hamiltonian is
particle-hole invariant, which can be seen as the invariance under reflexions
about the horizontal axis intersecting Qr0 = 0, the charge at the origin,
similarly to the invariance under reflexions about the diagonal intersect-
ing the origin in the Q6VM. Moreover, for periodic chains, the system is
translationally invariant under translations by two sites given by:

[H, T] = 0, Tb²
i T−1 = b²

i+2. (4.13)

This symmetry will be useful to diagonalize the Hamiltonian by blocks
labelled by momentum.
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Figure 4.6: Electric string in QDM in the CDW phase V < t: Odd and even CDW states. Figures
(a) and (c) show CDW on odd sites and are related under the particle-hole-like
symmetry, while (b) shows the CDW on even sites[HAMS19].

4.4 phases of the electric string from the bosonic two-leg

ladder

The lack of an analytical solution of the bosonic Hamiltonian (4.12) forces us
to take an perturbative approach in the regions at the LHS and RHS of the RK
point. A further numerical analysis done in the last section of the chapter
will give us a further insight in the properties of the system. Additionally,
we will restrict the analysis to the quarter filling sector, that is, when the
defects are only horizontally displaced from each other by ℓx = L and ℓy = 0
in the triangular lattice as has been shown in FIGs. 4.4 and 4.5 for L = 2.
This sector offers the largest Hilbert space, so we expect it can be a good
precursor to the behavior of the whole 2D QDM. Lastly, we will consider a
periodic chain with length ℓ = 4L and N = ℓx − ℓy = L bosons to use the
conservation of total many-body momentum.

4.4.1 LHS of the RK point: Charge Density Wave (CDW) states

In the region at the LHS of the RK point, for large negative V the dominant
terms in the bosonic Hamiltonian (4.12) are the potentials counting the
flippable plaquettes, and the kinetic term can be introduced as a small
perturbation on the classical ground states shown in FIG. (4.8). These are
mapped as CDW states in the bosonic picture where the occupation number
fluctuates slightly. Due to the two-leg ladder, we have two CDW states in the
1D chain that spontaneously break the translational symmetry dictated by
(4.13) that in the limit V → −∞ are given by

|odd⟩ =
L−1

∏
i=0

b²
4i+1 |0⟩ , |even⟩ =

L

∏
i=1

b²
4i−2 |0⟩ , (4.14)

and the additional copies by translating the states by two units. The state
|odd⟩ for the odd sites analogous to the CDW states in Q6VM (expressed in
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Figure 4.7: Two lowest energy levels vs. V/t in QDM: Lowest energy states obtain with exact
diagonalization for a ring with L = 7 and ϕ = 0. The region V → −∞ shows
quasi-degenerate k = 0 and π CDW states with a gap opening for te lowest
energy excitations. There is no gap closing at V = 0 because of the constraint
Hcon in (4.8). The expected sharp discontinuity at the RK point V = t is obtained,
followed by approximate degenerate energy states at all k sectors forming the
phase-separated states in (4.16)[HAMS19]. It is illustrative to compare with FIG.
3.9.

the XXZ picture in (3.14)) corresponding to the maximally kinked path in
the triangular lattice (see FIGs. 4.8a and 4.8b). The other state, |even⟩, an
even CDW where the bosons are located at the even sites, does not have an
analogy in the Q6VM. This one corresonds to the maximally straight path
(see FIG. 4.6c)

Since the states (4.14) belong to two different symmetry sectors, the ground
state will be determined by the fluctuations produced by the kinetic term as
follows from perturbation theory at fourth order in t:

Eodd

L
= 2V − 2t2

|V| +
t4

|V|3 + O(t6),
Eeven

L
= 2V − 2t2

|V| + 0 + O(t6). (4.15)

The zeroth order is given by the energy penalty due to the flippable pla-
quettes. The first and all odd orders vanish because of the global gauge
invariance that flip the sign of t. Since up to second order the two CDW states
still have the same energy, we are required to go up to forth order, where
the even CDW turns out to be the true ground state. We can understand this
results from the fact that Hcon in (4.8) forbids the bosons in the even sites to
hopp closer in contrast to bosons in the odd sites that can delocalize without
any infinite energy penalty of U → ∞, as shown in the energy spectrum at
L = 7 in FIG. 4.7 obtained with exact diagonalization, where the two lowest
energy levels are plotted vs. V/t. Notie the four degenerate ground states
in momentum sectors k = 0 and π, along with the lowest energy excitations
above them.

For the region where V ∼ t, the bosons spread throughout the chain in
both lattices, meaning stronger fluctuations of the string in the dimer and
triangular lattice pictures, to lower their energy. we can expect a transition
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Figure 4.8: Electric string in QDM in the FM phase t < V: The string assumes a configuration
that minimizes the number of flippable plaquettes, those are the paths, (a) and
(b), along the bounding parallelogram with opposite vertices at the defects
in the triangular lattice, and the corresponding bosonic picture as a phase
separation[HAMS19].

at V = −t similar to the Kosterlitz-Thouless (KT) point in the Q6VM because
of the increasing relevance of the kinetic term. On the contrary, the picture
of free fermions at V = 0 is impossible in the QDM because of the constraint
(4.8) making the system strongly interacting in the whole V/t axis.

4.4.2 RHS of the RK point: phase-separated states

As expected from the Hamiltonian (4.2), we find a phase transition at the
RK point, where the zero-energy manifold emerges because of the sum of
projectors that we obtain when V = t as can be seen in FIG. 4.7, where
it is noticeable the discontinuity of the first derivative of the low energy
spectrum for all the momentum sectors (in a system of size L = 7).

The region at the RHS of the RK point is more similar that one observed
in the Q6VM in chapter 3. In the bosonic picture there is a NN attraction
produced by the term Hpot,1 in (4.9) that cluster the bosons in a phase-
separated state. Have into account that this clustering is only possible in
the odd sublattice because of the constraint Hcon in (4.8). In the triangular
lattice, this manifests as the string approaching the bounding parallelogram
as shown in FIG. 4.8 as the Ferromagnetic (FM) phase of the electric string in
the Q6VM approaching the bounding rectangle (see FIG. 3.6). To finish the
analysis of open strings, the energy density is concentrated at the domain
wall, where the boson occupation number changes, with an energy penalty
of V as V → ∞, in complete agreement with the FM phase in Q6VM and
similar implications such as the vanishing string tension when the defects
move along the links of the lattice due to the polarized background in the
square lattice for the Q6VM and the triangular lattice for the QDM.

For a periodic string we have two domain walls associated to the flip-
pable plaquettes at the reconnection of the string (one flippable plaquette is
possible only for open chains). In the limit V → t we would obtain a quasi-
degenerate manifold due to the delocalization of the domain walls that can
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propagate throughout the ring. At quarter filling, the 2L quasi-degenerate
states are given by the Bloch waves

|k⟩ = 1√
2L

2L−1

∑
n=0

e−ikn
L

∏
i=1

b²
2i+1+2n |0⟩ , (4.16)

where k ∈ 2πn/2L and n ∈ Z. The energy of these domain walls is approxi-
mately given by

E = 2V − 2t2

V
+ . . . , (4.17)

at second order in t/V, and the penalty of 2V is due to the existence of
the two flippable plaquettes. In this case we also have the case where the
energy is concentrated at the domain walls, leaving the strings tensionless
and yielding the sub-dimensional deconfinement as well as no additional
flippable plaquettes are created because of their high energetic cost.

where the energy between the bosons is zero, and all the energy of the
phase is concentrated at the domain wall. This results corresponds to the
low-dimenstional deconfinement we have found in Q6VM where we are free
to move the defects along the axes

4.5 numerical approach : drude weight and system size ef-
fects

The limit cases V → ±∞ lead to classical insulating CDW and phase-
separated states at the LHS and RHS of the RK point, respectively. However,
based on the results obtained for the Q6VM in chapter 3 and the stronger
quantum fluctuations due to the kinetic term of the Hamiltonians (4.2) and
(4.12) in the region |V| < t, we can expect that metallic Luttinger-liquid-like
states could appear between the two limit cases. This hypothesis can be
tested using the Drude weight introduced in chapter 3. Following a sim-
ilar procedure, we diagonalized numerically the Hamiltonian (4.2) using
the physical states of the string instead of the bosonic picture to avoid the
implementation of a larger Hilbert space with the constraints Hcon in (4.8).
The system consists in a ring of size L = 2, ..., 7 with the modification of the
boundary twist introduced in (3.23):

Hdimer,closed = Hdimer,open + eiϕtb²
1bL + h.c. (4.18)

The results presented in FIG. 4.7 are for ϕ = 0. The rest of the values were
taken into account to calculate the Drude weight D defined in (3.25):

D ≡ L
d2E0

dϕ2 , (4.19)

plotted in FIG. 4.9 vs. v = V/t for the different momentum sectors.
The main features, displayed in FIG. 4.9, resemble the results obtained

for the Q6VM (see FIG. 3.10). The conducting phase in the region V ∼ t is
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Figure 4.9: Two lowest energy levels vs. v for each k momentum sector: Drude weight of Hdimer

is computed for systems L = 2, . . . , 7 via exact diagonalization for the ground
state in the k = 0 momentum sector. The RK point appears sharply at v = 1
and there is evidence for an intermediate conducting phase. Unlike the Q6VM,
there is much more structure in the putative critical region; as shown in the
inset, the second derivative of the Drude weight for L = 7 changes sign three
times[HAMS19].

clearly visible, as well as the two insulating phases as the limit cases when
V → ±∞. The RK point is shown clearly as a sharp drop in D for system
sizes larger than L = 3. There seems to be another phase transition at the
LHS of the RK point that is less visible, requiring larger system sizes to realize
the behavior in the thermodynamic limit.

As expected from the additional terms in the bosonic Hamiltonian (4.12)
to represent fairly the electric string, but still interestingly, the Drude weight
D in the conducting phase manifests a more complex behavior than its
Q6VM counterpart. The concavity d2D

d2v
plotted in the inset in the top left

corner of FIG. 4.9 changes not two, but four times, corresponding to the
small pick of D in the region 0 < v < 1 and suggesting the presence of
more than one conducting phase between the classical ground states at
V → ±∞. The verification of this hypothesis requires to scale to much
larger system sizes available using other numerical methods such as Density
Matrix Renormalization Group (DMRG) studies.

4.6 summary and discussion

We have studied the problem of a single fluctuating quantum electric field
lines connecting two isolated charge monomers in the QDM and Q6VM. By
constructing these isolated strings on top of trivial inert vacua that appear
as ground states to the right of the RK point, we have been able to map
the problems exactly onto conventional one-dimensional systems with local
Hamiltonians.

In the case of the QDM, the electric field line maps exactly onto a one-
dimensional lattice of HCBs with two sites per unit cell (or equivalently
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a two-leg spin-1/2 ladder). We have not been able to solve this problem
analytically but have been able to understand perturbatively the phases that
occur far away from the RK point. These two phases correspond to a CDW
state (analogous to the Ising AFM in the Q6VM case) and a phase separated
state (analogous to the phase separated Ising FM in the Q6VM case). These
two states are the natural precursors to the columnar and the staggered
phases of the full two-dimensional QDM. Subdimensional deconfinement
appears in the phase separated state, corresponding to the deconfinement
in the staggered dimer phase [BT04]. By numerically computing the Drude
weight, we have found evidence for a liquid state intervening between the
two crystals that exist away from the RK point. We interpret this liquid,
delocalized phase as the one-dimensional precursor of the plaquette valence
bond solid in the full two-dimensional problem.

The resemblance of the quasi-one-dimensional single electric field line
problems that we have studied and the full two-dimensional problems in-
dicates that the behavior of the latter might be understood by thinking of
them as a closely packed array of electric field lines which by themselves
are undergoing non-trivial phase transitions. More specifically, as we de-
scribed in §4.1, the decoupling of the Hilbert space into winding sectors
can be interpreted as a conservation law for the the total number of elec-
tric field lines. The zero winding sector where the global ground state of
the full Hilbert space resides at the left of the RK point contains a large
number of such electric field lines. These lines can be viewed as bosonic
strings with hard-core interactions so that the electric field lines do not
overlap. This perspective provides a natural understanding of why the crys-
talline phases of the one-dimensional electric field line survive in the fully
two-dimensional multistring case. However, these strong interactions are
presumably responsible for the freezing out of the quantum fluctuations of
the Luttinger liquid type phase that we have encountered, transforming it
into the resonant plaquette crystal state that is seen in numerical studies of
the full two-dimensional problem of the six-vertex model. We hope that in
the future, more systematic numerical studies of our current setting and of
its generalizations to the few strings problems might offer an alternative
window the behavior of the less well understood aspects of the presumed
resonant plaquette phase of the QDM.





Part II

B O S O N I Z AT I O N O F PA RT I C L E - H O L E
E X C I TAT I O N S I N 2 D D I R A C F E R M I O N S

This part is devoted to the problem of bosonization of particle-hole
excitations of interacting electrons in graphene. Chapter 5 is a brief
review of the electronic properties of graphene emerging from its honey-
comb lattice, keystone in producing the Dirac cones. Chapter 6 presents
a bosonization technique to address non-perturbatively the electron
interactions for the Q = 0 particle-hole excitations. Lastly, Chapter 7

applies the techinique introduced in the previous chapter to the non-
perturbative calculation of the optical conductivity of graphene.





5
G R A P H E N E I N A N U T S H E L L

We are probably digging too deep within established areas, leaving plenty of

unexplored stuff under the surface, just one poke away. When one dares to try,

rewards are not guaranteed, but at least it is an adventure.

Ð Sir Andre K. Geim [Gei11]

The discovery and control of several substances has implied in history
turning points in the development of humanity, which include the furnace
of different metals, the knowledge on chemical elements and the design of
new materials. In that way, graphene is among the new materials discovered
in the last decades that open the study of fundamental physics as well
as promising technological applications. Although graphene was already
virtually employed since the invention of the graphite pencil in the 16th
century[Pet92], its properties theoretically predicted in 1947[Wal47] and
progressively approached during the 20th century[Boe+62], it was until
2004 when a single layer of graphite was isolated and caracterized[Nov+04;
Nov+05].

This chapter is a brief review in the lattice and band structure of monolayer
graphene as our study case for the second part of this work consisting in an
extension of the higher-dimensional frameworks of bosonization [HKM00].
§5.1 presents a discussion about the hybridizations of carbon orbitals and the
honeycomb lattice as a result of the sp2 hybridization present in graphene.
Then, the tight-binding in a honeycomb lattice used to describe graphene is
built in §5.2. Lastly, §5.3 introduces the effective 2D Dirac fermion Hamil-
tonian that is used in the next chapters 6 and 7. The reader is free to skip
§5.1 and §5.2 and do a quick reading of §5.3 to know the notation used in
the next chapters and come back to the previous sections for clarification if
needed.

5.1 origin of the hexagonal structure

Carbon (C), as the basis of the organic chemistry, presents a high versatility
when bonding with other atoms. It is due to the electron content of C with
four valence electrons, having then four electrons occupying the eight states
available in the orbitals 2s2p[Goe11]. Although the electronic configuration
of C in its ground state, 1s22s22p2, presents a doubly-occupied 2s orbital and
only 2p orbitals singly-occupied leaving the last one empty, when the atom
forms bonds with other atoms, one of the electrons of the doubly-occupied
2s is promoted to the last empty 2p by the cost of 4.2 eV such that there are
now four singly-occupied orbitals in the outer shell whose electrons form

57
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Figure 5.1: Carbon electronic configuration: The ground state of C atoms 1s22s22p2 with two
valence electrons, and the excited state 1s22s12p3 with four valence electrons
involved in chemical bonding[Goe11].

part of the molecular orbitals (see FIG. 5.1). The energy paid to promote
the electron from 2s orbital to 2p is obtained from the exothermic process
of chemical bonding, in which the atoms energy decreases when the wave
functions overlap[Kat12].

5.1.1 Hybrid orbitals in C

The energy gained when chemical bonding happens is maximized if the
wave functions are aligned between the atom cores and take maximal values
there. This is done by the superposition of orbitals in the outer shell or the
hybridization of the 2s and 2p orbitals, whose orientation is dictated by the
spherical harmonics Ym

l with l = 0 and l = 1, that can be assignated to
states as follows:

|s⟩ = Y0
0 (θ, ϕ) =

√

1
4π , |x⟩ = Yx

1 (θ, ϕ) =
√

3
4π sθcϕ,

|z⟩ = Y0
1 (θ, ϕ) =

√

3
4π cθ, |y⟩ = Y

y
1 (θ, ϕ) =

√

3
4π sθsϕ.

(5.1)

where Y
x(y)
1 = (Y+1

1 ±Y+1
1 )/

√
2, and the radial part is factored out since it

contributes equally as a first approximation[Kat12]. Then, the states can be
combined as

|n⟩ = ∑
i=s,x,y,z

cni |i⟩ , (5.2)

where n = 1, ..., 4 are the hybrid orbitals, new orthogonal states that are
orientated to maximize the overlapping. This procedure can be extended to
d orbitals using Y2,m(θ, ϕ) harmonics in the third block of periodic table to
understand covalend and cordinated bonds in transition metals and heavier
non-metals.

In C atoms, there are three types of hybridization depending on the
number of 2p orbitals involved in the maximization of overlapping to form
σ bonds (invariant under rotations about the interatomic axis) or π bonds
(Z2-symmetric with a node along the interatomic axis) :

• sp: involves only 2s2pz orbitals to form two collinear orbitals along the
z axis:

|1⟩ = 1√
2
(|s⟩+ |z⟩), |2⟩ = 1√

2
(|s⟩ − |z⟩), (5.3)
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(a) sp (b) sp2 (c) sp3

Figure 5.2: Hybrid atomic orbitals: The maximization of overlapping of atomic wave functions
decrases the total energy of the molecule, and then the orbitals mix among them
to reach the new eigenstates given by the three possible hybridizations of C
electrons depending on the surroinding atoms C is going to bond[Kat12].

with two 2px,y remaining intact and orthogonal to the sp axis. It is use-
ful to understand triple bonds (e.g. acetylene HC ≡ CH), comprising
a σ bond involving the sp in between and two π bonds involving the
2px,y.

• sp2: involves 2s2px2py orbitals to form:

|1⟩ = 1√
3
(|s⟩+

√
2 |x⟩),

|2⟩ = 1√
6
(
√

2 |s⟩ − |x⟩+
√

3 |y⟩),
|3⟩ = 1√

6
(
√

2 |s⟩ − |x⟩ −
√

3 |y⟩),
(5.4)

forming three triangular coplanar orbitals on the xy plane, with 2pz in-
tact. It is useful to understand double bonds (e.g. ethylene H2C = CH2),
comprising a σ bond involving one sp2 orbital and one π bond involv-
ing 2pz.

• sp3: involves the four orbitals to form:

|1⟩ = 1
2(|s⟩+ |x⟩+ |y⟩+ |z⟩), |2⟩ = 1

2(|s⟩+ |x⟩ − |y⟩ − |z⟩),
|3⟩ = 1

2(|s⟩ − |x⟩+ |y⟩ − |z⟩), |4⟩ = 1
2(|s⟩ − |x⟩ − |y⟩+ |z⟩),

(5.5)

displaying four orbitals distributin at the corners of a tetrahedron
centered in the nucleus of the atom. The sp3 can form only σ bonds
(e.g. methane CH4 or ethane H3C−CH3).

The diamond structure is described using sp3 because of the tetrahedral
symmetry on the way each C in the lattice binds with its neighbors (see
FIG. 5.2c), and linear acetylenic carbon consists on a polymetric chain of
doubles bonds where every C is in sp hybridization[Xue+04] (FIG. 5.2a).
Other allotropes of C such as graphite, carbon nanotubes or fullerenes are
based in graphene, where C is in sp2. The trigonal structure of the sp2 planar
orbitals (FIG. 5.2b) are the key of garphene’s hexagonal structure, while the
remaining pz orbital, perpendicular to the plane, are actively involved in the
electronic properties of graphene and its derived allotropes.
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(a) (b)

Figure 5.3: Direct and reciprocal lattice of the honeycomb: (a) a1,2 are the basis vectors of
the triangular Bravais lattice, and δ1,2,3 the NN vectors with |δ| = 1.42Å. (b)
Reciprocal lattice with basis vectors a∗1,2 and first Brillouin zone (shaded) centerer
at Γ. The Dirac points are located at the corners K and K′.

5.1.2 Honeycomb lattice

The honeycomb lattice consists on a triangular Bravais lattice with basis
vectors given by[Kat12]:

a1 =
a

2
(3,
√

3), a2 =
a

2
(3,−

√
3), (5.6)

where a is the lattice parameter with a length around 1.42 Å the CC bond
length associated to a double bond with the π electrons delocalized through
the lattice. At each triangular unit cell there are two kinds of C atoms de-
pending on how they bond with their Nearest Neighbor (NN), one belonging
to the sublattice A (red dots in FIG. 5.3a) that bonds with three C in sublattice
B with vectors given by

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3), δ3 = a(−1, 0), (5.7)

and similarly with C atoms belonging to sublattice B (blue dots in FIG. 5.3a).
The associated reciprocal lattice obtained with the condition ai · a∗j = 2πδij

can be expressed as:

a∗1 =
2π

3a
(1,
√

3), a∗2 =
2π

3a
(1,−

√
3), (5.8)

also generating a diatomic triangular lattice with a hexagonal Brillouin zone.
Two kinds on symmetry points in the Brilluoin zone are depicted in FIG.
5.3b, where the important ones to describe low-energy levels are given by
the wave vectors:

K =
2π

3a

(

1,
1√
3

)

, K′ =
2π

3a

(

1,− 1√
3

)

, (5.9)

These are the characteristic Dirac points Dirac Point (DP), where the low-
energy excitations with the characteristic conical dispersion relation of
graphene are found, as is briefly described in the next sections.
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5.2 tight-binding approach

The wave function of an electron in the π orbitals with wave vector k in
graphene is expanded in two components referring to which sublattice the
electron is, as follows[Goe11]

ψk(r) = akψ
(A)
k (r) + bkψ

(B)
k (r), (5.10)

whose expansion in Bloch waves is given by

ψ
(N)
k (r) = ∑

Rl

eik·Rl ϕ(N)(r + δj − Rl), N = A, B, (5.11)

where ϕ(N)(r) are the wave function of the 2pz orbital located at the lat-
tice sites Rl − δj. The wave functions ϕ(N)(r) are solution of the atomic
Hamiltonian

Ĥ0ϕ(N)(r) =

(

k2

2m
+ U(r)

)

ϕ(N)(r) = ϵNϕ(N)(r), (5.12)

where U(r) is the internal potential of each atom before bonding.
The Hamiltonian of the crystal can be expressed asgoerbig2011electronic

Ĥψλ
k(r) =

(

Ĥ0 + V
)

ψλ
k(r) = ϵλ

kψλ
k(r) (5.13)

where V is the potential acting in one electron produced by the other atoms,
and ϵλ

k with ψλ
k(r) are the dispersion relation and the wave function of the

electrons in the band λ (two for the case of a bipartite lattice as in graphene).
Using the Ansatz in (5.10), the Schrödinger equation in (5.13) can then be
expressed as the quadratic form[Goe11]:

(

a∗k b∗k

)

Hk

(

ak

bk

)

=
(

a∗k b∗k

)

Sk

(

ak

bk

)

(5.14)

where Hk and Sk are the matrix elements of the Hamiltonian and the wave
overlapping:

Ok =

(

ψ
(A)
k (r)Ôψ

(A)
k (r) ψ

(A)
k (r)Ôψ

(B)
k (r)

ψ
(B)
k (r)Ôψ

(A)
k (r) ψ

(B)
k (r)Ôψ

(B)
k (r)

)

. (5.15)

In this way, the solution of the problem will lie on the secular equation

∣

∣

∣
HMN

k − ϵλ
kSMN

k

∣

∣

∣
= 0, (5.16)

where M, N = A, B are the sublattice indices.
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5.2.1 Hopping and overlapping matrices in NN approximation

One realization of the secular equation is done by defining the overlapping
density sMN

k and the hopping matrix tMN
k as follows:

oMN
k = ∑

Rl

eik·Rl

∫

d2rϕ(M)∗(r)Ôϕ(N)(r + δMN − Rl), (5.17)

where δMN = δM− δN and the integral is done througout the whole system.
The operator Ô = 1 for the overlapping density and Ô = V for the hopping
matrix. Have into account that the matrix elements of oMN

k refer to the
overlap of the wave function of an atom in sublattice M with another one in
sublattice N. As an addional comment, sMN

k is called overlapping density
because sMN

k = SMN
k /N , where N is the total number of unit cells in the

system.
The next step consist of calculating oMN

k only for the NN atoms of an
arbitrary atom in the sublattice A, that is, one atom connected to the first
three atoms of the other sublattice, B1,2,3, and neglecting any hopping or
overlapping involving longer distances in the lattice (such as terms involving
atoms in the same sublattice). Since A and B3 are connected by δ3 with only
one non-zero component, it can be used to define the real parameters

o =
∫

d2rϕ(A)∗(r)Ôϕ(B)(r + δ3), (5.18)

where o = s, t when Ô = 1, V, respectively. The hopping and overlapping
with the other two atoms B1,2 will contribute with phase factors associated
to the change in the direction of the Bloch waves when translating from B3
to B1 or B2, which can be expressed with the phase factor

γk = 1 + eik·a1 + eik·a2 , (5.19)

and yielding the off-diagonal contributions tAB
k = tγk and sAB

k = sγk. It
is important to remember that tAA

k = tBB
k = 0, but sAA

k = tBB
k = 1 from

the normalization of atomic wave functions ϕ(N)(r), giving at the end the
matrices

tk =

(

0 tγ∗k
tγk 0

)

, sk =

(

1 sγ∗k
sγk 1

)

. (5.20)

5.2.2 Dispersion relation for π electrons

When having into account the crystal Hamiltonian in (5.13) separated into
atomic and interatomic parts, together with the definition of the hopping
and overlapping matrices that allow to express (5.13) as

HMN
k /N = ϵ(M)sMN

k + tMN
k , (5.21)
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(a) (b)

Figure 5.4: Band structure of graphene: (a) Valence band (VB) (blue) and Conduction band (CB)
(red) obtained from the tight-binding Hamiltonian as ϵ±k in (5.24). (b) Contour
plot of the VB in the first Brillouin zone. Γ, K and K′ points are clearly visible.

the secular equation in (5.16) can then be expressed as
∣

∣

∣
tMN
k −

(

ϵλ
k − ϵ(M)

)

sMN
k

∣

∣

∣
= 0. (5.22)

The internal atomic energy ϵ(M) can be interpreted as an on-site potential,
but since ϵ(A) = ϵ(B), this term contributes as a constant term to the energy
that can be withdrawn without physical consequences, yielding the equation

∣

∣

∣tMN
k − ϵλ

ksMN
k

∣

∣

∣ =

∣

∣

∣

∣

∣

−ϵλ
k

(

t− ϵλ
ks
)

γ∗k
(

t− ϵλ
ks
)

γk −ϵλ
k

∣

∣

∣

∣

∣

= 0, (5.23)

where γk is given in (5.19).
The solutions of (5.23) are

ϵ±k =
t

s± |γk|−1 ≈ ±t |γk| − stγ∗kγk +O(s2), (5.24)

where t = −2.97 eV[Goe11; Kat12], and the overlap is assumed small, that
is s ≪ 1. At zeroth-order in s, it is found that the band structure of the
honeycomb lattice fulfills the particle-hole symmetry ϵλ

k = −ϵλ̄
k̄

, i.e., the CB
and VB are completely symmetric (up to contributions of the overlapping as
shown in the RHS of (5.24)).

The FIG. 5.4 displays the bands of the bonding π and antibonding π∗

electrons, also known as the VB and CB, respectively. Due to the fact that each
C contributes with three sp2 electrons forming the honeycomb lattice and
one non-hybridized pz that delocalizes on the plane at the charge-neutrality
point (one electron per C), the VB π will be occupied up to the touching
points, also called DPs, making the Fermi surface to shrink to a point. The
reason for such a name roots in expanding the solution of (5.24) around K
and K′, yielding the effective dispersion relation depending on q = k−K
as

ϵ±q ≈ ±v |q|+O
[

(q/K)2
]

, (5.25)
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where v is the Fermi velocity[VKG10]:

v =
3|t|a

2
, (5.26)

with a numerical value of v ≈ 106m/s [Kat12; CN+09].

5.3 effective 2d dirac fermion hamiltonian

The previous Hamiltonian allows to implement a continuum model in which
the hopping matrices are given parameters that have already integrated out
the interatomic potentials giving a finite Fermi velocity v, and the orbitals
are expressed in the Fock space by means of the fermionic creation and
annihilation operators, ψ̂²

σ(r) and ψ̂²
σ(r) respectively, where σ = {↑, ↓} is the

pseudospin index indicating the sublattice in which the operator acts, i.e.,
pseudospin ↑ and ↓ correspond to sublattices A and B, respectively[Kat12].

Therefore, ψ̂²
σ(r) creates an electron at position r and pseudospin σ:

ψ̂²
σ(r) |0⟩r = |σ⟩k , (5.27)

so the operators can be arranged in a 2-component spinor:

[ψ̂²
σ(r)] =

(

ψ̂²
↑(r)

ψ̂²
↓(r)

)

. (5.28)

In this basis, the Hamiltonian near the DP at K can be expressed as the Dirac
Hamiltonian in 2D[Wal47; VKG10]:

Hkin = −ivξ
∫

d2rψ̂²
σ(r) (∇ · σσσ′) ψ̂²

σ′(r), (5.29)

where σ = (σx σy) are the x and y components of the Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0
0 −1

)

. (5.30)

The Dirac Hamiltonian for the electrons at K′ is simply HT
kin, the transpose

on the pseudospin indices. The specification about in which valley, K or K′,
the electron is is done by the isospin index ξ[Goe11], i.e., isospin ξ = {+,−}
correspond to valleys K and K′. The physical spin of the electrons therefore
constitutes a third index that should be taken into account to deal with
magnetic fields or spin-orbit coupling ( pseudospin-spin coupling)[Kat12].
However, for the present discussion the Hamiltonian is diagonal in both
the physical spin of the electrons and the isospin (known as spin-valley
degeneracy[Goe11]), then they are traced out yielding a factor of 4 in the
physical observables such as the optical conductivity in chapter 7.

In the reciprocal basis, the Hamiltonian is diagonal in the momentum
index and can be expressed as[MS20]:

Hkin = vξ ∑
k,σ,σ′

ψ̂²
k,σ (k · σσσ′) ψ̂²

k,σ′ , (5.31)
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still requiring to be diagonalized in the pseudospin basis to obtain the band
basis s = {+,−}. The local kinetic term of (5.39) is (e±iϕ = k̂x ± ik̂y):

ψ̂²
kσ (k · σσσ′) ψ̂²

kσ′ =
(

ψ̂²
k↑ ψ̂²

k↓
)

(

0 ke−iϕ

ke+iϕ 0

)(

ψ̂²
k↑

ψ̂²
k↓

)

= k(e−iϕψ̂²
k↑ψ̂

²
k↓ + e+iϕψ̂²

k↓ψ̂
²
k↑),

(5.32)

which is diagonalized by the transformation
(

ψ̂k↑
ψ̂k↓

)

=
1√
2

(

e−iϕ/2 e−iϕ/2

e+iϕ/2 −e+iϕ/2

)(

ψ̂k+

ψ̂k−

)

, (5.33)

yielding the diagonal 2D Dirac Hamiltonian in the band basis,

Hkin = vξ ∑
k,s,s′

ψ̂²
k,s (k · σz

σσ′) ψ̂²
k,s′ , (5.34)

with σz the third z-Pauli matrix. The physical system then consists on
four flavors of Dirac fermions (2spin ⊗ 2ξ) propagating on a 2D plane with
constant phase speed v and a charge degree of freedom determined by
the band index: s = + corresponds to electrons and s = − to holes with
dispersion relations given by ϵs

k = sv |k|.

5.4 electron-electron interactions

The introduction of interactions to the system can be done by adding density-
density interaction terms mediated by the Coulomb potential[Nag99]:

Hpot =
1

2A ∑
q ̸=0

Vq

[

ρ̂qρ̂−q − N
]

=
1

2A ∑
q ̸=0

∑
kk′

∑
σσ′

Vqψ̂²
k′+q,σ′ ψ̂

²
k−q,σψ̂²

k,σψ̂²
k′,σ′ ,

(5.35)

where N is the number of electrons contained in the area A (the contribution
of N to the Hamiltonian is a constant term that can be ignored),

ρ̂q =
∫

d2r e−iq·rρ̂(r) = ∑
kk′

∑
σσ′

Vqψ̂²
k,σψ̂²

k+q,σ, (5.36)

is the Fourier transform of the electronic density ρ̂(r) = ∑σ ψ̂²
σ(r)ψ̂

²
σ(r), and

Vq is the Fourier transform of the Coulomb potential[Mis08; MS20]:

Vq =
2πe2

κ

e−|q|/K

|q| , (5.37)

expressed in the position basis as

V(r) =
e2

κ

1
√

r2 + (2π/K)2
, (5.38)
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where K is the UV cutoff of the system. The exponential damping in (5.37)
avoids the need of introducing sharp cutoffs that uncomplete the Hilbert
space, spoililng the consistency of the approach[Mis08]. In consequence, the
total Hamiltonian of the system is given by

H = v ∑
k,σ,σ′

ψ̂²
k,σ (k · σσσ′) ψ̂²

k,σ′

+
1

2A ∑
q ̸=0

∑
kk′

∑
σσ′

ψ̂²
k′+q,σ′ ψ̂

²
k−q,σψ̂²

k,σψ̂²
k′,σ′ ,

(5.39)

Figure 5.5: Log-shaped Dirac
cone: Dirac cones after includ-
ing self-energy corrections
producing the log depen-
dent Fermi velocity in (7.3)
[GGV94]. Outer surface rep-
resent Dirac cones without
corrections [Eli+11; Kot+12].

The major effect of the introduction of interac-
tions in the system of 2D massless Dirac fermions
is the renormalization of the coupling α = e2/κv
where v, the Fermi velocity, substitutes the speed
of light c, suggesting to call it graphene structure
constant. First order perturbative approaches pro-
pose that α runs with the energy as [GGV94;
Mis08]:

α̃(ω) =
α

1 + α
4 ln

(

EUV
ω

) , (5.40)

where EUV = Kv is the kinetic energy evaluated at
the UV cutoff. The running of α is actually due to
the renormalization of the Fermi velocity[GGV94;
Mis08]:

v(ω)

v
= 1 +

α

4
ln
(Kv

ω

)

, (5.41)

thus showing a logarithmic divergence when k → 0, important to study
particle-hole excitations (PHEs) in graphene and response functions such
as the optical conductivity. Cyclotron mass measurements in suspended
monolayer graphene have corroborated the logarithmic corrections to the
Fermi velocity due to electron-electron interactions[Eli+11; Kot+12].

Further interaction effects are treated with different approaches such as
Density Matrix Renormalization Group (DMRG) [Gol+16; PMR19; HL16],
GW[Tre+08], Quantum Monte Carlo[Ben+18; Zha+21; MDF15], Self-Consistent
Hartree-Fock (SCHF) (summarized in Appendix B), among many others. The
next chapter addresses the problem of interacting 2D Dirac fermions with a
new bosonization technique suited for gapless optical PHEs, and the Chapter
7 employs this technique to address the optical conductivity of interacting
Dirac fermions.



6
B O S O N I Z AT I O N O F T H E Q = 0 C O N T I N U U M O F D I R A C
F E R M I O N S

Science is a field which grows continuously with ever expanding frontiers. Further,

it is truly international in scope. Any particular advance has been preceded by the

contributions of those from many lands who have set firm foundations for further

developments.

Ð John Bardeen [Bar72]

Among the main problems in condensed matter physics, the properties
of strongly interacting systems constitutes one of the most difficult to be
adressed. However, one-dimensional systems have been successfully studied
in the non-perturbative regime using bosonization [Gia03], which relies
on describing the low-energy physics of the system at the Fermi points
as bosons representing oscillations about the equilibrium [Hal05]. On the
contrary, the extensions of the formalism to higher dimensions is still an
open problem [Lut79; Hal05; HM93; HKM00].

One of these methods [CNF94b; Hal05; HKM00] consists by assigning a
boson to each PHE of the system, which are interpreted as fluctuations of
the Fermi surface inside an energy shell λ as depicted in FIG. 6.1b. One
excitation is then described by the creation of an out of the Fermi surface
with the operator c²

k+Q/2, and the annihilation of a state inside the Fermi
surface with the operator c²

k−Q/2, interpreted also as the creation of a hole.
Therefore, the PHE characterized by the wave vectors k and Q is described
as the composite operator

b²
k,Q = c²

k+Q/2c²
k−Q/2. (6.1)

The bosonization approach described in [CNF94b; Hal05; HM93; Lut79]
can be obtained by promoting the above operators to a conventional set

(a) (b) (c)

Figure 6.1: particle-hole excitations (PHEs) in an usual Fermi liquid: (a) A usual Fermi liquid
with one band will present (b) an extended Fermi surface where the PHEs are
produced with finite Q[CNF94b]. (c) Particle-hole continuum showing no PHEs

with Q = 0.

67
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(a) (b)

Figure 6.2: PHEs in a non-doped nodal semimetal: (a) Both PHEs with Q = 0 and Q ̸= 0 exist
in the system, as shown in (b) by the particle-hole continuum with a pleny of
states available in the subspace Q = 0. [MS20].

of bosonic operators b²
k,Q whose commutator can be approximated as a

number. The wave vector |Q| ≪ kF then describes a small displacement of
the electron and the hole respect to the Fermi surface described by the Fermi
momentum kF. The bosonized Hamiltonian can be obtained by keeping
the bosonic bilinear terms that couple only bosonic modes modes with Q
and −Q, i.e., bosons with momentum Q scatter only into other bosons
with momentum Q, or creates a pair with momenta +Q and −Q. The idea
is that even after this simplification the resulting model still captures the
correct behavior of the interacting Fermi liquid for asymptotically small
energies and wavevectors. This idea is central to the success of this higher
dimensional bosonization.

The previous approach works well for systems with a finite Fermi mo-
mentum and then an extended Fermi boundary. The formalism present in
this work is then natural extension of the previous procedure to the case
when there is more than one band with gapless excitations near Q = 0, as it
is the case of Weyl or massless Dirac semimetals where the Fermi boundary
has indeed shrunken to a point (see FIG. 6.2). Additionaly, two-band system
host a set of non-trivial gapless optical Q = 0 PHEs not accesible with known
higher-dimensional bosonization procedures. One extension to this problem
is proposed in [MS20], based on the separability of the Hilbert space so
that Q = 0 can be approximately separated from the sectors with Q ̸= 0
keeping the resuls of [CNF94b] of coupling Q and −Q sectors but in this
case Q = 0. The validity of the proposed bosonization approach in the
separability of the Hilbert space is firmly supported in being consistent to
the conventional Feynman diagrammatic perturbation theory. This approach
is presented in the Appendix B, where the solution of the effective bosonic
Hamiltonian for the optical particle-hole pairs is exactly equivalent to the
Kadanoff-Baym (KB) Self-Consistent Hartree-Fock (SCHF) [BK61; Bay62] of
the particle-hole propagator at Q = 0.

This chapter discusses the bosonization technique presented in [MS20]
in the context of PHEs of a undoped 2D system of massless Dirac fermions
desbribed by the Hamiltonian in (5.39) introduced in the chapter 5.



6.1 effective hamiltonian and hilbert space 69

(a) (b) (c) (d)

Figure 6.3: Creation of an electron-hole pair in Q = 0 sector as the flipping of a pseudospin
on a vortex configuration: The grond state consists in (a) the Valence band (VB)
completely filled up to the Dirac Point (DP) and the Conduction band (CB) empty,
corresponding to (b) the pseudospin vortex pointing towards the DP. One PHE

(c) leaves a hole in the VB while the corresponding electron occupies the CB at
the same wave vector k, corresponding to (d) one pseudospin flip at site k.

6.1 effective hamiltonian and hilbert space

The microscopic Hamiltonian used to describe the system of 2D Dirac
fermions is the effective Hamiltonian proposed in (5.39) (h̄ = 1):

H = v ∑
k,σ,σ′

ψ²
k,σ (k · σσσ′)ψ²

k,σ′

+
1

2A ∑
kk′

∑
σσ′

Vqψ²
k′+q,σ′ψ

²
k−q,σψ²

k,σψ²
k′,σ′ ,

(6.2)

where A is the system area, and Vq is the Fourier transform of the interaction
potential of (5.37):

Vq =
2πe2

κ

e−|q|/K

|q| , (6.3)

The dispersion relation of the noninteracting system is depicted in FIG. 6.3a,
where the upper (red) cone is the CB and the lower (blue) cone the VB. To
simplify the description, the fermions are assumed moving in a 2D Torus T

2

(see FIG. 2.5b) to quantize the momentum in a square lattice in the reciprocal
space. At each site of the reciprocal lattice there exist four states: empty |0⟩k,
singly occupied |↑⟩k , |↓⟩k and doubly occupied |↑↓⟩k, and together they
span the many-body Hilbert space as the tensor product of all the sites of
the lattice:

H =
⊗

k

(|0⟩k ⊕ |↑⟩k ⊕ |↓⟩k ⊕ |↑↓⟩k) . (6.4)

The kinetic term in (6.2) produces no fluctuations between the occupancy
of the momentum sites, and favors a ground state with singly occupied
states with the pseudospin sk = ∑σσ′ ψ

²
kσσσσ′ψ

²
kσ′ forming a vortex pointing

towards the origin, i. e., the DP (see FIG. 6.3b). One excitation at a site k (FIG.
6.3c) can be seen as the flip of the pseudospin |↓⟩k → |↑⟩k, shown in FIG.
6.3d as the red arrow pointing outwards.
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The interactions are a form of pair hopping terms that have a finite ampli-
tude to induce transitions into states with doubly occupied sites and empty
sites. Crucially, the subspace of the Hilbert space with singly occupied sites
is equivalent to the space of particle-hole pairs with zero total momentum,
Q = 0, while those states with doubly occupied and empty sites contain
PHEs of finite momentum Q.

6.2 effective heisenberg hamiltonian

In this section we discuss in detail the projection of the Hamiltonian onto the
singly-occupied Hilbert space Hsing as part of the bosonization formalism.
Inspired by the decoupling of particle hole excitations with different Q in
higher dimensional bosonization approaches, the Hamiltonian in (6.2) is
projected onto the Hilbert space of singly occupied sites in the momentum
lattice, depicted in FIG. 6.3b. This Hilbert space contains a spin-1/2 at each
momentum site:

Hsing =
⊗

k

(|↑⟩k ⊕ |↓⟩k) , (6.5)

corresponding to Q = 0 excitations only. We will denote the projector onto
this subspace by P . Our mathematical task is therefore to project the full
interacting Hamiltonian from (6.2) onto the subspace Hsing, which we will
describe next.

To accomplish the projection we first need to eliminate the off-diagonal
matrix elements that scatter electrons onto different momenta Q that would
lead to doubly occupied or empty states in momentum. This leads us then
to constraining the momentum transfer of the interaction term in (6.2) to a
momentum site swapping

ψ²
k′+qσψ²

k−qσ′ψ
²
kσ′ψ

²
k′σ → ψ²

kσψ²
k′σ′ψ

²
kσ′ψ

²
k′σ, (6.6)

in order to stay inside Hsing.
On the other hand, the fermion kinetic term can be expressed in terms of

the pseudospin operator:

sk = ∑
σσ′

ψ²
kσσσσ′ψ

²
kσ′ , (6.7)

and similarly, the fermion bilinears in (6.6) can also be expressed by inverting
the definition of the pseudospin operator (6.7), as follows:

ψ²
kσψ²

kσ′ =
1
2

3

∑
µ=0

σ
µ
σσ′s

µ
k. (6.8)

with σ0
σσ′ = δσσ′ the identity matrix, and

s0
k = ∑

σσ′
ψ²

kσδσσ′ψ
²
kσ′ = n²

k = 1, (6.9)
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the particle number operator at site k, constrained to be one in Hsing. The
interaction term can then be rearranged to match momentum labels and
replaced them with spin operators yielding

∑
σσ′

ψ²
kσψ²

kσ′ψ
²
k′σ′ψ

²
k′σ =

1
4 ∑

µνσσ′
σ

µ
σσ′s

µ
kσν

σ′σsν
k′

=
1
4∑

µν

tr (σµσν)s
µ
ksν

k′ =
1
2∑

µν

δµνs
µ
ksν

k′ =
1+ sk·sk′

2
,

where tr (σµσν) = 2δµν. The identity in the last result corresponds to the
occupation number at the sites k and k′ and gives a constant term, while
the second one describes a long-range Heisenberg exchange term between
isospin operators.

Gathering the different terms previously described, we arrive at the form
of the Hamiltonian from (6.2) projected onto the subspace of singly occupied
sites in momentum space, which has the form of a Heisenberg model:

PHP = ∑
k

vk · sk − ∑
k ̸=k′

Vk−k′

4A
sk · sk′ . (6.10)

where the first term is a Zeeman vortex field with the effective magnetic field
vk, thus making all the pseudospins points towards the DP in the ground
state, and the second term is a long-range exchange coupling mediated by
the effective coupling Jq = Vq/4A.

6.3 quadratic bosonic hamiltonian

Figure 6.4: Exciton creation and
annihilation operators: The new
bosonic operators b

(²)
k describe

PHEs of 2D Dirac fermions as
bosons in the 2D lattice.

Although this Hamiltonian is not exactly
solvable, the fluctuations around the non-
interacting state can be described by a Holstein-
Primakov (HP) expansion in spin-wave approx-
imation [Aue12]. To do so, we choose a spin
basis that diagonalizes the kinetic energy at
each momentum site, given by

sk = −sz
kk̂ + sx

kẑ + s
y
kϕ̂, (6.11)

which diagonalizes the kinetic term. On this
basis, the Hamiltonian can be expanded in a
bosonic representation (see FIG. 6.4) by means
of the HP transformations:

sz
k = 2

(

S− b²
kb²

k

)

= 1− 2b²
kb²

k,

sx
k ≈
√

2S
(

b²
k + b²

k

)

= b²
k + b²

k,

is
y
k ≈
√

2S
(

b²
k − b²

k

)

= b²
k − b²

k.

(6.12)
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The term corresponding to the exchange coupling in Eq. (6.10) can be
transformed into pairing and hopping terms of bosons up to bilinears:

sk · sk′ ≈
(

1− 2b²
kb²

k + 2b²
k′b

²
k′

)

cos ϕkk′

+
(

b²
kb²

k′ + b²
kb²

k′

)

(1 + cos ϕkk′)

+
(

b²
kb²

k′ + b²
kb²

k′

)

(1− cos ϕkk′) .

(6.13)

The resulting bosonic Hamiltonian after the HP transformations is:

HHP = ∑
k

2v|k|b²
kb²

k + ∑
k ̸=k′

Vk−k′

A
b²

kb²
k cos ϕkk′

− ∑
k ̸=k′

Vk−k′

4A
(1 + cos ϕkk′)

(

b²
kb²

k′ + b²
kb²

k′

)

− ∑
k ̸=k′

Vk−k′

4A
(1− cos ϕkk′)

(

b²
kb²

k′ + b²
kb²

k′

)

.

(6.14)

The first line contains the kinetic and self-energy terms. The second line can
be viewed as boson hopping terms in the momentum lattice. The third line
can be viewed as pairing terms which change the number of bosons.

It is convenient to re-express the Hamiltonian in a Bogoliubov-Valatin (BV)
basis given by

B²
k =

(

b²
k b²

k

)

, (6.15)

the Hamiltonian can be expressed as

HHP = ∑
k,k′

B²
kHkk′B

²
k′ . (6.16)

The matrix elements Hkk′ are given by

Hkk′ = δkk′

(

2Ek 0
0 −2Ek

)

− Tkk′ , (6.17)

where Ek = v|k| + Σk is the bare kinetic energy dressed by the Hartree-
Fock (HF) self-energy given by:

Σk =
1

2A ∑
p

Vk−p cos ϕkp, (6.18)

and Tkk′ is the matrix describing hoppings and pairings:

Tkk′ =
Vk−k′

4A

(

1 + cos ϕkk′ 1− cos ϕkk′

1− cos ϕkk′ 1 + cos ϕkk′

)

. (6.19)

The system can therefore be understood as a collection of excitons, com-
posite bosons created as the bound state of an electron and a hole by the
Coulomb attraction between them. The matrix in (6.19) then describes the
hopping and pairing interactions between the electrons.
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Figure 6.5: Particle-hole operator by KB SCHF resummation: The propagator of a coherent
particle-hole pair with interactions is described by a Bathe-Salpeter ladder
that connects one by one the particle and hole dressed propagators (including
the correspoding HF self-energies. χ(ω) is equivalent to the propagator of the
modes obtained from the bosonized Hamiltonian (6.16).

6.4 connection to diagramatic perturbation theory

This section discusses the connection between the bosonization framework
developed in the previous sections and the traditional Feynman diagram-
matic methods of many-body theory. We will demonstrate here that the
solution of the bilinear bosonized Hamiltonian in (6.16) is equivalent to the
calculation of the electron-hole propagator by means of the KB resummation
of the Feynman diagrams resulted from the SCHF approximation of the
single-particle Green function that incorporates the self-energy corrections.
The boson creation operator b²

k introduced by the HP transformation in (6.12)
correspods to the creation of a Q = 0 interband particle-hole b²

k = ψ²
k+ψ²

k−,
where the subindex s = +,− denotes respectively the CB and VB according
to the pseudospin-band transformation presented in (5.33). In other words,
we will argue that the propagator of the modes obtained from the bosonized
Hamiltonian in (6.16) is equivalent to the particle-hole propagator within
the KB SCHF resummation.

The coherent propagation of an electron in the CB and the corresponding
hole in the VB is given by:

χs1s2
k1k2

(t) = −iT
〈

ψ²
k1s1

(t)ψ²
k1 s̄1

(t)ψ²
k2 s̄2

(0)ψ²
k2s2

(0)
〉

. (6.20)

The Appendix B presents an explicit calculation where all the terms of the
KB SCHF resummation are taken into account by means of a Bethe-Salpeter
ladder series, in which all the internal one-particle Green functions

Gs1s2
k (ω) = ks1 ks2

k1 =
δs1s2

ω− s1(Ek − iη)
. (6.21)

have been dressed with the HF self-energies as dictated by SCHF[BK61; Bay62],
and iη is the standard infinitesimal imaginary frequency that regularizes the
time-ordered propagator[GV05]. These are the propagators that we use to
construct the sides of the Bethe-Salpeter ladder, as shown in FIG. 6.5.

The zeroth order of the Bethe-Salpeter ladder is the dressed non-interacting
diagram shown from left to right in FIG. 6.5, whose mathematical expression
is:

χ(0)s0s1
k0k1

(ω) = −δk0k1δs0s1

(

δs0,1 − δs0,−1

ω− 2s0(Ek0 − iη)

)

. (6.22)
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The next term is the first order ladder in the series, where the interaction ma-
trix (6.19) has been introduced as band-conserving and changing processes;
its mathematical expression is (B.13) in the Appendix B. The n-th term is the
multiplication from the left and the right of the interaction matrix in (6.19);
its expression is (B.13).

From the fact that, after having integrated over internal intermediate
frequencies vi (see FIG. 6.5 where vi describe the frequencies of the hole
propagators), the intermediate Green functions are all constrained to satisfy
s = s′, meaning that the intermediate pairs always have one electron in the
CB and the other in the VB. The series shown in FIG. 6.5 can be expressed as
a matrix geometric series involving χ(0)s0s1

k0k1
in (6.22) and Ts0s1

k0k1
in (6.19):

χ(ω) = χ0(ω) + χ0(ω)T
(

χ0(ω) + χ0(ω)Tχ0(ω) + · · ·
)

,

whose solution has the form:

χ−1
k0k f

(ω) = −(ω− iη)τzδk0k f
− Hk0k f

, (6.23)

where Hk0k f
is given in (6.17) and τz is the diagonal Pauli matrix within the

2x2 BV indices introduced in (6.15). The structure of this correlator is equal
to the propagator of the HP bosons of the Hamiltonian (6.17). The above
leads us therefore to conclude that the exciton propagator calculated using
the Bethe-Salpeter ladder, in FIG. 6.5, has an identical effective Hamiltonian
to the one obtained from the HP bosonic Hamiltonian in (6.17), demon-
strating that the bosonized Hamiltonian is equivalent to self-consistent KB
resummation of the particle-hole propagator.

6.5 parametrization of the reciprocal space

Although the fermion system was assumed with finite size so that the
reciprocal space can be described by a discrete lattice, it is desirable to
re-express the problem in a lattice that makes rotational symmetry manifest
to exploit this symmetry of the thermodynamic limit. Consequently, it is
convenient to perfom a reparametrization of the reciprocal lattice so that it
holds the symmetries the system already exhibits in the kinetic and potential
terms of (6.2) and (6.16).

6.5.1 Coordinate transformation

The Appendix D discusses the lattice parametrization in more detai, but we
review the key points of the re-parametrization here. The reciprocal space
can be reparametrize by a new coordinate z(k) that labels the sites in the
quadratic form of the boson Hamiltonian in the new lattice:

HHP = ∑
z,z′

B²
z Hzz′B

²
z′ , (6.24)
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the coordinate transformation must preserve the underlying microscopic
normalization of the states. This is satisfied if the boson operators and the
Hamiltonian in the new lattice are rescaled as follows:

Bz = J(z)Bk, Hzz′ = J(z)J(z′)Hkk′ , (6.25)

where J(z′(k)) is the Jacobian of the transformation z(k):

J(z) =

√

D(z)

(

∆z1∆z2

∆k1∆k2

)

, (6.26)

∆ki = 2π/Li is the spacing in the square lattice (FIG. 6.6a), and ∆zi are the
spacings in the new coordinate system (see Appendix D for details).

6.5.2 Polar parametrization

ν

(kx, ky)

(d)

(a) Cartesian lattice

(k, φ)

φ

k

(e)

(b) Polar lattice

Figure 6.6: Coordinate systems in
the reciprocal space: (a) Squared
lattice in which the bosonization
technique was initially proposed,
and (b) polar lattice (km, ϕn) that
displays the rotational symmetri
of interacting 2D Dirac fermions
in graphene.

The rotational invariance in the thermodynamic
limit can be captured with the following polar
parametrization z = (k, ϕ) shown in FIG. 6.6b:

km =
K√

2
tan2(m∆θ), ϕn = n∆ϕ, (6.27)

where (km, ϕn) are the polar coordinates of a
given site in the polar momentum lattice de-
picted in FIG. 6.6b, K is the Ultraviolet (UV)
momentum scale, ∆θ = (π/2)/(M + 1), ∆ϕ =
2π/(2L + 1), and n = 0, ..., 2L, m = 1, ..., M.
The radial discretization in (6.27) has been cho-
sen to have a faster numerical convergence at
low energies than a uniform radial coordinate
km = m∆θK because (6.27) is denser at small
k and more dilute at large k. Nevertheless, we
have verified explicitly by chaging the function
in (6.27) that our results described below are
independent of the specific choice of the ra-
dial discretization once the grids become suffi-
ciently dense, as it is shown in the next sections

of this chapter. Notice also that the parametrization 6.27 does not implement
a hard cutoff but the largest momentum apporaches infinity as M→ ∞. The
UV cutoff is implemented by the Coulomb potential (6.3) following [Mis08].

6.5.3 Angular momentum channels

The polar lattice allows to exploit the rotational invariance by allowing to
block-diagonalize the Hamiltonian by angular momentum channels ℓ. By
applying the transformation from Eq. (6.25) to the boson Hamiltonian from
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Eq. (6.24) and further using the angular Fourier transform in (D.17), the
Hamiltonian in (6.24) is transformed into:

Bℓ
m =

L

∑
ℓ=−L

eiℓϕn Bmn, (6.28a)

HHP = ∑
mℓ

Bℓ²
m Hℓ

mm′B
ℓ
m′ , (6.28b)

made up of 2L + 1 independent Hamiltonians of 1D bosonic systems span-
ning the remaining radial coordinate. Therefore the problem reduces to a
set of bosons moving in an effective one dimensional space for each angular
momentum channel which in general needs to be solved numerically.

6.6 discussion and summary

Figure 6.7: Zeeman vortex
in the polar lattice: The
reparametrization of the
square to the polar lattice
allows to incorporate the
symmetries in the thermo-
dynamic limit. The PHE

is displayed as the red
arrow flipped respect to
the ground state repre-
sented as the Zeeman vor-
tex around the DP.

A formalism to address non-perturbative effects in
the sector Q = 0 of PHEs of 2D Dirac fermions has
been introduced. It is constructed by projecting the
Hamiltonian (6.2) into the Hilbert subspace of singly-
occupied states in the momentum lattice, resulting in
an effective spin-1/2 Heisenberg model describing the
dynamics of the pseudospins sk = ∑σσ′ ψ

²
kσσσσ′ψ

²
kσ′ ,

one located at each site of the momentum lattice. This
model is then mapped into a system of Hard-core
Bosons (HCBs) by means of the HP transformations
that replaces each pseudospin operator sk by a bo-
son at the same site k. When the pseudospin points
towards the DP, there is no boson at k, and when the
pseudospin points away from the DP we have one
boson at k.

To support the validity of this approach, we
showed that the KB resummation of the particle-hole
propagator associated with the SCHF approximation
to the single particle Green function of the fermionic
Hamiltonian (6.2), is equivalent to the propagator
of the bosonic modes obtained from the bosonized
Hamiltonian (6.16). We expect that this formalism captures the low-energy
properties of the semi-metallic phase that evolves adiabatically from the free
fermions upon increasing the strength of electron-electron interactions.

In the next chapter, the bosonization technique presented here will be
applied to the calculation of the optical conductivity of 2D interacting
Dirac fermions. We will indeed find that the method is able to not only
reproduce the previous results in the literature obtained perturbatively,
but also captures non-perturbative effects that opens the possibility to ad-
dress strongly-interacting systems from this picture of excitonic bosonized
Hamiltonians in higher dimensions.
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The scientist’s inquiry into the causes of things is providing an ever more extensive

understanding of nature. In consequence, science is more important than ever for

industrial technology.

Ð Kenneth G. Wilson [Wil96]

One of the most remarkable physical properties of 2D Dirac fermions
studied in the previous chapter about graphene is the value of their optical
conductivity, in terms of fundamental constants of nature[Mis08; Kat12]:

σ0 = 4× e2

16h̄
, (7.1)

where the factor 4 is due to the spin-valley degeneracy (see §5.3). This result
is described in the Appendix C using the pseudospin precession formalism. This
prediction has been corroborated in experiments measuring the transmitivity,
proportional to the optical conductivity[Kat12], finding values very close to
the non-interacting fermions [Li+08; Mak+08; Nai+08].

Figure 7.1: PHE in the Dirac cone:
Creation of a PHE (exciton) as the
flip of the pseudospin at site k

(in-plane red arrow), bosonized
as a Hard-core Boson (HCB) us-
ing the formalism of chapter 6.

Interactions can be accounted for pertur-
batively using the two Feynman diagrams
shown in FIG. 7.2 describing the first-order self-
energy and vertex corrections to the particle-
hole propagator using several methods such
as Kubo formula, polarization operator, kinetic
theory[Mis08] among others, yielding the rela-
tive correction σ̃(ω) of the optical conductivity

σ̃(ω) =
σ(ω)− σ0

σ0
=

Cα

1 + α
4 ln

(

Kv
ω

) , (7.2)

as a consequence of the renormalization of the
Fermi velocity in (5.41) [GGV94]:

v(ω)

v
= 1 +

α

4
ln
(Kv

ω

)

. (7.3)

77
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(a) Self-energy. (b) Vertex.

Figure 7.2: Self-energy and vertex corrections to the conductivity σ(ω): First order diagrams
involved in the perturvative calculation of the optical conductivity σ(ω) and the
polarization Π(ω, q). Adapted from [Mis08].

It is worth noting that there was considerable disagreement in the ear-
lier literature regarding the value of the constant C in (7.2). One of the
calculations performed by Herbut et al. in [HJV08] obtained that:

C =
25− 6π

12
≈ 0.51. (7.4)

However another calculation performed by Mishchenko in [Mis08] obtained
instead the following value:

C =
19− 6π

12
≈ 0.01. (7.5)

Mishchenko in [Mis08] argued that different methods (polarizability, Kubo
formula, kinetic equation) can differ unless the Ultraviolet (UV) cutoff is
implemented appropriately. We have indeed followed the spirit of this
important point emphasized in [Mis08] when we introduced the Coulomb
potential was introduced in (5.37). Further studies [SS09; Abe+11; SF12;
Gaz+13; Bar+14b; TK14; TK18] have supported that the conclusions of value
of C reached in [Mis08] are correct, and that contrary results are ultimately
mistaken. On the other hand, non-perturbative approaches have been scarse.
One approach using Quantum Monte Carlo [Boy+16] to calculate the optical
conductivity suggests that interection corrections are still small for even
couplings as large as α ∼ 2.

Our bosonization technique introduced in Chapter 6 and [MS20] recovers
the result of [Mis08; SS09; Abe+11; SF12; Gaz+13; Bar+14b; TK14; TK18]
for weak interactions α ≪ 1 from non-pertutbative results that extend
to finite α that are also in agreement with the Quantum Monte Carlo
approaches [Boy+16] and the experimental observations [Li+08; Mak+08;
Nai+08]. Additionaly, this chapter discusses the treatment of the optical
conductivity in the framework of bosonization as well as the numerical
aspects, such as the Infrared (IR) regularization of the potential, in order to
get the corrections σ̃(ω).
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7.1 optical conductivity

The bosonization formalism presented in Chapter 6 will be applied to the
calculation corrections of the optical conductivity σ(ω) of Dirac fermions
interacting via Coulomb forces. The optical conductivity will be calculated
from the current-current correlator using the Kubo approach[GV05]:

χµν(t) = iΘ(t)A
〈[

jµ(t), jν(0)
]〉

. (7.6)

The current operator can be expressed as the pseudospin operator times the
Fermi velocity:

j =
v

A ∑
k

ψ²
kσ1

σσ1σ2ψ²
kσ2

=
v

A ∑
k

ŝk. (7.7)

The above expression is exact and we would like to emphasize that this
opeators carries a total momentum Q = 0, and therefore it is an operator that
can be represented within the Hilbert subspace Hsing in (6.5). The current
operator is then expressed in the axes system introduced in (6.11):

j =
v

A ∑
k

(

−sz
kk̂ + sx

kẑ + s
y
kϕ̂
)

. (7.8)

7.1.1 Bosonized current operator and susceptibility

After applying the Holstein-Primakov (HP) expansion for the pseudospin
operators presented in (6.12), the current can be expanded in powers of
bosonic operators, beng the leading order linear in b²

k:

j ≈ v ∑
k

s
y
kϕ̂ = v ∑

k

i(b²
k − b²

k)ϕ̂ = v ∑
k

iB²
kIϕ̂, (7.9)

with the vector I = diag(I) = (1,−1)T the diagonal of the Bogoliubov-
Valatin (BV) commutator matrix (D.4), needed in order to represent the
current operator as a superposition of the BV boson B²

k.
The real part of the optical conductivity can be ontained from the imagi-

nary part of the susceptibility

χµν(t) = iΘ(t)A
〈[

jµ(t), jν(0)
]〉

, (7.10)

where µ, ν = x, y. Due to the large symmetry of the problem, it is sufficient
to compute only the x-component of the current density without loss of
generality:

jx = v ∑
k

iITB²
k sin ϕk. (7.11)

The jx is then reexpressed in terms of the new polar lattice in (6.27):

jx = i
vK
√

∆θ∆ϕ

2π
√

A
∑
mn

SmBmn sin ϕn, (7.12)
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where n ∈ {−L, · · · ,+L}, and m ∈ {1, · · · , 2M}, spanning the BV operator

[Bℓ²
m ] =

(

b²
0n · · · b²

Mn b²
0n · · · b²

Mn,
)

(7.13)

and the Jacobian of the transformation has been combined with the vector I

as follows

[Sm] =
(

t0 · · · tM − t0 · · · − tM

)

. (7.14)

with tm = 3
√

tan(θm) sec(θm). Next, the current jxϕ is reexpressed in terms
of the angular momentum channels after applying the angular Fourier
transform (D.17) to the bosons. Because the current transforms as a vector
under rotations, the calculation of the conductivity only requires solving
the boson bilinear Hamiltonian (6.28) for the angular momentum channels
ℓ = ±1. This can also be seen in (7.11) where the sin ϕk factor selects the
channels ℓ = ±1. Then, the current operator is finally expressed as

jx = i
vK
√

∆θ

2
√

2πA
∑
m

Sm(B1²
m − B−1²

m ). (7.15)

The corresponding susceptibility is given by

χxx(t) = iΘ(t)
v2K2∆θ

8π
×

× ∑
mm′

(

Sm

〈[

B1
m(t), B1²

m′(0)
]〉

Sm′ + Sm

〈[

B−1
m (t), B−1²

m′ (0)
]〉

Sm′
)

.
(7.16)

but from the fact that the system has inversion symmetry it follows that
ℓ = 1 and ℓ = −1 yield the same contributions, and therefore the expression
of the susceptibility in terms of the BV bosons is

χxx(t) = iΘ(t)
v2K2∆θ

8π ∑
mm′

Sm

〈[

B1²
m (t), B1²

m (0)
]〉

Sm′ . (7.17)

7.1.2 Susceptibility in terms of the eigenstates

To proceed we diagonalize the Hamiltonian (??) for the ℓ = 1 angular
momentum channel via a BV transformation, expressed as follows:

B1²
m = ∑

n

R²
mnD²

n, (7.18a)

H1
mm′ = ∑

nn′
R∗mnΩnn′R

∗
n′m′ , (7.18b)

where Ωnn′ = diag
(

ω0 · · ·ωM −ω0 · · · −ωM

)

is the diagonal matrix of
the eigenvalues of the ℓ = 1 block of the HP Hamiltonian in (6.28) [Hem80].
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Replacing such transformations in Eq. (7.17) and dropping the subindices
we get

χ(t) = iΘ(t)
v2K2∆θ

8π ∑
mn

e−iΩnntSmR∗mn

〈[

D1²
n , D1²

n′

]〉

R∗n′m′Sm′ . (7.19)

which, because of
〈[

D1²
n , D1²

n′
]〉

= Inn′ (I is the BV commutator matrix in
(D.4)), yields

χ(t) = iΘ(t)
v2K2∆θ

8π ∑
mn

e−iΩnntSmR∗mnInn′R
∗
n′m′Sm′ . (7.20)

Then, we take the Fourier transform of χ(t) to get the frequency-dependent
susceptibility

χ(ω) =
v2K2∆θ

8π ∑
mn

SmR∗mnInn′R
∗
n′m′Sm′

ω−Ωnn + iη
(7.21)

Finally, we take the imaginary part of Eq. (7.21) to get the optical conduc-
tivity depending on frequency as the following Lehmann-type representa-
tion[GV05]:

σ(ω) = − e2

ω
Im[χ(ω)]

=
v2K2∆θ

4 ∑
m

∣

∣

∣

∣

∣

∑
n

R∗mnSn

∣

∣

∣

∣

∣

2
δ(ω−ωm)

ωm
.

(7.22)

7.1.3 Regularization of the Lehman representation

In the Lehmann representation, or exact eigenstates representation[GV05],
Im[χ(ω)] consists of a train of Dirac delta functions in the frequency axis,
each one corresponding to one of the eigenvalues of the Hamiltonian so
that only at those energies there is a contribution to the susceptibility. In
the thermodynamic limit where the spectrum becomes dense these delta
functions merge and in the thermodynamic limit will yield a continuous
function. However, in system with a discrete number of levels, the discrete-
ness of the Dirac deltas remains and require to be regularize for numerical
purposes. Here we do a simple regularization by replacing each Dirac delta
by rectangular distributions with width ∆ωm = ωm − ωm−1 and height
1/∆ωm, between two adjacent energy levels ωm and ωm−1 assuming the or-
dering ωm > ωm−1. In this way, the conductivity is replaced by the following
approximate form:

σ(ωm) =
v2K2∆θ

4
|∑n R∗mnSn|2

ωm(ωm −ωm−1)
. (7.23)
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7.2 numerical approach : ir regularization and system size

effects

To perform numerical calculations, it is convenient to use a Coulomb in-
teraction that has an explicit short distance or UV, and long distance or IR,
regularization of the form:

Vq =
2πe2

κ

(

e−|q|/K − e−|q|/KIR

|q|

)

, (7.24)

where K is the large momentum cutoff and KIR is the small momentum
cutoff. Physically K is of the order of the inverse lattice spacing and KIR can
be literally viewed as controlled by the inverse distance to a metallic plane
where image charges are produced. Throughout the numerical analysis, the
UV cutoff K is set to be the unit of momentum, and vK the unit of frequency.

The focus of the work is on results that are universal and independent
of these limits. To do so, only the information that numerically remains
invariant under the change of the IR cutoff has been extracted. We describe
the details of this procedure in the next subsections. The study of the effects
that explicitly depend on the IR cutoff might be physically meaningful in
the sense that they might allow to model the modifications produced by a
nearby screening gate, however they are not the focus of our current work.

7.2.1 Discretization size dependence

The calculation of the corrections to optical conductivity σ̃(ω) consists in
solving the 1D bosonic BV Hamiltonian (6.28) in the angular momentum
channel ℓ = 1. This is done using exact diagonalization of the 2M × 2M
matrix generated with the radial coordinate

km =
K√

2
tan2(θm) =

K√
2

tan2
(

π/2

M + 1

)

, (7.25)

where M is the number of cuts done along the radial coordinate, chosen in
the range from M = 102 to 104. As an illustrative example, FIG. 7.3 displays
the behavior of the conductivity as a function of M for α = 1.

The evident size effects on σ̃(ω) reinforces the need of taking the ther-
modynamic limit M → ∞. This extrapolation is done using the dataset
103 ≤ M ≤ 104, by fitting a linear function that depends on 1/M:

σ̃(ω, M) = σ̃(ω) +
∆σ̃(ω)

M
. (7.26)

The robustness of the extrapolation was ensured by using a second dataset,
6× 103 ≤ M ≤ 104, to verify that σ̃(ω) extracted from the linear fitting for
both extrapolations lie on top of each other with the essentially the same
values.
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Figure 7.3: System size effects on σ̃(ω): Optical conductivity σ̃(ω) vs. system size or dis-
cretization of the k axis with KIR/K = 10−4 and α = 1[MS20].

7.2.2 Dependence on the IR cutoff

After having taken the thermodynamic limit M → ∞, it is important to
analyze the effects of the IR cutoff for different values of KIR in the range
from 0.5K to 10−4K. The FIG. 7.4 displays the corrections σ̃(ω) for α = 0.02,
0.2, and 2. From the lowest frequencies to the highest, it can be seen a quick
rise of σ̃(ω), from the non-interacting value, that finishes in a bump located
around ω ∼ vKIR, followed by, depending on the value of the IR/UV ratio,
a region where σ̃(ω) seems to be independent of KIR, to decrease above
ω > 0.1vK and reach the non-interacting result around ω ∼ vK. Therefore,
the quick rise and the bump are effects of the mechanism producing the IR
cutoff (e.g., the screening produced by conductors in the surroundings of
the graphene layer).

We see in FIG. 7.4 that different system with different IR cutoffs have the
same universal conductivity above certain frequency. Below this frequency
the different curves corresponding to different IR cutoffs escape this universal
curve. Our focus is on determining this universal curve describing the
behavior of the ideal unscreened Coulomb interaction. In conclusion, the

Figure 7.4: IR cutoff effects on σ̃(ω) in the thermodynamic limit: The left panel corresponds to
α = 0.02, the middle to α = 0.2, and the right to α = 2. The lower inset shows
the color convention for different choices of IR cutoff[MS20].
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Figure 7.5: Perturbative effects of the IR cutoff on σ(ω)/Cα: Perturbative corrections to first
order of α for several values of the IR cutoff. The plateau at intermediate frequen-
cies reproduces the result of [Mis08]. The full detailed frequency dependence
of the conductivity coincides with the bosonization approach at weak coupling
(compare e.g. with panel (a) of FIG. 7.4)[MS20].

existence of an overall overlap extending for many orders of magnitude of
ω ensures the capture of the effects produced by the unscreened potential,
that is, (7.24) when KIR → 0.

7.2.3 Comparison of numerical results with corrections from first order perturbation

theory

The features described in the previous section, i.e., the rise of σ̃(ω) from
zero, the bump located around vKIR and the IR independent region in
intermediate frequencies, can be obtained from perturbation theory by
calculating σ̃(ω) including only the Feynman diagrams in FIG. 7.2 and
using the IR screened Coulomb potential (7.24). Both contributions are based
in the self-energy Σk. Its expression for a potential given by (7.24) is

ΣKk =
αvk

4

[

I0

(

k

2K

)

K0

(

k

2K

)

+ I1

(

k

2K

)

K1

(

k

2K

)]

, (7.27)

where Im and Km are the modified Bessel functions of first and second
kind. In this way, the dispersion relation corresponding to (7.24) is Ek =

v|k|+ ΣKk − Σ
KIR
k , with the phase and group velocities given by

vϕ(k) =
Ek

k
, vg(k) =

dEk

dk
. (7.28)

The self-energy contribution σΣ(ω), depicted in FIG. 7.2a, is given by

σΣ − σ0

σ0
=

v2

vϕ(k)vg(k)
− 1

≈ 1
2

[

I0

(

k

2KIR

)

K0

(

k

2KIR

)

+ I0

(

k

2K

)

K0

(

k

2K

)]

,
(7.29)
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Figure 7.6: Corrections to the optical conductivity for different couplings α with M → ∞ and
KIR/K = 10−4: (a) Conductivity at weak couplng. Thick: Numerical data.
Dotted: RG correction σ̃(ω). Solid: perturbative correction from Ref. [Mis08]. (b)
Conductivity at strong coupling[MS20].

where the expression before expanding is the full correction with the dressed
propagators. The vertex contribution σV(ω), depicted in FIG. 7.2b, is given
by

σV

σ0
=

σΣ

σ0

∫

d2p

(2π)2 Vk−p

k cos θk−p(p + q cos θk−p)

k2 − p2 . (7.30)

The total perturbative optical conductivity σ = σΣ + σV is depicted in FIG.
7.5 as σ(ω)/Cα with C = (19− 6π)/12 so that only the IR cutoff is the
relevant parameter. It is therefore found that all the features, including the
bump near the IR cutoff, that were obtained in the perturbative approach
are indeed correctly reproduced by the bosonization technique with the
advantage of extending such results to the non-perturbative regime.

7.2.4 Optical conductivity for several coupling constants

FIG. 7.6 shows the corrections to the optical conductivity σ̃(ω) in the ther-
modynamic limit M→ ∞ and with the smallest IR screening KIR = 10−4K
in two different panels: the upper panel (a) shows σ̃(ω) for perturbative
values of α that can have a quick convergence in perturbative expansions,
and the lower panel (b) shows σ̃(ω) for bad or non-perturbative values of α.

According to [Mis08] and the correction to the optical conductivity (7.2)
in the perturbative regime, the leading order correction to the optical con-
ductivity is linear in α and independent of ω:

σ̃ ≈ Cα +O(α2), (7.31)

with C = (19− 6π)/12. This correction is shown by thin solid horizontal
lines in Fig. 7.6a, alongside the numerical results obtained from the diago-
nalization of the bosonized Hamiltonian (6.28) in the channel ℓ = 1. There is
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a visible agreement of both perturbative and numerical results up to a weak
logarithmic running of σ̃ which actually corresponds to the logarithmic
running of the coupling constant (and indded of the Fermi velocity) at small
frequencies, expected from the perturbative Renormalization Group (RG)
analysis:

σ̃(ω) =
Cα

1 + α
4 ln

(

Kv
ω

) ≈ Cα
(

1 +
α

4
ln
( ω

Kv

))

. (7.32)

The RG running of the optical conductivity can be tested by fitting the
logarithmic model:

σ̃lin(ω) = σ̃0 + σ̃1 ln
( ω

Kv

)

. (7.33)

The coefficients obtained are listed in TAB. 7.1 and the resulting curves are
plotted in FIG. 7.7, showing a reasonable agreement for the smallest values
of α that decreases as α becomes larger. Thus, the bosonization technique
demonstrates to be in good agreement with the RG results up to second
order in α, as shown by the dotted lines in FIG. 7.6a. Finally, as expected,
non-perturbative values of α show strong deviations from the RG pertubative
calculations, noticiable in FIG. 7.6.

α Cα× 10−4 Cα2/4× 0−7 σ̃0 × 10−4 σ̃1 × 10−7

0.01 1.254 3.134 1.255 2.552

0.02 2.507 12.53 2.515 10.42

0.05 6.269 78.36 6.341 67.11

0.10 12.54 313.4 12.80 251.6

Table 7.1: Detail of the RG running of σ̃(ω) for small α: Coefficients of linear regression for
σ̃(ω) in the interval ω/Kv ∈ [10−3, 10−2][MS20].

Although the bosonized Hamiltonian (6.28) has been solved for couplings
up to α = 5, the relative corrections to the optical conductivity are not larger
than 4%, indicating the considerable resilience of σ(ω) for 2D Dirac fermions
before effects of electron-electron interactions. This result, on the other hand,
is in agreement with the current experiments that are consistent to non-
interacting Dirac fermions up to 10% of the measurement[Li+08; Mak+08;
Nai+08]. Further corrections such as Random Phase Approximation (RPA)
that have into account the screening of the Coulomb potential might even
weaken the effects of interactions because of the reduction of the effective
value of α[SF12; MS20].

7.3 discussion and summary

We have applied the bosonization formalism introduced in Chapter 6 to
compute the Coulomb interaction corrections to the optical conductivity



7.3 discussion and summary 87

Figure 7.7: Detail of the RG running of σ̃(ω) for small α: Numerical calculation of the conductiv-
ity (color lines) and the the expected value from the leading order perturbative
RG (dotted lines). The logarithmic running of the coupling constant leads to a
visible linear logarithmic drift of the conductivity at weak coupling[MS20].

of Dirac fermions and found that it recovers the results of perturbative
renormalization group at weak coupling [Mis08] and extended them to
strong coupling. Remarkably, we have found that the Coulomb interaction
corrections remain very weak (∼ 4%) up to values of the effective fine
structure constant α ∼ 5, in agreement with experiments in graphene that
have measured a value of the optical conductivity that is consistent with
the free electron theory [Li+08; Mak+08; Nai+08]. Although our discussion
has been restricted to 2D Dirac fermions, our approach can be naturally
generalized to other multi-band semi-metals and higher dimensions, such
as Weyl semimetals [AMV18] and novel nodal fermions [Bra+16], providing
an interesting tool to capture non-perturbative effects of interactions on the
correlation functions of Q = 0 operators of these phases.





Part III

W E A K C O U P L I N G I N S TA B I L I T Y, N E W
P E R S P E C T I V E S & C O N C L U S I O N S

This part is devoted to discussed current unpublised ideas and further
research projects that can be derived from the parts i and ii. The chap-
ter 8 in particular addresses the weak coupling instability of bilayer
graphene when interactions are included using the bosonization formal-
ism introduced in chapter 6. Lastly, chapter 9 outlines the main findings
of this work and presents some projects that can be developed from the
effective models we have proposed based in hard-core bosons, such as
the electric strings in lattice gauge theories, and particle-hole excitations
in nodal semimetals.





8
W E A K C O U P L I N G I N S TA B I L I T Y I N B I L AY E R G R A P H E N E
F R O M A B O S O N I Z AT I O N P I C T U R E

... the state of a really big system does not at all have to have the symmetry of the

laws which govern it; in fact, it usually has less symmetry.

Ð Philip W. Anderson [And72]

As discussed in chapter 5, carbon-based materials present different al-
lotropes with unique electronic features of interest in condensed matter and
material sciences. If we stay in the allotropes associated with C atoms in the
sp2 hybridization, the superposition of two graphene layers in the AB, also
called Bernal stacking, configuration yields a new band structure with new
properties with respect to monolayer graphene[Kat12]. The most important
one is the existence of a parabolic dispersion relation at the band-touching
points K and K′ that modifies the density of states, and consequently, all
the low-energy physics that was observed in monolayer such as the fea-
tureless optical conductivity associated to gapless Dirac fermions [MAF07;
CTV12]; alongside, there are two new gapped bands irrelevant for such a
regime. Furthermore, adding a small twist of one layer with respect to the
other [BM11] yields materials that can exhibit superconducting as well as
insulating phases depending on the electron density, and the temperature
[Cao+18; Cho+19]. Thus, despite its structural simplicity, bilayer graphene is
on its own, a material that displays a fertile framework with recent research
interest.

On the other hand, the bosonization technique we have discussed in part
ii is able to describe the interaction effects in Dirac fermions described
by a linear dispersion relation. Moreover, this formalism can be applied
to different nodal semimetals alongside monolayer graphene such as Weyl
semimetals or edge modes observed in topological insulators, both described
by linear dispersion relations close to the band-touching points. However,
we can relax the linear-dispersion condition, searching for a generalization of
the bosonization formalism to also include, for instance, parabolic dispersion
relations such as the band structure observed in bilayer graphene. In this
chapter, we will study a second application of our technique in calculating
the weak coupling instability due to electron interactions in Bernal-stacked
bilayer graphene. First, §8.1 briefly introduces the band structure of AB
bilayer graphene. §8.2 discusses the extension of the formalism presented
in chapter 6 to study Q = 0 particle-hole excitations (PHEs) excitations two
or more graphene layers. Then, §8.3 presents the two potentials, Gaussian
and Coulomb, we use to introduce electron-electron interactions in bilayer
graphene and study the corresponding instabilities produced by each one.

91
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Afterward, we propose in §8.4 a small discussion on the physical picture
to understand the weak coupling instability in bilayer graphene inspired
in superconductivity. §8.5 describes in detail the numerical procedures and
results by doing exact diagonalization to the bosonic Hamiltonian, finding
that the instability can be described resembling the Cooper instability. Lastly,
§8.6 outlines some conclusions and discusses further studies to understand
the weak instability in the bosonization picture.

8.1 band structure of bernal-stacked bilayer graphene

Figure 8.1: Lattice of bilayer
graphene: The red and blue dots
represent the top layer joined by
gray links; the light red and blue
wider dots joint by black links
represent the bottom layer.

Monolayer graphene is one of the different pos-
sible allotropes of carbon experimentally ac-
cesible by exfoliation of graphite layers. The
addition of a second layer changes the elec-
tronic properties of the material at low ener-
gies. For instance, the linear dispersion relation
observed in graphene, resembling relativistic
massless particles describeb by the Dirac cones,
is replaced by two paraboloids touching at the
vertices (gapless) and the curvature of the band
is interpreted as the effective mass Me of the
new quasiparticles following a Galilean disper-
sion relation ϵp = p2/2Me. This situation ap-
pears when we have Bernal stacking (also called
AB) of two graphene layers: atoms of sublattice A (red dots in FIG. 8.1) lie
above a sublattice A atom of the layer below, while atoms of sublattice B
(blue dots in FIG. 8.1) lie directly above the center of the hexagonal cells in
the bottom layer.

The band structure of bilayer graphene in Bernal stacking is displayed in
FIG. 8.2, where the four bands originate from the four-atom primitive cell of
the lattice in FIG. 8.1. In a system at the charge neutrality point, two bands are
gapped and are not involved in the low-energy physics, while the remaining
two have an effective paraboloid shape close the Dirac Point (DP) instead of
the conical one found in monolayer graphene. The following Hamiltonian
describes a system of 2D electrons with a parabolic dispersion relation:

Hkin = ∑
k,σ,σ′

ϵkψ̂²
k,σ

(

0 e−2iϕ

e+2iϕ 0

)

ψ̂²
k,σ′ , (8.1)

where ϵk = k2/2Me, k = |k| =
√

k2
x + k2

y, ϕ = arctan(ky/kx) is the polar
angle between the momentum vector and the x axis in the reciprocal lattice,
and Me = d2ϵk/dk2, the curvature of the parabolic band. corresponds to an
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(a) (b) (c)

Figure 8.2: Band structure of bilayer graphene: (a) Valence band (VB) (blue) and Conduction
band (CB) (red) obtained from the tight-binding Hamiltonian as ϵ±k = ±k2/2Me

in (8.1). (b) Contour plot of the VB in the first Brillouin zone.

effective electron mass of ≈ 5× 10−2me, where me ≈ 9× 10−31 kg for the
free electron [Zyl+20]. This Hamiltonian can be expressed as

H = EUV ∑
kσσ′

( |k|
K

)2

ψ²
kσ

(

k̂2 · σσσ′
)

ψ²
kσ′ , (8.2)

where σ = (σx, σy) are the Pauli matrices (5.30), and k̂2 = (cos(2ϕ), sin(2ϕ))
is the unit vector of the Zeeman vortex depicted in FIG. 8.3d, K is the
Ultraviolet (UV) momentum cutoff, and EUV = K2/2Me is the energy UV
cutoff, defined as the kinetic term evaluated at K. The following section
generalizes this Hamiltonian when m is larger than 2, and monolayer as well
as bilayer graphene can be described as two special cases.

8.2 generalization of the effective hamiltonian of graphene

The low-energy modes found in graphene where two or more layers are
superposed in Bernal stacking (as shown in FIG. 8.1) can be modelled by
the Hamiltonian given by [Kat12]:

H = EUV ∑
kσσ′

( |k|
K

)m

ψ²
kσ

(

k̂m · σσσ′
)

ψ²
kσ′

+
1

2A ∑
kk′

∑
σσ′

Vqψ²
k′+qσψ²

k−qσ′ψ
²
kσ′ψ

²
k′σ,

(8.3)

where K is the unit of momentum, EUV the kinetic term evaluated at K, A
is the system area, m is the number of layers in Bernal stacking, Vq is the
Fourier-transformed interaction potential that are written below, and

k̂m = (cos(mϕ), sin(mϕ)) (8.4)

is the unit vector of the pseudospin. This Hamiltonian is a generalization of
the cases for monolayer graphene in (6.2), and bilayer graphene in (8.2).
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(a) Monolayer low-energy bands (b) Bilayer low-energy bands

(c) Monolayer pseudospin vortex (d) Bilayer pseudospin vortex

Figure 8.3: Monolayer and bilayer graphene in the pseudospin picture: Depiction of the band
structure and vector field −k̂m = −(cmϕ, smϕ) representing the ground state for
(a,c) m = 1 and (b,d) m = 2. The production of an exciton at k (|↓⟩k → |↑⟩k) is
represented by the red arrow.

8.2.1 Density of states in monolayer and bilayer graphene

The expression of EUV depends on the number of graphene layers: for m = 1
we have EUV = vK where v is the Fermi velocity of electrons in the Dirac
cones shown in FIG. 8.3a; and for m = 2, the case in which we focus in this
chapter,

EUV =
K2

2Me
, (8.5)

where Me is proportional to the curvature of the Dirac paraboloids depicted
in FIG. 8.3b(a), and describes a fermion of mass Me with Galilean dispersion
relation ϵk = |k|2/2Me, in contrast to the relativistic dispersion relation of
Dirac fermions ϵk = v|k|. We can also comment here the density of states
per spin per valley given by

D(ϵ) =
K2

2πm
m

√

ϵ2−m

E2
UV

. (8.6)

For monolayer graphene we obtain that

D(ϵ) =
ϵ

2πv2 , (8.7)

and for bilayer graphene we get

D(ϵ) =
Me

2π
. (8.8)

The main difference between the monolayer and bilayer cases is the vanishing
density of states at ϵ = 0 in monolayer graphene, corresponding to the DP,
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whilst for bilayer graphene the density of states is constant and independent
of ϵ. This difference plays a crucial role for the results reported in this
chapter.

Following the procedure proposed in [MS20] and chapter 6, we place
the fermions on a 2D torus so that the momentum space is described by
a square lattice, and on each one of the lattice sites k can be empty |0⟩k,
singly-occupied |↑⟩k, |↓⟩k or doubly-occupied |↑↓⟩k.

8.2.2 Projection onto Q = 0 sector and effective Heisenberg pseudospin Hamiltonian

The states are then projected onto the Hilbert subspace of the sector Q = 0,
so that the remaining subspace is described by a spin lattice with two states
|↑⟩k, |↓⟩k per site k, and the projected Hamiltonian takes once again the
form of the one describing a spin-1/2 Heisenberg system as in (6.10):

PHP = EUV∑
k

( |k|
K

)m

k̂m · sk − ∑
k ̸=k′

Vk−k′

4A
sk · sk′ , (8.9)

where sk is the pseudospin operator:

sk = ∑
σσ′

ψ²
kσσσσ′ψ

²
kσ′ . (8.10)

Similarly to the case of monolayer graphene studied in chapter 6, the second
term in (8.9) is a long-range pseudospin exchangethe kinetic term. However,
the first one is mapped onto an m-fold Zeeman vortex

Bm
k = EUV

( |k|
K

)m

k̂m, (8.11)

depicted in FIGs. 8.3c and 8.3d for m = 1 and m = 2, respectively, and then
Bm

k describes the effective Zeeman vortex in monolayer graphene as the
special case when m = 1.

8.2.3 Zeeman vortex coordinates and HCB operators

The new Zeeman vortex Bm
k fixes the orientation of the pseudospin in the

ground state for the noninteracting case Vq = 0, which can be described us-
ing the following unit vectors that describe the twisting of the noninteracting
ground state observed in FIG. 8.3d:

k̂m = cmϕx̂ + smϕŷ,
ϕ̂m = cmϕŷ− smϕx̂.

(8.12)

The pseudospin operators are then expressed in the following basis:

sk = −s3
kk̂m + s1

kẑ + s2
kϕ̂m, (8.13)
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that simplifies the kinetic term by unfolding the twisting of k̂m, so that
k̂m · sk = −s3

k in the new basis (8.13). Moreover, the pseudospin exchange
term in (8.10) is expanded as

sk · sk′ = (s3
ks3

k′ + s2
ks2

k′)cmϕkk′ + (s2
ks3

k′ − s3
ks2

k′)smϕkk′ + s1
ks1

k′ . (8.14)

In the m-folded coordinates (8.13), the Hamiltonian (8.9) is then expanded
in Hard-core Boson (HCB) operators by means of the Holstein-Primakov (HP)
transformations:

s3
k = 2

(

S− b²
kb²

k

)

= 1− 2b²
kb²

k,

s1
k ≈
√

2S
(

b²
k + b²

k

)

= b²
k + b²

k,

is2
k ≈
√

2S
(

b²
k − b²

k

)

= b²
k − b²

k.

(8.15)

and then giving the physical picture of s3
k as a measure of the occupation

number of HCBs at k:

|↑⟩k → |0⟩k , |↓⟩k → |1⟩k . (8.16)

The pseudospin exchange is therefore expanded up to bosonic bilinears:

sk · sk′ ≈ (1− 2b²
kb²

k − 2b²
k′b

²
k′)

+ (b²
kb²

k′ + b²
kb²

k′)(1 + cmϕkk′)

+ (b²
kb²

k′ + b²
kb²

k′)(1− cmϕkk′)

+ i(b²
k − b²

k′ − b²
k + b²

k′)smϕkk′,

(8.17)

where the terms of the last row cancel each other when summing on k

indices.
The resulting Hamiltonian is

HHB=∑
k

2EUV

(|k|
K

)m

b²
kb²

k + ∑
k ̸=k′

Vk−k′

A
cmϕkk′b

²
kb²

k

− ∑
k ̸=k′

Vk−k′

4A
(1 + cos(mϕkk′))(b²

kb²
k′ + b²

k′b
²
k)

− ∑
k ̸=k′

Vk−k′

4A
(1− cos(mϕkk′))(b²

kb²
k′ + b²

k′b
²
k),

(8.18)

where the first row is the bosonic kinetic term with self-energy corrections,
and the second and third rows are bosonic hopping and pairing terms on
the momentum lattice, respectively. This Hamiltonian is a generalization of
(6.14) for multiple graphene layers as can be observed in the argument of
the hopping and pairing terms in addition to the expected modification of
the kinetic term of HCBs, where the number of layers m is incorporated in
the phase of the angle bwtween k and k′. Of course, the monolayer case is
recovered by taking m = 1.
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8.2.4 Bogoliubov-Valatin basis

In complete analogy to chapter 6, it is convenient to express the quadratic
bosonic Hamiltonian in (8.18) in the Bogoliubov-Valatin (BV) basis

B²
k = (b²

k b²
k) (8.19)

that fulfills the bosonic commutation relations
[

B²
k, B²

k′

]

= 1δkk′ , (8.20)

where 1 = diag(+1,−1). Consequently, in this basis the Hamiltonian can
be expressed as shown in chapter 6:

HHB = ∑
kk′

B²
kHkk′B

²
k′ ,

Hkk′ = 2δkk′

(

Em
k 0
0 Em

k

)

− Tm
kk′ ,

(8.21)

where Em
k = EUV(|k|/K)m + Σm

k , with the Hartree-Fock self-energy Σm
k =

∑k′ Vk−k′ cos(mϕkk′)/2A already included, and Tm
kk′ is

Tm
kk′ =

Vkk′

4A

(

1 + cos(mϕkk′) 1− cos(mϕkk′)

1− cos(mϕkk′) 1 + cos(mϕkk′)

)

. (8.22)

The method followed The method was shown to be equivalent to the
self-consistent Kadanoff-Baym particle-hole propagator in [MS20]. Similar
aspects such as the re-expression of the momentum space as a polar lattice to
resort the azimuthal symmetry and the factorization in independent angular
momentum channels ℓ are similar to [MS20] with minor differences detaily
described in Appendix D. The final expresssion of the Hamiltonian in polar
coordinates is

HHB = ∑
ℓnn′

Bℓ²
n Hℓ

nn′B
ℓ²
n′ , (8.23)

where the n index labels the radial slices kn given explicitly below, and ℓ

labels the block-diagonal sectors corresponding to the angular momentum
channels of the system.

8.3 interaction potentials

We propose two potentials with different long and short-range behaviors to
explore the system:

• a Gaussian potential:

Vr = V0e−r2/2a2
, (8.24)
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where r = |r| =
√

x2 + y2, V0 the is intensity of the Gaussian potential
and a is the width or spreading of the potential in the real space. Its
corresponding 2D Fourier transform is

Vq = 2πa2V0e−a2q2/2, (8.25)

that can be reexpressed as

Vq =
EUV

K2

(

ge−(aq)2/2
)

, (8.26)

where q = |q| =
√

q2
x + q2

y, and g = 2π(aK)2V0/EUV is the coupling
constant defined as the intensity of the Gaussian potential respect to
the UV energy scale EUV. The potential is further modified as follows,

Vq =
EUV

K2

[

g

(

1 +
b2q2

2

)

e−
a2q2

2

]

, (8.27)

to explore the interplay of two different length scales a and b. A depic-
tion of the potential is in FIG. 8.4a for 1 < r < ∞.

• a Coulomb-like potential:

Vr =
e2

κ

(

1√
r2 + a2

− 1√
r2 + b2

)

, (8.28)

where r = |r|, e is the elementary electric charge, κ is the substrate
dielectric constant, and a and b are length scales used to regularize
the potential defined in (7.24), playing the role of UV and Infrared (IR)
cutoffs, respectively. Its corresponding 2D Fourier transform is

Vq =
2πe2

κ

e−aq − e−bq

q
, (8.29)

that can be reexpressed as

Vq =
EUV

K2

(

g
e−aq − e−bq

q/K

)

, (8.30)

where q = |q|, and g = 2πe2K/κEUV is the coupling constant, also
defined as the ratio between the intensity of the potential and the UV
energy scale EUV. The potential is depicted in FIG. 8.4b for different
values of r in the interval (0, 1).

Both potentials can be compared by defining the effective coupling:

geff = N(ϵ = 0) lim
|q|→0

Vq (8.31)
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Figure 8.4: Electron-electron interaction potentials: Depiction of (a) the Gaussian=like potential
(8.26), and (b) the Coulomb-like potential (8.30) for different values of the length-
scale ratio r = a/b. Notice that the potentials are mostly concentrated in the
region |k| ≲ aeff, approximately resembling the potential (8.36) used to calculate
the Bardeen-Cooper-Schrieffer (BCS) gap (8.37).

where N(ϵ) is the density of states of the free system defined in (8.6), and
the effective spreading:

aeff =
n

√

−1
n!

lim
|q|→0

(

1
Vq

∂nVq

∂|q|n
)

, (8.32)

given as the coefficient of the next-to-leading order expansion in |q| (n = 2
for the Gaussian potential and n = 1 for the Coulomb potential). In this
way, by defining the length-scale ratio r = a/b, the Gaussian potential is
described by

geff =
g

4π
, aeff = a

√

1 +
1
r2 , (8.33)

while the Coulomb potential is described by the parameters

geff =
g(b− a)

4πK , aeff =
a + b

2
. (8.34)

Notice that the Gaussian potential (8.26) is recovered from (8.27) when r →
∞. Lastly, FIG. 8.4 displays the Gaussian and Coulomb potentials normalized
as VqK2/geffEUV vs. aeffq for different values of r = a/b, according to the
definition of the parameters geff and aeff in (8.31) and (8.32), respectively.

8.4 bcs instability in pseudospin picture

Electron-electron interactions are usually repulsive do to the nature of the
Coulomb potentials with an increase of the energy of the system when
electrons are closer due to the sign of electric charge. However, when effec-
tive attractive interactions emerge in the system, for instance, the phonon-
mediated interaction in BCS model, the system is driven out of the fixed point
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associated to Landau Fermi liquids towards a new ground state adiabatically
disconnected described by the BCS ansatz[Sch18]:

|ψBCS⟩ = ∏
k

(

uk + vkψ²
k↑ψ

²
k̄↓
)

|0⟩ , (8.35)

where ψ²
kσ creates an electron with momentum k and spin σ, and k̄ = −k.

One of the results is the opening of a gap ∆k that penalizes the creation of
Cooper pairs b²

k = c²
k↑c

²
k̄↓. The solution of the gap equation in BCS theory for

a potential given by

Vkk′ =

{

−V0 for |ϵk|, |ϵk′ | < ωD,
0 otherwise,

(8.36)

with the Debye frequency ωD acting as a cutoff for the phononic-mediated
interaction, is given by[Sch18]

∆0 = ωD
1

sinh
(

1
V0D(ϵF)

) ≈ 2ωD exp
(

− 1
V0D(ϵF)

)

, (8.37)

where the second term is obatined after assuming the weak coupling limit
V0D(ϵF)≪ 1. Under our notation in (8.31), V0D(ϵF)→ geff.

Although in bilayer graphene at the charge neutrality point, that is, when
the chemical potential is µ = 0 and the Fermi surface is at the DP, we do not
have an actual extended Fermi surface, we have a constant finite density of
states for parabolic dispersion relations, D(ϵ) = Me/2π. Additionally, there
exists an attractive potential between electrons with momentum k in the CB
and holes with momentum k̄ in the VB, both created by the operator ψ²

ks
where s = +1/− 1 for CB/VB, respectively. The effective spreadings aeff we
have defined in the previous section can work as the range of non-vanishing
interactions, and the effective couplings geff determine the intensity of the
interaction, such as ωD and V0 respectively. Under the previous assumptions,
we can expect to find an excitonic instability in bilayer graphene that can
resemble BCS theory with the consequence of a gap opening that penalizes
the creation of excitons b²

k = ψ²
k+ψ²

k̄−.
In the bosonization picture, we have obtain a quadratic bosonic Hamilto-

nian in terms of excitonic operators b²
k that is straightforwardly diagonalized

using the BV transformations. We can expect that te excitonic instability ap-
pears in this picture as an unstable mode, a couple of conjugated imaginary
eigenvalues that suggest the system is finding a new ground state different
from that one we have assumed in terms of Landau Dirac liquid with the
Zeeman vortex in FIG. 8.3d. To test this hypothesis, we proceed to use exact
diagonalization in the Hamiltonian (8.23) with a systematic variation of the
parameters of the system, such as the effective spreadings and couplings, or
by selecting the angular momentum channels ℓ, as it is discussed in detail
in the next section.
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8.5 numerical procedure

We solve the 2N × 2N bosonic Hamiltonian HHB in (8.23) using exact diago-
nalization in a systematic exploration of the parameter space:

• Angular momentum ℓ = 0, 1, 2, 3, 4, 5.

• Radial slices N = 100, 200, 300, 400, 500.

The effective spreadings aeff and couplings geff are explored differently for
each potential indicated in each section, and the UV cutoff is set to the unit
of momentum and energy, i.e., K = 1 and EUV = 1.

Regarding the spacing of the lattice for the radial component of the
momentum kn = k(θn, ∆θ), App. D has an extended discussion on different
radial parametrizations. We concluded to use a tangent parametrization
given by

kn =
K
2

tan4(n∆θ), (8.38)

and spacing ∆θ = π/(2(N + 1)). Consequently, the Hamiltonian is eval-
uated in the parameter space given by {ℓ, geff, aeff, r, N} (remember that
r = a/b, the ratio of the two length scales defined in the potentials in §8.3).
Later, after evaluating the potential for the five radial slices, we take the
infinite size limit N → ∞ to be sure that the results are independent of the
particular discretization chosen during the numerical procedures.

8.5.1 Numerical BCS instability

By diagonalizing the bosonic Hamiltonian HHB (8.23) with the two potentials
(8.26) and (8.30), we have foun that the system displays the unstable mode
only in the angular momentum channels ℓ = 0 and ℓ = 2. The mode is
characterized by two imaginary eigenvalues {ζℓ, ζℓ∗} of the Hamiltonian
(8.23) and two mutually conjugated eigenstates (Aℓ,−iAℓ∗) and (Aℓ∗,+iAℓ)
with Aℓ as an N-complex vector that parametrize the eigenstates. The rest
of the 2N − 2 eigenvalues are real and come by pairs {ωℓ

n, ωℓ
n} with their

corresponding N − 1 pairs of real eigenstates.

8.5.2 Functional form of the instability

The first Ansatz we use to describe the unstable mode found by exact
diagonalization is:

ζℓ(geff, aeff, r) = Cℓ(aeff, r)e
− 4πGℓ(aeff,r)

geff , (8.39)

where we have assumed the separability of the dependence on aeff and geff
in the coefficients Cℓ(aeff, r) and Gℓ(aeff, r). The fittings to the Ansatz are
shown in FIGs. 8.5 and 8.6 for the Gaussian and the Coulomb potentials,
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Figure 8.5: Unstable mode in bilayer graphene with Gaussian-like potential: Modulus of the
imaginary eigenvalues {ζℓ, ζℓ∗} for ℓ = 0, 2 obtained by exact diagonalization
of the bosonic quadratic Hamiltonian (8.18) with electron-electron interactions
described by the Gaussian-like potential (8.26). The potential parameters are
r = a/b, geff = gK/4π, and aeff = a

√
1 + 1/r2. The fitting is done using the

starred dots and the Ansatz (8.39).

Figure 8.6: Unstable mode in bilayer graphene with Coulomb-like potential: Modulus of the
imaginary eigenvalues {ζℓ, ζℓ∗} for ℓ = 0, 2 obtained by exact diagonalization
of the bosonic quadratic Hamiltonian (8.18) with electron-electron interactions
described by the Coulomb-like potential (8.30). The potential parameters are
r = a/b, geff = g(b− a)/(4πK), and aeff = (a + b)/2. The fitting is done using
the starred dots and the Ansatz (8.39).
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Figure 8.7: Coefficients Cℓ(aeff, r) and Gℓ(aeff, r) for Gaussian potential: Numerical results after
fitting the dataset in FIG. 8.5 to the Ansatz (8.39). Cℓ(aeff, r) is described by a
power law of aeff, while Gℓ(aeff, r) has a weak dependence on aeff that can be
neglected. The fittings are done to the power laws 8.40.

respectively, where the starred dots are the datapoints we chose to fit in the
weak coupling limit.

The numerical values of the coefficients Cℓ(aeff, r) and Gℓ(aeff, r) are dis-
played in FIGs. 8.7 and 8.8 for the Gaussian and Coulomb potentials. It is
easy to note that Cℓ(aeff, r) presents a strong dependence on aeff that can
be modelled by a power law, in contrast to Gℓ(aeff, r) whose variations in
function of aeff affect only the second decimal place. We assume that both
coefficients are power laws:

Cℓ(aeff, r) =

(

Aℓ(r)

aeff

)a
ℓ(r)

, Gℓ(aeff, r) =

(

Gℓ(r)

aeff

)g
ℓ(r)

, (8.40)

used to fit the results in FIGs. 8.7 and 8.8.
The coefficients Aℓ(r) and Gℓ(r), and the exponents a

ℓ(r) and g
ℓ(r) are

displayed in FIGs. 8.9, where we can noticed that aℓ(r) ≈ 2 and g
ℓ(r) ≈ 0

up to the second decimal place in a good approximation. This results allow
us to assume the following expression to describe the unstable mode found
numerically:

ζℓ(geff, aeff, r) =

(

Aℓ(r)

aeff

)2

e
− 4πGℓ(r)

geff , (8.41)

and the values of the coefficients Aℓ(r) and Gℓ(r) are well described by
the FIGs. 8.9b,d, for the Gaussian potential, and 8.9f,h for the Coulomb
potential.
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Figure 8.8: Coefficients Cℓ(aeff, r) and Gℓ(aeff, r) for Coulomb potential: Numerical results after
fitting the dataset in FIG. 8.6 to the Ansatz (8.39). The Coulomb potential has
similar results to the Gaussian potential shown in FIG. 8.7, where Cℓ(aeff, r) is a
power law of aeff, and Gℓ(aeff, r) can be assumed independent of aeff. The fittings
are done to the power laws 8.40.
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Figure 8.9: Power-law parameters for Gaussian and Coulomb potentials: Coefficients Aℓ(r) and
Gℓ(r), and exponents aℓ(r) and g

ℓ(r) for (a,b,c,d) the Gaussian, and for (e,f,g,h)
the Coulomb potential, resulting from fitting the dataset in FIG. 8.7 to the
Ansatz (8.40). The power laws yield a

ℓ(r) ≈ 2 and g
ℓ(r) ≈ 0, supporting that

Gℓ(aeff, r) = Gℓ(r) can be assumed independent of aeff. The coefficients Aℓ(r)
and Gℓ(r) are used in the resulting Ansatz (8.41) to describe the unstable mode.
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8.5.3 Comparison to the instability from BCS theory

The expression (8.41) we have found to describe the unstable mode found
using exact diagonalization to the bosonic quadratic Hamiltonian (8.18) re-
sembles the expression (8.37) obtained in the BCS model of superconductivity.
If we do a direct comparison, we identify the Debye frequency ωD with
(Aℓ(r)/aeff)

2, and the coupling of the potential geff = V0D(ϵF) with geff/4πGℓ(r).
These results can be understood by doing a short analysis in the shape

of the Gaussian and Coulomb potentials we have used to describe electron-
electron interactions. FIG. 8.4 shows the normalized potentials VqK2/gKEUV
vs. aeffk, as expressed in (8.26) and (8.30), for different values of the length-
scale ratio r = a/b. We can notice that, in addition to the isotropy, the
potentials are mostly concentrated for momentum scales |k| ≲ aeff similarly
to the potential (8.36) where Vkk′ ̸= 0 in a shell centered at the Fermi
momentum kF with width given by the Debye frequency ωD. In the case of
graphene at the charge neutrality point, where the Fermi surface has shrunk
to a point kF = 0, the potentials can be approximated by gKEUV/K2 in a
disk of radius EUV/(aeffK)2 around the DP, so that the coefficients Aℓ(r)
and Gℓ(r) can be understood as geometrical factors associated to the finite
slope of the potential around k ∼ 1/aeff. We leave the calculation of these
coefficients for future advances that will be reported in the literature.

8.6 conclusions

Figure 8.10: Zeeman vortex in bi-
layer graphene: Similarly to mono-
layer graphene, the kinetic term
can be expressed as a Zeeman
term involving the pseudospin
sk coupled to a 2-folded Zeeman
vortex.

This chapter discusses the weak coupling insta-
bility in bilayer graphene under the bosoniza-
tion picture discussed in chapters 6 and 7. The
generalization of the bosonization formalism to
address bilayer (and multiple-layer) graphene
relies in the modification of the Zeeman vor-
tex used to express the ground state of the
free system described by the Hamiltonian (8.3)
with Vq = 0, and depicted in FIG. 8.10. This
results in a the modification in the kinetic term
2EUV(|k|/K) → 2EUV(|k|/K)m, and in the an-
gular factors in the hopping and pairing terms
ϕkk′ → mϕkk′ of the bosonic quadratic Hamilto-
nian (8.18), where m is the number of layers of
the system.

From the fact that bilayer graphene exhibits a
finite density of states at the DP, we can expect an instability resulting from
the effective attractive potential between CB electrons and VB holes to form
excitons, in a similar fashion to the phononic attractive potential between
spin-up and spin-down electrons to form Cooper pairs in BCS theory. The
instability manifests as two mutually-conjugated imaginary eigenvalues
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{ζℓ, ζℓ∗} in the angular momentum channels ℓ = 0 and ℓ = 2. By doing a
systematic exploration of the parameter space and calculating the infinite-
size limits, we obtained the unstable modes depicted in FIGs. 8.5 and 8.6
for the Gaussian (8.26) and Coulomb potentials (8.30) we chose to address
the problem. We have found an Ansatz that describes the unstable mode
that resembles the gap equation (8.37) of BCS theory. This result could be
understood as the formation of an excitonic condensate at the ground state
of the system that results in a gap opening at the DP for the ℓ = 0 and ℓ = 2
channels.

Further steps focus on describing the new ground state in the original
fermionic operators, yielding the new band structure resulting from the
weak coupling instability. The method consists of inverting the procedure
followed to obtain the bosonic Hamiltonian so that the instabilities contribute
with additional terms in the original fermionic Hamiltonian. Furthermore,
two instabilities in ℓ = 0 and ℓ = 2 suggest the existence of two competing
phases describing the new ground state: a gapped phase associated with
the instability in ℓ = 0 and a nematic phase associated with ℓ = 2 that
breaks the rotational invariance of the model. The successful description of
these phases in the bosonization formalism will not only yield a new picture
of interaction instabilities in bilayer graphene but also shows the path we
should follow to extend the current formalism to describe gapped fermions,
at the moment excluded when we express the fermionic Hamiltonian in
terms of on-plane pseudospin operators sk = sx

kx̂ + s
y
kŷ. Consequently,

we expect that the sz
k, i. e., the off-plane component, also contributes to

the pseudospin configuration of the ground state. The results obtained in
describing the new ground state and the extension of bosonization to gapped
fermions are planned to be published in the literature in the forthcoming
months.
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C O N C L U S I O N S

I think that modern physics has definitely decided in favor of Plato. In fact the smallest

units of matter are not physical objects in the ordinary sense; they are forms, ideas which

can be expressed unambiguously only in mathematical language.

Ð Werner Heisenberg [Von68]

Quantum many-body systems exhibit physical properties that can in-
volve many relevant degrees-of-freedom (DOF) coming from low-energy
excitations. Direct computation of these problems usually implies a huge
computational cost that also might not offer a satisfactory physical picture
of the mechanisms occurring in the system. These problems can sometimes
be circumvented by mapping the system into a simpler one under certain
assumptions whose solution is more straightforward, and in some cases
yield clearer insight on the physics involved beyond the resolution of a
mathematical problem. The present work has used a mapping onto Hard-
core Bosons (HCBs) in two different physical problems: a fluctuating electric
string in the context of Lattice Gauge Theories (LGTs) discussed in part i, and
the extension of bosonization techniques to Q = 0 excitations with graphene
as study case, discussed in part ii and chapter 8.

Part i deals with LGTs in a 2D square lattice, in the realization as Abelian
Quantum Link Models (QLMs). We have studied the phases of a fluctuating
electric line described as a Wilson line along a path γ where two charges
Q∂γ lie at its boundary ∂γ. The motivation to address this problem comes
from the description of the phase diagram of the Quantum 6-Vertex Model
(Q6VM) and the Quantum Dimer Model (QDM), obtained as two special
cases achieved by selecting one of the different sectors determined by the
distribution of charges Qr at each site of the lattice: Qr = 0 for the Q6VM to
fulfill the ice rules, and Qr = ±2 for the QDM. Both models are ruled by the
Rokhsar-Kivelson (RK) Hamiltonian:

H = ∑
P
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, (9.1)

with parameter v = V/t, tuning the energy cost of creating a flippable
plaquette vs. the quantum fluctuations |⟳⟩ ↔ |⟲⟩ produced by the kinetic
terms, with the RK point as the phase where potential and inetic terms are
equal in magnitude, and the ground state is described by the celebrated
Nearest Neighbor (NN) Resonant Valence Bond (RVB) state. Roughly, the two
models exhibit three phases along the v-axis: a gapped Ferromagnetic (FM)
phase at the Right Hand Side (RHS) of the RK point where the number of
flippable is minimized as v→ ∞, and two phases at the Left Hand Side (LHS)

107
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Figure 9.1: Possible phase diagrams of the QDM: The proposed phases for the QDM are the
columnar, the plaquette RVB, and the staggered phase. The phase diagrams (1,2,3)
summarize the different proposals in the literature. [Adapted by permission
from the American Physical Society (Banerjee et al. [Ban+14]) Copyright (2014);
https://doi.org/10.1103/PhysRevB.90.245143].

of the RK point: a plaquette RVB phase where each plaquette fluctuates
between the two possible states |⟳⟩ ↔ |⟲⟩ in a checkerboard pattern in
the square lattice, and a gapped Antiferromagnetic (AFM) phase where the
number of flippable plaquettes is maximized to lower the energy of the
ground state energy as v → −∞. The phase diagram of the Q6VM is well
understood [SMP04], but there are different proposals for the QDM regarding
the intervening phase between the FM and the AFM phases [Ban+14; Oak+18;
Syl06; LCR96; RPM08].

We address this problem in [HAMS19] by studying the phase diagram of
one electric field line in the two sectors defined by Qr that selects between
the Q6VM and the QDM, within a sector of winding numbers so that the
electric field line is embedded in a background with no flippable plaquettes,
that is, in a ground state at the RHS of the RK that remains frozen under the
action of the RK Hamiltonian. FIG. 9.2a displays one configuration of the
electric string in the Q6VM with the corresponding mapping onto a HCB 1D
chain that is further mapped onto the XXZ spin-1/2 chain. Similarly, FIG.
9.2b shows one configuration of the electric string in the QDM, with two
mappings onto a triangular lattice fulfilling the ice rules and further onto a
HCB two-leg ladder chain.

The advantage of having mapped the electric string onto the XXZ chain for
the Q6VM lies in the fact that the system is exactly solvable [YY66a; YY66b;
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(a) Fluctuating string in the Q6VM.
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(b) Fluctuating string in the QDM.

Figure 9.2: Fluctuating electric string in the QLM: Two configurations of the electric string
embedded in the charge background that generates (a) the Q6VM and (b) the
QDM in the corresponding winding number sectors that sets the background
with no flippable plaquettes. Below we see the respective mappings onto HCBs

in a 1D chain, with a mapping onto a triangular lattice for the QDM [HAMS19].
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(a) Q6VM (b) QDM

Figure 9.3: Phase diagram and Drude weight of the electric string: Insets depict the ground state
of the electric field lines in the different regimes for (a) the Q6VM and (b) the
QDM. (a) The string in the Q6VM presents a fluid state intervening between two
solids as precursors to the columnar and staggered phases, while the liquid
phase is a precursor to the resonant plaquette phase in two dimensions. (b) The
phase diagram of the string in the QDM resembles the Q6VM. However, we rely
only in exact diagonalization for small system sizes in the QDM [HAMS19].

YY66c; YY66d] and its phase diagram is known. We can then obtain the
phase diagram in FIG. 9.2a where we have included the Drude weight D
as a function of v as a parameter describing the conductivity of each phase
which was estimated from direct exact diagonalization of small system sizes.
The limits v→ ±∞ exhibit two solid phases corresponding to the columnar
phase for v → −∞ and the staggered phase for v → ∞ in accordance
with the phase diagram of the whole 2D Q6VM. There is a third phase
intervening between the two solids with a large D corresponding to a
gapless paramagnetic phase in the XXZ phase in the regime |v| < 1. This
phase is a gapless Luttinger liquid which can be interpreted as a precursor
to the RVB plaquette phase by interpreting it as a closely packed ensemble
of fluctuating strings in the square lattice. On the contrary, we do not have a
direct mapping to a well-known model for the QDM, so we addressed the
problem using exact diagonalization for system sizes up to L = 8 lattice sites
in the 1D chain. We have also calculated the Drude weight as a parameter to
test the conductivity of the phase, obtaining a diagram that closely resembles
the phases of the Q6VM, as shown in FIG. 9.2b.

Further projects derived from the part i of this work can address the
problem of multiple strings in the square lattice (the triangular lattice can
also be included because of the one-to-one mapping from the QDM). We
can propose two electric strings in the lattice whose maximal rectangles
overlap, each described by a 1D HCB chain. We then include inter-chain
interactions that describe the close interaction of the strings such that the ice
rules Qr = 0 are hold. This is automatically fulfilled with the implementaion
of HCBs in the chain, where the presence of two strings in the same link
is forbidden. Interesting cases can be studied in the maximal overlapping
of the bounding rectangles, specially in the AFM phase since the strings
will maximize the number of flippable plaquettes and consequently assume
the kinked configuration. The presence of a second string might modify
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the paths in the AFM so that we can expect a combined configuration that
maximizes the number of flippable plaquettes, selecting paths of parallel
ladders spaced by two cells in a sort of effective attractive interaction between
strings. On the contrary, the FM phase minimizes the number of flippable
plaquettes, so it might produce effective repulsive interactions between
strings that force them to assumed the paths along the bounding rectangles.
As a last comment, recent implementation of LGTs in cold atom systems
[Aid+22] opens the posibility of implementing the problem of the fluctuating
electric string in a square lattice using devices based on ultracold atoms in
optical lattices [Wie13] by setting the vertices Qr in the suited sectors and
access the Q6VM or the QDM. This posibility is mostly attractive for the QDM
since it has not been exactly solved in the approach discussed in chapter 4,
with special interest in the region |v| < 1 we there exists the posibility to
find more than one phase as the Drude weight D suggests in FIG. 9.3b with
the small bump just at the LHS of the RK point.

Figure 9.4: Bosonization of
particle-hole excitations (PHEs) of
gapless fermions: By restricting
the Hilbert space to Q = 0,
a PHE at momentum k can
be mapped as the flip of the
pseudospin sk and ultimately
as a HCB. The expansion up
to quadratic terms then yields
the bosonic Hamiltonian (9.3).
(a) Monolayer and (b) bilayer
graphene are described by
m = 1 and m = 2, respectively.

Part ii presents a second framework where
mappings using HCBs belong part to the formu-
lation of an extension to higher-dimensional
formalisms [Lut79; Hal94; HM93; HKM94;
CNF94b; CNF94a; HKM00], where the PHEs
close to the Fermi surface are treated
as bosons b²

k,Q = c²
k+Q/2c²

k−Q/2, yield-
ing a bosonic quadratic Hamiltonian depart-
ing from a fermionic Hamiltonian involv-
ing bilinears in the kinetic term and quar-
tic terms in the interactions, thus this for-
malism then studies PHEs with finite Q that
extends from a finite Fermi surface. Con-
sequently, materials such as nodal semimet-
als where the Fermi surface is shrunk to
a point, as well as the existence of PHEs
with Q = 0 due to the existence of two
bands, requires an extension of the im-
plementation of previous bosonization tech-
niques.

We have proposed in chapter 6 the extension to bosonization in nodal
semimetals [MS20] described by the Hamiltonian (6.2):

H = EUV ∑
kσσ′

( |k|
K

)m

ψ²
kσ

(

k̂m · σσσ′
)

ψ²
kσ′

+
1

2A ∑
kk′

∑
σσ′

Vqψ²
k′+qσψ²

k−qσ′ψ
²
kσ′ψ

²
k′σ,

(9.2)

where K is the unit of momentum, EUV the kinetic term evaluated at K, A
is the system area, m is the number of layers in Bernal stacking, Vq is the
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Fourier-transformed interaction potential. The projection of the Hamiltonian
onto the Hilbert subspace of Q = 0 PHEs allows to reexpress the model
in terms of the pseudospin sk = ∑σ,σ′ ψ

²
k,σσσσ′ψ

²
k,σ′ involved in the kinetic

term. Lastly, the pseudospins are expanded via the Holstein-Primakov (HP)
transformation, obtaining at the end a bosonic bilinear Hamiltonian that can
be solved by exact diagonalization. This procedure is exactly equivalent to
the Kadanoff-Baym (KB) Self-Consistent Hartree-Fock (SCHF) resummation
of the Q = 0 particle-hole propagator as discussed in App. B. The resulting
Hamiltonian is

HHB=∑
k

2EUV

(|k|
K

)m

b²
kb²

k + ∑
k ̸=k′

Vk−k′

A
cmϕkk′b

²
kb²

k

− ∑
k ̸=k′

Vk−k′

4A
(1 + cos(mϕkk′))(b²

kb²
k′ + b²

k′b
²
k)

− ∑
k ̸=k′

Vk−k′

4A
(1− cos(mϕkk′))(b²

kb²
k′ + b²

k′b
²
k),

(9.3)

where ϕkk′ is the angle between momentum vectors k and k′.
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Figure 9.5: Weak coupling instabil-
ity in bilayer graphene due to Gaus-
sian electron-electron interaction.:
By restricting the Hilbert space
to Q = 0, a PHE at momentum k

can be mapped as the flip of the
pseudospin sk and ultimately as
a HCB.

In chapters 7 and 8 we have presented two im-
plementations of the bosonization procedure to
address physical properties of graphene. Chap-
ter 7 discussed how to calculate the optical con-
ductivity of one graphene layer with electrons
interactiong via a Coulomb potential [MS20].
Since bosonization allows to access the nonper-
turbative strong interacting regimes, our results
not only reproduce the analytical [Mis08] and
numerical results [SS09; Abe+11; SF12; Gaz+13;
Bar+14b; TK14; TK18] found in the literature
for perturbative couplings α < 1, but also ex-
tends to the strong coupling region α ∼ 1 where
we found still small corrections to the optical
conductivity that do not overpass 4% of the non-
interacting value, in agreement with Quantum
Monte Carlo simulations [Boy+16].

Chapter 8, presented a study on the weak
coupling instability found in bilayer graphene
when electron-electron interactions are in-
cluded, in this case, a Gaussian-like poten-
tial (8.26) and a Ultraviolet (UV)/Infrared (IR)-
regularized Coulomb potential (8.30). After diagonalizing the quadratic
Hamiltonian (9.3) with m = 2, we found an unstable mode as a pair of
mutually conjugated imaginary eigenvalues ζℓ, plotted in FIG. 9.5 for the
Gaussian potential. The instabilities were found in the ℓ = 0 and ℓ = 2
angular momentum channels so that we could associate them with two
competing phases: a gapped phase ζ0 rotationally symmetric, and a nematic



112 conclusions

phase ζ2 that spontaneously breaks the rotational symmetry. The numerical
Ansatz we use to describe the instabilities is given by

ζℓ(geff, aeff, r) =

(

Aℓ(r)

aeff

)2

e
− 4πGℓ(r)

geff , (9.4)

where Aℓ(r) and Gℓ(r) are length and coupling scales depending on the
parameters of the potential. The functional form of the instability can be in-
terpreted as a Bardeen-Cooper-Schrieffer (BCS)-like model where the particle-
hole interactions creates a boson b²

k = ψ²
k+ψ²

k̄−, composed by two fermions
with the same momentum vector k but opposite pseudospin s = ±. Cur-
rent efforts are focused on describing the new ground state of the system,
yielding the approach we can follow to extend bosonization to gapped
systems.

The bosonization formalism is not only valid to describe electron interac-
tions in graphene, but also 2D Dirac fermions as low-energy modes on the
boundary of 3D topological insulators. Moreover, the procedure is valid for
higher-dimensional systems such as 3D Weyl semimetals [AMV18] where
the gaplessness is topologically protected and the Fermi surface at the charge
neutrality is also shrunk to a point. The main goal in forthcoming works are
devoted to extend the bosonization procedure my relaxing the assumptions
we have done to obtain the bosonic Hamiltonian (9.3): gapless fermions,
Q = 0 PHEs, partcle-hole symmetric band structure, two-band models and
charge neutrality. Two examples of procedures we can follow to achieve
the generalization can be discussed for gapped and doped systems. In the
one hand, bosonization for gapped fermions can involve contributions of
the sz

k component of the pseudospin to the non-interacting ground state,
as it is expected to be observed for bilayer graphene. On the other hand,
doped systems imply the existence of two types of PHEs: intraband and in-
terband excitations. Intraband PHEs only occured in the partially-filled band
as excitations close to the finite Fermi surface, describable with bosonization
discussed in the review It is possible to generalize the formalism to Q ̸= 0
PHEs, enabling the formalism to address new physical systems such as exci-
tonic condensation in different materials such as 1T − TiSe2 [Mon+09] and
WTe2 [Sun+22; Jia+22].



Part IV

A P P E N D I C E S

Appendix A contains a brief overview of Bethe Ansatz and the Yang-
Yang ground state energies of the XXZ chain. App. B discusses the
Kadanoff-Baym (KB) self-consistent Hartree-Fock (SCHF) approxima-
tion as a consistency proof of bosonization of Dirac fermions. App. C
shows a short calculation of the optical conductivity of Dirac fermions
using pseudospin precession formalism. Lastly, App. D discusses the
momentum lattice reparametrization to resemble symmetries of the
system in continuum limit.





A
YA N G & YA N G ’ S E X P R E S S I O N S O F G R O U N D S TAT E
E N E R G Y O F X X Z C H A I N U S I N G B E T H E A N S AT Z

The article series [YY66a; YY66b; YY66c; YY66d] treats in detail and rig-
urously the problem on finding explicit expressions the ground state of the
Hamiltonian

H = −1
2

N

∑
i=1

[

σx
i σx

i+1 + σ
y
i σ

y
i+1 + ∆σz

i σz
i+1
]

, (A.1)

where σ
x,y,z
i are the Pauli matrices, normalized as

(

σ
x,y,z
i

)2
= 1, acting as

operators on a spin-1/2 at the site i = 1, ..., N, and ∆ is a parameter controlling
the anisotropy of the chain.

The magnetization per site y is defined as the eigenvalue of the opera-
tor[YY66a]

Y =
1
N ∑

i

σz
i , (A.2)

and states the problem of calculating the function

f (∆, y) = lim
N→∞

E0

Nz
, (A.3)

where E0 is the lowest eigenvalue of (A.1) for a fixed magnetization y, and z
is the number of NN at each site, begin z = 2 for the 1D periodic chain.

a.1 bethe ansatz

The solution proposed in [YY66b; YY66c] follows from the Bethe Ansatz, a
expansion in plane waves of all the permutation of m down-spins respect
to a reference state in which all the sites are in up-spin states[Fra+17]. The
eigenstates of the Hamiltonian (A.1) are then proposed to be of te form

|ψ⟩ = ∑
P

APei ∑j pPjxj , (A.4)

where P are all the possible permutations of m sites where the down-spins
are located, the quasi-momenta pj are in the intervals

−π < pj < π for ∆ ≤ 1,
−(π − µ) < pj < π − µ for −1 ≤ ∆ < 1,

(A.5)
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where ∆ = − cos µ with 0 ≤ µ < π, and complementarily ∆ = − cosh λ
with λ > 0 when ∆ ≤ 1. In order to have (A.4) as a solution of (A.1) and
satisfy the eigenvalue equation H |ψ⟩ = E |ψ⟩, the energy E should be

E = −N∆

2
+

m

∑
j=1

2
(

∆− cos pj

)

, (A.6)

and using (A.6), the amplitudes must fulfill the conditions

AP

AP′
= eiΘ(p,q) = −2∆eip − 1− ei(p+q)

2∆eiq − 1− ei(p+q)
, (A.7)

where P and P′ differ only in the interchange of the quasi-momenta p and
q, and Θ(p, q) is the scattering phase. This is satisfied for the solutions if the
Bethe equations:

Npj = 2π Ij −
m

∑
l ̸=j

Θ(pj, pl). (A.8)

In the continuum limit when N and m → ∞ with m/N finite, (A.8) can
be expressed as

p = 2π f −
∫

Θ(p, q)ρ(q)dq (A.9)

where f = I/N and d f /dp = ρ(p) is the number of states in the interval p
and p + dp. The magnetization is then reexpressed as

1
2
(1− y) =

m

N
=
∫ Q

−Q
ρ(p)dp, (A.10)

and alongside (A.6), the energy density is now

f (∆, f ) = −∆

4
+

∆

2
(1− y)−

∫ Q

−Q
ρ(p) cos pdpρ(p)dp. (A.11)

From (A.10), by fixing the magnetization y, we can obtain the limits −Q and
Q of the integral, which are then used in (A.11) to determine the energy
density[YY66b; YY66c].

a.2 explicit formulas for f (∆ , 0)

The reference [YY66c] presents a piece-wise function f (v, y) spanning the
three phases displayed by the XXZ chain[Fra+17; Bon87]:

1. 1 < ∆: a gapped FM phase with maximal magnetization at the ground
state given by |0⟩ = ⊗N

i=1 |↑i⟩. The expression of f (v, 0) is given by

f (∆, 0) = −∆

4
, (A.12)
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2. ∆ = 1: a gapless isotropic FM with symmetry SU(2), and magnons as
excitations as well as strings or complexes, bound states of clustered
flipped spins.

3. −1 < ∆ < 1 a gapless paramagnetic phase. At ∆ = 0 the system
becomes a XX model, non-interacting, and describable by free fermions
using the JW transformations. The expression of f (v, 0) is given by

f (∆, 0) =
cos µ

4
− sin µ

µ

∫ ∞

−∞

µ sin µdx

2 cos(πx)(cosh(2µx)− cos µ)
, (A.13)

where ∆ = − cos µ with 0 ≤ µ < π,

4. ∆ = −1: a gapless isotropic AFM phase with spinons as spin-1/2 excita-
tions. The expression of f (v, 0) is given by

f (∆, 0) =
1
4
− ln 2, (A.14)

5. ∆ < −1: a gapped AFM phase with two degenerate ground states
|0↑↓⟩ =

⊗N
i=odd |↑i↓i+1⟩ and |0↓↑⟩ =

⊗N
i=odd |↓i↑i+1⟩, and excitations

described as domain walls where the two states |0↑↓⟩ and |0↓↑⟩ appear in
the chain with two consecutive alinged spins. The expression of f (v, 0)
is given by

f (∆, 0) =
cosh λ

4
− sinh λ

λ

(

λ

2
+ 2λ

∞

∑
n=1

1
1 + e2λn

)

, (A.15)

where ∆ = − cosh λ with λ > 0.





B
K A D A N O F F - B AY M ( K B ) S E L F - C O N S I S T E N T
H A RT R E E - F O C K ( S C H F ) A P P R O X I M AT I O N

The bosonization technique presented in chapter 6 consisted on transforming
the Hamiltonian of 2D Dirac fermions in (5.39) and (6.2)

H = v ∑
k,σ,σ′

ψ²
k,σ (k · σσσ′)ψ²

k,σ′

+
1

2A ∑
kk′

∑
σσ′

Vqψ²
k′+q,σ′ψ

²
k−q,σψ²

k,σψ²
k′,σ′ ,

(B.1)

deduced from the molecular structure of graphene in chapter 5, into a new
quadratic bosonic Hamiltonian that describe the physics of excitons in the
Q = 0 sector. Such a Hamiltonian in (6.16) is given by

HHP = ∑
k,k′

B²
kHkk′B

²
k′ , (B.2)

in the Bogoliubov basis in (6.15):

B²
k =

(

b²
k b²

k

)

. (B.3)

The matrix elements of (B.2) are given by

Hkk′ = δkk′

(

2Ek 0
0 −2Ek

)

− Tkk′ , (B.4)

with Ek = v|k|+ Σk the dressed kinetic energy, Σk the Hartree-Fock self-
energy and Tkk′ the interaction matrix in the band basis:

Tkk′ =
Vk0−kf

4A

(

1 + cos ϕkk′ 1− cos ϕkk′

1− cos ϕkk′ 1 + cos ϕkk′

)

. (B.5)

This appendix is then devoted to present the calculation of the particle-hole
propagator incluing all the terms of the KB SCHF resummation using a Bethe-
Salpeter ladder (see FIG. B.2) and show that is exactly equivalent to the
propagator of the modes described by the Hamiltonian (B.2).

b.1 details of connection to perturbation theory

b.1.1 Bare and dressed fermion propagators

The propagator of the Dirac fermions without interactions described by the
Hamiltonian (5.34) in the band basis is given by:

G
(0)
ss′ (ω, k)= ks ks

′k1 =
δss′

ω− s(v|k| − iη)
. (B.6)
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(a) One-loop self-
energy.

(b) Successive self-energy insertions in the propagator of a free
fermion.

Figure B.1: Dressed propagator as a Dyson series: The interactions modify the propagator of
the 2D Dirac fermions resulting in a modification of the dispersion relation
found in (5.34).

The corresponding Hartree-Fock self-energy of the fermions is:

Σk =
ks ksk1

k − p

k
=

1
2A ∑

p

Vk−p cos ϕkp. (B.7)

Then, the self-energy corrections to the bare propagator can be arranged in a
Dyson series, as shown in FIG. B.1b, to get the dressed fermionic propagator:

G0
ss′(ω, k) = ks ks

′k1 =
δss′

ω− s(Ek − iη)
, (B.8)

where Ek = v|k| + Σk. Equivalently, the dressed propagator in matrix
notation in the band basis can be expressed as:

G−1(ω, k) =

(

ω− Ek + iη 0
0 ω + Ek − iη

)

. (B.9)

b.1.2 Bethe-Salpeter ladder

The particle-hole propagator (6.20), given by

χs1s2
k1k2

(t) = −iT
〈

ψ²
k1s1

(t)ψ²
k1 s̄1

(t)ψ²
k2 s̄2

(0)ψ²
k2s2

(0)
〉

, (B.10)

can be explicitely calculated using the Kadanoff-Baym (KB) conserving
approximation that results from the Self-Consistent Hartree-Fock (SCHF)
approximation to the single particle Green function, consisting in the sum of
the infinite series of the Bethe-Salpeter ladder (see FIG. B.2) for the particle-
hole propagator, with internal Hartree-Fock (HF)-dressed Green functions
such as (B.9).

The zeroth order (no interaction lines piercing the particle or hole propa-
gators) of the series, shown in FIG. B.2a, is given by

χ(0)ss′

k (ω) = −
∫

dν

2πi
Gks(ω + ν)Gks′(ν)

= −
∫

dν

2πi

1
(ω + ν) + s′(Ek − iη)

1
ν + s(Ek − iη)

= −δs′,s̄

(

δs,+ − δs,−
ω− (s− s′)(Ek − iη)

)

,

(B.11)
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ω + ν0

ν0

k0s0

k0s̄0

(a)

(a)

k1

ω + ν0 ω + ν1

ν1ν0

k0s0 k1s1

k1s̄1k0s̄0

(b)

(b)

ω + ν0

ω + ν1 ω + ν2 · · ·

ω + kn

νn

· · ·ν2ν1

ν0

k0s0

k1s1 k2s2
· · ·

knsn

kns̄n

· · ·k2s̄2k1s̄1

k0s̄0

(c)

(c)

Figure B.2: Bethe-Salpeter ladder of the self-consistent Hartree-Fock approximation: Diagrams
associated to the zeroth (a), first (b) and n-order (c) corrections of the Bethe-
Salpeter ladder[MS20].

with the corresponding matrix expression in the band basis:

χ
(0)
k0

(ω) =





−1
ω+(2Ek0

−iη)
0

0 1
ω−(2Ek0

−iη)



 . (B.12)

The next terms of the series involves interaction lines connecting the
particle and hole propagators, which can be included using the interaction
matrix from Eq. (B.5). The diagram involved at first order in the Bethe-
Salpeter ladder is shown in the Fig. B.2b, and is given by (summation on
any repeated index is assumed):

χ(1)s0sf

k0kf
(ω)= χ(0)s0sf

k0kf
(ω)+ χ(0)s0

k0
(ω)T

s0sf

k0kf
χ(0)s f

k f
(ω). (B.13)

where χ(0)s0
k0

is a short-hand of χ(1)s0sf

k0kf
that has into account that it is non-

zero when k0 = kf and s0sf . Similarly the n-th term of the series, shown in
Fig. B.2c, is given by

χ(n)s0sf

k0kf
(ω)= χ(0)s0sf

k0kf
(ω)+ χ(0)s0

k0
(ω)T

s0sf

k0k1
χ(0)s f

k f
(ω)

+ χ(0)s0
k0
(ω)Ts0s1

k0k1
χ(0)s1

k1
· · · χ(0)sn−1

kn−1
T

sn−1s f

kn−1k f
χ(0)s f

kn
(ω).

(B.14)

b.1.3 Particle-hole propagator and comparison to HP boson propagator

The full summation can therefore be expressed as a geometric series:

χ(ω) = χ0(ω) + χ0(ω)Tχ0(ω) + χ0(ω)Tχ0(ω)Tχ0(ω) + · · ·
= χ0(ω) + χ0(ω)T

(

χ0(ω) + χ0(ω)Tχ0(ω) + · · ·
)

,
(B.15)

which correspond to a Dyson-like equation for the dressed particle-hole
propagator χ(ω):

χ
s0sf

k0kf
(ω)= χ(0)s0sf

k0kf
(ω)+χ(0)s0

k0
(ω)Ts0s1

k0k1
χ

s1sf

k1kf
(ω), (B.16)

whose solution is given by:
(

χ−1
)s0sf

k0kf

(ω)= δ
s0sf

k0kf

(

χ(0)−1
)s0

k0
(ω)+T

s0sf

k0kf
. (B.17)
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Replacing the results from Eq. (B.12) and (B.5), the explicit expression of the
particle-hole propagator is:

χ−1
k0kf

(ω) = −
(

ω + 2Ek0 − iη 0
0 ω− 2Ek0 − iη

)

−
Vk0−kf

4A

(

1 + cos ϕ0f 1− cos ϕ0f

1− cos ϕ0f 1 + cos ϕ0f

)

.

(B.18)

or, by using the definition of the HP Hamiltonian in (6.16) of the main text
we get the final expression of the exciton propagator, given by

χ−1
k0k f

(ω) = −(ω− iη)τzδk0k f
− Hk0k f

, (B.19)

where τz is the z-Pauli matrix.
The structure of this correlator is identical to the propagator of the HP

bosons of the Hamiltonian (6.16). From the above, we can assert that the full
resummation of the KB conserving approximation associated with SCHF is
equivalent to solving the HP bilinear boson problem.



C
O P T I C A L C O N D U C T I V I T Y F R O M P S E U D O S P I N
P R E C E S S I O N

This chapter is devoted to present the pseudospin precession formalism[Kat12],
consisting on taking the picture of the pseudospin (and indeed the sublat-
tice ocupation) as a vector precessing about the direction of the oscillatory
electric field of an electromagnetic wave, in a similar fashion to the Lar-
mor precession of a magnetic dipole about a magnetic field. The optical
conductivity for T = 0 given by

σ0 =
e2

4h̄
, (C.1)

is the keystone of the research presented in chapter 7.

c.1 minimal coupling and band (electron-hole) basis

The interacion of Dirac fermions with the electromagnetic field is described
by the Dirac Hamiltonian with the minimal coupling to the vector potential
A

Ĥ = h̄vσ · (p− eA) = h̄vσ ·
(

p +
ie

2ω
E

)

(C.2)

described by a monochromatic plane wave whose wave vector is normal to
the xy plane, so A and therefore E lie on the plane

A(t) = A0 exp(−iωt)

E(t) = − ∂

∂t
A(t) = iωA0

(C.3)

The Dirac Hamiltonian in the momentum basis with minimal coupling to
the electromagnetic field can be expressed as

Ĥ = ∑
p

ψ²
p

(

vσ · p− ieE ·∇p

)

ψp (C.4)

where ψ²
p = (ψ²

p↑, ψ²
p↓) are the electron creation operators in sublattices A

or B in the pseudospin basis. With the transformation
(

ψkA

ψkB

)

=
1√
2

(

1 1
eiϕk −eiϕk

)(

ξk1

ξk2

)

(C.5)

the free Dirac Hamiltonian is diagonalized by the hole and electron operators
(ξk1, ξk2)

Ĥ0 = ∑
k

h̄vk
(

ξ²
k2ξk2 − ξ²

k1ξk1

)

(C.6)
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c.2 equations of motion of charge and pseudospin densities

The time evolution of the density matrix is given by

ih̄
∂ρ̂k

∂t
=
[

Ĥ, ρ̂k

]

= h̄vk [σ̂, ρ̂k]− e(E · ∇k)ρ̂k. (C.7)

The density matrix can be expressed as ρ̂k = nk1̂ + mkσ̂, where nk and mk

are the charge and pseudospin densities.

∂nk

∂t
= − e

h̄
(E · ∇k)nk

∂mk

∂t
= − e

h̄
(E · ∇k)mk + 2v(k×mk)

(C.8)

Since the average current is given by j = Tr( ĵρ̂k) = 2ev ∑k mk, only the
pseudospin equation is required.

The equation is solved with the pseudospin mk(t) = m0
k + δmke−iωt

where the second contribution is proportional to the oscillating electric field,
δmk ∼ E0, so it lies on the xy plane. The equation of motion of mk gets the
new form

∂δmk

∂t
= − e

h̄
(E · ∇k)mk + 2v(k× δmk) (C.9)

The z-component of δmk only precess about k and can be replaced in the
equations of motion of x and y components.

c.3 optical conductivity from fermi-dirac distributions at

finite temperature

By choosing E0 along the x direction, jx = σ(ω)E, where σ(ω) is the optical
conductivity of the Dirac fermions

σ(ω, T) = −8ie2v3

h̄ω ∑
k

ky

ω2 − 4v2k2

(

ky
∂m

x(0)
k

∂kx
− kx

∂m
x(0)
k

∂ky

)

(C.10)

The static contribution to the pseudospin m̂k is obtained from the thermal
equilibrium of the hole-electron operators ⟨ξ²

kA(B)ξkA(B)⟩ = fk1(2) given by
Fermi-Dirac distributions with energies ∓h̄vk. So that,

m
(0)
k =

k

2k
( fk1 − fk2) (C.11)

Consequently, the optical conductivity is given by

σ(ω, T) = −2ie2v3

h̄ω ∑
k

k( fk1 − fk2)

(ω + iδ)2 − 4v2k2 (C.12)
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Figure C.1: Optical conductivity vs. energy for graphene at finite temperature with noninteracting
electrons: The optical conductivity for noninteracting Dirac fermions is given by
the constant σ0 = e2/4h̄ times a Heviside function that turns on the response for
energies above the chemical potential, i. e., (a) the Dirac point energy when µ =
0, and (b) a finite chemical potential µ > 0. Finite temperature populates states
above the chemical potential, modifying the shape of the optical conductivity in
accordance to the Fermi-Dirac distribution f (E).

Reσ(ω, T) =
πe2v2

2h̄ω ∑
k

( fk1 − fk2)δ(ω− 2vk)

=
e2

16h̄

{

f

(

− h̄ω

2

)

− f

(

+
h̄ω

2

)}

(C.13)

The universal conductivity of graphene with the four-fold degeneracy of
valley/spin electrons at T = 0 K is

Reσ(ω, 0) =

{

0, ω < 2|µ|
e2

4h̄ , ω > 2|µ|
(C.14)





D
M O M E N T U M S PA C E R E PA R A M E T R I Z AT I O N

The block diagonalization of quadratic Hamiltonians such as the Bogoli-
ubov Hamiltonian in (6.16) not only easen the implementation of exact
diagonalization, but also offers a richer description of the physical systems
involved. Especially, systems with rotational symmetry in the reciprocal
space are block-diagonalizable by means of angular momentum channels.
This requires to take the system in the Cartesian lattice of departure (see FIG.
D.1a) and evaluate the continuum limit to rediscretize it into a polar lattice
(see FIG. D.1b) where the angular momentum channels can be extracted.
The whole procedure must preserve the volume of the phase space and
the commutation relations of the operators. This chapter is devoted to the
procedure of lattice reparametrization used in the research presented in
chapter 7.

d.1 general coordinate transformations on the continuum

limit

First, the quadratic Hamiltonian in the Bogoliubov basis (6.16):

HHB = ∑
kk′

B²
kHkk′B

²
k′ , (D.1)

originally expressed in the square lattice (see FIG. D.1a) is reexpressed in the
continuum limit by defining new rescaled Hamiltonian and boson operators
as follows (see FIG. D.1b):

B(k) ≡ lim
∆k→0

Bk
√

∆kx∆ky
, (D.2a)

H(k, k′) ≡ lim
∆k→0

Hkk′

∆kx∆ky
, (D.2b)

ν

(kx, ky)

(d)

(a)

(k, φ)

φ

k

(e)

(b)

Figure D.1: Coordinate systems in the reciprocal space: (a) Original squared lattice, (b) polar
lattice (km, ϕn).
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where ∆kx,y = 2π/
√

A, A is the area of the system that is assumed squared.
The discrete lattice of momenta with square symmetry is depicted in D.1a.
The above re-definitions allow to obtain the following continuum commuta-
tion relations for the Bogoliubov boson operators:

[

B(k), B²(k′)
]

= lim
∆k→0

I
δkk′

(∆k)2 = Iδ2(k− k′), (D.3)

where

I =

(

1 0
0 −1

)

. (D.4)

With these rescalings, the sums over momenta can be securely substituted
by continuum integrals, obtaining the continuum version of the boson
Hamiltonian HHP from Eq. (D.1):

HHP = lim
∆k→0

∫

d2k

(∆k)2
d2k′

(∆k)2 B²
kHkk′B

²
k′

= lim
∆k→0

(∆k)4
∫

d2k

(∆k)2
d2k′

(∆k)2 B²
σ(k)H(k, k′)B²

σ(k
′)

=
∫

d2kd2k′B̂²(k)H(k, k′)B̂²(k′).

(D.5)

From this continuum Hamiltonian we can perfom a change of coordinates
k(z) with Jacobian D(z) = | ∂k

∂z | with the following redefinitions:

B(z) =
√

D(z)B(k(z)), (D.6a)

H(z, z′) =
√

D(z)D(z′)H(k(z), k(z′)), (D.6b)

whose purpose is to mantain the same form of the commutation relations
and the Hamiltonian as follows:

[

B(z), B²(z′)
]

= Iδ2(z− z′), (D.7a)

HHP =
∫

d2zd2z′B̂²(z)H(z, z′)B̂²(z′). (D.7b)

Lastly, the new coordinate system is rediscretized into a new lattice (see
FIG. D.2c). Thus, the boson and Hamiltonian operators must be rescaled
accordingly:

Bz ←
√

∆z1∆z2B(z), (D.8a)
Hz,z′ ← ∆z1∆z2 H(z, z′), (D.8b)

that yield the new discrete commutation relations
[

B²
z , B²

z′

]

= Iδzz′ ← I∆k1∆k2δ2(z− z′) (D.9)
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(a) (b) (c) (d)

Figure D.2: Reconfiguration of the momentum lattice: (a) Original squared lattice, (b) continuum
limit, (c) polar lattice (km, ϕn), and (d) 2L + 1 1D lattices (kn) labelled by the
angular momentum number ℓ.

and Hamiltonian in the new lattice:

HHP = ∑
z,z′

B²
z Hzz′B

²
z′ . (D.10)

Therefore, in summary, the relation between operators and the Hamiltonian
matrix in the new lattice defined by the discretization of the coordinates
z(k), with the original operators and Hamiltonian of the square lattice is:

Bz =

√

D(z)
∆z1∆z2

∆kx∆ky
Bk (D.11a)

Hzz′ =
√

D(z)D(z′)
∆z1∆z2

∆kx∆ky
Hkk′ (D.11b)

The idea is that the Hamiltonian HHP in Eq. (D.10) will produce the same
physical results as the one in the square lattice in Eq. (6.16) of the main text
in the thermodynamic limit.

d.2 polar re-discretization

The new coordinate system is z = (k, ϕ), where k is the radius of the
momentum vector and ϕ its polar angle (see FIGs. D.1b and D.2c). We
parametrize the radial coordinate as a function k(θ) with the corresponding
Jacobian:

D(θ) = k
dk

dθ
, (D.12a)

where K is the UV momentum scale, so θ ∈ [0, π/2) is an affine parameter
that labels the radial slices that is chosen to be uniformly discretized, similar
to ϕ:

θm = m∆θ, m ∈ {1, · · · , M}, (D.13a)
ϕn = n∆ϕ, n ∈ {0, · · · , 2L}, (D.13b)
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where

∆θ =
π/2

M + 1
, (D.14a)

∆ϕ =
2π

2L + 1
. (D.14b)

After replacing (D.21) and (D.12) into (D.11), the new expressions for Bk

and Hkk′ in the polar lattice are:

Bn²
m =

K
2π

√

A∆θ∆ϕtmB²
kmn

, (D.15a)

Hnn′
mm′ =

K2

(2π)2 A∆θ∆ϕtmtm′Hkmnkm′n′ , (D.15b)

where t(θm) =
√

tan(θm) sec(θm) and kmn = k(θm, ϕn). Finally, the whole
Hamiltonian is

HHP = ∑
mn

∑
m′n′

Bn²
m Hnn′

mmBn′²
m′ . (D.16)

d.3 angular momentum channels

Because the Hamiltonian matrix Hkk′ that enters into the Hamiltonian HHP

in (D.1) only depends on the difference between the polar angles ϕ− ϕ′, the
angular momentum ℓ of the bosons is a conserved quantitiy and constitute
a good quantum number that block-diagonalizes the Hamiltonian (D.16).
Consequently, the polar angles for the fields Bn

m and the matrix Hnn′
mm′ are

Fourier transformed respect to ϕ (see FIG. D.2d):

Bn²
m =

1√
2L + 1

L

∑
ℓ=−L

e−iℓϕn Bℓ
m, (D.17a)

Hnn′
mm′ =

L

∑
ℓ=−L

e−iℓ(ϕn−ϕn′ )Hℓ
mm′ , (D.17b)

such that the total Bogoliubov Hamiltonian decomposes into a direct sum of
2L + 1 1D Hamiltonians for different angular mommentum channels:

HHP = ∑
mm′ℓ

Bℓ²
m Hℓ

mm′B
ℓ
m′ . (D.18)

The problem of calculating the optical conductivity of 2D interacting Dirac
fermions is addressed in Chapter 7 using the block-diagonal Hamiltonian in
(D.18).

d.4 selection of the radial parametrization

We have tried two different discretizations along the radial coordinate:
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Figure D.3: First sample of numerical results using different radial parametrizations. Unstable
mode found in bilayer graphene using the Gaussian potential (8.26) in the
angular momentum channel ℓ = 0.

• Discretization by powers of n (R ∈ N):

kn = K(n∆θ), (D.19)

with Jacobian given by

Dn = K2R∆k(n∆θ)2R−1, (D.20)

and spacing ∆θ = 1/N.

• Discretization by tangent of n (R ∈ N):

kn =
K√

R
tanR(n∆θ), (D.21)

with Jacobian given by

Dn = K2∆θ sec2(n∆θ) tan2R−1(n∆θ), (D.22)

and spacing ∆θ = π/(2(N + 1)).

FIGs. D.3 and D.4 show a sample of unstable modes derived from the
weak coupling instability in bilayer graphene discussed in chapter 8 using
exact diagonalization with five different number of radial slices: N = 100,
200, 300, 400 and 500. We have used the Gaussian potential (8.26) with b = 0
for different couplings and spreadings, where a smaller spreading aK or
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Figure D.4: Second sample of numerical results using different radial parametrizations. Unstable
mode found in bilayer graphene using the Gaussian potential (8.26) in the
angular momentum channel ℓ = 2.

a larger coupling gK implies a stronger interaction. The y axis represents
the magnitude of the unstable mode, that is, the modulus of the associated
imaginary eigenvalue, while the x axis represents the smallest radial slice,
n = 1, using each parametrization.

We have found two unstable modes in the angular momentum channels
ℓ = 0 and ℓ = 2, shown in FIG. D.3 and FIG. D.4, respectively. We can see
that the tangent parametrization with R = 2 is the best one in capturing the
unstable modes using the smallest number of radial slices, especially in FIG.
D.4 where the power and tangent parametrizations were not able to yield
the majority of instabilities for gK = 1 and making impossible to calculate
the infinite-size limits N → ∞, plotted as the dots at k/K = 0.

This short analysis made us to use the tangent parametrization of the
radial coordinate with R = 2 for the problem of the optical conductivity
discussed in chapter 7 and R = 4 for the search of the weak coupling
instability in chapter 8. The different powers R in each problem is the
minimum R that yields well-behaved infinite-size limits in each problem.
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