
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

2-3-2023

Emotion Classification of Indonesian Tweets using Bidirectional Emotion Classification of Indonesian Tweets using Bidirectional

LSTM LSTM

Aaron Glenn

Phillip LaCasse
Air Force Institute of Technolgy

Bruce A. Cox
Air Force Institute of Technology

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Artificial Intelligence and Robotics Commons, and the Data Science Commons

Recommended Citation Recommended Citation
Glenn, A., LaCasse, P., & Cox, B. (2023). Emotion classification of Indonesian Tweets using Bidirectional
LSTM. Neural Computing and Applications. https://doi.org/10.1007/s00521-022-08186-1

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact
richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholar.afit.edu%2Ffacpub%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.afit.edu%2Ffacpub%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

ORIGINAL ARTICLE

Emotion classification of Indonesian Tweets using Bidirectional LSTM

Aaron Glenn1 • Phillip LaCasse1 • Bruce Cox1

Received: 24 May 2022 / Accepted: 22 November 2022
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023

Abstract
Emotion classification can be a powerful tool to derive narratives from social media data. Traditional machine learning

models that perform emotion classification on Indonesian Twitter data exist but rely on closed-source features. Recurrent

neural networks can meet or exceed the performance of state-of-the-art traditional machine learning techniques using

exclusively open-source data and models. Specifically, these results show that recurrent neural network variants can

produce more than an 8% gain in accuracy in comparison with logistic regression and SVM techniques and a 15% gain

over random forest when using FastText embeddings. This research found a statistical significance in the performance of a

single-layer bidirectional long short-term memory model over a two-layer stacked bidirectional long short-term memory

model. This research also found that a single-layer bidirectional long short-term memory recurrent neural network met the

performance of a state-of-the-art logistic regression model with supplemental closed-source features from a study by

Saputri et al. [8] when classifying the emotion of Indonesian tweets.

Keywords DNN � BiLSTM � LSTM � Emotion classification � Machine learning

1 Introduction

Emotion classification has become an increasingly popular

field for research with the growing preeminence of the

Internet and social media. Prior to 2005, the text of only 42

journal articles or conference proceedings in three promi-

nent academic databases, IEEE Xplore Digital Library,

ScienceDirect, and SpringerLink, contained the exact

phrase, ‘‘emotion classification.’’ From 2005 to 2012, the

same search yielded 591 results; from 2013 to 2021, the

results of the same search had jumped to 3529. In that time,

emotion classification has been the subject of analysis in

diverse domains including image recognition [1], anima-

tion [2], root cause diagnosis [3], online reviews [4], and

social network analysis [5–7]. Twitter, in particular, has

become a lightning rod for researchers aiming to model

human language through various machine learning tech-

niques. Notably, most of this research has been performed

in the English-speaking world—leaving other languages

relatively untouched and ready for discovery [8].

This study aims to meet or exceed the performance of

state-of-the-art Indonesian emotion classification by using

exclusively open-source data and models. Because of the

relative scarcity of emotion classification research in non-

English languages, it is appropriate to explore whether

open-source resources are suitable to produce useful

models or if tailored, specific models are required.

A reasonable next step in extending a traditional

machine learning model (e.g., logistic regression, support

vector machines) is to employ more advanced algorithmic

approaches such as neural networks. This research exami-

nes the efficacy of recurrent neural network (RNN) variants

within a deep neural network architecture, specifically long

short-term memory (LSTM), bidirectional LSTM

(BiLSTM), stacked BiLSTM and gated recurrent unit

(GRU).

These models will leverage pre-trained Word2Vec and

FastText word embeddings provided by Saputri et al. [8].

Because RNNs train solely on a sequential representation

of text, they have no dependence on proprietary dense

features. This is in contrast to Saputri et al. final ensemble

& Aaron Glenn

aaron.k.glenn.mil@mail.mil

Phillip LaCasse

phillip.lacasse@afit.edu

Bruce Cox

bruce.cox@afit.edu

1 Department of Operational Sciences, Air Force Institute of

Technology, 2950 Hobson Way, Wright-Patterson AFB,

OH 45433, USA

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-022-08186-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0276-5835
http://orcid.org/0000-0003-2351-0372
http://orcid.org/0000-0003-0149-1836
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-022-08186-1&domain=pdf
https://doi.org/10.1007/s00521-022-08186-1

model which trained a logistic regression model using

bespoke subject matter expert crafted features such as an

Indonesian sentiment lexicon, bag-of-words, part of speech

tagging, and emoticon lists. The validity of our models will

be judged based on the averaged validation accuracy in a

tenfold cross-validation experiment.

This research makes a novel contribution to the larger

domain of language-agnostic emotion classification in

three ways.

• We demonstrate that, all else being equal, RNN models

outperform the traditional machine learning approaches

of logistic regression, random forest, and support vector

machines employed in the original study. The implica-

tion is that the existing underlying relationships are

sufficiently nuanced as to require more advanced

algorithmic approaches to be extracted.

• We demonstrate that open-source pre-trained Word2-

Vec and FastText vector embedding approaches, com-

bined with advanced RNN models, produce results

competitive with traditional machine learning models

employing dense, proprietary features. The implication

is that the one million or so Indonesian tweets used to

pre-train the Word2Vec and FastText embeddings are

sufficiently representative of the corpus of Indonesian

tweets that might be queried for analysis such as this. In

natural language processing (NLP), it is always of

interest whether a broad corpus can be useful for the

specific application of interest; in this case, the answer

appears to be in the affirmative.

• We demonstrate that, of the four RNN variants

employed, BiLSTM produces significantly higher accu-

racy than stacked BiLSTM (significant with a p value of

p = .037) but all other pairwise comparisons exhibit no

significant differences. The implication is that these

emotion classification models are generally agnostic to

RNN variant with respect to classification accuracy and

that choice of RNN variant can be made based on other

considerations such as processing time or some other

resource constraint.

The remainder of this document is organized as follows.

Section 2 provides an overview of relevant background

information and literature review. Section 3 details the

methodology behind the various RNN models. Section 4

presents the results of the various RNN models. Finally,

Sect. 5 discusses the conclusions drawn from the results.

2 Related work

2.1 Emotion classification

Emotion classification seeks to classify text into various

human emotions as opposed to a binary response such as

positive or negative. Emotion classification can be useful

for general purpose sentiment mining due to the unstruc-

tured nature of social media [8]. Binary sentiment analysis

is frequently more suitable for specific datasets such as

movie reviews where there is a known subject and some-

what predictable format. Tweets have no known subject or

predictable format.

A 2018 study by Saputri et al. produced the first publicly

available labeled Indonesian twitter dataset for emotion

classification. The study performed emotion classification

on Indonesian twitter data using traditional machine

learning techniques such as support vector machine

(SVM), logistic regression, and random forest with an

ensemble of lexicons and embedding techniques. The

results of the study’s models are published but the models

themselves are not. The study also published pre-trained

Word2Vec and FastText embeddings that were trained on

over one million Indonesian tweets. This study represents

the state-of-the-art in emotion classification performance

for Indonesian tweets.

Traditional machine learning techniques like SVM,

logistic regression, and random forest rely on ‘‘external

resources or manual annotation to learn semantic and

syntax features’’ [9]. Saputri et al.’s final model was trained

on an ensemble of dense features, some of which are not

publicly available (i.e., an emoticon list, an emotion word

list and Vania’s sentiment lexicon). Deep learning tech-

niques like neural networks can automatically ‘‘extract the

features of context’’ and thus have ‘‘universal applicabil-

ity’’ [9]. The goal of this research is to meet or exceed the

capabilities of traditional machine learning techniques that

leverage private data using deep learning techniques with

exclusively open-source data/models.

2.2 Recurrent neural network variants

LSTMs were first proposed in 1997 as a solution to RNN’s

issues with losing memory of its initial inputs [10]. For

instance, when performing sentiment analysis on a lengthy

movie review, an RNN will gradually forget the first few

words (i.e., ‘‘I loved this movie, but ...), causing the model

to lose full context of the review and potentially make an

incorrect sentiment classification [11]. LSTMs mitigate this

issue by storing important inputs in long-term memory.

BiLSTM in conjunction with embedding techniques has

been shown to be more accurate than standard LSTMs at

Neural Computing and Applications

123

tasks such as domain recognition, sentiment analysis, and

emotion classification [12–15]. The key difference between

a BiLSTM and a standard LSTM is that the BiLSTM can

capture both past and future information, as opposed to

only past information in standard LSTMs. This allows the

BiLSTM to capture stronger dependency relationships

between words and phrases [15]. This study will include a

BiLSTM model in its comparative analysis.

BiLSTM have been used to perform eleven-dimensional

emotion classification on Arabic tweets [14]. In this paper,

the dataset consisted of 4381 Arabic tweets labeled with

the following emotions: anger, anticipation, disgust, fear,

joy, love, optimism, pessimism, sadness, surprise and trust.

The BiLSTM model outperformed several traditional

machine learning baselines such as SVM, support vector

classifier and others when comparing validation accuracy.

This study will perform multi-dimensional emotion clas-

sification of tweets using BiLSTM, albeit in five

dimensions.

Stacking multiple BiLSTM layers has been shown to

improve sentiment analysis prediction accuracy in Chinese

micro-blog data in comparison with single-layer BiLSTM,

standard LSTM and traditional machine learning tech-

niques [9]. In this paper, it was argued that the extra layers

aided in the extraction of complex features in the Chinese

language. This study will include a stacked BiLSTM

architecture in its comparative analysis.

GRU is a simplified variant of LSTM and has been

shown to achieve similar performance with less training

time [16]. Other comparisons of LSTMs and GRUs across

multiple datasets have proven to be inconclusive, claiming

that the choice of one versus the other is heavily dependent

on the dataset and task [17]. A GRU model will be lever-

aged in this study as part of its comparative analysis.

BiLSTMs have been used in conjunction with embed-

ding and fully connected (FC) layers to perform emotion

classification of tweets [13]. In this paper, the author pro-

posed a model architecture which combines a GloVe

embedding layer and a BiLSTM layer with two subsequent

FC layers. This structure outperforms standard LSTM and

BiLSTM without an embedding layer in validation accu-

racy. Similar structures that combine BiLSTM with FC

layers have been proposed that perform domain classifi-

cation of acoustic communication [18]. This study will

propose an architecture using embedding layers, RNN

layers and FC layers.

2.3 Limitations

A key limitation for this study’s model is that it is trained

exclusively on tweets determined to have one singular

emotion, leaving out tweets that display multiple emotions

or no emotion. This study’s emotion classifier is likely to

predict whichever emotion is more dominant among mul-

tiple emotions.

Saputri et al. [8] study of Indonesian emotion classifi-

cation provides pre-trained embeddings in the form of

Word2Vec and FastText. However, multiple studies have

found GloVe embeddings to be the optimal embedding

technique when paired with LSTM layers [13, 19]. The

exclusion of GloVe embeddings could prove to be a limi-

tation for this study’s various models and their accuracy.

3 Methodology

3.1 LSTM

The complexities of the LSTM cell allow for improved

performance, faster training and detection of long-term

dependencies in the data in comparison with traditional

RNNs. The LSTM cell state stores long-term information

and the hidden state stores short-term information. The

LSTM cell is visualized in Fig. 1.

The cell state (ct) is mathematically expressed in Eq. 1.

The hidden state (ht) is expressed in Eq. 2. The current

inputs (xt), as well as the previous hidden state, are ana-

lyzed in the main layer (gt) expressed in Eq. 3. LSTM cells

also possess three gate controllers that handle the storage

and erasure of information from stored memory [11]. The

forget, input and output gates are expressed in Eqs. 4, 5

and 6, respectively. These gates apply the sigmoid activa-

tion function to weighted inputs which produces element-

wise binary outputs that allow inputs to either be retained

or forgotten. The input gate (i t) controls which inputs are

stored as long-term memory. The forget gate (f t) controls

which portions of long-term memory should be forgotten.

And the output gate (o t) controls which portions of long-

term memory will be output (y t) at the current time step.

Here, W represents a weight matrix, b refers to bias, x t

refers to the current input, � refers to element-wise

Fig. 1 LSTM cell (Reprinted, with permission, from Géron, 2019 �
O’Reilly) [11]

Neural Computing and Applications

123

multiplication, � refers to dot product and r refers to the

sigmoid activation function.

ct ¼ it � gt þ ft � ct�1 ð1Þ

ht ¼ yt ¼ otðtanhðctÞÞ ð2Þ

gt ¼ tanhðWc½xt; ht�1� þ bcÞ ð3Þ

ft ¼ rðWf ½xt; ht�1� þ bf Þ ð4Þ

it ¼ rðWi½xt; ht�1� þ biÞ ð5Þ

ot ¼ rðWo½xt; ht�1� þ boÞ ð6Þ

3.2 GRU

The GRU cell was proposed as a simplified version of an

LSTM cell [17]. The primary simplifications of GRU over

LSTM are that both state vectors are merged into a single

vector, the output gate is removed, and a single gate con-

troller controls the update gate and reset gate.

The update gate (zt) is mathematically expressed in

Eq. 7 and the reset gate (rt) is expressed in Eq. 8. The reset

gate controls which information from past memory to

introduce as new memory content, expressed as g t in

Eq. 9. The update gate (z t) feeds into the final state vector

(h t) to determine which portions of the current memory (g

t) and past memory (h t�1) to output (y t) at the current time

step. This behavior is expressed in Eq. 10. Here, W and U

represent weight matrices, � refers to element-wise mul-

tiplication, � refers to dot product and b represents bias.

zt ¼ rgðWz � xt þ Uz � ht�1 þ bzÞ ð7Þ

rt ¼ rgðWr � xt þ Ur � ht�1 þ brÞ ð8Þ

gt ¼ tanhðWh � xt þ Uh � ðrt � ht�1Þ þ bhÞ ð9Þ

ht ¼ yt ¼ zt � ht�1 þ ð1� ztÞ � gt ð10Þ

Recurrent dropout has been proposed as a method of

applying dropout to gated architectures such as LSTM and

GRU [20]. Traditional dropout methods which are

designed for feed-forward networks can cause loss of long-

term memory when used with LSTM or GRU. Recurrent

dropout is applied to the hidden state update vectors rather

than the hidden states, themselves. This distinction has

shown an increase in network performance using LSTMs to

predict Twitter sentiment analysis.

3.3 BiLSTM

BiLSTMs ‘‘consist of two LSTMs that are run in parallel:

one on the input sequence and the other on the reverse of

the input sequence’’ [15]. The hidden state of the BiLSTM

is the result of the concatenation of the forward and

backward hidden states at each time step, allowing the

BiLSTM to capture both past and future information. The

BiLSTM model is visualized in Fig. 3.

Similar to BiLSTM, stacked BiLSTM can extract ‘‘rich

contextual information from both past and future time

sequences’’ [9]. However, stacked BiLSTM possesses

more layers to perform feature extraction, as opposed to

BiLSTM which has only one hidden layer per direction. In

a two-layer stacked BiLSTM, the input sequence enters the

hidden layers in the forward direction to extract informa-

tion from all past time steps, while it also passes through

the hidden layers in the reverse direction to extract infor-

mation from all future time steps. After this, the second

hidden layers receive outputs from the first hidden layers as

their inputs to produce further feature extraction. And

finally, the output layer integrates both of the second hid-

den layers’ output vector as its final output.

3.4 Deep neural networks

A FC layer is the result of all neurons in a layer being

connected to every neuron in the previous layer. There is

Fig. 2 GRU Cell (Reprinted, with permission, from Géron, 2019 �
O’Reilly) [11]

Fig. 3 Bidirectional recurrent neural network (Reprinted, with

permission, from Xiao and Liang, 2016 � Springer) [15]

Neural Computing and Applications

123

often an extra bias neuron, which outputs a value of 1.

Networks with FC layers learn and adapt by making pre-

dictions at each training instance, then updating the

weights within the network that correspond with correct

predictions. For every neuron that produces an incorrect

prediction, the network ‘‘reinforces the weights from the

inputs that would have contributed to the correct predic-

tion’’ [11]. This iterative process is referred to as back-

propagation. When multiple FC layers are stacked together,

it is referred to as a deep neural network (DNN). This

structure forms the basis for each variant of neural network

(i.e., recurrent neural networks, convolutional neural net-

works, etc.).

DNNs learn by training on a portion of the training data,

called a batch, performing backpropagation and then

repeating this process until all of the training data have

been used. One complete pass over the entire training set is

referred to as an epoch. Batch size and the number of

epochs are both tunable hyperparameters. Another key

tunable hyperparameter is the number of FC layer units.

This simply refers to the dimensionality of the FC layer.

Increasing the number of FC layer units can increase the

DNNs ability to learn complex relationships at the cost of

more computational resources.

ReLU (rectified linear unit) activation function is often

used in DNN FC layers because it does not saturate for

positive values [13]. It is also fast to compute as the

derivative of the slope is equal to one [11].

Dropout is used in between DNN FC layers in order to

reduce overfitting. Dropout excludes certain input and FC

layer neurons with some probability, typically between 0.2

and 0.5. Dropout effectively causes a unique neural net-

work to be generated at each training step, resulting in an

ensemble of smaller networks that are robust against

overfitting. Dropout tends to slow down model conver-

gence, however, it does typically result in a significantly

improved model when tuned appropriately [11].

Pooling layers are another method of mitigating over-

fitting in DNN. The goal of a pooling layer is to shrink an

input in order to identify the most important feature. The

pooling layer also reduces dimensionality, which helps

reduce parameters and computational complexity [11].

RMSProp (Root Mean Squared Propagation) is a

learning algorithm that uses the concept of decay to ignore

distant observations from the past and focus on more recent

inputs. RMSProp is an adaptive learning algorithm and

therefore ‘‘requires less tuning of the learning rate hyper-

parameter’’ [11]. RMSProp has been used to perform

emotion classification [13].

3.5 Word embeddings

Word embeddings represent words in vector form such that

the distance between vectors represents the semantic rela-

tions between respective words [21]. Word2Vec is an

example of a static embedding, meaning that the method

learns one fixed embedding per word in the vocabulary. In

an unpublished, draft-form online textbook, Dr. Dan Jur-

afksy observes that the intuition of Word2Vec is that

instead of counting how often each word w occurs near,

say, apricot, we’ll instead train a classifier on a binary

prediction task: ‘‘Is word w likely to show up near apri-

cot?’’ This method uses self-supervision, therefore, it does

not require a labeled dataset. Jurafksy calls Word2Vec

‘‘fast’’ and ‘‘efficient to train’’ on unsupervised data. As

such, there are many examples of pre-trained Word2Vec

embeddings publicly available. For example, Saputri et al.

make publicly available a 400-dimension Word2Vec

embeddings model that was trained on over one million

Indonesian tweets.

FastText is another static embedding technique and an

extension of Word2Vec. FastText represents words as

themselves along with a ’’bag of constituent n-grams,’’

according to Jurafsky. For instance, if n = 3, the word there

would be represented by the sequence there along with the

character n-grams:\th, the, her, ere, re[. Then, the skip-

gram embedding is learned for each constituent n-gram and

the word there is represented by the sum of all the

embeddings of its constituent n-grams. Saputri et al. also

provide a pre-trained 100-dimensional FastText model

trained on the same set of Indonesian tweets.

3.6 Dataset

Saputri et al. produced a dataset of 4401 Indonesian tweets

labeled into five emotion classes: love, anger, sadness, fear

and joy. This dataset was labeled by two individuals and

evaluated using a Cohen Kappa measurement—a statistic

for measuring interrater reliability. A score above 0.81 is

considered to be ‘‘almost perfect agreement’’ between two

raters [22]. This study produced a Kappa score of 0.917.

Multi-emotion tweets and no-emotion tweets were

Table 1 Classification balance

of tweets
Emotion class Frequency

Love 637

Fear 649

Sadness 997

Joy 1017

Anger 1101

Total 4401

Neural Computing and Applications

123

excluded from this dataset. The data classifications are

slightly imbalanced with the distribution seen in Table 1.

Saputri et al. dataset contains emoticons (i.e., :)

expressing joy). Saputri et al. created an unpublished list of

emoticons and manually labeled each emoticon with their

corresponding emotion. This study will not recreate an

emoticon list, but instead allow the models to learn such

features automatically.

The tweets produced by the 2018 study already have

some level of preprocessing. Usernames with the @ sym-

bol have been replaced with the generic [USERNAME],

URL’s, and hyperlinks have been replaced with the generic

[URL], and sensitive numbers such as phone numbers,

invoice numbers, and courier tracking numbers have been

replaced with the generic [SENSITIVE-NO].

The preprocessing steps performed in this study were

the following: eliminating punctuation, numbers, other

special characters, lower case conversion, stop word

removal, and tokenization. Stop words are defined as

extremely common words which are of little value such as

‘‘a, an, he, is, it.’’ Tokenization refers to splitting a sentence

into separate ‘‘tokens,’’ often delineated by white space

[23]. These preprocessing steps, as well as the subsequent

modeling steps, can be visualized in Fig. 4.

The data and pre-trained embeddings were downloaded

from Saputri et al. GitHub page1 in CSV form. Additional

preprocessing was performed on the tweets by removal of

stop words via the Natural Language Toolkit (NLTK)

Indonesian Stop Word library. Tokenization is performed

using Keras’ Tokenizer function, which converts the tweets

into lowercase tokens and then into sequences of integers.

Each tweet is set to the same length by padding the

sequences with zeroes up to the maximum length of the

longest tweet.

The pre-trained embeddings are then loaded into a dic-

tionary and cross-referenced with the words from the

dataset of Tweets. This process results in finding each word

in the dataset’s vector representation. The embeddings are

stored in a matrix the size of the maximum tweet length

times the dimensionality of the pre-trained embeddings

(i.e., 64 9 400 or 64 9 100). Words that exist in the tweets

but not in the embeddings are given a value of zero.

3.7 Evaluation metrics

The Saputri et al. [8] study produced a comparative study

of various machine learning techniques leveraging many

different dense features. This research will compare the

results of its various RNN models using Word2Vec and

FastText pre-trained embeddings against the Saputri

study’s logistic regression model. This research will also

perform a direct comparison of its models to Saputri’s

using only word embedding features (i.e., Word2Vec and

FastText). Saputri et al. used tenfold cross-validation to

split their data into training and validation sets. This study

will identify each fold’s optimal model by identifying the

epoch with the global maxima of validation accuracy. All

evaluation metrics are then averaged using the optimal

models from all tenfold. This study will also examine

precision, recall and F1 score for predictions of each

respective class from the model with the highest validation

accuracy.

Precision is defined as the ratio of true positive results

over the total predicted positive (true positive ? false

positive) results. Recall is defined as the ratio of true

positive over the total actual positive (true positive ? false

negative). F1 score represents the harmonic mean of pre-

cision and recall.1 https://github.com/meisaputri21/Indonesian-Twitter-Emotion-

Dataset.

Fig. 4 Proposed framework for emotion classification

Neural Computing and Applications

123

https://github.com/meisaputri21/Indonesian-Twitter-Emotion-Dataset.
https://github.com/meisaputri21/Indonesian-Twitter-Emotion-Dataset.

3.8 Proposed model architecture

This experiment consists of four architectural models:

LSTM, GRU, BiLSTM and two-layer stacked BiLSTM.

Parameters were held constant across each model with the

exception that hidden layer units in BiLSTM layer were

halved to maintain dimensionality. All four models are

trained for 20 epochs per fold in a tenfold cross-validation

experiment. Batch size is fixed to 64 for each epoch. The

RMS Prop optimizer uses the default learning rate of 0.001

and default decay rate, q, of 0.9. Loss is measured by

categorical cross-entropy. Per the normal k-fold cross-

validation procedures the full dataset (i.e., all 4401 tweets)

are randomly split, without replacement, into k ¼ 10 fold.

Ninefold are used for training each model and the 10th

holdout fold is used for calculating validation accuracy for

each model. The tenfold were redrawn for each model. The

tenfold cross-validation process thus results in 10 trained

models per architecture (i.e., 40 models total), each with its

own validation accuracy.

Table 2 illustrates the architecture of the LSTM, GRU,

and BiLSTM models. The first layer of the model is the

embedding layer which uses the pre-trained Word2Vec or

FastText embeddings from Saputri et al. This layer con-

verts each word in the corpus of tweets to a 400- or

100-dimensional vector representation, respectively. The

input length is set to the maximum length of the longest

tweet in the dataset (i.e., 64 words), thus every tweet is

padded with zeroes up to that length. The size of the output

of the embedding layer is a 64 9 400/100 matrix for every

unit in the batch (i.e., represented as (Batch Size, 64,

400/100)). The embedding layer is trainable, meaning that

the model will adjust the values of the embeddings during

backpropagation. This matrix then passes through a one-

dimensional spatial dropout layer with a rate of 0.2 to avoid

overfitting.

The output of the spatial dropout layer feeds into the

LSTM/GRU/BiLSTM layer with 512 units (256 9 2 for the

BiLSTM layer). Thus, the output of the LSTM/GRU/

BiLSTM layer is a 64 9 512 matrix. The GRU layer has

slightly fewer parameters than the LSTM layer due to its

simplicity. The BiLSTM’s output shape accounts for both

the forward and backwards directions, therefore, in order to

have an output dimension of 512, the BiLSTM layer must

possess half the cell units or in this case, 256. This accounts

for the BiLSTM layer having less parameters than both the

LSTM and GRU layers. In the stacked BiLSTM model, the

two layers of BiLSTMs are stacked upon one another. The

dimensionality of the other models is preserved; however,

the number of parameters is increased from roughly 3

million to 4.7 million. The LSTM/GRU/BiLSTM layer has

dropout at its inputs of 0.2 and recurrent dropout of its

recurrent state of 0.2 to avoid overfitting [20]. This output

is then fed into a one-dimensional global max pooling

layer. The output of the Global Max Pooling layer is a

vector of length 512.

Next, the output vector is fed into two FC layers of

decreasing size. The first FC layer is of size 512 and the

second is of size 256. Both layers utilize ReLU activation

functions. Dropout is applied after both FC layers at a rate

of 0.5 to avoid overfitting. The final output layer reduces

the vector to length 5 with a softmax activation function

which converts the vector of numbers into a vector of

probabilities. The softmax code returns the index of the

highest probability (i.e., the predicted emotion).

4 Results and analysis

4.1 Programming platform

This work was performed using the Python Programming

language (3.7.12) with the following key packages: Numpy

(1.19.15), Pandas (1.1.5), Keras (2.5.0), SkLearn (0.22) and

NLTK (3.4.5). The primary experiments were conducted in

a Google Colab environment using Google Colab’s GPU

hardware accelerator.

Table 2 Model structure for

comparative experiment
Layer Output shape Number of parameters

Word2Vec/FastText embedding Batch size, 64, 400/100 8 M/2M

Spatial dropout 1-D Batch size, 64, 400/100 0

LSTM/GRU/BiLSTM Batch size, 64, 512 1.2 M/0.9M/0.7M

BiLSTM (optional) Batch size, 64, 512 1.5 M

Global max pooling Batch size, 512 0

FC #1 Batch size, 512 2,62,656

Dropout Batch size, 512 0

FC #2 Batch size, 256 1,31,328

Dropout Batch size, 256 0

FC #3 Batch size, 5 1285

Neural Computing and Applications

123

4.2 Cross-validation results

The results of this study’s cross-validation comparative

experiment can be seen in Table 3. These results are

compared to Saputri et al.’s models using only embedding

techniques as well as the best model from Saputri et al. that

uses various dense features. These values represent the

mean of the maximum validation accuracies for each of the

10 cross-validation splits.

Each of the models produced by this research outper-

form each model from Saputri et al. when embedding

techniques are the only features considered. The best

models from this study (FastText BiLSTM and two-layer

stacked BiLSTM) outperform Saputri et al.’s logistic

regression model with FastText embeddings by more than

an 8% margin of accuracy in tenfold cross-validation. The

best models from this research also outperform Saputri

et al.’s random forest model by more than 15%.

Each of the models with FastText embeddings outper-

forms the best model from the comparison study when all

features are considered, while each of the models using

Word2Vec embeddings under-perform relative to its Fas-

tText counterpart. The increase in performance when using

FastText over Word2Vec is consistent with the results of

the logistic regression model from Saputri et al. The best

performing models are the FastText BiLSTM and FastText

two-layer stacked BiLSTM models with the same

validation accuracy of 70.71%. The stacked BiLSTM

model has significantly more parameters than the single-

layer BiLSTM and yet does not produce higher validation

accuracy. The distribution of results over tenfold for the

FastText RNN variants can be seen in Fig. 5.

4.3 Statistical significance

Two sets of statistical tests were performed. The first set

compares the results of the models depicted in Table 3.

The second set compares the four RNN variants against

each other.

In the first case, the top performing RNN variants were

BiLSTM and 2xBiLSTM, each with a classification accu-

racy of 0.7071. The top performing model employing

open-source embeddings in the comparison study is the

logistic regression model, achieving a classification accu-

racy of 0.6249. Applying a hypothesis test for equality of

proportions of independent populations, the RNN models

exhibit significantly higher accuracy than the logistic

regression model (z = 8.18, p \:0001). The top performing

RNN variants using open-source embeddings were not

significantly different from the top model in the compar-

ison study using dense, proprietary features denoted by

LR? in Table 3 (z = 1.00, p = .3162).

In the second case, an internal comparison was per-

formed to determine any statistical significance among this

study’s models using the bootstrapping method. Boot-

strapping is similar to cross-validation but with sample

replacement. This distinction satisfies the ANOVA test’s

assumption of statistical independence among samples.

The results of the bootstrapping experiment with 10

training splits can be seen in Table 4 and Fig. 6.

Table 3 Comparative

experiment resultsa
Embedding LSTM Glenn 2022 Saputri et al. [8]

GRU BiLSTM 2xBiLSTMb LR SVM RF LR?c

FastText 70.48% 70.17% 70.71% 70.71% 62.49% 62.27% 55.18% 69.73%

Word2Vec 65.92% 64.90% 66.33% 65.01% 61.83% 61.37% 53.03% –

aAverage validation accuracy in tenfold cross-validation
bTwo-layer stacked BiLSTM
cLogistic regression with dense features

Fig. 5 FastText RNN variant CV results

Table 4 10-Sample bootstrap results

Embedding LSTM GRU BiLSTM 2xBiLSTMa

FastText 68.26% 68.56% 68.62% 68.09%

Average validation accuracy
a2-layer stacked BiLSTM

Neural Computing and Applications

123

A single-factor ANOVA was performed on the bootstrap

comparative results with a null hypothesis that all classifier

means are equal and an alpha of 0.05. The single-factor

ANOVA fails to reject the null hypothesis (F-stat = 1.35

and p = .27), meaning that the data cannot conclude that the

four classifiers’ means are not equal. In addition, post hoc

pairwise t tests were conducted with a null hypothesis that

the mean difference between two classifiers is zero and an

alpha of 0.05. For the comparison of the single-layer

BiLSTM model and the two-layer stacked BiLSTM model,

this test rejects the null hypothesis (p = .037) which reveals

a statistical significance between the two models. All other

pairwise t tests were found to be statistically insignificant.

Therefore, this research can conclude that the single-layer

BiLSTM model is optimal in comparison with the two-

layer stacked BiLSTM model.

4.4 Hyperparameter tuning

The single-layer BiLSTM model with FastText embed-

dings was chosen as the candidate model for hyperpa-

rameter tuning based on its statistical significance over the

two-layer stacked BiLSTM, and it is possessing the highest

validation accuracy in both the cross-validation and boot-

strap comparative experiments. Hyperparameter tuning can

identify model dependencies that can potentially be

exploited in order to boost performance.

The first hyperparameter for consideration is the number

of units in the BiLSTM’s hidden layer. Variation in the

number of units in the BiLSTM’s hidden layer produces

the following results in Table 5. Increasing the number of

hidden layer units in the BiLSTM from 256 to 512 leads to

an increase in validation accuracy up to 70.83%. However,

increasing the hidden layer units up to 1024 shows a

decrease in performance.

Lowering the batch size can increase accuracy at the

cost of additional run time. Variation in batch size with

BiLSTM layer set to 512 can be seen in Table 6.

Decreasing the batch size below 64 did not produce higher

accuracy. Notably, increasing the batch size to 128 also

caused a decrease in validation accuracy, suggesting 64 is

an optimal batch size.

After tuning, the best model is determined to be a Fas-

tText single-layer BiLSTM with 512 units in the BiLSTM

layer and a batch size of 64. This model is able to produce a

study-best 70.83% accuracy average across tenfold cross-

validation. The final model architecture can be seen in

Table 7. Note: The output shape of the BiLSTM layer is

twice the BiLSTM layer units to account for both the

forward and backward directions (i.e., 512 9 2 = 1024).

Tunable elements such as learning rate, dropout rates

and the number of neurons in FC layers 1 and 2 were not

tuned due to computational resource constraints. Learning

and dropout rates largely impact convergence time within a

certain number of epochs. The model was found to

Fig. 6 FastText RNN variant bootstrap results

Table 5 BiLSTM hidden layer unit tuning results

Hidden layer units 256 512 1024

Val accuracya 70.71% 70.83% 70.64%

Single-layer stacked BiLSTM with FastText embeddings
aAverage validation accuracy in tenfold cross-validation

Table 6 Batch size tuning results

Batch size 16 32 64 128

Val accuracya 69.44% 70.28% 70.83% 70.42%

Single-layer stacked BiLSTM with FastText embeddings
aAverage validation accuracy in tenfold cross-validation

Table 7 Final single-layer BiLSTM model

Layer Output shape Number of parameters

FastText embedding Batch size, 64, 100 2000000

Spatial dropout 1-D Batch size, 64, 100 0

BiLSTM Batch size, 64, 1024 2510848

Global max pooling Batch size, 1024 0

FC #1 Batch size, 512 524800

Dropout Batch size, 512 0

FC #2 Batch size, 256 131328

Dropout Batch size, 256 0

FC #3 Batch size, 5 1285

Neural Computing and Applications

123

converge to a global maximum validation accuracy within

the given number of epochs during every training split

during the cross-validation experiment. Additionally, the

RMSprop optimizer is an adaptive learning algorithm

which makes the default learning rate suitable in most

cases. The number of neurons in the FC layers was chosen

to preserve the dimensionality of the RNN layer’s output

with a stepwise decrease until the final FC layer.

4.5 Model Examination

The single-layer BiLSTM model will now be further

examined to show its behavior during training. The mod-

el’s accuracy and loss values over 20 epochs can be seen in

Figs. 7 and 8. These values were extracted from one of the

10 cross-validation training splits from the previous

experiment.

The optimal model was identified by maximizing the

validation accuracy at epoch 11 (74.55%). The slight

increase in validation loss after epoch 7 suggests some

slight overfitting, however, this increase is not significant

enough to rule out the optimal model at epoch 11. It is

noteworthy that validation accuracy at epoch 7, the vali-

dation loss minimum, is 74.32%, which is still greater than

the optimal model from Saputri et al. This suggests that the

model is robust against overfitting.

Examination of the model’s classification report reveals

that the fear class has the highest level of precision at 84%,

which indicates a false positive rate of 16%. Recall for the

fear class is also high with a score of 71%. This perfor-

mance is in contrast with the baseline model from Saputri

et al. with a precision rate of 65% and recall rate of 53% for

the fear class. The classification reports from this study and

Saputri et al. can be seen in Tables 8 and 9.

Fig. 7 Single-layer BiLSTM model accuracy

Fig. 8 Single-layer BiLSTM model loss

Table 8 Classification report

Emotion class Precision Recall F1-Score

Love 78% 88% 83%

Joy 77% 65% 71%

Anger 75% 85% 80%

Sadness 62% 65% 64%

Fear 84% 71% 77%

Avg/Total 76% 75% 75%

Table 9 Classification report (Saputri et al. [8])

Emotion class Precision Recall F1-Score

Love 64% 75% 69%

Joy 81% 60% 69%

Anger 61% 81% 70%

Sadness 89% 72% 80%

Fear 65% 53% 59%

Avg/Total 70% 68% 68%

Fig. 9 Single-layer BiLSTM confusion matrix

Neural Computing and Applications

123

The confusion matrix in Fig. 9 demonstrates the clas-

sification performance of the model in greater detail. It can

clearly be seen that the model produces the most true

positives in the fear category—meaning 84% of its ‘‘fear’’

predictions are actual ‘‘fear’’ tweets according to the

labeled dataset. The model’s worst performing category is

‘‘sadness,’’ which could be due to the prevalence of sar-

casm and irony on social media [24]. This could explain

why sadness is mistaken for joy 20% of the time.

5 Conclusions and future work

The results of this study demonstrate the efficacy of RNNs

when leveraging pre-trained FastText embeddings in

comparison with traditional machine learning techniques.

Specifically, these results show that RNN variants can

produce more than an 8% gain in accuracy in comparison

with logistic regression and SVM techniques and a 15%

gain over random forest.

This research found a statistical significance in the

performance of a single-layer BiLSTM model over a two-

layer stacked BiLSTM model. This research also found that

single-layer BiLSTM models produce comparable valida-

tion accuracy when compared to the best model from

Saputri et al. The final ensemble method from Saputri et al.

was a logistic regression model leveraging FastText pre-

trained embeddings, bag-of-words feature extraction, an

emotion word list, and several other lexical features for a

final validation accuracy of 69.73%. This study’s single-

layer BiLSTM model achieves a validation accuracy of

70.83% using only the pre-trained FastText embeddings.

This suggests that RNNs are successfully able to auto-

matically extract the dense features manually provided in

the study by Saputri et al. (i.e., emoticons, parts of speech,

etc.). These results satisfy this research’s goal of meeting

or exceeding the performance of Saputri et al.’s traditional

machine learning methods using exclusively open-source

data and models.

Future work could include producing a model that

handles tweets with neutral emotion or multi-emotion

tweets. Saputri et al. indicate they may produce a dataset in

the future that has multi-emotion and neutral emotion

labeling [8]. It may be necessary to acquire additional

labeled data from other Indonesian sources in order to train

a model that can predict neutral and multiple emotions.

Other research areas such as topic modeling and net-

work analysis could be applied in conjunction with this

emotion classifier model in order to further expand upon its

ability to provide characterization and understanding of

societal behaviors. For example, network analysis could

delineate social groups by examining Twitter interactions

and emotion classification could be used to determine how

those social groups respond to specific topics.

Data availability All data generated or analyzed during this study are

included in this published article (and its supplementary information

files).

Declarations

Conflict of interest All authors declare that they have no conflict of

interest.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00521-

022-08186-1.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Zhang H, Xu D, Luo G, Kangjian H (2022) Learning multi-level

representations for affective image recognition. Neural Comput

Appl. https://doi.org/10.1007/s00521-022-07139-y

2. Nikita J, Vedika G, Shubham S, Agam M, Ankit C, Santosh KC

(2021) Understanding cartoon emotion using integrated deep

neural network on large dataset. Neural Comput Appl. https://doi.

org/10.1007/s00521-021-06003-9

3. Diao Y, Lin H, Yang L, Fan X, Chu Y, Di W, Kan X, Bo X

(2020) Multi-granularity bidirectional attention stream machine

comprehension method for emotion cause extraction. Neural

Comput Appl 32(12):8401–8413. https://doi.org/10.1007/s00521-

019-04308-4

4. Li D, Li M, Han G, Li T (2021) A combined deep learning

method for internet car evaluation. Neural Comput Appl

33(10):4623–4637. https://doi.org/10.1007/s00521-020-05291-x

5. Ghanbari-Adivi F, Mosleh M (2019) Text emotion detection in

social networks using a novel ensemble classifier based on parzen

tree estimator (tpe). Neural Comput Appl 31(12):8971–8983.

https://doi.org/10.1007/s00521-019-04230-9

6. Nagarajan S, Gandhi U (2019) Classifying streaming of twitter

data based on sentiment analysis using hybridization. Neural

Comput Appl 31(5):1425–1433. https://doi.org/10.1007/s00521-

018-3476-3

7. Chen J, Yan S, Wong KC (2020) Verbal aggression detection on

twitter comments: convolutional neural network for short-text

sentiment analysis. Neural Comput Appl 32(15):10809–10818.

https://doi.org/10.1007/s00521-018-3442-0

8. Saputri MS, Mahendra R, Adriani M (2018) Emotion Classifi-

cation on Indonesian Twitter Dataset. In: Proceeding of

Neural Computing and Applications

123

https://doi.org/10.1007/s00521-022-08186-1
https://doi.org/10.1007/s00521-022-08186-1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00521-022-07139-y
https://doi.org/10.1007/s00521-021-06003-9
https://doi.org/10.1007/s00521-021-06003-9
https://doi.org/10.1007/s00521-019-04308-4
https://doi.org/10.1007/s00521-019-04308-4
https://doi.org/10.1007/s00521-020-05291-x
https://doi.org/10.1007/s00521-019-04230-9
https://doi.org/10.1007/s00521-018-3476-3
https://doi.org/10.1007/s00521-018-3476-3
https://doi.org/10.1007/s00521-018-3442-0

international conference on asian language processing, pages

90–95. https://doi.org/10.1109/IALP.2018.8629262

9. Zhou J, Lu Y, Dai HN, Wang H, Xiao H (2018) Sentiment

Analysis of Chinese Microblog Based on Stacked Bidirectional

LSTM. In: 2018 15th international symposium on pervasive

systems, algorithms and networks (I-SPAN) pages 162-167.

IEEE. URL https://doi.org/10.1109/ACCESS.2019.2905048

10. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.

1997.9.8.1735

11. Aurélien G (2019) Hands-on machine learning with Scikit-Learn,

Keras, and TensorFlow, 2nd edn. O’Reilly Media Inc., California

12. Rathor S, Agrawal S (2021) A robust model for domain recog-

nition of acoustic communication using bidirectional lstm and

deep neural network. Neural Comput Appl 33(17):11223–11232.

https://doi.org/10.1007/s00521-020-05569-0

13. Devi S, Naveenkumar K, Ganesh SS, Ritesh S (2021) Location

Based Twitter Emotion Classification for Disaster Management.

In: 2021 Third international conference on inventive research in

computing applications (ICIRCA) pages 664-669. IEEE. URL

https://doi.org/10.1109/ICIRCA51532.2021.9544994.

14. Elfaik H, Nfaoui EH (2020) Deep bidirectional LSTM network

learning-based sentiment analysis for Arabic text. J Intell Syst

30(1):395–412. https://doi.org/10.1515/jisys-2020-0021

15. Xiao Z, Liang P (2016) Chinese Sentiment Analysis Using

Bidirectional LSTM with Word Embedding. In: International

conference on cloud computing and security, pages 601–610.

https://doi.org/10.1007/978-3-319-48674-1_53

16. Liang X, Liu Z, Ouyang C (2018) A Multi-Sentiment Classifier

Based on GRU and Attention Mechanism. In: 2018 IEEE 9th

International conference on software engineering and service

science (ICSESS) pages 527-530. IEEE. URL https://doi.org/

10.1109/ICSESS.2018.8663799.

17. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical Eval-

uation of Gated Recurrent Neural Networks on Sequence

Modeling. NIPS 2014 Workshop on Deep Learning. arXiv:1412.
3555

18. Rathor S, Agrawal S (2021) A robust model for domain recog-

nition of acoustic communication using Bidirectional LSTM and

deep neural network. Neural Comput Appl 33(17):11223–11232.

https://doi.org/10.1007/s00521-020-05569-0

19. Imaduddin H, Widyawan, FS (2019) Word Embedding Com-

parison for Indonesian Language Sentiment Analysis. In: 2019

International Conference of Artificial Intelligence and Informa-

tion Technology (ICAIIT), pages 426–430. IEE. https://doi.org/

10.1109/ICAIIT.2019.8834536

20. Semeniuta S, Severyn A, Barth E (2016) Recurrent Dropout

without Memory Loss. arXiv:1603.05118

21. Garg N, Schiebinger L, Jurafsky D, Zou J (2018) Word embed-

dings quantify 100 years of gender and ethnic stereotypes. Proc

Nat Acad Sci 115(16):E3635–E3644. https://doi.org/10.1073/

pnas.1720347115

22. McHugh Mary L (2012) Interrater reliability: the kappa statistic.

Biochem Med 22(3):276–282. https://doi.org/10.11613/BM.2012.

031

23. Manning C (2008) Introduction to information retrieval. Cam-

bridge University Press, Cambridge

24. Lailiyah M, Sumpeno S, Purnama IKE (2017) Sentiment Anal-

ysis of Public Complaints Using Lexical Resources Between

Indonesian Sentiment Lexicon and Sentiwordnet. In: 2017

International seminar on intelligent technology and its applica-

tions, pages 307–312, New York. IEEE Press. https://doi.org/10.

1109/IALP.2018.8629262

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

https://doi.org/10.1109/IALP.2018.8629262
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s00521-020-05569-0
https://doi.org/10.1515/jisys-2020-0021
https://doi.org/10.1007/978-3-319-48674-1_53
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1007/s00521-020-05569-0
https://doi.org/10.1109/ICAIIT.2019.8834536
https://doi.org/10.1109/ICAIIT.2019.8834536
http://arxiv.org/abs/1603.05118
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.1073/pnas.1720347115
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.11613/BM.2012.031
https://doi.org/10.1109/IALP.2018.8629262
https://doi.org/10.1109/IALP.2018.8629262

	Emotion Classification of Indonesian Tweets using Bidirectional LSTM
	Recommended Citation

	Emotion classification of Indonesian Tweets using Bidirectional LSTM
	Abstract
	Introduction
	Related work
	Emotion classification
	Recurrent neural network variants
	Limitations

	Methodology
	LSTM
	GRU
	BiLSTM
	Deep neural networks
	Word embeddings
	Dataset
	Evaluation metrics
	Proposed model architecture

	Results and analysis
	Programming platform
	Cross-validation results
	Statistical significance
	Hyperparameter tuning
	Model Examination

	Conclusions and future work
	Open Access
	References

