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The behavior of partially
coherent twisted space-time
beams in atmospheric
turbulence

Milo W. Hyde IV*

Department of Engineering Physics, Air Force Institute of Technology, Dayton, OH, United States

We study how atmospheric turbulence affects twisted space-time beams,

which are non-stationary random optical fields whose space and time

dimensions are coupled with a stochastic twist. Applying the extended

Huygens–Fresnel principle, we derive the mutual coherence function of a

twisted space-time beam after propagating a distance z through

atmospheric turbulence of arbitrary strength. We specialize the result to

derive the ensemble-averaged irradiance and discuss how turbulence affects

the beam’s spatial size, pulse width, and space-time twist. Lastly, we generate, in

simulation, twisted space-time beam field realizations and propagate them

through atmospheric phase screens to validate our analysis.

KEYWORDS

atmospheric turbulence, coherence, random media, random fields, space-time
coupling, spatiotemporal coupling, statistical optics

1 Introduction

New approaches in beam control include light with engineered space-time or spatiotemporal

coupling. Recent papers have demonstrated space-time-coupled light which exhibits anomalous

diffractive and refractive behaviors [1–4] as well as carries transverse (to the direction of

propagation) orbital angular momentum in the form of spatiotemporal optical vortices

(STOVs) [5–11]. These novel developments hold promise for exciting advancements in

applications such as optical communications, optical tweezing, and quantum optics [2, 4, 12–16].

Most of the space-time-coupled beam research manipulates coherent light, although

this has begun to change with the development of partially coherent STOV and twisted

space-time (and space-frequency) beams [17–21]. The latter are non-stationary random

fields with the beams’ spatial and temporal (or spectral) dimensions coupled in a

stochastic twist. They are the spatiotemporal counterparts of traditional, spatially

twisted Gaussian Schell-model beams [22–27].

Spatially twisted partially coherent fields have been extensively studied since being

introduced in 1993. This research includes beam synthesis [28–33]; coherent modes/

pseudo-modes [23, 26, 27, 34–37]; angular momentum [38–41]; and propagation behaviors

in free-space, ABCD optical systems, and turbulence [35, 42–51]. This stands in contrast to

twisted space-time beams (and STOV beams more generally), where only their angular
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momentum and free-space propagation behaviors have been

investigated [6, 8, 9, 11, 19, 20, 52, 53].

In this paper, we undertake, to our knowledge, the first study

on the effects of atmospheric turbulence on twisted space-time

beams. Using the extended Huygens–Fresnel principle, we derive

an approximate expression for the mutual coherence function

(MCF) of a twisted space-time beam after propagating through

atmospheric turbulence of any strength. We then specialize the

MCF to obtain the ensemble-averaged irradiance and discuss

how turbulence affects the beam’s size, pulse width, and space-

time twist. To validate our analysis, we compare the theoretical

irradiance to the results of Monte Carlo wave-optics simulations.

Lastly, we conclude with a brief summary of our findings.

2 Theory

2.1 Extended Huygens–Fresnel principle

Let us beginwith the extendedHuygens–Fresnel principle/integral:

U ρ, z,ω( ) � k

j2πz
exp jkz( )∫∫∞

−∞
U ρ′, 0,ω( )exp jk

2z
ρ − ρ′
∣∣∣∣ ∣∣∣∣2( )

exp Ψ ρ′, 0; ρ, z;ω( )[ ]d2ρ′, (1)

where j � 


−1√
, ω is the radian frequency, k = ω/c is the

wavenumber, c is the speed of light, ρ′ � x̂x′ + ŷy′ is the source

vector, and ρ � x̂x + ŷy is the observation vector. The optical field

U in the integrand is a stochastic (frequency-domain) realization of a

twisted space-time beam, and Ψ is a random complex function

whichmodels the phase and amplitudefluctuations of a point source

propagating through atmospheric turbulence from (ρ′, 0) to (ρ, z)
at frequency ω [54–57].

The two-frequency cross-spectral density (CSD) function

[55, 58–62] can be obtained by taking the ensemble-averaged

auto-correlation of Eq. 1, namely,

W ρ1, z,ω1, ρ2, z,ω2( )
� k1k2

2π( )2z2 exp j k1 − k2( )z[ ]∫∫∫∫∞

−∞
W ρ1′, 0,ω1, ρ2′, 0,ω2( )

exp
jk1
2z

ρ1 − ρ1′
∣∣∣∣ ∣∣∣∣2( )exp −jk2

2z
ρ2 − ρ2′
∣∣∣∣ ∣∣∣∣2( )

〈exp Ψ ρ1′, 0; ρ1, z;ω1( ) + Ψ* ρ2′, 0; ρ2, z;ω2( )[ ]〉d2ρ1′d2ρ2′, (2)

where we have assumed that the source field is statistically

independent of the atmospheric turbulence fluctuations. The

moment involving Ψ is related to the two-point, spherical

wave structure function (WSF) [55–57, 61, 62], and equals

〈exp Ψ ρ1′, 0; ρ1, z;ω1( ) + Ψ* ρ2′, 0; ρ2 , z;ω2( )[ ]〉
� exp −1

2
D ρ1′ − ρ2′, 0; ρ1 − ρ2, z;ω1,ω2( )[ ]

≈ exp −2π2∫z

0
∫∞

0
κΦn κ, ζ( ) k21 + k22 − 2k1k2 exp −jβκ2( )J0 κR( )[ ]dκdζ{ }, (3)

where Φn is the index of refraction power spectrum (assumed

to be statistically isotropic) and β and R equal

β � ζ z − ζ( )
2z

1
k1

− 1
k2

( )
R � ζ

z
ρ1 − ρ2( ) + 1 − ζ

z
( ) ρ1′ − ρ2′( )∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣.
(4)

The approximate expression on the second line of Eq. 3 is

derived using the method of smooth perturbations (also

known as the Rytov approximation) and further assuming

that Ψ is Gaussian distributed [55–57, 61–63]. We will return

to Eq. 3 shortly.

The ultimate goal is to find the “two-time” MCF of a

twisted space-time beam after propagating through

turbulence. To do this, we must inverse Fourier transform

Eq. 2, i.e.,

Γ ρ1, z, t1, ρ2, z, t2( )
� ∫∫∞

−∞
W ρ1, z,ω1, ρ2, z,ω2( )exp −jω1t1( )exp jω2t2( )dω1dω2.

(5)
Applying Eqs 2–5 and interchanging the order of the integrals

yields

Γ ρ1, z, t1, ρ2, z, t2( ) �
1

2π( )2c2z2∫∫∫∫∞

−∞
∫∫∞

−∞
ω1ω2W ρ1′, 0,ω1, ρ2′, 0,ω2( )

exp −1
2
D ρ1′ − ρ2′, 0; ρ1 − ρ2, z;ω1,ω2( )[ ]

exp −jω1 t1 − z

c
− ρ1 − ρ1′
∣∣∣∣ ∣∣∣∣2

2zc
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

exp jω2 t2 − z

c
− ρ2 − ρ2′
∣∣∣∣ ∣∣∣∣2

2zc
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦dω1dω2d

2ρ1′d2ρ2′. (6)

Assuming that the twisted space-time beam has a

relatively narrow linewidth (or bandwidth) around mean

or carrier frequency ωc (i.e., Δω/ωc ≪ 1), we can

approximate Eq. 6 as

Γ ρ1, z, t1, ρ2, z, t2( )
≈

1

λ2c z
2∫∫∫∫∞

−∞
exp −jωc t1 − t2 − ρ1 − ρ1′

∣∣∣∣ ∣∣∣∣2
2zc

+ ρ2 − ρ2′
∣∣∣∣ ∣∣∣∣2

2zc
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

∫∫∞

−∞
W ρ1′, 0, �ω1, ρ2′, 0, �ω2( )

exp −1
2
D ρ1′ − ρ2′, 0; ρ1 − ρ2, z; �ω1 + ωc, �ω2 + ωc( )[ ]

exp −j�ω1 t1 − z

c
( )[ ]exp j�ω2 t2 − z

c
( )[ ]d�ω1d�ω2d

2ρ1′d2ρ2′, (7)

and, by evaluating Eq. 7, obtain a closed-form expression for

the MCF. Before doing this, we need to discuss the functions

D and W in the integrand.
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2.2 Approximate two-point, spherical
WSF D

Let us return to Eq. 3. By virtue of the source being narrowband,

β ≈ 0. Letting Φn equal the von Kármán spectrum—namely,

Φn κ, ζ( ) � 0.033C2
n ζ( ) exp −κ2/κ2m( )

κ + κ20( )11/6 , (8)

where κm = 5.92/l0 and κ0 = 2π/L0 (C
2
n, l0, and L0 are the index of

refraction structure constant, the inner scale, and outer scale of

turbulence, respectively)—the integral over κ evaluates to

D ρ1′ − ρ2′, 0; ρ1 − ρ2, z;ω1,ω2( ) � 0.033 2π2( )κ−5/30 U 1;
1
6
;
κ20
κ2m

( )
× k21 + k22( )∫z

0
C2

n ζ( )dζ

− 0.033 4π2( )κ−5/30 k1k2∫z

0
C2

n ζ( )

× ∑∞
n�0

−1( )n
n!

κ20R
2

4
( )n

U n + 1; n + 1
6
;
κ20
κ2m

( )dζ ,
(9)

where U(a; c; z) is a confluent hypergeometric function of the

second kind [64–66]. In most physical scenarios, L0 ≫ l0, and

therefore, we can estimate Eq. 9 using the small argument

relation for U(a; c; z). The result, after much analysis, is

D ρ1′ − ρ2′, 0; ρ1 − ρ2, z;ω1,ω2( )
≈ 0.7817κ−5/30 k1 − k2( )2∫z

0
C2

n ζ( )dζ

+ 8.7021κ−5/3m k1k2∫z

0
C2

n ζ( ) 1F1 −5
6
; 1;−κ

2
mR

2

4
( ) − 1[ ]dζ

− 2.3450κ1/30 k1k2∫z

0
C2

n ζ( )R2dζ . (10)

Eq. 10 includes both inner and outer scale effects. However, to

evaluate Eq. 7 in closed form, we must let the inner scale l0 → 0

(κm → ∞). Using the large argument relation for 1F1, we obtain

D ρ1′ − ρ2′, 0; ρ1 − ρ2, z;ω1,ω2( ) ≈ 0.7817κ−5/30 k1 − k2( )2∫z

0
C2

n ζ( )dζ
+ 2.9139k1k2∫z

0
C2

n ζ( )R5/3dζ − 2.3450κ1/30 k1k2∫z

0
C2

n ζ( )R2dζ .

(11)

We lastly assume that C2
n is constant over the propagation

path and set R5/3 ≈ R2—an estimate known as the quadratic

approximation [57, 62]. Substituting ω1 � �ω1 + ωc and ω2 �
�ω2 + ωc as stipulated in Eq. 7 and noting that

k1k2 � (�k1 + kc)(�k2 + kc) ≈ k2c , we arrive at the final result

D ρ1′ − ρ2′, 0; ρ1 − ρ2, z; �ω1 + ωc, �ω2 + ωc( )
≈
0.7817C2

nzκ
−5/3
0

c2
�ω1 − �ω2( )2 + 1.0930C2

nz 1 − 0.7152κ1/30( )k2c
ρ1 − ρ2
∣∣∣∣ ∣∣∣∣2 + ρ1′ − ρ2′

∣∣∣∣ ∣∣∣∣2 + ρ1 − ρ2( ) · ρ1′ − ρ2′( )[ ]
� 2

aω
c2

�ω1 − �ω2( )2

+ 2ask
2
c ρ1 − ρ2
∣∣∣∣ ∣∣∣∣2 + ρ1′ − ρ2′

∣∣∣∣ ∣∣∣∣2 + ρ1 − ρ2( ) · ρ1′ − ρ2′( )[ ]. (12)

Equation 12 is very physical: The terms describe how

atmospheric turbulence corrupts light’s spectral and spatial

coherence. For traditional space-time separable beams, these

two terms give rise to pulse and beam broadening,

respectively [56, 57, 67–73]. In our case, because of

spatiotemporal coupling, both terms will affect the temporal

and spatial beam sizes.

2.3 CSD function of a twisted space-time
beam

With Eq. 12, we are one step closer to evaluating Eq. 7. We, of

course, still need an expression for W. To find this expression, we

begin with the MCF of a twisted space-time beam:

Γ ρ1 , t1 , ρ2 , t2( ) � A2 exp −y
2
1 + y2

2

4W2
y

⎛⎝ ⎞⎠exp −x
2
1 + x2

2

4W2
x

( )exp − x1 − x2( )2
2δ2x

[ ]
exp −t

2
1 + t22
4W2

t

( )exp − t1 − t2( )2
2δ2t

[ ]exp jμ x1t2 − x2t1( )[ ]exp −jωc t1 − t2( )[ ]; (13)

where A is the amplitude; Wx, Wy, and Wt are the spatial and

temporal pulse widths; δx and δt are the spatial and temporal

coherence widths; and μ is the space-time twist parameter [19].

The latter must satisfy |μ|δtδx ≤ 1 for the MCF in Eq. 13 to be

genuine, i.e., square-integrable, Hermitian, and non-negative

definite [58, 59]. Consequently, μ → 0 in the coherent beam

limit δt, δx → ∞. When |μ|δtδx � 1, the twist in the beam is

saturated [20, 25, 27]. We assume this condition for the

simulations described in Section 3.

Note that Eq. 13 has the same general form as a twisted

Gaussian Schell-model beam [22, 25–27]; however, here,

space and time are twisted. It is well known that the spectral

density or average irradiance of a spatially twisted random beam

rotates in the x-y plane as it propagates in the z direction [35, 40,

41, 74]. From Eq. 7, we see that t is linked paraxially to the

propagation distance z; therefore, a twisted space-time beam

rotates or tumbles in the x-z plane as it propagates. This

behavior is described in Refs. [19, 20] for twisted space-time

beams propagating in free space. What remains to be

determined is how atmospheric turbulence affects the x-z plane

rotation of twisted space-time beams.

We can find the CSD function W of a twisted space-time

beam by Fourier transforming the MCF in Eq. 13, i.e.,

W ρ1,ω1, ρ2,ω2( )
� 1

2π( )2∫∫∞

−∞
Γ ρ1, t1, ρ2, t2( )exp jω1t1( )exp −jω2t2( )dt1dt2.

(14)

Substituting Eq. 13 into Eq. 14 and evaluating the integrals

yields
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W ρ1 ,ω1 , ρ2 ,ω2( ) � A2

4πΩt
exp −y

2
1 + y2

2

4W2
y

⎛⎝ ⎞⎠exp −x
2
1 + x2

2

4 ~W
2

x

⎛⎝ ⎞⎠exp − x1 − x2( )2
2~δ

2

x

⎡⎢⎢⎣ ⎤⎥⎥⎦
exp − �ω2

1 + �ω2
2

4W2
ω

( )exp − �ω1 − �ω2( )2
2δ2ω

[ ]exp μ

δ2ω
�ω2 1 + 1

2γ2t
( ) − �ω1[ ]x1{ }

exp
μ

δ2ω
�ω1 1 + 1

2γ2t
( ) − �ω2[ ]x2{ },

(15)

where γt = Wt/δt, Wω = 2WtΩt, δω = 2δtΩt, and

Ω2
t �

1
4W2

t

+ 1

2δ2t
( )2

− 1

2δ2t
( )2

,

1

~W
2

x

� 1

W2
x

+ μ2

W2
ω

,

1

~δ
2

x

� 1

δ2x
+ μ2

δ2ω
.

(16)

With Eq. 15, we are now ready to evaluate the integrals

in Eq. 7.

2.4 MCF of twisted space-time beam in
atmospheric turbulence

Substituting Eqs 12, 15 into Eq. 7 and evaluating the integrals

produces (after much analysis)

Γ x1 , 0, z, t1, x2, 0, z, t2( )
� A2Wt

~Wt

NFxNFy





ΔxΔy

√ exp −jωc �t1 − �t2( )[ ]
exp −N

2
Fx

Δx

x2
1 + x2

2

4W2
x

( )exp − �t21 + �t22

4 Weff
t( )2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦exp μ

NFx

Δx

W2
t

~W
2

t

x1�t2 + x2�t1( )⎡⎢⎣ ⎤⎥⎦
exp

jkc
2z

1 − N2
Fx

Δx
+ ask

2
c

4W2
x

Δx
( ) x2

1 − x2
2( )[ ]exp jμ2

N2
Fx

Δx

W2
t

~W
2

t

�t21 − �t22( )⎡⎢⎣ ⎤⎥⎦
exp jμ

N2
Fx

Δx

W2
t

~W
2

t

x1�t2 − x2�t1( )⎡⎢⎣ ⎤⎥⎦exp −jμN
2
Fx

Δx

aω

c2 ~W
2

t

x1 + x2( ) �t1 − �t2( )⎡⎢⎣ ⎤⎥⎦
exp −jμ 2W

2
x

Δx

W2
t

~W
2

t

ask
2
c x1 − x2( ) �t1 + �t2( )⎡⎢⎣ ⎤⎥⎦

exp − x1 − x2( )2
2 δeffx( )2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦exp − �t1 − �t2( )2

2 δefft( )2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦exp − x1 − x2( ) �t1 − �t2( )
2 δeffxt( )2⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (17)

Since the beam’s interesting behaviors occur in the x-t or x-z

plane (the x and t dimensions are coupled), here, we present the

MCF evaluated at y1 = y2 = 0. The undefined symbols in Eq. 17

are NFx,y � 2kcW2
x,y/z, which are the x and y Fresnel numbers

for a fully coherent Gaussian beam; �t � t − z/c is the retarded

time; ~W
2
t � W2

t + 2aω/c2; and

Δx � 1 + 4
W2

x

δ2x
+N2

Fx + 8W2
x ask

2
c + μ2

aω
c2

W2
t

~W
2

t

⎛⎝ ⎞⎠;

Δy � 1 +N2
Fy + 8W2

yask
2
c ;

1

4 Weff
t( )2 � 1

4 ~W
2

t

+ μ2
W2

x

Δx

W4
t

~W
4

t

;

1

2 δefft( )2 � 1

2δ2t
+ μ2

W2
x

2Δx
Δx −N2

Fx −
W4

t

~W
4

t

⎛⎝ ⎞⎠ + aω
c2

1

4W2
t
~W

2

t

;

1

2 δeffx( )2 � N2
Fx

Δx

1

2δ2x
+ ask

2
c 1 + 2

N2
Fx

Δx
( ) − ask

2
c( )22W2

x

Δ2
x

+ μ2
aω
c2

N2
Fx

Δx

W2
t

~W
2

t

;

1

2 δeffxt( )2 � μ
NFx

2Δx
Δx −N2

Fx −
W2

t

~W
2

t

+ ask
2
c4W

2
x

⎛⎝ ⎞⎠.

(18)

Eq. 17 is organized so that the terms can be physically

interpreted: Starting at the top and ignoring the carrier

exp[−jωc(�t1 − �t2)], the amplitude term plus the first three

exponentials comprise the ensemble-averaged irradiance

(discussed in more detail below). The next (complex) exponentials

on line 4 are the spatial and temporal chirps. These are followed by

the space-time twist on lines 5 and 6. Lastly, the exponentials on line

7 model spatial and temporal coherence.

2.5 Average irradiance and physical
discussion

The ensemble-averaged irradiance is found by evaluating Eq.

17 at equal space-time points, i.e.,

〈I x, 0, z, t( )〉 � Γ x, 0, z, t, x, 0, z, t( )

� A2Wt

~Wt

NFxNFy




ΔxΔy

√ exp −N
2
Fx

Δx

x2

2W2
x

( )exp − 1 + μ2
4W2

xW
4
t

Δx
~W

2

t

⎛⎝ ⎞⎠ �t2

2 ~W
2

t

⎡⎢⎢⎣ ⎤⎥⎥⎦exp μ
2NFx

Δx

W2
t

~W
2

t

x�t⎛⎝ ⎞⎠
� Â

2
exp − x2

2Ŵ
2

x

⎛⎝ ⎞⎠exp − �t2

2Ŵ
2

t

⎛⎝ ⎞⎠exp μ̂x�t( ). (19)

In order, the exponentials are the spatial beam shape, temporal

beam (pulse) shape, and x-t plane rotation. The behavior of the

beam can be understood by examining Ŵx, Ŵt, and μ̂ versus

Fresnel number and turbulence strength. Figure 1 shows these

curves: (A) plots Ŵx/Wx, Ŵt/Wt, and μ̂/μ over Fresnel numbers

ranging from 100 (near field) to 0.01 (far field). The solid, dashed,

dashed-dotted, and dotted traces show how these quantities

evolve in free space (C2
n � 0m−2/3) and atmospheric

turbulence (C2
n � 10−14 m−2/3 with L0 = 10 m, 50 m, and
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100 m), respectively. For the latter, the (weak turbulence)

spherical wave scintillation indices [57], i.e.,

σ2I � 0.5C2
nk

7/6
c z11/6, (20)

are annotated on the plot (centered on their corresponding

Fresnel number) to show the strength of turbulence at that

NFx. Figure 1B displays a zoomed-in view of Ŵx/Wx, Ŵt/Wt,

and μ̂/μ over the boxed region in (A), viz., 15 ≥ NFx ≥ 0.5.

Lastly, the results depicted in Figure 1 apply to a twisted space-

time beam with λc = 1 μm, Wx = 2 cm, δx = 0.9Wx, Wt = 1 ps,

δt = 0.9Wt, and μ � 1/(δxδt).
Starting with the free-space (solid) curves in Figure 1, we see

that for NFx > 10, the twisted space-time beam is effectively in

the source plane, with Ŵx ≈ Wx, Ŵt ≈ Wt, and μ̂< μ/5. Things

begin to change for 10 > NFx > 1: Most noticeably, the beam

grows significantly larger due to diffraction. Indeed, over this

range, the beam expands nearly three times its original size in

the x direction. In addition to Ŵx, the pulse width also changes

in this region because of spatiotemporal coupling. Beginning

around NFx ≈ 10, Ŵt starts to contract (shorten) and continues

to do so until NFx ≈ 1. This shortening of Ŵt is met by an

increase in μ̂. When considered together, the result is a beam

that rotates in the x-t (or x-z) plane—the beam effectively

“trades” Ŵt to do so. Lastly, for NFx < 1, Ŵx continues to

grow larger due to diffraction, Ŵt asymptotes (the pulse width

stops contracting), and μ̂ falls rapidly toward zero. Physically,

the twisted space-time beam is in the far zone, diffraction

dominates, and the beam no longer rotates.

Examining the turbulence (dashed, dashed-dotted, and

dotted) curves, we generally observe the same behavior;

however, the beam’s evolution described above is

effectively pushed to the left, i.e., toward higher Fresnel

numbers. Where the separation between free-space

(diffractive) and turbulence-induced behavior occurs (in

other words, at what NFx), of course, depends on C2
n and

L0. Nevertheless, some general trends are evident and

independent of turbulence strength:

1. The beam’s size Ŵx asymptotically expands much more

rapidly in turbulence than in free space (z3 vice z2) [69,

71–73].

2. After initially contracting, the pulse width Ŵt lengthens

and continues to grow longer. While this can clearly be

seen in Figure 1, more insight can be gained by examining

the mathematical expression for Ŵt, namely,

1

Ŵt

� 1
~Wt

1 + μ2
4W2

xW
4
t

Δx
~W

2

t

⎛⎝ ⎞⎠. (21)

In atmospheric turbulence, the term containing the twist

parameter μ tends to zero like z−2 (in free space, the term

asymptotes to a constant value). For large z, the result is

therefore Ŵt ~ ~Wt � Wt + 2aω/c2. The turbulence

contribution to the pulse width grows linearly with z [57,

67, 68], thus explaining the increasing pulse width.

FIGURE 1
(A) Ŵx/Wx , Ŵt/Wt , and μ̂/μ from Eq. 19 versus Fresnel number NFx. (B) Zoomed-in view of Ŵx/Wx , Ŵt/Wt, and μ̂/μ over the boxed region in (A).
The solid, dashed, dashed-dotted, and dotted traces show the results in free space (C2

n � 0m−2/3) and atmospheric turbulence (C2
n � 10−14 m−2/3 with

L0=10 m, 50 m, and 100 m), respectively. The text annotations report the weak turbulence spherical wave scintillation index values σ2I at the
corresponding NFx. These results apply to a twisted space-time beam with parameter values equal to λc =1 μm,Wx =2 cm, δx =0.9Wx,Wt =1 ps,
δt =0.9Wt, and μ � 1/(δxδt).
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3. The x-t plane rotation μ̂ decays much more rapidly in

turbulence than in free space. Examining the

mathematical relation for μ̂ reveals that it approaches

zero like μ̂ ~ z−3 in turbulence (vice μ̂ ~ z−1 in free

space) as z → ∞.

3 Validation

In this section, we validate Eq. 19 by generating, in

simulation, twisted space-time beam field realizations and

propagating those realizations through atmospheric turbulence

phase screens. Before presenting and analyzing the results, we

discuss the simulation setup.

3.1 Simulation setup

3.1.1 Numbers of grid points, spacings, trials, etc.
In these wave-optics simulations, we generated and

propagated twisted space-time beam field realizations through

independent instances of atmospheric turbulence. The Fresnel

numbers for these simulations were NFx = 10, 5, 2.5, and 1. For

each NFx, we computed the ensemble-averaged irradiance

〈I(x, 0, z, t)〉 from 1,000 independent field and turbulence

realizations. The source and observation planes were

discretized using three-dimensional grids that were Ny × Nx ×

Nt = 1, 200 × 1, 200 × 128 with spacings equal to Δsrc = 1.58 mm,

Δobs = 2.5 mm, and Δt = 0.0781 ps.

3.1.2 Generating twisted space-time fields
We generated twisted space-time beam field realizations

using the approach described in Ref. [31]. The technique

utilizes Gori and Santarsiero’s integral criterion for genuine

CSD functions and MCFs, colloquially known as the

superposition rule [75, 76]. Specialized for our purposes, a

thermal (or pseudo-thermal) twisted space-time beam field

realization can be generated by evaluating the following

superposition integral:

U ρ, t( ) � ∫∫∞

−∞
r vx, vt( )











1
2
p vx, vt( )

√
H ρ, t; vx, vt( )dvxdvt, (22)

where r is a zero-mean, unit-variance, delta-correlated, complex

Gaussian random function [31], and p and H are

p vx, vt( ) �



α

π

√
exp −αv2x( ) 



β

π

√
exp −βv2t( )

H ρ, t; vx, vt( ) � A exp − y2

4W2
y

⎛⎝ ⎞⎠exp −σxx2( )exp −σtt2( )
exp j x − jαμt( )vx[ ]exp j t + jβμx( )vt[ ].

(23)

The α, β, σx, and σt relate to the physical twisted space-time beam

parameters in Eq. 13 via the relations [19, 35].

1

4W2
x

� σx − βμ2

2
,

1

4W2
t

� σt − αμ2

2
,

1

2δ2x
� βμ2

4
+ 1
4α

,
1

2δ2t
� αμ2

4
+ 1
4β
.

(24)

In the simulations, we produced twisted space-time beams with

the following parameter values λc = 1 μm, Wx =Wy = 2 cm, δx =

0.9Wx, Wt = 1 ps, δt = 0.9Wt, and μ � 1/(δxδt)—the same as in

Figure 1. These parameter values corresponded to α = 3.24 cm2,

β = 0.81 ps2, σx = 0.2168 cm−2, and σt = 0.8673 ps−2. We evaluated

Eq. 22 as a matrix-vector product, where the vx and vt dimensions

were discretized using 64 grid points each, with spacings equal to

Δvx = 0.0645 cm−1 and Δvt = 0.1291 ps−1, respectively.

3.1.3 Atmospheric turbulence
The index of refraction structure constant and outer scale

for the atmospheric turbulence was C2
n � 10−14 m−2/3 and L0 =

10 m, corresponding to the dashed traces in Figure 1. We

simulated propagation through this turbulence using the split-

step algorithm described in Refs. [70, 77–80]. For NFx = 10, 5,

2.5, and 1, we discretized the continuous propagation paths

using 4, 5, 9, and 20 equally spaced, statistically independent

phase screens generated using the Fourier transform (also

known as the spectral) method and augmented with

subharmonics [70, 78, 81, 82]. The strength of each phase

screen (C2
n, Fried’s parameter r0, or coherence width ρ0) was

selected such that the discrete-path spherical wave r0 and

scintillation index σ2I matched those of the desired, continuous

turbulent path. To capture the change in phase due to

turbulence over the light source’s bandwidth, we divided

each phase screen by kc to convert from radians to meters

of optical path length (OPL).

Note that we did not simulate the other turbulence

conditions reported in Figure 1 due to computational

constraints. Accurately simulating turbulence with a given

outer scale requires phase screens that have physical

dimensions on the order of L0. Simulating the L0 = 50 m

and 100 m atm would have required grids that were

(approximately) 25 and 100 times larger (in numbers of

points), respectively, than those used in the L0 = 10 m

simulations (see Section 3.1.1).

3.1.4 Procedure
On each Monte Carlo trial,

1. We generated a twisted space-time beam realization

and an instance of atmospheric turbulence as described

above.
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2. We then Fourier transformed the twisted space-time

beam realization to the ω domain using a fast Fourier

transform (FFT) computed along the third

dimension of U.

3. We propagated U to each of the 4, 5, 9, or 20 (depending

on NFx) planes using the convolution form of the

Fresnel diffraction integral (also known as the

angular spectrum propagation method [78, 80]),

which we evaluated using FFTs computed along U’s

spatial dimensions.

4. In each plane, we converted the atmospheric phase screen

in meters of OPL to radians using the ω values along the

third dimension of U. We then applied the phase screen to

the field and propagated U to the next plane.

5. Upon reaching the observation plane, we Fourier transformed

the field back to the t domain using an FFT computed alongU’s

third dimension.

6. Lastly, we computed the trial irradiance I(x, 0, z, t) �
|U(x, 0, z, t)|2.

We repeated this procedure 1,000 times.

FIGURE 2
Ensemble-averaged irradiance 〈I(x,0, z, t)〉 free-space results: (A) theory NFx =∞, (B) theory NFx = 10, (C) theory NFx = 5, (D) theory NFx = 1, (E)
simulation NFx = ∞, (F) simulation NFx = 10, (G) simulation NFx = 5, and (H) simulation NFx = 1.

FIGURE 3
Ensemble-averaged irradiance 〈I(x,0, z, t)〉 turbulence results: (A) theory NFx =∞, (B) theory NFx = 10, (C) theory NFx = 5, (D) theory NFx = 1, (E)
simulation NFx = ∞, (F) simulation NFx = 10, (G) simulation NFx = 5, and (H) simulation NFx = 1.
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3.2 Results

Figures 2–4 show the results of the twisted space-time beam

simulations. Figures 2, 3—which report the ensemble-averaged

irradiances 〈I(x, 0, z, t)〉 after propagating through free space

(included as a reference) and atmospheric turbulence,

respectively—are organized in the same manner: The top row

shows the theoretical 〈I(x, 0, z, t)〉 given in Eq. 19 for Fresnel

numbers NFx = ∞, 10, 5, and 1, respectively. The bottom

(second) row displays the same for the simulated

〈I(x, 0, z, t)〉. The images in Figure 3 are encoded using the

same color scales as the corresponding subfigures in Figure 2.

Row and column headings have been added to both figures to aid

the reader. Lastly, Figure 4 reports the theoretical and simulated

Ŵx/Wx, Ŵt/Wt, and μ̂/μ versus Fresnel number NFx. The solid

and dashed curves in the figure are the same as those shown in

Figure 1B; however, here, we have added the simulated results

denoted by the markers ◦ and ⊳. We obtained these results by

fitting Gaussian functions to the simulated 〈I(x, 0, z, t)〉.
Inspection of Figure 3 reveals good agreement between

simulation and theory in weak to moderately strong

atmospheric turbulence [Figures 3B, C, F, and G]. In contrast,

the agreement is rather poor in strong turbulence [Figures 3D,

H]. This discrepancy is likely caused by the quadratic

approximation we used to derive the MCF in Eq. 17 and

subsequently 〈I(x, 0, z, t)〉 in Eq. 19. The validity of the

quadratic approximation (and the extended Huygens–Fresnel

principle, more generally) is suspect in strong turbulence [61–63,

83]. Thus, the disagreement in Figures 3D, H is somewhat

expected. The results in Figure 4 are consistent with those in

Figure 3—we observe good agreement in weak-to-moderate

turbulence and poor agreement in strong turbulence.

Although the theoretical relations for Ŵx/Wx, Ŵt/Wt, and

μ̂/μ generally underestimate the effects of turbulence on those

parameters, they do accurately predict the trends versus Fresnel

number and turbulence strength.

3.3 Experimental verification

Before concluding, we briefly discuss the process for

experimentally verifying the theoretical and simulated results

presented above. Twisted space-time beam field realizations can

be physically synthesized using an apparatus known as a Fourier

transform pulse shaper (FTPS) [1, 4, 9, 84–87]. An FTPS consists

of two identical gratings separated by a 4f cylindrical lens (CL)

system. At the center of the 4f system is a spatial light modulator

(SLM). Assuming a pulsed laser beam is input into the FTPS, the

first grating-CL-2f system spreads and maps the input beam’s

spectrum into physical space at the SLM plane. The SLMmodifies

the field in the space-frequency (x-ω) domain, which is then

transformed back to the space-time domain by the second

grating-CL-2f system. Partial coherence manifests by

incoherently summing many independent twisted space-time

beam realizations.

Turbulence (besides outdoor experiments which are

generally uncontrolled) can be controllably generated in the

laboratory using several different methods [88]. Of these,

phase plate/wheel [89–92] or hot-air [93, 94] techniques are

the most germane, and systems employing those methods are

easily capable of reproducing the turbulence conditions

simulated above.

Lastly, to observe the beam’s behavior in x-t domain, we follow

the procedure described in Refs. [1, 5]: The light at the output of the

turbulence generator transits a grating-CL-2f system and then is

measured by a detector. The detector measures the light’s spatially

FIGURE 4
Theory [Eq. 19] and simulation Ŵx/Wx , Ŵt/Wt , and μ̂/μ versus Fresnel number NFx. The symbols ◦ and ⊳ are the results of the simulation.
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resolved spectrum averaged over many independent field and

turbulence realizations, i.e.,

S x, z,ω( ) � 〈 U x, z,ω( )| |2〉. (25)
Note that this quantity is also referred to as the spectral

density [58, 59, 71, 72]. Using Eq. 14, the spectral density

relates to the MCF via

S x, z,ω( ) � 1

2π( )2∫∫∞

−∞
Γ x, z, t1, x, z, t2( )exp jω t1 − t2( )[ ]dt1dt2,

(26)
and consequently, the ensemble-averaged irradiance

〈I(x, z, t)〉 is not directly recoverable. Likely, the easiest

course of action is to compare the measured spectral

density to its theoretical and simulated counterparts to

validate the latter.

4 Conclusion

In this paper, we focused on a recently introduced, partially

coherent, space-time-coupled field known as a twisted space-

time beam. Twisted space-time beams are similar to traditional

twisted Gaussian Schell-model beams; however, instead of being

spatially twisted (like the latter), the former possess a stochastic

twist which couples their space and time dimensions. Like STOV

beams, this spatiotemporal twist imbues twisted space-time

beams with transverse (to the direction of propagation)

angular momentum.

Generalizing the original research presented in Refs. [19, 20],

here, we studied how twisted space-time beams behave as they

propagate through atmospheric turbulence. Applying the extended

Huygens–Fresnel principle, we derived the MCF for twisted space-

time beams after propagating a distance z through atmospheric

turbulence of arbitrary strength. From the MCF, we obtained the

ensemble-averaged irradiance and quantified the effects of turbulence

on beam size, pulse width, and space-time twist. We then simulated

twisted space-time beam propagation through atmospheric

turbulence to validate our theoretical analysis. The simulated

results were found to be in good agreement with theory in weak-

to-moderate turbulence. On the other hand, we observed rather poor

agreement in strong turbulence, where our theoretical expression for

the ensemble-averaged irradiance underestimated the effects of

turbulence on the beam size, pulse width, and space-time twist. It

did, however, accurately predict the trends of those parameters versus

Fresnel number and turbulence strength.

Light with engineered space-time or spatiotemporal

coupling is a new and exciting aspect of beam control

research, with potential revolutionary uses in optical

communications, optical tweezing, and quantum optics.

While the free-space propagation characteristics of space-

time-coupled beams are generally understood, much less is

known about how these beams behave in random media. The

results in this paper are a first step toward this goal.
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