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On remarkable families of isoparametric hypersurfaces
in spherical spaces.

by

Élie Cartan (in Paris).

—————

In a recent article1 I showed the existence of a family of isoparametric
hypersurfaces in the spherical space of four dimensions with three distinct
principal curvatures. I propose to study whether there exist, in a spherical
space of any number of dimensions, families of isoparametric hypersurfaces
admitting exactly three distinct principal curvatures. In the first part of
this Memoir, I will show the existence of such families in the spaces of 4,
7, 13, and 25 dimensions; this existence is linked to that of a homogeneous
polynomial of third degree with n + 2 variables (n + 1 being the dimension
of the spherical space) enjoying the double property that its first differential

1Annali di Mat. 17 (1938), p. 177–191.
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parameter, calculated in the euclidean space of n + 2 dimensions with rect-
angular coordinates x1, . . . , xn+2, is constant on the hypersphere of radius 1
and its second differential parameter is zero (harmonic polynomial). Such
polynomials exist only for n = 3, 6, 12, 24 or n = 3 · 2k (k = 0, 1, 2, 3). The
case n = 24 is particularly interesting because it is linked to different theories
(theory of spinors, principle of triality in the elliptical space of 7 dimensions)
and that it provides the first appearance in a problem of Geometry (and also
of Analysis) of the simple group with 52 parameters that does not fit into
any of the major classes of simple groups.

In the second part of the Memoir, I will show that the families of isopara-
metric hypersurfaces determined in this way are the only ones for which the
hypersurfaces have exactly three distinct principal curvatures. It is only in
this second part that an appeal will be made to the results and formulas of
the Memoir recalled in the footnote. Finally, I will prove a very simple fun-
damental theorem on families of isoparametric hypersurfaces whose principal
curvatures are all of the same degree of multiplicity.

First Part.

I. Determination of a class of polynomials.

1. We consider in euclidean space of n+2 dimensions with respect to rect-
angular coordinates x1, x2, . . . , xn+2 an entire polynomial F (x) of the third
degree. On the hypersphere of radius 1 centered at the origin, this polyno-
mial, if it is not identically zero, has an absolute maximum and an absolute
minimum equal to and opposite to the maximum. We will assume that the
maximum is equal to 1. We will assume further

1o that the first differential parameter

∆1F =
∑
i

(
∂F

∂xi

)2

has a constant value on the hypersphere and therefore satisfies a relation of
the form

∆1F ≡
∑
i

(
∂F

∂xi

)2

= λ(x21 + x22 + · · ·+ x2n+2)
2, (1)
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λ being a constant;

2o that the polynomial F is harmonic:

∆2F ≡
∑
i

∂2F

∂x2i
= 0. (2)

We will get the value of λ in the following way. If the polynomial F takes
its maximum value 1 at the point (xi), we will have at this point

∂F

∂xi
= ρxi,

whence, by multipication by xi and summation with respect to i,

3F = ρ, or ρ = 3;

squaring and summing, we get λ = ρ2 = 9. We can therefore write

∑
i

(
∂F

∂xi

)2

= 9 (x21 + x22 + · · ·+ x2n+2)
2. (1′)

Before solving equations (1′) and (2) we will assume, without loss of
generality, that the polynomial F takes its maximum value 1 at the point
x1 = · · · = xn+1 = 0, xn+2 = 1 of the hypersphere of radius 1; we will
therefore have at this point

∂F

∂xi
= 0 (i = 1, 2, . . . , n+ 1).

We can then write

F ≡ x3n+2 + xn+2 P (x) +Q(x), (3)

the polynomials P and Q only depend on x1, x2, . . . , xn+1.
The property that the polynomial F is harmonic gives the immediate

relations
∆2P + 6 = 0, (4)

∆2Q = 0. (5)
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As for the identity (1′), it gives the three relations

6P +
∑
i

(
∂P

∂xi

)2

= 18
∑

x2i , (6)

∑
i

∂P

∂xi

∂Q

∂xi
= 0, (7)

P 2 +
∑
i

(
∂Q

∂xi

)2

= 9 (x1 + x2 + · · ·+ x2n+1)
2 ; (8)

the summation in these formulas is made with respect to the indices 1, 2, . . . ,
n+ 1.

We are going to solve equations (4), (5), (6), (7), (8).

2. Equation (4) is easy to solve. P being a polynomial of second degree
is, by a suitable choice of the coordinate axes, reducible to

P ≡ a1 x
2
1 + a2 x

2
2 + · · ·+ an+1 x

2
n+1 ;

the relation (4) gives

a1 + a2 + · · ·+ an+1 = −3.

If we now put the value of P into the relation (6), we obtain for each value
of i,

4a2i + 6ai − 18 = 0,

so that each of the coefficients of the polynomial has one of the values 3/2
and −3. If the first occurs p times and the second q times (p + q = n + 1),
we have

a1 + a2 + · · ·+ an+1 =
3

2
(p− 2q),

whence
p− 2q = −2, p = 2 (q − 1).

We set
q = ν + 1, p = 2ν, whence n = 3ν,

and we will have

P ≡ 3

2
(x21 + x22 + · · ·+ x22ν)− 3 (x22ν+1 + · · ·+ x23ν+1). (9)
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3. We now proceed to the determination of the polynomial Q. But first
we will change notations. We will denote by zα(α = 1, 2, . . . , ν+1) the coordi-
nates x2ν+1, . . . , x3ν+1; by xi (i = 1, 2, . . . , 2ν) the coordinates x1, x2, . . . , x2ν ,
and by u the coordinate xn+2, so that we have

P ≡ 3

2

∑
i

x2i − 3
∑
α

z2α. (9′)

The polynomial of third degree Q can be decomposed into four parts

Q = A+B + C +D,

A being homogeneous of degree 3 with respect to the xi, B homogeneous of
degree 2 with respect to the xi and degree 1 respect to the zα and so on.

Given this, the relation (7) gives immediately

9A− 9C − 18D = 0,

whence A = C = D = 0 and then we can write

Q =
∑
α

zαQα(x), (10)

the Qα being polynomials of the second degree in x1, x2, . . . , x2ν . Relation
(5) then shows that these polynomials are harmonic. Finally the relation (8)
gives

9

4

(∑
x2i

)2
−9
∑

x2i
∑

z2α+9
(∑

z2α

)2
+
∑
α

[Qα(x)]2+
∑
i

(∑
α

zα
∂Qα

∂xi

)2

= 9
(∑

x2i

)2
+ 18

∑
x2i
∑

z2α + 9
(∑

z2α

)2
;

it decomposes into ∑
α

[Qα(x)]2 =
27

4

(∑
x2i

)2
, (8′)

∑
i

(∑
α

zα
∂Qα

∂xi

)2

=
∑

x2i
∑

z2α. (8′′)
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Let us first take the relation (8′′); it gives∑
i

∂Qα

∂xi

∂Qβ

∂xi
= 27 δβα

∑
x2i (δβα = 1 if α = β, δβα = 0 if α 6= β);

in particular the harmonic polynomial Qν+1(x) enjoys the property (like the
others) that its first differential parameter is equal to 27

∑
x2i ; we can reduce

it to the form
Qν+1 ≡ b1x

2
1 + b2x

2
2 + · · ·+ b2νx

2
2ν ,

with

b21 = b22 = · · · = b22ν =
27

4
, b1 + b2 + · · ·+ b2ν = 0;

as a result, we can assume

Qν+1 =
3
√

3

2
(x21 + · · ·+ x2ν − x2ν+1 − · · · − x22ν).

We will introduce yet another new notation; we will reserve the letter x
for the first ν coordinates x1, x2, . . . , xν and we will use the letter y for the ν
following ones, which we will call y1, y2, . . . , yν ; the letter i will now be used
for the indices 1, 2, . . . , ν. Finally, we will use the letter v for the coordinate
zν+1. We can therefore write

Qν+1 ≡
3
√

3

2

(∑
x2i −

∑
y2i

)
. (11)

The relations (8) now take the form

∑
i[Qi(x, y)]2 = 27

∑
x2i
∑
y2i ,∑

i

(
xi

∂Qk
∂xi
− yi ∂Qk∂yi

)
= 0 (k = 1, 2, . . . , ν),∑

i

[(
∂Qk
∂xi

)2
+
(
∂Qk
∂yi

)2]2
= 27 (

∑
x2i +

∑
y2i ) ,∑

i

(
∂Qk
∂xi

∂Qh
∂xi

+ ∂Qk
∂yi

∂Qh
∂yi

)
= 0 (k 6= h).

(12)

The second relation (12) shows that the polynomials Qk(x, y) are bilinear
with respect to the two series of variables xi, yi:

Qk(x) =
∑
i,j

aijkxiyj.
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4. If we summarize the results obtained, we see that the polynomial F
takes the form

F ≡ u3 − 3uv2 +
3

2
u
∑
i

(x2i + y2i )− 3u
∑
i

z2i (13)

+
3
√

3

2
v
∑

(x2i − y2i ) +
∑
k

zk Qk(x, y).

The trilinear form
∑
zkQk of the three series of variables xi, yi, zi enjoys

some remarkable properties. If we set

Qk = 3
√

3 Hk,

we see that the first relation (12) provides a generalization of the well-known
formulas of Lagrange and of Brioschi which represent the product of two
sums of ν squares by a sum of ν squares. We have in fact∑

i

[Hi(x, y)]2 =
∑

x2i
∑

y2i , (14)

the ν quantities Hi(x, y) of the first member being bilinear with respect to
the xi and the yi. This relationship leads to all of the other relations (12),
for if we set

Hi(x, y) =
∑
k

aik(x)yk,

the relation (14) shows that in the table with ν rows and ν columns of
coefficients aik(x), the sum of the squares of the elements of the same column
is equal to

∑
x2i and the sum of the products of the elements of two different

columns taken successively in the ν rows is zero; this is precisely what the
relations in (12) other than the first express. We also see at the same time
that the deteminant of this array is not zero and is equal to [

∑
x2i ]

ν
2 .

But the relation (14) has a remarkable geometric significance. To high-
light this, it will be convenient to consider a particular one of the polynomials
Hi, for example H1. We have

H1 = a1(x)y1 + a2(x)y2 + · · ·+ aν(x)yν

with
a21 + a22 + · · ·+ a2ν = x21 + x22 + · · ·+ x2ν
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consequently we can suppose, by a suitable linear orthogonal substitution
carried out on the xi, that ai(x) = xi, whence

H1 = x1y1 + x2y2 + · · ·+ xνyν . (15)

That being said, we will regard the xi and the yi as homogeneous coordinates
on the elliptical space of ν − 1 dimensions; they will be normal coordinates
if the sum of their squares is equal to 1. If the form H1(x, y) vanishes, this
means that the two points are conjugate to each other with respect to the
absolute. They define a line. We also know that if (yi) and (zi) are both
conjugates of (xi) with respect to the absolute, and if the coordinates of the
three points (x), (y), (z) are normal, the quantity

∑
i yizi represents the co-

sine of the angle of the two lines [xy] and [xz].

5. We now come to the announced geometric interpretation. We will
agree to say that two lines [xy] and [x′y′], y being a conjugate of x and y′ of
x′, are parallel if, the coordinates xi, yi, x

′
i, y
′
i being normal, we have

Hi(x, y) = Hi(x
′, y′).

Through any point x′ there passes a well-determined parallel to the line
[xy], because the determinant of the coefficients of y′i in Hi(x

′, y′) is equal to
1. Two lines parallel to a third line are parallel to each other. Therefore,
there exists an absolute parallelism in the elliptic space of ν − 1 dimensions.
Moreover, this absolute parallelism is isogonal, that is to say, that the angle
of intersection of two straight lines emanating from a common point is equal
to the angle of intersection of the parallels to these two straight lines passing
through a common point. Indeed, let [x′y′] and [x′z′] be parallel to [xy] and
[xz]; from the equalities

Hi(x
′, y′) = Hi(x, y),

Hi(x
′, z′) = Hi(x, z),

results the equality

Hi(x
′, y′ + λz′) = Hi(x, y + λz);

by squaring, adding and taking into account (14) and the assumption that
the coordinates introduced are all normal, we immediately find

1 + λ2 + 2λ
∑

y′iz
′
i = 1 + λ2 + 2λ

∑
yizi,
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that is, ∑
y′iz
′
i =

∑
yizi. C.Q.F.D.

6. It is known2 that the only riemannian spaces admitting an isogonal
absolute parallelism are the representative spaces of closed simple groups and
the elliptical space of 7 dimensions, to which must be added the representative
space of the closed group of rotations of the circumference (ν = 2), as well as
the topological products of two or more of the preceding spaces. Among all
these spaces, those which are of constant curvature are the elliptical spaces
of 1, 3, and 7 dimensions; no topological product fits, because the ds2 of the
corresponding riemannian space would be the sum of two ds2 depending on
the separate variables ui and vj, and the Riemann tensor could not be of the
form that fits a space with nonzero constant curvature.

Consequently, the proposed problem only admits a solution for ν = 2, 4, 8,
cases to which it is naturally necessary to add ν = 1!

It follows from the well-known theory of isogonal parallelisms in the cases
which have just been demonstrated that the only possibilities that one can
give to the trilinear form F =

∑
zkHk(x, y) have the general expression

F =
1

2
(XY Z + Z Y X); (16)

for ν = 1, X, Y , Z are three real variables and

X = X, Y = Y, Z = Z;

for ν = 2, X, Y , Z are three complex variables, X, Y , Z are their three
conjugate variables;

for ν = 4, X, Y , Z are three quaternions, X, Y , Z are their conjugates;
for ν = 8, X, Y , Z are three octaves of Graves-Cayley, X, Y , Z are

their conjugates; in this last case, the multiplication of octaves not being
associative, it is necessary to interpret XY Z as being (XY )Z, and Z Y X
as the conjugate octave Z (Y X).

Finally, the formula (13) becomes

F ≡ u3 − 3uv2 +
3

2
u (XX + Y Y − 2 ZZ) (17)

+
3
√

3

2
v (XX − Y Y ) +

3
√

3

2
(XY Z + Z Y X).

2E. Cartan and J. A. Schouten, On the riemannian Geometries admitting an absolute
parallelism [Proc. Akad. Amsterdam 29 (1926), p. 933–946].
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II. Properties of hypersurfaces F = C.

7. We will first verify that the hypersurfaces F = C of the spherical space
of 3ν + 1 dimensions form a family of parallel hypersurfaces. Indeed, let us
return to our initial notations; let x be a point on the hypersurface F = C;
an infinitely close point x+ δx is in the direction normal to this hypersurface
if, the coordinates xi being assumed to be normal, the point δx is conjugate
with respect to the points x+ dx infinitely close to x on the hypersurface, in
other words if the relation

∑
δxidxi = 0 is a consequence of the two relations∑

i

∂F

∂xi
dxi = 0,

∑
i

xidxi = 0;

so we have

δxi = λ
∂F

∂xi
+ µxi.

The point δx must also be conjugate with respect to the point x, which gives

3λC + µ = 0,

whence

δxi = λ

(
∂F

∂xi
− 3Cxi

)
.

To get λ, let us say that the point x + δx belongs to the hypersurface
with parameter C + δC, which gives

δC = λ (9− 9C2) = 9λ (1− C2).

Finally, by calling δt the distance between the two points x and x + δx, we
find

δt = λ
√

9(1− C2) =
1

3

δC√
1− C2

.

This formula proves that the hypersurfaces form a family of parallel hy-
persurfaces; we have on the other hand, t being defined only up to a constant,
C = cos 3t, whence

cos 3t = F

for the equation of the family. This result could have been easily derived
from the considerations of the previously mentioned article.
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8. To study the properties of the hypersurfaces of the family, we will first
take the case t = 0: we have the locus of points where the function F takes
its maximum value 1. It is a singular variety of the family, which we have
seen (no1), satisfies the equations

∂F

∂xi
= 3xi. (18)

Note first that with the polynomial F having constant coefficients and
having been constructed starting from any point

A (xn+2 = 1, x1 = · · · = xn+1 = 0)

of the variety under consideration, this variety admits a transitive group
of rigid displacements of the ambient space. Let us now recall that the
curvature at A, calculated in the spherical space under consideration, realized
by the hypersphere of radius 1 of the euclidean space of n + 2 dimensions,
of any curve drawn on the variety and passing through A is conserved by
orthogonal projection onto the tangent hyperplane to the hypersphere at A,
the hyperplane with equation xn+2 = 1, or in the new notations, u = 1.
Given this, the equations (18) of V in a neighborhood of A, limited to terms
of the second degree, will be according to (13),

3 u2 − 3 v2 +
3

2
(XX + Y Y − 2 ZZ) = 3 u,

−6 u v +
3
√

3

2
(XX − Y Y ) = 3 v,

3 u xi + 3
√

3 v xi +
∑
k

zk
∂Qk

∂xi
= 3 xi,

3 u yi − 3
√

3 v yi +
∑
k

zk
∂Qk

∂yi
= 3 yi,

−6 u zi +Qi(x, y) = 3 zi,

or again, by noting that we have, to the same degree of approximation,

u = 1− 1

2

∑
i

(x2i + y2i + z2i )−
1

2
v2,
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and always keeping only the terms of the second degree at most,
zi = 1

9
Qi (x, y) = 1√

3
Hi (x, y) ,

v =
√
3
6

∑
i (x

2
i − y2i ) = 1

2
√
3

∑
i (x

2
i − y2i ) .

(19)

This shows that the variety V has 2ν dimensions, the plane element
tangent at the point A being dzi = dv = 0. The variety of 2ν dimensions
defined in a Euclidean space of 3ν + 1 dimensions by the equations (19) has
the same curvature at A for all curves which pass through this point as the
variety V in the spherical space of 3ν + 1 dimensions. The normal curvature
of any one of these curves is equal to

1√
3

√
[
∑

(x2i − y2i )]2 + 4
∑

iH
2
i∑

(x2i + y2i )
2

=
1√
3

;

the variety therefore enjoys the property that all the curves drawn on it have
the same constant normal curvature 1√

3
.3 This is a property that had already

been verified in the case ν = 1.4

9. Let us now study a generic hypersurface Σ of the family, corresponding
to the value t of the parameter and take a point M of this hypersurface. The
orthogonal trajectory of the hypersurfaces which passes through M will meet
the singular variety V at a point P . It is easy to see that the hypersurface Σ
admits a transitive group of rigid displacements of the ambient space. Indeed,
one can always pass by a displacement of the ambient space from the point
P of V to a particular point, that which we designated by A; on the other
hand, the equations of the normal plane element at A to V are

dxi = dyi = 0;

now it follows from the way that we have calculated the polynomial F that to
any orthogonal substitution on z1, z2, . . . , zν+1 there corresponds at least one
orthogonal substitution on the 2ν coordinates xi, yi such that the polynomial

3Certain surfaces (of two dimensions) immersed in an elliptical space and enjoying
the property that all their curves have the same constant normal curvature have been
encountered by O. Boruvka: Sur les surfaces représentées par les fonctions sphériques de
première espèce [J. d. Math. 12 (1933), p. 337–383].

4E. Cartan, loc. cit.1), p. 189.
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F remains invariant; this amounts to saying that the geodesic of the space
which goes from M to P can always be brought back to the geodesic xi =
yi = zi = 0. In other words, we can always perform a rigid displacement of
the ambient space leaving the hypersurface Σ invariant and transforming the
point M to the point with coordinates

xi = 0, yi = 0, v = sin t, u = cos t.

Now we make the orthogonal change of coordinates,

u+ iv = (U + iV )eit,

which makes the coordinates of the given point of Σ equal to zero except for
U = 1. Since we have

u3 − 3 uv2 =
1

2
(u+ iv)3 +

1

2
(u− iv)3,

the equation of Σ will become

cos 3t = (U3 − 3 UV 2) cos 3t+ (V 3 − 3 U2V ) sin 3t

+
3

2
(U cos t− V sin t)

∑
(x2i + y2i − 2z2i )

+
3
√

3

2
(U sin t+ V cos t)

∑
(x2i − y2i ) +

∑
zkQk(x, y).

Replacing U by 1− 1
2
V 2− 1

2

∑
(x2i + y2i + z2i ) and neglecting the terms of

degree larger than the second, we obtain after simplifications

V sin 3t =
1

2
(cos t+

√
3 sin t− cos 3t)

∑
x2i (20)

+
1

2
(cos t−

√
3 sin t− cos 3t)

∑
y2i −

1

2
(2 cos t+ cos 3t)

∑
z2i .

In this form, we see that the hypersurface Σ admits at the point M three
distinct and constant principal curvatures, namely

cos t+
√

3 sin t− cos 3t

sin 3t
,

cos t−
√

3 sin t− cos 3t

sin 3t
,
−2 cos t− cos 3t

sin 3t
.

The mean curvature of the hypersurface is thus −3ν cot 3t. An easy
transformation shows, moreover, that the three principal curvatures are

cot t+
√

3√
3 cot t− 1

= − cot
(
t− π

3

)
,

cot t−
√

3

−
√

3 cot t− 1
= − cot

(
t+

π

3

)
, − cot t.
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We find the expressions predicted by the general theory in the case of
three distinct principal curvatures of the same degree of multiplicity (here
ν)5.

10. We have already had the occasion to observe that each hypersurface
Σ is invariant under a transitive group of rigid displacements, and it also
follows from the reasoning that this group is the same for all hypersurfaces
of the family. In reality, there are three distinct groups to consider:

1o the group G of all displacements which leave the polynomial F invari-
ant;

2o the group G1 of all displacements which leave the various hypersurfaces
Σ invariant while leaving fixed a point A of the singular variety V ;

3o the group G2 of all displacements which leave the various hypersurfaces
Σ invariant while leaving fixed a point M not located on V ;

Each of these groups is a subgroup of the previous one. This is obvious
for the second. The third can be regarded as the subgroup of the group
which leaves invariant the point A of V where the orthogonal trajectory to
the surface Σ starting from M ends, as well as the geodesic AM .

If we know the order r2 of the third group, then we can easily deduce the
orders of the first two. Indeed, the point A of V being fixed, the geodesic
AM can take any direction in the plane element of ν + 1 dimensions normal
to V at A; we thus have for the order r1 de G1 the relation

r1 = r2 + ν.

On the other hand, the variety V being of 2ν dimensions, and the sub-
group of G which leaves fixed a point A of that variety being of r1 parameters,
we have,

r = r1 + 2ν = r2 + 3ν.

Now the groupG2 is none other than the group of orthogonal substitutions
which leave invariant the form F as well as the coordinates u and v; according

5E. Cartan, loc. cit.1), p. 187.
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to the form of F , it can be characterized as orthogonally transforming each
of the series of variables xi, yi, zi and leaving invariant the trilinear form

F =
∑

ziHi(x, y).

We are going to review the four possible cases, focusing mainly on the
last three.

III. The case of the spherical space of 7 dimensions.

11. Recall that in the case ν = 1 (spherical space of 4 dimensions),
the group G has three parameters, isomorphic to the group of rotations of
ordinary space. The group G2, which leaves the form F ≡ xyz invariant,
includes only the 4 operations

x′ = ±x, y′ = ±y, z′ = ±z,

the product of the three double signs being equal to 1. The group G1 is the
one which leaves invariant the forms

x2 + y2, z2 + v2, (x2 − y2)v + 2xyz;

it decomposes into the two families

x′ = x cosα− y sinα, y′ = x sinα + y cosα, z′ = z cos 2α + v sin 2α,

v′ = −z sin 2α + v cos 2α;

x′ = x cosα + y sinα, y′ = x sinα− y cosα, z′ = −z cos 2α + v sin 2α,

v′ = z sin 2α + v cos 2α.

Finally, let us recall that the singular surface V can be defined paramet-
rically by the formulas6

x =
√

3 η ζ, y =
√

3 ζ ξ, z =
√

3 ξ η,

v =
√

3 ξ2−η2
2
, u = ζ2 − ξ2+η2

2
,

(21)

6E. Cartan, loc. cit.1), p. 189; the parameters called here ξ, η, ζ were designated by
the letters u, v, w.

15



where ξ, η, ζ are three parameters linked by the relation

ξ2 + η2 + ζ2 = 1. (22)

The group G is the one induced on the variables x, y, z, u, v by the most
general orthogonal linear substitution on ξ, η, ζ.

12. In the case ν = 2, we introduce three complex variables X, Y, Z, into
the form F , and the form F is none other than the real part of the product
XY Z. The group G2 decomposes into the two continuous families

X ′ = Xeiα, Y ′ = Y eiβ, Z ′ = Zeiγ (α + β + γ = 0);

X ′ = Xeiα, Y ′ = Y eiβ, Z ′ = Zeiγ (α + β + γ = 0);

it has 2 parameters. Therefore the group G1 has 4 parameters and the group
G has 8 parameters. The group G1 is characterized by the invariance of the
variable u and therefore of the forms

XX + Y Y , ZZ + v2, (XX − Y Y )v +XY Z +X Y Z.

13. The groups G and G1 are easily determined by the construction of
the 4-dimensional singular variety V of the points where F = 1. Consider
the locus of points

X =
√

3 η ζ, Y =
√

3 ζ ξ, Z =
√

3 ξ η,

v =
√
3
2

(ξ ξ − η η), u = ζ ζ − 1
2
(ξ ξ + η η),

(23)

where ξ, η, ζ are three complex parameters linked by the relation

ξ ξ + η η + ζ ζ = 1. (24)

It is a representative variety of the hermitian elliptical space of 4 real dimen-
sions (two complex dimensions) with respect to the homogeneous coordinates
ξ, η, ζ; indeed the second members of the formulas (23) do not change when
we multiply ξ, η, ζ by the same complex factor of modulus 1. The second
members are moreover the harmonic forms of Hermite of the second degree
of the hermitan space7.

7See E. Cartan, Leçons sur la géométrie projective complexe (Paris, Gauthiers-Villars,
1931), Chapter V, p. 281–322.
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An easy calculation shows in the first place that u2+v2+XX+Y Y +ZZ =
1, and in the second place that the form F becomes equal to 1 when we re-
place u, v,X, Y, Z with the values (23). The variety V defined by (23) being
4-dimensional coincides with the singular variety of the spherical space of
7 dimensions. The group G therefore contains the group induced in the 7-
dimensional spherical space by the group of elliptical hermitian space. Since
they are both of order 8, they are identical. The group G is therefore iso-
morphic to the group of unitary unimodular substitutions with 3 variables
ξ, η, ζ completed by the substitutions obtained by combining them with ξ′ = ξ,
η′ = η, ζ ′ = ζ.

By setting

ξ′ = a ξ + b η + c ζ,

η′ = a′ ξ + b′ η + c′ ζ, (25)

ζ ′ = a′′ ξ + b′′ η + c′′ζ,

where the matrix of coefficients is unitary unimodular, we would easily ob-
tain the equations of G.

The group G1 is the subgroup of G which leaves the variable u invariant;
it comes from the subgroup of elliptic hermitian geometry which leaves ζζ
invariant, that is to say the subgroup

ξ′ = eiθ(a ξ − b η),

η′ = eiθ(b ξ + a η), with a a+ b b = 1;
ζ ′ = e−2iθζ;

(26)

its equations are 
X ′ = e3iθ(a X + b Y ),

Y ′ = e−3iθ(−b X + a Y ),
Z ′ = 2ab v + a2Z − b2Z,
v′ = (a a− b b)v − a b Z − b a Z,

(27)

to which must be added the transformations obtained by combining the pre-
vious ones with the substitution

X ′ = X, Y ′ = Y , Z ′ = Z, v′ = v. (28)
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By setting8

X = ξ0, Y = ξ1; Z = z1 + iz2, v = z3,

equations (27) show that the group G1 is the direct product of the one-
parameter group

ξ′0 = e3iθξ0, ξ′1 = e3iθξ1, z′1 = z1, z′2 = z2 z′3 = z3 (29)

and the group
ξ′0 = a ξ0 + b ξ1,
ξ′1 = −b ξ0 + a ξ1,
z′1 + iz′2 = a2(z1 + iz2)− b2(z1 − iz2) + 2ab z3,

z′3 = −ab (z1 + iz2)− ba (z1 − iz2) + (aa− bb) z3,

(30)

combined with the transformation

ξ′0 = ξ0, ξ′1 = ξ1, z′1 = z1, z′2 = −z2, z′3 = z3. (31)

14. In the euclidean space E7 tangent at A (u = 1, v = X = Y = Z = 0)
to the hypersphere of radius 1 in the euclidean space of 8 dimensions, the
coordinates zi are those of a vector of a subspace E3 of three dimensions,
and the real and imaginary parts of ξ0 and ξ1 are the components of a vector
in a subspace E4 of four dimensions; E3 is the subspace normal to V at A,
E4 is the subspace tangent to V at A. We can interpret ξ0 and ξ1 as the
complex components of a spinor in the space E3; the group G is then the
direct product of two groups: the first leaves fixed all the vectors of the space
E3 and multiplies the spinors by a common factor of modulus 1; the second
is isomorphic to the group of rotations of the space of three dimensions, act-
ing in E3 on the vectors, and in E4 on the spinors of that space. One thus
realizes around the point A a euclidean space of 3 dimensions and the space
of 4 real dimensions of its spinors9.

8There is no need to confuse the quantities ξ0, ξ1 introduced here with the first homo-
geneous coordinate ξ of a point in the hermitian elliptical space.

9See E. Cartan, Leçons sur la théorie des spineurs I (Paris, Hermann, 1938). The cubic
form (XX − Y Y )v +XY Z +X Y Z invariant by G1 is written with our new notation

(ξ0ξ0 − ξ1ξ1)z3 + ξ0ξ1(z1 + iz2) + ξ1ξ0(z1 − iz2);

it represents the scalar product of the vector (z1, z2, z3) by the vector (ξ0ξ1 +ξ1ξ0, i ξ0ξ1−
i ξ1ξ0, ξ0ξ0 − ξ1ξ1) defined by the spinor (ξ0, ξ1) and its conjugate.
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The symmetry with respect to the origin of E3 is expressed on the spinors
by the substitution for a vector (ξ0, ξ1) of its conjugate (ξ1,−ξ0), as seen by
combining the operation (31) with the rotation (30) with parameters a = 0,
b = 1; we can deduce the effect of any inversion of E3.

15. Note that we could go back from the variety V defined by the formulas
(23) to the other isoparametric hypersurfaces of the space by the process
employed in the spherical space of 4 dimensions. The locus of points located
at a distance t from a point ranging over V is
√

3

2
(η ζ X + ζ ξ Y + ξ η Z + ζ η X + ξ ζ Y + η ξ Z) +

√
3

2
(ξ ξ − η η)v

+

(
ζ ζ − ξ ξ + η η

2

)
u− cos t (ξ ξ + η η + ζ ζ) = 0.

The hypersurface parallel to V and at the distance t from V is obtained
by canceling the discriminant of the first member considered as a form of
Hermite in ξ, η, ζ. We easily find the equation

F = cos 3t.

IV. The case of the spherical space of 13 dimensions.

16. In the case that concerns us now we have ν = 4, and we introduce
three quaternion variables X, Y, Z, into the form F . The form F is the scalar
part of the product XY Z, and the group G2 is the group of linear substitu-
tions that orthogonally transform the components of each of the quaternions
X, Y, Z, while leaving the scalar part of their product invariant. We see
immediately that the transformations

X ′ = B X C, Y ′ = C Y A, Z ′ = A Z B, (32)

where A,B,C are any three constant unit quaternions, A, B, C, their con-
jugates (or inverses), are part of G2 and constitute a 9-parameter subgroup
of it. We have in fact

X ′ Y ′ Z ′ = B X Y Z B, Z ′ Y ′ X ′ = B Z Y X B,

where

X ′ Y ′ Z ′ + Z ′ Y ′ X ′ = B(X Y Z + Z Y X) B = X Y Z + Z Y X.
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By looking directly for the infinitesimal transformations of G2, we notice
that there are only 9 independent ones. As a result, formulas (32) give the
whole group (one could easily show that G2 is continuous and cannot be
decomposed into several distinct continuous families of transformations).

The group G2 is the direct product of three simple groups with 3 param-
eters, defined respectively by the parametric quaternions A,B,C.

17. The group G1 has order r1 = r2 + ν = 9 + 4 = 13, and the group G
has order 21. The first is characterized by the invariance of u and hence the
forms

X X + Y Y , Z Z + v2, (X X − Y Y ) v +X Y Z + Z Y X.

We are going to determine it by directly determining the group G and for that
we are going, as in the preceding case, to start from a direct representation
of the singular variety V of 8 dimensions.

For this, we only need to start from equations (23), where ξ, η, ζ will be
regarded as three quaternions linked by equation (24). Since the right side
of (23) does not change when one multiplies ξ, η, ζ on the right by the same
unit quaternion %, the variety defined by (23) has 8 dimensions. It is easy to
verify that u2 + v2 + X X + Y Y + Z Z = 1 and that all the points of the
variety (23) satisfy F = 1: it is therefore the singular variety V .

Note that V provides a representation of the points of the quaternionic
projective space of 2 quaternionic dimensions. It is invariant by the group
induced in 13-dimensional spherical space by the group of linear quaternion
substitutions10 

ξ′ = A ξ +B η + C ζ,
η′ = A′ ξ +B′ η + C ′ ζ,
ζ ′ = A′′ ξ +B′′ η + C ′′ ζ,

(33)

which leave the form ξ ξ + η η + ζ ζ invariant. The quaternion coefficients

10This group cannot be extended by adding a second group of linear substitutions,
as in the case of the spherical space of 7 dimensions. It is a simple closed group of the
type C); it is the group of homographies, in the complex projective space of 3 dimensions,
which leave invariant an anti-involution of the second kind and an elliptical anti-polarity
exchangeable with this anti-involution; the points of quaternion space represent the lines
of the anti-involution [See E. Cartan 7) and S. Wachs, Essai sur la géométrie projective
quaternionienne, Mém. Acad. de Belgique, 1936].
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of the substitutions of this group are defined by the relations

A A+ A′ A′ + A′′ A′′ = 1,
B B +B′ B′ +B′′ B′′ = 1,
C C + C ′ C ′ + C ′′ C ′′ = 1,
B C +B′ C ′ +B′′ C ′′ = 0,
C A+ C ′ A′ + C ′′ A′′ = 0,
A B + A′ B′ + A′′ B′′ = 0.

(34)

By noticing that the inverse substitution of (33) is
ξ = A ξ′ + A′ η′ + A′′ ζ ′,
η = B ξ′ +B′ η′ +B′′ ζ ′,
ζ = C ξ′ + C ′ η′ + C ′′ ζ ′,

we can deduce that the relations (34) are equivalent to the relations

A A+B B + C C = 1,
A′ A′ +B′ B′ + C ′ C ′ = 1,
A′′ A′′ +B′′ B′′ + C ′′ C ′′ = 1,
A′ A′′ +B′ B′′ + C ′ C ′′ = 0,
A′′ A+B′′ B + C ′′ C = 0,
A A′ +B B′ + C C ′ = 0.

(35)

18. The transformations (33) constitute a group with 21 parameters. If
we look for the infinitesimal transformations of the group (33),

δξ = a ξ + b η + c ζ,
δη = a′ ξ + b′ η + c′ ζ,
δζ = a′′ ξ + b′′ η + c′′ ζ,

we find that in the table of coefficients, the elements of the main diagonal
have their scalar part zero, and that the elements symmetrical with respect
to the main diagonal are each the negative of the conjugate of the other; this
provides a number of arbitrary parameters equal to 3× 3 + 4× 3 = 21.

We can easily deduce from (33) the equations of the group G of the
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spherical space of 13 dimensions, namely

X ′ =
√

3C ′ C ′′u+ (A′ A′′ −B′ B′′)v +B′XC ′′ + C ′Y A′′

+A′ZB′′ + C ′ X B′′ + A′ Y C ′′ +B′ Z A′′,

Y ′ =
√

3C ′′ Cu+ (A′′ A−B′′ B)v +B′′XC + C ′′Y A
+A′′ZB + C ′′X B + A′′Y C +B′′Z A,

Z ′ =
√

3C C ′u+ (A A′ −B B′)v +BXC ′ + CY A′

+AZB′ + C ′ X B′ + A Y C ′ +B Z A′,

v′ =
√
3
2

(C C − C ′C ′)u+ 1
2
(AA− A′A′ −BB +B′B′)v

+1
2
(BXC −B′XC ′ + CX B − C ′ X B′)

+1
2
(CY A− C ′Y A′ + AY C − A′ Y C ′)

+1
2
(AZB − A′ZB′ +BZ A−B′ Z A′),

u′ =
(
C ′′C ′′ − A′′ A′′+B′′ B′′

2

)
u+

√
3
2

(A′′ A′′ −B′′ B′′)v
+
√
3
2

(B′′XC ′′ + C ′′Y A′′ + A′′ZB′′ + C ′′ X B′′

+A′′ Y C ′′ +B′′Z A′′).

(36)

We find the group G2 starting from the substitutions (33) which transform
each of the quaternions into one of its multiples so that only the coefficients
A,B′, C ′′ remain.

19. The group G1 is the one which leaves fixed the variable u, that is,
comes from the subgroup of (33) which leaves fixed ζζ; it is thus characterized
by the relations

A′′ = B′′ = 0, whence C = C ′ = 0,

with 
AA+ A′A′ = 1, AA+BB = 1,
BB +B′B′ = 1, or A′A′ +B′B′ = 1,
AB + A′B′ = 0; AA′ +BB′ = 0.

Its equations can be put in the form{
X ′ = (B′X + A′ Y ) C ′′,
Y ′ = (BX + A Y ) C ′′,

(37)

{
Z ′ = AZB′ +BZ A′ + (AA′ −BB′) v,
v′ = 1

2
(AZB − A′ZB′ +BZ A−B′Z A′) + (AA− A′A′) v. (38)
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The group G1 is therefore the direct product of the group

X ′ = XC ′′, Y ′ = Y C ′′, Z ′ = Z, v′ = v,

and the groupe obtained by making C ′′ = 1 in the formulas (37) and (38);
this last group, of order 10, is isomorphic to the group of rotations of the
euclidean space of 5 dimensions whose coordinates are the components of Z
and v. The equations (38) are precisely the equations of the group of rotations
of this space E5; as for the equations (37), they indicate how these rotations
transform the spinors of this space, each spinor with 4 complex components
being represented by two quaternions X and Y . The cubic form11

(XX − Y Y ) v +XY Z + Z Y X

is none other than the scalar product of the vector (Z, v) of E5 by the vector
defined by the spinor (X, Y ) and its conjugate (X,Y ). The 8-dimensional
space of spinors is here, in the 13-dimensional euclidean space tangent at A
(u = 1, v = X = Y = Z = 0) to the hypersphere of radius 1 in the 14-
dimensional euclidean space, the subspace tangent to the singular variety V ,
while the space E5 of vectors is the subspace normal at A to that variety.
We thus realize at the same time both the space E5 of vectors and the space
E8 of spinors of E5; the group G1 of stability at the point A is decomposed in
the group of rotations of E5, with its effect on the vectors of E5 and on the
spinors on E8, and in the group which multiplies on the right the quaternion
components of a spinor by a common unit quaternion factor without altering
the vectors.

V. The case of the spherical space of 25 dimensions.

20. In this last case we have ν = 8 and the quantities X, Y, Z that
we introduce in the cubic form F are octaves12. Here the formulas (23) no

11In the book already cited 9) of E. Cartan, Leçons sur la théorie des spineurs, II, the
fundamental form of the space of 5 dimensions is (x0)2 + x1x1

′
+ x2x2

′
and the complex

components of the spinor are designated by ξ0, ξ1, ξ2, ξ12. We pass from these notations
to those of the text by setting

v = x0, Z = x1 + jx2, X = ξ0 − jξ12, Y = ξ1 + jξ2

(the unit quaternions are i, j, k = ij). The cubic form of the text is none other than the
cubic form ξXξ of the book, where X is the matrix of degree 4 associated to the vector
with components x0, x1, x2, x1

′
, x2

′
.

12See a recent memoir on octaves by E. A. Weiss:Oktaven, Engelscher Komplex, Tri-
alitätsprinzip [Math. Zeitschr. 44 (1938), p. 580–611].
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longer allow us to represent the 16-dimensional singular variety of the space
by means of three octaves ξ, η, ζ, because the multiplication of the octaves is
not associative; moreover, the second members of these formulas are altered
if we multiply ξ, η, ζ on the right by the same unit octave. It is necessary to
study the groups G2, G1 and G separately; we will leave aside the question
of whether the singular variety is susceptible to a rational parametric repre-
sentation.

21. The group G2 is the group which orthogonally transforms the com-
ponents of the octaves X, Y, Z while leaving invariant the scalar part of the
product XY Z. Note that this scalar part is the same whether this prod-
uct is interpreted as (XY )Z or X(Y Z); nor does it change by a circular
permutation of the octaves X, Y, Z. By setting,

X = x0 +
i=7∑
i=1

xiei, Y = y0 +
i=7∑
i=1

yiei, Z = z0 +
i=7∑
i=1

ziei,

we find13

F = x0y0z0 − x0
∑

yizi − y0
∑

zixi − z0
∑

xiyi (39)

−
∑

xi(yi+1zi+3 − yi+3zi+1 + yi+2zi+6 − yi+6zi+2

+ yi+4zi+5 − yi+5zi+4),

with the convention to reduce modulo 7 the indices greater than 7.
We can see first that if an operation of the group is reduced to the identity

operation with respect to the octave Z, then it itself is reduced to either the
identity operation or to the operation X ′ = −X, Y ′ = −Y, Z ′ = Z. Indeed
to say that the scalar part of (XY )Z is invariant whatever the octave Z, is
to say that the product XY is invariant, because the scalar part of a product
UV is u0v0 − u1v1 − · · · − u7v7 and its invariance for each system of values
of the vi leads to the invariance of U . Let a be the transformed octave of
X = 1; if Y ′ is the transformed octave of Y 14, we will have

a Y ′ = Y, whence Y ′ = a−1 Y ;

13The law of multiplication of the units ei is e2i = −1, eiei+1 = −ei+1ei = ei+3,
eiei+2 = −ei+2ei = ei+6, eiei+4 = −ei+4ei = ei+5, the indices greater than 7 being
reduced modulo 7.

14The transformation law of the Y is not necessarily the same as the transformation
law of the X.

24



moreover the modulus of a must be equal to 1, since the components x0, xi
must undergo an orthogonal substitution, so we can write

Y ′ = a Y (aa = 1) : (40)

we can deduce
X ′(a Y ) = XY,

and, by making Y = 1,
X ′ = Xa. (41)

The octave a must therefore satisfy the identity

(Xa)(aY ) = (aa)(XY )

whatever the octaves X, Y ; in particular, we must have

(e1a)(ae2) = aae4;

the coefficient of e4 in the first member is

a20 −
∑

(e1ei)(eie2)a
2
i = a20 + a21 + a22 + a24 − a23 − a25 − a26 − a27;

by equating it to the coefficient aa of e4 in the second member, we obtain

a23 + a25 + a26 + a27 = 0, whence a3 = a5 = a6 = a7 = 0;

we would likewise show a1 = a2 = a4 = 0. Consequently, a = ±1, which had
to be shown.

From the preceding, we get that to any orthogonal substitution on the
components of Z there correspond at most two orthogonal substitutions on
the components of X and Y , that is, two transformations of G2. Therefore,
the group G2 has at most 8·7

1·2 = 28 parameters.

22. The calculation actually shows that G2 has 28 parameters and pro-
vides the infinitesimal transformations, which we will only indicate. By set-
ting

Xαβ = xα
∂f

∂xβ
− xβ

∂f

∂xα
, Yαβ = yα

∂f

∂yβ
− yβ

∂f

∂yα
, Zαβ = zα

∂f

∂zβ
− zβ

∂f

∂zα
,
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these infinitesimal transformations are

U0i ≡ Z0i − 1
2
(Xi+1,i+3 +Xi+2,i+6 +Xi+4,i+5)

+1
2
(Yi+1,i+3 + Yi+2,i+6 + Yi+4,i+5),

Ui+1,i+3 ≡ Zi+1,i+3 + 1
2
(X0i +Xi+1,i+3 −Xi+2,i+6 −Xi+4,i+5)

+1
2
(−Y0i + Yi+1,i+3 − Yi+2,i+6 − Yi+4,i+5),

Ui+2,i+6 ≡ Zi+2,i+6 + 1
2
(X0i −Xi+1,i+3 +Xi+2,i+6 −Xi+4,i+5)

+1
2
(−Y0i − Yi+1,i+3 + Yi+2,i+6 − Yi+4,i+5),

Ui+4,i+5 ≡ Zi+4,i+5 + 1
2
(X0i −Xi+1,i+3 −Xi+2,i+6 +Xi+4,i+5)

+1
2
(−Y0i − Yi+1,i+3 − Yi+2,i+6 + Yi+4,i+5);

(42)

the index i takes all the values 1, . . . , 7, each index greater than 7 being
reduced modulo 7.

In 26-dimensional euclidean space, the euclidean space of 24 dimensions
tangent at the point P (u = cos t, v = sin t,X = Y = Z = 0) to the hyper-
surface with parameter t situated in the sphere of radius 1 decomposes into
three 8-dimensional subspaces, that of the vectors X, of the vectors Y , and
of the vectors Z. If we turn our attention to the latter, the vectors X of
the first can be regarded as the real semi-spinors of the first kind, and the
vectors Y of the second as the real semi-spinors of the second kind of the
space of the Z15. The group G2 indicates how the group of rotations of the
8-dimensional space transforms the real vectors Z, the real semi-spinors of
the first kind X, and the semi-spinors of the second kind Y . The principle
of triality16 of the elliptical space of 7 dimensions is thus demonstrated in a
concrete way.

23. The group G1 has 28 + 8 = 36 parameters, and the group G has
36 + 16 = 52 parameters. First we will take care of the group G1. It

15See the work 9) of E. Cartan already cited. In the real euclidean space E8, the semi-
spinors of the first kind have the components ξ0, ξij , ξ1234, those of the second kind have
the components ξi, ξijk(i, j, k = 1, 2, 3, 4). For each kind there is a domain of reality; the
real semi-spinors of the first kind are defined by ξ1234 = ξ0, ξ14 = −ξ23, ξ24 = −ξ31,
ξ34 = −ξ12, the scalar square of a semi-spinor being ξ0ξ0 + ξ23ξ23 + ξ31ξ31 + ξ12ξ12; the
real semi-spinors of the second kind are defined by ξ234 = −ξ1, ξ314 = −ξ2, ξ124 = −ξ3,
ξ123 = −ξ4, the scalar square being ξ1ξ1 + ξ2ξ2 + ξ3ξ3 + ξ4ξ4. The trilinear form F is
indicated in the book in question, II, p. 51. The group G2 can be completed by five other
families of linear substitutions, each family performing a certain permutation on the three
families of objects: vectors, semi-spinors of the first kind, semi-spinors of the second kind.
As far as the problem of the text is concerned, none of these five families has to intervene.

16Apart from the work cited in the preceding note, see the previously mentioned Memoir
12) of E. A. Weiss, p. 592–596.
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orthogonally transforms the vectors of the space E16 tangent to the singular
variety V at the point A (u = 1, v = X = Y = Z = 0) and the vectors of
the space E9 normal to that variety. The space E16 is defined by Z = v = 0
and the space E9 by X = Y = 0. The group G1 orthogonally transforms the
vectors of E9 according to the group of rotations of that space. As for the
vectors of E16, they are transformed like the real spinors of E9. The spinors
of the euclidean space of 9 dimensions have 16 complex components, but
within the space of such spinors there exists a domain of reality (domaine de
réalité) within which the spinors have 16 real components17. The fact that
G1 transforms the vectors of E16 as the real spinors of the 9-dimensional
euclidean space has the a priori reason that the only linear representation of
degree 16 of the group of rotations of E9 is that of the spinors.

We therefore have around the point A both the space E9 of real vectors
and the space E16 of real spinors of the euclidean space of dimension 9. The
group G1 of stability at the point A in the spherical space of 25 dimensions
is none other than the group of rotations of this last space, with its effect on
the vectors in E9 and on the spinors in E16.

24. Finally, we consider the group G. We are going to show that G is a
simple group of type F ). First the group G is closed, since it is the largest
orthogonal group with 26 variables leaving invariant an entire algebraic form
of the variables. Now every closed group is either simple or semi-simple
(direct product of several simple groups), or abelian, or direct product of a
simple group or a semi-simple group and an abelian group18. The rank of a
closed group is the order of any maximal abelian subgroup, the rank of an
abelian group being therefore identical to its order. It is clear that here the
group G is not abelian.

To calculate the rank of G, first note that the group G2, isomorphic to
the orthogonal group with 8 variables, has rank 4; one can moreover take
in G2 the abelian group γ generated by the infinitesimal transformations
U01, U24, U37, U56; this group is abelian because these transformations only
involve the 12 infinitesimal transformations X01, X24, X37, X56, Y01, . . . , Z56,

17The complex components of a spinor of E9 can be denoted ξ0, ξi, ξij , ξijk, ξ1234
(i, j, k = 1, 2, 3, 4). The real spinors are defined by the conditions ξ1234 = ξ0, ξ123 =
ξ4, ξ234 = −ξ1, ξ314 = −ξ2, ξ124 = −ξ3, ξ14 = −ξ23, ξ24 = −ξ31, ξ34 = −ξ12; the scalar
square of a real spinor is ξ0ξ0 + ξ1ξ1 + ξ2ξ2 + ξ3ξ3 + ξ4ξ4 + ξ23ξ23 + ξ31ξ31 + ξ12ξ12.

18For all these properties, see E. Cartan, La théorie des groupes finis et continus et
l’Analysis Situs (Mem. Sc. Math. XLII, 1930).
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obviously exchangeable among themselves. That being so, any infinitesimal
transformation of G exchangeable with γ will transform any one of the vari-
ables u, v, invariant under γ, into a combination of the 26 variables which
will also be invariant by γ. Now γ obviously admits no other invariant linear
combination than u and v. Consequently, the infinitesimal transformation
sought will transform the variables u and v among themselves; consequently,
being orthogonal, it will transform the other 24 variables among themselves.
The collection u3 − 3uv2 of terms of F which are of third degree in u, v will
thus also be invariant: this is only possible if each of the variables u, v is
invariant. Hence any transformation of G exchangeable with γ is part of G2;
γ is thus a maximal abelian subgroup of G, which is therefore of rank 4.

Now the simple groups of rank ≤ 4 have for possible orders

rank 4: orders 24, 28, 36, 52; rank 2: orders 8, 10;

rank 3: orders 15, 21; rank 119: orders 1, 3.

This table immediately shows that a closed group of rank 4 can only have
order 52 if it is simple and therefore of type F ).

The group G of displacements of the family under consideration of isopara-
metric hypersurfaces of the spherical space of 25 dimensions is thus a real-
ization of the simple group of rank 4 with 52 parameters of the type F ); until
now this group had not appeared in any problem of Geometry or Analysis20.

We will leave aside the effective determination of its 52 infinitesimal trans-
formations to the variables u, v, xi, yi, zi (i = 0, 1, 2, . . . , 7).

VI. A theorem on the singular varieties.

25. The singular varieties of 2 and 4 dimensions in the spherical spaces
of 4 and 7 dimensions are, considered as riemannian varieties, symmetric21

19Here we regard the closed abelian group with one parameter as a simple group.
20The representative indicated in the Thesis of E. Cartan is indeed an orthogonal linear

group with 26 variables, but of rather complicated definition, leaving invariant a variety
of 16 dimensions.

21On the notion of a riemannian symmetric space, see a lecture by E. Cartan at the
International Congress of Mathematicians in Zürich in 1932.
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spaces, since they are applicable on the ordinary sphere and on the ellipti-
cal hermitien space. A simple argument shows that this property of being
symmetric also holds for the singular varieties of 8 and 16 dimensions in
the spherical spaces of 13 and 25 dimensions. Indeed let A be the point
(u = 1, v = zi = 0) of one of these varieties. We consider in the euclidean
space of n+ 1 = 3ν + 2 dimensions which contains the hypersphere of radius
1 of n dimensions, the symmetry

u′ = u, v′ = v, z′i = zi, x′i = −xi, y′i = −yi

with respect to the plane variety xi = yi = 0 normal to the variety V . This
symmetry obviously leaves this variety V invariant, as is evident from the
expression of the form F . This transformation is involutive on V ; it obviously
preserves the metric of V ; finally it admits the point A as an isolated invariant
point, because the points of V invariant by this transformation are defined
by the numerical values of u, v, zi which satisfy the relations

u2 + v2 +
∑

z2i = 1, u3 − 3u (v2 +
∑

z2i ) = 1,

equivalent to

4u3 − 3u = 1, v2 +
∑

z2i = 1− u2.

The equation in u has for roots u = 1 and u = −1
2
; to the first root

u = 1 correspond the values v = zi = 0 (isolated invariant point); to the
second u = −1

2
correspond an infinite number of values v and zi satisfying

the unique relation v2 +
∑
z2i = 3

4
.

The previous properties of the transformation under consideration show
that in the riemannian space constituted by the variety V , the symmetry with
respect to A is isometric. As the riemannian variety V admits a transitive
group of displacements, it follows that this variety is symmetric, whence the

Theorem. In the family of isoparametric hypersurfaces with three distinct
principal curvatures, the two singular varieties constitute two riemannian
symmetric spaces whose groups of displacements have respectively 3, 8, 21
and 52 parameters22.

The nonsingular hypersurfaces do not constitute riemannian symmetric
varieties.

22The variety of 8 dimensions is a symmetric space of the type C (II) and the variety
of 16 dimensions is a symmetric space of the type F (II): on the geodesics of the latter,
see E. Cartan [Annales Ecole Norm 44 (1927), No. 151, p. 466].
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Second Part.

VII. The non-existence of families of isoparametric hypersurfaces
with three distinct principal curvatures not having the same

degrees of multiplicity.

26. We propose in this second Part to show that we have obtained all
the families of isoparametric hypersurfaces with three distinct principal cur-
vatures.

Let us take again the notations of the Memoir already cited and start
from the formula

ωij = γijkωk, [2]

the summation index k varying from 1 to n, the dimension of the ambient
space. We have, for k ≤ n − 1 and supposing that the principal curvatures
ai and aj are distinct,

γijk =
λijk

ai − aj
; (43)

λijk is symmetric with respect to its three indices and can only be different
from zero if the principal curvature ak is distinct from both ai and aj (p.
179–180 of the Memoir); we also have γijn = 0. We call the three principal
curvatures a = tan t1, b = tan t2, c = tan t3, and in what follows, we will re-
serve the letters i, i′, . . . , for the indices for which ai = a, the letters j, j′, . . . ,
for the indices for which aj = b, the letters k, k′, . . . , for the indices for which
ak = c.

By taking the exterior derivative of [2], we get

[ωiu ωuj]− (1 + aiaj)[ωi ωj] =
λijk

ai − aj
[ωu ωuk + akωk ωn] + [dγijk ωk], (44)

the summation index k having the meaning that has just been indicated.
By equating in (44) the terms in [ωi ωj], we obtain the formula (11) of the
Memoir cited, which can be written

2 cos2 t1 cos2 t2 cos2 t3
∑
k

λ2ijk = sin(t1−t3) sin(t2−t3) cos(t1−t2) = 2h2. (45)

Now by equating the terms in [ωi ωj′ ] where j′ 6= j, we obtain∑
k

λijkλij′k

[
1

(ai − ak)(aj − ak)
− 1

(ai − aj)(ai − ak)
+

1

(ai − aj)(aj − ak)

]
= 0,
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and, since the quantity in square brackets is nonzero,∑
k

λijkλij′k = 0 and likewise
∑
k

λijkλi′jk = 0. (46)

Finally, by equating the terms in [ωi′ ωj′ ], where i′ 6= i, j′ 6= j, we find∑
k

(λijkλi′j′k + λij′kλi′jk) = 0. (47)

We will simplify the equations (45) a little by setting

cijk =
1

h
cos t1 cos t2 cos t3 λijk; (48)

the formulas (45), (46), (47) then become∑
k c

2
ijk = 1. (45′)∑

k cijk cij′k = 0,
∑

k cijk ci′jk = 0, (46′)∑
k(cijk ci′j′k + cij′k ci′jk) = 0. (47′)

Moreover by equating the terms in [ωk ωn] in (44), we find that the cijk
are independent of t.

27. The preceding formulas will show us immediately the the degrees
of multiplicity ν1, ν2, ν3 of the principal curvatures a, b, c are equal to each
other. Indeed suppose, without loss of generality, that

ν1 ≥ ν3, ν2 ≥ ν3.

If we fix the indices i and j, the ν3 quantities cijk can be regarded as the
components of a vector ~cij in a space of ν3 dimensions; by (45′) this vector
is a unit vector. If we fix the index i, the ν2 vectors ~ci1,~ci2, . . . ,~ciν2 are, by
(45′) and (46′), ν2 rectangular unit vectors. This is only possible if ν2 ≤ ν3;
thus we necessarily have ν2 = ν3. We could prove likewise that ν1 = ν3.
Therefore, the three degrees of multiplicity ν1, ν2, ν3 are equal to each other.
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VIII. Direct search for families of isoparametric hypersurfaces
with three distinct principal curvatures23.

28. Consider two systems of ν variables xi, yi and the ν bilinear forms

Hk(x, y) =
∑
i,j

cijkxiyj;

the relations (45′), (46′), (47′) simply express the identity (14) of No 4:∑
kH

2
k =

∑
x2i ·

∑
y2i . (14)

It is precisely from this identity that we have deduced the only possibilities
ν = 1, 2, 4, 8. The trilinear form

Φ =
∑
i,j,k

cijkxiyjzk

is analogous to the form that we had designated by F. The research on the
form F had shown us (No 6) that we can always perform on each of the
series of ν variables xi, yj, zk an orthogonal linear substitution so that the
coefficients of the form F become certain well determined constants. We are
going to deduce that here we can arrange for the coefficients cijk to have
those same constant values by a suitable choice of the rectangular frames
attached at the various points of the space.

Indeed let us start from the identity∑
i,j

ωiωjωij =
∑
i,j,k

λijk
ai − aj

ωiωjωk =
h

sin(t1 − t2) cos t3

∑
i,j,k

cijk ωiωjωk.

Let us carry out on the ν unit vectors ~ei of indices i, i′, . . . , of the frame an
infinitesimal linear substitution

δ~ei =
∑
i′

aii′~ei′ (aii′ = −ai′i)

and similarly on the ν unit vectors ~ej the substitution

δ~ej =
∑
i′

bjj′~ej′ (bjj′ = −bj′j);

23The paragraph VIII can be passed by the reader, the considerations of paragraph IX
leading to the same results by a simpler route.
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we will have

δωij = δ(d~ei ~ej) =
∑
i′

(daii′ ~ei′ + aii′ d~ei′) ~ej +
∑
j′

d~ei · bjj′ ~ej′

=
∑
i′

aii′ ωi′j +
∑
j′

bjj′ ωij′ ;

on the other hand we have

δωi =
∑
i′

aii′ ωi′ , δωj =
∑
j′

bjj′ ωj′ ;

we can deduce
δ
∑
i,j

ωiωjωij = 0.

This amounts to saying that the cubic form
∑

i,j,k cijkωiωjωk has a ge-
ometric meaning independent of the choice of the ν unit vectors ~ei, the ν
unit vectors ~ej, the ν unit vectors ~ek; one can consequently choose these unit
vectors so as to reduce the coefficients to have the fixed numerical values of
the coefficients of the form F determined in the first part. That is what we
will assume in the following.

29. An important conclusion can be drawn from this. Let us return to
the relation (44) and keep in this relation only the terms which contain at
least one of the terms ωk as a factor. By passing everything into the first
member, these terms reduce to∑

i′

[ωii′ ωi′j] +
∑
j′

[ωij′ ωj′j]−
∑
k

λijk
ai − aj

∑
k′

[ωk′ ωk′k]

=
∑
k

[(∑
i′

λi′jk
ai − aj

ωii′ +
∑
j′

λij′k
ai − aj

ωjj′ +
∑
k′

λijk′

ai − aj
ωkk′

)
ωk

]
.

It follows that for each system of indices i, j, k, the sum∑
i′

ci′jkωii′ +
∑
j′

cij′kωjj′ +
∑
k′

cijk′ωkk′

cannot depend on the forms ωi nor on the forms ωj; for reasons of symmetry,
it cannot depend on the forms ωk either; it is therefore identically zero. We
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then have the important identity∑
i′

ci′jkωii′ +
∑
j′

cij′kωjj′ +
∑
k′

cijk′ωkk′ = 0. (49)

Note that this identity holds whatever rectangular frames are chosen,
provided that they give the cijk the fixed numerical values indicated. If we
can attach to each point an infinity of reference frames satisfying this con-
dition, the forms ωii′ , ωjj′ , ωkk′ involve auxiliary parameters and by varying
only these auxiliary parameters, the identities (49) express the invariance of
the trilinear form

∑
cijkωiωjωk.

30. We are now able to demonstrate that the only families of isopara-
metric hypersurfaces with three distinct principal curvatures are those that
were determined in the first part. Indeed consider a point A of the singular
variety V defined by t3 = π

2
; we can suppose t2 = π

2
− 2π

3
, t1 = π

2
+ 2π

3
, whence

h =
√
3
4

. At the point A is attached a rectangular frame with origin at A;
with respect to this frame, let

xi, yj, zk, v, u

be the normal coordinates of Weierstrass of a point M of the ambient spher-
ical space, the point M being

M = u A+
∑

xi ~ei +
∑

yj ~ej +
∑

zk ~ek + v ~en.

Consider the polynomial

F ≡ u3 − 3uv2 +
3

2
u
(∑

x2i +
∑

y2j − 2
∑

z2k

)
+

3
√

3

2
v
(∑

x2i −
∑

y2j

)
− 3
√

3
∑

cijkxiyjzk.

When the point A of V is varied, the point M remaining fixed, the relative
coordinates xi, yj, zk, v, u of M vary. We are going to show that the function
F of these coordinates retains its numerical value. Suppose that is done.
We see first that any point of V gives the value 1 to the polynomial F
since the relative coordinates of this point in the frame attached to it are
u = 1, v = xi = yj = zk = 0. Now let M be a point of the hypersurface
located at a distance t from V , and let A be the point where the orthogonal
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trajectory of the isoparametric hypersurfaces which passes through M passes
through V ; if we relate the pointM to the frame with origin A, its coordinates
xi, yj are zero, and we have moreover

u = cos t,
∑
k

z2k + v2 = sin2 t;

we can deduce
F = cos3 t− 3 cos t sin2 t = cos 3t.

From this we get that the general equation of the isoparametric hyper-
surfaces is

F = cos 3t.

31. Everything therefore amounts to demonstrating the invariance of the
numerical value that the polynomial F takes at a fixed point M in space
when we vary the frames to which this point is referred, these frames having
their origin on the variety V . However, when the frame varies, the relative
coordinates of a fixed point satisfy the relations which follow from

d (u A+ xi ~ei + yj ~ej + zk ~ek + v ~en) = 0.

These relations are
du =

∑
xiωi +

∑
yjωj +

∑
zkωk + v ωn,

dv =
∑
xiωni +

∑
yjωnj +

∑
zkωnk − u ωn,

dxi =
∑

i′ xi′ωii′ +
∑

j yjωij +
∑

k zkωik + v ωin − u ωi,
dyj =

∑
i xiωji +

∑
j′ yj′ωjj′ +

∑
k zkωjk + v ωjn − u ωj,

dzk =
∑

i xiωki +
∑

j yjωkj +
∑

k′ zk′ωkk′ + v ωkn − u ωk.

(50)

Here we are on the variety V . To see clearly how things happen, let us
set in a general way, at any point in space,{

ωi = 2 cos t1 ω̃i, ωj = 2 cos t2 ω̃j, ωk = 2 cos t3 ω̃k,
ωin = 2 sin t1 ω̃i, ωjn = 2 sin t2 ω̃j, ωkn = 2 sin t3 ω̃k,

(51)

whence

ωjk =
∑
i

2λjki cos t1 cos t2 cos t3
sin(t2 − t3)

ω̃i,

and, simplifying, 
ωjk =

∑
i cijk ω̃i,

ωki =
∑

j cijk ω̃j,

ωij =
∑

k cijk ω̃k.
(52)
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Given this, the formulas (50) become, by replacing respectively ωi, ωj, ωk
by −

√
3 ω̃i,

√
3 ω̃j, 0 and ωin, ωjn, ωkn by −ω̃i,−ω̃j, 2 ω̃k, and finally ωn by 0,

du = −
√

3
∑
xi ω̃i +

√
3
∑
yj ω̃j,

dv =
∑
xi ω̃i +

∑
yj ω̃j − 2

∑
zk ω̃k

dxi =
∑

i′ xi′ωii′ +
∑

j,k cijk(yj ω̃k − zk ω̃j)− v ω̃i + u
√

3 ω̃i, (50′)

dyj =
∑

j′ yj′ωjj′ +
∑

k,i cijk(zk ω̃i − xi ω̃k)− v ω̃j − u
√

3 ω̃j,

dzk =
∑

k′ zk′ωkk′ +
∑

i,j cijk(xi ω̃j − yj ω̃i) + 2 v ω̃k.

A fairly long, but not difficult, calculation then shows that taking rela-
tions (45′), (46′), (47′) and (49) into account, the differential of the poly-
nomial F , when the differentials of the variables are given by the formulas
(50′), is identically zero. The theorem is thus proved.

IX. Families of isoparametric hypersurfaces whose principal
curvatures all have the same degree of multiplicity.

32. The verification calculations made in paragraph VIII can be avoided
by resorting to a general theorem on the families of isoparametric hypersur-
faces whose distinct principal curvatures, of any number p, all have the same
degree of multiplicity. This theorem is the following.

Theorem. If in a spherical space of n dimensions, there exists a family of
isoparametric hypersurfaces with p distinct principal curvatures of the same
degree of multiplicity ν, the general equation of these hypersurfaces is of the
form

P (x1, x2, . . . , xn+1) = cos pt,

where P is a harmonic polynomial of degree p satisfying the condition

∑
i

(
∂P

∂xi

)2

= p2(x21 + x22 + · · ·+ x2n+1)
p−1.

Note first that we can always assume that the sum of the p distinct
principal curvatures is equal to −p cot pt. Indeed24 these curvatures are of
the form tan(t+ iπ

p
+α), (i = 0, 1, 2, . . . , p−1), α being a constant, otherwise

24Annali di Mat. 17 (1938), p. 187.
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arbitrary. These are the p roots of the equation which gives tanx knowing
tan px = tan(pt + pα). Now the sum of the roots of this equation of degree
p is p tan px if p is odd, and −p cot px if p is even, as follows immediately
from the formula that gives tan px as a rational function of tanx. It is then
enough to take α = 0 for p even, and α = π

2p
for p odd, to arrive at the stated

result.
Given this, we have seen25 that the first two differential parameters of t,

calculated in the spherical space of n dimensions, are

∆1t = 1, ∆2t = −(a1 + a2 + · · ·+ an−1) = ν p cot pt. (53)

The function V = cos pt then satisfies the relations{
∆1V = p2 sin2 pt = p2(1− V 2),
∆2V = −p2 cos pt− p sin pt ∆2t = −p2(ν + 1)V = −p(p+ n− 1)V.

(54)
In the euclidean space of n + 1 dimensions whose hypersphere of radius

1 realizes the spherical space under consideration, we now form the function

P (x1, x2, . . . , xn+1) = rp cos pt = rpV, (55)

in which r designates the distance of the point (xi) to the origin, and t is the
value of the function t at the point xi

r
of the hypersphere. We can set

dx21 + dx22 + · · ·+ dx2n+1 = dr2 + r2(ω2
1 + ω2

2 + · · ·+ ω2
n),

by designating by ω2
1 + ω2

2 + · · ·+ ω2
n the ds2 of the hypersphere of radius 1.

We have
dP = p rp−1V dr +

∑
i

rp−1Vi r ωi. (56)

The laplacian of the function P = rpV can be calculated by the formula∫
(n)

prp−1V rnω1ω2 . . . ωn − rp−1V1 dr · rn−1ω2ω3 . . . ωn

+ rp−1V2 dr · rn−1ω1ω3 . . . ωn − . . .

=

∫
(n+1)

∑ ∂2P

∂x2i
· dr rnω1ω2 . . . ωn,

25l. c. 1), p. 178. We have dt = ωn and, in the formula at the bottom of page 178,
applied to f = t, we have ϕ = 1, ψ = 0.
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the first member being an n-ple integral extended to the boundary of a
domain of the euclidean space, and the (n + 1)-ple integral to this domain
itself.

The application of the generalized Stokes formula (or methods of exterior
calculus) give∑

i

∂2P

∂x2i
= p (p− 1 + n) rp−2 V + rp−2 ∆2V = 0. (57)

On the other hand, we have

∑
i

(
∂P

∂xi

)2

= p2 r2p−2V 2 + r2p−2∆1V = p2r2p−2. (58)

33. It is important to note that we do not know a priori the existence
of a regular family of hypersurfaces. We simply assume the local existence,
in a certain domain of spherical space, of a function t satisfying equations
(54); this results in the existence in a certain domain of euclidean space of a
function P satisfying equations (57) and (58). This function being harmonic
is analytic and thus infinitely differentiable. We are going to prove that it is
a polynomial of degree p26.

For this we are going to apply the operation
∑

i
∂2

∂x2i
several times in a

row to the two members of the relation (58). Notice

1o that this operation applied to r2q gives r2q−2 up to a positive constant
factor;

2o that this operation applied to the function

∑
i1,i2,...,iq

(
∂qP

∂xi1∂xi2 . . . ∂xiq

)2

gives, up to a positive factor, the analogous function where q is increased by
one unit: an easy calculation, based on the remark that P is harmonic as
well as all its derivatives, shows this result.

26If we knew a priori that the function t is defined on the whole spherical space, we
could demonstrate without further calculation that V being one of the functions which
generalizes the spherical functions, P is indeed a polynomial of degree p.

38



Given this, the p times repeated application of the operation
∑

i
∂2

∂x2i
to

the two members of equation (58) gives∑
i1,i2,...,ip+1

(
∂p+1P

∂xi1∂xi2 . . . ∂xip+1

)2

= 0,

from which results the conclusion that P is an entire polynomial of degree p
(and certainly not of lesser degree). The theorem is thus demonstrated.

This result proves that all the families of hypersurfaces considered are
regular.

34. The theorem of No 32 has a reciprocal. Let P be a harmonic polyno-
mial of degree p satisfying the relation∑

i

(
∂P

∂xi

)2

= p2(x21 + x22 + · · ·+ x2n+1)
p−1.

An easy calculation gives, denoting by ∆1V and ∆2V the differential param-
eters, in the hypersphere of radius 1, of the function V = 1

rp
P ,

∆1V = p2(1− V 2), ∆2V = −p (p+ n− 1)V ;

the hypersurfaces V = cte thus form an isoparametric system.
Moreover we can see directly that the function V varies between −1 and

+1, because at any maximum or minimum of this function we have ∂P
∂xi

= λxi,

from which by elevation to the square and addition, λ2 = p2, λ = ±p. By
multiplying by xi and summing, we find, at a maximum and at a minimum,

p P = λ, whence P = ±1.

35. The problem of finding families of isoparametric hypersurfaces, all
of whose principal curvatures have the same degree of multiplicity is thus
reduced to a purely algebraic problem, the one that we solved for p = 3 in
the first part of this Memoir.

For p = 4, in the spherical space of 5 dimensions, there exists one and
only one family of isoparametric hypersurfaces with 4 distinct principal cur-
vatures, given by the equation

cos 4t = (x21 + x22 + x23 + x24 + x25 + x26)
2

− 2 (x23 − x24 − 2x1x5 + 2x2x6)
2 − 2 (2x3x4 − 2x1x6 − 2x2x5)

2.

(Received on 22. December 1938.)
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