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Abstract: Marine biofouling is the undesired accumulation of organic molecules, microorganisms,
macroalgae, marine invertebrates, and their by-products on submerged surfaces. It is a serious challenge
for marine vessels and the oil, gas, and renewable energy industries, as biofouling can cause economic
losses for these industries. Natural products have been an abundant source of therapeutics since the start
of civilisation. Their use as novel anti-fouling agents is a promising approach for replacing currently
used, harmful anti-fouling agents. Anthraquinones (AQs) have been used for centuries in the food,
pharmaceutical, cosmetics, and paint industries. Citreorosein and emodin are typical additives used in
the anti-fouling paint industry to help improve the global problem of biofouling. This study is based on
our previous study, in which we presented the promising activity of structurally related anthraquinone
compounds against biofilm-forming marine bacteria. To help uncover the anti-fouling potential of
other AQ-related structures, 2194 compounds from the COCONUT natural products database were
analysed. Molecular docking analysis was performed to assess the binding strength of these compounds
to the LuxP protein in Vibrio carchariae. The LuxP protein is a vital binding protein responsible for the
movements of autoinducers within the quorum sensing system; hence, interrupting the process at an
early stage could be an effective strategy. Seventy-six AQ structures were found to be highly docked,
and eight of these structures were used in structure-based pharmacophore modelling, resulting in six
unique pharmacophore features.

Keywords: in silico; repurposing; pharmacophore; molecular docking; virtual screening;
anthraquinones; biofouling; anti-fouling; citreorosein; emodin; paints; marine

1. Introduction

Natural products have been a significant source of bioactive compounds since the
beginning of the human race. Almost three-quarters of the bioactive compounds present
in the market originate from natural sources that are isolated from living organisms, their
mimics, or their semisynthetic derivatives [1]. Most commonly, natural compounds are
extracted from plants, marine organisms, or microorganism fermentation broths. Amongst
these, anthraquinones (AQs) (Figure 1) are some of the most explored natural products [1].
AQs are a class of phenolic compounds characterised by a 9,10-anthracenedione (also
called 9,10-dioxoanthracene) core structure substituted by three fused benzene rings with
two ketone functional groups on the central ring. In nature, AQs occur (Figure 1) either as
glycosides (i.e., linked to a sugar moiety) or as their free aglycones [2]. AQ analogues are a
large group of primarily colourful polyketides that exist in either oxidised (anthraquinones)
or reduced forms (anthrones, anthranols) or as dimers (dianthrones). Reduction of AQs
results in unstable anthrahydroquinones and oxyanthrones [3].
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Figure 1. Examples of different anthraquinones.

With numerous established bioactivities [4–16], many natural and synthetic AQs are
used in the textile, paint, device, food, cosmetics, and pharmaceutical industries [16–20].
In addition, AQs have been patented for use in building materials to deter destruction by
pests, birds, and fungi, highlighting their commercial value [21].

Despite the compounds’ unique characteristics from natural sources, their precise
functions, their possible targets and modes of action, and synergies between compounds
within complex chemical mixtures remain primarily unknown. Therefore, an integrated
approach using technological advances is necessary to successfully develop natural prod-
ucts. These involve the application of efficient selection methods, well-designed extrac-
tion/isolation procedures, advanced structure elucidation techniques, and bioassays with
high-throughput capacity to establish the bioactivity and patentability of natural products.
Several approaches, including molecular modelling, virtual screening of natural product
libraries, and database mining, are being used to increase the success of natural product
drug discovery research [22].

While AQs have not been extensively explored for their anti-fouling potential, there is
ample evidence in the patent literature for their potential suitability to be used as additives
in anti-fouling coatings to prevent marine biofouling [23,24].

Marine biofouling is characterised by the undesired accumulation of organic molecules,
microorganisms, marine invertebrates, and their by-products on subsea surfaces. This
accumulation of marine organisms results in large economic losses for the shipping, oil and
gas, and renewable energy industries [25,26]. Another detrimental effect of biofouling on
ships’ hulls is the increased emission of greenhouse gases (CO2, CO, SO2, and NO2) into
the atmosphere that results from greater fuel consumption needs [27]. Additionally, the
colonisation of man-made surfaces facilitates species translocation from one geographical
zone to another during the ship’s voyage, either falling off naturally in a new habitat
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or after cleaning ships’ hulls [28]. The introduction of invasive species into non-native
environments can result in competition between species and the eventual eradication
of native species. The succession of fouling organisms is generally considered in five
main stages, a rapid process which begins with the attachment of bacterial and diatomic
cells to a submerged surface (Figure 2), which then leads to the formation of a biofilm.
Marine biofilms play an essential role in the subsequent attraction of macroorganism larvae,
which are encouraged to settle on these surfaces via various settlement cues [29]. Mussels,
barnacles, hard corals, and macroalgae then flourish on these surfaces and, over time, form
a dense accumulation of firmly attached organisms which are persistent and therefore very
difficult to remove.
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Figure 2. Five stages of typical marine biofouling: (1) substrate conditioning, (2) transport of microbial
cells to the surface and attachment of bacteria on the surface, (3) formation of a microbial biofilm,
(4) development of a complex community, and (5) attachment of larger marine invertebrates.

To inhibit this process, anti-fouling paints with AF-active additives are used by mar-
itime industries to prevent the attachment of these organisms. Nearly 200 AF-active
compounds were identified and isolated from marine microorganisms between 2014 and
2020, indicating that natural products could be used as the inspiration for developing new
AF agents [30]. In addition, 112 anti-biofilm, anti-larval, and anti-algal natural products
from marine microbes and 26 synthetic analogues were identified from 2000 to 2021 [31].
Examples of naturally potent AF agents include butenolides isolated from a marine Strepto-
myces sp., halogenated compounds from macroalgae, and bromotyrosine-containing com-
pounds from marine sponges [32–38]. Most commonly, AF activity is expressed through
inhibition of microalgal adhesion, inhibition of invertebrate larvae or algal spore settlement,
and inhibition of microbial biofilms. When testing for bacterial biofilm inhibitory activity,
it is essential to consider that besides exhibiting direct inhibitory activity, compounds
of interest may also interrupt the quorum sensing signalling system and thereby inhibit
biofilm growth.
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Bacteria use cell–cell communication mechanisms to coordinate group behaviours
in a cell density-dependent manner, a process known as quorum sensing (QS) [39,40].
Small molecule autoinducers (AIs) are constantly produced and released by bacterial
cells [41], and an increase in AIs increases bacterial population density [42,43]. Bacteria
monitor the concentration of AIs to track changes in their cell numbers and alter the
expressions of a large set of genes in a coordinated manner [44]. These systems not only
regulate the expression of genes encoding virulence factors but also other proteins which
are involved in primary metabolic processes. A range of 4–10% of the bacterial genome and
more than 20% of the bacterial proteome are influenced by QS [45]. Numerous functions,
including secretion of virulence factors, competence, sporulation, motility, bioluminescence,
antibiotic production, and biofilm formation, are controlled by QS [46]. Therefore, it has
been suggested that QS signalling systems are an obvious target for developing novel
biofilm growth-inhibiting compounds.

Gram-negative bacteria use acylated homoserine lactone (AHL) as an AI, while
Gram-positive bacteria use autoinducing peptide (AIP) as a means of communication
(Figure 3) [47]. In Vibrio carchariae, a marine biofilm-forming bacteria involved in the
biofouling process, the LuxS protein is the AI-2 synthase in the biosynthetic pathway
responsible for the production of AIs [48]. Periplasmic binding protein (LuxP) binds to
AI-2 by clamping it between two domains. Then, AI-2-bound LuxP activates the inner
membrane protein LuxQ [49]. LuxQ acts as an autophosphorylating kinase at a low cell
density that subsequently phosphorylates the cytoplasmic protein LuxU and DNA-binding
response regulator LuxO [50]. Phosphorylated LuxO represses the QS response by decreas-
ing production of the known master QS transcription factor LuxR. When AIs enter the
periplasmic space at high density and the LuxPQ complex detects them [51], the LuxPQ
receptor appears to switch from a kinase state (at low AI-2 concentrations) to a phosphatase
state (at high AI-2 concentrations), resulting in the removal of phosphate groups from
LuxU. LuxU acts as a kinase and is not able to dephosphorylate LuxO. Finally, AI-1 serves
as a species-specific QS signal and regulates LuxO phosphate levels, although through a
distinct two-component sensor kinase, LuxO [52,53].
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Figure 3. The quorum sensing mechanism of V. carchariae.

In our previous study, 19 AQ structures related to citreorosein and emodin were tested
and reported to show potential anti-fouling (AF) activity against marine biofilm-forming
bacteria [54]. These findings prompted us to conduct further research on analogues of these
AQ compounds for their AF potential using a computational approach. In the present study,
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molecular docking analysis (rigid receptor docking (RRD)) was performed to examine the
binding mode of 2194 similar AQ compounds into the binding site of LuxP in V. carchariae
to identify their potential as quorum sensing signalling inhibitors. Based on these results, a
pharmacophore study was carried out to generate structure-based pharmacophore features
for this study.

2. Results and Discussion
2.1. Virtual Screening by Molecular Docking Analysis Using a Natural Products Dataset

Based on the bioactivity, SAR, and computational studies mentioned in our previous
research, AQs could be possible additives in anti-fouling paints [54]. Therefore, a dataset of
2194 natural AQ-related structures (Table S1) was taken from the COCONUT database [55]
and docked using the same binding site of the LuxP protein of V. carchariae, as shown
in Figure 4.
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Figure 4. The docking site (grey/white colour) of the LuxP protein in V. carchariae.

The binding affinities range between −11.0 and 0 (kcal/mol). A score for each AQ-
related structure was obtained, as shown in Figure 5. However, the plot results show
that most AQs have a binding affinity between −10.0 and −6.0 (kcal/mol). Therefore,
citreorosein was considered standard in this dataset molecular docking analysis study, with
a docking value of −8.2 (kcal/mol), as mentioned in the previous study [25].

Of the 2194 compounds which were screened, 76 compounds were found as top hits
with docking values ranging from −8.0 to −10.0 (kcal/mol), as shown in Table S2. This
virtual screening was performed based on the docking score and the presence of natural
product details of the compounds in the published data.

2.2. Pharmacophore Evaluation (Structure-Based Pharmacophore)

A pharmacophore is an abstract description of the steric and electronic features re-
quired to trigger (or block) a biological response. A pharmacophore model can explain how
structurally diverse ligands bind at the receptor site based on common interaction points.
Structure-based pharmacophore modelling is a commonly used method for developing
pharmacophores based on the structural features of the target protein. Structure-based
pharmacophore modelling analyses the possible active site in the protein where the interac-
tions of co-crystallised ligands occur, which aids in the design of novel compounds with
biological activities of interest. In addition, this method searches for interactions between
ligands and the macromolecule. Due to its simplicity, this method is computationally
very efficient and is therefore exceptionally well suited for the virtual screening of large



Molecules 2023, 28, 995 6 of 15

compound libraries. From the screening, eight compounds were found with high docking
values in the range from −9.8 to −9.0 (kcal/mol): ligands 465D, 302D, 52D, 310D, 100D,
298D, 950D, and 132D. Because of their high docking value, these ligands were used for
the pharmacophore evaluation (Table 1).
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Table 1. Table showing eight ligands and types of interactions with nearby residues.

Residues 465D 302D 52D 310D 100D 298D 950D 132D
Ala239A X X X XX

Arg215A X X X

Arg310A X X X X

Asn159A X X

Asp136A X X

Asp267A X X

Gln77A X

Gly288A X

His180A X

Ile211A X X X X X X

Phe178A X X

Phe206A X X X X X X X
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Table 1. Cont.

Residues 465D 302D 52D 310D 100D 298D 950D 132D
Pro74A X

Pro109A XX

Ser79A X X

Ser265A X

Thr134A X X XX X X

Thr266A X X X X X X

Trp82A XX XX X X

Trp289A X X X

Tyr81A X X X X

Tyr210A X

Val78A X

Val268A XX

Hydrophobic (X), HBA (hydrogen bond acceptor) (X), HBD (hydrogen bond donor)
(X), AR (aromatic) (X), PI (positive ionisable area) (X), and NI (negative ionisable area) (X).

Ligand 465D interacts with the macromolecule, as shown in Figure 6A,B. It shows
hydrophobic interactions with amino acids Ala239A, Phe206A, Trp289A, and Ile211A. This
pharmacophore represents a hydrogen bond acceptor (HBA) feature with nearby water
molecules and amino acid residue Arg310A. Finally, looking at the hydrogen bond donor
(HBD) feature, the ligand interacts with the His180A amino acid residue. Based on the
interactions, this structure provides a pharmacophore with three features: hydrophobic
interactions (H), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD).
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Ligand 302D interacts with the macromolecule, as shown in Figure 7A,B. It shows
hydrophobic interactions with amino acids Thr266A, Trp82A, Thr134A, Phe206A, Trp289A,
and Ile211A. This pharmacophore also has a hydrogen bond acceptor (HBA) feature to
nearby water molecules and amino acid residues Trp82A, Ser79A, Arg215A, and Arg310A.
Looking at the hydrogen bond donor (HBD) feature, the ligand interacts with Gln77A. Based
on the interactions, this structure provides a pharmacophore with three features: hydropho-
bic interactions (H), hydrogen bond acceptor (HBA), and hydrogen bond
donor (HBD).
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Figure 7. Ligand 302D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
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Ligand 52D interacts with the macromolecule, as shown in Figure 8A,B. It shows
hydrophobic interactions with amino acids Thr266A, Phe206A, and Ala239A. This pharma-
cophore also has a hydrogen bond acceptor (HBA) feature with nearby water molecules
and amino acid residue Arg215A. Looking at the hydrogen bond donor (HBD) feature, the
ligand interacts with amino acid residues Pro74A and Asn159A. Based on the interactions,
this structure provides a pharmacophore with three features: hydrophobic interactions (H),
hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD).
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Ligand 310D interacts with the macromolecule, as shown in Figure 9A,B. It shows hy-
drophobic interactions with amino acids Thr266A, Tyr81A, Trp82A, Thr134A, and Ile211A.
This pharmacophore also has a hydrogen bond acceptor (HBA) feature with nearby water
molecules and the Trp82A amino acid residue. Looking at the hydrogen bond donor (HBD)
feature, the ligand interacts with amino acid residue SER79A. Based on the interactions,
this structure provides a pharmacophore with three features: hydrophobic interactions (H),
hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD).
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Figure 9. Ligand 310D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
interactions (H), yellow; hydrogen bond acceptor (HBA), red; hydrogen bond donor (HBD), green.

Ligand 100D interacts with the macromolecule, as shown in Figure 10A,B. It shows
hydrophobic interactions with amino acids Phe178A, Tyr81A, Thr266A, Ala239A, and
Phe206A. This pharmacophore also has a hydrogen bond acceptor (HBA) feature with
nearby water molecules and amino acid residues Asp267A, Asp136A, Thr134A, and
Asn159A. Looking at the hydrogen bond donor (HBD) feature, the ligand interacts with
the Thr134A amino acid residue. An aromatic (AR) interaction with the Arg310A amino
acid residue gives an additional pharmacophoric feature to this structure. Based on the
interactions, this structure provides a pharmacophore with four features: hydrophobic in-
teractions (H), hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and aromatic
(AR) interaction.
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Figure 10. Ligand 100D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
interactions (H), yellow; hydrogen bond acceptor (HBA), red; hydrogen bond donor (HBD), green;
aromatic (AR) interaction, purple.

Ligand 298D interacts with the macromolecule, as shown in Figure 11A,B. It shows
hydrophobic interactions with amino acids Val78A, Thr266A, Val268A, Phe206A, Thr134A,
Tyr210A, Ile211A, Phe178A, Trp82A, and Tyr81A. This pharmacophore also has a hydro-
gen bond acceptor (HBA) feature with nearby water molecules and amino acid residues
Ser265A and Val268A. Looking at the hydrogen bond donor (HBD) feature, the ligand only
interacts with nearby water molecules. An additional feature, positive ionisable area (PI),
shows interactions with Asp136A and Asp267A. Based on the interactions, this structure
provides a pharmacophore with four pharmacophore features: hydrophobic interactions
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(H), hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), and positive ionisable
area (PI).
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Figure 11. Ligand 298D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
interactions (H), yellow; hydrogen bond acceptor (HBA), red; hydrogen bond donor (HBD), green;
positive ionisable area (PI) interaction, purple.

Ligand 950D interacts with the macromolecule, as shown in Figure 12A,B. It shows
hydrophobic interactions with amino acids Tyr81A, Trp82A, Trp289A, Ile211A, and Thr134A.
This pharmacophore also has a hydrogen bond acceptor (HBA) feature with nearby water
molecules and amino acid residues Thr266A, Arg215A, and Phe206A. An additional feature,
negative ionisable area (NI), shows an interaction with Arg310A and Gly288A. Based on the
interactions, this structure provides a pharmacophore with three pharmacophore features:
hydrophobic interactions (H), hydrogen bond acceptor (HBA), and negative ionisable area (NI).
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Figure 12. Ligand 950D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
interactions (H), yellow; hydrogen bond acceptor (HBA), red; negative ionisable area (NI) interaction,
brick red.

Ligand 132D interacts with the macromolecule, as shown in Figure 13A,B. It shows
hydrophobic interactions with amino acids Ala239A, Phe206A, Pro109A, and Ile211A. This
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pharmacophore has hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD)
features with nearby water molecules. An aromatic (AR) interaction with Ala239A and
Pro109A amino acid residues gives an additional pharmacophoric feature to this structure.
Based on the interactions, this structure provides a pharmacophore with four features:
hydrophobic interactions (H), hydrogen bond acceptor (HBA), hydrogen bond donor
(HBD), and aromatic (AR) interaction.
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Figure 13. Ligand 132D interacts with the macromolecule. (A) 3D view of pharmacophore at the
macromolecule binding site. (B) 2D view of pharmacophore. Pharmacophore features: hydrophobic
interactions (H), yellow; hydrogen bond acceptor (HBA), red; hydrogen bond donor (HBD), green;
aromatic (AR) interaction, purple.

Based on the above structure-based pharmacophore experiments, there are six possible
pharmacophoric features: hydrophobic interactions (H), yellow; hydrogen bond acceptor
(HBA), red; hydrogen bond donor (HBD), green, aromatic (AR) interaction, negative
ionisable area (NI) interaction, brick red, positive ionisable area (PI) interaction, purple. In
the future, these features could make it possible to select and synthesise anthraquinones
for formulations (Figure 14).
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Figure 14. Six unique pharmacophore features: hydrophobic interactions (H), yellow; hydrogen
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ionisable area (NI) interaction, brick red; positive ionisable area (PI) interaction, purple.

3. Materials and Methods
3.1. Origin of Compounds (for Future Anthraquinone Anti-Fouling Study)

To identify potential structures for future anti-fouling research, the anthraquinone
dataset of 2194 structures was taken from the natural products database COCONUT
(collection of open natural products) [55].

Molecular docking analysis was performed using Autodock Vina v.1.2.0 (The Scripps
Research Institute, La Jolla, CA, USA) docking software [56,57]. The receptor site was predicted
using the MOE Site Finder program [58], which uses a geometric approach to calculate putative
binding sites in a protein, starting from its tridimensional structure. This method is not based
on energy models but on alpha spheres, which are a generalisation of convex hulls [59]. The
X-ray crystal structure of LuxP in complex with AI-2 (PDB: 1JX6) was retrieved from the
Protein Data Bank and utilised to perform docking simulations [60]. The box centre and size
coordinates were −18.2833 × −9.13497 × 22.3052 and 18.4165× 9.67157 × 39.6987 around
the active site. All coordinates used Angstrom units. Default search parameters were used
when the number of binding modes was 10, the exhaustiveness was 8, and the maximum
energy difference was 3 kcal/mol. Samson by OneAngstrom, 2022, [61], Chimera 1.16 [62],
and LigPlot+ software [63] were used to visualise and calculate protein–ligand interactions.

3.2. 3D Pharmacophore Model Generation (Structure-Based)

LigandScout 4.4.8 (Inte: Ligand, Vienna, Austria) advanced software [64] was used to
generate the 3D pharmacophore models. LigandScout’s algorithm calculates and displays
chemical interactions between protein–ligand complexes.

4. Conclusions

In this computational study, based on the results shown in our previously published
study, we report 76 AQ-based structures which may have anti-fouling capacity when used
as additives in anti-fouling paints. In silico screening of these structures displayed exciting
interactions with the binding site of the previously reported protein and exhibited good
binding potentials. The best eight docked AQ structures were used for structure-based
pharmacophore modelling experiments, which revealed six unique pharmacophore features
that may help guide future studies in identifying, selecting, and designing anthraquinone
structures from the large compound library or synthetically producing those that could
work individually or synergistically with other additives for anti-fouling purposes. The
authors also hope that such studies will help select AQ structures that are readily available
and cost-effective in the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28030995/s1: Table S1: Dataset of 2194 natural AQs-
related compounds from COCONUT; Table S2: 76 AQ compounds out of 2194 have docking values
between −8 and −10 (kcal/mol).

https://www.mdpi.com/article/10.3390/molecules28030995/s1
https://www.mdpi.com/article/10.3390/molecules28030995/s1
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