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Abstract. Interactions between wind and trees control en-
ergy exchanges between the atmosphere and forest canopies.
This energy exchange can lead to the widespread damage of
trees, and wind is a key disturbance agent in many of the
world’s forests. However, most research on this topic has
focused on conifer plantations, where risk management is
economically important, rather than broadleaf forests, which
dominate the forest carbon cycle. This study brings together
tree motion time-series data to systematically evaluate the
factors influencing tree responses to wind loading, including
data from both broadleaf and coniferous trees in forests and
open environments.

We found that the two most descriptive features of tree mo-
tion were (a) the fundamental frequency, which is a measure
of the speed at which a tree sways and is strongly related to
tree height, and (b) the slope of the power spectrum, which is
related to the efficiency of energy transfer from wind to trees.
Intriguingly, the slope of the power spectrum was found to re-
main constant from medium to high wind speeds for all trees
in this study. This suggests that, contrary to some predictions,
damping or amplification mechanisms do not change dramat-
ically at high wind speeds, and therefore wind damage risk is
related, relatively simply, to wind speed.

Conifers from forests were distinct from broadleaves in
terms of their response to wind loading. Specifically, the fun-
damental frequency of forest conifers was related to their
size according to the cantilever beam model (i.e. vertically
distributed mass), whereas broadleaves were better approx-
imated by the simple pendulum model (i.e. dominated by
the crown). Forest conifers also had a steeper slope of the
power spectrum. We interpret these finding as being strongly
related to tree architecture; i.e. conifers generally have a sim-
ple shape due to their apical dominance, whereas broadleaves
exhibit a much wider range of architectures with more dom-
inant crowns.

1 Introduction

Tree size and growth rate are influenced by their local
wind environment (Bonnesoeur et al., 2016; MacFarlane and
Kane, 2017) which in turn has an impact on forest carbon
storage and dynamics. Monitoring the motion of trees in the
wind can help us understand this interaction and model the
risk of wind damage (Moore et al., 2018), which is a key
driver of the forest carbon cycle in both temperate and trop-
ical regions (Espírito-Santo et al., 2014; Schelhaas et al.,
2003; Senf and Seidl, 2020).

Trees have characteristic and recognizable swaying pat-
terns. This means that tree motion time series are distinct
from each other and from the time series of local wind
speeds. These tree motion characteristics are determined by
tree size, shape, and, to a lesser extent, material proper-

ties (Dargahi et al., 2020; Jackson et al., 2019; Sellier and
Fourcaud, 2009). Therefore, just as some types of trees have
recognizable architectures, we expect them to have distinc-
tive patterns of motion in response to wind loading. For ex-
ample, trees in dense forests generally have a slender form
with a small crown near the top (MacFarlane and Kane,
2017), which leads to a slow, pendulum-like motion (Sellier
and Fourcaud, 2009).

Previous data syntheses have focused on the fundamental
sway frequency (f0) of conifers and have found that larger,
heavier trees sway more slowly than shorter, lighter ones
(Moore and Maguire, 2004). This finding demonstrates that
conifers can be approximated by a cantilever beam (i.e. a
beam with distributed mass), but it is unclear whether this
model extends to other types of trees. Jackson et al. (2019)
demonstrated that tree architecture strongly influences f0 us-
ing a combination of field data and finite element simula-
tions. Additionally, a tree’s f0 has been observed to change
over time in response to variations in tree mass and elasticity.
These changes can be used as a proxy to measure phenology
(Bunce et al., 2019; Gougherty et al., 2018) and water status
of trees (Ciruzzi and Loheide, 2019) at high time resolution
(e.g. every 10 min or hour) using low-cost sensors. There-
fore, tree motion characteristics are expected to change with
the seasons, with the presence or absence of leaves in de-
ciduous trees and the freezing soil in high latitudes having
important effects (Bunce et al., 2019).

Energy is transferred from the wind to a tree due to aero-
dynamic drag and is then dissipated by damping mechanisms
in the tree. The balance between energy transfer from the
wind to the tree and energy dissipation by damping deter-
mines a tree’s risk of wind damage. A number of processes,
both amplifying and damping the tree motion, have been sug-
gested to become significant in the high wind speed regime,
for example, damping by branching, whereby the branching
patterns of open-grown trees increase damping efficiency by
transferring energy to the outermost branches where it can
be efficiently dissipated (de Langre, 2008, 2019; Spatz and
Theckes, 2013; Theckes et al., 2011). Another example is
the dynamic amplification of the tree motion as the peak en-
ergy of the wind spectrum approaches the natural frequency
of the tree, inducing resonant effects (Blackburn et al., 1988;
Ciftci et al., 2013; Holbo et al., 1980; Oliver and Mayhead,
1974; Rodriguez et al., 2008). We cannot measure these pro-
cesses in the field, but the slope of the power spectrum (Sfreq)
can be used as an overall measure of energy transfer between
wind and tree at different frequency ranges (van Emmerik et
al., 2017, 2018). The spectrum of the tree is essentially the
spectra of the wind, modified by the properties of the tree
(Gardiner, 1992; Kerzenmacher and Gardiner, 1998; Mayer,
1987; Sellier et al., 2008). Therefore, the slope of the tree
spectrum (Sfreq) is the result of the energy transfer between
wind and tree, as well as the energy transfer within the tree
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itself. We calculate Sfreq for each hour of tree motion data
and look for changes with increasing wind speed.

This study brings together data on tree motion from tropi-
cal, temperate, and boreal regions to explore key similarities
and differences in the motion of these trees in the wind. We
do this by comparing features calculated from the tree motion
time-series data. While Sfreq and f0 are clearly important fea-
tures of tree motion, thousands of other time-series features
have been developed across multiple disciplines which may
provide further insight. Fulcher and Jones (2017) compiled a
set of over 7700 time-series features, and Lubba et al. (2019)
distilled them to the most descriptive and minimally redun-
dant 22 features (“catch22” features). We use these catch22
features, as well as f0 and Sfreq (and associated features de-
scribed in the methods), to systematically explore the sim-
ilarities and differences in the way trees move. We expect
to find differences between conifers and broadleaves due to
their different architectures (Jackson et al., 2019), as well as
between open-grown trees and those in forests.

The specific questions we address are the following:

Q1. What models best predict the fundamental frequency of
broadleaf trees and conifers?

Q2. Are characteristics of tree motion distinct between tree
groups (conifers, broadleaves, forest, open-grown)?

Q3. To what extent does increasing wind speed (or the
change between summer and winter) change the char-
acteristics of tree motion?

2 Methods

2.1 Description of the data

We collated data from 20 studies that included 243 trees
and more than 1 million hours of tree motion data at reso-
lutions ranging from 4 to 20 Hz. These collated data are now
available online (Jackson et al., 2021). These studies used
three types of sensor: (1) strain gauges which measure the
bending strains at the base of the tree (Moore et al., 2005),
(2) inclinometers measuring the changing inclination angle
of the trunk (Bunce et al., 2019; Schindler et al., 2010), and
(3) accelerometers measuring the acceleration at the top of
the trunk (van Emmerik et al., 2017). We refer to these in
general as measures of tree deflection. Five studies addition-
ally measured branch motion, which is not used here but may
provide further insight in future studies. Some data sets span
multiple years, while others are confined to a short time dur-
ing windy conditions. Most data sets contained tree height
(H ) and diameter at breast height (dbh) measurements and
tree species data. Many of the individual studies in our data
set did not measure high-resolution (>1 Hz) wind speeds be-
cause this requires sonic anemometers and so would substan-
tially increase the cost of the field study. Also, in most cases
the wind measurements were not in the same location as the

trees, which hinders detailed analysis at high time resolu-
tion. We therefore focus on analyses which do not require
high-resolution wind speed data (although we explore these
data in Supplement S2). For the purposes of our analyses, we
categorized trees as broadleaf or conifer and as open-grown
or forest (as defined by the data owners). Table 1 gives an
overview of the data sets.

2.2 Data processing and feature extraction

We resampled each time series to the lowest sampling fre-
quency in the data set (4 Hz) to avoid sampling rate con-
founding our analysis. This frequency was sufficient to cap-
ture tree motion characteristics for all trees in our sample.
Although each type of sensor measures a different property
of tree motion, these properties are very strongly correlated
and are complementary measures of tree motion. Each type
of sensor has its own units, so absolute values are only com-
parable for this sensor type. All sensors are susceptible to a
drift in the measurements resulting in an offset which varies
slowly with temperature and other environmental factors.
This is particularly evident in the strain gauges presumably
because they are directly attached to the tree and so respond
to the daily changes in tree diameter. We removed this offset
using a 10 min high-pass Butterworth filter and applied the
same filter to inclinometer and accelerometer data to ensure
a fair comparison. This filter effectively removes the low-
frequency (variations slower than 10 min) part of the tree
motion, including any mean displacement and offset in the
data. This period seems reasonable to capture most effects of
wind–tree interaction, although open-grown trees exposed to
strong winds may be displaced from their resting position for
continuous long periods of time due to the mean wind speed
on this timescale (Angelou et al., 2019; James et al., 2006).
Therefore, different data filtering techniques may be more
appropriate for open-grown trees (Angelou et al., 2019).

We selected 1 h samples during the windiest conditions
available for each tree and calculated all tree motion features
for all 243 trees in our data set. We first calculated features
from the combined horizontal components of tree motion.
We fitted an extreme value distribution and retained the shape
parameter, k, which does not depend on the absolute values
and so is comparable across sites. The scale and location pa-
rameters of the extreme value distribution depend on absolute
values, and we did not use them in this study. Next, we cal-
culated features from tree motion along a single axis of mo-
tion, since combining the two horizontal axes distorts impor-
tant features such as f0. The coordinate systems of each tree
were not aligned with the wind direction. We therefore used
a principal component analysis to select the axis with highest
variance, the “stream-wise” component, and the perpendicu-
lar “cross-stream” component. We calculated the ratio of the
explained variance in the two components, a measure of how
elliptical the tree sway pattern is. We found that the cross-
stream component did not contribute additional information,
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Table 1. Overview of the data sets used in this study. Links to download the data sets are provided in the “Data availability” section.

Site Country Year Group No. trees Sensor Resolution (Hz) Wind resolution

Rivox UK 1988 Conifer forest 4 Displacement 10 10 Hz
Kershope UK 1989 Conifer forest 11 Strain gauges 10 10 Hz
Whitecourt Canada 1999 Conifer forest 10 Inclinometers 10 0.2 Hz
Clocaenog UK 2005 Conifer forest 9 Strain gauges 4 10 Hz
Kyloe UK 2006 Conifer forest 9 Strain gauges 4 10 Hz
Belchertown USA, MA 2006 Broadleaf open 9 Strain gauges 20 –
Various Australia 2006 Mixed open 9 Strain gauges 20 1 Hz
Guanica Puerto Rico 2007 Broadleaf forest 9 Strain gauges 4 –
– USA, OR 2011 Broadleaf open 3 Accelerometer 20 –
Gauting Germany 2011 Conifer open 2 Accelerometer 20 –
Hechendorf Germany 2012 Conifer open 2 Strain gauges 6 –
Storrs USA, CT 2013 Broadleaf forest 13 Inclinometer 10 30 min
Alexandra Singapore 2013 Broadleaf open 4 Accelerometer 10 –
Orange USA, CT 2015 Broadleaf forest 14 Inclinometer 10 30 min
Torrington USA, CT 2015 Mixed forest 14 Inclinometer 10 30 min
Manaus Brazil 2015 Broadleaf forest 19 Accelerometer 10 15 min
Various USA 2016 Broadleaf open 9 Accelerometer 10 –
Hartheim Freiburg 2016 Conifer forest 4 Inclinometers 10 10 Hz
Morton Arboretum USA, IL 2016 Broadleaf open 8 Accelerometers 10 –
Wytham UK 2016 Broadleaf forest 21 Strain gauges 4 1 Hz
Risø Denmark 2017 Broadleaf open 1 Strain gauges 20 20 Hz
Danum Malaysia 2017 Broadleaf forest 19 Strain gauges 4 1 Hz
Fond du Lac USA, WI 2018 Broadleaf forest 4 Accelerometer 16 5 min
Trout Lake USA, WI 2018 Broadleaf open 8 Accelerometer 16 1 min
Montmorency Canada 2018 Conifer forest 15 Strain gauges 5 5 Hz
Big Sur USA, CA 2018 Conifer forest 2 Accelerometer 5 10 min
Appalachian Lab USA, MD 2019 Broadleaf open 20 Accelerometer 10 –
Various Germany 2019 Mixed open 16 Inclinometer 20 –
Freiburg Germany 2019 Conifer open 1 Accelerometer 10 10 Hz
Hartheim Germany 2019 Conifer open 1 Accelerometer 10 10 Hz
Göttingen Germany 2019 Broadleaf open 1 Inclinometer 20 –

and so all analysis in this study used the stream-wise compo-
nent of tree sway only. This is similar to using a time series
from a single, horizontal axis of motion which is aligned with
the dominant direction of the wind loading.

We centred and scaled the stream-wise component of
tree sway and calculated the catch22 features (Lubba et al.,
2019). These 22 features were selected to be maximally de-
scriptive over a wide range of time-series data. Examples
of these features are (1) the time interval between succes-
sive extreme events above the mean, (2) the mean error from
forecasting the next value of the time series as the mean of
the previous three, and (3) the centroid of the Fourier power
spectrum. For more details of these features please see the
Supplement and the original publications (Fulcher and Jones,
2017; Lubba et al., 2019).

We also calculated the power spectral density of the
stream-wise component using Welch’s method (Welch,
1967). We then calculated the slope of the power spec-
trum, Sfreq, by fitting a linear model between log-transformed
frequency and log-transformed power spectral density (van

Emmerik et al., 2017). Since different frequency ranges rep-
resent different physical scales of energy transfer between
wind and trees (see Fig. 1), we calculated this slope for
multiple frequency ranges (0.05–0.8, 0.8–2, and 0.05–2 Hz).
We test the sensitivity of this feature to different frequency
ranges and fitting methods in the Supplement (S1) and found
that the trends and differences between trees are not sen-
sitive to the choice of frequency range, although the abso-
lute values are. We tested calculating Sfreq with reference to
the tree’s f0, but this method proved too noisy at low wind
speeds. Finally, we extracted the frequency, width, height,
and dominance of the f0 peak from the stream-wise compo-
nent. The dominance was defined as the ratio of the funda-
mental peak height to the sum of all the heights of all other
peaks in the spectrum (Jackson et al., 2019). In this study
we focus on the features which help distinguish between tree
types or are correlated with tree size. We do not discuss those
features which do not meet these criteria, although these fea-
tures may also exhibit interesting trends that warrant further
study.

Biogeosciences, 18, 4059–4072, 2021 https://doi.org/10.5194/bg-18-4059-2021
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Figure 1. Overview of the study design. (a) Conceptual diagram of data collection showing three “types” of trees (colours) swaying in the
wind. (b) A 5 min sample of tree motion data for three trees. (c) Fourier transformed data used to calculate the fundamental frequency, slope
of the power spectrum, and related features.

2.3 Linear models of fundamental frequency against
tree size and tree type

The aim of this analysis was to test whether the previously
observed relationship between f0 and tree size holds across
the additional data in this study, especially the broadleaves.
In addition to the detailed tree motion data for the 243 trees
described above, we collated summary data on f0 and tree
size for a further 591 trees (Baker, 1997; Moore and Maguire,
2004). We used a linear regression on log-transformed data
to explore the relationship between f0 and tree size. We

tested the simple pendulum model
√

1
H

, where H is the tree

height, and a cantilever beam model dbh
H 2 . This study improves

upon previous work (Jackson et al., 2019) by (1) increasing
the sample size in the underrepresented open-grown trees,
(2) calculating f0 in a consistent way across the 243 time se-
ries instead of using summary data, and (3) testing the simple
pendulum model. Initial results showed that different models
were more appropriate for conifers and broadleaves, so we
performed a separate analysis for each tree type instead of us-
ing multiple linear regressions. We report the best fit models
based on the coefficient of determination (R2) and Akaike’s
information criterion (AIC) (Pan, 2001).

2.4 Classifying tree types based on tree motion features

The aim in this analysis was to test whether different types
of trees exhibited distinct, characteristic motion in the wind.
We note that we could not account for systematic differ-
ences in wind conditions with these data. We first tested
whether the trees grouped into the predefined groups (open-
grown broadleaf, forest broadleaf, open-grown conifers, for-
est conifer) using a principal component analysis. We then
used supervised methods (linear discriminant analysis and
multinomial regression) to determine which two features best
classified the trees into types. We also used a 10-fold cross-
validation with a 50 : 50 training to testing data ratio to test
whether the trees could be classified by type according to the
features of their motion using a random forest model. We as-
sessed the classification accuracy using Cohen’s kappa (Co-
hen, 1960). We centred and scaled all features prior to anal-
ysis.

Note that our sample did not contain enough open-
grown conifers to perform statistical analysis on this group.
We therefore performed the above analysis on 89 forest
broadleaves and the 63 open-grown broadleaves and the 63
forest conifers. The 17 open-grown conifers were projected
onto the resulting axes in Fig. 3. Since the sample sizes in
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each group were not equal, we randomly resampled the larger
groups to the size of the smallest (N = 63) and repeated each
analysis with this approach 50 times. We use this evenly sam-
pled data set in the linear discriminant analysis and random
forest classification analysis but not in the principal compo-
nent analysis because it did not make a substantial difference.

We tested whether the classification analysis was likely
impacted by the unequal tree size distributions in each
tree type category. We used a subset of 169 trees (86
forest broadleaves, 54 forest conifers, and 29 open-grown
broadleaves) for which we have raw tree motion data, as
well as tree size data. We used a mixed-effects model (lme4)
to predict tree size from the tree motion features and tree
type (included in the model as a factor). We conducted sepa-
rate analyses for tree height and dbh, and the best predictors
were ordered using a two-way stepwise procedure based on
minimizing AIC (Pan, 2001). The factor “tree type” was the
seventh most explanatory feature in the model of height and
ninth in the model of dbh (see Supplement S4 for details).
This demonstrates that tree size is more strongly related to
tree motion features than it is to tree type. Therefore, the re-
lationship between tree type and tree motion features is un-
likely to be confounded by differences in tree size, and hence
the results of our classification analyses are valid.

2.5 Tracking changes in key tree motion characteristics
with increasing wind speed

The aim of this analysis was to test whether the relationship
between tree motion and wind speed varies between summer
and winter and whether Sfreq changes in a predictable way
with wind speed. For the data sets with long-term tree motion
and wind speed data (N = 103 trees, 74 forest broadleaves
and 29 forest conifers), we calculated each of the features
described above for every hour of data available. We also cal-
culated the hourly mean wind speed, the maxima, and 99th
percentile of the tree deflection. We fitted a linear model to
the relationship between tree deflection and squared wind
speed for each tree separately and saved the coefficient, the
slope of this fit line. We then calculated the ratio of the slope
in summer (defined as 1 May–31 September) to the slope
in winter. For deciduous trees, this ratio indicates whether
the increased drag due to leaves in summer causes increased
deflection or whether other mechanisms such as sheltering
and damping compensate. We excluded trees with low sam-
ple sizes (<10 h), open-grown trees (due to low sample size),
and tropical trees from this analysis. We therefore focussed
on the comparison between deciduous forest broadleaves and
forest conifers.

As the wind speed increases, both the drag coefficient and
damping mechanisms will change (e.g. due to streamlining).
The frequency range in which energy transfers from the wind
to the tree will therefore shift, and this will be reflected in
the slope of the power spectrum. Since our study contains a
number of different forest structures, as well as open-grown

Table 2. Summary statistics for linear models predicting funda-
mental frequency using the cantilever beam model and the sim-
ple pendulum model for three groups of trees. The data were log-
transformed prior to model fitting.

Group N Model R2 AIC

Conifer forest 631 Cantilever beam 0.67 −354
Simple pendulum 0.29 142

Broadleaf forest 111 Cantilever beam 0.13 78
Simple pendulum 0.61 −11

Broadleaf open 89 Cantilever beam 0.55 110
Simple pendulum 0.67 82

trees, we cannot assume all sites have similar wind spectra.
We therefore study the change in Sfreq with wind speed for
all 103 trees individually. We display these data by fitting a
smoothing spline to them.

3 Results

3.1 Relationship between tree size and fundamental
frequency

Figure 2 shows an overall decrease in f0 with tree height, es-
pecially between 5 and 20 m. These short trees are mostly
from conifer forests, the majority of which were included
in a previous review (Moore and Maguire, 2004). The
open-grown broadleaves display a similar sharp decrease
in f0 with height, although they are offset by approximately
0.5 Hz, which may be due to their wider stems. Table 2 shows
that the best predictor of f0 for the conifers was the can-
tilever beam model

(
f0 ∼

dbh
H 2

)
as demonstrated by Moore

and Maguire (2004). This is unsurprising, since data from
the previous review dominate this group of trees, but this re-
lationship still holds in the new data for forest conifers. How-
ever, for both open-grown and forest broadleaves the simple

pendulum model
(

f0 ∼

√
1
H

)
was the best predictor of f0.

It is important to note that the taller trees in our study are
almost exclusively broadleaves, and almost all were from a
forest environment. Also, a mixed-effects model showed that
f0 was the feature most strongly correlated with tree height
out of all the features in this study and that tree group, in-
cluded in the model as a factor, was relatively unimportant
(see Supplement S2 for details). This confirms that the trends
we observed hold across groups, as well as within them, and
do not represent group differences.

3.2 Differences between types of trees

Figure 3 shows considerable overlap in the features of all
groups of trees in this study. The trees from conifer forests
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Figure 2. (a) Fundamental frequency against tree height on a linear scale. Small panels on log–log scales show fundamental frequency
against (b) the simple pendulum model and (c) the cantilever beam model.

Figure 3. Features of tree motion from 229 trees during summer high (local) wind speed conditions projected on (a) first two principal
component axes (arbitrary units) and (b) maximally discriminant axes (original units, unscaled). Ellipses represent Student’s t distributions
around the data and were only drawn around groups with sufficient samples: broadleaf forest (N = 86), conifer forest (N = 63), and broadleaf
open (N = 63).

are grouped together and cover a small proportion of the
variance in both panels. The open-grown conifers seem to
mainly overlap with the open-grown broadleaves, but we did
not have enough samples to test this statistically. The forest
broadleaves covered the largest area and overlapped with all
other groups. We tested whether sample size affected this pat-
tern by randomly sampling a subset of the forest broadleaves
to the same sample size as the other types and repeating the
analysis and found no substantial change in the distribution.

As expected, given that the catch22 features were designed
to be minimally redundant, the principal components did not
explain a large amount of the total variation across all fea-
tures (Fig. 3a). The first principal component was driven

by catch22 features, primarily the mean error from a rolling
three-sample mean forecasting. The second principal com-
ponent, while it only explained 14 % of the variation, helped
distinguish between the groups of trees. The second principal
component comprised mainly spectral features, specifically
Sfreq and the height of the fundamental frequency peak.

Figure 3b shows how the trees group along the two most
discriminant features, determined using linear discriminant
analysis and multinomial regression. It shows a clear sepa-
ration between forest conifers and open-grown broadleaves,
driven by Sfreq, which is related not only to the damping ef-
ficiency of the tree but also to the energy spectrum of the
local wind loading (see “Discussion”). We note that a mixed-
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effects model analysis showed that Sfreq was strongly corre-
lated with dbh but that tree group, included in the model as
a factor, was not (see Supplement S2 for details). The x axis
provides the best separation of forest broadleaves from the
other groups based on the mean error from a 1 s forecast (pre-
dicting the fourth value from the previous three in a 4 Hz sig-
nal). This feature describes how predictable the signal is at
short timescales and is likely influenced by both the speed
and responsiveness of the tree motion, as well as the level of
noise in the signal.

We performed multiple classification tasks using a ran-
dom forest model with evenly balanced groups (N = 63),
a 50 : 50 training to testing data split, and a 10-fold cross-
validation approach. In all cases we found that the stream-
wise catch22 features improved classification ability com-
pared to using only the features from the literature but that
the cross-stream features added minimal further informa-
tion. We found a moderate classification ability, Cohen’s
kappa= 0.646, for the three-group classification (omitting
open-grown conifers due to lack of data). Two group classi-
fication analyses for the forest broadleaves against the other
groups had slightly lower accuracy (kappa= 0.533 for open-
grown broadleaves and kappa= 0.639 for forest conifers).
However, the two-group classification between open-grown
broadleaves and forest conifers resulted in a high accuracy,
kappa= 0.90. These results align with our qualitative inter-
pretation of the overlap between groups in Fig. 3, as de-
scribed above.

3.3 Changes in tree response with wind speed

Figure 4a shows a typical power-law relationship between
tree deflection (in this case measured as inclination) and
wind speed. Figure 4b shows how much more deflection oc-
curs for a given wind speed in summer as compared to win-
ter. As expected, we found that the deflection of the decid-
uous broadleaves increased more than that of the conifers
(p<0.001) due to the presence of leaves in summer. In-
terestingly, we also observed an increase in some conifers,
possibly due to soil conditions, and a decrease in a few
broadleaves, possibly due to sheltering effects. We note that
wind speeds were measured in different locations for each
experiment, mostly outside the forest or at canopy height,
meaning that the reported wind speeds do not represent in-
flow wind speed for each tree.

Figure 4c shows a sharp decrease in Sfreq at low wind
speeds, followed by a constant Sfreq above 3–4 m/s. For this
tree we found a slight difference between summer and winter,
but there was no systematic difference across all deciduous
trees, so we combined data from both seasons in the follow-
ing analysis. Figure 4d shows Sfreq for all trees with >10 h
of data (N = 93). As in Fig. 4c, we see an initial decline fol-
lowed by a constant Sfreq above a given threshold. Part of this
trend is likely driven by noise at low wind speeds since the
sensors will not reliably measure very low-level tree motion.

However, since our data set contains a wide variety of sen-
sors, some of which are extremely sensitive and which all ex-
hibit similar patterns, we do not believe that the noise at low
wind speeds is the (main) reason for the pattern. We found
no systematic difference in this behaviour between types of
trees.

4 Discussion

4.1 Key features of tree motion

As expected, we found that f0 was a key feature of tree
motion, being strongly correlated with tree height (Figs. 2
and S3–S4) and playing an important role in distinguish-
ing between tree types. We showed that Sfreq was stable at
medium-high wind speeds (Fig. 4d) and this was the feature
which best distinguished the different types of trees. The fact
that two features previously used in the literature remain im-
portant when compared to the catch22 features, which were
specifically designed for time-series classification, demon-
strates that these two features capture key characteristics of
tree motion. Interestingly, the width, height, and dominance
of the fundamental frequency peak were not important fea-
tures in this analysis; i.e. they did not explain much of the
difference between tree types and were not strongly corre-
lated with tree size.

We also found that a number of catch22 features were
important for classifying tree types and were highly corre-
lated with tree size (S3–S4). In particular, the mean error
from a rolling three-sample mean forecast was important
in distinguishing tree types (Fig. 3b). We interpret this fea-
ture as a measure of the regularity of the tree motion at 1 s
timescales (all signals were analysed at 4 Hz). This regular-
ity could be related to the wind conditions (i.e. a turbulent
wind in a multi-layered forest leading to lower regularity)
or the properties of the tree. For example, a small fast mov-
ing conifer would be less predictable, and a large broadleaf
with complex branching architecture may be less affected by
changes in wind loading and therefore be steadier and more
predictable (Rodriguez et al., 2012; Theckes et al., 2011).
We found that cross-stream features were superfluous in our
analysis; i.e. the features from the literature and stream-wise
catch22 features explained as much of the variability as was
possible using this approach.

4.2 Differences in motion characteristics between tree
types

We were surprised, given their differences in architecture,
to find no clear separation between open-grown trees and
forest trees in our clustering analyses (Fig. 3) and a rel-
atively low accuracy in classifying these groups based on
their motion. We did, however, observe that the open-grown
conifers overlapped mostly with the open-grown broadleaves
rather than the forest conifers, but the low sample size in this

Biogeosciences, 18, 4059–4072, 2021 https://doi.org/10.5194/bg-18-4059-2021



T. D. Jackson et al.: The motion of trees in the wind: a data synthesis 4067

Figure 4. Changes in tree motion characteristics with wind speed for trees in forests. (a) Tree inclination angle against wind speed measured
outside the forest for an example deciduous tree (Acer rubrum in Orange, Connecticut) in summer and winter with power-law fit lines
overlaid. (b) Ratio of power-law fit slopes in summer and winter for all trees with >10 h of data in both seasons, excluding tropical trees. The
horizontal black lines represent the median value. (c) Slope of the power spectrum (between 0.05 and 2 Hz) for a single tree (same as panel
a) in summer and winter with smoothing splines overlaid. (d) Same as panel (c) but for all trees. Trends are approximated by smoothing
splines, and summer and winter data are combined.

group (N = 17) hindered any statistical analysis. Given their
markedly divergent growth forms (MacFarlane and Kane,
2017), we expected open-grown trees to behave quite dif-
ferently to the slender trees found in a forest environment
(Q2). This lack of difference could be due to the diversity
of broadleaves in this sample and difficulty of defining the
boundary between open-grown and forest trees (in this study
the data owners provided their own interpretation). This neg-
ative result may be interpreted as good news from a wind
damage modelling point of view since it suggests that exist-
ing models (developed for conifer forests) may be generaliz-
able to open-grown trees.

We found a consistent and distinct grouping of the for-
est conifers in both the supervised and unsupervised cluster-
ing analyses (Fig. 3) which is also reflected in the classifi-
cation analysis. This was driven by their steeper Sfreq, which
suggests a difference in either the wind–tree energy transfer
or the damping mechanisms. We also found that the f0 of
conifers was best predicted by the cantilever beam model
(i.e. a beam with distributed weight) (Moore and Maguire,
2004). Broadleaves, however, were best approximated by the
pendulum model (i.e. dominated by the weight of the crown)

(Q1). This is likely due to the higher, heavier, and more dis-
tinct crowns of broadleaves determining the characteristics
of their motion more strongly than the distributed crowns of
conifers. Together, these findings support the theory that the
motions of coniferous trees are relatively similar due to their
simple architecture (Jackson et al., 2019), whereas the oppo-
site is true of broadleaves in general. On this basis, we would
expect emergent tropical trees, which also have a simple and
consistent architecture, to respond to wind in a similarly pre-
dictable way. If this is the case (we did not have sufficient
data from tall trees to test this theory here), this could en-
able a simple yet accurate wind damage model for tropical
forests focussing only on the large trees which store the ma-
jority of the forest carbon (Bastin et al., 2015). We note that
the conifers in this study were considerably smaller than the
broadleaf trees. We suggest that the simpler pendulum model
may be valid for a wider range of tree sizes than the can-
tilever beam model, and it would be interesting to test this
for a range of tall conifers.

It is important to note that, in order to maximize the num-
ber of trees in our study, the clustering analyses did not in-
corporate any wind data. Therefore, differences in wind envi-
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ronment may confound differences in tree response. For ex-
ample, the grouping of the conifers could be explained if pat-
terns of wind flow over conifer forests are generally similar,
but wind flow over broadleaf forests and open-grown trees
is more variable. This emphasizes the importance of collect-
ing high-resolution (>1 Hz) wind data alongside tree motion
data to understand the details of this interaction. These data
are currently lacking for open-grown trees and especially for
tropical forests.

4.3 Trends with increasing wind speed and seasonal
differences

As expected, maximum tree deflection (measured by either
acceleration, inclination, or bending strain) increased with
wind speed (Fig. 4a). We found that the gradient of this in-
crease was generally steeper in summer for the deciduous
trees (Q3) (Fig. 4b) presumably because their leaves provide
a larger sail area. This effect is consistent with an increased
drag on trees with leaves found in previous studies (Dell-
wik et al., 2019; Kane and Smiley, 2006). High wind speeds
are more common in winter, so losing leaves will reduce a
tree’s risk of wind damage. However, for some deciduous
trees this ratio was below 1, which could be explained by in-
creased sheltering from nearby trees. We also found a slight
increase in the tree deflection in summer for some conifers
which could be explained by soil conditions or wood proper-
ties, especially in the sites which freeze in winter, although
additional measurements would be required to test this.

The spectrum of the tree (characterized by Sfreq) is es-
sentially the spectra of the wind, modified by the proper-
ties of the tree. We observed a remarkably constant Sfreq
from medium to high wind speeds. This plateau in Sfreq sug-
gests that the frequencies at which energy is transferred from
the wind to the tree do not change in the high wind speed
regime. This plateau in Sfreq suggests that no important ad-
ditional damping or amplification mechanisms emerge above
this threshold, meaning that wind damage risk is likely sim-
ply to increase with wind speed. We note that the classifica-
tion analysis and correlation of features with tree size used
these stable, high wind speed Sfreq values.

We could not explain the fact that Sfreq increased from low
to medium wind speeds. We found a wide variation between
individual trees in the shape of this curve, as well as the
stable value, but we found no consistent difference between
seasons, suggesting it is not driven by leaf streamlining pro-
cesses.

4.4 Future research directions

A number of research questions arise from this study and the
collation of this data set. Most importantly, does wind dam-
age risk increase with tree height? Damage assessments after
destructive windstorms have shown a larger proportion of tall
trees uprooted or snapped (Magnabosco Marra et al., 2018;

Rifai et al., 2016), which suggests that large trees are more
vulnerable to wind damage. However, post-damage assess-
ments may be confounded by other processes, such as disease
or lightning, driving the observed pattern in tree mortality.
Wind damage risk was measured directly on living trees and
found to increase in two conifer forests (Duperat et al., 2020;
Hale et al., 2012) and a tropical forest in Malaysia (Jackson
et al., 2020). It would be highly valuable to extend this anal-
ysis across all trees with long-term data in this study to test
whether this trend is consistent. However, the different types
of sensors used to measure tree motion and their mounting
positions made these data difficult to interpret in terms of risk
across sites. We recommend the use of strain gauges to mea-
sure tree motion in this case since they provide comparable
absolute values which can be related to the risk of mechanical
damage. In addition, the low number of trees in each individ-
ual experiment limited the applicability of a mixed-effects
model in this context. We note that this research question
could be answered with local hourly wind speed measure-
ments and therefore does not require sonic anemometers and
so could be achieved at low-cost. To aid comparison between
sites, locally measured wind speeds could be related to some
near-surface reference wind speed available at hourly resolu-
tion, such as the hourly 10 m wind gust product provided by
the European Centre for Medium-Range Weather Forecasts.

Collating this data set highlighted the paucity of data avail-
able for open-grown conifers, with the exception of James
et al. (2006). The low number of these trees in our data set
precluded statistical analysis, and further data collection in
this area would be highly valuable. We also note the low
representation of tropical forests, which are likely to be the
most complex due to their structure and diversity. Neither of
the two tropical sites in this study had high-resolution wind
speed data for high wind periods.

A number of single-site studies have demonstrated in-
triguing relationships between fundamental frequency and
ecological processes such as phenology, water status, rain
interception, and drought (Bunce et al., 2019; Ciruzzi and
Loheide, 2019; van Emmerik et al., 2018; Gougherty et
al., 2018). Extending these analyses across the full data set
would allow us to test how robust these relationships are and
therefore whether trees can be used as indicators of ecologi-
cal processes in other ecosystems. This could be particularly
interesting in sites which freeze in winter since this will have
a profound effect on the wood elasticity. Additional data col-
lection for these purposes should use inertial measurement
units (IMUs) which combine accelerometers, inclinometers,
and magnetometers because the signals have a lower drift
than the strain gauges.

In addition, there has been a long-standing debate on the
potential role of resonance between the wind and the tree
leading to wind damage (i.e. a high-energy frequency in the
wind spectra coinciding with f0) (Blackburn et al., 1988;
Holbo et al., 1980; Oliver and Mayhead, 1974; Rodriguez et
al., 2008; Schindler et al., 2010; Schindler and Mohr, 2018).
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Previous work used singular spectrum analysis to show that
the oscillatory component of tree sway diminished with wind
speed for four forest Scots pine trees (Schindler and Mohr,
2018). This result shows that no resonance between wind and
tree occurs at the observed wind speeds and that resonance is
unlikely to occur at higher wind speeds. It would be useful to
test whether this result holds across all the trees in the current
study.

The subset of data with high-resolution wind speed mea-
surements could be used to explore energy transfer and
damping efficiency of different trees. In particular, the iden-
tification of Sfreq as a key feature of tree motion, possibly
related to the drag factor and damping efficiency, warrants
further exploration (van Emmerik et al., 2018). Further data
collection aimed at understanding the mechanisms involved
in energy transfer from the wind to the tree should use arrays
of sonic anemometers above and below the canopy close to
the target trees to collect high-resolution (>5 Hz) local wind
speed data. We suggest future studies of this kind combine
multiple sensors to measure tree motion and follow a stan-
dardized protocol to calibrate the sensors and so ensure data
are comparable between studies.

5 Conclusions

In this study, we collated data on tree motion in order to ex-
plore the key similarities and differences amongst trees, as
well as possible trends with tree size and wind speed. We
compared trees and tested trends based on features extracted
from the tree motion time series.

We found that trees in conifer forests exhibit similar re-
sponses to wind loading and that these were distinct from
those of broadleaves, presumably as a result of their simpler
branching architecture. However, we could not reliably dis-
tinguish between open-grown and forest broadleaves based
on their motion in the wind despite their substantial archi-
tectural differences. Our analysis confirms previous studies
showing that the fundamental frequency, which describes the
speed of tree sway, is a robust feature with which to com-
pare the motion of trees and which is strongly related to tree
size. Future studies should examine how the fundamental fre-
quency of trees changes over time since this is related to tree
mass and elasticity and hence to a range of important ecolog-
ical processes such as leaf phenology and water status.

We also found that the slope of the power spectrum, which
is related to the wind–tree energy transfer, is an important
feature in distinguishing tree types and displayed consistent
trends with wind speed. All trees in this study exhibited a re-
markably constant slope of the power spectrum from medium
to high wind speeds in both summer and winter. This sug-
gests that the relationship between wind loading and tree
deflection is simply related to wind speed in the high wind
speed range. This result could be an important contribution

to estimating wind damage risk and understanding the role
of wind in forest ecology more generally.
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able at https://doi.org/10.5285/533d87d3-48c1-4c6e-9f2f-
fda273ab45bc (Jackson, 2018a). The Danum Valley data are
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