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Abstract

In this dissertation we give a combinatorial characterization of all the weighted r-path
suspensions for which the f-weighted r-path ideal is Cohen-Macaulay. In particular, it is shown
that the f-weighted r-path ideal of a weighted r-path suspension is Cohen-Macaulay if and only
if it is unmixed. Type is an important invariant of a Cohen-Macaulay homogeneous ideal in a
polynomial ring R with coefficients in a field. We compute the type of R/I when I is any Cohen-
Macaulay f-weighted r-path ideal of any weighted r-path suspension, for some chosen function f.
In particular, this computes the type for all weighted trees T, such that the corresponding ideal is

Cohen-Macaulay.
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Chapter 1

Introduction

Combinatorial commutative algebra is a branch of mathematics that uses combinatorics and
graph theory to understand algebraic constructions; it also uses algebra to understand objects in
combinatorics and graph theory. Richard Stanley was the first to strongly leverage commutative
algebra techniques to study combinatorial objects in his proof of the upper bound conjecture for
simplicial spheres [12]. His focus was on square-free monomials ideals. Since then, the study of

square-free monomial ideals has become a very active area of research in commutative algebra.

1.1 Graphs and Ideals

In this dissertation, we explore aspects of this area via path ideals of graphs and edge-
weighted graphs.

On the graph-theoretic side, let G be a (finite simple) graph with vertex set V = V(G) =
{v1,...,v4} and edge set E = E(G). To the graph G, one can attach a positive integer-valued
function w : E — N, producing an edge-weighted graph G,,.

On the algebraic side, let K be a field, and consider the polynomial ring R = K[X7,..., X4].
Villarreal [13] defined the edge ideal of G to be the ideal I(G) that is “generated by the edges of G”:

I(G) = (XZX] ‘ Vv € E)R

By definition, the edge ideal I(G) is square-free.



Example 1.1.1. Let G be the following graph and R = K[X1, X, X3, X4, X5].

U3
V2 V4

U1

The edge ideal of G is
I(G) = (X1 X2, X0 X3, X0 X4, X3X4, X4 X5)R.

Paulsen and Sather-Wagstaff [10] introduced the weighted edge ideal of G,, to be the ideal

I(G,,) which is generated by all monomials of the form X;J(U"U")X;d(vwf) such that v,v; € E:

3

I(G,) = (X{d(vivj)X;J(ij) | viv; € E) R.

In particular, if w is the constant function defined by w(v;v;) = 1 for v;v; € E, then I(G,,) = I(G).

By definition, the weighted edge ideal I(G,,) is usually not square-free.

Example 1.1.2. Let G, be the following edge-weighted graph and R = K[X, X5, X3, X4, X5].

U1 U2 Vg Us

The weighted edge ideal of G, is

1(Gu) = (XTX3, X3X5, X5 X1, X3X{, X[ X])R.

I(G,,) has the same number of generators as I(G).

Let » > 1. Building from Villarreal’s work, Conca and De Negri [3] defined the r-path ideal

associated to G to be the ideal I.(G) C R that is “generated by the paths in G of length r”:

I,«(G) = (X’L'l .- 'Xir+1 | Viy *  Vipyy is a path in G)R

In particular, if » = 1, then I (G) = I(G).

Example 1.1.3. Consider the graph G from Example 1.1.1 with » = 2. Then the 2-path ideal of



G is

I(G) = (X1 X2 X5, X1 X2 Xy, Xo X3 Xy, Xo Xy X3, X5 X0 Xy, Xo Xy X5, X3 X4 X5)R

= (X1 X9 X3, X1 X0 Xy, Xo X3 X4, Xo X4 X5, X3X4X5)R.

Expanding this to the edge-weighted context, Kubik and Sather-Wagstaff [7] defined the
weighted r-path ideal of G, to be the ideal I,.(G,,) that is “generated by the max-weighted paths in

G of length r7:

Vi, -+ V4, is a path in G with e;, = w(v;,vy,),

i Cip .
L(Gy) =] X" X, e;, = max(w(vi;_, vy, ), w(vi;,v,,,)) for 1< j<r | I

i1 Grt1

and e;, ., = w(v;, Vi)

In particular, if » = 1, then I, (G,,) = I(G,,).
Example 1.1.4. Consider the edge-weighted graph G, from Example 1.1.2. Then the weighted
2-path ideal of G, is

L(G.) = (XTX3X5, XP X5 X3, X3 X5 X0, Xo X X5, X3 X, X3, X X[ X7, X{X]X0)R.

Kubik and Sather-Wagstaff also consider a much more general situation. For reasonable
functions f : N x N — N they defined the f-weighted r-path ideal associated to G, to be the ideal

I, #(G,) C R that is “generated by the f-weighted paths in G of length r”:

Uiy - U4, 18 a path in G with e;;, = w(v;,vs,),
e; €i,. .
I 1(Gu) = Xﬁl -..Xir+i>1 €i; = f(w(vij—lvi.i)aw(”ij’Uij+1)) for1<j<r R.

and e;,, = w(vi, Vi)

So f in the definition of I, ;(G,,) replaces the max in the definition of I, (G,,).

Example 1.1.5. Consider the edge-weighted graph G, from Example 1.1.2. Let » = 3 and let
: — e the ged function. en the ged-weighted 3-path 1deal of G, 1s
f:N?2 = N be the ged f i Then the gcd-weighted 3-path ideal of G, i

I3.00a(Go) = (X3 Xo X3XT, XPX3 X4 X!, X3X0 X4 XD)R.



In this dissertation, we investigate two important notions in commutative algebra for these
ideals: the Cohen-Macaulay property and the type, discussed next. Specifically, we show how

properties of G, yield information about these notions.

1.2 Cohen-Macaulayness

An important concept in commutative algebra is the “Cohen-Macaulay” property; see Sec-
tion 2.4 in chapter 2. The definition of Cohen-Macaulayness is somewhat technical. For now, the
reader should understand that Cohen-Macaulay ideals in polynomial rings are particularly nice. If G
is a tree, a theorem of Villarreal [13] characterizes when R/I(G) is Cohen-Macaulay, and a theorem
of Paulsen and Sather-Wagstaff [10] characterizes when R/I(G,,) is Cohen-Macaulay. Theorems of
Campos, et al. [2] and of Kubik and Sather-Wagstaff [7] characterize the Cohen-Macaulay prop-
erty for R/I.(G) and R/I.(G,,), respectively, again for trees. These characterizations are purely
graph-theoretical. In particular, they are independent of the choice of the ground field K.

Cohen-Macaulay trees can be characterized in terms of suspensions (see [10, Definition
5.4]) when the edge ideals are considered. One of our focus area is on the path ideals of weighted
trees. Let G be an r-path suspension (see Definition 3.1.14). The first goal of this dissertation
is to characterize when R/I, ;(G,) is Cohen-Macaulay: for each r > 2, find all combinations of
w:FE —Nand f:NxN — Nsuch that R/I, ;(G,) is Cohen-Macaulay. Let condf’:g, condf’:f3 and

condf’zf4 be the constraints from Propositions 3.2.1, 3.2.43, and 3.2.44, respectively. The diagram of

unmixedness

proof is as follows.

Prop. 3.2.1, 3.2.43, and 3.2.44
Thm. 3.3.2, 3.3.3, and 3.3.4

w, f w, f w, f
cond, 5, cond; ~s or cond, %,

Thm. 3.4.1 Fact 2.7.8

Cohen-Macaulayness

Thus, given that G is an r-path suspension, R/I, ;(G,,) is Cohen-Macaulay if and only if cond‘;”:fQ,

Prop. 3.2.1, 3.2.43, and 3.2.44

cond‘:’:f3 or condf;f4 is satisfied. Furthermore, we use this to characterize the Cohen-Macaulay



property for R/I, ¢(G,,) when G is a tree. The results are in Theorems 3.5.5 and 3.5.6.

We use similar techniques to study certain non-square-free monomial ideals as in studying
square-free monomials. However, we observe that the useful polarization technique used in [7, 10]
fails in studying the Cohen-Macaulayness of R/I, ;(G.,). We solved this by combining commutative
algebraic techniques and combinatorial analysis. It is reflected in the theorems and propositions

from the above proof diagram.

1.3 Cohen-Macaulay Type

If I is a Cohen-Macaulay ideal in R, the “type” of R/I defined by
rr(R/T) = dimg (Ext’y (K, R/I))

roughly measures how nice the ideal is, where n = depth(R/I) (see e.g., [11]). For instance, some
of the nicest Cohen-Macaulay ideals are the “Gorenstein” ideals, which end up being the Cohen-
Macaulay ideals of type 1. In Chapter 4, we compute the type of R/I, ;(G.,) when f = max and the
ring is Cohen-Macaulay. We accomplish this in Theorem 4.2.25. As with Villarreal’s results, this

computation is purely graph-theoretical. As a sample, we state the special case » = 1 of the result.

Theorem 1.3.1. Let G = X H be a suspension of H (see Definition 3.1.12) and w : E(G) — N such
that w(vv;) < w(v,w;) and w(vv;) < w(w;v;) for each viv; € E(H). Then the Cohen-Macaulay

type of R/I(Gy,) is
rr(R/I(G.,)) = #{minimal weighted vertex covers of H,}, where w' = w|gm),
where the definition for “minimal weighted vertex covers” can be found in [10, Definitions 1.4 and

1.9], or it can be regarded a special case of Definitions 3.1.8 and 3.1.5.

The classification of Cohen-Macaulay path ideals and type computing are the main results
of this dissertation. They form the bulk of Chapter 3 and 4. Necessary background information is
collected in Chapter 2 and Section 3.1. See also p.102 and p.105.



Chapter 2

Background

This chapter covers the necessary algebraic details for understanding the definitions, the-
orems, and techniques used in the subsequent chapters. Section 2.1 begins with the definition of
local rings and then treats localizations of modules. Section 2.2 is devoted to monomial ideals, our
main subject, and their irredundant m-irreducible decompositions. Section 2.3 contains a brief dis-
cussion of regular sequences. Section 2.4 introduces some material from homological algebra needed
to define Ext modules. The notions of depth, type, and Cohen-Macaulayness occupy Section 2.5.
Section 2.6 contains an account of graded rings and modules, and closes with a fact that a poly-
nomial ring R = A[Xq,..., X ] behaves like a local ring with the (homogeneous) maximal ideal
X = (Xy,...,Xy) when R is regarded as a graded ring over A when A is a local ring, e.g., a field.
Section 2.7 provides a way to compute the type of R/I when I is a monomial ideal in R and has an

irredundant parametric decomposition.

Convention. In this chapter, let d be a positive integer, R a commutative ring with identity, M

an R-module, I C R an ideal, and p C R a prime ideal.

2.1 Local Rings

There are several invariants defined in terms of local ring, so we first recall the definition of

local rings and some relevant properties to be used later.

Definition 2.1.1. We say R is local if it has a unique maximal ideal m, also known as “quasi-local”,

that is, R has finitely many maximal ideals. The residue field of R is R/m.

6



“Assume (R,m, k) is local” or “assume (R, m) is local”, means that R is a local ring and m

is the unique maximal ideal of R and k = R/m.

Example 2.1.2. Let £ be a field.

(a) € is local with the maximal ideal (0).

(b) Let n > 1 and p be prime in Z. Then Z/(p") is local with the maximal ideal (p)/(p").

(c) Let R = €¢[Xq,..., Xq]/(X{",...,X3"), where a; > 1 for i = 1,...,d. Then R is local with
m=(Xy,...,Xq)/ (X", ..., X]").

Definition 2.1.3. Let U C R be multiplicatively closed and 1 € U. The localization of M with

respect to U is defined to be

U~'M = {equivalence classes from M x U under ~},

where (m,u) ~ (n,u) if there exists w € U such that w(vm —un) = 0. Denote the equivalence class

of (m,u) as ™ or m/u.

Localization is a useful technique of reducing many problems in commutative algebra to

those about local rings.

Notation 2.1.4. By the definition of prime ideals, we have that R \ p is multiplicatively closed.
Set

M, = (R~p) ' M.

In particular, we have that B, = (R~ p)'R, I, = (R~p)~'1 = (R~ p)"*RI = IR,, and
(R/I)p = (R~ p)" (R/).

Fact 2.1.5. (R,,p,) is a local ring.

Fact 2.1.6. Let 7 : R — R/I be the natural surjection. We have that (R/I), = R,/I,. So
(R/I), #0if and only if I, C R, if and only if 1/1 & I,. In fact, (R/I), # 0 if and only if I C p.
Indeed, if I & p, then IN(R~\p) # 0, so there exists € I such that z € (R~p) and 1/1 ~ z/z € I,.
On the other hand, if (R/I), = 0, then 1/u = 0 for any u € (R \ p), implying that there exists
u” € (R~ p) such that v = v”1 = 0, implying that u” € I, it follows that I N (R~ p) # (), therefore

I ¢ p. Thus, in summary, (R/I), # 0 if and only if I N (R~ p) =0 if and only if I C p.

7



2.2 Monomial Ideals

In this section, we introduce monomial ideals and their irredundant m-irreducible decom-
positions, and most of the definitions can be found in [9]. Let A be a non-zero commutative ring
with identity and R = A[Xy,..., X4] unless otherwise stated. Set X = (Xi,...,Xq)R, the ideal
generated by all variables in R and Ng = {0,1,2,...}.

Definition 2.2.1. A monomial in elements X1,..., X4 € R is an element of the form X7 -.- X[

in R, where ny,...,nq € Ng. For short, we write n = (ny,...,nq) € N¢ and X* = X" X

Definition 2.2.2. Denote the set of monomials in R by
[R] = {X* | n e Ng}.

Definition 2.2.3. A monomial ideal I in R is an ideal generated by monomials in X7,..., Xy, i.e.,

elements of the form X™ with n € Ng.

Remark. The trivial ideals 0 and R are monomial ideals since 0 = (§)R and R = (1)R =
(X0 XY R

Definition 2.2.4. A monomial X® with n € Ng is square-free if n; = 0or 1 fori =1,...,d. A

monomial ideal I of R is square-free if it is generated by square-free monomials.

Example 2.2.5. We have that I; = (X1 X5, X3)R and I, = (X, X5, X1 X3)R are monomial ideals

in R = A[X1, X2, X3], but only I; is a square-free monomial ideal.
Assumption. For the remainder of this section, let I C R be a monomial ideal.
Fact 2.2.6 (Dickson’s Lemma [9, Theorem 1.3.1]). I is finitely generated by a set of monomials.

Definition 2.2.7. Denote the set of monomials in I by
Ul ={X"€eI|neNl} =In[R].

Fact 2.2.8. [9, Lemma 1.1.10] For each f € I, each monomial occurring in f is in I.

Definition 2.2.9. Let f = X™ € [R]. The support of f is the set of variables that appear in f:

Supp(f)={ie{l,....d} :n; > 1} ={ie{l,....,d}: X; | f}.

8



The reduction of f is the monomial achieved by reducing all non-zero exponents down to 1:

red(f)= ] Xxi=]] X

i€Supp(f) Xilf
Example 2.2.10. Supp(X7?X%) = {1,3} and red(X7X3) = X1 X3.

Definition 2.2.11. Define the monomial radical of I by
m-rad(I) = (rad() N [R])R,
where rad(7) is the radical of I, defined by
radl)=VIi={zeR|z"el, Vn>0}={zeR|az" el for somen > 1}.

Remark. Example 2.2.13 shows that rad(I) may not be a monomial ideal. This is due to the fact

that the ring A may have nilpotents. See Section 2.4 [9] for more details about this phenomenon.

Fact 2.2.12. [9, Theorem 2.3.7] Assume I = (S)R for some S C [R], then we have that m-rad(I) =
(red(s) | s € S)R.

It is important to note that you can use the generators.

Example 2.2.13. The monomial ideal I = (X?Y?2, XY3 Y®)R in R = A[X,Y] has
m-rad(l) = (red(X?Y?),red(XY?),red(Y®))R = (XY, XY,Y)R = (Y)R.

If A=7Z/AZ, then rad(I) = (2,Y)R # m-rad(]).

Definition 2.2.14. I is m-reducible if there exist monomial ideals J, K C R such that I = JN K

and J # I and K # I. I is m-irreducible if it is not m-reducible and I # R.

Fact 2.2.15. [9, Theorem 3.1.4] The zero ideal I = (0) is m-irreducible. A non-zero I is m-irreducible
if and only if it can be generated by “pure powers”, i.e., if and only if I = (Xj'',..., X{**) R for some

t>landa; >1fori=1,...,t.

Example 2.2.16. The monomial ideal (X3, X?Y2 Y4)R in R = A[X,Y] is m-reducible because it

cannot be generated by “pure powers”. One can also see this from the non-trivial decomposition

9



(X3, X2Y2 YHR = (X2, YHRN (X3, YR,
Definition 2.2.17. An m-irreducible decomposition of I is an expression [ = ﬂ?zl J; withn > 1

such that monomial ideals Jy,...,J, C R are m-irreducible.

Example 2.2.18. The monomial ideal I = (X? XY, Y3)R in R = A[X,Y] has an m-irreducible
decomposition I = (X,Y3)RN(X?,Y)R. The intersection in Example 2.2.16 is another m-irreducible

decomposition for the corresponding ideal.
Fact 2.2.19. [9, Theorem 3.3.3] If I # R, then I has an m-irreducible decomposition.

Definition 2.2.20. An m-irreducible decomposition I = (._, J; is redundant if I = (", J; for

i#k
some k € {1,...,n}. An m-irreducible decomposition I = (\_, J; is irredundant if it is not re-
dundant, that is, if every k € {1,...,n} satisfies I # (), Ji. As I = Ni_, Ji C iz Ji holds
automatically, the given decomposition is irredundant if and only if every k € {1,...,d} satisfies
Ie ﬂi#k Ji.

Example 2.2.21. The m-irreducible decompositions in Examples 2.2.16 and 2.2.18 are irredundant.

The following two facts provide existence and uniqueness for irredundant m-irreducible

decompositions.
Fact 2.2.22. [9, Corollary 3.3.8] If I # R, then I has an irredundant m-irreducible decomposition.

Fact 2.2.23. [9, Theorem 3.3.9] If I has two irredundant m-irreducible decompositions I = (;_, I;
and [ = ﬂ;nzl Jj, then n = m and there exists o € Sy, such that I; = J,;) for i = 1,...,n, where

S, is the permutation group.
An important concept for Cohen-Macaulayness is next.

Definition 2.2.24. The prime spectrum of R is
Spec(R) = {prime ideals of R}.

By convention, we have that R ¢ Spec(R). Let V(I) denote the set of prime ideals in R containing
I
V(I) = {p € Spec(R) | I C p}.

10



Let M be an R-module. The support of M is the set

Suppp(M) = {p € Spec(R) | M; # 0}.

Fact 2.2.25. It is straightforward to show that

Suppr(R) = Spec(R),

and by Fact 2.1.6, we have

Suppr(R/1) = V(I).

Definition 2.2.26. Let M be an R-module. The Krull dimension of M is

dimg(M) =sup{n > 0|3 achain pg S p1 C - - C pp in Suppr(M)}.

Set dim(R) = dimg(R).

Based on Fact 2.2.25, we have the following Krull dimension computations for rings and

quotient rings.

Fact 2.2.27. (a) The Krull dimension of R is

dim(R) = sup{n > 0| 3 a chain po C p1 C --- < p,, in Spec(R)}.

(b) The Krull dimension of R/I is

dim(R/I) =sup{n >0 |Jachain po CTp1 C--- Cp, in V(I)}.

Fact 2.2.28. [9, Theorem 5.1.2] Let A be a field and I = (", J; an m-irreducible decomposition.
Then the Krull dimension is dim(R/I) = d —n, where n is the smallest number of generators needed

for one of the J;’s.
Fact 2.2.28 provides us a simple formula to compute dim(R/I).

Example 2.2.29. The monomial ideal I = (X; X5, X2X3, X3X,) in R = A[X;, Xa, X3, X4] has an

11



(irredundant) m-irreducible decomposition
I=(X1,X3)RN (Xa, X3)RN (X1, X3, X4)RN (X2, X4)RN (X1, X2, X4)R.

Therefore, by Fact 2.2.28, we have that dim(R/I) =4 -2 =2.

Definition 2.2.30. Let I = (1 J; be an irredundant m-irreducible decomposition. Let n; be
the smallest number of generators needed for J; for ¢ = 1,...,m. We say that I is m-unmized if
ny = -+ = ny,. We say that I is m-mized if it is not m-unmixed, i.e., there exist 7,5 € {1,...,m}

such that n; # n;.
Fact 2.2.31. If A is a field, then [ is m-unmixed if and only if I is unmixed.

Example 2.2.32. The monomial ideals in Examples 2.2.16 and 2.2.18 are m-unmixed. The mono-

mial ideal in Example 2.2.29 is m-mixed.

Definition 2.2.33. A parameter ideal in R is an ideal of the form (X{",..., XJ%) with a1,...,aq >

1. For X™ = X" --- X" € [R] with n € N, set
Pr(X™) = (X", ..., X}"T)R.
Note that
m-rad(Pr(X%)) = (red(X7* ), ..., red(X}*T)R = (X1,..., X4o)R = X.

Example 2.2.34. The monomial ideal I = (X%, X5, X$)R is a parameter ideal in R = A[X1, X3, X3]
but not in R = A[Xl,XQ,X3,X4].

Definition 2.2.35. A parametric decomposition of I is an m-irreducible decomposition of I of the

form I =N, Pr(f;) with f; € [R].

Example 2.2.36. The m-irreducible decompositions in Examples 2.2.16 and 2.2.18 are irredundant

parametric decompositions.

Fact 2.2.37. ]9, Exercise 2.4.5, Theorem 6.1.5 and Exercise 5.1.7] I has a parametric decomposition
if and only if m-rad(I) = X. Furthermore, if A is a field, then m-rad(I) = X is equivalent to

dim(R/I) = 0.
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We end this section by exhibiting one technique for computing m-irreducible decompositions

of arbitrary monomial ideals.

Fact 2.2.38. [9, Theorem 7.5.1] Let I = (Xﬁl,...,XQTL)R with a;, = (a;1,...,0i4) € N¢ for
i=1,...,n. Then

d d
I= ) ()X, X,
i n=1

i1=1 in=

Example 2.2.39. Let R = A[X1, X»] and I = (X? X2, X1 X3)R. Then by Fact 2.2.38,

I= (X3 X)RN (X XDRN(XE, X3)R
N (X2, X1)RN (Xo, XORN (Xo, X3)R
N (XY, X)RN (XY, XDHRN (XY, X3)R
= (X)) RNRN (X X3)RN (X1, X2)RNRN (X2, X3) RONRNRNR

= (X1)RN (X7, X3)RN (X2, X3)R.

2.3 Regular Sequences

The interplay between regular sequences and certain homological invariants is one of the

key techniques used to compute the type of a module.
Definition 2.3.1. An element x € R is a non-zero divisor on M if the multiplication by = map
M 5 M is 1-1; equivalently, for m € M, if xm = 0, then m = 0. Set
NZDr(M) ={a € R | a is a non-zero divisor on M }.
Definition 2.3.2. An element © € R is weakly M-regular if x € NZDr(M). A weakly M-regular
element z € R is M -reqular if xM # M.
Definition 2.3.3. A sequence ag,...,a, € R is weakly M -regular if
(a) aj is weakly M-regular and
(b) a; is weakly m—regular fori=2,... n.
A sequence ay,...,a, € R is M-regular if

13



(a) ai,...,ay is weakly M-regular and
(b) (a1,...,an)M # M.

Example 2.3.4. A list of variables Xi,..., X, is A[Xy,...,X,]-regular for any non-zero commu-

tative ring A.

Remark. Note that for aq,...,a; € R, we have

M M/(al,...,ai_l)M ~ M/(al,...,ai_l)M

(ah...,ai)M (al,...,ai)M/(ah...ai,l)M o aiM/(ah...,ai,l)M’

RO

where (D) is from an isomorphism theorem for modules. Thus, we have that a;M/(ay,...,a;_1)M #
M/(a1,...,a;—1)M if and only if M/(a,...,a;)M # 0. This observation justifies the following

equivalent definition for M-regular sequences.

Definition 2.3.5. A sequence ag,...,a, € R is weakly M -regular if
(a) a1 € NZDg(M), and

(b) a; € NZDr(M/(a1,...,a;—1)M) fori=2,... n.

Remark. If (R, m) is local with aq,...,a, € m, and M is non-zero and finitely generated, then by
Nakayama’s lemma, we have that (a1,...,a,)M CmM C M. So ay,...,a, is M-regular if and only

if it is weakly M-regular.

Definition 2.3.6. A sequence ai,...,a, € R is a mazximal M -regular sequence if ay,...,a, is an

M-regular sequence such that for all b € R, the longer sequence aq, ..., ay,b is not M-regular.

2.4 Ext via Projective Resolutions
In this section, let N be another R-module. We will present some definitions and facts from
homological algebra leading to the definition of Ext.

Definition 2.4.1. A sequence A 1 B % C of R-module homomorphisms is ezact at B if Im(f) =
Ker(g). Note that Im(f) C Ker(g) if and only if go f = 0.

More generally, a sequence of R-module homomorphism

dit1 d; di—1
. L> Xz E—d Xi—l —

14



is exact if Im(d;41) = Ker(d;) for all i € Z.

Fact 2.4.2. We have the following facts:

(a) The sequence 0 — A Iy A" of R-module homomorphisms is exact (at A) if and only if f is 1-1.
(b) The sequence B’ % B — 0 of R-module homomorphisms is exact (at B) if and only if g is onto.

(¢) The sequence 0 — A 1. B % ¢ = 0 of R-module homomorphisms is exact if and only if f is

1-1, g is onto and Im(f) = Ker(g).

Definition 2.4.3. A short exact sequence is an exact sequence of R-module homomorphisms of the

form

0 ULy 2w 0.

Definition 2.4.4. A homomorphism of short exact sequences of 0 — A i> B % C — 0 and
0 A B %o Soisa triple (o, 8,7) of R-module homomorphisms such that the following

diagram commutes:

0 AL B9 ,¢ 0
bl b
0 A B 2L ¢ 0.

Fact 2.4.5 (The Short Five Lemma [5, Proposition 10.24]). Let (e, 3,7) be a homomorphism of

short exact sequences

(a) If @ and v are 1-1, then so is .
(b) If @ and ~y are onto, then so is f3.
(¢) If  and v are isomorphisms, then so is 3.

Definition 2.4.6. A short exact sequence of R-module homomorphisms 0 — A LBS%osois
split if and only if it is equivalent to the canonical exact sequence 0 — A 5 A® C 2 C — 0, ie.,

if and only if there exists a commutative diagram
f g
0 A C 0

17

0 —A—>A0C —/— C ——0.
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In this event, § is an isomorphism by the short five lemma, so B~ A& C.

Notation 2.4.7.
Homp(M, N) := { R-module homomorphisms f: M — N},

which is an R-module because R is commutative.

Let A, B be R-modules. For each f € Hompg(A, B), define

f* =Hompg(f,N) : Homg(B, N) — Hompg(A, N)

p—¢of.

Then f* is an R-module homomorphism.
Fact 2.4.8. Homp(—, N) is a contravariant functor, i.e.,
(a) it respects identity maps: Hompg(idas, N) = iduom,(a,n), and

(b) it respects compositions: for all R-module homomorphisms A % B LN C,
Hompg(B o a, N) = Hompg(a, N) o Hompg(3, N).

Or equivalently, (8o a)* = a* o 8%, i.e., the following diagram commutes:

Hom(—,N): Hompg(A,N) M Hompg(B, N)

Homm THOH]R(B’N)

HomR(C', N)

Fact 2.4.9 (Left Exactness of Hom(—, N) [5, Theorem 10.33]). Let A = B 5, ¢ = 0 be exact.

Then the induced sequence 0 — Hom(C, N) LA Hom(B, N) LN Hom(A, N) is exact.

Remark. The functor Hom(NV, —) is defined similarly with notation f, = Hom(XN, f). This functor
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is covariant. It is left exact, i.e., if 0 - A ENY;JER C is an exact sequence of R-module homomor-

phisms, then the induced sequence 0 — Hom(V, A) ELN Hom(N, B) £% Hom(N, C) is exact.
Fact 2.4.10. [5, Theorem 10.30] The following conditions are equivalent.
(i) Hompg(N, —) transforms R-module epimorphisms into R-module epimorphisms.

(ii) Homp (N, —) transforms short exact sequences of R-module homomorphisms into short exact

sequences of R-module homomorphisms.

(iii) Hompg (N, —) transforms exact sequences of R-module homomorphisms into exact sequences

R-module homomorphisms.
(iv) Every short exact sequence 0 - A — B — N — 0 of R-module homomorphisms splits.

(v) If the sequence B i C — 0 of R-module homomorphisms is exact, then every R-module homo-
morphism from N to C lifts to an R-module homomorphism into B, i.e., given ¢ € Hompg(N,C),

there is a map ¥ € Hompg(N, B) making the following diagram commute:

N
3 e
L e
< B

B——C——0O.

(vi) There exists an R-module N’ such that N @ N’ is free, i.e., N is a summand of a free R-module.

Definition 2.4.11. An R-module P is called projective if it satisfies any of the equivalent conditions

of Fact 2.4.10.
Definition 2.4.12. A chain complex or R-complez is a sequence of R-module homomorphisms

oMy oM oM,
My = —2 M, Sy M —=5

such that 9M, 0 9M = 0 for all i € Z. We say M; is the module in (homological) degree i in the
R-complex M,.

The i*" homology module of an R-complex M, is the R-module

H;(M,) = Ker(9;")/ Im(9;15).
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Definition 2.4.13. A projective resolution of M over R or an R-projective resolution of M is an
exact sequence of R-module homomorphisms

+ a5 of T
Pf=.-..—P —P—-M-=0

such that each P; is a projective R-module.

The truncated projective resolution of M associated to P is the R-complex

or or
Py,=---—= P — Py —0.

By convention, we have that P; = 0 for all 1 < —1 and (“)ip = 0 for all ¢ < 0. Define the R-complex

Hom(P;", N) as follows:

o Pyx Pyx alP *
Hom(P;,N)=  0— M* 5 py {2 O, pr On)

(oF)* (31{1)* Pl* e

Py Py

where we set P = Hom(P;, N) and (87)* = Hom(0F, N) for i > 0. Define the R-complex P} as

follows:

OF)" e (03" Or) . 0D . 071
1 Pl 2 1 Pifl P< +1

K3

P; =Hom(P,,N) = 0— Py

Let P} be in degree —i, i.e., P} = (P*)_; for ¢ € Z. Then

Pyx Pyx oF y* Py
P.* -0 — PO* (01) Pf (93) o (0;-1) Pi*_l 9;7) P
|

| P ary ary I ar; I or;
P;=0— (P*)O — (P*)—l ;1> ;H) (P*)—i+1 ;Jrl> (P*)—i —

So
oF = (0%,,1)", Vi€

By convention, we have that (P*); = P*,

2

=0*=0and 8" = (9%,,,) =0*=0foralli> 1.

Remark. Because of the condition 8Z-P ) a{il =0 for ¢ > 1, by Fact 2.4.8, we have

(0F.) o (0F) = (0F 00f) =07 =0, Vi>1.
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Thus, Hom(P,, N) and similarly Hom(P;', N) are R-complexes. However, these are not exact in

general.

Definition 2.4.14 (Ext via projective resolutions). Let P, be a projective resolution of M. Define

the Ext module by
Extly (M, N) := H_;(P}) = Ker(9]) /Im (0%}, ) = Ker((951)*)/ Im((8F)").

Fact 2.4.15. Let P, be a projective resolution of M. By the left exactness of Hom, we have an

exact sequence:

. P+
0 M s pp G pr

Then we have
Ext% (M, N) = Ker((0{)*)/Im(0) = Ker((0{)*) = Im(r*) = M* = Hompg (M, N),

Exty (M, N) = Ker(0; )/ Im(dF;, 1) = 0/Im(dF;,,) =0, Vi < —1.
Remark. ExtiR(M , V) is well-defined, i.e., independent of the choices of projective resolution of M,
by [11, Theorem VIIL.5.2].

Remark. We can also define the Ext module via injective modules, but this is not needed for this

dissertation.

2.5 Depth, Type, and Cohen-Macaulayness
In this section, we define the depth and the type of M when M # 0, M is finitely generated,
and (R, m) is local.

Assumption. For this section, we assume that R is Noetherian, I is an ideal of R, and M is a

finitely generated R-module.
The next fact is due to Rees.

Fact 2.5.1. [1, Theorem 1.2.5] If IM # M, then all maximal M-regular sequences in I have the
same length, namely

inf{i > 0 | Extz(R/I,M) # 0}.

19



Through Fact 2.5.1, we have the following definition:

Definition 2.5.2. [1, Definition 1.2.11] If IM # M, we define the grade of M on I by
grade(I; M) = inf{i > 0 | ExtRr(R/I, M) # 0}.

If IM = M, then set gradeg(I; M) = oo.
Remark. (a) By Fact 2.4.15 we also have gradep(I; M) = inf{i € Z | Ext%(R/I, M) # 0}.
(b) If (R,m) is local and M # 0, then by Nakayama’s lemma, IM C mM C M, so IM # M.

Definition 2.5.3. [1, Definition 1.2.8] If (R, m, k) is local and M # 0, we define the depth of M by
depth(M) = gradep(m; M) = inf{i > 0 | Ext}(k, M) # 0}.

Fact 2.5.4. By Fact 2.5.1, the depth can be calculated as the maximum length among all M-regular

sequences in m.

Fact 2.5.5. [1, Theorem 1.2.10] If f1,..., f. € R is an R/I-regular sequence, then
dim(R/(I + (f1,..., fr)R)) = dim(R/I) —r,

depth(R/(I + (f1,..., fr)R)) = depth(R/I) — r.

Definition 2.5.6. [1, Definition 1.2.15] Let (R, m, k) be local and M # 0. Assume depthp (M) = n.

The type of M is the positive integer
rr(M) = dimy, (Exty (k, M)).

Definition 2.5.7. [1, Definition 2.1.1] Let (R, m, k) be local and M # 0. Then M is a Cohen-
Macaulay module if depthp (M) = dimg(M). If R itself is a Cohen-Macaulay module, then it is also

called a Cohen-Macaulay ring.
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2.6 Graded rings and modules

The rings we mainly work on are polynomial rings. They form an important class of graded
rings. In this section, we exhibit a series of definitions and conclusions, most of which can be found

in Section 1.5 of [1].

Definition 2.6.1. A graded ring is a ring R together with a decomposition R = @P,, R; (as a
Z-module) such that R;R; C R,4; for all 4,5 € Z.

Assumption. For the remainder of this section, we assume that R be a graded ring.

Definition 2.6.2. A graded module is an R-module M together with a decomposition M = @, ., M;
(as a Z-module) such that R;M; C M, ; for all¢,j € Z. The elements x € R; are called homogeneous

(of degree i). One calls M; the i*®® homogeneous (or graded) component of M.

Definition 2.6.3. Let M be a graded R-module. An arbitrary element x € M has a unique
presentation = ), x; as a sum of homogeneous elements z; € M;. The elements x; are called the

homogeneous components of x.
Definition 2.6.4. An ideal I of R is homogeneous if I is generated by homogeneous elements of 1.

Definition 2.6.5. Let M be a graded R-module and ¢ € Z. Let M (i) denote the shifted R-module

M with grading given by M(i),, = M;4,. One can also read M (i) as “M twisted by i”.

Definition 2.6.6. Let M and N be graded R-modules, and n € Z. An R-module homomorphism
@ : M — N is called homogeneous of degree n if o(M;) C N1y, for all i € Z. Denote by Hom,, (M, N)
the group of homogeneous R-module homomorphisms of degree n. In particular, if ¢ € Homg(M, N),
we call it a homogeneous R-module homomorphism.

If ¢ € Hom, (M, N), then ¢ € Homg(M, N(n)) and ¢ € Homo(M(—n), N) since o(M;) C

Niip for all i € Z if and only if ¢(M_, ;) C N; for all i € Z.

Definition 2.6.7. Let M and N be graded R-modules. Define *“Hompg(M, N) = @, ., Hom;(M, N),

which is a submodule of Hompg (M, N). If P, is a graded projective resolution of M, then
*Ext (M, N) = H (*Homp(P,, N)), Vi > 0.

Fact 2.6.8. [1, p.33] If R is Noetherian and M is a finitely generated R-module, then *Ext’ (M, N) =
Ext’% (M, N) for all i > 0.
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Definition 2.6.9. The homogeneous prime spectrum of R is
*Spec(R) = {homogeneous prime ideals of R}.
Let *V(I) denote the set of homogeneous prime ideals in R containing I:
*V(I) = {p € "Spec(R) | I Cp} = V(I)N*Spec(R).

The *Krull dimension of R is

*dim(R) = sup{n > 0| 3 a chain po C p1 C --- C p, in *Spec(R)}.
The *Krull dimension of R/I can be computed as

*dim(R/I) =sup{n > 0| J achain po T p1 C -+ C p, in *V(I)}.

Definition 2.6.10. [1, Definition 1.5.13] Let R be a graded ring. A homogeneous ideal m of R is
called *mazximal if every homogeneous ideal that properly contains m equals R. The ring R is called

*local if it has a unique *maximal ideal m. A *local ring with *maximal ideal m will be denoted by

(R, m).

Remark. With respect to its finitely generated graded R-modules, a *local ring (R, m) behaves like

a local ring.

2.7 Graded Cohen-Macaulay Rings

Let A be a field, set R = A[X1,...,X4] and X = (X1,...,X4)R and let I C R be an ideal
generated by homogeneous polynomials. In this section, we define Cohen-Macaulayness and see how

to compute the type of R/I, when R/I is Cohen-Macaulay.

Remark. The graded ring (R, X) with the natural grading is a *local ring, where X = @izl R;, is

called the irrelevant ideal of R.

We have already defined depth and type in the local setting. Now we define them in the

*local setting. See Fact 2.7.2 for a comparison.
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Definition 2.7.1. The *depth of R/I is

*depth(R/I) = the length of a maximal homogeneous R/I-regular sequence in X.

The type of R/I is

rr(R/T) = dim (*Ext?(A, R/T)) = dima(Exts (A, R/T)),

where n = *depth(R/T).
Fact 2.7.2. [1, Theorem 1.5.8 and Proposition 1.5.15] The polynomial ring R is Noetherian and
R/I is a finitely generated graded R-module. We have

*depth(R/I) = depth(R/I),

*dim(R/I) = dim(R/I).
From Fact 2.5.5 and 2.7.2, we get the following fact directly.

Fact 2.7.3. [1, Theorem 1.2.10] If f1,..., f, € X is a homogeneous R/I-regular sequence, then

*dim(R/(I + (f1,..., fr)R)) = *dim(R/I) — r,

*depth(R/(I + (f1,---, fr)R)) = *depth(R/I) — .

For the rest of the dissertation, in light of Fact 2.7.2, we will not write * for notations used
in *local ring.
Cohen-Macaulay rings, defined next in the *local setting, have been shown in the literature

to be extremely nice. See the discussion in [1, p.57] for more about this.
Definition 2.7.4. The quotient R/I is Cohen-Macaulay if depth(R/I) = dim(R/I).

Remark. We can either regard the quotient R/ as an R-module, or regard (R/I,X/I) as alocal ring
with the residue field (R/I)/(%/I) = A. So Definition 2.7.4 can be deduced from Definition 2.5.7.

Definition 2.7.5. We say that I is Cohen-Macaulay if the quotient R/I is Cohen-Macaulay.
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Fact 2.7.6. [1, Lemma 3.1.16] If R/I is Cohen-Macaulay and fi,...,f, € X is a homogeneous

R/I-regular sequence, then with S = R/(f1,..., fn), we have that

rr(R/T) =rs(R/(I+ (f1,- -5 fn))),

Fact 2.7.7. [14, Fact 2.93(b)] If I is a monomial ideal and has an irredundant parametric decom-

position I = (;_, Q;, then rp(R/I) = t.

Fact 2.7.8. [9, Theorem 5.3.16] Let I be a monomial ideal. If R/I is Cohen-Macaulay, then I is

unmixed.

In practice, when we compute the Cohen-Macaulay type of R/I, we will try to find a
maximal homogeneous R/I-regular sequence fi, ..., f, with n = depth(R/I) = dim(R/I), such that
R/(I + (f1,--.,fn)) has dimension 0 by Fact 2.5.5. We can usually simplify R/(I + (f1,...,fn))
as, say S/J. Since A is a field and dim(S/J) = 0, we have that J has an irredundant parametric
decomposition by Fact 2.2.37. Thus, we utilize Fact 2.7.7 to compute the type of S/J. Finally,

Fact 2.7.6 tells us it is also the type of R/I.

Example 2.7.9. Consider the monomial ideal
I=(X1X2,X2X3,X5X4)R = (X1,X3)RN (X2, X3)RN (X2, X4)R

in R = A[X;, Xa, X3,X4]. One can check that dim(R/I) = 2 and that X; — X5, X3 — X4 is an

R/I-regular sequence. Thus, R/I is Cohen-Macaulay. Note that
R/(I+ (X, — X2, X3 — X4)R) = S/(X3, X2 X3, X3)S,

where S = A[X;,X5]. We have an irredundant parametric decomposition (X3, X2X3, X3)S =

(X2, X3)SN (X2, X3)S. So by Facts 2.7.3 and 2.7.7, we have

rr(R/I) =rRp(R/(I+ (X1 — X2, X3 — X4)R))
=r15(S/(X3, X2 X35, X3)9)

=2
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Chapter 3

Cohen-Macaulayness of

f-Weighted r-Path Ideals

Let K be a field, d > 2, R = K[X1,...,X4) and m = (X3,...,X3)R. Let G = (V,E) be a
(finite simple) graph with vertex set V' = {vy,...,v4} and edge set E. Let r > 2 be a positive integer
and R =K[{X;;|i=1,...,d,j=0,...,7}]. Let f: N x N — N be such that f(a,b) = f(b,a) for
all a,b € N. For example, f may be max, min, gcd, or lem, etc.

In this chapter, we classify all weighted r-path suspensions G/, (see Definition 3.1.16) for
which the f-weighted r-path ideal of G/, (see Definition 3.1.2) is Cohen-Macaulay. In particular, we
classify all weighted trees for which the f-weighted r-path ideal is Cohen-Macaulay. These results
are in Theorems 3.5.5 and 3.5.6.

3.1 Background

In this section, we give some background information needed for classifying Cohen-Macaulay
weighted r-path suspensions.

We first list the definitions for paths and cycles from Diestel [4].

Definition 3.1.1. An r-path in G is a non-empty graph P = (V’, E’) of the form V' = {x1,..., 2,41}
and E' = {zix2,x223,...,2,2,11}, where x; are all distinct. We denote an r-path by P, =

( T To . Tyri1 ) or xj ...x,41 for simplicity. Note that there are r+1 vertices
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and r edges in P,.

IfP. = ( 1 To e T, ) is an (r —1)-path, then the graph C,. := P._1+

x,x1 is called an r-cycle. Note that there are r vertices and r edges in C,.
Definition 3.1.2. We have the following definitions:

(a) [7, Definition 2.1] The f-weighted r-path ideal associated to G, is the ideal I, ;(G,) C R that

is “generated by the f-weighted paths in G of length r”:

Uiy ...V, is a path in G with e;, = w(v;,v4,),
e; €i,. .
L1 (Gy) = X0 "'Xiﬂjl ei; = f(w(vi,_,vi,),w(vi;,vg,,,)) for 1< j<r R.

and e;,,, = w(vi, Vi)
(b) [7, Definition 2.5] For V! C V and ¢’ : V' — N, we write
PV, o) = (X)) v e V)R
Remark. When f = max, we write that I,(G.) := I max(Gw), which is the weighted r-path ideal

associated to G,.

Definition 3.1.3. [7, Definition 1.5] An f-weighted r-path vertex cover of G, is an ordered pair
(V’,6") with V! C V and ¢’ : V — N such that V' is an r-path vertex cover of G and such that for

any r-path P.:=wv;, ...v; ., in G at least one of the following holds:
(a) 0'(viy) < w(vi,v4,);

(b) &' (vi,y,) < w(vi,vi,,); or

(c) 8'(vs;) < f{w(wi,_,vs,),w(vi,vi,,,)} for some j € {2,...,7}.

The number ¢'(v;) is the weight of v;;. We say that a vertex v; € V' weighted-covers the r-path P,

with respect to (V’,4’) if v; satisfies one of the 3 conditions above.
Remark. When f = max, we write that (V’,§’) is a weighted r-path vertex cover of G.,,.

Notation 3.1.4. For an f-weighted r-path vertex cover (V’,4") of G,,, we also use {vf/(vi) |vie V'}

to denote it, especially when we depict an f-weighted r-path vertex cover of G, in sketches.
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Definition 3.1.5. [7, Definition 1.7] Given two f-weighted r-path vertex covers (V{,d7) and (V3, 85)
of G, we write (V3,0%) < (V{,0}) if Vo C V{ and 65(v;) > &1 (v;) for all v; € V4. An f-weighted
r-path vertex cover (V’,§’) is minimal if there does not exist another f-weighted r-path vertex cover

(V",§") such that (V" ") < (V',§).

Fact 3.1.6. [7, Lemma 1.11] For every f-weighted r-path vertex cover (V’,d’) of G, there is a

minimal f-weighted r-path vertex cover (V”,¢") of Gy, such that (V”,6"”) < (V',¢").

Fact 3.1.7. [7, Theorem 2.7] The f-weighted r-path ideal I, ;(G,,) has the following decomposition:

Ij(Go) = N P(V',§) = N P(V',5),
(V',8') f-w. r-path v. cover (V’,8’) min. f-w. r-path v. cover
where the first intersection is taken over all f-weighted r-path vertex covers of G,,, and the second
intersection is taken over all minimal f-weighted r-path vertex covers of G,. The second intersection

is irredundant.
Remark. The second decomposition of I ¢(G.,) is much more intensive than the first one.
Fact 3.1.8. [7, Lemma 2.11] If I, ;(G,,) is unmixed, then I,(G) is also unmixed.

Definition 3.1.9. [7, Definition 3.1] Let v; be a vertex of degree 1 in G that is not a part of any

r-path in G. We write that v; is an r-pathless leaf of G,. Let Hy be the subgraph of G, induced

by the vertex subset V'~ {v;}. We write that Hy is obtained by pruning an r-pathless leaf from

G,. A subgraph I"ys of G, is obtained by pruning a sequence of r-pathless leaves from G, if there
1) i+1)

exists a sequence of graphs G,, = GSJ()O),GS()I), ..., Gy = 'y such that each Giwl) is obtained by

. - (@)
pruning an r-pathless leaf from G ;).

Fact 3.1.10. [7, Lemma 3.3] Let H) be a weighted graph obtained by pruning a single r-pathless

leaf v; from G.,.
(a) The set of r-paths in G is the same as the set of r-paths in H.

(b) The minimal f-weighted r-path vertex covers of G, are the same as the minimal f-weighted

r-path vertex covers of Hj.

Lemma 3.1.11. Let Hy be a weighted graph obtained by pruning a sequence of r-pathless leaves

from G,,.
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a) The ideals I, ¢(G,) and I, ;(H)) have the same generators.
f \f
b) The ideal I, ;(G,,) is unmixed if and only if I,. f(H)) is so.
f f
¢) The ideal I, ¢(G,) is Cohen-Macaulay if and only if I,. ¢(H)) is so.
f f

Proof. (a) By Fact 3.1.10(a), the set of r-paths in G is the same as the set of r-paths in H and
A(e) = w(e) for each edge e € E(H) C E(G). Then the claim about the generators now follows

directly.
(b) Tt follows from Theorem 3.1.7 and Lemma 3.1.10(b).

(c) Part (a) implies (S"/I, (H)))[X]| = R/I, (G.,), where 8" = K[X1,..., X;-1, Xi41,...,Xq]. It
follows that R/I, f(G.,) is Cohen-Macaulay if and only if S’/I, ¢(H)) is so. O

Definition 3.1.12. The suspension of G is the graph X G with vertex set

V(EG) =V U{w,...,wq} ={v1,...,v4,w1,..., w4}

and edge set
E(XG) = E(G) U {viw1,...,vqwa}.
This is also known as the K;-corona of G.

Remark. The term “suspension” is due to Villarreal [13]. It is not related to the suspension of a

topological space.

Example 3.1.13. The suspension ¥ P, of the 2-path G = P, = ( U1 Vg V3 ) is

w1 w2 w3

U1 V2 V3.

Definition 3.1.14. The 7-path suspension of G is the graph X,.G obtained by adding a new path

of length r to each vertex of G such that the vertex set is

V(ETG):{’UiJ|’i:].,...,d,j:(),...,r}With’Ui,O:’l}i, VZ:L,d

The new r-paths are called r-whiskers.
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Example 3.1.15. The 2-path suspension 5 P» of the 2-path G = P, = ( U1 Vg V3 )
is

U1 V1,1 V1,2

V2 V2,1 V2,2

U3 V3,1 V3,2-

We will classify all the weighted trees H,, such that I, y(H,) is Cohen-Macaulay in terms

of the weighted r-path suspension, define below.

Definition 3.1.16. [7, Definition 3.4] A weighted r-path suspension of G, is a weighted graph
(X, G)x with weight function A : .G — N such that the underlying graph X,.G is an r-path

suspension of G and A(v;vj) = w(v;v;) for all viv; € E(G), ie., A|gg) = w.
Remark. If r = 1, then (X:G) = (2G)) is a weighted suspension of G, [10, Definition 5.6].

Example 3.1.17. A weighted 2-path suspension (X5P), of

Gw = (Pg)w = ( (%1 ! V2 2 U3 )

is

4 3
U1 v1,1 V1,2
1
3
U2 U2,1 V2,2
2
2 5
U3 V3,1 V3,2-
Based on the convention that v; o = v; for i = 1,...,d, we have that X; o = X; for i =

1,...,d.
Definition 3.1.18. Define a ring homomorphism p by
p:R — R

a—a, Vack,

X”'—)XlV’L:].,,d, j_O,...,T.

One can think of p as a “projection”.

29



Remark. Let I C R’ be a monomial ideal and set

IR=p()R= (X" ... X" e R|3 X", - X2 e [I])R.

11,71 in,Jn

In words, I R is the monomial ideal of R obtained from I by setting X; ; = X, for all 7, j. It is straight-
forward to show that if fi,..., fi, is a monomial generating sequence for I, then p(f1),...,p(fm) is

a monomial generating sequence for IR.

Example 3.1.19. Let I = (X171X12}2X?73,XfOXg)ng’O)R’ be an ideal of the polynomial ring R’ =

K[{Xi;|i=1,...,3,j=0,...,3}]. Then
IR = (X1 X7 X7, X{ X2 X3)R = (X7, X{ X2 XJ)R.

In Section 3.2, we will prove that if I = I, ;((£,G)x) for some weighted r-path suspension
(£,G)y, then in an irredundant m-irreducible decomposition of p,(I) with n € N? variables in
each component have different first indexes when certain conditions for r, f and A\ are satisfied.
This result then will be used in finding regular sequences for R’/I in Theorem 3.4.1 and be used in

Propositions 3.2.1, 3.2.43, and 3.2.44 to prove that I = I, ;((X,G)) is unmixed.

Definition 3.1.20. Let n = (n1,...,n4) € N%. Define a ring homomorphism p,, by

Pn : R/ — A[Xl,Oa ey Xl,min{nlfl,r}a cee 7Xd,0a oo 7Xd,min{nd71,r}] =9
ar—a, VacA,

Xi,j’_>Xi,ni71> Vi=1,....d, j=n4...,T.

Let I C R’ be a monomial ideal. Then p,,(I)S is the monomial ideal of S obtained from I by setting
Xij = Xin,—1 for any X; ; € I such that n; < j <r. It is straightforward to show that if fi,..., fi
is a monomial generating sequence for I, then p,(f1), ..., pn(fm) is a monomial generating sequence

for p,(I)S.
Remark. (a) Let 1 = (1,...,1) € N then p; = p, where p is from Definition 3.1.18.

(b) Ifn = (n1,...,nq) € N¢such that ni,...,ng > 7, then S = R" and p,,(I)S = I for any monomial

ideal I C R'.
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Example 3.1.21. Consider the following graph (3oPs)y with G, := (P2), = ( n1 Loy 2 v3 ).

4 3
(1 V1,1 V1,2
1

3 3
V2 V2,1 V22
2

2 5
U3 V3,1 V3,2

Let

I = Lmin((S2P2)x) = (X3,X7 X1, X1 X0 X0, X1 X0 X3, X1 X0 X3, X3, X5, X3,
X3 1 XIXF, XIXFXE 1, X5,X5, X3) R

Let n = (2,3, 1) € Nd Then S = R[XLQ,Xl,l,X270,X271,X2’2,X370] and setting XLQ = Xl,la
X371 = Xg, and X372 = Xg in I we have

pu(1)S = (X7, X7 XT, X1 1 X0 X0, X1 X0 X3 ), X1 Xo X3, X35, X3 X3,
X35, X5 X5, X5 X5X3, X5 X3 X3) R
= (X0, X1, X1 X0 X0, X0 X0 X3 1, X1 X0 X3, X3, X5, X3,

X3, X3X3, X3X5, X3)R.

Definition 3.1.22. Let (X, G)y be a weighted r-suspension of G, I := Inf((ErG))\), n € N% and

P, an r-path in (X, G), with the corresponding generator X% in I. We write
n
PT ~ ,Uilvjl o Ui?n;jnl = p

if the reduction is red(pn(X®)) = X4, j, - .- Xi, jn- We call that  is a path in py([).
Remark. If n is known from context, we usually write P, ~» p instead of P, & ©.

Example 3.1.23. In Example 3.1.21, P> 1= vy 2011010 & V1,101,0 =: { since Xf’,QXileO is the

corresponding generator of P, in I and red(p, (X7, X7, X{)) = red(X{ X7, X{) = X1,1X10.

Definition 3.1.24. Let (X,G)) be a weighted r-suspension of G, I := I,,7f((2,«G),\), n € N¢, P,

an r-path in (3,G), with the corresponding generator X< in I and P, + p. Let B := (V", ") be
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such that V" C V((£,G),) and 8" : V" — N. Denote v;j — (Pr ~ o, ) if v;; € VNV (p) and

5//(1”,]_
2

Vi — (9, %) or vij £ (p,P) if vij € V' NV (p) and X, 7 | p,(X2).

) | prn(X?) and denote v; ; ¥ (P % ©,%) otherwise. In particular, if P, = p, then denote

Remark. If n and P are known from context, we write v; j ~— (Pr ~ p) or v; ; ¥ (P, ~ p). In

particular, if P. = g, then write v; ; — p or v; ; ¥ .

Example 3.1.25. A weighted suspension (XG)y of G, := (Py), = ( v —— vy ) is

V1,1 V2,1

S

(%1} V2.

Let I := Igﬁmin((ZPl),\) and n := (1,1). Then p,(I) is obtained from I by setting X771 = X1,
and Xo1 = Xoo in I. We have that P := v 10102 & vive. Let X< = X12’1X1,0X2’0 be the
corresponding generator of v1,1v1v2 in I. Then p,(X*) = X7 (X5 0. Let B = {v7 y,v3,v1,1}. Then
v1,0 — (V1,101,0V2,0 ~ V1,0v2,0,B) since X7, | X7 1 Xo0, v2,0 £ (v1,101,002,0 ~ v1,002,0, ) since

X301 X7 0X2,0, v1,1 £ (V1,101,002,0 ~ V1,002,0,B) since v11 & {v1,0,v2,0}-

Lemma 3.1.26. Let (X, G)) be a weighted r-suspension of G, I := Lﬂﬁf((ErG),\), and n € N
Let B := (V",6"”) with V" C V((2,G),) and §” : V" — N be such that p,(I) € P(V"”,5”). Then

for any path @ in p,(I) such that P, ~» g, we have that vy ; — (P, ~> p) for some vi; € V.

Proof. Assume that @ :=v;, j, ...v;,, ;.. and X% is the corresponding generator of the r-path P, in

I. Then red(p,(X?)) = X; X and p, (X*) € po(I) € P(V",8"). So there exists some

1,01 TmsJm

v, € V' such that vy € V(p) and Xg:;(v’“”) |pﬂ(zg). Hence vy, — (P, ~ g). O
Remark. One can think of p,(X) as the corresponding generator of (P, ~ p).

Definition 3.1.27. Let (X,G) be a weighted r-suspension of G,,, I := Ir,f((ErG))\), and n € N¢.
Let B := (V”,6") be such that V" C V((2,G),) and §” : V"' — N. For v;; € V", set

mi,j (pﬂ(f)) = {P,« 3? © | vi,j ~ (PT ~ p) but ’UkJ 74/ (PT ~ p) V UkJ S V” N {U@j}}.

If (P, ~ p) € B(pp(I)) such that P, = p, then we write P, € B; ; (pn(1)).
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Remark. If p,(I) is known from context, we usually write ; ; instead of B; ; (pﬂ(I)). If P~ p

is such that P, = p, we simplify P, ~» p as P,.. For example,
Bi;(I) = {P; | P, an r-path in (3,G), such that v; ; — P, but vg; £ P, Vo € V'~ A{v 1}

P, ;(I) is a set of r-paths in (£, G), that is uniquely “weighted covered” by v; ; when considering
the “covering set” P = (V”,46"”). That’s to say, when B, ;(I) # 0, for P, in B, ;(I), we have that
v;,; € V" satisfies one of the constraints in Definition 3.1.3 and other vertices in V" don’t.

For v; ; € V", we say that v; ; “weighted cover” (P, <% ), notationally, v = (P % ), if
v;.; € V(p) and Xi;(vi’j) | pn(X®), where X< is the corresponding generators of P, in I. Then one

can mimic the interpretation of B; ;(I) to understand P, ; (pn(X9)).

Example 3.1.28. In Example 3.1.25, we have that (vi 1v1,0v2,0 ~ v1,0v2,0) € P1,0. Let X8 .=
X1’0X2,0X23’1 be the corresponding generator of vy gv2,0v2,1 in I. Then pﬂ(iﬁ) = XLOX;{O. We have
that V2.0 — (Ul’ovg’(ﬂ)g’l ~ ’1}1’01)2’0) since X2270 ‘ Xl,OXg,O' Then (ULOIUQ’()UQJ ~ ’1}1,0’02’0) € ‘131,0-

Also, for a fixed n, there is no other P; ~» g, therefore, P1 ¢ = {v1,1v1,0v2,0 ~ V1,002,0}-

Proposition 3.1.29. Let (X,G)\ be a weighted r-suspension of G, and I = I, ;((X,G)»). If
P = (V"”,6") is a minimal f-weighted vertex cover of (X,G)x, then P, ;(I) # O for any v; ; € V".

Proof. Suppose that ; ;(I) = 0 for some v; ; € V”. Then since I C P(V”,§"”) and (V",48") is

minimal, by Fact 3.1.7, we have that I € P(V" ~ {v;;}, 6”|V//\{,Ui,j})7 a contradiction. O
We have a general version of Proposition 3.1.29, state in the following lemma:

Lemma 3.1.30. Let (¥, G)) be a weighted r-suspension of G, I := Ir,f((ZrG)A), and n € N4
Let P := (V”,6") with V" C V((£,G)») and 6" : V" — N be such that P(V",4”) occurs in an m-
irreducible decomposition of p, (1) and P(V"~{v; ;},0" |y {u, ;1) doesn’t occur in any m-irreducible
decomposition of p,(I). Then B; ;(pn(I)) # 0 for any v, ; € V”. In particular, if P(V",6") occurs
in an irredundant m-irreducible decomposition of p, (1), then P(V" ~ {v; j}, 0" [vr fv, ;3) doesn’t

occur in any m-irreducible decomposition of p, (I) for any v; ; € V.

Proof. Suppose that 9; ; (pn(I)) = 0 for some v; ; € V”. Then since p,(I) € P(V",§"), we have

that p,(I) € P(V” ~A{vi;},0"lvrfu. 1), a contradiction.
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Let Ij, :== P(V",46") occur in an irredundant m-irreducible decomposition of p,, (I) = (i, i
with k € {1,...,n} such that P(V" \ {v;;},0"|vijv,,3) occur in an m-irreducible decomposition

of p,(I) for some v; ; € V”. Then since p,(I) C I, = P(V",¢"”), we have that

pu(l) € P(V" ~Avigh 0" v qoy) © P(V7,87) =

So
m IZ- = pﬁ([) = P(V” AN {Ui,j}75//|v/’\{vi7]} m V” AN {Uz J} (5 ‘V”\{vl J} ﬂ ﬂ Ii.
i=1 i=1 i=1,i#k

By Fact 2.2.23, the number of ideals in any irredundant m-irreducible decomposition of p,,(I) is n,
so the above decomposition on the right is also an irredundant m-irreducible decomposition of p, ().

Then Fact 2.2.23 implies that I, = P(V" ~\ {v; ;}, (5H|V//\{,Ui1j}), a contradiction. O

3.2 Sufficient Conditions for Unmixedness

In this section, we prove the sufficient conditions for which the f-weighted r-path ideal of a
weighted r-path suspension is unmixed. We divide the classification into 3 kinds of cases. We first

discuss the sufficient conditions for I, ;((X,G)x) to be unmixed for the case r = 2.
Proposition 3.2.1. Let (X2G) be a weighted 2-path suspension of G, such that

(a) Aviv;) < fF(AM(vv5), Mvivin)) < A(vivi1) and A(viv;) < fF(A(viv5), A(vv5,1)) < A(vjvs,1) for all

edges vv; € E((22G)),
(b) A(vivi,1) < fF(A(vivi1), A(viavi)) fori=1,....d,

(¢) fA(viv;), Avjvg)) < min{ f(A(viv;), A(vjv;1)), f(AM(vrv;), A(vjvjq))} for all 2-paths vv;vk in
G,

(d) for all 3-paths vvjupv; in G: if f(A(vj195), Mvjv;)) < A(vjvx), then f(A(vjvg), A(vkvy)) >
A(vjvk),

(e) for all 3-cycles v;vjvpv; in G: if f(A(vivs1), A(vivy)) < A(viv), then either f(A(viv;), AM(vgv;)) >

A(vg;), or, f(A(vgvs), A(vkv;)) > Awvgv;) and f(A(vv;), AM(vjvr)) < max{A(v;v;), A(vjve)}
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Let I := I ;((3,G))) and n = (ny,...,nq) € N%. Let B := (V”,4”) with V"' C V((%,G)») and
8" : V" — N be such that P(V”,§"”) occurs in an irredundant m-irreducible decomposition of p,,(I).
Then there exists at most one v;;, € V" for i = 1,...,d. Note also that there exists a v; ;; € V" for

i=1,...,d, so pp(I) is unmixed.

Proof. Suppose there exist v; o,v;,3 € V" with 0 < a < § < 2 for some ¢ € {1,...,d}. Then we

have the following 3 cases (a), (b), and (c).

(a) Suppose that @ =1 and 8 = 2. By Lemma 3.1.30, we have ;1 # 0 # P, 2. If (P = p) e P2,
then v12 € V(p), as (£2G), is a 2-path suspension, we have P, ~» p must be of the unique form
Vi 2051050 ~ Vi 2V3,1V4,0- So we have %,2 (pg(l)) = {Ui,Q'Ui,l'Ui,O}- Hence v; 2v;,10;,0 ¢ ’]31‘,1~ Also,
since v; 1 is in V(p) for any P, ~» @, we have that v; 1v;,0vj0 € P, 1 for some edge v; gvj 0 € E(G).

So we have that v;1 — v;1v;,0v50 and then 6”(v;1) < Aviovi1) < f(A(vi0vi1), A(vi1vi2)) by

Condition (b), implying v; 1 “— v; 20; 10;,0, contradicting the condition B; 2 = {v; 2vi,1v:,0}-

(b) Suppose that & = 0 and 8 = 2. Then B, 2 = {v; 2v;10:0} and P; 0 # @ by Lemma 3.1.30. It is

straightforward to show that we have the following 3 cases:

(1) Assume that V3,104,050 € q}i,(% Then we have that Vi, 0 ~—~ U4,1V4,0V5,0, and so 6”(’01‘70) S
f()\(l)@(ﬂ)j’o),A(U¢70U171)) S )\(vi70vi,1) by Condition (a), 1mply1ng Vi,0 ~— Vi 2Vi1V;0, contradicting
Pi2 = {vi2vi1vio}

(2) Assume that v; gv;0vk,0 € Bio or (V00,0051 ~ Vi0V50) € Pio. Then 6" (v;0) < A(vipv)0) <
F(AMwi,0v5,0); A(vi,0vi,1)) < A(vi,0v5,1) by Condition (a). So we have that v; o — ;20,105 0, contra-
diCtil’lg mi’g = {’02'72'01"11)1',0}.

(3) Assume that vjoviovk0 € PBio. Then 0" (vio) < fF(Av),0vi0), Mviovk,0)) < A(vivi1) by

Conditions (c) and (a), implying v; o — v;,2v;,10;,0, contradicting PB; o = {v; 2v; 1vi0}-

(¢) Suppose that @ = 0 and § = 1. Suppose that (v; 2v; 100 ~> vi10i0) € Pi1, then v; 2v; 10,0
is not a path in p,(I) and similar to Case (b), we have that v, — (v;20;1vi0 ~ Vi10i0), &
contradiction. Similarly, we have that v; 2v; 1v;,0 € FBs,1. So there exists v;1vi0vj,,0 € Bi,1. Then
we have that (vj, 1V, 000 ~ Vj;,00i,0) € Bi0s Vko0Vj; 000 & Pio for any vy ovj, 0 € E(G), and

vjl,ovi7011170 ¢ mLO fOI‘ any 'Ui,OUl,O S E(G)

(1) Assume that vg ov;0v,0 € Pio with & # ji. (The following drawing shows part of p,(2,G)
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after setting p, (v ;) = vi, ;, and deleting the corresponding edges whenever p,(X; ;) = X;, j,.)

Vi1

)

Uj1,0 Vi,0

Ut,0

Uk,0

Since V4,104,0V4,,0 € mi,lv we have that V4,05, V5,0 7[/ Vj,1,004,001,0 through Conditions (a) and (C)
Then since p,(I) € P(V",6") , we have that vy o — v, 0v;,0v1,0 by Lemma 3.1.26. So we have that

V1,0~ Vk,0V4,001,05 contradicting Vk,0Vi,0V1,0 € ;Bi,O-

(2) Assume that (v;0Up, ,0Up;,1 ~ VioUp,,0) € Pio with p1 # j1.
Vi1
Vjp,0 —— Vi0 — VUpy,0
Similar to Case (c)(1), we have that v,, o — vj, 00i0Vp,,0 and then v, o — (Vi 0Up, ,0Up,,1 ~

Vi,0Up, 0), contradicting (v; 0Vp, ,0Vp,,1 ~ Vi,0Vp;.,0) € Bio-

(3) Assume that v; 0vp, 0Vp,,ps € Bio With p1 # j1.

Vi1

,
V31,0 Vi, 0 Up1,0 Upa,q2

Similar to Case (c)(1), we have vp, 0 — Uj, 0Vi,0Up;,0- AS Vi 0Up, 0Ups,qs € Pio, We have vy, o ¥
Vi,0Upy,00ps,q0- Then f(A(05,00p,.,0)s AM(Upy,0Ups.g2)) < 6" (Vpy,0) < A(v4,0Up,,0) and hence g = 0. As
V0 = Vi 0Up; ,0Ups,qo A0d V5.0 Y& U3 105 005, 0, We have f(A(v;1050), AM(vi,005,,0)) < AMi,0Up, 0)-

(i) Assume that j; # pa. Then v, 0Vi 0Up, 0Up,,q. 1S & 3-path in G. As f(A(v4,14,0), A(vi,005,,0)) <
AV, 0Vp, 0), we have that f(A(vi,0Vp,.0), A(Vpy ,0Vps.g0)) = A(Vi00p,,0) by Condition (d), contradicting
Up1,0 ~ Uj;,0V4,0Vp,,0 a0d Up, 0 ¥ Vi,0Vp, ,0Ups,qs-

(ii) Assume that j; = po.

V31,0 Up1,0
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Then v; gvj, 0Up, 0Vs,0 is & 3-cycle in G and f(A(vi10i,0), A(Vi,005,,0)) < A(Vi,0Up,,0). So by Condi-

tion (e), we have the following 2 cases:

A. Assume that f(A(vp, 0v5,,0), A(Vpy,00i0)) = A(vp, 0Vi0). Similar to Case (c)(1), we have that
Upy,0 ~ V4, ,0V4,0Vp, 0- S0 We have that vy, o — v; 0y, 00}, 0, contradicting v; ovp, 0v5,,0 € Bi,0-

B. Assume now that f(A(vp,,005,,0), A(Vpy,00i,0)) = A(Vp, 005, .0) and f(A(vj, 00i,0) A(Vjy,00p1,0)) <
max{A(vj, 0vi,0), AN(Vj,.0Up; 0)}- Then since vj, o ¥ vj, 00i0vi1 and vj, 0 ¥ Vj,.0Up, 0Vi0, WE
have that vj, 0 ¥ vi,00j,,00p,,0- Since vp, 0 ¥ Vi,0Upy 0V4;,0, We have that vp, o ¥ Vi 0Vj;,00p,,0,

contradicting Lemma 3.1.26.

Note that for i = 1,...,d, by definition of p,(I), there exists a generator where all variables are of

the form X;;, with i; € {0, 1,2}, so there exists a vertex v;;, € V. O
Starting here, we discuss the sufficient conditions for I ¢((X,G)x) to be unmixed if r = 3.

Notation 3.2.2. We consider the next conditions on a weighted 3-path suspension (X3G)y of G,.

(a) Aviv;) < fF(Mviv)), Mvivin)) < A(vivi1) and A(viv;) < fF(A(viv5), A(vv5,1)) < A(vjvj,1) for all

edges v;v; € E((ZgG))\),

(b) AWikvikt1) < FOi Vi k41), AVi k105 k42)) for i =1,...,d and k =0, 1,

(¢) f(A(vv;), A(vjor)) < min{ f(A(viv;), Mvjvi1)), fF(AM(vev;), A(vjvj1))} for all 2-paths vvv, in G

(d) for all 4-paths v;v;VEV Uy In G: if f(A(vj10;5), A(vjv:)) < A(vjor) or f(A(ve1vk), AM(vgv;)) <

Avgvr), then f(A(vivj), AM(vjvg)) > A(vjok) or f(A(vevr), AM(vivm)) > A(vgvr),

(e) for all 3-cycles v;vjviv; in G:

(1) if f(A(vivi1), Mogvg)) < f(A(vivi1), A(vivg)) or there exists v;u; € E(G) with j # [ # k such
that f(A(vivia), Avivs)) < f(A(vivr), Mvivr)), then f(A(vjvi), A(vjor)) < max{A(v;v:), A(vjve)}
and f(A(vgvi), AM(vgv;)) > A(vkv;), and

(2) if f(M(vivin), AMvivj)) < A(vzvg), then

(1) f(A(vpvi), AMvrvy)) > A(vgv;), and

(ii) for any vjvy, 1, € E((33G)x) with v; # vy, 4, # vk,

FA(wjvi), Mwjor, 1,)) < max{A(vjv;), fF(Avjor), Avjor, 1))}, and
F(wjvi), Mwjvr, 1,)) < max{ f(A(vjvi), Mvjor)), F(A(vj08), Avjvn,.1,)) }
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and
(iii)
F(orvy), Mgy, 1)) < max{A(vgvy), f(A(kvi), Mvgor, 1)) }
A4 VgVl 1, € E((ZgG),\) with v; 7é Uiy 1y 75 Vi,
or f(A(vjv;), A(vjor)) > A(vjv;),

(f) for all 4-cycles vvvpvvi: if f(A(vi10:), AM(viv;)) < A(vivy), then either

(1)
A (vev;); A(vevr)) = Avevr) and f(A(vjvs), Avsok)) = Mojvi),

or

(2) (1) fM(vvy), A(vog)) > min{\(vv;), A(vvg)}, and
(i) f(A(vjvi), Avjvg)) < max{A(v;vi), A(vjop)}, and

(iii)

either f(A(viv;), Mvevr)) > Avgwr),
or f(A(vw;), Muwg)) > A(vvg) and

or f(A(vrv;), AMogwy)) > AMvev;) and f(A(vivs), A(vok)) > AM(vv;) and

and

(iv)

either f(A(vjv;), A(vjve)) > AMvjv;),
or f(A(vv;), Muwg)) > AMow;),

or Y vy, 1, € E((EgG))\) with v; # vy, 1, v
either f(A(vkv;), A(vgwr)) < max{A(vrv;), fF(A(vgor), A(vgvr, 1)) }
or f(Mvrv;), Avxvr, 1,)) < max{A(vgv;), f(A(vxor), Mvkor, 1,)) }

and
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if vju; € E(G), then f(A(vjv;), Avjor)) < nrlaux{)\(vjvk),f()\(vjvi),)\(vjvl))}7

if vju € E(G), then f(A(v;v;), A(vjvg)) < max{A(vjug), f(A(vv:), A(vjv))},

or f(A(vw;), A(vivg)) > min{A(vv;), A(vivg)} and f(A(vkv;), Avgvr)) < A(vgwr),



cither f(A(vgv;), AMvgvr)) > Mvpvr),

or f(A(viv), A(vivk)) = Awvivs),

or V vju, 1, € E((23G))) with v; # vy, 1, # g :
cither f(A(vjvi), Mvjor)) < max{X(vjvk), f(AM(vjvi), Awjv, 1))}
or f(A(vjur), Mvjur, ;) < max{A(vjvr), f(A(vjv:), Mojor, ) }-

The next results show that p,,(I) is unmixed in the setting of Notation 3.2.2. See Proposi-

tion 3.2.43 for the full conclusion.

Proposition 3.2.3. Let (¥3G)x be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij}, 6"y (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any

v;; € V. Thenfori=1,...,d, wehavev; o € V" orv; g ¢ V" for any (o, ) € {(1,2),(1,3),(2,3)}.

Proof. Proof by contradiction: assume that there exist such v; o € V" and v; 3 € V”. Then PB; o # 0

by Lemma 3.1.30. So

8" (vi,a) < max{A(vi,avia—1), f(MVi,a41i,0) AWiavia-1))} = fF(MVi,a+10ia) MViavia-1)),

by Notation 3.2.2(b). Then for any (P, ~ p) € B, 3 we have that v; o — (P, ~» @), contradiction
by the definition of 3; g3 and a # B. O

Proposition 3.2.4. Let (X3G)x be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any

v;; € V”. Then for i =1,...,d, we have v;o € V" or v; 3 ¢ V".
Proof. Proof by contradiction: assume that v; o0 € V" and v; 3 € V”. Then B, 3 = {v; 30; 205 10; 0}

and 9B, o # 0, by Lemma 3.1.30. So we have the following 3 cases:

(a) Assume that v; 2v; 10;0v5.0 € Bi0, Vi,10i,005,0Vk,1 € Bi,0, O (V5,105 0V5,0V5,1 ~ V;,105.0V5.0) € Bio.
Then we have that 6" (vi0) < f(A(vi,0v50), A(Vi0vi1)) < A(viovi1) by Notation 3.2.2(a), implying

Vi,0 — V3,30i,204,1;,0, contradicting P 3 = {v; 305,205,105 0}

39



(b) Assume that v;0v;,00k,001,m € Pi,0, V5,005,005,105,2 € B0, (Vi,005,005,105,2 ~ 3,005,005,1) € B0,
or (viovj,0v51V52 ~ VioVj0) € Pio. Then " (vig) < AMvigvjo) < f(AMviovjo), Aviovin)) <
A(viovi1) by Notation 3.2.2(a). So we have that v; o — v;3v; 20100, contradicting P;s =

{Ui,Bvi,2Ui,1Ui,()}«

(c) Assume that v;0v; 0k 0V,m € Pio O (V5,00i,0Vk,10k,0 ~* Vj,0Vi,00k0) € Pio. Then §”(v; ) <
F(A(v5,00i,0), A(vi,0vk,0)) < A(v;v;,1) by Notations 3.2.2(c) and (a), implying v; o — v; 30 20,105 0,

contradicting PB; 3 = {v;3v;20;10i0}- O

Propositions 3.2.5 to 3.2.15 will be used to prove a result similar to the one in Proposi-

tion 3.2.4.

Proposition 3.2.5. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 7 ((¥3G),) and n € N Let B := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV \Avij},6"[vir{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 2v; 10 0vj,,0 € Bi2 for some v; gvj, 0 € E(G), then (v;10i0Vp,,0Up,.1 ~

'Ui71'U7;70Up170) € mi,O for any v; oVp,,0 € E(G) such that P1 75 j1~

Proof. Proof by contradiction: assume that (v;1v;0Up, 0Vpy1 ~* Vi1Vi0Up0) € Pio for some

V;,0Up, 0 € E(G) such that p; # j1.

V51,0 Vi, 0 Up1,0

Then we have that vy, 0 ¥ (V),,005,0Up; ,0Vp1,1 ~ Ujy ,00i0Up,,0). SINCE ;905105 05,0 € Piz2,
through Notation 3.2.2(c) we have that vj, 0,vi0 ¥ (Uj;,00:,0Up1,0Up1,1 ~ Ujy ,0Vi0Vp,,0), cOntra-

dicting Lemma 3.1.26. O

Proposition 3.2.6. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let P := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and

PV~ Avij},6"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any

40



"
v;,; € V. Assume that v; 2v;10;,00j,,0 € Pi2 for a v; gvj, 0 € E(G), then v; 10; 0Vp, 0Vps,qo € Pio

for any 2-path v;vp, 0Vp,.q, in X3G such that p; # ji and vy, g, 7# V5, 0-

Proof. Proof by contradiction: assume that v; 10;.0Vp, ,0Vp,,q, € Pi,0 for some 2-path v;vp, oVp, ¢, i

¥3G such that py # j1 and vy, 4, # vj, 0-

V31,0 Vi, 0 Up1,0 Ups,g2

Since v; 20,103,005, ,0 € Pi,2, we have that vj, 0,vi0 ¥ Vj, ,0Vi,0Up,,0Ups,q. Dy Notation 3.2.2(c). Note
: : " "
that vi10i,00p, 0Ups.q2 € Fi,05 SO Upy,05 Vpa,ge 7 Uj1,0Vi,0Up1 0Ups.q0» CONtradicting py (1) € P(V”,6")

and Lemma 3.1.26. O

Proposition 3.2.7. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,§") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",§"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij}, 6"y {v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 2v; 10, 0vj,,0 € P2 for a v, gv;, 0 € E(G), then v; 10 0Vp, 0Vpy.00 € Bio

for any 2-path v;vp, 0Vp,.q, in X3G such that p; # ji and vy, q, = v 0.

Proof. Proof by contradiction: assume that v; 1v;,0Vp,,0Vp,,qs € Pi,0 for some 2-path v;vy, 0vp, ¢, in

¥3G such that p; # ji and vp, ¢, = vj; 0. Then v; gvj, 0Vp,,0vi0 is a 3-cycle in G,,.

Vi, 2

Vi1 i,0

Since v 20310500510 € P2, we have that vio £ vi,103,005:,00p,,0 and f(A(vi,0vi,1), A(vi0v),0)) <
FAMi0vi1), Aviovp;0))- Then f(A(vj,,00i.0); A(vj1,005.p1)) < max{A(vj;,00i,0), A(Vj1,005., )} and
FAMpy,0051,0)s AM(Upy 0Vi,0)) = AM(vp, 005, ,0) by Notation 3.2.2(e)(1). Hence we can show v, o, Vp, 0 ¥
Vi 15,005, 0Vp,,0 Dy way of contradiction. By similar to the proof of Proposition 3.2.3, we have that

vi1 € V", 80 vi1 Y& i10i,004, ,0Up, 0, contradicting Lemma 3.1.26. O
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Proposition 3.2.8. Let (X3G)x be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := Ig’f((Z;gG),\) and n € N%. Let 9 := (V”,6") with V" C V((ZSG))\)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 2v; 10 005, 0 € P2 for some v; gvj, 0 € E(G), then (vk,0v:,00p, ,00p, 1 ~

Uk, 00i,0Upy,0) & Bio for any 3-path vy gv;0Up, 0 in G such that k # ji # p1.

Proof. Proof by contradiction: assume that (vg 0vi 0Vp,,0Up;,1 ~ Vk,0Vi.0Vp;,0) € Bi,o for some 3-path

Vk,0Vi,00p, 0 i G such that k # ji # p1.

Vi 2
Vk,0 Vi1
V31,0 Ui, 0 Up1,0

So we have that Up1,05 Ups,qo )[/ (’l)jh()l}i,ovpl,ovphl ~ Ujl,O'Ui,OUpl,O)- Then it follows that Vi ,0 ~
(V51,003,0Upy ,00py, 1~ Vjy,003,0Up;,0) OF Vi0 = (Vjy,00i,0Upy,00py,1 ~ Vjy,0Vi,0Up,,0) Dy Lemma 3.1.26.
Hence V41,0 ~~ V3,2V;1V;3,0V5,,0 OF V; 0 ~—~ V;2V;1V;,0V5,,0 by Notation 3.2.2((2), Contradicting the con-

dition Vi,20; 1V;,0V5,,0 € mi,g. ]

Proposition 3.2.9. Let (¥3G)x be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV" ~Awij},0" v {o.,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V. Assume that v; 2v; 105,005, 0 € Pi2 for a v; gvj, 0 € E(G), then vk i 0Vp, ,0Vps,q0 € Pio

for any 3-path v 0v;,0Up, ,0Pps,q. iR 23G such that k # j1 # p1 and vj, 0 7 Up, g, -

Proof. Proof by contradiction: assume that vg ov; 0Vp,,0Ups,q. & Bi,0 for a 3-path v ovs 0Vp, 0Pps,q0

in ¥3G such that k # j, # p1 and v, 0 7 Vp,,g0-

;.2
Vk,0 Vi1
V31,0 Vi, 0 Up1,0 Upa,q2
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Then we have that vy, 0,Vps,q0 ¥~ Vj1,00i,0Up1,0Vps,qs- S0 We have that vj, o ~— vj, 0%4,0Vp,,0Ups,q. OF
V3,0 ~ Vj;,0V5,0Vp;,0Vps,q. DY Lemma 3.1.26. Hence vj, o — 0;20;,10,0V5,,0 OF V3,0 — Vi 2V,1V5,0V;,,0

by Notation 3.2.2(c), contradicting v; 2v;1v4,0v5,.0 € Bi 2- O

Proposition 3.2.10. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let B := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV \Avij},6"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 2v; 10,005, 0 € Bi2 for a v, gvj, .0 € E(G), then vy 0v; 0Vp, .0Ups.q0 & Bio

for any 3-path vy 0v;,0Up, 0Up, ¢, I G such that k # ji # p1 and vy, 0 = Vpy qs-

Proof. Proof by contradiction: assume that vg 0vi,0Vp,,0Ups,q. € Pi,0 for a 3-path vi 0vs,0Vp, ,0Vps,q.

in G such that k # j1 # p1 and vj, 0 = vp, q,- Then v; vy, 0Vj,,0vi,0 is a 3-cycle in G,,.

VE,0 V3,0 Vi1 Vi, 2
V31,0 Upy,0

Since v;0 ¥ v;20i10i,0Vj,,0, we have that v; o0 ¥ Uk0v:,0V5,,0Vp,0 by Notation 3.2.2(c). Since
V0 Y Vk,0Vi,0Up;,0Ups.q0, We have that vy o ¥ Vg 0005, 0Up,,0- Since v;0 ¥ v;20;10,0V5,,0 and

V3,0~ Vk,0V4,0V5;,0Vp;,0, W have

F(A(0i10:,0), Mvi,0051,0)) < 8" (vi0) < F(A(Vk,00i,0)s A(Vi 0Vpy 0))-

By Notation 3.2.2(e)(1), we have that f(A(vj, 0vi,0), A(V5,,005, p1)) < max{A(vj, 0v:,0), MV, 005, p1) }
and f(A(vp, 0051,0); A(Vpy,00i,0)) = A(vp, 0vj,,0). Hence similar to the proof of Proposition 3.2.7,

Vj1,0, Up1,0 Y& Vk,0Vi,0Vj,,0Vpy 0, contradicting Lemma 3.1.26. O

Proposition 3.2.11. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ¢((£3G)x) and n € N%. Let B := (V”,6") with V” C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ A{vij},0"[vifo,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V". Assume that v; 2v; 10;,0vj, 0 € B 2 for some v; gvj, 0 € E(G), then (v; 0Up,,0Up; 1Vpy,2 ~

Vi,0Up; 1Vpy,0) E Bio for any v; vy, 0 € E(G) such that p; # j;.
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Proof. Proof by contradiction: assume that (v;oUp,,0Up,,1Vp1,2 ~* Vi,0Up;,1Vps,0) € Bio for some

Vi 0Vp,,0 € E(G) such that p; # j1.

Vi1 Upy,1

Vj1,0 Vi,0 Up1,0

By Notation 3.2.2(b) we have

)‘(Upl,ovpl,l) < f()‘(vpl,ovpl,l)ﬂ )‘(’Upl,lvpl@)) < f()‘(vpl,ovpl’l% )‘(Upl,lvph?)) + )‘(’Upl,lvplQ)'

So we have that vy, 1 ¥~ v}, 0Vi,0Vp, ,0Vp,,1- Also, we have that v; o ¥ vj, 00i,0Up,,0Vp,,1 by Nota-

tion 3.2.2(c), and vy, 0, Up,,0 ¥ Vj;,0:,0Up;,0Up; 1, contradicting Lemma 3.1.26. O

Proposition 3.2.12. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ¢((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},0"[vifv,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V". Assume that v; 2v; 10;,0vj, 0 € B 2 for some v; gvj, 0 € E(G), then (v;,0Vp,,0Up; 1Vpy,2 ~

Vi,0Upy 0) & Pio for any v; gvp, 0 € E(G) such that p; # ji.

Proof. Proof by contradiction: assume that we have (v; 0Up,,0Vp,,1Up; 2 ~ Vi0Up,,0) € Pio for some

Vi,0Vp,,0 € E(G) such that py # ji.

V31,0 Vi,o0 = Upy,0

By Notation 3.2.2(b) we have that

F(0i0vp1,0)s A(Vpy,0Up1,1)) + A(Vp,,00p,,1)
< f(A(Ui,Ovpl,O)v )‘(Uphovpl,l)) + f(A(vP1»OUP171)7 A(Up1,1vp1,2))

< f()‘(vi,ovp1,0)7 A(Upl,ovphl)) + f()‘(vpl,ovpl,l)7 A(UP1,1UP1,2)) + )‘(vpl,lvpl,?%

we have that v, 0 Y& (v5,,00i,0Up,,0Ups,1 ~ Vj;,005,0Ups 0)- Also, note that v; o & (vj,,00i 0Vp, ,0Vp,,1 ~
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Vj,,0Vi,00p,,0) by Notation 3.2.2(c), and vj, 0 ¥ (V5,,00:,0Up;,0Up;,1 ~* Vj;,0%5,0Up,,0), contradicting

Lemma 3.1.26. O

Proposition 3.2.13. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N4 Let P := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,, (I) and
PV \Avij},8"[vir{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 2v; 10;,0vj, 0 € B2 for some v; gvj, 0 € E(G), then (v; 0Up,,0Up,,0Upy,1 ~

Vi,0Up;y 0Ups,0) € Bi,o for any 2-path v; gvp, 0Up,,0 in G such that p; # ji # po.

Proof. Proof by contradiction: assume that (v;0Up,,0Up;,0Ups,1 ~ Vi,0Up; ,0Ups,0) € Bio for some

2-path v; gvp, 0Up,,0 in G such that p; # j1 # po.

Vi, 2

Uj1,0 Vi, 0 Upy1,0 Ups,0

By Notation 3.2.2(a),

)‘(UI)hOUI)z,O) < f(/\(vplaovpmo)v /\(’Up%()Ule)) < f()‘(vphovpmo)v A(Upzﬁovpzyl)) + )‘(UP2701]I)271)'

So we have that vy, 0 ¥~ vj,,00,0Up;,0Up,,0- Also, we have that v; o ¥ vj,,00i,0Up,,0Ups,0 by Nota-

tion 3.2.2(c), and vj, 0, Up, 0 ¥ Vj,,00i,0Up, ,0Ups,0, contradicting Lemma 3.1.26. O

Proposition 3.2.14. Let (¥3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",§"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij}, 6"y {v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V. Assume that v; ov; 10;,005,,0 € P2 for some v; gvj, o € E(G), then (v; 0Up, ,0Up,,0Upy.1 ~>

V3,0Up;y ,0Ups,0) € Bi,o for any 2-path v; gvp, 0Up,,0 in G such that p1 # ji1 = po.

Proof. Proof by contradiction: assume that (v;0Up,,0Ups,0Ups,1 ~ Vi,0Up; ,0Ups,0) € Bio for some
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2-path v; gUp, 0Up,,0 in G such that p; # j; = ps.

By Notation 3.2.2(a),
A(iovj,0) < FMv5,,104,.0), Avj,.00i0) < FA©),,105,.0) M©5,,00i0)) + Mg, 105 2)-

So we have that Vj;,0 7Z/ (Uj1,1Uj1701}1’70U1‘,1 ~ Ujl,OUi,OUi,l)- Additionally, we also have that Vi,1, V4,0 )L

(4, 104,,0V5,0Vi,1 ~ Vj,,0V,0Vi1), contradicting Lemma 3.1.26. O

Proposition 3.2.15. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV" ~Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V. Assume that v; 2v; 10 005, 0 € P2 for a v; gvj, 0 € E(G), then v; gUp, 0Vps,q2Vps.q5 & Pio

for any 3-path v; 0Vp, ,0Vpy,q0Vps,qs 1R 283G such that p; # j7.

Proof. Proof by contradiction: assume that v; gvp, 0Vp,,g2Ups.qs € PBi,0 such that pi # ji.

V31,0 Vi, 0 Up1,0 Ups,g2 Ups,gs

Then vp,,0 ¥ j1,00,00p1,0p2,q2 A0 Vpy g ¥ Vi,0Up;,0Ups,q2Vps,gs-  SINCE V;20;510i0V5,0 € Pi2,
we have that v, 0,vi0 ¥ Vj,,00i,0Up;,0Ups,q. Py Notation 3.2.2(c). So we have that v, 4, —

Vj;,0Vi,0Vpy,0Upg,q DY Lemma 3.1.26. Hence

f(A(UpLUU;Dz,lD)’ )‘(Upz,qzvps,%» < 6”(7]172#12) < )\(UPI;OUPZaQZ)'
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Thus, by Notation 3.2.2(b) we have that go = 0 and then g3 = 0 by Notation 3.2.2(a). Since v; ¢ —

V3,0Up1,0Up2,q2 Vps,gs A0 Vi 0 £ V4 20;,10i,005, 0, We have that f(A(vi10i,0), Mvi,005,,0)) < A(vi,0vp,,0)-

(a) Assume that po # j1 # ps. Then vj, 0¥ 0Vp, ,0Vps,q2Ups,gs 18 @ 4-path in G. So by Nota-

tions 3.2.2(d) and (c) we have

A(vi,00p,,0) < F(AMv3,,00i0) A(vi0Vp,,0)) < f(A(vi1vi0), AMviovs, 0)),

contradicting f(A(vi,1v:,0), A(vi,0v4,.0)) < A(Vi,00p,.,0)-

(b) Assume that j; = po.

S

Ups,gs Ujy, Up1,0

Then by Notation 3.2.2(e)(2)(i), we have that v, .0 Y& Ups,qsVi1,0Vi,0Upy,0- Observe that vy, 4., vi0 ¥
UpgqsVj1,0Vi,0VUpy,0 AN U5 1,0i,0 Y& V3,104,005, ,0Up,,0- By Notation 3.2.2(e)(2)(ii), we have that vj, o ¥

Vps.q5V41,0Vi,0Up; 0, contradicting Lemma 3.1.26.
(c) Assume that j; = p3. Then v; 00, 0Up,,0Up,,00:,0 is a 4-cycle in G.

Vi,2

V3,0 Up1,0
Uj1,0 Ups,0
So we have the following 3 cases:

(1) f(AMps,0v51,0)s A(Ups,0Up1,0)) = A(Up,.0Up, 0) by Notation 3.2.2(f)(1) or (f)(2)(iii). Then we have

that vp,.0 ¥ Vj,,00:,0Up1,0Vps,0- But v4,,0, 01,0, Up,,0 ¥ Vj,,0Vi,0Vp,,0Vps,0, contradicting Lemma 3.1.26.
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(2) f(Avj,,0vi,0), A(Vjy,0Vps,0)) < max{A(vj, 0vi0), M)y ,00p,,0)} and

A (Vpy,004,0), AM(Vpy,0Vps,0)) = A(Vp1,00p5.0),

by Notations 3.2.2(f)(2)(ii) and (f)(2)(iii). Then we have that v;, o ¥ v;,00j;,0Vps,0Vpy,0 a0d Vp, 0 ¥

V3i,0V51,0Vp2,0Up1,0- BUL V5.0, Vps.0 ¥ Vi,0V4;,0Ups,0Ups ,0, contradicting Lemma 3.1.26.

(3) f(A(v,,0vi,0), AV, ,0Vpy,0)) < max{A(vj, ,0vi,0); M)y ,00p,.0)} and
FA(Vp1,0v5,,0)s MVps,00p1,0)) = A(Vp,,0v5,,0) and f(A(vp, 0i.0), AM(Vp, ,00p,.0)) = A(vp, 0vi0),

by Notations 322(f)(2)(11) and (f)(Q)(lll) Then V1,0 L VUps,0V51Vi,0VUp1,05 Ups,0 L VUpy, 005, Vi,0Vp; ,0

and vp, 0 ¥ Vp,,0V5;,004,0Vpy,0- But v 0 Y& Up, 0V, ,0V4,0Vp, 0, contradicting Lemma, 3.1.26. O

Proposition 3.2.16. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any

v;; € V”. Then for i =1,...,d, we have v; o € V" or v; o ¢ V".

Proof. Proof by contradiction: assume that v; o € V" and v; 2 € V”. Then similar to the proof of
Proposition 3.2.4, v; 3v; 20; 1050, (V30,20 10i,0 ~ Vi 20;1050) € Bi2. Then v, 2v; 10i0v5, 0 € P2
for some v; gv;, 0 € E(G). Then one can check that (P, ~ p) &€ B, o for any path p in p,(I) with
V3,0, Vj,,0 € V(p) or with v; 9,v; 2 € V(). Combining v; ov; 1v; 0vj,.0 € Pi,2 with Propositions 3.2.5

to 3.2.15, we have B, o = 0, contradicting Lemma 3.1.26. O

Proposition 3.2.17. Let (X5G)» be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let [ := 13,.,«((23G),\) and n € N, Let B := (V",6") with V" C V((Z?,G))\)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},0" v fo.,3) does not occur in any m-irreducible decomposition of p,(I) for any

v;,; € V", Assume that v; 2v; 10; 00,0 € Bi1 for some v; gvj, 0 € E(G), then PB; o = 0.

Proof. One can check that (P, ~» p) & B0 for any path p in p,(I) with v; 9, v;,.0 € V(p) or with
V0,02 € V(p). So one can also check that the remaining 11 cases are identical to the ones in

Proposition 3.2.5 to 3.2.15 and their corresponding proofs. O
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Proposition 3.2.18. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any

V45 € V. Assume that ('Ui,lvi,O'Ujl,O’Ujl,l ~ vi,lvi,Ovjl,O) c mi,lv then mi_’o = 0.
Proof. Note that o & B, o for any path p in p,(I) with v; 9, v}, 0 € V(p) or with v; o,v;1 € V(p).
(a) Assume that (v, 0Vi,0Vp,,0Up;,1 ~ Vk,0Vi,0VUpy,0) € Bio for some k # j1 # p1.

V4,1

V51,0 Vi, 0 Up1,0

7

Uk,0

Then V41,0, Vk,0 )é/ (vjl,lvjl,ovi,ka,O ~ vjl,OUi,OUk,O)~ AISO, we have that V3,0 )é/ (’Ujl,lvjl,Ovi,ka,O ~

v, .0Vi,00k,0) by Notation 3.2.2(c), contradicting Lemma 3.1.26.
(b) Assume that vy 0V; 0Vp, ,0Vp,.q. € Bi,o for some k # ji # p1.

V4,1

V31,0 Vi, 0 Up1,0 Upa,q2

e

Uk,0
Then this case is similar to Case (a). Note that in this case, we may have that vj, x, = Up, q.-

(c) Assume that (v;,0Up, 0Vp;,1Vp1,2 ~ Vi,0Vps,00p1,1) € B0 OF (V4,00p,,0Up1,10p;,2 ~ Vi,0Vpy,0) € Pio

for some p; # ji.
Vi1
V31,0 V4,0 Up1,0
Then vy, 0 ¥ (Up,,0Ui0V5,,0V5;.1 ~ Up, 0Vi0Vj,,0) by Notation 3.2.2(a). Also, note that v, o ¥
(Vp1,00i,0051,005,,1 ~* Up,,0i005,,0) by Notation 3.2.2(c), and that vj, 0 ¥ (Up, 006,005,001 ~

Upy,0Ui,0V5,.0), contradicting Lemma 3.1.26.
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(d) Assume that (v; 0Vp,,0Ups,0Ups,1 ~ Vi, 0Vp,,0Ups,0) € Pio for some p1 # ji # pa.

Vi1
V5,0 = Vi,0 = Up1,0 = Ups,0

Then we have that vy, o ¥ vj,,00i,0Vp,,0Up,,0 by Notation 3.2.2(a), and v; o ¥ vj,.00i,0Up; ,0Vps,0 DY

Notation 3.2.2(c) and v, 0,vj,.0 ¥ Vj;,00,0Up; ,0Ups,0, contradicting Lemma 3.1.26.
(e) Assume that (v;0Vp, 0Vps,0Ups,1 ~ Vi,0Vp;.0Ups,0) € Pio for some p1 # j1 = po.

Vi1

|
~ BN

Vjy, Up1,0

Since v; 0V, 0Vp, 0050 i a 3-cycle in G and f(A(vi,1v5,0), A(vi,005,,0)) < A(vi0Vp,,0), We have that
FA(vpy 0vi,0), AMp, 0051,0)) = A(Up, 00i0). So we have vp, 0 £ (Upy,005,005,,0Uj1,1 ~* Up;,00i,005,,0)-
Since vj,,0 £ (Vi,10i,005,,0051,1 ~ Vi,10i,0V5,,0), We have vj, 0 £ (Upy,004,005,,00j:,1 ~ Vpy 00,0Vj,,0)-
Also, we have that v, o Y& (Vp, 004,005,,005,,1 ~* Vp, ,0Vi,0V5,,0) by Notation 3.2.2(c). Hence we have

that vp, 0,0i.0, Vjy,0 ¥ (Upy,0V3,0U5,,005,,1 ~ Upy,0Vi,0Vj,,0), contradicting Lemma 3.1.26.
(f) Assume that v; 0Up, 0Vpy,q0Ups,qs € Bio for some j1 # p1 and v, g, 7# Vj, .0 F VUps,qs-
Vi1

V31,0 Vi, 0 Up1,0 Upa,q2 Ups,qs3

By way of contradiction, we get that v, 0,vi,0,Vp,,0 ¥ Vj1,00,0Up1,0Vps s> 50 We have that v, 4, —

V31,00i,0Vp,,0VUps,q2 - Since Ups,q2 Nt V4,0Up;,0Vp2,q2 Ups,q3, W€ have f()‘(’uphovpqu)v)‘(Upz,qzvpa,Q3)) <
A(Up,,0Upy.q.)- SO we have that g3 = 0 and then go = 0. So we have that vj, 0V 0Up,,0Ups,q2Vps,qs 1S @
4-path in G. Hence by Notation 3.2.2(d),

FA(W1,00i,0); Mvi00p1.0)) = Avi00p,,0) > F(A(vi10i0), A(vi0v5.0)),

contradicting Notation 3.2.2(c).
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(g) Assume that Vi,0Up;,0Ups,g5 Ups,qs € FBi,0 for some V51,0 = Upy,qa-

Ups,qs3 Uj1,0 Up1,0

Then similar to Case (e), we have that vy, 0, Vi 0,05;,0 % (Upy,005,005,,0Uj1,1 ~ Up,,0V4,0Vj,,0), contra-

dicting Lemma 3.1.26.

(h) Assume that v; 0Up, ,0Up, g0 Ups.gs € Bi,0 fOr some v, o = Vpy gs-

Yi,0 Up1,0

s —

Uj1,0 Upz,q2
Since v; 0V, ,0Upy,q2Vpy,0V5,0 18 & 4-cycle in G, we have the following 2 cases by Notation 3.2.2(f):

(1) fFA(Vpy.02Y51.0), AVpa.gaVp1,0)) = A(Upygatpy,0) by Notation 3.2.2(f)(1). Then we have that

Ups,q2 7L Upsy,q2VUp1,0V4,0V5,,0- Since
sy 1v5,0) + F(AMv5,,195,.0), M)y 0vi0) > F(A(v)y,105,0)5 Mvjs,0vi0)) > A(viovs, o),

by Notation 3.2.2(a), we have that vj, 0 ¥ VUpy,g.Up1,00i,0V5,,0- AlSO, Vi 0 Y& VUpy.g.Ups,0Vi,0V5,,0 DY
condition (c) and vp, 0 ¥ Vpy g2 Ups 00,005, ,0, contradicting Lemma 3.1.26.

(2) f()‘(vpl,ovi,o)v)‘(Uphovple]z)) > min{)‘(vp1,ovi70)’)‘(Uphovpqu)} by Notation 322(f)(2)(1) As
’Ujh() )L (vi,lvi7ovj1,0vj171 ~ ’Ui)lvi,ovjl)o), we have that 'Ujl,O 71/ (Upl,OUi7OUj1,OUj1,O ~ ’UphO’Ui,OvjhO)-
Also, since v; 9 ¥ (Vp,,00i,005,,005,,0 ~* Upy,0Vi,0V5;,0) by Notation 3.2.2(c), we have that vy, o ¥
(Upl,OUi,O'Ujl,OUjl,O ~ Upl,ovi701}j1’0). So we have that Upy,0 — (Upl,Ovi,OUjl,Ovjl,O ~ ’Upl,o’l)i,()vjl’o) by

Lemma 3.1.26. So we have that vp, 0 ¥ Vp,,0Ups,q¢.Vj1,0Vi,0- Since

F(vi,005,,0), MVj1,0Vpa.g2)) < F(MW5,,105,,0), A(v5,,0vi,0))

< AMwjy,195,,0) + F(A(v),,195,.,0), A(vj, 0vi0))
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by Notation 3.2.2(c), we have that vj, o ¥ Up, 0Ups,q2Vj1,00i,0- AlSO, i 0 ¥ Up, 0Ups,qsVjs,0Vi0 DY

Notation 3.2.2(a) and vp, g, ¥ Up,,0Up,,q2Vj1,0Vi,0, contradicting Lemma, 3.1.26. O

Proposition 3.2.19. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N4 Let P := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,, (I) and
PV \Avij},8"[vir{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; ov; 10 0vj,,0 € Pi1 for some v; gv;, 0 € E(G), then p & P, ¢ for any path

o € pp(I) with v; 0,04, 0 € V(p) or with v; 9,v;1 € V(p)
Proof. 1t is straightforward to show this statement. O

Proposition 3.2.20. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 105,005, 0Vj, k, € Pi1, then (v,0v;0Up,,0Up,,1 ~> Vk,0Vi0Up;0) € Pio for

any Vj, k, 7 Vk,0 7 V5,0 and j; # p1.

Proof. Proof by contradiction: assume that (v ovioVp,,0Up,,1 ~ Uk0Vi0Up,0) € PBio for some

Vja ks 7 Vk,0 7# Vjy,0 and j1 # p1.

Ujip ko V31,0 Ui, 0 Upy,0

7

Vk,0

Then vj, ky, V1,05 Vk,0 ¥ Vis,kaVir,0Vi,0Vk0- Also, we have that v; 0 ¥ vj, kyVj; ,00i,0Vk0 by Nota-

tion 3.2.2(c), contradicting Lemma 3.1.26. Note that in this case, we may have that vj, , = vp, 0. O

Proposition 3.2.21. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and

P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
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"
vi; € V. Assume that v;1v;0v), 005k, € FBi,1, then vg ovs0Vp, ,0Vps,q. & Bi,o for any vy, p, #

Vk,0 7 Vj,,0 and j1 # p1.

Proof. Proof by contradiction: assume that v o0vi0Vp, 0Vps,q. € Bi,0 for some vy, x, # V0 7 V), 0

and j1 # p1.
Vi1

Ujip ko V51,0 Vi, 0 Upy,0 Upz,q2

7

Uk,0

Then the proof is similar to the proof of Proposition 3.2.20. Note that in this case, we may have

that v, x, = vp, 0, etc. O

Proposition 3.2.22. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ¢((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},0"[vi{o,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v 10;005,,0Vj,,k, € Bi,1, then vg ov; 0Vp, 0Vps,qo & Pio for any vj, r, = vp0

and ji # p1 and vj; 0 # Upy.qe-

Proof. Proof by contradiction: assume that vy o0vi 0Vp,,0Ups,q. € PBi,o for some vj, p, = vio and

Ji 7é P1 and V51,0 # Upa,qa-

V4,0 Up1,0 Ups,q2

/

Uj1,0 Vk,0

Then by way of contradiction, we get that vj, o ~— v}, 0vi,0Vp,,0Vps.q. a0d Up, 0~ Up, 0Vi,0Vj1,0Vk,0-
Since Up, 0 ¥ Uk,00i,00p1,0Vps,q05 We have that f(A(vi00p,,0); AM(Vp,,00ps,g2)) < Ai00p,,0) and then
g2 = 0. So we have that vy 0V, 0Vi,0Up, ,0Ups,q. 1S & 4-path in G. Hence f(A v 0vj,,0), AMvj, 0vi0)) >

(v, ,0vi,0), contradicting v, o — Vj, 0Vi,0Vp; ,0Ups,qo A0 Uj, 0 Y& i 10i,0Vj; 0Vk,0- O

Proposition 3.2.23. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let B := (V",§") with V" C V((23G)x)

and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
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PV" ~Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any
1"
v € V. Assume that v; 105,004, ,0Vj,.k, € Pi,1, then vi 0vi 0Vp, ,0Vps,q. & Bi,o for any v, r, = vio

and ji # p1 and vj, 0 = Vpy,g0-

Proof. Proof by contradiction: assume that vy ovi 0Up,,0Ups,q. € PBi,o for some vj, , = vio and

J1 # p1 and V51,0 = Ups,qa-
Vi1

Vg,o ———— U0

N

Yji, Upy1,0
Then Vk,05 V41,0 )[/ Vk,0V5,,0V:,0Vp,,0- Since f()\(l)kpl}i,o), /\('Ui,OUpl,O)) > f()\(’()i71’l)i70), /\(Ui,ovjho)) and
V;,0V51,0Up;,004,0 is a 3—cycle in G, we have that f(/\(’()pl,o’ui,o), )\(Upl,o’(}jho)) Z /\(Upl,ovi70) by Nota-

tion 322(6)(1) So we have that Upy,0 7Z/ Vk,0V5,,0V4,0Vp,,0- AISO7 we have that V4,0 )(/ Vk,0V5,,0V:,0Up,y,0

by Notation 3.2.2(c), contradicting Lemma 3.1.26. O

Proposition 3.2.24. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V” C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Awij},0" v {o.,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 10 005, 0Vjs,ks € Bi 1, then (v; 0Up, 0Up,,1Up, 2 ~* Vi0Up, ,00p,,1) & Pio for

any pi 7é Ji1 and Upy,0 7& Vjip kg

Proof. Proof by contradiction: assume that (v;0Up, 0Up; 1Vp1,2 ~* Vi,0Up; 0Upy,1) € PBio for some

p1 # j1 and vy, 0 F Vjy ky -

Vi1 Up1,1

Ujg, ko Vj5,,0 Vi, 0 Up1,0

By Notation 3.2.2(a), we have vp, 0 ¥ Vj,,k,Vj,,0V5,0Up; ,0- Also, note that v; o ¥ vj, £, V51 ,00:,0Up; 0

by Notation 3.2.2(c), and that vj, x,,Vj,.0 ¥ Ujs,kaVj1,0Vi,0Up, 0, contradicting Lemma, 3.1.26. O]

Proposition 3.2.25. Let (X3G) ) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let B := (V",4§") with V" C V((23G)x)

and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
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PV" ~Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any
1
vi,j € V. Assume that v;,10i,00j1,00),,k, € Fi1, then (0i,00p,,00py,10p; 2 ¥ Vi,00p1,00py,1) & Pio for

any pi 7é Ji and Up1,0 = Vjz k-

Proof. Proof by contradiction: assume that (v;0Up, ,0Up, 1Vp1,2 ~ Vi,0Up; 0Upy,1) € PBio for some

p1 # J1 and v, 0 = Vj, ks
Vi1

|
~ B

Ups,1

Uj, Up1,0

By Notation 3.2.2(b), we have

)‘(Uphlvpho) < f(/\(vpl,Qv;Dl,l)’ )‘(’U;Dhlvpho)) < f()‘(’UPhQUPhl)? )\(Uphlvpl,o)) + )‘(UP172UP171>'

So we have that vy, 1 ¥ vi,0V),,0Up1,0Vp,,1 a0 Vp, 1 ¥ V), 0Vi0Up, ,0Vp,,1- SINCE Vi 0Up, 0V, ,0V4,0
is a 3-cycle in G and f(A(vs,1vi0), A(vi,005,,0)) < A(vi,00p,,0), Wwe have the following 2 cases by

Notation 3.2.2(e)(2)(iii):

(a) f()‘(vphovjl,o)a)‘(Uplyovplyl)) < max{)‘(vmyovh,o)’f()‘(vplyovi,()%)‘(vphovm,l))}' Then Upy,0 71/
V;,0V5,,0Up;,0Upy,1- AISO, we have that Vi, 0 )é/ Vi,0V51,0Up,,0Upy,1 by Notation 322(&) and V51,0 74/

V3,0V54,,0Vp1,0Vps 1, contradicting Lemma 3.1.26.

(b) f(A(v4y,0v4,0), AM(Vj1,0Up1.0)) = A(vj,,0vi0). Then vj, 0 ¥ vj,,00.0Vp; 00p,,1- Also, we have
that v;0 ¥ vj,,00:,0Up,,0Up; 1 Dy Notation 3.2.2(c) and vp, 0 ¥ Ujy,00i,0Up,,0Up; 1, contradicting

Lemma 3.1.26. O

Proposition 3.2.26. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,8") with V” C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 10;,00}, ,00j,.k, € Bi,1, then (v; 0Vp, 0Vp, 1Vps 2 ~ VioVps 0) & Pio for any

p1 7é J1 and Upy,0 7é Ujip ka -

Proof. Proof by contradiction: assume that (v; 0Up, 0Up;,1Up;,2 ~ Vi, 0VUpy,0) € Pio for some p1 # j;
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and Up1,0 7é Vjig ko

Ujip ko V31,0 Ui, 0 Up1,0

Since

A(vi,00p,,0) < f(AMpy,10p1,0)5 MVi0Vp; 0))

< F(AMWpy,19p,,0), AVi0Vpy,0)) + F (M Vpy ,2Vp1 1) A(Vpy ,10p,,0)) + AV, 2Up, 1),

we have that vy, 0 ¥ vj, ke, ,00i,0Up, 0. Also, we have that v o ¥ vj, k,Vj1,0V45,0Up,,0 by Nota-

tion 3.2.2(c), and vj, ky, Vj;,0 ¥ Vjs.ks Uj1,00i,0Up, 0, contradicting Lemma 3.1.26. O

Proposition 3.2.27. Let (X3G) ) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 7 ((¥3G),) and n € N4 Let B := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,, (I) and
PV~ Avij},6"[vir{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 1v; 005, 00,6, € Bi,1, then (Vi 0Vp, 0Vp,,1Up; .2 ~ VioUp, 0) & Bio for any

p1 # J1 and v, 0 = Vj, ks

Proof. Proof by contradiction: assume that (v; 0Up,,0Up;,1Up;,2 ~ Vi,0Upy,0) € Pio for some py # j;

and vp,,0 = Vj, ks -
Vi1

)

|
N

/l)jlio UPI,O

Since v;,0p, 0Vj,,00i,0 15 a 3-cycle in G and A(v;,0vp,,0) > f(A(v3,10i0), A(vi0vj,,0)), we have the

following 2 cases by Notation 3.2.2(e)(2)(iii):
(a) f(A(vpl-,OvjhO)v )‘(vplyovphl)) < maX{A(Upl,Ovj170)7 f(A(vpl,Ovl}O)v A(vplyovpl,l))}'

Upy,1
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Assume that f(A(vp, 00i,0)s A(Vp,,0Up,,1)) < F(A(Vp,,005,,0)s AM(Upy,0Upy,1))- Since vp, o0; 005, 0Vp, 0 i a
3-cycle in G, we have that f(A(vj, 0Vp,.,0); A(vj,,0vi,0)) = A(vj, 0vi,0) by Notation 3.2.2(e)(1). Assume

that f(A(py,00i,0), A(Vpy,00py,1)) = F(A(Vp,,005,,0)s A(Upy,0Ups 1)) Then by Notation 3.2.2(b),

A (0p,,0051,0), A(Vpy 10, ,0)) + A(Vp,,10p,0)
< f()‘(vpl,ovi,o)v )‘(Upl,lvpho)) + f()‘(vpl,val,l)v /\(Upl,lvpl,o))

< F(A(Wpy,003,0)5 A(Vpy,10p1,0)) + F(A(Vpy ,20p,,1)s A(Vpy,10p,,0)) + A(Vp, 2Vp, 1)

Thus, vp, 0 # (Vi,0V);,0Vp; ,0Vps,1 ~ Vi0Vj,,0Up,,0)- Also, vio & (Vi0V4,,00p,,00p,,1 ~ Vi,0Vj; ,0Up; 0)

by Notation 3.2.2(a) and v, 0 ¥ (Vi,0Vj;,0Vpy,0Vpy,1 ~ Ui 0Vj;,0Upy,0), contradicting Lemma 3.1.26.

(b) fF(A(vjy,00i,0)s AMVj1,0Vp1,0)) = A(vjy,0vi0). Then v, 0 £ (Vj,,00i,0Vp1,0Ups,1 ~ V1 0Vi,0Vpy.0)-

By Notation 3.2.2(b) we have

FA(Vpy,003,0)5 A(Vpy,10p, ,0)) + A(Vp,,10p,,0)
< f(/\(vpl,ovi,o)v )‘(Uplylvpho)) + f()‘(vpl,2vpl,1)7 /\(Upl,lvpl,o))

< F(A(Vpy,004,0)5 A(Vpy 101 ,0)) + f(A(Vpy,20p,,1)s A(Vpy,10p1,0)) + A(Vpy 20p, 1)

So we have that vy, 0 ¥ (Uj;,00,0Up,,0Up;,1 ~ Uj; 0Vi,0Upy,0). Additionally, we also have that v; o ¥

(V41,0Vi,0Vpy,0Upy,1 ~ Vjy,0Vi,0Up; 0) Dy Notation 3.2.2(c), contradicting Lemma 3.1.26. O

Proposition 3.2.28. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,8") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",§"”) occurs in an m-irreducible decomposition of p,(I) and
P(V" \A{vij},6" v {v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v € V. Assume that v; 105,005,008, € Pa,1, then (v oVp, 0Vp,,00ps,1 ~ Vi,0Vp;,0Ups,0) & Pio for

any Vs, ko 7é Upy1,0 7é V51,0 and Vja,ko 7£ Ups,q2 7£ Uj1,0-

Proof. Proof by contradiction: assume that (v;oUp,,0Up,,0Ups,1 ~* Vi,0Up;,0Ups,0) € Bio for some

Ujia ko 7é Up1,0 7é Uj1,0 and Ujia ko 7& Upa,q2 7& Vj1,0-

Vja ko Vj1,0 Vi, 0 Upy,0 Ups,0
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By way of contradiction, we get that vj, o v, ,0V:,0Up;,0Ups,qp- SINCE Vj, 0 ¥ Vi 1V45,0V5,,0Vjg,kss WE
have that f(A(vj, k,0j,,0), A(vj1,0vi,0)) < A(vj,,0vi,0). Then ky = 0, and 80 v, k,Vj; ,00i,0Ups ,0Vps,0 1S
a 4-path in G. Since f(A(vi,10i,0), A(vi,005,,0)) < A(vi,0Vp,,0), We have f(A(v;,0Up,,0), A(Vpy,0Ups0)) >
A(vi,0vp, ,0) by Notation 3.2.2(d). So we have that vp, 0 — (i,0Up;,0Ups,0Ups,1 ~* Vi,0Up1,0Vps.0),

contradicting (v; 0Vp, ,0Vps,0Upy,1 ~ Vi,00p;,0Ups,0) € Bio- O

Proposition 3.2.29. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let P := (V",§") with V" C V((£3G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV" \Avij},68"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 105,005, 0Vj,.k, € Bi1, then (v;0Up, 0Vpy,0Vps.1 ~ Vi 0Vpy,0Ups,0) & Pio for

any ji = pa.

Proof. Proof by contradiction: assume (v; 0VUp; ,0Vps,0Ups,1 ~ Vi,0Up1,0Vps,0) € Pio for some j1 = po.

Ujiy ko Vj1,0 Upy,0

By way of contradiction, we get that vj, k., Vj;,0, Vi,0 Y& Vjs,ksVjy,0Vi,0Upy,0- SINCE V; 0Vj; ,0Up; 00,0 1S &
3-cycle in G and A(vi,00p,.,0) > f(A(vi,10i,0), A(vi0v;,,0)), we have that f(A(vp,,0vi,0); A(0p,,0051,0)) =
Avp, 0vi0) by Notation 3.2.2(e)(2)(i). So we have that vy, 0 ¥ Vj,.ksVj;,0Vi,00p,,0, cOntradicting

Lemma 3.1.26. ]

Proposition 3.2.30. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let [ := I3,f((Z3G)>\) and n € N%. Let ¢ := (V”,6") with V" C V((ZgG))\)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV ~Awij},0" v {o,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V", Assume that v; 10 005, 0Vjs,ks € Bi,1, then (v; 0Up, 0Up,,0Ups,1 ~* Vi0Up, ,0Ups,0) & Pio for

any Vjy ks = Upy,0-

Proof. Proof by contradiction: assume that (v;0Up,,0Up,,0Ups,1 ~ Vi,0Ups ,0Ups,0) € Bio for some

Vja, ks = Upy,0-

V51,0 Up1,0 Up2,0
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It is straightforward to show v;,0,v;,,0,Vp,,0 ¥ Vi,0V51,0Vp1,0Ups,0 a0d V.0, Up,,0 ¥ Vj1,0Vi,0Up;,0Vps,0-
Then vy, 0 — V5,00j,,0Up;,0Up,,0- SINCE U; 0Vj; 0Up, 0Vi0 1S & 3-cycle and f(A(v;,10i,0), AM(vi,005,,0)) <

A(vi,0vp, 0), we have the following 2 cases by Notation 3.2.2(e)(2)(iii):

(&) f(AM(Vp1,0051,0)s M(Vp1 ,00ps,0)) < max{A(vp,,0051,0)s f(MVp1,00i,0), A(Upy,00p200)) }- So we have
that Upy,0 — U5,1V;,0V5,,0Vp,,0 or that Up,,0 (1}170Up1701)p2701)p271 ~ Ui7ovp1,01)p270) since Up,,0

Vi,0V5,,0Vp1,0Ups,0, & contradiction.

(b) f(AM(v)1.00.0), A(1.0Up1,0)) = A(vj,,00i,0). Then we have that vj, 0 4 vj,,00i,00p,,00ps.0- S0 we
have that v, 0 — v, 0Vi,0Up;,0Vp,,0- S0 We have that vy, 0 — (Vi 0Vp;,0Ups,0Ups,1 ~ Vi.0Upy,0Ups.0), &

contradiction. O

Proposition 3.2.31. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v;105,005,,00j,,k, € Pi,1, then (v 0Vp, 0Ups,0Vps,1 ¥ Vi,0Vp,,0Ups,0) € Pio for

any vj, k, = Up,,0 and ji # p1.

Proof. Proof by contradiction: assume that (v;0Up,,0Ups,0Ups,1 ~ Vi,0Up; 0Ups,0) € Bio for some

Vjg,ke = Ups,0 and ji # p1.

V5,1 V3,0 Up1,0

/ —

Uj1,0 Up,0

Then

T (Vp2,005,,0), MVp.00p,,0)) < f(A(Vps,0Up1,0)s A(Vps,0Vps,1))

< f()\('Upg,OUpl,O); )‘<v102,0vp271)) + )‘(Upz,ovpz,l)'

So we have that vp, 0 ¥ Up,,0Up,,004,,0Vi,0- By way of contradiction, we get that v;0,v;,,0,Vp,,0 ¥
Up,,0Up,,0U5,,0V5,0. S0 we have that vy, o~ Vp, 0Up,,0Vj,,0Vi,0- SINCE V; 0V, ,0Ups,q2Ups,0 15 @ 4-cycle

and f(A(vi,1v50), AMvj, 0vi0)) < A(i0Up,,0), we have the following 2 cases by Notation 3.2.2(f):

(a) f()\(’[)jhovi,o),)\(’L)j170’l)p270)) Z A(Ujl,Ovi,O) by Notation 322(f)(1) So Vj4,0 71/ V3j,,0V4,0Up;,0Up5,0-
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By way of contradiction, v;,0,Vp,,05Ups,0 ¥ Vj1,00i,0Up;,0Vps,0, contradicting Lemma 3.1.26.

(b) f(A(vpy,00i,0), A(Vpy ,0Ups.,0)) = min{A(vp, 0vi0), A(Vp, ,0p,.0)} by Notation 3.2.2(f)(2)(i). Then
since vp, 0~ Up, ,0Up,,0V4,,0V4,0, Wwe have that vy, o ¥ Up, 00i,0v5,,0Up,,0. But by way of contradiction,

we get that v;0,v;,,0,Vps,0 ¥ Ups,0V4,0V5,,0Up,,0, contradicting Lemma 3.1.26. O

Proposition 3.2.32. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},0"[vi{o,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V", Assume that v;10;,00j, 0Vjs ks € Bi1, then v; gUp, 0Vp,,10p, 2 & Bio for any vj, k, #

Up1,0 # Uj1,05 Vja ko # Upa,q2 # Uj1,0 and Ujip ko # Ups,qs # Vj1,0-

Proof. Proof by contradiction: assume that v; 0vp, 0Vp,,1Vp,,2 € Pi,o for some vj, , 7 Vp,.0 7 Vj1 0,

Ujia, ko 7é Upz,q2 7é Uj1,05 and Vjiz k2 7é Ups,qs3 7é Vj1,0-

Vi1

Ujip ko Uj1,0 Vi, 0 Upy,0 Upa,q2 Ups,gs

By way of contradiction, we get that vy, 0~ Vj, kyVjy 00i,0Up1,0- SINCE Vp, .0 ¥ Vi,0Up1 ,0Vps g2 Vps,qss WE
have that ¢o = 0. By way of contradiction, we can only have the two cases vj, .0 ~ Vj,,0Vi,0Up1,0Vp2,q2

O Upy,g5 ~ Vj1,004,0Vp1,0Ups,q2 -

(a) Suppose that vj, 0 — Vj,,00i,0Vp;,0Vps.qe- SINCE Ujy 0 Y Vi 1Vi0V5,,0Vj5,ke, We have that ke = 0
and f(A(vj,,5,05,,0), A(V51,005,0)) < A(vj,,0v5,0). Then v, 1, V5, 0Vi0Up, 0Up,.q0 1 & 4-path in G. Since
FMvi1vi0), Avi0v51,0)) < A(vi,00p,,0), we have that f(A(vi,0Vp,,0), MUpy,0Vps,62)) = A(Vi,0Vpy,0) by

Notation 3.2.2(d), contradicting Up1,0 ~ Via, ks Vi1 ,0V4,0Vp,,0 a0d Up, 0 ¥ V5,0Vp, ,0Ups,q2Vps,gs -

(b) Suppose that vp, g, — Vj,,0Ui,0Vp;,0Vps,q0- SINCE Up, g5 ¥ Vi 0Up,,0Ups,qs Ups,qs, We have that gz =0
and f()‘(vpl,ovm,%)a )‘(,Upzalm vp3ﬂ3)) < )‘(vm,ovm,%)' Then Uj1,0Vi,0Vp1,0Up2,q2 Ups,qs is a 4-path. Since
f()\(vi,lvi,o)a)\(Ui,O'Ujl,O)) < A(vi,Ovpl,O)v we have that f(/\(vjl,Ovi,O)a)‘(@i,ovpl,())) Z )\('Ui,O/Upl,O) by

Notation 3.2.2(d), contradicting v; o “— v;,0Up; 0Ups,q2Ups,qs A V5.0 ¥ Vj, gy Vi1 ,0Vi,0Upy ,0- O

Proposition 3.2.33. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ¢((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
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and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV" ~Awij},0" v qv.,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V", Assume that v; 10,005, 005,k € Bi,1, then v; 0Up, 0Vp,.02Vps,qs € Bijo fOr any vy, o = vp, 4

and Ups,qs = Vjg ko

Proof. Proof by contradiction: assume that v; gvp, 0Vps,q2Vps,qs € Bi0 for some vj, o = vp, 4, and

Ups,qzs = Vja,ka-

Vjy ko Vi1 .0 Upy .0
By way of contradiction, we get that vj, x,,Vj,,0, V5,0 ¥ Vjs,kaVj1,004,0Vpy 0. SINCE V3 0Vj, 0Vp, ,0Vi,0 1S &
3-cyclein G and f(A(v;,1v5,0), AMvi,0v5,,0)) < A(vioUp,,0), we have that f(A(vp, 0vi0), A(Vp, 005, ,0)) >
A(vp, 0vi0) by Notation 3.2.2(e)(2)(i). So we have that vy, o ¥ V), k,Vj;,00i,00p, 0, contradicting

Lemma 3.1.26. O

Proposition 3.2.34. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ A{vij},0" v {o,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;.; € V. Assume that v, 10, 0V, ,00j, ks € Bi,1, then v; 0Vp, .0Vps g2 Vps.gs E Bi,0 Or any vy, o0 = Vp, 4,

and Ups,qs 7é Vjig kg

Proof. Proof by contradiction: assume that v; 0Up, 0Ups,q2Vps.qs € Bi,0 for some vj, 0 = vp, 4, and

Ups,q3 7 Vja ko

Ups,gs V5,0

S~

Ujg, ko Uj1,0 Up1,0

Then the proof is similar to the proof of Proposition 3.2.33. O

Proposition 3.2.35. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((¥3G),) and n € N4 Let B := (V",48") with V" C V((23G)x)

and ¢” : V" — N be such that P(V",§"”) occurs in an m-irreducible decomposition of p,,(I) and
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PV" ~Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any
1"
vi,j € V. Assume that v;,105,00j1,00j,k € P15 then v 00p,,0Vpz,45Upg g5 & Fi,0 fOr any vj, 0 = vp, g,

and Vja,ka = Upy,0-

Proof. Proof by contradiction: assume that v; gvp, 0Vps,q2Vps,qs € Bi,0 for some vj, o = vp, ¢, and

Vjy,ke = Upy1,0-
Vi1

|
— BN

Ups,qs3 Uj, Up1,0

Since V4,0V5,,0Up;,0Vi,0 is a 3—cycle in G and f()\(vi,l’ui’o),)\(1},'70113'170)) < /\(Ui,OUp1,O)7 we have that

J(Mvp,,0i,0); Avp, ,0051,0)) = A(vp, 0vi,0) and
f()\(vjlxovi70)7 )\(Ujl,O'Upg,qg)) < max{f()\(vjhovi)o), A<vj17ovp1,0))7 f()‘(vjl,ovpmqe,)’ )‘(’Ujl,ovpl,o))}v

by Notation 3.2.2(e)(2)(ii). So we have that vp, 0,0j,.0 ¥ VUps,qs¥j1,0Vi,0Up, 0. Also, we have that

Upg,qss Vi,0 7~ Ups.qsVj1,04,0Up, 0, contradicting Lemma 3.1.26. O

Proposition 3.2.36. Let (X3G)) be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let P := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV \Avij},6"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 1v; 0V, 0V, k, € Bi,1, then v; 0Vp, 0Vp,.q2Vps.qs € Bi,o for any vj, x, = vp, 0

and Ups,qs3 7& Vj1,0-

Proof. Proof by contradiction: assume that v; 0vp, 0Ups,q0VUps,qs € Pi,0 for some vj, k, = vy, 0 and

Ups,gs 7é Vj1,0-
Vi1

Vi,0

N

V31,0 Upy,0 Ups,q2 Ups,qs

Then by way of contradiction, we get that f(A(vs1vi,0), A(vi0v5,,0)) < A(vi0Vp,,0) and v; 0,05, 0 £
Vi,0V;1,0Up1,0Ups,q2 Suppose that Upa,q2 > Vi,0V51,0Up1,0Ups,q2- Then as Upa,q2 %/ Vi,0Up1,0Vp2,q2 Ups,qs»

we have that ¢ = 0 by Notation 3.2.2(b). Then g3 = 0 by Notation 3.2.2(a). So we have that
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V31,00,0Vpy,0Vps,0Up3,0 is a 4-path in G. Since A(”Plﬁ”?zﬂz) > f()‘(vp1,0vp2,qz)>A(“Pm%”pm%))ﬂ by

Notation 3.2.2(d) we have

A(vi,00p,,0) < F(AMv,,00i0) A(vi0Vp,,0)) < f(A(vi1vi0), AMviovs o)),

a contradiction. Hence vp, ¢, ¥ Vi,0Vj;,00p,,0Ups,qp AN SO Up, 0~ Vi 0Vj;,0Ups,0Ups.qo- DBy Nota-

tion 3.2.2(e)(2)(iii), we have the following 2 cases:

(@) f(Mpy,0051.0)5 A(Upy,00Ups,g2)) < max{A(vp,,005.0), f(Mpy,00,0), A(Upy ,0Vpsg,)) - Then since

Up1,0 ~ V3,0Vj1,0Up1,0Ups,q2, We have that vy, 0~ Vi 0Vp;,0Ups,g2Vps g5, @ contradiction.

(b) f()\(vjlgovi’O)VA(vjlﬁovpl’o)) > A(Ujl,ovi’o)' Then we have that V31,0 %/ V51,0V4,0Up1,0Vp2,q2 - Also,
since v;,0,Vps,ga ¥ Uj1,004,0Up1,0Ups g0 We have that vp, o0 ~— vj, 00i,0Vp,,0Ups,q.- S0 We have that

Up1,0 ~ V3,0Up;,0Ups,q2VUps,qs+ & contradiction. O

Proposition 3.2.37. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let B := (V",4§") with V" C V((£3G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV" \Avij},68"[vir{v,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 195,005, ,0Vj,,k, € Pi,1, then v; oV, 0Vp, g5 Vps.q5 & Bio for any vy, r, = vp, 0

and Ups,qz = Vj1,0-

Proof. Proof by contradiction: assume that v; 0vp, 0Ups,qsUps,es € Pi,0 for some vj, k, = vy, 0 and

Ups,qs = Vj1,0-

Vi, 0 Upy,0

Vj 0 ——————————— Up, 0
So we have that go = 0. Since v; 105,005, ,0Up;,0 € Pi,1, we have that f(A(vs10:0), AM(vi0v5,,0)) <
A(vi0Vp,,0) and that v; 0,050 ¥ Vi,00j,,0Up;,0Ups,0- SINCE V5 0V}, 0Vp, 0Vi0 is & 3-cycle in G, we
have that f(A(Vp,,0051,0)s A(Vp1,0Vps0)) < max{A(vp, 0051,0)s F(A(Vpy,001,0), MVUpy,0Vps,0)) } OF that
F(AMwj,,0vi,0), AM(v5,,00p1,0)) = A(vj, 0vi0) by Notation 3.2.2(e)(2)(iii). So we have that v,, o ¥
V5,0V4,,0Up1,0Ups,0 OF Vj; 0 ¥ Uj,,0Vi,0Up,,0Ups,0- Hence by way of contradiction, we get that vp, o —

1 4
i,0Uj;,0Up1,00p2,0 OF Upy,0 = Vjy,00i,0Up ,0Ups,0- SO we have that 6”(vp,,0) < A(vpy,0Up,0)- Since
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V3,0V5,,0Up,,0Up, 003,018 a 4-cycle in G and vj v 0 € E(G), we have the following 3 cases by Nota-

tion 3.2.2(f):
(@) f(A(Vpy,0051,0), A(Ups,0Up1,0)) = A(Upy,00p, 0) by Notation 3.2.2(f)(1) or (£)(2)(iii). As " (vp,,0) <

A(Up,y,0Vpy,0), We have that vp, o — v5,0Up, 0Vp,,0Vj,,0, & contradiction.

(b) f()‘(vpuovi,o)a )‘(”pl,OUpz,O)) > )‘(vphOUpz,O) and
FO(©j,,001,0), ANVj,,00py.0)) < max{A(vj, 00py.0), F(A(Vj,,00i.0), AM(vj,,00p,.0)) }

by Notation 3.2.2(f)(2)(iii). Then vy, 0,vj,.0 ¥ Vi,0Vj;,00ps,0Up,,0- But we have that v;0,vp, 0 ¥

Vi 0V51,0Vps,0Vps ,0, contradicting Lemma 3.1.26.

(€) FM©p2,0041,0), A(Vpy,0Up1.0)) > MVp,,0051,0), f(A(Vp,,00i,0), A(Vpy ,00p,.,0)) > AV, 0vi0), and
FM©j,,003,0), Mvj,,00py,0)) < max{A(vj,,00py,0), F(AVj,,00i,0), AMvj,,00p,,0)) }

by Notation 3.2.2(f)(2)(iii). Then vp,,0,Vp,,0,0,,0,0i,0 ¥ Upy,0V5,,0Vi,0Up; 0. But we have that

V5.0 Y Upy ,00j,,0Vi,0Up, 0, contradicting Lemma 3.1.26. O

Proposition 3.2.38. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((¥3G),) and n € N Let B := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},6"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 10; 00j,,0Vj,,k € Bi,1, then v; 0Vp, 0Vpy.q2Vps.gs & Pio for any vj, p, =
Upy,go AN Upy g5 = Vj; 0-

Proof. Proof by contradiction: assume that v; 0vp, ,0Vps,qoVps,qs € Pi0 for some vy, r, = Vp, ¢, and

Ups,qs = Vj1,0-

Yi,0 Up1,0

s —

Uj1,0 Upz,q2
Then by way of contradiction, we get that vy, 0~ VUp,,0vi,0V5;,0Vps,q2 a30d Vp, 0~ Vp,.0Vps,q0Vj1,0Vi,0-
Since v;,0Vj, ,0Vpy,q2Ups,0 18 & 4-cycle in G and f(A(vi,1v:,0), AM(vi0vj,.0)) < A(vi,0Up, 0), We have the

following 2 cases by Notation 3.2.2(f):
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(a) f(A(Upz,qzvjhO)’)‘(UP2’Q2UP1,0)) > )‘('Upz,qzvm,o) and f()‘(vjl,ovi’o)v)‘(Ujl,ovpz,qz)) > )\(Ujh()’l}i’o)
by Notation 3'2'2(f)(1)' Then Upa,g25 V51,0 %/ V51,00i,0Vp1,0VUps,q2 - But V3,05 Upy,0 )Z/ V31,004,0Vp1,0Ups,q2>

contradicting Lemma 3.1.26.

(b) f(A(Vpy,00i,0), A(Vpy ,0Upy.,0)) = min{A(vp, 0vi0), A(Vp, ,0Up,.0)} by Notation 3.2.2(f)(2)(i). Then

Vp1,0 ~ Vi,0Up;,0Vps,q2Vps,qs» & contradiction. 0

Proposition 3.2.39. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ¢((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ A{vij},0"[vifv,,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V. Assume that v; 10;00j,,0Vj,,k € Bi,1, then v; 0Vp, 0Vpy.q2Vps.gs & Pio for any vj, x, =

Upa,q2 and Ups,qs3 7é Yj1,0 7é Up,,0-

Proof. Proof by contradiction: assume that v; 0vp,,0Vp,,q2Vps,qs € Pi,0 for some vj, p, = Vp, g, and

Ups,qs3 7é V31,0 7é Up1,0-

Vi1 V5,0 Up1,0

e —

V31,0 Upa,q2 Ups,qs

Then go = 0. Since v; 0Vj, 0VUp,,q2Ups,0 18 @ 4-cycle in G and f(A(v;,10i,0), A(v3,005,,0)) < A(Vi,0Vp;,0)s

we have the following 5 cases by Notation 3.2.2(f):

(a) fF(Mvj,,0vi.0)s A(Vj1,00ps.q2)) = AV, ,00i,0) by Notation 3.2.2(f)(1) or (f)(2)(iv). Then we have
that vj, 0 Y& U}, 00i,0Up;,0Vps,qo- SINCE Vi 0,Up, .0 Y Vjy 00Vi,0Up1,0Vps,q0, We have that vy, ¢, —
Uy 0Vi,00p;,0Ups.qa- SINCE Upy g0 ¥ Vi 0Upy.0Upy.qaUps.qs» We have that gz = 0 and A(vp,,q,Vp,,0) >
FA(Vps,020p1.0), AVps.g2Ups.qs)). S0 we have that vj, 0v;,0Up, 0Vps,q0Ups,gs 15 @ 4-path in G. Hence by

Notation 3.2.2(d), we have the following which provides a contradiction

Ai,0vps,0) < F(A(Vi0v5,,0), A(Vi0vps0)) < f(A(wi1vi0), AMvi0v, 0))-

(b) f(A(py,00i,0), A(Vpy ,0Vps.q2)) = A(Vpy,00i0) by Notation 3.2.2(f)(2)(iv). Then we have that

Upy,0 Y& Upy 0V4,0V51,0Ups,q2- BUL V5.0, Vg1 .05 Ups.ga Y= Upy,0V4,0V5;,0Ups.q0, cONtradicting Lemma 3.1.26.
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(C) f()\('Upl,O'Ui,O)y A(Uphovpqu)) > min{)\(vm,ovi’o% /\(Upl,ovpz,QQ)} and

f()‘(vm,%l)jho)v )‘(vm,qzvpl,o)) < )‘(Um,thvpl,o)v

by Notation 3.2.2(f)(2)(iv). By way of contradiction, we get that vp, 0 — Up, .0V ,0Vj;,0Ups.qa- SO
we have that vp, 0 ¥ Up, 0Ups.qa¥j1,0- SINCE Vi0, V5.0 ¥ Upy,0Ups.qaVin,0, We have that vy, ¢, —
Upy ,0Ups.qaVj1,0- LHEN Up, g0~ Upy gaUpy ,005,0U5;,0- SINCE Upy g0 Y Vi 0Upy,0Ups.q2Ups.qs, WE have that
g3 = 0. So we have that v}, 0v;,0Up; 0Vps,q2Ups,qs 15 & 4-path in G. Since f(A(v},,0vi0), Mvi,0Up, 0)) <
)‘(Ui70UP170)’ we have that /\(’Uphovpqu) < f()‘(vphovp%f]z)?)‘(Upz,%vp&qa))’ contradicting Upa,q2 >~

Upa,q2Vp1,0V4,0V51,0 and Upa,q2 7L Vi,0Up1,0Vp32,q2 Vps,gs -

(d) f()‘(vl)hoviﬁ)’ )‘(UP17OUP27Q2)) > min()‘(vphovi,o)) /\(Uphov;l)z,qz)) and

f(A(Upz,@UjhO)’ )‘(UP27Q2UP1,0>> < max{)\(vpquvjl,o), f()‘<vp2,qzvp170)’ )‘(’Upquvps,%))}’

by Notations 3.2.2(f)(2)(i) and (f)(2)(iv). Then vy, g, ¥ Upy,0Vps,q2Vj1,0Vi,0- SiNCE Vj, 0,Vi0 Y
Ups,0Upa,42 Vjn ,0Vi,0, We have that vy, 0 — Vp,,00p;,4,05:,0Vi,0- SO We have vy, 0 Vpy ,0Vi,0Uj:,0Vp2,42-

But v;,0,v5,,0, Ups,qs ¥ VUp1,0V4,0Vj,,0Vps.q0, CcONtradicting Lemma 3.1.26.

(e) f(A(,UP%QQ’Ujl»O)’A(UPQ#IZ/UP&Q.?)) S max{)‘(vm,qujhO)vf()‘(vpzyqzvpl,o)aA(”Pm%”ps,%))} by NO‘

tation 3.2.2(f)(2)(iv). Then vp, ¢, ¥ Vi 0Vj;,0Ups,q2VUps,qs- DBut we have that v; o, v, 0,Vps.q5 ¥
V3,0V4;,0Vp2,g2Ups g3, CcONtradicting Lemma 3.1.26. O
Proposition 3.2.40. Let (X5G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V” — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Awij},0" v {v.,3) does not occur in any m-irreducible decomposition of p,(I) for any
v;,; € V", Assume that v; 10,005, 005, k. € Bi,1, then v; 0Up, 0Vp,.02Vps,qs € Bi,o fOr any vy, o = vpy g
and Vp, 0 7# Vjs ks 7 Ups,0-

Proof. Proof by contradiction: assume that v; 0Up, 0Vps,g2Vps,qs € Bi,0 for some v;, 0 = vp, 4, and

Up1,0 # Ujip ko # Ups,0-

Vi1 Vi,0 Up1,0

— —

Vjiz, k2 V31,0 Upz,0
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Then by way of contradiction, we get that v, 0 — Up, 0V5,0V),,0Vjs,ks- SINCE Vi 0V, ,0Vpy,qsVp1,0
is a 4-cycle in G, and f(A(v4,104,0), AM(vi,005,,0)) < A(vi,0Up,,0), we have the following 4 cases by

Notation 3.2.2(f):

(@) f(AMpy,0U51,0)s A(Ups,0Up1,0)) = A(Vps,0Up,,0) by Notation 3.2.2(f)(1) or (£)(2)(v). Then vy, o ¥~
Vjy ,0V4,0Upy ,0Ups,0- Note that v;0,v0p,.0 ¥ U, 00i,0Ups,0Ups,00 SO Vj; .0 — Vjy,0V5,0Up; ,0Ups,0- SiNCE
Vjy 0 Y Vi 105 0Vj, ,0Vj, ks, We have that k£ = 0 and f(A (v, k,05,,0), M), 0vi0)) < A(vj, 0vi0). So we
have that vj, x,v;, 00i,0Up,,0Up,,0 1S & 4-path in G. Hence A(v; 0vp, 0) = f(A(Vi00p1.,0), A(Vpy,0Vps.0)),

contradicting vp, 0 = Up,,00i,00j1,00j5,k, A0 Up, 0 £ Vi,0Up; ,0Ups,0051,0-

(b) f(A(vpy,0vi,0), A(Vpy ,0Ups.0)) by Notation 3.2.2(f)(2)(v). Then vy, 0 ¥ Up,,0%,0V5,,0Vj5,k,- But

V5.0, Vj1,0, Uja. ks 7~ Upy,0Vi,0V51,0Vj ke, cOntradicting Lemma, 3.1.26.

(¢) F(A(Wpy,00i,0), A(Vpy,0Vps,0)) = min{A(vp, 0vi0), A(Vp, 0Vp,,0)} and

S (5,,005,0), AMv5,,00p5,0)) < max{A(v5,,00p,,0), f(A(v5,,005,0), AMVj,,0055.k2)) }»

by Notations 3.2.2(f)(2)(i) and (£)(2)(v). So we have that v, 0 ¥ Vp, ,0Up,.0Vj;,00i,0. By way of
contradiction we have that vp, o ~— Vp, ,005,005;,0Vjp.ks- SINCE Up, 0 ¥ Vi 0Up,,0Ups,0V4;,0 We have that

Upy,0 Y& Upy ,0Upy,0V51,0Vi,0- BUb 05,0, Up, 0 ¥ Upy 0Up,,0V5,,0V5,0, contradicting Lemma 3.1.26.

(d) f(A(Vp,,0vi,0)5 MVp, 0Up,,0)) = min{A(vp, 0vi0), A(Vp, 0Up,.0)} and

f(A(Uj17OUp27O)7 A(/Uj17ovj27k2)) < max{/\(vjhovpmo)’ f()‘(vjl,ovi,o)v /\(Ujhovjz,kz))}?

by Notations 3.2.2(f)(2)(i) and (f)(2)(v). Then vj, 0 ¥ Up,,0Ups,0V5,,0Vj5,k,- Similar to Case (c),
we have that vy, 0 ¥ Up, 0Vps,0V51,0Vja,ks- BUL Ujy ko Ups0 ¥ VUpy,0Ups,0Vj1,0Vj5 ke, cORtradicting

Lemma 3.1.26. O

Proposition 3.2.41. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N Let P := (V",4§") with V" C V((23G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
PV~ Avij},8"[vir{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any
v;; € V. Assume that v; 10; 00j,,0Vj, ks € Bi,1, then v; 0Vp, 0Vpy.q2Vps.gs & Piyo for any vj, p, =

Ups,qs3 and Up1,0 7& Uj51,0 7& Upa,qa-
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Proof. Proof by contradiction: assume that v; 0Vp,,0Vp,,q2Vps,qs € Pi,0 for some vj, p, = Vp, g, and

Up1,0 7é V31,0 7é Upa,q2-

Vi1
/ V3,0 Upy,0
Vji,0 = Uiz k2 \Upzm
Then ko = 0 = g9 and the proof is similar to the proof of Proposition 3.2.32. O

Proposition 3.2.42. Let (X35G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I3 ;((£3G)x) and n € N%. Let B := (V”,6") with V" C V((£3G)2)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and
P(V" \Avij},6" v (v,,}) does not occur in any m-irreducible decomposition of p,(I) for any

v;; € V”. Then for i =1,...,d, we have v; o € V" or v; 1 ¢ V".

Proof. Proof by contradiction: assume that v; o € V" and v;1 € V”. Then similar to the proof of

Proposition 3.2.16, we have that

i,307,20i,10i,0, (Vi,30i20i,10i,0 ~> V3 203,1V5,0), (Vi,30;20;10i,0 ~* Vi10i0) € Pi1-

Proposition 3.2.17 and Lemma 3.1.30 imply that v; ov; 1v;,0v5,,0 € Pi for any v; gvj, 0 € E(G)
Proposition 3.2.18 and Lemma 3.1.30 imply that (vi,lvi’ovjl,ovjho ~ 0;10;,005,,0) € Pi for any
v;,005,,0 € E(G). Proposition 3.2.19 to 3.2.41 and Lemma 3.1.30 say that v; 10;,00j, 005k, € Pin

for any 3-path v;,1vi,0v5,,0vj,,k, in X3G. Thus, we get that ;1 = (), contradicting Lemma 3.1.30. [

Proposition 3.2.43. Let (X3G), be a weighted 3-path suspension of G, that satisfies the conditions
from Notation 3.2.2. Let I := I5 ;((¥3G),) and n € N4 Let P := (V",4§") with V" C V((£3G)x)
and ¢” : V" — N be such that P(V",¢"”) occurs in an m-irreducible decomposition of p,,(I) and

PV" \Avij},6"[vi{v,,;3) does not occur in any m-irreducible decomposition of p,(I) for any

v;; € V". Then there exists at most one v;;, € V" for i = 1,...,d. Note also that there exists a
v, € V" fori=1,...,d, so py(I) is unmixed.
Proof. Tt follows from Proposition 3.2.3, 3.2.4, 3.2.16, and 3.2.42 O
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We discuss the sufficient conditions for I, ¢((X,G)x) to be unmixed for the remaining cases

r >4,

Proposition 3.2.44. Assume that r > 4. Let (X,G) be a weighted r-path suspension of G, such
that A(viv;) < f(A(viv5), A(vivi1)) < M) and A(vvy) < F(A(vvy), A(vv51)) < A(vjv,.1) for
all edges ’Ui’Uj S E((ETG)A) and A(Ui,kvi,k+1) S f(A(Ui,kvi,k+l)a A(Uz’,k+1vi,k+2)) fOI‘ 7= 1, P ,d and

E=0,...,7 =2, f(A(viv;), AMvjvr)) < A(vjv;,1) and for all 2-paths v,v,v in G:

FA(wivg), Avjve)) < fF(A(vivg), AMvjvi1)) = f(A(vkvs), AMv;vja)).

Let I := Ir,f((ZTG)A) and n € N%. Let B := (V”,§") with V" C V((E,G)A) and ¢ : V' —- N
be such that P(V",¢"”) occurs in an irredundant m-irreducible decomposition of p,, (). Then there
exists a unique v; ;; € V" for i = 1,...,d. Note also that there exists a v;;;, € V" fori =1,...,d,

80 pp(I) is unmixed.

Proof. Suppose there exist v; o,v; 3 € V" with 0 < a < f < r. Suppose that v; g — (P, ~» ) for
some r-path P, and some path o € p,(I), then we must have that v; , € V(). But since B; o # 0
by Lemma 3.1.30, it is straightforward to show that v; o — (P, ~> p). So we have that PB; 3 = 0,
contradicting Lemma 3.1.30. Note that for ¢ = 1,...,d, by the definition of p,(I), we have that
there exists a generator where all variables are of the form X, ; with 4, € {0,...,r}, so there exists

a vertex v;;, € V. O

Example 3.2.45. Let r = 4 and f = min. Let (X4G)) be a weighted 4-path suspension of

6 6 3
Gy, = 10 Vg V3 Vg
6 6 6 6
U1 V1,1 V1,2 V1,3 V1,4
6
6 6 6 6
V2 V2,1 V2,2 V2,3 V2.4
6
6 6 6 6
U3 V3,1 V3,2 V3,3 V3,4
3
6 6 6 6
V4 V4,1 Vg2 V4,3 V4,4

Then P = {0, 05,05, v3} is a minimal min-weighted 4-path vertex cover of (£4G)y. It is depicted

in the following drawing, where v:j € B, if and only if it is encompassed by a circle. Note that
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|‘J31| =4.

V1,1 V1,2 V1,3 V1,4

V31 V3,2 V3,3 V3 4

6

@ S V2,1 6 V2,2 6 V2,3 S V2,4
6
3

N 6 6 6 6
vy V4,1 V4,2 V4,3 V4,4

In fact, it is straightforward to show that the cardinality of any minimal min-weighted 4-path vertex
cover of (34G), is at least 4. Also, we can see that there always exists a minimal min-weighted 4-path
vertex cover of cardinality 4, generated from the min-weighted 4-path vertex cover {vi,v3,vi, vi}.
We see that Py := {vf,v5 5,05, 0§ 3,05} is another minimal min-weighted 4-path vertex cover of

(34G) depicted in the following sketch.

Uy V1,1 V1,2 V1,3 V1,4

6 6 6 6
U2 V21 V23 V2,4
6 6 6 6
V3,1 V3.2 V3.4
6 6 6 6
V4 V4,2 V4,3 V4,4

Since |PB2| = 5, we have that I, min((£4G)y) is mixed by the definition of mixedness and Fact 3.1.7.

wo

Example 3.2.46. Let r = 4 and f = min. Let (X4G)) be a weighted 4-path suspension of

6 6 9
G, := 10 Vg V3 Vg
6 6 6 6
U1 V1,1 V1,2 V1,3 V1,4
6
6 6 6 6
V2 V2,1 V2,2 V2,3 V2,4
6
6 6 6 6
U3 V3,1 V3,2 V3,3 V3.4
9
6 6 6 6
V4 V4,1 Vg2 V4,3 V4,4
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The only difference between the above graph (X4G), and the one from Example 3.2.45 is the weight
of vsvy. Then Py = {v,v§,v5,v§} is a minimal min-weighted 4-path vertex cover of (34G)x

depicted in the following.

V1,1 V1,2 V1,3 V1,4

V3,1 V3,2 V3,3 V3,4

6
3 6 6 6 6
Vs V2,1 V2,2 V2,3 V2,4
6
9

N 6 6 6 6
Uy V4,1 V4,2 V4,3 V4,4

In fact, it is straightforward to show that the cardinality of any minimal min-weighted 4-path vertex
cover of (34G), is at least 4. Also, we can see that there always exists a minimal min-weighted 4-path
vertex cover of cardinality 4, generated from the min-weighted 4-path vertex cover {v{,v3,vi, vi}.
We see that By := {005, 0] ,vg’l,vizl} is another minimal min-weighted 4-path vertex cover of

(34G) depicted in the following.

5 6 6 6 6
U1 V1,1 V1,2 V1,3 V1,4
6
5 6 6 6 6
Uy V2,1 V22 V2,3 V2.4
6
9 6 6 6 6
v3 V3,2 V3.3 V3,4
9
6 6 6 6
V4 V4,1 V4,2 V4,3 4

Since [P2| = 5, we have that I, min((X4G)x) is mixed by the definition of mixedness and Fact 3.1.7.

From Examples 3.2.45 and 3.2.46, we see that there must be some strict constraints on the
weights of G to make I min((£4G)) be unmixed. We will show that in general when r > 4, if
I min(24G.,) is unmixed, then all edges in G have the same weight, i.e., w = M| ¢ is a constant. This

result can be found in Corollary 3.5.3, Proposition 3.2.44, and Theorem 3.3.4.
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3.3 Necessary Conditions for Unmixedness

In this section, we prove the necessary conditions for which the f-weighted r-path ideal of
a weighted r-path suspension is unmixed. We divide the classification into 3 kinds of cases. We first

discuss the necessary conditions for I, ;((3,G)x) to be unmixed for the case r = 2.

Lemma 3.3.1. Let (X,G)\ be a weighted r-path suspension of G,,. If I, ;((£,G),) is unmixed,
then A(viv;) < f(A(viv)), A(vivi1)) < A1) and A(vivy) < f(A(vv;), A(viv1)) < A(vv51)
for all edges v;v; € E(G) and A(v; kv k+1) < (AN x0i k+1), A(Vi k+1Vi g+2)) for i = 1,...,d and
E=0,...,7=2, f(Mvi,viy), A(Viyvig)) < AM0in0ig.1), FAM 03, 045), AM(viyvi5)) < F(A(0i301,), AMiyviy 1))
and f(A (v, iy), AMviyviy)) < f(A(Vizvi,), A(viyvi,,1)) for all 2-paths v;, v;,v5, In G.

Proof. Since {v},...,v}l} is an f-weighted r-path vertex cover of (£,G),, by Fact 3.1.6, there exists
a minimal f-weighted r-path vertex cover (V"”,§") of (£,G), such that (V" 6") < {vi,...,v}}.
By the minimality of V| we have that V"' = {vq,...,v4} and so |V"’| = d. Hence by [7, Theorem
2.7], it suffices to show that if Conditions on weights are not satisfied, then there exists an f-weighted

r-path vertex cover P := (V”,§") of (£,G)x such that [V"'| = d+1 and P, ; # 0 for each v; ; € V.

(a) Suppose that a := A(v; s—10i.5) > f(AN(Vis—1Vi5), AM(Vi sVis41)) for some i € {1,...,d} and some
s€{l,...,7—1}. We use the following diagram as a guide for constructing 3, where the column

represents G and rows represent the r-whiskers in ¥,.G. A vertex encompassed by a circle is in V.

Vi, r

Vk,r

Then it is straightforward to show that

Po= (V"8 = {vil’s_s_l,v?’s,v,im_s} U {v}n |me{l,...,d} ~ {ukz}}

is an f-weighted r-path vertex cover of (X,G)x such that [V"| = d+ 1, v 010 € Bista,
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Vis Vi 1ViUkVk1 " Vkr—s—1 € Piss Vi =+ Vi, 10k € Prr—s, and vy, - v,10; € Py for any ¢ in

(1,...,d}~ {i, k}.

(b) Suppose that a := A(v;vr) > f(A(vi,1v;), A(v;vg)) for some ¢ € {1,...,d} and some v;v;, € E(G).

The following diagram has the same representation as in (a) except for the elements in V.

e _ D

Then it is straightforward to show that
B = (V"8 = {Uiljl,vf,viﬂ.} U {U,ln |me{l,...,d} ~ {i,k}}

is an f-weighted r-path vertex cover of (X, G)y such that |[V"| =d+1, v; 10;050k,1 - Vkr—2 € Pin,

ViVkVR,1 " Vkyr—1 € P05 Vkyr -+ V1 Uk € Proyr, and vy p - - v 10 € Py forany t € {1,...,d}~{i, k}.

(c) Suppose a := f(A(vi10:), AM(vivg)) > A(vv;1) for some ¢ € {1,...,d} and some vu;, € E(G).

D Vi e Vi1

It is straightforward to show that 3 := (V”, ") := {v} ., v¢, v,iﬂ,_l} U{vl, [me{l,...,d}\{i,k}}
is an f-weighted r-path vertex cover of (X,G)y such that |[V”| =d+1, v; 10;050k,1 - Vkr—2 € Pio,

Vi Vir € Pir, Vkr eV 1Vk € Pror—1, and vy - - v 10 € Py o for any ¢ € {1,...,d} ~ {i, k}.
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(d) Suppose that a := f(A(v;v;), AM(vjvr)) > f(A(vivj), A(vjv),1)) for some 2-path v;v;v; in G.

vi Vi1 - Vir—2 Vi

@ @ e Vj,r—2 Vj,r—1 Vj,r
Vi @ Vk,r—2 Ve, r—1 Vk,r

Then it is straightforward to show that

Pi= (V" 6" = {712'1,%17”?;%1',17”%,1} u {v}n |me{l,...,d} < {z’,j,k}}

is an f-weighted r-path vertex cover of (3,G)y such that |[V"|=d+ 1,

Vi V10 € Pir—1, Vir—2- 000k € By, Vir—2 00051 € Pj1, V- Vi1V € Pi,1,

and vy, -+ v 10 € Py for any ¢ € {1,...,d} N {4, 7, k}. O
We discuss the necessary conditions for I, ¢((X,G)x) to be unmixed for the case r = 2.

Theorem 3.3.2. Let (32G)y be a weighted 2-path suspension of G,,. If IQ,f((EQG)A) is unmized,

then the weight function \ satisfies the constraints in Proposition 3.2.1.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if the constraints on 3-paths or 3-
cycles are not satisfied, then there exists an f-weighted 2-path vertex cover B := (V",5§") of (22G)x
such that |[V”| =d+ 1 and 9, ; # 0 for each v; ; € V”. Without loss of generality, we assume that

the weight function A satisfies constraints in Lemma 3.3.1.

(a) Let v;ujviv; be a 3-path in Gy, such that f(A(v;1v;), A(vjv;)) < A(vjo) =: b. Suppose that we
have f(A(vgv;), AMvpvr)) < A(vjvg) = b.
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(1) Assume that f(A(vg,1vk), A(vgvr)) < b.

V;,2 Vj2 VE,2 V1,2
b b b

Then it is straightforward to show that

P = V", 08") = {vj,,0j,,v ;’,vé,l,vz,vl{l}u{v}n|m€{1,...,

is an f-weighted 2-path vertex cover of (32G)y, and

d} ~ {27]7]{:71}}

V3205105 € P 1, V5,10V € B, vj0p01 € Pjo, Vk,1VEV € Pr,1,

VUV € Pr,o, V1,201,101 € Pi,1, V208108 € Pio

for any t € {1,...,d} ~ {4,4,k,1}.

(2) Assume that f(A(vg1vk), A(vgvr)) > b.

Vi, 2 Vj,2 VE,2

)

|
@ Vg1

V1,2

)

|
b

We have that P := (V" ,§") = {U 1 ]1, J,vk,vll}l_l{v | me {1,...,

d} ~ {i,j,k,1}} is an

f-weighted 2-path vertex cover of (X2G)x, and v; 2v;1v; € B, v1v5v; € Bj1, vjueu € Pio,

V0V, € Pro, V201,10 € Pr1, Ve 210 € Pio for any t € {1,.. .,
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(b) Let v;vjuiv; be a 3-cycle in G with f(A(vi1v5), A(viv;)) < A(vsvg) =: a. Suppose that we
have f(A(vrvi), AM(vgv;)) < A(vgv;) = a and f(A(vgvs), A(vrvj)) < A(vkvj) =: b. So we have that
F(A(vkvi), AMvg;)) < minf{a, b} =: c.

Il / : Uk,2
) b
Uj

Vk,1
(v9)
\Zk/

Then it is straightforward to show that
PB= V", 8") = {vj, 00,08 v f U {vg, |me{1,....d} N {i,j.k}}
is an f-weighted 2-path vertex cover of (¥2G)y, and for any ¢ € {1,...,d} ~ {4, 4, k},
V5,205,105 € By 1, 05,1005 € Pi1, v0k05 € Bio, Vi 2Vk10k € Phr,o, Ve,20:,10¢ € P o.

(c) Let vvjurv; be a 3-cycle in G with f(A(v;1v;), AM(v;v;)) < A(v;ux) =: a. Suppose that we have
FA(vrv;), AMvgv;)) < A(vkv;) = @ and b := f(A(v;v;), AM(vjor)) > max{A(v;v;), A(vjve)}

(1) Assume that f(A(vg,1vk), A(vgv;)) < a.

T / : Uk,2

| | |
)

It is straightforward to show that

B = (V" 8" = {v?,vil’hvf,vg,v,i)l} U {v}w |me{l,...,d} ~ {i,j,k‘}}
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is an f-weighted 2-path vertex cover of (¥2G)y, and

V5,205,105 € Bjo, vi,1v:05 € Piy1, vivrvy € Pio, V0% € Pr,o, Uk, 1005 € Pi,1, V20,10 € Pio

for any t € {1,...,d} ~ {i,J,k}.

(2) Assume that f(A(vg,1vk), A(vgv;)) > a.

It is straightforward to show that

o= (V) = Lol o U ol [ € (1 (i)

is an f-weighted 2-path vertex cover of (¥2G)y, and

5,205,105 € Pj0, vi,10i05 € Pi1, vivgv; € Pio, v;VivE € Pro, V2010 € Pro

for any t € {1,...,d} ~{i,4,k}. O
We discuss the necessary conditions for I, ;((X,G)x) to be unmixed for the case r = 3.

Theorem 3.3.3. Let (X3G)x be a weighted 3-path suspension of G,,. If Ig,f((ng)A) is unmized,

then the weight function \ satisfies the constraints in Proposition 3.2.43.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if the constraints on 4-paths or 3-
cycles or 4-cycles are not satisfied, then there exists an f-weighted 3-path vertex cover 3 := (V" 46")
of (X3G)x such that |[V”| = d+ 1 and B, ; # 0 for each v; ; € V”. Without loss of generality, we

assume that the weight function A satisfies the constraints in Lemma 3.3.1.

(a) Let v;vu5v0,, be a 4-path in G such that f(A(v;1v;), A(vjv;)) < A(vjvr) =: a. Suppose that
FAivs), AMvjor)) < Awjur) = a and f(A(vgve), A(viom)) < A(vgvr) =: b.

77



(1) Assume that f(A(vi,1v), A(vivm)) < b.

V;,3 V4,3 VEk,3 1,3 Um,3
Vi, 2 Vj,2 VEk,2 V1,2 Um,2
a b b ‘

Then it is straightforward to show that
B= (V" 6" = {v},l,v}yl,v;, v,ivl,vl{l,vlb,v}n’l} Ufoy |ne{l,....d}~{i,j.k,l,m}}
is an f-weighted 3-path vertex cover of (X3G)y, and
V5,30;,20;,10; € Pi1, 05,205,100 € B, Vj0VVm € B0, VE,3VE20k1VE € B, 1,

V1,201,10Vm € Pi,1, ViVj0r01 € Plo, Um,3Um,2Vm,1Um € Pm,1, Ve,30,20810¢ € Pio

for any t € {1,...,d} ~ {i,4,k,1,m}.

(2) Assume that f(A(vg1v1), AM(vjvm)) > b.

Vi3 Vj.3 Vk,3 V1,3 Um,3

Vi, 2 Vj,2 VE,2 V1,2 Um,2

] |
Gy Gy Gy o G

a b 3
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Then it is straightforward to show that
B= (V"8 = {vil’l,v}’l,vg,v,ivl,vf’,v}nyl} Ufvy |ne{l,....d~{i,j,k,l,m}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V3,3V4,204,10; € Pi1, V5205100 € Bj1, Vj0p01Vm € B0, Vk,3Vk2Vk 10k € Ph,1,

ViU Uk € B0y Um,3Vm,2Vm,1Vm € Pm,1, V4,30¢,20¢,10: € Pio

for any t € {1,...,d} ~{4,4,k,l,m}.

(b) Let v;v;vvvy, be a 4-path in G such that f(M g 1vk), AMvgv,)) < A(vkvy) =: b. Suppose that

FA(vjve), AMvjvi)) < Awvjor) =: a and f(A(vgvr), AM(vvm)) < Avgvy) = b.

(1) Assume that f(A(v;10;), A(v;v;:)) < a and f(A(v101), A(vivm)) < D.

Vi3 V4,3 Vg3 1,3 Um,3
) _ ‘ 1
Vi, 2 Vj,2 Vk,2 V1,2 Um,
@Y @ @) vm

) (o a BN b TN
vi & G/ & Um

Then it is straightforward to show that
PB= (V"5 = {vi{l,v}’l,v;‘,v,ﬁ’l,vz,vil,vf’,v}mQ} L {v}l |ne{l,...,d} ~{i,7, k,l,m}}

is an f-weighted 3-path vertex cover of (X3G)y, and

V3,305 203,105 € P15 V5,205,100 € Bj1, Vj0RVIVm € B0, Vk, 10805V € Pir,1, VkVIVmUm,1 € Pr,o0,
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V1,201,101 Vm € Pi,1, ViVj0r01 € Bro, Um,3Vm,2Vm,1Um € Pm,2, Ve,30:20:10¢ € Pio

for any t € {1,...,d} ~{4,4,k,1,m}.

(2) Assume that f(A(v;1v;), A(v;v5)) > a and f(A(v,1v1), A(vivm)) < b.

Vi3 V4,3 Vg3 1,3 Um,3

)

Vk V1,2 @
v Gy @) vm

,2

a\ a /7 p\ b

Then it is straightforward to show that
Po=(V7,0") = {0] 1,05, vk 1, Vs V10 05 U o} U g [ € {1, dd S {d g by Lo}
is an f-weighted 3-path vertex cover of (X3G)y, and for any t € {1,...,d} ~ {4, j,k,I,m},

V3,30;,20;,10; € P, 1, Vj0xVIVm € B0, Vk, 1060V € Pr,1, VkVIVmUm,1 € BPr,o0,

V12010 Vm € PBi1, Vivjvrvr € Bros Um,3Vm,2Vm,1Um € Pm,2, Ve,3V¢,20¢10¢ € Py o.

(3) Assume that f(A(vj105), A(vjv:)) < a and f(A(v101), A(vivm)) > b.

V3,3 Vj,3 Vk,3 v1,3 Um,3

=

V1,2 v,

Vg2
o @ w v

e >




Then it is straightforward to show that

B= V", 6" = {v-l L vtl,vz,vf’,v}ng} L {U}L lne{l,....d} ~{i,j, k,l,m}}

4,10 %5, "5
is an f-weighted 3-path vertex cover of (¥3G)y, and
V;,30i,205,10; € Pi1, 5,205,100 € Bji1, vjorUiVm € B0, Vk1VEV0; € Pro1,

VeV VmUm,1 € Phr,0s ViViVkV € B0, Vm,3Vm,2Vm,1Vm € Pm,2, Ve,304,20:,10 € Pio

for any t € {1,...,d} ~{4,4,k,l,m}.

(4) Assume that f(A(v;1v;), AM(v;v:)) > a and f(A(v,101), A(vivm)) > b.

Vi3 Vj.3 Vk,3 V1,3 Um,3

Vk V1,2 @
Uj,1 @ U1 Um,1

,2

Then it is straightforward to show that
B = (V"8 = {vil,v?,v,ivl,vz,vf’,vhg} U {U}L |nedl,...,d} ~ {i,j,k,l,m}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V3,303,201V € P15, Vj0xVIVm € B0, V100V € Pr,1, VkVIVmUm,1 € Pr,o0,

V0001 € P10, Um,3Um,2Vm,1Vm € Pm,2, V302010 € Pio

for any t € {1,...,d} ~{i, 4, k,I,m}.
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(c) Let v;vu be a 3-cycle in G such that f(A(v;vi1, A(viv;))) < f(A(vivi,1), AM(vivg)) =: a. Suppose
that b := f(A(vjv;), AMvjor)) > max{A(vjv;), Avjor)}

V;

,3

5.3 @ Uk,3

Vj,2 / Vk,2
o \@
m ‘

U

Then it is straightforward to show that

b .o
B= (V") = {Uj,vi{z,vf,v,i)l} W {v}n |me{l,...,d} < {z,j,k‘}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V3,100V € B0, Vi20i10:05 € Pi2, V510005 € Bio, Vk,3VE 2010k € Pr,1, V3020810 € PBio

for any t € {1,...,d} ~ {4,4, k}.

(d) Let v;ujvi be a 3-cycle in G such that f(A(vivi 1, A(vivg))) < F(A(vsvs1), A(vivg)) =: a. Suppose
that f(A(vkv;), A(vkv;)) < A(vgv;) =: b.

(1) Assume that A(v;v) < a and f(A(vk,108), A(vkv;)) < b.

Vi3

s




Then it is straightforward to show that
Bi= (V" 8") = {vﬂ, Vj 95V Z,11,6271),6}I_|{vm|m€{1 Ldy~{i, gk}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V5100051 € Bj1, 05,204,105V € P2, v5,100,Y5 € Pio,

ViU,V 1Vk,2 € P2, Vi,10:00% € Pr,o, V302010 € Pio

for any t € {1,...,d} ~ {4,7, k}.

(2) Assume that A(v;vx) > a or f(A(vk10k), A(vkvs)) > b.

Vi,3
vj 3 Vg3

Vj2 'Ui,l - Vg, 2

@ @ vkl

Then it is straightforward to show that
B= (V"8 = {vjl, iy U 1,vk} {v |me{l,....d} ~{i,j,k}}
is an f-weighted 3-path vertex cover of (X3G)y, and
V1050051 € By 1, 0:,205,10:05 € P2, i, 10:0kV; € Pio, Vi 10500k € Piro, V:,30:20:,10¢ € Bio

for any t € {1,...,d} ~{i,4,k}.

(e) Let v;vju, be a 3-cycle in G such that f(A(v;vi1), A(viv;)) < f(A(vivr), A(vivg)) =: a for some

83



vv; € E(G) with j # 1 # k. Suppose that b := f(A(v;v;), A(vjvr)) > max{A(v;v;), A(vjve)}

vL,3

Vi,3

V1,2
Vi3 - @l k.3

AN

Vj,2 v Vi1 . Uk,2

Then it is straightforward to show that
B = (V"8 = {v?,vil@,v;‘,v,i’l,vll,l} ] {vin |me{l,...,d} ~ {i,j,k,l}}
is an f-weighted 3-path vertex cover of (¥3G)x and that v;1v,v;vr € Bjo, Vi20i10:0; € Pig,

VIV VRV € Pi o, Vk,3Vk,2Vk 10k € Pr,1, and ve 30 20410 € Pro for any t € {1,...,d} ~ {3, 4, k, 1}

(f) Let v;vjur be a 3-cycle in G such that f(A(vivs1), A(vivy)) < f(A(vivr), AMvivg)) =: a for some

vv; € E(G) with j # 1 # k. Suppose that f(A(vgv;), Avrv;)) < A(vgv;) =: b.

(1) Assume that A(v;vx) < a and f(A(vg1vk), A(vkvi)) < b.
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Then it is straightforward to show that
P=(V",6") = {v] 1,0} 0,08 vk 1,00, 00 F U {oh, | m e {1, dy ~{i, 5.k, 1}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V100051 € Pj1, V:,20i10:05 € P2, vivivgv; € PBio,

ViVkVk,1Vk,2 € Pr,2, Vi,10:00% € Pr,o, V30,2010 € Pio
for any t € {1,...,d} ~{4,4,k,1}.

(2) Assume that A(v;v) > a or f(A(vg,1vk), A(vgv;)) > b.

U1,3

V1,2

AN

Vj2 U Vi1 - Vg2

oy <,
Then it is straightforward to show that
B = (V" 6") = {v},l,viQ,vf,vz,vl{l} U{oy, [me{l,....d} ~{i,j,k1}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
05100051 € Pi1, vi,20410:05 € P2, vvvgv; € Pio, i10:V5Vk € Phr,os Vi,304,20:,10 € Pio

for any t € {1,...,d} ~{4,4,k,1}.
(g) Let vvju, be a 3-cycle in G such that f(A(v;vi1, A(vivs))) < A(vivi) =: a. Suppose that we
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have f(A(vpv;), A(vev;)) < AMvgv;) = a.
(1) Assume that f(A(vg1vk), A(vgv;)) < a.
Vi3

V;,3 V;.2 Vk,3

Then it is straightforward to show that
Pi=(V",8") = {vja,v} 1,08, vp 1,05 f U {vg, [ m e {1,...,d} ~{i, ), k}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V5,205,105V; € P2, 01005051 € Pi1, vivrvv51 € Bio,

V10V Vk1 € Pr,1, V51000 € Pro, Ve,30¢20¢10¢ € Piro

for any t € {1,...,d} ~{i,4,k}.
(2) Assume that f(A(vg1vk), AMvgv,)) > a.
Vi3

V3,3 Vi,2 Uk,3

Vk,2
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Then it is straightforward to show that

Pi= (V" 0") = {v] o, 0l 1,08 vp } U {og, [ me {1, d} ~ {i, 5, k}}
is an f-weighted 3-path vertex cover of (X3G)y, and
V;,205,105V; € P2, V100051 € Pi1, vivrvvi1 € Bio, V5,105VVk € Pr,o, Ve,3Ve2010 € PBio

for any t € {1,...,d} ~ {i,J,k}.

(h) Let v;vjur be a 3-cycle in G such that f(A(vivi1, A(vivj))) < A(v;vg) =: a and there exists

ViU, 1, € E((EQ,G))\) with v; # vy, 1, # Vk. Suppose
b= f(A(vjvi), AMvjor, 1,)) > max{A(vjvi), f(A(vjor), Avjvi, )}

(1) Assume that l; = j, then Iy = 1.

V;

,3

V5.3 @ Uk,3

P
1 \

Then it is straightforward to show that

B = (V" 6" = {v] 2,1)],11112,1)2 ,v,iﬁl} U {U,ln |me{l,...,d} {i,j,k}}
is an f-weighted 3-path vertex cover of (¥3G)y, and

V5,205,105V € Bj2, V5,10;V0% € Pjo, Vi2vi 10505 € P2,

ViUEUU;1 € Bio, Vk,3Vk20k 105 € B0, Ve,30:20:10: € P
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for any t € {1,...,d} ~{i,4,k}.
(2) Assume that [y # j, then l5 = 0.

(i) Assume that f(A(vj1v;), A(vjog)) < b.

V11,3 V3,3 Vk,3
Uy,2 @ Vi,1 - Vk,2
| | e |
@y
(U @ Vi

Then it is straightforward to show that

1 b 1
513 = (VH76”) = {Ulll,lvvj,%vjavi,%

vf opa y U{on [me {1, dy ~{i 4,k L }}

is an f-weighted 3-path vertex cover of (33G)y, and

U1, 301,201,101 € Py 0, V5,205,100 € B,

2, V1, V00 € B0, Vi20:10:05 € P o,

ViURV; V51 € Pios Vi, VVEVE1 € Pro1, Ve,3Ve2Ve1V: € Pro

for any t € {1,...,d} ~{i,7,k,1}.

(ii) Assume that f(A(vj1v;), A(vjo)) > b.

U1,,3 Vj,3 VE,3
(U Vj2 Vi1 . Vk,2
| | ~_ |

m/
Uiy \'Uy Vi
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Then it is straightforward to show that

;B (V” 5// = {Ull 1)”]7'0327 1vvk 1} I—l{vm ‘ m e {1 d}\{iajvkall}}

is an f-weighted 3-path vertex cover of (¥3G)y, and for any ¢ € {1,...,d} ~ {4,4, k, 1},

V1,31, 201,10, € By o, VLU0 € Bos Vi205,1005 € Pio,

ViUV V5,1 € B, Vi, VjVRVE1 € Pr,1s Ve,3Ve2V:,10¢ € Pioo-

(i) Let v;vjur be a 3-cycle in G such that f(A(vivi1, A(viv;))) < A(v;vg) =: @ and there exists

Vv, 1, € E((EgG),\) with v; # vy, 1, # vk. Suppose that

b= f(A(vjvi), A(vjury 1)) > max{f(A(vjvi), A(vjvg)), f(A(vjvr), A(vjor.0,)) }

(1) Assume that l; = j, then Iy = 1.
i3

Vj,3 Vi, 2 Vk,3

/ T
@
\

@l
I
L

Then it is straightforward to show that
sp (V// 5” = {0]27/0]"01117 zavkl}l—l{vm|m€{1 d}\{lvjak}}
is an f-weighted 3-path vertex cover of (¥3G)y, and

V5,205,105V € Bj2, V10;V0% € BP0, Vi,10:0;V% € Pi 1,

ViUV V4,1 € B, V5,10V6Vk,1 € Pr,1, Ve,3V20:10 € Pio
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for any t € {1,...,d} ~{i,4,k}.
(2) Assume that [y # j, then l5 = 0.

(i) Assume that f(A(vjv;1), A(vjog)) < b.

V14,3 Vj.3 V5,2 Vk,3

/’“
)
T \

Then it is straightforward to show that

o2
Vj.1

(‘B (VN 6” = {vll 1 ]27 ?7 zllﬂ zﬂvkl}l—l{v |m€{1 d}\{i,j,k,ll}}

is an f-weighted 3-path vertex cover of (¥3G)y, and

Vy,31 201,101 € Py 1, 05,205,100k € B2, v, 000k € B0, vi1000k € Pix,

v URV; V1, € Bio, VL VVEVE L € Pr,1, V:,30:20:10: € P o

for any t € {1,...,d} ~{i,4,k, 11}

(ii) Assume that f(A(vjv,1), A(vjog)) > b.

V14,3 Vj,3 V5,2 Vk,3

i
@

/
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Then it is straightforward to show that

;B (V” 5// = {Ull 1)”]7'0317 1vvk 1} I—l{vm ‘ m e {1 d}\{iajvkall}}

is an f-weighted 3-path vertex cover of (¥3G)y, and
V1, 301,201, 10, € By 1, v, 000K € By, Vi10i050K € P,

viUEvv, € Pio, Vi VUEVE1 € Phr,o, Vi,30:,20:,10 € Pio
for any t € {1,...,d} ~{4,4,k,11}.
(j) Let v;vjux be a 3-cycle in G such that f(A(vv;1, Mvv5))) < A(v;vg) =: @ and there exists
VRV 1y € E((ZQ,G))\) with v; # vy, 1, # vj. Suppose that

b= f(A(vrvy), AMvevi, 1,)) > max{)\(vkvj),f()\(vkvi), )\(vkvll,b))}

and f(A(vjv;), A(vjvr)) < AMwjv;) =:c.
(1) Assume that [y =k, then Il = 1.
(i) Assume that f(A(vj1v5), A(vjoe)) < c.
Vi3

Vj.3 Vi 2 Vk,3

®

Ukl

Then it is straightforward to show that

Pi= (V7,0") = {ojgof v, o} Uog, [ moe {1, db S {3 kY
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is an f-weighted 3-path vertex cover of (£3G)y, and for any t € {1,...,d} ~ {i,4,k},

V;,205,105V% € Bj 2, v;U:0Vk1 € By, V:,10:0;V% € B,

ViUEVE 1Vk,2 € B0, ViVjUkVE1 € Pho, Ve,30: 2010 € Pro.

(i) Assume that f(A(vj1v5), A(vjuR)) > c.
V4,3

V4,3 Vi 2 Vk,3

“J2 a Uk,2

Ukl

Then it is straightforward to show that

33 VN (5” : {1}], 117 z7vk} {Um|me{1 d}\{l,]J{?}}

is an f-weighted 3-path vertex cover of (£3G)y, such that one has vjv,vive 1 € Bjo, vi1vvv; €
PBi1s ViVkVk,10k,2 € Pio, ViVUkVE1 € P, Vi,3Ve20e10 € Py for any t € {1,...,d} ~{3,7,k}.
(2) Assume that l; # k, then ls = 0.

(i) Assume that f(A(vj1v5), A(vjve)) < c.

Vj,3 V5,2 Vk,3 V14,3

P T e

Vg, 1 Viy,1

L U/ Vi
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Then it is straightforward to show that
B= (V"8 = {v};,vj—,vihvf,v,ﬁ,vlllg} U {v}n lme{1l,....d} ~{i,j, k1 }}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V5,205,10V% € B2, v;u060;, € By, 0,100k € B, vivpvr, 00,1 € PBio,
VUV, € Pr,o, Vip,3V1,200,101 € By 2, Ve3V2010 € Pio

for any t € {1,...,d} ~{4,4,k,11}.

(i) Assume that f(A(vj1v5), AM(vjur)) > c.

V5,3 Vi,2 Vk,3 V1,3

vj,2 a Uk,2

Vk,1 Uiy ,1

% ) v

Then it is straightforward to show that
B= (V" 8") = {v}v})l,v?,v,g,vllﬂ} U{oy, [me{l,....d}~{i,j,k}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
000y, € Byo, 0510050, € P, vivRvy 0v1,1 € Bios

ViV VRV, € BP0y Uiy, 3V 201,101 € By 2, UVe3Ve 2010 € Pio

for any t € {1,...,d} ~{i,4,k, 11}

(k) Let vvju,v; be a 4-cycle such that f(A(vi1v;), A(viv;)) < A(viv;) =: a. Suppose that we have

93



FA(wrv)), Avkwr)) < A(vgw) =: b and f(A(v), A(viog)) < min{A(v;), A(vio)} =: c.
(1) Assume that f(A(vg1vk), Avgv;)) < b.
Vi3 V1,3

Vj,3 Vi,2 Vk,3 v1,2

Then it is straightforward to show that
B = (V"8 = {vil,vf,vil,vé,l,vz,vlg} L {v}n |me{l,...,d} ~ {i,j,k,l}}
is an f-weighted 3-path vertex cover of (X3G)y, and
03,1000k € Bi1, vivivrv; € Pio, V5,304,205,105 € Pji1, viv;vkVk1 € Ph,1,

VU0V € Pr,o, ViV UV € Puro, Ve,3Ve,20610 € Proo

for any t € {1,...,d} ~{i,J,k,1}.

(2) Assume that f(A(vg1vk), AMvgv;)) > b.

Vi3 1,3

V5,3 Vi,2 Uk,3 1,2
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Then it is straightforward to show that
B= V", 6" = {v})l,vf,v;yl,vz,vf} u {v,ln |me{l,...,d} ~{i,7, k,l}}
is an f-weighted 3-path vertex cover of (X3G)y, and

V3,100V € Bi1, vivivpv; € Pio, 4,304,205,105 € Bji1,
Vv 00k € Phr,o, ViVjURV € Pio Ve,3Ve,20:,10¢ € Pioo
for any t € {1,...,d} ~{4,4,k,1}.

(1) Let v;vjviv; be a 4-cycle such that f(A(v;1v:), Mv;vj)) < A(viv) =: a. Suppose that we have

FMwgv)), Mogvr)) < Mugy) =: b and ¢ := f(A(vjvi), A(vjvg)) > max{A(v;v;), A(vvg)}-
(1) Assume that f(A(ve1vk), A(vgvj)) < b.

Vi3 U1,3

V3,3 Vk,3 Ug,2
Vj.2 Vi,1 - Vk,2 @

b
2/ \Zk/

Then it is straightforward to show that
B= (V"6 = {1)1172,vf,vivi’l,vz,vl{l} U {vin |me{1,....d} ~{i,j.k,1}}
is an f-weighted 3-path vertex cover of (¥3G)y, and for any ¢ € {1,...,d} ~ {4, 4, k, [},
V3,203,105V5 € B2, vivivpv; € Piyo, 00001 € BPio, Vk,2Vk,10605 € Pi,1,

V0010 € Phr,o, V1,3V1,201,101 € Pr1, V4,30:20:10: € Py o-

95



(2) Assume that f(A(ve1vk), A(vgvj)) > b.

Vi3 U1,3

V3,3 Vk,3 Vg2

Then it is straightforward to show that

B= (V" 6" = {vig,vf,vjc-,vz,vll’l} L {U,ln |me{l,...,d} ~ {i,j,k,l}}
is an f-weighted 3-path vertex cover of (¥3G)y, and

V3 2051005 € P 2, v;vRv5 € Pio, V0001 € Bjo,
V000 € Pr,os V1,3V1,20110 € P, Ve,30,20:10 € Pio
for any t € {1,...,d} ~ {i,7,k,1}.

(m) Let v;vjupv; be a 4-cycle such that f(A(vi1v:), AM(v;v;)) < A(vivy) =: a. Suppose that we have
FA(vrv;), Mogwy)) < Mogwr) =: b, f(AMvws), Avivg)) < AMovvg) = b, and f(A(vrv;), AMvgw)) <

A(vgv;) =: ¢. Let z := min{b, c}.

V;.3 1,3

V3,3 Vk,3 Uy,2
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Then it is straightforward to show that
‘13 = (VH’(;//) = {vil,2vUgvvjyl’vli,lvvlggvvll,l} U {Ufln | me {1a veey d} N {i’ja k’l}}
is an f-weighted 3-path vertex cover of (¥3G)y, and

;203,105 € P2, vivVEY; € Pio, v5,305,205,10; € Bj1,
V000K € Pr,o, ViVjUEV € Pro, Veste2U10: € Pio
for any t € {1,...,d} ~{4,4,k,1}.

(n) Let v;v;upv; be a 4-cycle such that f(A(v;1v;), A(vivy)) < AM(v;v) =: a. Suppose that we have
FA(wrvj), A(vkwr)) < Aogv) =: b, f(A(viwi), Mowr)) < AMvvg) = b, and f(A(vv;), AMvivg)) <

Avv;) = a. Let ¢ := min{a, b}.

Vj.3 Vi 2 Vk,3 V1,2

Ujg

)

Then it is straightforward to show that
q:’) = (V”75//) = {Uil,lvv;lvvj,hUé,lavlﬁavll,l} U {Urln | me {la . ad} ~ {imja k7l}}
is an f-weighted 3-path vertex cover of (¥3G)y, and for any ¢t € {1,...,d} ~ {i,4,k,1},

V5 20;,10;05 € Pi 1, v;0vEv; € P, v5,3V5,205,105 € Bj1,

V000 € Pr,o, ViVvRU € Pio, Ve,3Vi2v:10 € Pioo-

(o) Let v;vjuiu; be a 4-cycle such that f(A(vi1vi), AM(viv;)) < A(v;v) =t a. Suppose that we have
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FA(vrv;), Mogwy)) < AMvgvr) =: b, vju € E(G), and
¢ = f(AMvjv;), A(vjor)) > max{)\(vjvk), f()\(vjvi)7)\(vjvl))}.

(1) Assume that f(A(vg1vk), AMvgv,)) < b.
Vi3 U3

Vj.3 Vi, 2 Vk,3 v1,2

,——"”‘_— /// b
) Thicaal T
J \Zk/

Then it is straightforward to show that

B= (V" 6") = {v-l v®, ¢ U,i’l,v,l;,vll)l} U {vin |me{1,...,d} ~{i,7, k,l}}

2,10 Yi 0 Vg

is an f-weighted 3-path vertex cover of (¥3G)y, and for any ¢ € {1,...,d} ~ {4, 4, k, [},

03,1000 € Py 1, vivivrv; € Pio, viv;vRY € Byos Vk2Vk 10V € Pr,1,

VU0V € Pro, U1,3V1200100 € P, VeaV2010: € Pio-

(2) Assume that f(A(vg1vk), AMvgv,)) > b.
Vi3 v1,3

V5,3 Vi,2 Vk,3 V1,2

e T
(v i
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Then it is straightforward to show that
B= (V" 8" = {v}ﬂl,v?,v;,vz,v}yl} L {v}n |me{l,...,d} ~ {i,j,k,l}}
is an f-weighted 3-path vertex cover of (¥3G)y, and

V3,100 € By 1, vivivrv; € Bio, vivvrvr € Pjos

V0010 € Pr,o, V1,3V1,201,101 € Pr1, Ve,30:20:10: € Peo

for any t € {1,...,d} ~{4,4,k,1}.

(p) Let v;v;upv; be a 4-cycle such that f(A(vi1v;), A(vivy)) < A(v;v) =: a. Suppose that we have
FA(vrv;), Mogvr)) < Aoeor), f(A(vjvi), Mojoe)) < Avjvi) =2 b, f(A(vi), Moivk)) < Avwi) = a,
F M), Muvg)) < min{A(vv;), A(vivg)} =: ¢, and there exists vgvy, 1, € E((3,G))) with v; #

V1,1, 7 vp such that

x = f(Aorvj), AMogwy)) > max{)\(vkvj)7f()\(vkvl)7)\(vkvll,12))},
y = F(A(vrv;), Avkvr, 1,)) > max{X(vgv;), f(A(vrvr), Mok, 1)) }-
Then I; # k, and so Iy = 0.
Vi,3 1,3

V5,3 Vi, 2 VE,3 V1,2 V14,3

V3,2 o Vk,2 U1 Ul 2
a
Vi1 Yy fromm T Y r-——"""- oo

Then it is straightforward to show that

B= (V") = {v%)l,vf,v‘?,vz,vil,vl“} U {v,ln |me{l,...,d} < {i,j,k,l,ll}}
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is an f-weighted 3-path vertex cover of (X3G)y, and for any ¢ € {1,...,d} ~ {i,4,k,1,11 },

V31030V € Py 1, v;vivrvy, € Pio, v5,305,205,105 € B0, vivjvv, € Pro,

Vv € P, V1,301 201,100 € By 1, V3002010 € Bio-

(q) Let vvjo,v; be a 4-cycle such that f(A(vi1v;), A(viv;)) < A(viv;) =: a. Suppose that we have
F(vkvy), Mokvr)) < Avgor), fF(A(v0i), AMvjor)) < Mwjvi) = b, f(A o), A(vivg)) < Avw;) = a,
F(Mwgv)), Mogwr)) > A(vgvy), and there exists vgvy, 1, € E((2,G)x) with v; # vy, 4, # v; such that

x = f(Aorvj), AMogwy)) > max{)\(vkvj),f()\(vkvl)J\(vkvll,lz))},
y = f(Mogv)), Mogvr, 1,)) > max{)\(vkvj),f()\(vkvl),)\(vkvllh))}.
Then we have that f(A(viv;), AMvgvr)) < Avgvr) < f(A(vgv;), A(vgvr)), a contradiction.

(r) Let v;vjupv; be a 4-cycle such that f(A(v;1v;), A(vivj)) < A(vivy) =: a. Suppose that we have
FA(vkv;), Mogwy)) < AMwogwy) =: b, f(A(vv;), AMvivg)) < A(vv;) = a, and we have that there exists

vy, 1, € E((3-G)) with v; # vy, 4, # vg such that

c:= f(M(vjvi), Mujor)) > max{A(vjor), f(A(vsvs), Mvjor, 1))}
T = f()‘(vjvk)’ )‘(Ujvlhlz)) > max{/\(vjvk), f(/\(vjvi)’ )‘(Ujvlhlz))}'
Then [ # k, and so Iz = 0. Let y := min{z, c}.
(1) Assume that f(A(vg1vk), A(vgv;)) < b.
Vi3 v,3

V1,3 Vj,3 Vi 2 Vk,3 ()
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Then it is straightforward to show that
B= (V" 8" = {vil’l,v?,v;’,vi)l,vg,vf,vllhl} U {v,ln lme{1,....d} ~{i,j.k,1,11}}
is an f-weighted 3-path vertex cover of (¥3G)y, and
V3,100, € Pi1, vivivrv; € Pio, viv;vkvr € Byos Vk,2Vk 106V € Pr,1s

V00V € Pr,o, VvV, € Pio, Viy,301,200,10 € Py 1, v8,3020:108 € Bio

forany t € {1,...,d} ~{4,4,k,1}.

(2) Assume that f(A(vg1vk), A(vgv;)) > b.

Vi3 U,3

V1,3 Vj,3 Vi 2 Vk,3 ()

Y NGV @D

Then it is straightforward to show that

B= (V") = {vi{l,vq vy vz,vla,vllhl} L {v,ln |me{l,...,d} < {i,j,k,l,ll}}

i Y50
is an f-weighted 3-path vertex cover, and
03,1050, € Pi1, vivivrv; € Piyo, viv;vevr € Pyo, vjvvvk € Pios

Vv, € Pro, Vip 3V 200,101 € Piy1s Ue3Ve2010 € PBro
forany t € {1,...,d} ~ {4,4,k,1}.
(s) Let v;vjuiu; be a 4-cycle such that f(A(v;1v:), A(viv;)) < A(vsvp) =: a. Suppose that we have
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FA(vjvs), AMvjvg)) < Avjv;) =: b and f(A(vv;), AMvor)) < min{A(vv;), AMvog) } =: c.
(1) Assume that f(A(v;1v;), AM(vjve)) <.
Vi3 vL3

Vj,3 Vi,2 Vk,3 v1,2

Then it is straightforward to show that

B = (V" 48" = {v-l v vk ol v,i’hvzmlc} L {v,ln |me{1,....d} ~{i,j,k,1}}

4,10 i 5,1 g

is an f-weighted 3-path vertex cover of (¥3G)y, and
0100V € Pi1, vivvgvy € Pio, 5,205,100k € Pj1, vvivvE € Bjos

Uk, 3Vk,2Vk, 1V € Pr,1, viv;vevr € Pio, ve,30:20:10 € Pio
for any t € {1,...,d} ~{4,4,k,1}.
(2) Assume that f(A(vj1v5), A(vjve)) > b.
V3,3 1,3

V3,3 Vi, 2 Vk,3 V1,2
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Then it is straightforward to show that

m = (V”,(SH) = {vil,lav?avé?avli,hvll;?vlc} U {Urln ‘ m € {17 s 7d} ~ {iajvkal}}

is an f-weighted 3-path vertex cover of (X3G)y,
;1000 € Pix, vivvkvy € Pio, vjvivvk € Bjo,

Vk,3Vk,2Vk,1Vk € Phr,1, ViV;UkV1 € Piro, Vt,3Ve,20:,10¢ € Pro
for any t € {1,...,d} ~{4,4,k,1}.

(t) Let v;vjuiv; be a 4-cycle such that f(A(v;i1v;), A(viv;)) < A(vvy) =: a. Suppose that we have
F M), A(vjvg)) < Mwjv;) =: b and f(A(vjv;), A(vjvg)) > max{(vjv;), A(vjvg)} > b, a contra-

diction.

(u) Let v;vjuiv; be a 4-cycle such that f(A(v;1v;), A(viv;)) < A(vivy) =: a. Suppose that we have
FA(jv), Mvjvg)) < Awjvs), fF(Aorv;), AMvgwr)) < Mvgvr) =: b, f(AMwwi), AMvor)) < AMvog) = b,

and f(A(vgv;), A(vrvr)) < A(vgv;) =: ¢. Then this case is similar to Case (m).

(v) Let v;vjuiv; be a 4-cycle such that f(A(vi1v;), A(viv;)) < A(vivr) =: a. Suppose that we have
F M), A(vjor)) < Avjvi), fF(A(vrvy), Mogwr)) < Mogw) =10, f(A(vw;), A(vivr)) < A(vok) = b,

and f(A(vv;), A(vvr)) < AM(vw;) = a. Then this case is similar to Case (n).
(w) Let v;vjuiv; be a 4-cycle such that f(A(v;1v;), A(vivj)) < A(v;v;) =: a. Suppose that we have
FA(wjvi), Mujor)) < Mvjvi), f(A(vev;), Mogvr)) < Mogvr) =: b, vju € E(G), and

¢ = f(Mwvjv;), AMvjvg)) > maX{A(vjvk), f()\(vjvi),)\(vjvl))}.

Then this case is similar to Case (o).

(x) Let v;vjupv; be a 4-cycle such that f(A(v;1v:), A(vivy)) < A(viv)) =: a. Suppose that we
have f(A(vjvi), A(vjve)) < A(vjvs) =: b, f(A(vvi), AMvvg)) < Muw;) =: ¢, f(A(vws), AMook)) <

min{A(v;v;), A(vjvg)}, and there exists vgvy, 1, € E((X,G)a) with v; # vy, 1, # v such that

x = f(A(vxvj), A(vgy)) > max{/\(vkvj), f(/\(vkvl),)\(vkvll,b))},
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y = F(Awr;), Mvrviy 1)) > max{A(vrv;), f(A(kvr), Mvrviy i) }-
Then this case is similar to Case (p).

(y) Let vvju,v be a 4-cycle such that f(A(vi1v;), A(viv;)) < A(viv;) =: a. Suppose that we have
FA(wjvi), Awjor)) < Mwjvi) =20, f(A(vivs), Morvg)) < Muw) =: ¢, f(A(vrvs), Mogwr)) > Avgwr),
and there exists vyvy, 1, € E((Z,G)A) with v; # vy, 1, # vy such that

x = f(AMorvj), AMogwy)) > max{)\(vkvj),f()\(vkvl)ﬂ\(vkvll,lz))},

y = f(A(vrvy), Mugvr, 1)) > max{A(vxv;), f(A(vkvr), Avrvr, ,)) }-

Then this case is also similar to Case (p).

(z) Let v;vjuipv; be a 4-cycle such that f(A(vi1v5), A(vivs)) < A(v;v) =: a. Suppose that we have
FAwjvi); Avjor)) < Avsvi), f(A(vevs), Aveor)) < Avevr) =: b, f(A(viws), Mvivk)) < Avws) = a,
and there exists v;vy, 1, € E((X,G)\) with v; # vy, 1, # vg such that

¢ = f(AMvjv;), AMvjvg)) > max{)\(vjvk),f()\(vjvi),)\(vjvll,lz))},

T = f()\(?]j’()k), )‘(Ujvlhlz)) > max{/\(vjvk), f(/\(vjvi)a )‘(Ujvlhlz))}'

Then this case is similar to Case (r). O
We discuss the necessary conditions for I, ¢((3,G)x) to be unmixed when r > 4.

Theorem 3.3.4. Assume that r > 4. Let (X,.G)x be a weighted r-path suspension of G,. If

Ir’f((ETG)A) is unmized, then the weight function \ satisfies the constraints in Proposition 8.2.44.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if a = f(A(vi1v:), A(viv;)) >
F(A(vi1vi), A(vivg)) =: b for a 2-path vjv;vi in Gy, then there exists an f-weighted r-path vertex
cover P := (V",0") of (£,G)x such that |[V”| = d + 1 and P;; # 0 for each v;; € V". It is

straightforward to show that

B= (V" 6" = {v}vT*Q,vf,viFl,vi,l} U {v}n |me{1,...,d} ~{i,7, k:}}

is an f-weighted r-path vertex cover of (£, G)x, vj - 01V € Bjr—2, Vir—1--0;10:0% € Pir_1,

Vir—2 V1005051 € Pio, Vi V1V € Pr,1 and to show that vy, ---ve v € Pyro for any
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te{l,...,dy~{ij.k}.

Uj Uj,1 Vi,r—1 Ujyr
@ Vi1 Vir—2 Vi,r [
Vg @ e Vi r—2 Vi r—1 Vk,r

3.4 Sufficient Conditions for Cohen-Macaulayness

In this section, we prove the sufficient conditions for which the f-weighted r-path ideal of a

weighted r-path suspension is Cohen-Macaulay for all r» > 2.

Theorem 3.4.1. Let (3,G)x be a weighted r-path suspension of G, such that the weight function
A satisfies the constraints in Propositions 3.2.1, 3.2.43, or 3.2.44 when r = 2 or 8 or r > 4,
respectively. Then I := I, ;((£,G)\) is Cohen-Macaulay, {X;; — Xij—1|i=1,...,d,j=1,...,r}
is a homogeneous reqular sequence for R' /I, and

R’ R
I+(X1'7iji’j_1|i:1,...,d,j:1,...,T)R, IR

Proof. For k=1,...,(r — 1)d, let i) = [E+4=L] 5, = k+ (1 — i),)d and

np=r—ig+1,...,r—dp+1,r—ig+2,...,7 —ip +2) € N°

Jr times d—ji times

For k=1,...,(r — 1)d, define a polynomial ring Ry by

07 e 07 Xjk-‘rlﬂ"—ik—‘rla e Xd,’!‘—ik—‘rl
Xl,’l'—ik7 Xjk,’r‘—ikv Xjk-‘rl,’r'—’ika e Xd,’r'—’ika
Ry,=A
L X100 o X0 X +1,05 Xao |
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The polynomial ring Ry, has ji(r—ix+1)+ (d—ji)(r —ix +2) variables. Then for k =1,...,(r—1)d,
Pn, (I)Ry; is the monomial ideal of Ry obtained from I by setting X, = Xo,r—s), for a =1,..., i
and b=r—i,+1,...,r and setting Xop = Xgr—j,41 fora=jpy+1,...,dand b=r—i+2,...,r.

Note that
Ry R

~

P, (1) T+ (X, — X))

) )

and for k = 2,...,(r — 1)d we have inductively

Ry, ~ Ri_1 ~ qu/p@k,l(f)
Pu, (D) Py )+ Kjr—intr = Xir—in)  (Kir—int1 = Xjr—in)
o Bea/(pn, (D) + (Xji_r—in i1 = X))
N (Xjpr—intr1 — Xjpr—iy)
Ry o

- Pn,_, (I) + (Xjk—h"’*ik—l“rl - Xjk—lﬂ'*ik—l’Xjk;T*ik‘l’l - Xjkﬁ*ik)
~ I’
Pn, (I) + (ijﬂ“—iri-l - Xju?“—iz | l=2,..., k)
R

B I+(le,ﬂ"*iz+1_le,,T*iz |l:1""vk)7
since jy =1, r—41+1=r—1+1=randr—1i; =r— 1. Hence

i_ R(r—l)d ~ R
IR pﬂ(r,l)d (I) I+ (ijﬂ"—jz-i-l - le7T—jl ‘ l=1,..., (T - l)d)
R’
- I+(Xi,j*Xi,j—l |’L':1,...7d7 j:27...,7’)'

Let £ € {1,...,(r — 1)d}. We set Ry := R’ and ny := (r+1,...,7 +1). Then by Propo-
sitions 3.2.1, 3.2.43 and 3.2.44, for any (V”,¢"”) such that P(V",§”) occurs in an irredundant
m-irreducible decomposition of p, (), we have that there exists a unique v;;, € V" for i =

L,...,d. So in Rg_1/pn, ,(I), the associated primes of 0 = p,,  (I)/pn, ,(I) are of the form

(XLBN e 7Xd,Bd)Rk—1- SO we have that Xjk7r_ik+1 — Xjkﬂ"—ik S NZDR(Rk—l/p@k_l(I))' SO we
have that X, ,—i,+1—Xj, r—i, 15 Rk_l/pﬂk_1 (I)-regular. Thus, by the definition of the R’/I-regular

sequence, we have

{Xid' — Xij-1 li=1,....d,j=2,...,r} = {ij7r—jl+1 = Xjir—i [l=1,...,(r—1)d}
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is a homogeneous regular sequence for R'/I. Since R/IR is Artinian, it is Cohen-Macaulay. So by

Fact 2.5.5, we have that R’/I is Cohen-Macaulay. O

3.5 Main Results

The main results of this chapter are in Theorems 3.5.5 and 3.5.6.

Corollary 3.5.1. Let f = max. Then the constraints for A in Propositions 3.2.1, 3.2.43, and 3.2.44
become

)\(’U{Uj) < min{)\(vivi’l), )\(1]]"[)‘7‘71)}7 v (RS E(G)

Corollary 3.5.2. Let f =lcm. Then the constraints for A in Propositions 3.2.1, 3.2.43, and 3.2.44
become

)\(Uﬂ}j) | /\(Ui’l)i71) and )\(Uﬂ}j) | /\(’Uj’Uj)l), A ViV € E(G)

Corollary 3.5.3. Let f = min. Then the constraints for A in Proposition 3.2.1, 3.2.43, and 3.2.44

become
A(vv;) < min{A(v;v;1), A(v;v;1)}, ¥V vv; € E(G),
AMVik, Vi kt1) < A0 k+1Vikt2), Vi=1,...,dand k=0,...,r — 2,
and
A(vivs) > A(vjvr) or AMvgvr) > A(vjuy) for all 3-paths v;vjvev; in G, ifr=2,

A(vivs) > A(vjvk) or AM(vivm,) > A(vkwy) for all 4-paths vvvpvv,, in G, and

the weights on edges satisfy a = b > ¢ for all 3-cycles in G, if r=3,

all edges in G have the same weight if r > 4.

Proof. We first show the equivalence for weight constraints on 4-paths in G when r = 3. Let
V;VjUp VU, be a 4-path in G. On one hand, let A(v;v;) > A(vjvg) or A(vvm,) > A(vgv), then by No-
tation 3.2.2(a), we have that min(A(v;v;), A(vjor)) = A(vjvr) > A(vjvx) or min(A(vgv), A(vivy,)) =
A(vgvr) > Mwvgvp), so Notation 3.2.2(d) holds. On the other hand, without loss of generality, assume
that A(v;v;) < A(vjvg), then min{A(v;1v;), AMvjv;)} = AMvjv;) < A(vjvg) by Notation 3.2.2(a) and
min(A(v;v;), A(vjvg)) < A(vjvg), so min(A(vgvy), A(vivm)) > A(vgv) by Notation 3.2.2(d). Hence

Avvm) > A(vgwy).

107



We then show the equivalence for weight constraints on 3-cycles in G when r = 3. Let
v;0;U,v; be a 3-cycle in G. On one hand, let the weights on edges of the 3-cycle v;vviv; satisfy

a = b > ¢, without loss of generality, assume that A(v;v;) < A(vjug) = A(vgv;), then we have that

min(A(v;v;), Mvjvg)) = A(v;v;) < A(vjor) = max{A(v;v;), Mvjvg)}

and min(A(vgv;), AMvgv;)) = AMokvj) > A(vgv;), and min(A(viv;), A(vgv;)) = AMvgv;) > Mvgv;), so
we proved Notations 3.2.2(e)(1) and (e)(2)(i), it is straightforward to show that Notations (e)(2)(ii)
and (e)(2)(iii) hold. On the other hand, if A(v;v,) = A(vjvx) = A(vgv;), then we are done, so without
loss of generality, assume A(v;v;) < A(v;vg), then min(A(v;v;1), A(viv;)) < min(A(v;v;1), A(vivk))
by Notation 3.2.2(a), so min(A(vkv;), AM(vkv,)) > A(vgv;) by Notation 3.2.2(e)(1), hence A(vgv;) >
Avgv;), similarly, we have min(A(v;v;.1), A(viv;)) < A(v;vg), so min(A(vgv;), AMvgv,)) > A(vgv;) by
Notation 3.2.2(e)(2), so A(vkv;) > A(vgv;), hence A(vgv;) > A(vkv;) > Mogy;) and so A(vgv;) =
Awgv;) > A(vv5).

We show there is no weight constraint on any 4-cycles in G. It suffices to show that No-
tation 3.2.2(f)(2) holds automatically provided that f = min. It is straightforward to show that
Notations (f)(2)(i), (f)(2)(ii), (f)(2)(iv) and (f)(2)(v) holds automatically. But Notation 3.2.2(2)(iii)
is equivalent to either that A(vgv;) > A(vgvy), that A(vv;) > A(vvg), or that (A(vkv) > A(vivy)
and A(vvr) > A(yw;)), which is equivalent to A(viv;) < max{A(viv;), AMvv;)} or A(vgv) >

max{A(viv;), A(vyv;)}, but this holds automatically.

O

It is straightforward to show the equivalence for r = 2 and r > 4.

Corollary 3.5.4. Let f = ged. Then the constraints for A in Notation 3.2.2 become

)\(Uﬂ}j) | )\(’Uz”Ui’l) and )\(Uﬂ}j) | )\(Ujl)j@), A ViV; € E(G),

AWk, Vi k+1) | A0 g+1Vikt2), Vi=1,...,dand k=0,...,7 — 2,
and
(a) if r = 2, then A(vjug) | A(vivy) or A(vjvg) | A(vgyy) for all 3-paths v;v vt in G,
(b) if r = 3, then
(1) for all 4-paths v;vjvvv,, In G if A(vjv;) < A(vjvg), then A(vgvr) | A(viom,),
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(2) for all 3-cycles v;vviv; in Gt if A(v;v;) < A(v;vk), then A(viv;) = A(vgv;) and

ged(A(vjv;), A(vjvn)) < max{gcd()\(vjvi), A(vjvg)), ged(A(vjvr), A(Ujvn,o))}

YV vjun0 € E(G) with i #n # k,

(3) for all 4-cycles v;vvEvv;: if Mv;v;) < A(vivy), then

either (A(vgvy) | A(vgv;) and A(vjv;) | A(vjve)),
Avw;) | AMovg),
or AMvvg) | A(vv),

and
either A(vgvr) | Mogv,),

AMwvivg) | A(vvs),
or (A(vgvy) | AMwgvr) and A(vv;) | AMviv)),

(c) if > 4, then all edges in G have the same weight.

Proof. We first show the equivalence for weight constraints on 4-paths in G when r = 3. Let
V; VUV Uy, be a 4-path in G. On one hand, let A(v;v;) < A(vjvi) and assume that A(vgvp) | AM(viom),
then ged(A(vkvr), A(vivm)) = Mwgvr) > A(vkvr), so Notation 3.2.2(d) holds. On the other hand,
assume that A(v;v;) < A(vjvg), then ged(A(v;,1v;), A(v;v:)) = A(vjv;) < A(vjvi) by Notation 3.2.2(a)
and ged(A(v;v5), A(vjvg)) < A(vjvk), so ged(A(vgvr), A(vivm)) > A(vgvr) by Notation 3.2.2(d), hence
Avgvr) | AMogom,).

We then show the equivalence for weight constraints on 3-cycles in G when r = 3. Let
v;U;U,Y; be a 3-cycle in G. On one hand, let A(v;v;) < A(v;vx), assume that A(viv;) = A(vkv;) and

that

ged(A(vjv;), A(vjvn0)) < max{gcd(/\(vjvi), Avjvg)), ged(A(vjvk), )\(vjvn,o))}

A VjUn,0 € E(G) with ¢ 7& n 75 k,

then ged(A(v;v;), AMvjor)) < max{A(v;v;), A(vjvg)} and ged(A(vgvi), A(vev;)) = Avgvy) > A(vkv;),
and ged(A(vkv;), A(vkv;)) = A(vkv;) > A(vkv;), so Notations 3.2.2(e)(1) and (e)(2)(i) was proved.

Hence it is straightforward to show that Notations 3.2.2(e)(2)(ii) and (e)(2)(iii) holds automatically.
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On the other hand, then it is straightforward to show that we can deduce Notation 3.2.2(b)(2) in

the corollary from Notation 3.2.2(e). O

Theorem 3.5.5. Assume that Hy is obtained by pruning a sequence of r-pathless leaves from G,
and that Hy is an r-path suspension of a weighted graph I',. Then the following conditions are

equivalent:

(i) I, 1(Gy) is Cohen-Macaulay;

(it) I (Gy) is unmized; and

(iii) the weight function X satisfies the constraints in Propositions 3.2.1, 8.2.43, or 3.2.44 whenr = 2
or 8 orr > 4, respectively, where we rename the vertices of Hy such that V(T',) = {v; |i=1,...,d},

V(H)\):{Ui7j|i:1,...,d,j:0,...,T} withvi70:’l}i7 Viil,...,d,

and {viovi1 - vir}L are all the d r-whiskers.

Proof. (i)==(ii) follows from Fact 2.7.8.

(il)==-(iii) Assume that I, t(G,,) is unmixed. By Lemma 3.1.11(b), I, s(H) is also unmixed.
Then Statement (iii) follows from Theorem 3.3.2, 3.3.3 and 3.3.4.

(ili)==-(i) Assume condition (iii) holds. Then Theorem 3.4.1 implies that I, ;(H)) is Cohen-

Macaulay. So Lemma 3.1.11(c) implies that I, ;(G.,) is as well. O

Because of the following fact and Theorem 3.4.1, the main result of this chapter gives a

formula to compute rz(R/1, ;(G.,)) for all trees such that R/, ;(G,) is Cohen-Macaulay.
Theorem 3.5.6. Assume that G, is a weighted tree. Then the following conditions are equivalent:
(i) I, 1(Gy) is Cohen-Macaulay;

(it) I (Gy) is unmized; and

(iii) there exists a weighted tree I, and an r-path suspension Hy of I'), such that Hy is obtained by
pruning a sequence of r-pathless leaves from G, the weight function \ satisfies the constraints in

Propositions 3.2.1, 3.2.43, or 3.2.44 when r = 2 or 8 or r > 4, respectively, where we rename the
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vertices of Hy such that we have that V(') = {v; |i=1,...,d},

V(H)\):{’Ui,j|i:1,...,d,j:0,...,r} 11)2'2517,1)1',0:1}1'7 V’L':L...,d,

and {v;ovi1 -+ vir}L are all the d r-whiskers.

Proof. (iii)=(i)==(ii) follows from Proposition 3.5.5.

(ii)==-(iii) Assume that I, ; is unmixed. Since G is finite, we prune a sequence of r-pathless
leaves from G, to obtain a weighted graph H) that has no r-pathless leaves. Lemma 3.1.11(b)
implies that I, y(Hy) is unmixed. So we have that I.(H)) is unmixed by Lemma 3.1.8. Hence H
is an r-path suspension of a tree I by [2, Theorem 3.8 and Remark 3.9]. Finally, Proposition 3.5.5

implies the weight conditions on E(H)). O
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Chapter 4

Cohen-Macaulay Type of Weighted
r-Path Ideals

Let K be a field, d > 2, R = K[Xy,..., X4 and m = (X1,...,Xa)R. Let G = (V,E) be
a (finite simple) graph with vertex set V' = {v1,...,v4} and edge set E. Let r > 1 be a positive
integer and R’ = K[{X,; [i=1,...,d,j=0,...,r}].

In this chapter, we compute the type of the rings R/I.(G,,) when they are Cohen-Macaulay.

This main result is in Theorem 4.2.25.

4.1 Background

Definition 4.1.1. The weighted r-path ideal associated to G,, is the ideal I.(Gy,) := Iy max(Gw) C R

that is generated by the max-weighted paths in G of length r:

Vi, ...V, is a path in G with e;, = w(v;,vi,),

i €ip .
L(Go)=| X" X, | ey, = max(w(vi,_,v;,),w(vi,,vi,,,)) for 1 <j<r | R

M P J

and Cirpr = w(vi7'vir'+l)
Remark. (a) I,(Gy) = I,(G), where 1 : E — N is the constant function 1(e) = 1.

(b) I,(Gy) = I(GL).
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Example 4.1.2. Consider the following weighted graph (X5P3), from Example 3.1.17.

4 3
1 V1,1 V1,2
1

3 3
V2 V2,1 V2,2
2‘

2 5
U3 3,1 V3,2

Then the weighted 2-path ideal of (33P5)y is

L((ZaP)n) = (X7, X1, X1, X1 X1 X0, X0 X3X3 1, X1 X5 X5, X5 ,X5, X35,

X3 X5 X3, X3 X5 X3, X5, X3, X5) R,

Example 4.1.3. The minimal weighted 2-path vertex covers of (X2P)y from Example 3.1.17 are
displayed in the following sketches. In each diagram, all of the vertices encompassed by a circle form

a weighted 2-path vertex cover of (XaPs)y.

4 3 4 3 4 3
U% V1,1 V1,2 U1 V1,2 U1 V1,1 @

1‘ 1 1
3N 3 3 N 3 3 1 3 3
U V2,1 V2.2 V5 V2,1 V2.2 Vo V2,1 V22
| | |
P) 2 5 P) 2 5 P) 2 5
U3 V3,1 V3,2 U3 V3,1 V3,2 U3 V3,1 V3,2

2 2 2
v§ 2 V3,1 > V3,2 ”U§ 2 V3,1 5 V3,2 U% 2 V3,1 5 V3,2
Uil 4 V1,1 3 V1,2 U1 < 3 V1,2 U1 4 V1,1 3 @
1‘ 1 1
v —2— vg1 —2— wa v —2— vg1 —2— wa v —2— vg1 —2— wa
2 2 2

2 5 2 5 2 5
v @) T wme w @) we w ) e
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G V1,1 V1,2 U1 V1,1 V1,2 G V1,1 V1,2
1‘ 1 1‘

3N 3 3 3 3 3N 3 3
Vg V21 V2.2 V2 V2,2 V5 V21 V2,2
2 2 2

V3 V2,1 V2,2 V3 V2,1 V2,2

2 5 2 5
U3 V3,1 U3 V3,1

Example 4.1.4. Consider the following graph (X2 P,), from Example 3.1.17.

4 3
U1 V1,1 V1,2
1

3 3
V9 V2,1 V2,2
2

2 5
U3 V3,1 V3,2

) )

By Fact 3.1.7 and Example 4.1.3, the irredundant m-irreducible decomposition of I ((EQPQ) A) is

12((22132))\) = (Xilan,vX?%)R/ n (XihXQB)X??)RI n (XiQaX%X??)R/ N (XilaXS,laX??)R/
N (X1, X3, X3)R N (X1, X3, X5)R' 0 (X1, X3, X3,)R N (X}, X3, X3, R
N (X13,27X27X35,1)R/ N (X17X23aX§,1)R/ N (X17X23,17X§,1)R/ n (Xil7X22vX§),2)R/

N (X1, X3, X3,)R N (X375, X2, X5,) R

Definition 4.1.5. Let (3,G)) be a weighted r-path suspension of G,,. Consider the ideal mle] =

(X, ..., X3 R, where for i = 1,...,d, a; = Y. _, € with

)\(Uivi,l) if k= 0,
ek = max{A(v; k—1vi k), A(Vi kVig+1)} fk=1,...,r—1,
)\(vim_lvw) lf k} =T.
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In words, m2) is the monomial ideal of R obtained from the monomial ideal (915---,94)R Dby
setting me(M) = (p(gl), e ,p(gd))R, where g; is the corresponding generator in IT((ZTG)A) of the

r-whisker v;v; 1...v;, from (2,G)y fori =1,...,d.
Example 4.1.6. In Example 4.1.4, mleM] = (Xfl,ng,X§3)R with

2
a; = Zelyk = )\(’1}11]1’1) + max{)\(vlvm), )\(’1}171’1}1,2)} =+ )\(1)1’1’01,2) =4+4+3=11,
k=0
2
ag = Z Bg,k = )\(112’1}271) —+ max{/\(vgvll), )\(1}2711)272)} =+ A(U2711)2,2) = 3 + 3 =+ 3 = 97
k=0
2
as = Zeg,}c = )\(’U3U371) + maX{)\(U3U371), )\(’U371’U3)2)} + )\(1}3)1’03,2) =24+54+5=12.
k=0

Fact 4.1.7. It is straightforward to show that
L((2:G)2)R = L((Z,-1G)» ) R + ml2M] | where N = Mz, 6.
Because of the following fact, the main result of this chapter gives a formula to compute

rr(R/I,(G.,)) for all trees such that R/I.(G.,) is Cohen-Macaulay.

Fact 4.1.8. [7, Proposition 3.7 and Theorem 3.11] Let (X,.G)x be a weighted r-path suspension of

G, such that A\(v;v;) < min{\(v;,v;1), A(vj,vj,1)} for all edges v;v; € E.
(a) R'/I,((2,G)x) is Cohen-Macaulay.

(b) If Ty is a weighted tree and R/I.(T'y/) is Cohen-Macaulay, then there exists a weighted tree H,
such that (X, H )~ is obtained by pruning a sequence of r-pathless leaves from 'y with X = N|g g

and the weight function N satisfies the above condition.

4.2 Type

Definition 4.2.1. Let (X,_1G)) be a weighted (r — 1)-path suspension of G,. We define ¢ :
V((Z,-1G)x) — V(G) as q(vij) = v;. Let P := (V”,4”) be such that V" C V((3,-1G),) and
6" : V" — N. Then

qV")y ={v; | v ; e V'}

115



Set
WCA;(B) = {vi; € V" | 8" (vi;) < Av; jv) for some edge v; jv in (E,_1G)\}, Vi=1,....d,

and

hig = max{/\(vi,kv) | vi kv € E((ET_lG),\)}, Vi=1,...,d, k=0,...,7—1.

Define

’Y(V“,é“) : q(V//) — NUu {OO}

min{é”(vi,j) + Zf;é hig | vij € WCAi(%)} ift WCA;(B) # 0,

00 otherwise.

Vi />

Proposition 4.2.2. Let (X,_1G) be a weighted (r—1)-path suspension of G,,. Let P := (V",§") be
such that V” C V((£,-1G)x) and §” : V” — N. Assume that WCA; () # 0 for some i € {1,...,d}.

If Vi 15 Vijo € WCAz(m) with 71 < jo, then

Ji—1 Jo—1
5”("01‘_’]‘1) —+ Z hi,k < 51/(’1)1"]'2) —+ Z hi,k~
k=0 k=0
So we have that
jo—1
Yo sy (Vi) = 8" (vijo) + Z hi g, where jo := min{j | v; ; € WCA;(P)}.
k=0

Proof. Suppose that 6 (v, j,) + S0 hig > 6" (vig,) + 3027 hik. Then we have that 6 (v, ;,) >

8" (Vi) + S22~  hi 1. So we have that

k=j1
Jja2—1
higy < 0" (Vigy) + hijy < 0" (igy) + Y hik < 6" (vig,), Le, hij, <6 (vij,).
k=j1

Hence we get that 0" (v; j,) > hi j, = {A(vi ;,v) | vij,v € E((X,-1G)x)}, contradicting the definition

of WCA;(*B) and that v; ;, € WCA,(*p). O

Example 4.2.3. A weighted 2-path suspension (32P1)y of G, := (P1)o, = ( v1 2

Vg ) with a
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weighted 3-path vertex cover P := (V",§") of (25P;), is given in the following sketch:

u—— ) —— @

2

3 4
OD—— @) —— vae

Since I;((ZaPy)y) = (X7,X7  X2X3, X7 X?X3X3 |, X2X3X4 X4 ,) R, we have

I;((Z2P)2) R = (X12X3, X{ X5, XX} R.

Note that (V") = {v1,v2}. Since §"(v11) =3 <5 = A(v1,1v12) and §"(v1,2) =6 > 5 = A(v1,101,2),

we have that WCA1 () = {v1,1}. Similarly, we have that WCA5(B) = {v21}, and so

1-1

Yevremy(vr) = 6" (v11) + Z hi gk = 6"(v1,1) + max{A(viv2), A(v1v1,1)} = 3 + max{2,2} = 5,
k=0
1-1

’Y(V//’(;//)(UQ) = 5//(1)271) + Z h27k = 5”(1}2’1) + max{/\(vlvg), )\(’UQUQJ)} =3+ max{?, 3} = 6.
k=0

Therefore7 P(V//a/y(v”,é’/)) = (Xfa X26)R :_) (X112X227 XilX267 X12X211)R = —[3((22P1))\)R

The following theorem is a key for decomposing Ir((Er,lG)A/)R with M = A|g,_,¢ and
hence I, ((ETG) A)R. The proof is somewhat technical. The reader may wish to follow the argument

with Example 4.2.3 as a motivating example.

Theorem 4.2.4. Let (X,_1G)x be a weighted (r — 1)-path suspension of G, such that A(v;v;) <
Mg, vi1) and AMviv;) < A(vjv,1) for all edges viv; € E. Let B := (V",6") be such that V" C
V((ET._lG)A) and 6" : V" — N. Then I,.((ZT_lG)A)R C P(q(V”),’y(Vu’(;u)) if and only if (V",8")

is a weighted r-path vertex cover of (£,-1G)x.

Proof. = Assume that I.(($,-1G)x)R € P(q(V"), vy sm)). Let Pri= vy, g, be an

*Upry1,grpa

r-path in (2,_1G)x. Set

AMUp1,q1Vps,g2) if k=1,
Cprsar = maX{)\(Upk71)Qk71Upk7q1c)’ /\(Upk,kapk+1,q;c+1>} itk=2,...,m
AVp, ¢ Vpri1,,41) ifk=r+1.
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Then Xp7™ - Xm0+ € [L((S,_1G)A)R] C [P(g(V"),yvr.51)]. So we have that

XZ)(V,/W/)(WO) | X;;flm ._.X;‘fr{yqrﬂ for some v;, € q(v//).
Hence we have that v;, = v, for some [ € {1,...,r + 1} and
., A 1 if pr =g
. )
m(ljl’}\ {51/(vio,j) + Z h’io,k} = W(V’/,é")(vio) S Z ]]_kepk,qk, Where ]]-k =
vio,s EWOAi, (F) k=0 k=0 0 otherwise.

So we have that v, = v, € ¢(V"). Since P, is an r-path in 3,_1G, we have that P, is of the

following form.

Upi4q,,0
Upy,0 Ups,1 T Up1,q1
Up,41,0 Uprga,1 e Uprg1,qr41

/Up1+7‘7q.,<+170
where g1 or g,4+1 may be 0. Let My := maxi<g<r+1{qr | % = pr}. Then we have that

q1 if ig = p1
My = ’

gr+1  if io = pry1.
Since (v 51y (v;i) < 00, we have that WCA;, () # 0. Set jo := min{j | vs,,; € WCA;(B)}. Then

by Proposition 4.2.2, we have that

Jo—1 r+1

j—1 Mo
8" (Wi jo) + D higk = vAmig%,,,{‘S"(Uio,j) +> hio,k} <Y Lkcepg =Y €igh  (424.1)
0 k=0 k=0 k=0

k=0

Suppose that jo > My. Then since e;, < hiy i for £ =0,..., My, by Inequality (4.2.4.1), we have
that
My My Jo—1 Mo

5//(7}1'07]'0) + Z Cig,k = 5,/(1}2'07]'0) + Z Pig .k < 5,/(1}2'07]'0) + Z Pig i < Z Cig.k> 1-€., 5//(Ui07j0) <0,

k=0 k=0 k=0 k=0
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contradicting 6" (v;, j,) > 1 by the definition of 6”. So jo < My and there must exist a sub-path of
P, of the form

Vig,0 Vig,1 Vig, Mo -

Since 0 < jg < My, there exists a vertex in this path of the form v;, j, = vp,,q. for some k in

{1, o, T+ 1}. So Upi,ar = Vig,jo € WCAA&B) - v,

(a) Assume that 0 = jo < M. Since A(v;v;) < min{A(v;,vi1), A(vj,v;1)} for all edges v;v; € E
and My > 1, we have that e;;,0 = A(viy,00i5,1) = hig,0- Since v;, ;, € WCA;,(B), we have that

6" (ig,0) < hig.0 = €ig0-

(b) Assume that 0 < jo < M. Since v;, ;, € WCA;,(*B), we have that v;, ;, weighted-covers the

: 12 —
edge Vi jo—1Vig,jo OF Vig,joVig,jo+1s 1-€5 0" (Vig,jo) < mMax{A(Vig,jo—1Yig,jo )s AMVig,joVig,jo+1)} = €ig,jo-

(c) Assume that jo = M. Since e;, 5 < hiy 1 for k=0,...,jo — 1, by Inequality (4.2.4.1), we have

jo—1 jo—1 My Jo

1! 1! . 1!

8" (Viggo) + D €iok < 0" (Wigjo) + D high <D €igk = D _ €ig s 1 6" (Vigjy) < €ig o
k=0 k=0 k=0 k=0

So v;,,j, weighted-covers P,. Thus, V" is a weighted r-path vertex cover of X,_;G.
<= Assume that (V",6”) is a weighted r-path vertex cover of (X,_1G)x. We need to
show that every monomial generator of IT((Zr_lG))\)R is in P(q(V”),fy(Vu’(;,,)). We let X2 =

ey Cipy1,d . .
X, U X TP be such a generator corresponding to an r-path P o= vy, - in

11 ° 41 a Uir+11jr+1

(X,_1G)x. We need to show that X2 € P(q(V"), v 67)). Note that XS It g of

11,71 Trt1,Jr41

the following form. We replace each vertex in P, with the corresponding variable and its exponent.

©i144p 50

T1451,0

Xowe Xt X
31,0 71,1 21,J1
Cirt1,0 Cipgq,l . Cirt1rdrt1
ir41,0 Gprg1,1 T 1,Jr41

€itpr g, g0
Utr—jpgq:0
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where j; or j.y; may be 0. Since P, is an r-path in (X,_1G)x and (V",4") is a weighted r-path
vertex cover of (X,_1G)x, we have that v;, j, weighted-covers the r-path P, for some ! € {1,...,r+1}.

So v;, 5, € WCA;,(B) and then

Ji—1

Yoo (va) = - min m){ i) + Zh” k} = 0" (win ) + Z hi -
QR K

Let My := maxi<p<rt1{Jjr | &t = ix}. Then j; < My. Since v;, ;, weighted-covers the r-path P,

5”(Uiz,jl) < €ip g+ So

Ji—1 Ji—1 Ji—1

Uzl]z +§:eizk<elz,ﬂ+§ ell7k_§ elzk<§ elzk’le 5 Uu]z +§:elzk<§:euk

(a) Assume that j; = 0. Then

Ji—1 Ji—1 My r+1
'Y(V”,é”)('viz) < 5H(vi17jz) + Z hiy e = 5//(7}1'1,,]'1) + Z €k < Zeiz,k = Z Ly ké€i, i = iy
k=0 k=0 k=0 k=0
1 if i =14
where 1;; = ,Vk=1,...,r+ 1.

0 otherwise
(b) Assume that j; > 0. Then M, > 1. Since A(v;v;) < min{A(v;,v;1), A(vj,v;1)} for all edges
ViV € E, we have that €in,0 = )\(’Uio,oviml) = hig,O~ AAISO7 since €ig,k = hio,k for k = 1, . ,jl — 17 we

have that

Ji—1 Ji—1 r+1

T, 5”)(””) <" (Vi) + Z iy, = 6 (Vi) + Z Cirk < Zelz k= Z]ll k€irjx = Diy-

"o§t (1)7; )
So X, V"N | X Thus, X2 € P(q(V"), y(vm.5m).- O

Proposition 4.2.5. Let (3,_1G)x be a weighted (r — 1)-path suspension of G,, such that A(v;v;) <
A(vs,v5,1) and A(vv;) < A(vj,v5,1) for all v;v; € E. The monomial ideal IT((Er,lG),\)R can be
written as a finite intersection of m-irreducible ideals of the form P(q(V”)m(V/,_’(;u)) with V" C

V(Z,-1G) and 6" : V" = N.

Proof. Fact 2.2.38 gives a decomposition of Ir((Er,lG)A)R. Let J := (Xzi”l,...,X[ibs)R occur

in the decomposition. Without loss of generality, assume that b1,...,bs € N are distinct, and let
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ke {1,...,s}. By Fact 2.2.38, there exists a generator p(X;, j, ... X; ., j,.,) with vy, j, .. v 50

an r-path in (X,_1G)x such that for some c(k) € {1,...,r 4 1}, we have that i.;) = by and

6bk,0 lf Mk = 0,

Bo = My, —1 .
AUy M, V0 Mp—1) + D ey if My > 1,

where M}, := maxi<p<r+1{jn | bx = in} <r—1and

)‘(’Uil’jlvimh) itm=1,
Cimm = § MAX{A(Vir, 1 g1 Vinndm )s Vi o Vims1dmgr )} A M=2,0..,7,
)\(,Uiryjr,uir+17jr+l) ifm=r+1.

We repeat the process for each k£ € {1,...,s} and set V' = {vp, ary,---50,,0m, - Then (V") =

{VUbyy ..., s, }. Define

6// . V// SN N
A(Vby, My Vb M —1) i My > 1

Vb, M, — ,Vk=1,...,s.
Bbk (: eb,mo) if M, =0

We claim J = P(q(V”),ry(V,,ﬁ//)). It is enough to show vy » sy (vp,) = By, for k =1,...,s. Let
B := (V”,0"). Since |V"| = |q(V")|, we have [WCA,(P)| <1 for k=1,...,s. There are two cases:

(a) Assume that My > 1. Since vy, a1, € V' and 6" (vp, M) = AUy, My Vby,Mp—1), We have that

Vb, M, € WCAy, (B). Therefore, we have that WCAy, (B) = {vp, a1, }, and hence

M—1 M —1
Yy (W) = 6" Woan) + Y ot = Abat, Oban—1) + D Bt = By
=0 =0

(b) Assume that M}, = 0. Then jo) € {0,..., Mg} = {0} and so j) = 0. Then

Vi, 5y Vi ) if c(k) = 1,
Cictrysdete)y — )‘(Uir,jrvir+1,jr+1) ife(k)=r+1,

ma‘x{)\(vic(k)—l7jc(k)—1vie(k)7jc(k))’ )‘(vic(k),jc(k)Uic(k)+17jc(k)+1)} if2 < C(k) <r-1
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" (Viguy o) = 0" (Ub0) = Bow = €040 = €icguyeqny> A Vi) My = Vb0 = Vb nr € V7. So
Vb0 € WCA,, (P) and thus WCA, (B) = {vp,.0}. Hence
0—1

W(V”,ts”)(vbk) = 5//(’0171«,0) + Z hblml = 5/I(vbk:,0) = Bbk' O
=0

Example 4.2.6. Consider the following graph (32 P;), from Example 4.2.3.

2 5
U1 V1,1 V1,2
2
3 4
V2 V2,1 V2,2

By Example 4.2.3, I3((32P1)) R = (X{?X3, X{ X§, X?X}')R. By Fact 2.2.38,

L((ZP))R= (X{2, X1, XD R0 (X2, X1, X3RN (X2, XS5, X)) RN (X2, XS, X3M)R
N (X3, X1, XD RN (X3, X1, X3 ) RN (X3, X5, XT)RN (X3, X5, X3 )R
= (XD)RN (X, X3RN (X7, XS)RN (X{2, X5)R

N (X7, X3) RN (X1, X5) RO (XT, X5) RN (X5) R

Let J; = (X?)R. Then by = 1 and f3, = 1 = 2. Consider the generator X7;° X5%° X% X5%° =
X?X3X3 X5, 0f I3((X2P1)x). Then My :=0and 81 = e19=2. Let V/ = {v1 o} and 6" : V" — N

be given by v — e10 = 2. Since ¢(V") = {v1}, v 57y (v1) = 0" (v1,0) = 2. So we have that
Pa(V") v om) = P({o}) = (XT)R = Ji.

Let Jo = (X{,X2)R. Then by = 1,bp = 2, and B, = 1 = 4 and By, = B2 = 11. Consider
the generator Xf}ilee}doXS?dngi’l = X%lX%XSXSJ of I3((§]2P1)>\). Then M; := 1 and 3 =
A(v1,101,0) + h1o = 2+ 2 = 4. Consider the generator X1’ X5%° X575 X5%” = X{X5X3, X5, of
I3<(22P1))\). Then My :=2 and 2 = Mve2v21)+heo+he1 =4+3+4=11. Let V' = {v11,v22}
and ¢” : V' — N be given by v; — A(v11v10) = 2 and vaa — A(va2v21) = 4. Then

q(V") = {v1,v2} and so vy 67 (v1) = 6"(v1,1) + h10 =2+ 2 and
’Y(V”,é”)(UQ) = 5”('0272) + hgyo + h211 =4+3+4=11.
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So we have that

P(q(V"),~(V",8")) = P({v,v3'}) = (X{, X3 )R = Js.
The next result is our first decomposition needed for computing rz (R'/I.((3,G)x)).

Theorem 4.2.7. Let (3,G)x be a weighted r-path suspension of G, such that A(v;v;) < A(v;v;1)

and A(v;vj) < A(vjvj1) for all edges viv; € E. We have

I ((Z-1G)x)R = ﬂ P(q(V"),vvr ), where X = Ns,_,q,
(V,6") w. r-path v. cover of (X,-1G)ys

and

I,.((ZTG)X)R = ﬂ P(q(V”), ’Y(V”,aﬂ)) 1 mla],
(V77.,6") w. r-path v. cover of (Xr-1G)ys

Proof. Note that I, ((£,G)\)R = L.((£,-1G)x ) R+ml2M] by Fact 4.1.7. Then it is enough to show
that, by[9, Theorem 7.5.3],

Ir((ET—IG))\’>R = ﬂ P(q(V//)?'V(V”,d”))~
(V77.,6") w. r-path v. cover of (X,_1G)y/

By Proposition 4.2.5, the monomial ideal I, ((3,-1G)x )R can be written as a finite intersection
of m-irreducible ideals of the form P(q(V”) = {viy, .- .7’11%},’}/(‘///’5//)) with V" C V(%,-1G) and
6" : V" — N. Then by Theorem 4.2.4,

L(S 1 G)n)R C N P(a(V"), 5w 1)

(V77.,6") w. r-path v. cover of (£,_1G)y/

"
< M P(a(V"),vvmem))
(V77,8") w. r-path v. cover of (£,_1G),/ in the decomp. of I.((£,-1G) /)R

=1 ((Z,-1G)x)R.
So we have that

IT((ZT—IG)N)R = ﬂ P(Q(VN),’Y(V”,zS”))~ O

(V'7,6") w. r-path v. cover of (X,_1G)ys

Example 4.2.8. Consider the following weighted 3-path suspension (33P;)x of G, := (P1), =
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2
( V1 (%) )
2 5 2
U1 V1,1 V1,2 V1,3
2
3 4 2
V2 V21 V2,2 V23

Let X = Alsy,p,. Since I3 ((Z2Py)w) = (X5, X7 X2X3, X7 X2X3X3,, X2 X3X4,X4,), by Theo-

rem 4.2.7, we have two infinite intersections:
L((ZP)n)R = (X{?X3, X1 X5, X{ X, )R = ﬂ P(q(V"), v emy),
(V77.,6") w. r-path v. cover of (X2P1)y/

and

I((S3P)y)R = (X12X3, X{XS, Xi X0 R+ (X{* X3%)R

= m P(q(V”),’}/(Vu’(;u)),
(V77.,6") w. r-path v. cover of (Z2P1)y/

The next result is key for our second decomposition result, Corollary 4.2.11.

Lemma 4.2.9. Let p := (V/,67),B := (V4',65) be such that V', V3’ C V((E,-1G)») and 67,6 :
V" — NIE (V] 87) < (W', 67), then P(q(V{"),vvyrapy) S P(a(V3), vy o))

”/(vl”,ai')(vz‘

)
Proof. Let X, be a generator of P(q(V{"),v(v; 1)) Then V{" C V3" implies we have that
1" ostt (’U,,)
X, T e P(q(V3"), vy ay)) and

t—1
IY(Vl”JSi')(/Ui) = min{(slll(vij’t) + Z h/ij,k ’ ,Uij,t € WCAZ7 (p)}

k=0
t—1
Z min{(sg(’l}ij7t) + Z hij,k ’ Uz’j,t S WCAij (‘B)} = 7(\/2”,5;’)(%')-
k=0
It follows that X, %" %" | X770 and hence PV, v ) € P(aVE) vvgsp)- D

Example 4.2.10. Consider the following two pairs of sets p := (V/’,67) := {vf,v5,05,} and

P o=V, 64) :={vf 1,05 5,035,038, } of (B2P1)x from Example 4.2.3.

2 5 2 5
v v n—— @)

2
53 4 3 4
Vs V2,2 & V2,2
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Since V{" C V3" and 6{ > 05|y, we have that (V{’,67) < (V',d5). Similar to Example 4.2.3, we

have that WCA;(p) = {v1,1} and WCAy(p) = . Therefore, vy 51y(v2) = 0o and
1-1
’}/(Vlf/’(;{/)(vl) = 53,(1}171) + Z hl,k = 53’(11171) + Il’laX{/\(’Uﬂ}Q)7 )\(1}11)171)} =4+ maX{Q, 2} =35.

k=0

Also, since q(V{") = {v1,v2}, we have that P(q(V{"), vy 1)) = (X7, X5°)R = (X7)R. Then from

Example 4.2.3, we have that
Pa(Va")svvyay)) = (X7, X3)R 2 (X7)R = P(a(V"), vovyr o)

Here is our second decomposition result for computing r: (R'/I((£,G)2)).

Corollary 4.2.11. Let (X,G) be a weighted r-path suspension of G,, such that A(v;v;) < A(v;, v;,1)

and A(v;v;) < A(vj,v5,1) for all edges v;v; € E. We have

Ir((Zr_lG)A/)R = ﬂ P(q(vu),")/(vu’(;u)), where /\/ = >\|27‘—1G7

(V',6') min. w. r-path v. cover of (3,_1G)/

and

(5,6 R = N P(a(V"), v ) + s

(V'7,6") min. w. r-path v. cover of (£,_1G) s

Proof. By Fact 4.1.7 and [9, Theorem 7.5.3], it is enough to prove that

Ir((Er,lG)A/)R = ﬂ P(Q(V”)a 'V(V”,(S”))~

(V',6'") min. w. r-path v. cover of (3,_1G)y/

By Theorem 4.2.7, it is enough to show that

N P(q(V"), vvr5m)
(V77,6') weighted. r-path v. cover of (£,_1G)/

= m P(q(VII)7’Y(V//75//)).

(V77,6") min. weighted r-path v. cover of (2,_1G)y/

C follows because every minimal weighted r-path vertex cover is a weighted r-path vertex

cover.
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D follows from Fact 3.1.6 and Lemma 4.2.9. O

Example 4.2.12. Consider the following weighted 3-path suspension (X3P;)y of Gy, := (P1)y, =

( V1 (%] )
2 5 2
U1 V1,1 V1,2 V1,3
2
3 4 2
V2 V2,1 V2,2 V2,3

We depict the minimal weighted 3-path vertex covers of (X2P;)y with A = Mg, p, in the following

sketches:
2 5 2 5
vy V1,1 V1,2 1 1,1 1,2 V1 V1,2
2‘ 2‘ 2
3 4 2 3 4 3 4
U2 V2,1 V2,2 vy U2,1 V2,2 @ V2,1 V2,2

3 4 3 4
Uy V2,1 V2,2 U2 V2,2 V2 V2,2

3 4 2 3 4
V2 V2,2 Ch) V2,1

Since I3((S2Py)n) = (X7, X7 XT X3, X7 1 X7X5X3 |, X§X3X3, X3 ,), by Corollary 4.2.11, we have

that

I;((Z2P)n)R = (X12X5, X{XS, X{ X)) R= (XD)RN (X3)RN (X{, X3)Rn (X{*, X3)R

N (X7, X)) N (X], X9) N (X{%, X9)RN (X1, X3")R.

This decomposition is redundant. Thus, the decomposition in Corollary 4.2.11 may be redundant.

In light of the preceding example, we define another order from which we can produce an
irredundant decomposition. Lemma 4.2.21 is the key for understanding how this ordering helps with

irredundancy.

Definition 4.2.13. Given minimal weighted r-path vertex covers (V{’,d7), (V3',65) of (X,-1G)a,

we write (V/,67) <, (V' 68) if (V") C q(V3") and V(v 8l > ’Y(Vz”,ég)'q(vl”)' A minimal weighted
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r-path vertex cover (V" ¢") is z-minimal if there is not another minimal weighted r-path vertex

cover (V",6"") such that (V",8") <, (V'",8").

Example 4.2.14. Consider the following two minimal weighted 3-path vertex covers (V{’,d7) :=

{vf 5,03} and (V' 64) := {vf 5,03 1} of (X2Py)x from Example 4.2.12.

3 4
Vg V21 V2,2 U2 V2,2

Then ¢(V{") = {v1,v2} = q¢(V3'). Since
Yevyr oy (i) = 67 (v12) +hig +hio=5+5+2=05(v12) +hia + hio = vy ey (v1),

and Yy 51y (v2) = 07 (v2) = 3 < 3+ 3 = 5(v2,1) + ha2,o = Yy .6y (v2), We have that vy 51y <

Yevyayy- So (V{',67) >, (Vy',05). Hence (V{”,07) is not z-minimal.

Lemma 4.2.15. Let p := (W', 4") and P := (W”,6”) be two minimal weighted r-path vertex covers
of (X,-1G)x such that (W",8") <, (W’,¢"), then |[(W",0")| = [(W',¢")| and g(W") = q(W’).

Proof. Since (W’,4’) is a minimal weighted r-path vertex cover of (X,_1G)y, for a distinct pair
Viy jr» Via,js € W', we have that i1 # ip. Also, since (W) C q(W'), [W"| = |¢g(W")| < |[q(W')| =
|W'|. Suppose that |W”| < |[W’|. Then there exists v; ; € W’ such that v; ¢ ¢(W"). Since (W’,4")
is a minimal weighted r-path vertex cover of (3,_1G),, there is an r-path P, in (3,_1G), that can
only be weighted-covered by v; ;. By assumption, P, can be weighted-covered by some v,; € W,
so v € g(W"). Also, since v; & g(W"), we have that k # i. Let o = min{b | vip, € WCA,(p)} and
B =min{b | vxp, € WCAL(B)}. So we have that a, 8 < 1. Since vy 5y > Y sy, We have that
«a < 3 similar to the proof of Proposition 4.2.2. If a < [, then it is straightforward to show that P,
can also be weighted-covered by vy o € W', a contradiction. Assume that o« =1. Then a = g =1

and so v, g € W weighted-cover P,. Since

a—1 a—1
8" (Vk,a) + D by = vwr 5y (V1) = Vw0 (0r) = ' (V) + ) his
b=0 b=0

we have that ' (vk,o) < 6”(vk,a). So P, can also be weighted-covered by vy, o € W', a contradiction.
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Hence |W”| = |W’| and thus |[¢(W")| = |¢(W’)|. Since ¢(W") C ¢q(W’), we have that ¢(W") =
q(W’). O

Example 4.2.16. Consider the minimal weighted 3-path vertex covers (V{,87) := {v},,v3} and
(V' 65) := {07 5,03 ,} of (£2P1)x from Example 4.2.18(a).

3 4
Vg V21 V2,2 U2 V2,2

By Example 4.2.18(a), (V/",07) <, (V3',65). Then [(V{",87)| = [{vi2,v2}| = 2 = [{vi2, 021} =

[(V5',65)] and q(V{") = {v1,v2} = q(V5').

The following theorem can be used as an algorithm to find the set of z-minimal weighted

r-path vertex covers of (X,_1G), from the set of minimal weighted r-path vertex covers.

Theorem 4.2.17. Let p := (V{',5]),B := (V5',8%) be two minimal weighted r-path vertex covers of
(37-1G)x. Then (V{",07) <, (V5',05) if and only if ¢q(V{") = q(V3') and for any v, € ¢(V{"): jig >

.72l 07"]1[ = ]2l and 61 (Un 2J1, L) > 62 (UH 2J2, l) with jl,l = {.7 ‘ Vi € ‘/1//} and j2,l = {] | Viy,j € ‘/g/}

Proof. By Lemma 4.2.15, (V{",6{) <, (V5',d5) if and only if ¢(V{") = q(Vy') and vy s0)lqviry >
Yy splaevyy if and only if ¢(V)") = q(V3') and for any vi, € ¢(V{"), vevyory(vi)) > vy sy (Vi)
if and only if ¢(V{") = ¢(V3') and for any v;, € q(V{"), 07 (vi, 5,,) + ZJ” "h hiy ) > 05 (Vi 4y, ) +
Z?__‘I(;l hi, . by Proposition 4.2.2. We claim that for v;, € q(V{"), 6{(vi, j,,) + ZJ” Yhigk >
05 (i o, ) + Z]“ "h hi, k. if and only if j1; > ja1, or j1 = j2q and 67 (vs, 5, ,) > 05 (Vi js,)-

<= Assume that ji; > jo, or ji; = jo; and 67 (v;, 5, ,) > 05 (v, j,,). Then

Jia—1 - Jia—1
L e ) . _ 7
Q= (51 (Uuyh,z) + E hu,k> < vll ]21 E u k> - v'LlJl L) 5 Uu J2z E h'Ll k-
k=0 k=0 _]21

To prove our statement, it is equivalent to show that a > 0.
(a) If jl,l > j2.,l» then a > Sil(viz,jl,z) - 5/2/(1)”7].2‘1) + hihjz,z > hiub,z - 5/2I(Uiz,j2,l) > 0.

(b) If le = j2,l and 51/(1}1'1 7j1,1) > 6él(viz,j2,z)v then a = 53/(1}1'171'1,1) - 5/2/(1)1%]'2,1) > 0.
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== Suppose that ji; < jo, or j1; = jou and 67 (v, 5, ,) < 05 (v, 4,,). Then

Jii—1 - J2a—1
" 2 : § : 2 :
Q= (6 Ulhjl 1 th k) ( 2 U217J2z i,k > - 61 Ulz,Jl 1) 2 Ulhhz hlu

k=0 k=31,
To prove our statement, it is equivalent to show that a < 0.
(a) If jig = j2u and 67 (vi,,j,,) < 65 (Vi jz,), then a =67 (vi, 3, ,) — 65 (i jz,) <O.

(b) If j14 < j2u, since v, 5, € V/" and V/" is a minimal weighted r-path vertex cover, we have

. 1
(5,1/('01'“]1,1) < hihjl,l? S0 & = 6,1/(viuj1,z) - 5/2/(7)%7]'2,1) Z? l]“ ik < 5/1/(1)%,]'1,1) - hilvjl,l <0. O

Example 4.2.18. We have the following examples:

(a) Consider the following two minimal weighted 3-path vertex covers (V{’,87) := {v} 5, v3} and

(V64 = {111 2,1)2 1} of (X2Py)y from Example 4.2.14.
v —2— vy —> @ n vy = @

3 4 3 4
U% V2,1 V2.2 V2 @ V2,2

Then q(V{") = {v;, 1= v1, v, :=v2} = q(V4'). Note that

Jia =min{j | v, ; € V{'} =min{j | vy ; € V/'} =2,

j1$2 = mm{j | Viy,j S Vlll} = mln{j | V2, S Vlll} = 0,
Joq = min{j [ v, 5 € V3'} = min{j | vp; € '} =2,
Jo2 =min{j | v, ; € Vo't =min{j | vy ; € 13} = 1.

Since jl,l =2 = j271 and 51/(7)1,3‘1,1) = (51/(’01)2) =5= (5’2/(’()1,2) = (5’2/(’()1,]‘271), and j1)2 =0 < 1= j272,
we have that (V{’,67) <, (V3',85) by Theorem 4.2.17.

(b) Consider all the minimal weighted 3-path vertex covers of (X2P;) from Example 4.2.12. Ap-

plying Theorem 4.2.17 repeatedly, we get all the z-minimal weighted 3-path vertex covers depicted
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in the following.

2 2 5 v 2 v 5 v
V3 V11 V1.2 1 1,1 1,2
2\ 2

3 4 2 3 4
V2 V2,1 V2,2 U5 V2,1 V2,2

2 5 2 5
U1 V1,1 U1 V1,2

The next two results are key for our third and final decomposition result.

Proposition 4.2.19. For every minimal weighted r-path vertex cover p := (W', ¢") of (2,-1G)ax,
there is a z-minimal weighted r-path vertex cover (W”,§"”) of (3,-1G)x such that (W",§") <,

(W', 8).

Proof. If (W', §’) is itself a z-minimal weighted r-path vertex cover for (X,_1G)x, then we are done.
If (W’,¢’) is not z-minimal, then by Lemma 4.2.15, the size of ¢(IW’) cannot be decreased, so for
some v; € g(W’) the function vy 5 (vi) = 6’ (vi4,) + Zi";ol hi with jo := {j | vi; € WCA;(p)}
from Proposition 4.2.2 can be increased, which is done by increasing j, and assigning an appropriate
value to ¢'(v; 5,) since (W’,4’) is minimal. We increase 7y ¢y (v;) for each v; € g(W') such that
any further increase would cause the set not to be a weighted r-path vertex cover. This process
terminates in finitely many steps because jo < r. Denote the new set (W",46”). Then (W",4§") is
minimal since the size of W' cannot be decreased by Lemma 4.2.15 and §” cannot be increased.
Thus, by construction, (W” §”) is a z-minimal weighted r-path vertex cover for (X,_1G)x such

that (W",8") <, (W', ). O

Example 4.2.20. Consider the following minimal weighted 3-path vertex cover p := (V{,d7) :=
{v? 5,03} of (£2P1)x from Example 4.2.18(a).

2 5
U1 V1,1

2

3 3 4
U3 V2,1 V2,2

Note that ’Y(V{’,é;’)(vl) cannot be increased. Assume that ve; € V”. Then setting §”(vs1) = 3,
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we have that p’ := (V/",07") = {v7,,v3,} is a minimal weighted 3-path vertex cover by Exam-
ple 4.2.18(a). However, since v12 € V", we have that v 2 cannot be used to replace ve 1 in V{”’ to
generate a minimal 3-path vertex cover, otherwise, the 3-path v; jv1v2v2 1 Will be left uncovered.

Thus, (V{”,6{") is z-minimal and (V{",67") <, (V{", 7).

Lemma 4.2.21. Let (V/,47), (V5,05) be two minimal weighted r-path vertex covers of (3,_1G)x.

Then (V/,67) <, (V3,65) if and only if P(q(V{),vvy.e1)) € P(a(V3), Yvz.61))-

Proof. (V{,01) <, (V3,083) if and only if ¢(V{) C q(V3) and vvy.6)lavy) = Y(vy.69) la(vy) if and only

if P(qa(V/),vvyr.6p) € P(a(Va) vvzan))- -

Example 4.2.22. Consider the following two minimal weighted 3-path vertex covers (V{’,d7) :=

{07 5,03} and (Vy',64) := {07 5,03 1} of (£2P1) from Example 4.2.18(a).

3N 3 4 3 4
U V2,1 V2.2 V2 V22

Then (Vy',05) <, (V{',6}) by Example 4.2.18(a). Note also that
P(q(V3). vy apy) = (X1%, X3) R C (X312, X5) R = P(a(Vi") vverop))-
Next, we present our third and final decomposition result which will yield the type compu-
tation in Theorem 4.2.25.
Theorem 4.2.23. Given a weighted r-path suspension of G, (X,G)x such that A(v;v;) < A(vg, vi1)

and Av;vj) < Mwj,v;1) for all edges viv; € E, we have an irredundant parametric decomposition

Ir((ZrG>)\)R = ﬂ P(Q(V”)ﬁ(v”,a/')) +m@(>\)]7 N = )‘|Er,-71G-
(V7.,8") p-min. w. r-path v. c. of (r—1G)xs

Proof. By Fact 4.1.7 and [9, Theorem 7.5.3], to verify this result, it is enough to show that we have

an irredundant decomposition

Ir((zrflG)X)R = ﬂ P(Q(Vﬁ)aV(V”,é”))-

(V77,6") p-min. w. r-path v. cover of (2,_1G)y/
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Lemma 4.2.21 shows that this intersection is irredundant. So by Corollary 4.2.11, it is enough to

show that

N P(q(V"), vy om)

(V',6') min. weighted r-path v. cover of (X,_1G) s

= ﬂ P(a(V"), v 5m))-

(V',6'") ra-min. weighted r-path v. cover of (X,_1G) s

C follows as every pz-minimal weighted r-path vertex cover is a minimal weighted r-path
vertex cover.

D follows from Proposition 4.2.19 and Lemma 4.2.21. O

Example 4.2.24. Consider the graph (X5P;) from Example 4.2.12. Then by Theorem 4.2.23 and

Example 4.2.18(b), we have an irredundant parametric decomposition

I((S3Py)y) = (XP2X2, X1 X5, X2XI)R + mle®)

= ()R (X3) RN (X077 X5) RO (X], X5 R] + (X0, X57) R,

The next theorem is the fourth main result of this thesis.
Theorem 4.2.25. Let (X,G)y be a weighted r-path suspension of G., such that A(v;vj) < A(vi,vi1)

and A(v;vj) < A(vj,v51) for all edges viv; € E.

. (R
FAL((ZG)5)

) = t{z-minimal weighted r-path vertex covers of (X,_1G)x}, N = Ns,_,c-

Proof. We compute

R R
e (L»«ETG)A)) o (n((zram + (X = Xip [ 1<i<d1<k< T)R,)

=(rmann)

= t {ideals in an irredundant parametric decomposition of IT((ETG) ,\)R}

=t { »-minimal weighted r-path vertex covers of (X,_1G)x },

where the first equality is from Facts 4.1.8(a) and 2.7.6, and Theorem 3.4.1, the second equality is

from Theorem 3.4.1, the third equality is from Fact 2.7.7 since dim(m) = 0, and the last
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equality is from Fact 4.2.23. O

Remark. Because of Fact 4.1.8, we use Theorem 4.2.25 to compute rg(R/I(G,)) for all weighted

trees G, such that I,.(G,,) is Cohen-Macaulay.

Example 4.2.26. Consider Example 4.2.24. Then by Theorem 4.2.25, we have that

IR (R//I3(23P1))\) =4.

We observe that the smallest number of vertices for one of the 3-path vertex covers of (¥3P;)y
is 2. Then by Facts 3.1.7 and 2.2.28, dim(R’'/I3((Z3P1)x)) = 8 — 2 = 6. Since R'/I3((S3P1)y) is
Cohen-Macaulay by Fact 4.1.8(a), depth(R'/I3((35P1)x)) = dim(R'/I5((23P1)»)) = 6. Hence

Ext$ (K, R'/I3((Z3P1)y)) 2 K.
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Chapter 5

Future work

5.1 Generalized Weighted Simplicial Complex

The Stanley-Reisner correspondence uses simplicial complexes to study square-free mono-
mial ideals. In order to use similar techniques to study certain non-square-free monomial ideals, in
the future, we will define a weighted version of the notion and then define a weighted version of
Stanley-Reisner ideals. As in the classical setting, we’ll see whether these ideals yield an irredun-
dant irreducible decomposition. In terms of the decomposition, we will define the Alexander dual
of a weighted simplicial complex and dual of any monomial ideal, to see whether Alexander duality
commutes with the weighted Stanley-Reisner correspondence, and see how it is related to the dual

defined by E. Miller [8].

5.2 More classifications

We focus on classifying the edge-weighted graphs whose f-weighted r-path ideal is Cohen-
Macaulay over a field K. As for the unweighted case, we cannot expect a general classification
theorem. We’ve completed the classification for weighted r-suspensions. In the future, we plan
to use combinatorial analysis to classify all weighed K,-coronas with n > 2 and weighted chordal

graphs such that their f-weighted r-path ideals are Cohen-Macaulay.

Definition 5.2.1. Let n > 1. A graph G is called a K,,-corona if there is a subgraph H of G such

that each vertex of H is affixed a distinct completed graph K,,. An edge-weighted graph G,, is called
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a weighted K, -corona if the underlying graph G is K,-corona.

Definition 5.2.2. A graph G is called chordal if every cycle of length > 3 has a chord. An edge-

weighted graph G, is called a weighted chord graph if the underlying graph G is chordal.

The examples for the K,,-corona and chordal are in the following:

Example 5.2.3. Let G be the following graph.

Y

< }\\
N
/‘A\
|~

Then G is Ky4-corona, since we have a subgraph H of G

S|

9N
(=l

such that each vertex a, b, c,d, e of H is affixed to a distinct complete graph K. Note that G is not

chordal since the 4-cycle b c d e b in G doesn’t have a chord.
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Example 5.2.4. For the following weighted chordal graph G,,, we draw part of the weights of G.

For the unweighted edges, one can put any reasonable weights on them to define w : E — N.

We can show that the f-weighted r-path ideal I, ;(G.) of G, cannot be Cohen-Macaulay when

r = 1. By definition, I1 §(G.,) is the same the weighted edge ideal of G,, [10, Definition 3.1].

Conjecture 5.2.5. For weighted K, -coronas with n > 2, there is a classification result of Cohen-

Macaulay f-weighted r-path ideals.

Conjecture 5.2.6. For weighted chordal graphs, there is a classification result of Cohen-Macaulay

f-weighted r-path ideals as in [6].

Conjecture 5.2.7. For all weighted r-path suspensions, weighted K,,-coronas and weighted chordal
graphs and any function f, when the f-weighted r-path ideals are Cohen-Macaulay, we can compute

their type combinatorially.
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