Clemson University
TigerPrints

12-2022

Cohen-Macaulay Type of Weighted Path Ideals

Shuai Wei
Clemson University, wei6@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations
Part of the Algebra Commons

Recommended Citation

Wei, Shuai, "Cohen-Macaulay Type of Weighted Path Ideals" (2022). All Dissertations. 3248.
https://tigerprints.clemson.edu/all_dissertations/3248

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Cohen-Macaulay Type of Weighted Path Ideals

A Dissertation
Presented to
the Graduate School of
Clemson University
of the Requirements for the Degree
Doctor of Philosophy
Mathematical Sciences
In Partial Fulfillment
Shuai Wei
December 2022
Accepted by:
Ar.Wagstaff, Committee Chair
Dr. Michael Burr
Dr. Shuhong Gao
Dr. Matthew Macauley
Drer

Abstract

In this dissertation we give a combinatorial characterization of all the weighted r-path suspensions for which the f-weighted r-path ideal is Cohen-Macaulay. In particular, it is shown that the f-weighted r-path ideal of a weighted r-path suspension is Cohen-Macaulay if and only if it is unmixed. Type is an important invariant of a Cohen-Macaulay homogeneous ideal in a polynomial ring R with coefficients in a field. We compute the type of R / I when I is any CohenMacaulay f-weighted r-path ideal of any weighted r-path suspension, for some chosen function f. In particular, this computes the type for all weighted trees T_{ω} such that the corresponding ideal is Cohen-Macaulay.

I am dedicating this dissertation to my parents Manlong Wei and Jihua Pu, with love.

Acknowledgments

I would like to thank my supervisor, Dr. Keri Sather-Wagstaff for her wonderful guidance and tremendous engagement throughout all stages of this journey. I have been extremely lucky to have a supervisor who cared so much about her students and their work.

I must express my sincere gratitude to my committees Dr. Michael Burr, Dr. Shuhong Gao, and Dr. Matthew Macauley for their invaluable patience and feedback.

I am deeply grateful to my fellow students, Michael Cowen, Hugh Geller, and Todd Morra for being my collaborators to discuss the assignment questions and sharing their resources.

I am also really thankful to my classmates and friends for their help and to all those who contributed directly or indirectly towards the completion of this project. I would like to extend my special thanks to my friend Daozhou Zhu for sharing his thoughts and experience in studying pure mathematics.

Finally, I would like to acknowledge my family for their unwavering financial and moral support. They have allowed me to pursue my passion in mathematics. Special thanks to my wife Yahui Zhang for her love and consistent support and my son Corey Wei for his giving my life a powerful sense of purpose.

Contents

Title Page i
Abstract ii
Dedication iii
Acknowledgments iv
1 Introduction 1
1.1 Graphs and Ideals 1
1.2 Cohen-Macaulayness 4
1.3 Cohen-Macaulay Type 5
2 Background 6
2.1 Local Rings 6
2.2 Monomial Ideals 8
2.3 Regular Sequences 13
2.4 Ext via Projective Resolutions 14
2.5 Depth, Type, and Cohen-Macaulayness 19
2.6 Graded rings and modules 21
2.7 Graded Cohen-Macaulay Rings 22
3 Cohen-Macaulayness of f-Weighted r-Path Ideals 25
3.1 Background 25
3.2 Sufficient Conditions for Unmixedness 34
3.3 Necessary Conditions for Unmixedness 72
3.4 Sufficient Conditions for Cohen-Macaulayness 105
3.5 Main Results 107
4 Cohen-Macaulay Type of Weighted r-Path Ideals 112
4.1 Background 112
4.2 Type 115
5 Future work 134
5.1 Generalized Weighted Simplicial Complex 134
5.2 More classifications 134
Bibliography 137

Chapter 1

Introduction

Combinatorial commutative algebra is a branch of mathematics that uses combinatorics and graph theory to understand algebraic constructions; it also uses algebra to understand objects in combinatorics and graph theory. Richard Stanley was the first to strongly leverage commutative algebra techniques to study combinatorial objects in his proof of the upper bound conjecture for simplicial spheres [12]. His focus was on square-free monomials ideals. Since then, the study of square-free monomial ideals has become a very active area of research in commutative algebra.

1.1 Graphs and Ideals

In this dissertation, we explore aspects of this area via path ideals of graphs and edgeweighted graphs.

On the graph-theoretic side, let G be a (finite simple) graph with vertex set $V=V(G)=$ $\left\{v_{1}, \ldots, v_{d}\right\}$ and edge set $E=E(G)$. To the graph G, one can attach a positive integer-valued function $\omega: E \rightarrow \mathbb{N}$, producing an edge-weighted graph G_{ω}.

On the algebraic side, let \mathbb{K} be a field, and consider the polynomial ring $R=\mathbb{K}\left[X_{1}, \ldots, X_{d}\right]$. Villarreal [13] defined the edge ideal of G to be the ideal $I(G)$ that is "generated by the edges of G ":

$$
I(G)=\left(X_{i} X_{j} \mid v_{i} v_{j} \in E\right) R
$$

By definition, the edge ideal $I(G)$ is square-free.

Example 1.1.1. Let G be the following graph and $R=\mathbb{K}\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]$.

The edge ideal of G is

$$
I(G)=\left(X_{1} X_{2}, X_{2} X_{3}, X_{2} X_{4}, X_{3} X_{4}, X_{4} X_{5}\right) R
$$

Paulsen and Sather-Wagstaff [10] introduced the weighted edge ideal of G_{ω} to be the ideal $I\left(G_{\omega}\right)$ which is generated by all monomials of the form $X_{i}^{\omega\left(v_{i} v_{j}\right)} X_{j}^{\omega\left(v_{i} v_{j}\right)}$ such that $v_{i} v_{j} \in E$:

$$
I\left(G_{\omega}\right)=\left(X_{i}^{\omega\left(v_{i} v_{j}\right)} X_{j}^{\omega\left(v_{i} v_{j}\right)} \mid v_{i} v_{j} \in E\right) R
$$

In particular, if ω is the constant function defined by $\omega\left(v_{i} v_{j}\right)=1$ for $v_{i} v_{j} \in E$, then $I\left(G_{\omega}\right)=I(G)$. By definition, the weighted edge ideal $I\left(G_{\omega}\right)$ is usually not square-free.

Example 1.1.2. Let G_{ω} be the following edge-weighted graph and $R=\mathbb{K}\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]$.

The weighted edge ideal of G_{ω} is

$$
I\left(G_{\omega}\right)=\left(X_{1}^{2} X_{2}^{2}, X_{2}^{3} X_{3}^{3}, X_{2}^{4} X_{4}^{4}, X_{3}^{9} X_{4}^{9}, X_{4}^{7} X_{5}^{7}\right) R
$$

$I\left(G_{\omega}\right)$ has the same number of generators as $I(G)$.

Let $r \geq 1$. Building from Villarreal's work, Conca and De Negri [3] defined the r-path ideal associated to G to be the ideal $I_{r}(G) \subseteq R$ that is "generated by the paths in G of length r ":

$$
I_{r}(G)=\left(X_{i_{1}} \cdots X_{i_{r+1}} \mid v_{i_{1}} \cdots v_{i_{r+1}} \text { is a path in } G\right) R
$$

In particular, if $r=1$, then $I_{1}(G)=I(G)$.

Example 1.1.3. Consider the graph G from Example 1.1.1 with $r=2$. Then the 2-path ideal of
G is

$$
\begin{aligned}
I_{2}(G) & =\left(X_{1} X_{2} X_{3}, X_{1} X_{2} X_{4}, X_{2} X_{3} X_{4}, X_{2} X_{4} X_{3}, X_{3} X_{2} X_{4}, X_{2} X_{4} X_{5}, X_{3} X_{4} X_{5}\right) R \\
& =\left(X_{1} X_{2} X_{3}, X_{1} X_{2} X_{4}, X_{2} X_{3} X_{4}, X_{2} X_{4} X_{5}, X_{3} X_{4} X_{5}\right) R .
\end{aligned}
$$

Expanding this to the edge-weighted context, Kubik and Sather-Wagstaff [7] defined the weighted r-path ideal of G_{ω} to be the ideal $I_{r}\left(G_{\omega}\right)$ that is "generated by the max-weighted paths in G of length r ":

$$
I_{r}\left(G_{\omega}\right)=\left(\begin{array}{l|l}
X_{i_{1}}^{e_{i_{1}}} \cdots X_{i_{r+1}}^{e_{i_{r+1}}} & \begin{array}{l}
v_{i_{1}} \cdots v_{i_{r+1}} \text { is a path in } G \text { with } e_{i_{1}}=\omega\left(v_{i_{1}} v_{i_{2}}\right), \\
e_{i_{j}}=\max \left(\omega\left(v_{i_{j-1}} v_{i_{j}}\right), \omega\left(v_{i_{j}}, v_{i_{j+1}}\right)\right) \text { for } 1<j \leq r \\
\text { and } e_{i_{r+1}}=\omega\left(v_{i_{r}} v_{i_{r+1}}\right)
\end{array}
\end{array}\right) R .
$$

In particular, if $r=1$, then $I_{1}\left(G_{\omega}\right)=I\left(G_{\omega}\right)$.
Example 1.1.4. Consider the edge-weighted graph G_{ω} from Example 1.1.2. Then the weighted 2-path ideal of G_{ω} is

$$
I_{2}\left(G_{\omega}\right)=\left(X_{1}^{2} X_{2}^{3} X_{3}^{3}, X_{1}^{2} X_{2}^{4} X_{4}^{4}, X_{2}^{3} X_{3}^{9} X_{4}^{9}, X_{2}^{4} X_{4}^{9} X_{3}^{9}, X_{3}^{3} X_{2}^{4} X_{4}^{4}, X_{2}^{4} X_{4}^{7} X_{5}^{7}, X_{3}^{9} X_{4}^{9} X_{5}^{7}\right) R
$$

Kubik and Sather-Wagstaff also consider a much more general situation. For reasonable functions $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ they defined the f-weighted r-path ideal associated to G_{ω} to be the ideal $I_{r, f}\left(G_{\omega}\right) \subseteq R$ that is "generated by the f-weighted paths in G of length r ":

$$
I_{r, f}\left(G_{\omega}\right)=\left(\begin{array}{l|l}
X_{i_{1}}^{e_{i_{1}}} \cdots X_{i_{r+1}}^{e_{i_{r+1}}} & \begin{array}{l}
v_{i_{1}} \cdots v_{i_{r+1}} \text { is a path in } G \text { with } e_{i_{1}}=\omega\left(v_{i_{1}} v_{i_{2}}\right), \\
e_{i_{j}}=f\left(\omega\left(v_{i_{j-1}} v_{i_{j}}\right), \omega\left(v_{i_{j}}, v_{i_{j+1}}\right)\right) \text { for } 1<j \leq r \\
\text { and } e_{i_{r+1}}=\omega\left(v_{i_{r}} v_{i_{r+1}}\right)
\end{array}
\end{array}\right) R .
$$

So f in the definition of $I_{r, f}\left(G_{\omega}\right)$ replaces the max in the definition of $I_{r}\left(G_{\omega}\right)$.
Example 1.1.5. Consider the edge-weighted graph G_{ω} from Example 1.1.2. Let $r=3$ and let $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ be the gcd function. Then the gcd-weighted 3-path ideal of G_{ω} is

$$
I_{3, \mathrm{gcd}}\left(G_{\omega}\right)=\left(X_{1}^{2} X_{2} X_{3}^{3} X_{4}^{9}, X_{1}^{2} X_{2}^{2} X_{4} X_{5}^{7}, X_{3}^{3} X_{2} X_{4} X_{5}^{7}\right) R
$$

In this dissertation, we investigate two important notions in commutative algebra for these ideals: the Cohen-Macaulay property and the type, discussed next. Specifically, we show how properties of G_{ω} yield information about these notions.

1.2 Cohen-Macaulayness

An important concept in commutative algebra is the "Cohen-Macaulay" property; see Section 2.4 in chapter 2 . The definition of Cohen-Macaulayness is somewhat technical. For now, the reader should understand that Cohen-Macaulay ideals in polynomial rings are particularly nice. If G is a tree, a theorem of Villarreal [13] characterizes when $R / I(G)$ is Cohen-Macaulay, and a theorem of Paulsen and Sather-Wagstaff [10] characterizes when $R / I\left(G_{\omega}\right)$ is Cohen-Macaulay. Theorems of Campos, et al. [2] and of Kubik and Sather-Wagstaff [7] characterize the Cohen-Macaulay property for $R / I_{r}(G)$ and $R / I_{r}\left(G_{\omega}\right)$, respectively, again for trees. These characterizations are purely graph-theoretical. In particular, they are independent of the choice of the ground field \mathbb{K}.

Cohen-Macaulay trees can be characterized in terms of suspensions (see [10, Definition 5.4]) when the edge ideals are considered. One of our focus area is on the path ideals of weighted trees. Let G be an r-path suspension (see Definition 3.1.14). The first goal of this dissertation is to characterize when $R / I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay: for each $r \geq 2$, find all combinations of $\omega: E \rightarrow \mathbb{N}$ and $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that $R / I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay. Let $\operatorname{cond}_{r=2}^{\omega, f}, \operatorname{cond}_{r=3}^{\omega, f}$ and $\operatorname{cond}_{r \geq 4}^{\omega, f}$ be the constraints from Propositions 3.2.1, 3.2.43, and 3.2.44, respectively. The diagram of proof is as follows.

Thus, given that G is an r-path suspension, $R / I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay if and only if cond ${ }_{r=2}^{\omega, f}$, $\operatorname{cond}_{r=3}^{\omega, f}$ or $\operatorname{cond}_{r \geq 4}^{\omega, f}$ is satisfied. Furthermore, we use this to characterize the Cohen-Macaulay
property for $R / I_{r, f}\left(G_{\omega}\right)$ when G is a tree. The results are in Theorems 3.5.5 and 3.5.6.
We use similar techniques to study certain non-square-free monomial ideals as in studying square-free monomials. However, we observe that the useful polarization technique used in [7, 10] fails in studying the Cohen-Macaulayness of $R / I_{r, f}\left(G_{\omega}\right)$. We solved this by combining commutative algebraic techniques and combinatorial analysis. It is reflected in the theorems and propositions from the above proof diagram.

1.3 Cohen-Macaulay Type

If I is a Cohen-Macaulay ideal in R, the "type" of R / I defined by

$$
\mathrm{r}_{R}(R / I)=\operatorname{dim}_{\mathbb{K}}\left(\operatorname{Ext}_{R}^{n}(\mathbb{K}, R / I)\right)
$$

roughly measures how nice the ideal is, where $n=\operatorname{depth}(R / I)$ (see e.g., [11]). For instance, some of the nicest Cohen-Macaulay ideals are the "Gorenstein" ideals, which end up being the CohenMacaulay ideals of type 1. In Chapter 4 , we compute the type of $R / I_{r, f}\left(G_{\omega}\right)$ when $f=\max$ and the ring is Cohen-Macaulay. We accomplish this in Theorem 4.2.25. As with Villarreal's results, this computation is purely graph-theoretical. As a sample, we state the special case $r=1$ of the result.

Theorem 1.3.1. Let $G=\Sigma H$ be a suspension of H (see Definition 3.1.12) and $\omega: E(G) \rightarrow \mathbb{N}$ such that $\omega\left(v_{i} v_{j}\right) \leq \omega\left(v_{i} w_{i}\right)$ and $\omega\left(v_{i} v_{j}\right) \leq \omega\left(w_{j} v_{j}\right)$ for each $v_{i} v_{j} \in E(H)$. Then the Cohen-Macaulay type of $R / I\left(G_{\omega}\right)$ is

$$
\mathrm{r}_{R}\left(R / I\left(G_{\omega}\right)\right)=\sharp\left\{\text { minimal weighted vertex covers of } H_{\omega^{\prime}}\right\}, \text { where } \omega^{\prime}=\left.\omega\right|_{E(H)} \text {, }
$$

where the definition for "minimal weighted vertex covers" can be found in [10, Definitions 1.4 and 1.9], or it can be regarded a special case of Definitions 3.1.3 and 3.1.5.

The classification of Cohen-Macaulay path ideals and type computing are the main results of this dissertation. They form the bulk of Chapter 3 and 4. Necessary background information is collected in Chapter 2 and Section 3.1. See also p. 102 and p.105.

Chapter 2

Background

This chapter covers the necessary algebraic details for understanding the definitions, theorems, and techniques used in the subsequent chapters. Section 2.1 begins with the definition of local rings and then treats localizations of modules. Section 2.2 is devoted to monomial ideals, our main subject, and their irredundant m-irreducible decompositions. Section 2.3 contains a brief discussion of regular sequences. Section 2.4 introduces some material from homological algebra needed to define Ext modules. The notions of depth, type, and Cohen-Macaulayness occupy Section 2.5. Section 2.6 contains an account of graded rings and modules, and closes with a fact that a polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ behaves like a local ring with the (homogeneous) maximal ideal $\mathfrak{X}=\left(X_{1}, \ldots, X_{d}\right)$ when R is regarded as a graded ring over A when A is a local ring, e.g., a field. Section 2.7 provides a way to compute the type of R / I when I is a monomial ideal in R and has an irredundant parametric decomposition.

Convention. In this chapter, let d be a positive integer, R a commutative ring with identity, M an R-module, $I \subseteq R$ an ideal, and $\mathfrak{p} \subseteq R$ a prime ideal.

2.1 Local Rings

There are several invariants defined in terms of local ring, so we first recall the definition of local rings and some relevant properties to be used later.

Definition 2.1.1. We say R is local if it has a unique maximal ideal \mathfrak{m}, also known as "quasi-local", that is, R has finitely many maximal ideals. The residue field of R is R / \mathfrak{m}.
"Assume (R, \mathfrak{m}, k) is local" or "assume (R, \mathfrak{m}) is local", means that R is a local ring and \mathfrak{m} is the unique maximal ideal of R and $k=R / \mathfrak{m}$.

Example 2.1.2. Let \mathfrak{k} be a field.
(a) \mathfrak{k} is local with the maximal ideal (0).
(b) Let $n \geq 1$ and p be prime in \mathbb{Z}. Then $\mathbb{Z} /\left(p^{n}\right)$ is local with the maximal ideal $(p) /\left(p^{n}\right)$.
(c) Let $R=\mathfrak{k}\left[X_{1}, \ldots, X_{d}\right] /\left(X_{1}^{a_{1}}, \ldots, X_{d}^{a_{d}}\right)$, where $a_{i} \geq 1$ for $i=1, \ldots, d$. Then R is local with $\mathfrak{m}=\left(X_{1}, \ldots, X_{d}\right) /\left(X_{1}^{a_{1}}, \ldots, X_{d}^{a_{d}}\right)$.

Definition 2.1.3. Let $U \subseteq R$ be multiplicatively closed and $1 \in U$. The localization of M with respect to U is defined to be

$$
U^{-1} M=\{\text { equivalence classes from } M \times U \text { under } \sim\}
$$

where $(m, u) \sim(n, u)$ if there exists $w \in U$ such that $w(v m-u n)=0$. Denote the equivalence class of (m, u) as $\frac{m}{u}$ or m / u.

Localization is a useful technique of reducing many problems in commutative algebra to those about local rings.

Notation 2.1.4. By the definition of prime ideals, we have that $R \backslash \mathfrak{p}$ is multiplicatively closed. Set

$$
M_{\mathfrak{p}}=(R \backslash \mathfrak{p})^{-1} M
$$

In particular, we have that $R_{\mathfrak{p}}=(R \backslash \mathfrak{p})^{-1} R, I_{\mathfrak{p}}=(R \backslash \mathfrak{p})^{-1} I=(R \backslash \mathfrak{p})^{-1} R I=I R_{\mathfrak{p}}$, and $(R / I)_{\mathfrak{p}}=(R \backslash \mathfrak{p})^{-1}(R / I)$.

Fact 2.1.5. $\left(R_{\mathfrak{p}}, \mathfrak{p}_{\mathfrak{p}}\right)$ is a local ring.

Fact 2.1.6. Let $\pi: R \rightarrow R / I$ be the natural surjection. We have that $(R / I)_{\mathfrak{p}} \cong R_{\mathfrak{p}} / I_{\mathfrak{p}}$. So $(R / I)_{\mathfrak{p}} \neq 0$ if and only if $I_{\mathfrak{p}} \subsetneq R_{\mathfrak{p}}$ if and only if $1 / 1 \notin I_{\mathfrak{p}}$. In fact, $(R / I)_{\mathfrak{p}} \neq 0$ if and only if $I \subseteq \mathfrak{p}$. Indeed, if $I \nsubseteq \mathfrak{p}$, then $I \cap(R \backslash \mathfrak{p}) \neq \emptyset$, so there exists $x \in I$ such that $x \in(R \backslash \mathfrak{p})$ and $1 / 1 \sim x / x \in I_{\mathfrak{p}}$. On the other hand, if $(R / I)_{\mathfrak{p}}=0$, then $\overline{1} / u=0$ for any $u \in(R \backslash \mathfrak{p})$, implying that there exists $u^{\prime \prime} \in(R \backslash \mathfrak{p})$ such that $\overline{u^{\prime \prime}}=u^{\prime \prime} \overline{1}=0$, implying that $u^{\prime \prime} \in I$, it follows that $I \cap(R \backslash \mathfrak{p}) \neq \emptyset$, therefore $I \nsubseteq \mathfrak{p}$. Thus, in summary, $(R / I)_{\mathfrak{p}} \neq 0$ if and only if $I \cap(R \backslash \mathfrak{p})=\emptyset$ if and only if $I \subseteq \mathfrak{p}$.

2.2 Monomial Ideals

In this section, we introduce monomial ideals and their irredundant m-irreducible decompositions, and most of the definitions can be found in [9]. Let A be a non-zero commutative ring with identity and $R=A\left[X_{1}, \ldots, X_{d}\right]$ unless otherwise stated. Set $\mathfrak{X}=\left(X_{1}, \ldots, X_{d}\right) R$, the ideal generated by all variables in R and $\mathbb{N}_{0}=\{0,1,2, \ldots\}$.

Definition 2.2.1. A monomial in elements $X_{1}, \ldots, X_{d} \in R$ is an element of the form $X_{1}^{n_{1}} \cdots X_{d}^{n_{d}}$ in R, where $n_{1}, \ldots, n_{d} \in \mathbb{N}_{0}$. For short, we write $\underline{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d}$ and $\underline{X} \underline{n}=X_{1}^{n_{1}} \ldots X_{d}^{n_{d}}$.

Definition 2.2.2. Denote the set of monomials in R by

$$
\llbracket R \rrbracket=\left\{\underline{X}^{\underline{n}} \mid \underline{n} \in \mathbb{N}_{0}^{d}\right\} .
$$

Definition 2.2.3. A monomial ideal I in R is an ideal generated by monomials in X_{1}, \ldots, X_{d}, i.e., elements of the form $\underline{X}^{\underline{n}}$ with $\underline{n} \in \mathbb{N}_{0}^{d}$.

Remark. The trivial ideals 0 and R are monomial ideals since $0=(\emptyset) R$ and $R=(1) R=$ $\left(X_{1}^{0} \cdots X_{d}^{0}\right) R$.

Definition 2.2.4. A monomial $\underline{X}^{\underline{n}}$ with $\underline{n} \in \mathbb{N}_{0}^{d}$ is square-free if $n_{i}=0$ or 1 for $i=1, \ldots, d$. A monomial ideal I of R is square-free if it is generated by square-free monomials.

Example 2.2.5. We have that $I_{1}=\left(X_{1} X_{2}, X_{3}\right) R$ and $I_{2}=\left(X_{1}^{2}, X_{2}, X_{1} X_{3}^{3}\right) R$ are monomial ideals in $R=A\left[X_{1}, X_{2}, X_{3}\right]$, but only I_{1} is a square-free monomial ideal.

Assumption. For the remainder of this section, let $I \subseteq R$ be a monomial ideal.

Fact 2.2.6 (Dickson's Lemma [9, Theorem 1.3.1]). I is finitely generated by a set of monomials.
Definition 2.2.7. Denote the set of monomials in I by

$$
\llbracket I \rrbracket=\left\{\underline{X}^{\underline{n}} \in I \mid \underline{n} \in \mathbb{N}_{0}^{d}\right\}=I \cap \llbracket R \rrbracket .
$$

Fact 2.2.8. [9, Lemma 1.1.10] For each $f \in I$, each monomial occurring in f is in I.
Definition 2.2.9. Let $f=\underline{X}^{\underline{n}} \in \llbracket R \rrbracket$. The support of f is the set of variables that appear in f :

$$
\operatorname{Supp}(f)=\left\{i \in\{1, \ldots, d\}: n_{i} \geq 1\right\}=\left\{i \in\{1, \ldots, d\}: X_{i} \mid f\right\}
$$

The reduction of f is the monomial achieved by reducing all non-zero exponents down to 1 :

$$
\operatorname{red}(f)=\prod_{i \in \operatorname{Supp}(f)} X_{i}=\prod_{X_{i} \mid f} X_{i} .
$$

Example 2.2.10. $\operatorname{Supp}\left(X_{1}^{5} X_{3}^{4}\right)=\{1,3\}$ and $\operatorname{red}\left(X_{1}^{5} X_{3}^{4}\right)=X_{1} X_{3}$.
Definition 2.2.11. Define the monomial radical of I by

$$
\mathrm{m}-\operatorname{rad}(I)=(\operatorname{rad}(I) \cap \llbracket R \rrbracket) R
$$

where $\operatorname{rad}(I)$ is the radical of I, defined by

$$
\operatorname{rad}(I)=\sqrt{I}=\left\{x \in R \mid x^{n} \in I, \forall n \gg 0\right\}=\left\{x \in R \mid x^{n} \in I \text { for some } n \geq 1\right\}
$$

Remark. Example 2.2 .13 shows that $\operatorname{rad}(I)$ may not be a monomial ideal. This is due to the fact that the ring A may have nilpotents. See Section 2.4 [9] for more details about this phenomenon.

Fact 2.2.12. [9, Theorem 2.3.7] Assume $I=(S) R$ for some $S \subseteq \llbracket R \rrbracket$, then we have that m-rad $(I)=$ $(\operatorname{red}(s) \mid s \in S) R$.

It is important to note that you can use the generators.

Example 2.2.13. The monomial ideal $I=\left(X^{3} Y^{2}, X Y^{3}, Y^{5}\right) R$ in $R=A[X, Y]$ has

$$
\mathrm{m}-\operatorname{rad}(I)=\left(\operatorname{red}\left(X^{3} Y^{2}\right), \operatorname{red}\left(X Y^{3}\right), \operatorname{red}\left(Y^{5}\right)\right) R=(X Y, X Y, Y) R=(Y) R
$$

If $A=\mathbb{Z} / 4 \mathbb{Z}$, then $\operatorname{rad}(I)=(2, Y) R \neq \mathrm{m}-\operatorname{rad}(I)$.

Definition 2.2.14. I is m-reducible if there exist monomial ideals $J, K \subseteq R$ such that $I=J \cap K$ and $J \neq I$ and $K \neq I . I$ is m-irreducible if it is not m-reducible and $I \neq R$.

Fact 2.2.15. [9, Theorem 3.1.4] The zero ideal $I=(0)$ is m-irreducible. A non-zero I is m-irreducible if and only if it can be generated by "pure powers", i.e., if and only if $I=\left(X_{i_{1}}^{a_{1}}, \ldots, X_{i_{t}}^{a_{t}}\right) R$ for some $t \geq 1$ and $a_{i} \geq 1$ for $i=1, \ldots, t$.

Example 2.2.16. The monomial ideal $\left(X^{3}, X^{2} Y^{2}, Y^{4}\right) R$ in $R=A[X, Y]$ is m-reducible because it cannot be generated by "pure powers". One can also see this from the non-trivial decomposition
$\left(X^{3}, X^{2} Y^{2}, Y^{4}\right) R=\left(X^{2}, Y^{4}\right) R \cap\left(X^{3}, Y^{2}\right) R$.

Definition 2.2.17. An m-irreducible decomposition of I is an expression $I=\bigcap_{i=1}^{n} J_{i}$ with $n \geq 1$ such that monomial ideals $J_{1}, \ldots, J_{n} \subseteq R$ are m-irreducible.

Example 2.2.18. The monomial ideal $I=\left(X^{2}, X Y, Y^{3}\right) R$ in $R=A[X, Y]$ has an m-irreducible decomposition $I=\left(X, Y^{3}\right) R \cap\left(X^{2}, Y\right) R$. The intersection in Example 2.2.16 is another m-irreducible decomposition for the corresponding ideal.

Fact 2.2.19. $[9$, Theorem 3.3.3] If $I \neq R$, then I has an m-irreducible decomposition.

Definition 2.2.20. An m-irreducible decomposition $I=\bigcap_{i=1}^{n} J_{i}$ is redundant if $I=\bigcap_{i \neq k} J_{i}$ for some $k \in\{1, \ldots, n\}$. An m-irreducible decomposition $I=\bigcap_{i=1}^{n} J_{i}$ is irredundant if it is not redundant, that is, if every $k \in\{1, \ldots, n\}$ satisfies $I \neq \bigcap_{i \neq k} J_{i}$. As $I=\bigcap_{i=1}^{n} J_{i} \subseteq \bigcap_{i \neq k} J_{i}$ holds automatically, the given decomposition is irredundant if and only if every $k \in\{1, \ldots, d\}$ satisfies $I \subsetneq \bigcap_{i \neq k} J_{i}$.

Example 2.2.21. The m-irreducible decompositions in Examples 2.2.16 and 2.2.18 are irredundant.

The following two facts provide existence and uniqueness for irredundant m-irreducible decompositions.

Fact 2.2.22. $[9$, Corollary 3.3 .8$]$ If $I \neq R$, then I has an irredundant m-irreducible decomposition.

Fact 2.2.23. [9, Theorem 3.3.9] If I has two irredundant m-irreducible decompositions $I=\bigcap_{i=1}^{n} I_{i}$ and $I=\bigcap_{j=1}^{m} J_{j}$, then $n=m$ and there exists $\sigma \in S_{m}$ such that $I_{i}=J_{\sigma(i)}$ for $i=1, \ldots, n$, where S_{n} is the permutation group.

An important concept for Cohen-Macaulayness is next.

Definition 2.2.24. The prime spectrum of R is

$$
\operatorname{Spec}(R)=\{\text { prime ideals of } R\} .
$$

By convention, we have that $R \notin \operatorname{Spec}(R)$. Let $\mathrm{V}(I)$ denote the set of prime ideals in R containing I :

$$
\mathrm{V}(I)=\{\mathfrak{p} \in \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p}\}
$$

Let M be an R-module. The support of M is the set

$$
\operatorname{Supp}_{R}(M)=\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0\right\}
$$

Fact 2.2.25. It is straightforward to show that

$$
\operatorname{Supp}_{R}(R)=\operatorname{Spec}(R),
$$

and by Fact 2.1.6, we have

$$
\operatorname{Supp}_{R}(R / I)=\mathrm{V}(I)
$$

Definition 2.2.26. Let M be an R-module. The Krull dimension of M is

$$
\operatorname{dim}_{R}(M)=\sup \left\{n \geq 0 \mid \exists \text { a chain } \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \text { in } \operatorname{Supp}_{R}(M)\right\}
$$

Set $\operatorname{dim}(R)=\operatorname{dim}_{R}(R)$.

Based on Fact 2.2.25, we have the following Krull dimension computations for rings and quotient rings.

Fact 2.2.27. (a) The Krull dimension of R is

$$
\operatorname{dim}(R)=\sup \left\{n \geq 0 \mid \exists \text { a chain } \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \text { in } \operatorname{Spec}(R)\right\}
$$

(b) The Krull dimension of R / I is

$$
\operatorname{dim}(R / I)=\sup \left\{n \geq 0 \mid \exists \text { a chain } \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \text { in } \mathrm{V}(I)\right\}
$$

Fact 2.2.28. [9, Theorem 5.1.2] Let A be a field and $I=\bigcap_{i=1}^{m} J_{i}$ an m-irreducible decomposition. Then the Krull dimension is $\operatorname{dim}(R / I)=d-n$, where n is the smallest number of generators needed for one of the J_{i} 's.

Fact 2.2.28 provides us a simple formula to compute $\operatorname{dim}(R / I)$.

Example 2.2.29. The monomial ideal $I=\left(X_{1} X_{2}, X_{2}^{2} X_{3}^{2}, X_{3} X_{4}\right)$ in $R=A\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ has an
(irredundant) m-irreducible decomposition

$$
I=\left(X_{1}, X_{3}\right) R \cap\left(X_{2}, X_{3}\right) R \cap\left(X_{1}, X_{2}^{2}, X_{4}\right) R \cap\left(X_{2}, X_{4}\right) R \cap\left(X_{1}, X_{3}^{2}, X_{4}\right) R
$$

Therefore, by Fact 2.2.28, we have that $\operatorname{dim}(R / I)=4-2=2$.

Definition 2.2.30. Let $I=\bigcap_{i=1}^{m} J_{i}$ be an irredundant m-irreducible decomposition. Let n_{i} be the smallest number of generators needed for J_{i} for $i=1, \ldots, m$. We say that I is m-unmixed if $n_{1}=\cdots=n_{m}$. We say that I is m-mixed if it is not m-unmixed, i.e., there exist $i, j \in\{1, \ldots, m\}$ such that $n_{i} \neq n_{j}$.

Fact 2.2.31. If A is a field, then I is m-unmixed if and only if I is unmixed.

Example 2.2.32. The monomial ideals in Examples 2.2 .16 and 2.2 .18 are m-unmixed. The monomial ideal in Example 2.2.29 is m-mixed.

Definition 2.2.33. A parameter ideal in R is an ideal of the form $\left(X_{1}^{a_{1}}, \ldots, X_{d}^{a_{d}}\right)$ with $a_{1}, \ldots, a_{d} \geq$ 1. For $\underline{X}^{\underline{n}}=X_{1}^{n_{1}} \cdots X_{d}^{n_{d}} \in \llbracket R \rrbracket$ with $\underline{n} \in \mathbb{N}_{0}^{d}$, set

$$
\mathrm{P}_{R}\left(\underline{X}^{\underline{n}}\right)=\left(X_{1}^{n_{1}+1}, \ldots, X_{d}^{n_{d}+1}\right) R .
$$

Note that

$$
\mathrm{m}-\operatorname{rad}\left(P_{R}\left(\underline{X}^{\underline{n}}\right)\right)=\left(\operatorname{red}\left(X_{1}^{n_{1}+1}\right), \ldots, \operatorname{red}\left(X_{d}^{n_{d}+1}\right)\right) R=\left(X_{1}, \ldots, X_{d}\right) R=\mathfrak{X}
$$

Example 2.2.34. The monomial ideal $I=\left(X_{1}^{2}, X_{2}, X_{3}^{8}\right) R$ is a parameter ideal in $R=A\left[X_{1}, X_{2}, X_{3}\right]$ but not in $R=A\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$.

Definition 2.2.35. A parametric decomposition of I is an m-irreducible decomposition of I of the form $I=\bigcap_{i=1}^{n} \mathrm{P}_{R}\left(f_{i}\right)$ with $f_{i} \in \llbracket R \rrbracket$.

Example 2.2.36. The m-irreducible decompositions in Examples 2.2.16 and 2.2.18 are irredundant parametric decompositions.

Fact 2.2.37. [9, Exercise 2.4.5, Theorem 6.1.5 and Exercise 5.1.7] I has a parametric decomposition if and only if $\mathrm{m}-\operatorname{rad}(I)=\mathfrak{X}$. Furthermore, if A is a field, then $\mathrm{m}-\operatorname{rad}(I)=\mathfrak{X}$ is equivalent to $\operatorname{dim}(R / I)=0$.

We end this section by exhibiting one technique for computing m-irreducible decompositions of arbitrary monomial ideals.

Fact 2.2.38. [9, Theorem 7.5.1] Let $I=\left(\underline{X}^{\underline{a}_{1}}, \ldots, \underline{X}^{\underline{a}_{n}}\right) R$ with $\underline{a}_{i}=\left(a_{i, 1}, \ldots, a_{i, d}\right) \in \mathbb{N}_{0}^{d}$ for $i=1, \ldots, n$. Then

$$
I=\bigcap_{i_{1}=1}^{d} \cdots \bigcap_{i_{n}=1}^{d}\left(X_{i_{1}}^{a_{1, i_{1}}}, \ldots, X_{i_{n}}^{a_{n, i_{n}}}\right)
$$

Example 2.2.39. Let $R=A\left[X_{1}, X_{2}\right]$ and $I=\left(X_{1}^{2} X_{2}, X_{1} X_{3}\right) R$. Then by Fact 2.2.38,

$$
\begin{aligned}
I= & \left(X_{1}^{2}, X_{1}\right) R \cap\left(X_{1}^{2}, X_{2}^{0}\right) R \cap\left(X_{1}^{2}, X_{3}\right) R \\
& \cap\left(X_{2}, X_{1}\right) R \cap\left(X_{2}, X_{2}^{0}\right) R \cap\left(X_{2}, X_{3}\right) R \\
& \cap\left(X_{3}^{0}, X_{1}\right) R \cap\left(X_{3}^{0}, X_{2}^{0}\right) R \cap\left(X_{3}^{0}, X_{3}\right) R \\
= & \left(X_{1}\right) R \cap R \cap\left(X_{1}^{2}, X_{3}\right) R \cap\left(X_{1}, X_{2}\right) R \cap R \cap\left(X_{2}, X_{3}\right) R \cap R \cap R \cap R \\
= & \left(X_{1}\right) R \cap\left(X_{1}^{2}, X_{3}\right) R \cap\left(X_{2}, X_{3}\right) R .
\end{aligned}
$$

2.3 Regular Sequences

The interplay between regular sequences and certain homological invariants is one of the key techniques used to compute the type of a module.

Definition 2.3.1. An element $x \in R$ is a non-zero divisor on M if the multiplication by x map $M \xrightarrow{\cdot x} M$ is 1-1; equivalently, for $m \in M$, if $x m=0$, then $m=0$. Set

$$
\mathrm{NZD}_{R}(M)=\{a \in R \mid a \text { is a non-zero divisor on } M\}
$$

Definition 2.3.2. An element $x \in R$ is weakly M-regular if $x \in \operatorname{NZD}_{R}(M)$. A weakly M-regular element $x \in R$ is M-regular if $x M \neq M$.

Definition 2.3.3. A sequence $a_{1}, \ldots, a_{n} \in R$ is weakly M-regular if
(a) a_{1} is weakly M-regular and
(b) a_{i} is weakly $\frac{M}{\left(a_{1}, \ldots, a_{i-1}\right) M}$-regular for $i=2, \ldots, n$.

A sequence $a_{1}, \ldots, a_{n} \in R$ is M-regular if
(a) a_{1}, \ldots, a_{n} is weakly M-regular and
(b) $\left(a_{1}, \ldots, a_{n}\right) M \neq M$.

Example 2.3.4. A list of variables X_{1}, \ldots, X_{n} is $A\left[X_{1}, \ldots, X_{n}\right]$-regular for any non-zero commutative ring A.

Remark. Note that for $a_{1}, \ldots, a_{i} \in R$, we have

$$
\frac{M}{\left(a_{1}, \ldots, a_{i}\right) M} \stackrel{(1)}{\curvearrowleft} \frac{M /\left(a_{1}, \ldots, a_{i-1}\right) M}{\left(a_{1}, \ldots, a_{i}\right) M /\left(a_{1}, \ldots a_{i-1}\right) M} \cong \frac{M /\left(a_{1}, \ldots, a_{i-1}\right) M}{a_{i} M /\left(a_{1}, \ldots, a_{i-1}\right) M}
$$

where (1) is from an isomorphism theorem for modules. Thus, we have that $a_{i} M /\left(a_{1}, \ldots, a_{i-1}\right) M \neq$ $M /\left(a_{1}, \ldots, a_{i-1}\right) M$ if and only if $M /\left(a_{1}, \ldots, a_{i}\right) M \neq 0$. This observation justifies the following equivalent definition for M-regular sequences.

Definition 2.3.5. A sequence $a_{1}, \ldots, a_{n} \in R$ is weakly M-regular if
(a) $a_{1} \in \mathrm{NZD}_{R}(M)$, and
(b) $a_{i} \in \operatorname{NZD}_{R}\left(M /\left(a_{1}, \ldots, a_{i-1}\right) M\right)$ for $i=2, \ldots, n$.

Remark. If (R, \mathfrak{m}) is local with $a_{1}, \ldots, a_{n} \in \mathfrak{m}$, and M is non-zero and finitely generated, then by Nakayama's lemma, we have that $\left(a_{1}, \ldots, a_{n}\right) M \subseteq \mathfrak{m} M \subsetneq M$. So a_{1}, \ldots, a_{n} is M-regular if and only if it is weakly M-regular.

Definition 2.3.6. A sequence $a_{1}, \ldots, a_{n} \in R$ is a maximal M-regular sequence if a_{1}, \ldots, a_{n} is an M-regular sequence such that for all $b \in R$, the longer sequence a_{1}, \ldots, a_{n}, b is not M-regular.

2.4 Ext via Projective Resolutions

In this section, let N be another R-module. We will present some definitions and facts from homological algebra leading to the definition of Ext.

Definition 2.4.1. A sequence $A \xrightarrow{f} B \xrightarrow{g} C$ of R-module homomorphisms is exact at B if $\operatorname{Im}(f)=$ $\operatorname{Ker}(g)$. Note that $\operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$ if and only if $g \circ f=0$.

More generally, a sequence of R-module homomorphism

$$
\cdots \xrightarrow{d_{i+1}} X_{i} \xrightarrow{d_{i}} X_{i-1} \xrightarrow{d_{i-1}} \cdots
$$

is exact if $\operatorname{Im}\left(d_{i+1}\right)=\operatorname{Ker}\left(d_{i}\right)$ for all $i \in \mathbb{Z}$.
Fact 2.4.2. We have the following facts:
(a) The sequence $0 \rightarrow A \xrightarrow{f} A^{\prime}$ of R-module homomorphisms is exact (at A) if and only if f is 1-1.
(b) The sequence $B^{\prime} \xrightarrow{g} B \rightarrow 0$ of R-module homomorphisms is exact (at B) if and only if g is onto.
(c) The sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ of R-module homomorphisms is exact if and only if f is $1-1, g$ is onto and $\operatorname{Im}(f)=\operatorname{Ker}(g)$.

Definition 2.4.3. A short exact sequence is an exact sequence of R-module homomorphisms of the form

$$
0 \longrightarrow U \xrightarrow{\alpha} V \xrightarrow{\beta} W \longrightarrow 0
$$

Definition 2.4.4. A homomorphism of short exact sequences of $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ and $0 \rightarrow A^{\prime} \xrightarrow{f^{\prime}} B^{\prime} \xrightarrow{g^{\prime}} C^{\prime} \rightarrow 0$ is a triple (α, β, γ) of R-module homomorphisms such that the following diagram commutes:

Fact 2.4.5 (The Short Five Lemma [5, Proposition 10.24]). Let (α, β, γ) be a homomorphism of short exact sequences

(a) If α and γ are $1-1$, then so is β.
(b) If α and γ are onto, then so is β.
(c) If α and γ are isomorphisms, then so is β.

Definition 2.4.6. A short exact sequence of R-module homomorphisms $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is split if and only if it is equivalent to the canonical exact sequence $0 \rightarrow A \xrightarrow{\epsilon} A \oplus C \xrightarrow{\rho} C \rightarrow 0$, i.e., if and only if there exists a commutative diagram

In this event, β is an isomorphism by the short five lemma, so $B \cong A \oplus C$.

Notation 2.4.7.

$\operatorname{Hom}_{R}(M, N):=\{R$-module homomorphisms $f: M \rightarrow N\}$,
which is an R-module because R is commutative.
Let A, B be R-modules. For each $f \in \operatorname{Hom}_{R}(A, B)$, define

$$
\begin{aligned}
& f^{*}=\operatorname{Hom}_{R}(f, N): \operatorname{Hom}_{R}(B, N) \longrightarrow \operatorname{Hom}_{R}(A, N) \\
& \phi \longmapsto \phi \circ f .
\end{aligned}
$$

Then f^{*} is an R-module homomorphism.

Fact 2.4.8. $\operatorname{Hom}_{R}(-, N)$ is a contravariant functor, i.e.,
(a) it respects identity maps: $\operatorname{Hom}_{R}\left(\operatorname{id}_{M}, N\right)=\operatorname{id}_{\operatorname{Hom}_{R}(M, N)}$, and
(b) it respects compositions: for all R-module homomorphisms $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$,

$$
\operatorname{Hom}_{R}(\beta \circ \alpha, N)=\operatorname{Hom}_{R}(\alpha, N) \circ \operatorname{Hom}_{R}(\beta, N)
$$

Or equivalently, $(\beta \circ \alpha)^{*}=\alpha^{*} \circ \beta^{*}$, i.e., the following diagram commutes:

Fact 2.4.9 (Left Exactness of $\operatorname{Hom}(-, N)$ [5, Theorem 10.33]). Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be exact. Then the induced sequence $0 \rightarrow \operatorname{Hom}(C, N) \xrightarrow{\beta^{*}} \operatorname{Hom}(B, N) \xrightarrow{\alpha^{*}} \operatorname{Hom}(A, N)$ is exact.

Remark. The functor $\operatorname{Hom}(N,-)$ is defined similarly with notation $f_{*}=\operatorname{Hom}(N, f)$. This functor
is covariant. It is left exact, i.e., if $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C$ is an exact sequence of R-module homomorphisms, then the induced sequence $0 \rightarrow \operatorname{Hom}(N, A) \xrightarrow{f_{*}} \operatorname{Hom}(N, B) \xrightarrow{g_{*}} \operatorname{Hom}(N, C)$ is exact.

Fact 2.4.10. [5, Theorem 10.30] The following conditions are equivalent.
(i) $\operatorname{Hom}_{R}(N,-)$ transforms R-module epimorphisms into R-module epimorphisms.
(ii) $\operatorname{Hom}_{R}(N,-)$ transforms short exact sequences of R-module homomorphisms into short exact sequences of R-module homomorphisms.
(iii) $\operatorname{Hom}_{R}(N,-)$ transforms exact sequences of R-module homomorphisms into exact sequences R-module homomorphisms.
(iv) Every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow N \rightarrow 0$ of R-module homomorphisms splits.
(v) If the sequence $B \xrightarrow{\beta} C \rightarrow 0$ of R-module homomorphisms is exact, then every R-module homomorphism from N to C lifts to an R-module homomorphism into B, i.e., given $\phi \in \operatorname{Hom}_{R}(N, C)$, there is a map $\psi \in \operatorname{Hom}_{R}(N, B)$ making the following diagram commute:

(vi) There exists an R-module N^{\prime} such that $N \oplus N^{\prime}$ is free, i.e., N is a summand of a free R-module.

Definition 2.4.11. An R-module P is called projective if it satisfies any of the equivalent conditions of Fact 2.4.10.

Definition 2.4.12. A chain complex or R-complex is a sequence of R-module homomorphisms

$$
M_{\bullet}=\cdots \xrightarrow{\partial_{i+1}^{M}} M_{i} \xrightarrow{\partial_{i}^{M}} M_{i-1} \xrightarrow{\partial_{i-1}^{M}} \cdots
$$

such that $\partial_{i-1}^{M} \circ \partial_{i}^{M}=0$ for all $i \in \mathbb{Z}$. We say M_{i} is the module in (homological) degree i in the R-complex M_{\bullet}.

The $i^{\text {th }}$ homology module of an R-complex M_{\bullet} is the R-module

$$
\mathrm{H}_{i}\left(M_{\bullet}\right)=\operatorname{Ker}\left(\partial_{i}^{M}\right) / \operatorname{Im}\left(\partial_{i+1}^{M}\right)
$$

Definition 2.4.13. A projective resolution of M over R or an R-projective resolution of M is an exact sequence of R-module homomorphisms

$$
P_{\bullet}^{+}=\cdots \xrightarrow{\partial_{2}^{P}} P_{1} \xrightarrow{\partial_{1}^{P}} P_{0} \xrightarrow{\tau} M \rightarrow 0
$$

such that each P_{i} is a projective R-module.
The truncated projective resolution of M associated to P_{\bullet}^{+}is the R-complex

$$
P_{\bullet}=\cdots \xrightarrow{\partial_{2}^{P}} P_{1} \xrightarrow{\partial_{1}^{P}} P_{0} \rightarrow 0
$$

By convention, we have that $P_{i}=0$ for all $i \leq-1$ and $\partial_{i}^{P}=0$ for all $i \leq 0$. Define the R-complex $\operatorname{Hom}\left(P_{\bullet}^{+}, N\right)$ as follows:

$$
\operatorname{Hom}\left(P_{\bullet}^{+}, N\right)=\quad 0 \rightarrow M^{*} \xrightarrow{\tau^{*}} P_{0}^{*} \xrightarrow{\left(\partial_{1}^{P}\right)^{*}} P_{1}^{*} \xrightarrow{\left(\partial_{2}^{P}\right)^{*}} \cdots \xrightarrow{\left(\partial_{i-1}^{P}\right)^{*}} P_{i-1}^{*} \xrightarrow{\left(\partial_{i}^{P}\right)^{*}} P_{i}^{*} \xrightarrow{\left(\partial_{i+1}^{P}\right)^{*}} \cdots
$$

where we set $P_{i}^{*}=\operatorname{Hom}\left(P_{i}, N\right)$ and $\left(\partial_{i}^{P}\right)^{*}=\operatorname{Hom}\left(\partial_{i}^{P}, N\right)$ for $i \geq 0$. Define the R-complex P_{\bullet}^{*} as follows:

$$
P_{\bullet}^{*}=\operatorname{Hom}\left(P_{\bullet}, N\right)=\quad 0 \rightarrow P_{0}^{*} \xrightarrow{\left(\partial_{1}^{P}\right)^{*}} P_{1}^{*} \xrightarrow{\left(\partial_{2}^{P}\right)^{*}} \cdots \xrightarrow{\left(\partial_{i-1}^{P}\right)^{*}} P_{i-1}^{*} \xrightarrow{\left(\partial_{i}^{P}\right)^{*}} P_{i}^{*} \xrightarrow{\left(\partial_{i+1}^{P}\right)^{*}} \cdots
$$

Let P_{i}^{*} be in degree $-i$, i.e., $P_{i}^{*}=\left(P^{*}\right)_{-i}$ for $i \in \mathbb{Z}$. Then

$$
\begin{gathered}
P_{\bullet}^{*}=0 \longrightarrow P_{0}^{*} \xrightarrow{\left(\partial_{1}^{P}\right)^{*}} P_{1}^{*} \xrightarrow{\left(\partial_{2}^{P}\right)^{*}} \cdots \xrightarrow{\|}{ }_{\|}^{\|}{ }_{\|}^{\left(\partial_{i-1}^{P}\right)^{*}} P_{i-1}^{*} \xrightarrow{\left(\partial_{i}^{P}\right)^{*}} P_{i}^{*} \xrightarrow{\left(\partial_{i+1}^{P}\right)^{*}} \cdots \\
P_{\bullet}^{*}=0 \rightarrow\left(P^{*}\right)_{0} \xrightarrow{\partial_{0}^{P^{*}}}\left(\begin{array}{c}
\| \\
\|
\end{array} P_{-1}^{*} \xrightarrow{\partial_{-1}^{P^{*}}} \cdots \xrightarrow{\partial_{-i+2}^{P^{*}}}\left(P^{*}\right)_{-i+1} \xrightarrow{\partial_{-i+1}^{P^{*}}}\left(P^{*}\right)_{-i} \xrightarrow{\partial_{-i}^{P^{*}}} \cdots\right.
\end{gathered}
$$

So

$$
\partial_{i}^{P^{*}}=\left(\partial_{-i+1}^{P}\right)^{*}, \forall i \in \mathbb{Z}
$$

By convention, we have that $\left(P^{*}\right)_{i}=P_{-i}^{*}=0^{*}=0$ and $\partial_{i}^{P^{*}}=\left(\partial_{-i+1}^{P}\right)^{*}=0^{*}=0$ for all $i \geq 1$.
Remark. Because of the condition $\partial_{i}^{P} \circ \partial_{i+1}^{P}=0$ for $i \geq 1$, by Fact 2.4.8, we have

$$
\left(\partial_{i+1}^{P}\right)^{*} \circ\left(\partial_{i}^{P}\right)^{*}=\left(\partial_{i}^{P} \circ \partial_{i+1}^{P}\right)^{*}=0^{*}=0, \forall i \geq 1
$$

Thus, $\operatorname{Hom}\left(P_{\bullet}, N\right)$ and similarly $\operatorname{Hom}\left(P_{\bullet}^{+}, N\right)$ are R-complexes. However, these are not exact in general.

Definition 2.4.14 (Ext via projective resolutions). Let P_{\bullet}^{+}be a projective resolution of M. Define the Ext module by

$$
\operatorname{Ext}_{R}^{i}(M, N):=\mathrm{H}_{-i}\left(P_{\bullet}^{*}\right)=\operatorname{Ker}\left(\partial_{-i}^{P^{*}}\right) / \operatorname{Im}\left(\partial_{-i+1}^{P^{*}}\right)=\operatorname{Ker}\left(\left(\partial_{i+1}^{P}\right)^{*}\right) / \operatorname{Im}\left(\left(\partial_{i}^{P}\right)^{*}\right)
$$

Fact 2.4.15. Let P_{\bullet}^{+}be a projective resolution of M. By the left exactness of Hom, we have an exact sequence:

$$
0 \longrightarrow M^{*} \xrightarrow{\tau^{*}} P_{0}^{*} \xrightarrow{\left(\partial_{1}^{P}\right)^{*}} P_{1}^{*}
$$

Then we have

$$
\begin{gathered}
\operatorname{Ext}_{R}^{0}(M, N)=\operatorname{Ker}\left(\left(\partial_{1}^{P}\right)^{*}\right) / \operatorname{Im}(0) \cong \operatorname{Ker}\left(\left(\partial_{1}^{P}\right)^{*}\right)=\operatorname{Im}\left(\tau^{*}\right) \cong M^{*}=\operatorname{Hom}_{R}(M, N) \\
\operatorname{Ext}_{R}^{i}(M, N)=\operatorname{Ker}\left(\partial_{-i}^{P^{*}}\right) / \operatorname{Im}\left(\partial_{-i+1}^{P^{*}}\right)=0 / \operatorname{Im}\left(\partial_{-i+1}^{P^{*}}\right)=0, \forall i \leq-1
\end{gathered}
$$

Remark. $\operatorname{Ext}_{R}^{i}(M, N)$ is well-defined, i.e., independent of the choices of projective resolution of M, by [11, Theorem VIII.5.2].

Remark. We can also define the Ext module via injective modules, but this is not needed for this dissertation.

2.5 Depth, Type, and Cohen-Macaulayness

In this section, we define the depth and the type of M when $M \neq 0, M$ is finitely generated, and (R, \mathfrak{m}) is local.

Assumption. For this section, we assume that R is Noetherian, I is an ideal of R, and M is a finitely generated R-module.

The next fact is due to Rees.

Fact 2.5.1. [1, Theorem 1.2.5] If $I M \neq M$, then all maximal M-regular sequences in I have the same length, namely

$$
\inf \left\{i \geq 0 \mid \operatorname{Ext}_{R}^{i}(R / I, M) \neq 0\right\}
$$

Through Fact 2.5.1, we have the following definition:

Definition 2.5.2. [1, Definition 1.2.11] If $I M \neq M$, we define the grade of M on I by

$$
\operatorname{grade}_{R}(I ; M)=\inf \left\{i \geq 0 \mid \operatorname{Ext}_{R}^{i}(R / I, M) \neq 0\right\}
$$

If $I M=M$, then set $\operatorname{grade}_{R}(I ; M)=\infty$.
Remark. (a) By Fact 2.4.15 we also have $\operatorname{grade}_{R}(I ; M)=\inf \left\{i \in \mathbb{Z} \mid \operatorname{Ext}_{R}^{i}(R / I, M) \neq 0\right\}$.
(b) If (R, \mathfrak{m}) is local and $M \neq 0$, then by Nakayama's lemma, $I M \subseteq \mathfrak{m} M \subsetneq M$, so $I M \neq M$.

Definition 2.5.3. [1, Definition 1.2.8] If (R, \mathfrak{m}, k) is local and $M \neq 0$, we define the depth of M by

$$
\operatorname{depth}(M)=\operatorname{grade}_{R}(\mathfrak{m} ; M)=\inf \left\{i \geq 0 \mid \operatorname{Ext}_{R}^{i}(k, M) \neq 0\right\}
$$

Fact 2.5.4. By Fact 2.5.1, the depth can be calculated as the maximum length among all M-regular sequences in \mathfrak{m}.

Fact 2.5.5. [1, Theorem 1.2.10] If $f_{1}, \ldots, f_{r} \in R$ is an R / I-regular sequence, then

$$
\begin{gathered}
\operatorname{dim}\left(R /\left(I+\left(f_{1}, \ldots, f_{r}\right) R\right)\right)=\operatorname{dim}(R / I)-r \\
\operatorname{depth}\left(R /\left(I+\left(f_{1}, \ldots, f_{r}\right) R\right)\right)=\operatorname{depth}(R / I)-r
\end{gathered}
$$

Definition 2.5.6. [1, Definition 1.2.15] Let (R, \mathfrak{m}, k) be local and $M \neq 0$. $\operatorname{Assume}^{\operatorname{depth}}{ }_{R}(M)=n$. The type of M is the positive integer

$$
\mathrm{r}_{R}(M)=\operatorname{dim}_{k}\left(\operatorname{Ext}_{R}^{n}(k, M)\right)
$$

Definition 2.5.7. [1, Definition 2.1.1] Let (R, \mathfrak{m}, k) be local and $M \neq 0$. Then M is a CohenMacaulay module if $\operatorname{depth}_{R}(M)=\operatorname{dim}_{R}(M)$. If R itself is a Cohen-Macaulay module, then it is also called a Cohen-Macaulay ring.

2.6 Graded rings and modules

The rings we mainly work on are polynomial rings. They form an important class of graded rings. In this section, we exhibit a series of definitions and conclusions, most of which can be found in Section 1.5 of [1].

Definition 2.6.1. A graded ring is a ring R together with a decomposition $R=\bigoplus_{i \in \mathbb{Z}} R_{i}$ (as a \mathbb{Z}-module) such that $R_{i} R_{j} \subseteq R_{i+j}$ for all $i, j \in \mathbb{Z}$.

Assumption. For the remainder of this section, we assume that R be a graded ring.

Definition 2.6.2. A graded module is an R-module M together with a decomposition $M=\bigoplus_{i \in \mathbb{Z}} M_{i}$ (as a \mathbb{Z}-module) such that $R_{i} M_{j} \subseteq M_{i+j}$ for all $i, j \in \mathbb{Z}$. The elements $x \in R_{i}$ are called homogeneous (of degree i). One calls M_{i} the $i^{\text {th }}$ homogeneous (or graded) component of M.

Definition 2.6.3. Let M be a graded R-module. An arbitrary element $x \in M$ has a unique presentation $x=\sum_{i} x_{i}$ as a sum of homogeneous elements $x_{i} \in M_{i}$. The elements x_{i} are called the homogeneous components of x.

Definition 2.6.4. An ideal I of R is homogeneous if I is generated by homogeneous elements of I.

Definition 2.6.5. Let M be a graded R-module and $i \in \mathbb{Z}$. Let $M(i)$ denote the shifted R-module M with grading given by $M(i)_{n}=M_{i+n}$. One can also read $M(i)$ as " M twisted by i ".

Definition 2.6.6. Let M and N be graded R-modules, and $n \in \mathbb{Z}$. An R-module homomorphism $\varphi: M \rightarrow N$ is called homogeneous of degree n if $\varphi\left(M_{i}\right) \subseteq N_{i+n}$ for all $i \in \mathbb{Z}$. Denote by $\operatorname{Hom}_{n}(M, N)$ the group of homogeneous R-module homomorphisms of degree n. In particular, if $\varphi \in \operatorname{Hom}_{0}(M, N)$, we call it a homogeneous R-module homomorphism.

If $\varphi \in \operatorname{Hom}_{n}(M, N)$, then $\varphi \in \operatorname{Hom}_{0}(M, N(n))$ and $\varphi \in \operatorname{Hom}_{0}(M(-n), N)$ since $\varphi\left(M_{i}\right) \subseteq$ N_{i+n} for all $i \in \mathbb{Z}$ if and only if $\varphi\left(M_{-n+i}\right) \subseteq N_{i}$ for all $i \in \mathbb{Z}$.

Definition 2.6.7. Let M and N be graded R-modules. Define ${ }^{*} \operatorname{Hom}_{R}(M, N)=\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{i}(M, N)$, which is a submodule of $\operatorname{Hom}_{R}(M, N)$. If P_{\bullet} is a graded projective resolution of M, then

$$
{ }^{*} \operatorname{Ext}_{R}^{i}(M, N) \cong \mathrm{H}^{i}\left({ }^{*} \operatorname{Hom}_{R}\left(P_{\bullet}, N\right)\right), \forall i \geq 0
$$

Fact 2.6.8. [1, p.33] If R is Noetherian and M is a finitely generated R-module, then ${ }^{*} \operatorname{Ext}_{R}^{i}(M, N)=$ $\operatorname{Ext}_{R}^{i}(M, N)$ for all $i \geq 0$.

Definition 2.6.9. The homogeneous prime spectrum of R is

$$
{ }^{*} \operatorname{Spec}(R)=\{\text { homogeneous prime ideals of } R\} .
$$

Let ${ }^{*} \mathrm{~V}(I)$ denote the set of homogeneous prime ideals in R containing I :

$$
{ }^{*} \mathrm{~V}(I)=\left\{\mathfrak{p} \in{ }^{*} \operatorname{Spec}(R) \mid I \subseteq \mathfrak{p}\right\}=\mathrm{V}(I) \cap{ }^{*} \operatorname{Spec}(R)
$$

The *Krull dimension of R is

$$
{ }^{*} \operatorname{dim}(R)=\sup \left\{n \geq 0 \mid \exists \text { a chain } \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \text { in }{ }^{*} \operatorname{Spec}(R)\right\}
$$

The ${ }^{*}$ Krull dimension of R / I can be computed as

$$
{ }^{*} \operatorname{dim}(R / I)=\sup \left\{n \geq 0 \mid \exists \text { a chain } \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \cdots \subsetneq \mathfrak{p}_{n} \text { in }{ }^{*} \mathrm{~V}(I)\right\}
$$

Definition 2.6.10. [1, Definition 1.5.13] Let R be a graded ring. A homogeneous ideal \mathfrak{m} of R is called * maximal if every homogeneous ideal that properly contains \mathfrak{m} equals R. The ring R is called *local if it has a unique *maximal ideal \mathfrak{m}. A *local ring with *maximal ideal \mathfrak{m} will be denoted by (R, \mathfrak{m}).

Remark. With respect to its finitely generated graded R-modules, a *local ring (R, \mathfrak{m}) behaves like a local ring.

2.7 Graded Cohen-Macaulay Rings

Let A be a field, set $R=A\left[X_{1}, \ldots, X_{d}\right]$ and $\mathfrak{X}=\left(X_{1}, \ldots, X_{d}\right) R$ and let $I \subsetneq R$ be an ideal generated by homogeneous polynomials. In this section, we define Cohen-Macaulayness and see how to compute the type of R / I, when R / I is Cohen-Macaulay.

Remark. The graded ring (R, \mathfrak{X}) with the natural grading is a *local ring, where $\mathfrak{X}=\bigoplus_{i \geq 1} R_{i}$, is called the irrelevant ideal of R.

We have already defined depth and type in the local setting. Now we define them in the *local setting. See Fact 2.7.2 for a comparison.

Definition 2.7.1. The *depth of R / I is

* $\operatorname{depth}(R / I)=$ the length of a maximal homogeneous R / I-regular sequence in \mathfrak{X}.

The type of R / I is

$$
\mathrm{r}_{R}(R / I)=\operatorname{dim}_{A}\left({ }^{*} \operatorname{Ext}_{R}^{n}(A, R / I)\right)=\operatorname{dim}_{A}\left(\operatorname{Ext}_{R}^{n}(A, R / I)\right),
$$

where $n={ }^{*} \operatorname{depth}(R / I)$.

Fact 2.7.2. [1, Theorem 1.5.8 and Proposition 1.5.15] The polynomial ring R is Noetherian and R / I is a finitely generated graded R-module. We have

$$
\begin{aligned}
* \operatorname{depth}(R / I) & =\operatorname{depth}(R / I) \\
* \operatorname{dim}(R / I) & =\operatorname{dim}(R / I)
\end{aligned}
$$

From Fact 2.5.5 and 2.7.2, we get the following fact directly.

Fact 2.7.3. [1, Theorem 1.2.10] If $f_{1}, \ldots, f_{r} \in \mathfrak{X}$ is a homogeneous R / I-regular sequence, then

$$
\begin{gathered}
* \operatorname{dim}\left(R /\left(I+\left(f_{1}, \ldots, f_{r}\right) R\right)\right)={ }^{*} \operatorname{dim}(R / I)-r \\
{ }^{*} \operatorname{depth}\left(R /\left(I+\left(f_{1}, \ldots, f_{r}\right) R\right)\right)={ }^{*} \operatorname{depth}(R / I)-r .
\end{gathered}
$$

For the rest of the dissertation, in light of Fact 2.7.2, we will not write * for notations used in *local ring.

Cohen-Macaulay rings, defined next in the *local setting, have been shown in the literature to be extremely nice. See the discussion in [1, p.57] for more about this.

Definition 2.7.4. The quotient R / I is Cohen-Macaulay if $\operatorname{depth}(R / I)=\operatorname{dim}(R / I)$.

Remark. We can either regard the quotient R / I as an R-module, or regard $(R / I, \mathfrak{X} / I)$ as a local ring with the residue field $(R / I) /(\mathfrak{X} / I) \cong A$. So Definition 2.7.4 can be deduced from Definition 2.5.7.

Definition 2.7.5. We say that I is Cohen-Macaulay if the quotient R / I is Cohen-Macaulay.

Fact 2.7.6. [1, Lemma 3.1.16] If R / I is Cohen-Macaulay and $f_{1}, \ldots, f_{n} \in \mathfrak{X}$ is a homogeneous R / I-regular sequence, then with $S=R /\left(f_{1}, \ldots, f_{n}\right)$, we have that

$$
\mathrm{r}_{R}(R / I)=\mathrm{r}_{S}\left(R /\left(I+\left(f_{1}, \ldots, f_{n}\right)\right)\right)
$$

Fact 2.7.7. [14, Fact 2.93(b)] If I is a monomial ideal and has an irredundant parametric decomposition $I=\bigcap_{i=1}^{t} Q_{i}$, then $\mathrm{r}_{R}(R / I)=t$.

Fact 2.7.8. [9, Theorem 5.3.16] Let I be a monomial ideal. If R / I is Cohen-Macaulay, then I is unmixed.

In practice, when we compute the Cohen-Macaulay type of R / I, we will try to find a maximal homogeneous R / I-regular sequence f_{1}, \ldots, f_{n} with $n=\operatorname{depth}(R / I)=\operatorname{dim}(R / I)$, such that $R /\left(I+\left(f_{1}, \ldots, f_{n}\right)\right)$ has dimension 0 by Fact 2.5 .5 . We can usually simplify $R /\left(I+\left(f_{1}, \ldots, f_{n}\right)\right)$ as, say S / J. Since A is a field and $\operatorname{dim}(S / J)=0$, we have that J has an irredundant parametric decomposition by Fact 2.2 .37 . Thus, we utilize Fact 2.7 .7 to compute the type of S / J. Finally, Fact 2.7.6 tells us it is also the type of R / I.

Example 2.7.9. Consider the monomial ideal

$$
I=\left(X_{1} X_{2}, X_{2} X_{3}, X_{3} X_{4}\right) R=\left(X_{1}, X_{3}\right) R \cap\left(X_{2}, X_{3}\right) R \cap\left(X_{2}, X_{4}\right) R
$$

in $R=A\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$. One can check that $\operatorname{dim}(R / I)=2$ and that $X_{1}-X_{2}, X_{3}-X_{4}$ is an R / I-regular sequence. Thus, R / I is Cohen-Macaulay. Note that

$$
R /\left(I+\left(X_{1}-X_{2}, X_{3}-X_{4}\right) R\right) \cong S /\left(X_{2}^{2}, X_{2} X_{3}, X_{3}^{2}\right) S
$$

where $S=A\left[X_{1}, X_{2}\right]$. We have an irredundant parametric decomposition $\left(X_{2}^{2}, X_{2} X_{3}, X_{3}^{2}\right) S=$ $\left(X_{2}, X_{3}^{2}\right) S \cap\left(X_{2}^{2}, X_{3}\right) S$. So by Facts 2.7.3 and 2.7.7, we have

$$
\begin{aligned}
\mathrm{r}_{R}(R / I) & =\mathrm{r}_{R}\left(R /\left(I+\left(X_{1}-X_{2}, X_{3}-X_{4}\right) R\right)\right) \\
& =\mathrm{r}_{S}\left(S /\left(X_{2}^{2}, X_{2} X_{3}, X_{3}^{2}\right) S\right) \\
& =2
\end{aligned}
$$

Chapter 3

Cohen-Macaulayness of

f-Weighted r-Path Ideals

Let \mathbb{K} be a field, $d \geq 2, R=\mathbb{K}\left[X_{1}, \ldots, X_{d}\right]$ and $\mathfrak{m}=\left(X_{1}, \ldots, X_{d}\right) R$. Let $G=(V, E)$ be a (finite simple) graph with vertex set $V=\left\{v_{1}, \ldots, v_{d}\right\}$ and edge set E. Let $r \geq 2$ be a positive integer and $R^{\prime}=\mathbb{K}\left[\left\{X_{i, j} \mid i=1, \ldots, d, j=0, \ldots, r\right\}\right]$. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be such that $f(a, b)=f(b, a)$ for all $a, b \in \mathbb{N}$. For example, f may be max, min, gcd, or lcm, etc.

In this chapter, we classify all weighted r-path suspensions $G_{\omega^{\prime}}^{\prime}$ (see Definition 3.1.16) for which the f-weighted r-path ideal of $G_{\omega^{\prime}}^{\prime}$ (see Definition 3.1.2) is Cohen-Macaulay. In particular, we classify all weighted trees for which the f-weighted r-path ideal is Cohen-Macaulay. These results are in Theorems 3.5.5 and 3.5.6.

3.1 Background

In this section, we give some background information needed for classifying Cohen-Macaulay weighted r-path suspensions.

We first list the definitions for paths and cycles from Diestel [4].

Definition 3.1.1. An r-path in G is a non-empty graph $P=\left(V^{\prime}, E^{\prime}\right)$ of the form $V^{\prime}=\left\{x_{1}, \ldots, x_{r+1}\right\}$ and $E^{\prime}=\left\{x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{r} x_{r+1}\right\}$, where x_{i} are all distinct. We denote an r-path by $P_{r}=$ $\left(x_{1}-x_{2}-\cdots-x_{r+1}\right)$ or $x_{1} \ldots x_{r+1}$ for simplicity. Note that there are $r+1$ vertices
and r edges in P_{r}.
If $P_{r}=\left(x_{1}-x_{2}-\cdots-x_{r}\right)$ is an $(r-1)$-path, then the graph $C_{r}:=P_{r-1}+$ $x_{r} x_{1}$ is called an r-cycle. Note that there are r vertices and r edges in C_{r}.

Definition 3.1.2. We have the following definitions:
(a) [7, Definition 2.1] The f-weighted r-path ideal associated to G_{ω} is the ideal $I_{r, f}\left(G_{\omega}\right) \subseteq R$ that is "generated by the f-weighted paths in G of length r ":

$$
I_{r, f}\left(G_{\omega}\right)=\left(\begin{array}{l|l}
X_{i_{1}}^{e_{i_{1}}} \ldots X_{i_{r+1}}^{e_{i_{r+1}}} & \begin{array}{l}
v_{i_{1}} \ldots v_{i_{r+1}} \text { is a path in } G \text { with } e_{i_{1}}=\omega\left(v_{i_{1}} v_{i_{2}}\right) \\
e_{i_{j}}=f\left(\omega\left(v_{i_{j-1}} v_{i_{j}}\right), \omega\left(v_{i_{j}}, v_{i_{j+1}}\right)\right) \text { for } 1<j \leq r \\
\text { and } e_{i_{r+1}}=\omega\left(v_{i_{r}} v_{i_{r+1}}\right)
\end{array}
\end{array}\right) R .
$$

(b) [7, Definition 2.5] For $V^{\prime} \subseteq V$ and $\delta^{\prime}: V^{\prime} \rightarrow \mathbb{N}$, we write

$$
P\left(V^{\prime}, \delta^{\prime}\right)=\left(X_{i}^{\delta^{\prime}\left(v_{i}\right)} \mid v_{i} \in V^{\prime}\right) R
$$

Remark. When $f=\max$, we write that $I_{r}\left(G_{\omega}\right):=I_{r, \max }\left(G_{\omega}\right)$, which is the weighted r-path ideal associated to G_{ω}.

Definition 3.1.3. [7, Definition 1.5] An f-weighted r-path vertex cover of G_{ω} is an ordered pair $\left(V^{\prime}, \delta^{\prime}\right)$ with $V^{\prime} \subseteq V$ and $\delta^{\prime}: V \rightarrow \mathbb{N}$ such that V^{\prime} is an r-path vertex cover of G and such that for any r-path $P_{r}:=v_{i_{1}} \ldots v_{i_{r+1}}$ in G at least one of the following holds:
(a) $\delta^{\prime}\left(v_{i_{1}}\right) \leq \omega\left(v_{i_{1}} v_{i_{2}}\right) ;$
(b) $\delta^{\prime}\left(v_{i_{r+1}}\right) \leq \omega\left(v_{i_{r}} v_{i_{r+1}}\right)$; or
(c) $\delta^{\prime}\left(v_{i_{j}}\right) \leq f\left\{\omega\left(v_{i_{j-1}} v_{i_{j}}\right), \omega\left(v_{i_{j}} v_{i_{j+1}}\right)\right\}$ for some $j \in\{2, \ldots, r\}$.

The number $\delta^{\prime}\left(v_{i}\right)$ is the weight of $v_{i_{j}}$. We say that a vertex $v_{i} \in V^{\prime}$ weighted-covers the r-path P_{r} with respect to $\left(V^{\prime}, \delta^{\prime}\right)$ if v_{i} satisfies one of the 3 conditions above.

Remark. When $f=\max$, we write that $\left(V^{\prime}, \delta^{\prime}\right)$ is a weighted r-path vertex cover of G_{ω}.
Notation 3.1.4. For an f-weighted r-path vertex $\operatorname{cover}\left(V^{\prime}, \delta^{\prime}\right)$ of G_{ω}, we also use $\left\{v_{i}^{\delta^{\prime}\left(v_{i}\right)} \mid v_{i} \in V^{\prime}\right\}$ to denote it, especially when we depict an f-weighted r-path vertex cover of G_{ω} in sketches.

Definition 3.1.5. [7, Definition 1.7] Given two f-weighted r-path vertex covers $\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right)$ and $\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)$ of G_{ω}, we write $\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right) \leq\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right)$ if $V_{2}^{\prime} \subseteq V_{1}^{\prime}$ and $\delta_{2}^{\prime}\left(v_{i}\right) \geq \delta_{1}^{\prime}\left(v_{i}\right)$ for all $v_{i} \in V_{2}^{\prime}$. An f-weighted r-path vertex cover $\left(V^{\prime}, \delta^{\prime}\right)$ is minimal if there does not exist another f-weighted r-path vertex cover $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ such that $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)<\left(V^{\prime}, \delta^{\prime}\right)$.

Fact 3.1.6. [7, Lemma 1.11] For every f-weighted r-path vertex cover $\left(V^{\prime}, \delta^{\prime}\right)$ of G_{ω}, there is a minimal f-weighted r-path vertex cover $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of G_{ω} such that $\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \leq\left(V^{\prime}, \delta^{\prime}\right)$.

Fact 3.1.7. [7, Theorem 2.7] The f-weighted r-path ideal $I_{r, f}\left(G_{\omega}\right)$ has the following decomposition:

$$
I_{r, f}\left(G_{\omega}\right)=\bigcap_{\left(V^{\prime}, \delta^{\prime}\right) f \text {-w. } r \text {-path v. cover }} P\left(V^{\prime}, \delta^{\prime}\right)=\bigcap_{\left(V^{\prime}, \delta^{\prime}\right) \text { min. } f \text {-w. } r \text {-path v. cover }} P\left(V^{\prime}, \delta^{\prime}\right)
$$

where the first intersection is taken over all f-weighted r-path vertex covers of G_{ω}, and the second intersection is taken over all minimal f-weighted r-path vertex covers of G_{ω}. The second intersection is irredundant.

Remark. The second decomposition of $I_{r, f}\left(G_{\omega}\right)$ is much more intensive than the first one.
Fact 3.1.8. [7, Lemma 2.11] If $I_{r, f}\left(G_{\omega}\right)$ is unmixed, then $I_{r}(G)$ is also unmixed.
Definition 3.1.9. [7, Definition 3.1] Let v_{i} be a vertex of degree 1 in G that is not a part of any r-path in G. We write that v_{i} is an r-pathless leaf of G_{ω}. Let H_{λ} be the subgraph of G_{ω} induced by the vertex subset $V \backslash\left\{v_{i}\right\}$. We write that H_{λ} is obtained by pruning an r-pathless leaf from G_{ω}. A subgraph $\Gamma_{\lambda^{\prime}}$ of G_{ω} is obtained by pruning a sequence of r-pathless leaves from G_{ω} if there exists a sequence of graphs $G_{\omega}=G_{\omega^{(0)}}^{(0)}, G_{\omega^{(1)}}^{(1)}, \ldots, G_{\omega^{(l)}}^{(l)}=\Gamma_{\lambda^{\prime}}$ such that each $G_{\omega^{(i+1)}}^{(i+1)}$ is obtained by pruning an r-pathless leaf from $G_{\omega^{(i)}}^{(i)}$.

Fact 3.1.10. [7, Lemma 3.3] Let H_{λ} be a weighted graph obtained by pruning a single r-pathless leaf v_{i} from G_{ω}.
(a) The set of r-paths in G is the same as the set of r-paths in H.
(b) The minimal f-weighted r-path vertex covers of G_{ω} are the same as the minimal f-weighted r-path vertex covers of H_{λ}.

Lemma 3.1.11. Let H_{λ} be a weighted graph obtained by pruning a sequence of r-pathless leaves from G_{ω}.
(a) The ideals $I_{r, f}\left(G_{\omega}\right)$ and $I_{r, f}\left(H_{\lambda}\right)$ have the same generators.
(b) The ideal $I_{r, f}\left(G_{\omega}\right)$ is unmixed if and only if $I_{r, f}\left(H_{\lambda}\right)$ is so.
(c) The ideal $I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay if and only if $I_{r, f}\left(H_{\lambda}\right)$ is so.

Proof. (a) By Fact 3.1.10(a), the set of r-paths in G is the same as the set of r-paths in H and $\lambda(e)=\omega(e)$ for each edge $e \in E(H) \subseteq E(G)$. Then the claim about the generators now follows directly.
(b) It follows from Theorem 3.1.7 and Lemma 3.1.10(b).
(c) Part (a) implies $\left(S^{\prime} / I_{r, f}\left(H_{\lambda}\right)\right)[X] \cong R / I_{r, f}\left(G_{\omega}\right)$, where $S^{\prime}=\mathbb{K}\left[X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{d}\right]$. It follows that $R / I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay if and only if $S^{\prime} / I_{r, f}\left(H_{\lambda}\right)$ is so.

Definition 3.1.12. The suspension of G is the graph ΣG with vertex set

$$
V(\Sigma G)=V \sqcup\left\{w_{1}, \ldots, w_{d}\right\}=\left\{v_{1}, \ldots, v_{d}, w_{1}, \ldots, w_{d}\right\}
$$

and edge set

$$
E(\Sigma G)=E(G) \sqcup\left\{v_{1} w_{1}, \ldots, v_{d} w_{d}\right\}
$$

This is also known as the K_{1}-corona of G.

Remark. The term "suspension" is due to Villarreal [13]. It is not related to the suspension of a topological space.

Example 3.1.13. The suspension ΣP_{2} of the 2-path $G=P_{2}=\left(v_{1}-v_{2}-v_{3}\right)$ is

Definition 3.1.14. The r-path suspension of G is the graph $\Sigma_{r} G$ obtained by adding a new path of length r to each vertex of G such that the vertex set is

$$
V\left(\Sigma_{r} G\right)=\left\{v_{i, j} \mid i=1, \ldots, d, j=0, \ldots, r\right\} \text { with } v_{i, 0}=v_{i}, \forall i=1, \ldots, d
$$

The new r-paths are called r-whiskers.

Example 3.1.15. The 2-path suspension $\Sigma_{2} P_{2}$ of the 2-path $G=P_{2}=\left(v_{1}-v_{2}-v_{3}\right)$ is

We will classify all the weighted trees H_{μ} such that $I_{r, f}\left(H_{\mu}\right)$ is Cohen-Macaulay in terms of the weighted r-path suspension, define below.

Definition 3.1.16. [7, Definition 3.4] A weighted r-path suspension of G_{ω} is a weighted graph $\left(\Sigma_{r} G\right)_{\lambda}$ with weight function $\lambda: \Sigma_{r} G \rightarrow \mathbb{N}$ such that the underlying graph $\Sigma_{r} G$ is an r-path suspension of G and $\lambda\left(v_{i} v_{j}\right)=\omega\left(v_{i} v_{j}\right)$ for all $v_{i} v_{j} \in E(G)$, i.e., $\left.\lambda\right|_{E(G)}=\omega$.

Remark. If $r=1$, then $\left(\Sigma_{1} G\right)_{\lambda}=(\Sigma G)_{\lambda}$ is a weighted suspension of G_{ω} [10, Definition 5.6].
Example 3.1.17. A weighted 2-path suspension $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ of

$$
G_{\omega}:=\left(P_{2}\right)_{\omega}=\left(v_{1} \xrightarrow{1} v_{2} \xrightarrow{2} v_{3}\right)
$$

is

Based on the convention that $v_{i, 0}=v_{i}$ for $i=1, \ldots, d$, we have that $X_{i, 0}=X_{i}$ for $i=$ $1, \ldots, d$.

Definition 3.1.18. Define a ring homomorphism p by

$$
\begin{aligned}
p: R^{\prime} & \longrightarrow R \\
& a \longrightarrow a, \forall a \in \mathbb{K} \\
& \longrightarrow X_{i} \forall i=1, \ldots, d, j=0, \ldots, r .
\end{aligned}
$$

One can think of p as a "projection".

Remark. Let $I \subseteq R^{\prime}$ be a monomial ideal and set

$$
I R=p(I) R=\left(X_{i_{1}}^{a_{1}} \ldots X_{i_{n}}^{a_{n}} \in R \mid \exists X_{i_{1}, j_{1}}^{a_{1}} \cdots X_{i_{n}, j_{n}}^{a_{n}} \in \llbracket I \rrbracket\right) R .
$$

In words, $I R$ is the monomial ideal of R obtained from I by setting $X_{i, j}=X_{i}$ for all i, j. It is straightforward to show that if f_{1}, \ldots, f_{m} is a monomial generating sequence for I, then $p\left(f_{1}\right), \ldots, p\left(f_{m}\right)$ is a monomial generating sequence for $I R$.

Example 3.1.19. Let $I=\left(X_{1,1} X_{1,2}^{2} X_{1,3}^{3}, X_{1,0}^{4} X_{2,0} X_{3,0}^{2}\right) R^{\prime}$ be an ideal of the polynomial ring $R^{\prime}=$ $\mathbb{K}\left[\left\{X_{i, j} \mid i=1, \ldots, 3, j=0, \ldots, 3\right\}\right]$. Then

$$
I R=\left(X_{1} X_{1}^{2} X_{1}^{3}, X_{1}^{4} X_{2} X_{3}^{2}\right) R=\left(X_{1}^{6}, X_{1}^{4} X_{2} X_{3}^{2}\right) R .
$$

In Section 3.2, we will prove that if $I=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ for some weighted r-path suspension $\left(\Sigma_{r} G\right)_{\lambda}$, then in an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$ with $\underline{n} \in \mathbb{N}^{d}$, variables in each component have different first indexes when certain conditions for r, f and λ are satisfied. This result then will be used in finding regular sequences for R^{\prime} / I in Theorem 3.4.1 and be used in Propositions 3.2.1, 3.2.43, and 3.2.44 to prove that $I=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ is unmixed.

Definition 3.1.20. Let $\underline{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$. Define a ring homomorphism $p_{\underline{n}}$ by

$$
\begin{aligned}
p_{\underline{n}}: R^{\prime} & \longrightarrow A\left[X_{1,0}, \ldots, X_{1, \min \left\{n_{1}-1, r\right\}}, \ldots, X_{d, 0}, \ldots, X_{d, \min \left\{n_{d}-1, r\right\}}\right]=: S \\
& \longmapsto a, \forall a \in A, \\
X_{i, j} & \longmapsto X_{i, n_{i}-1}, \forall i=1, \ldots, d, j=n_{i}, \ldots, r .
\end{aligned}
$$

Let $I \subseteq R^{\prime}$ be a monomial ideal. Then $p_{\underline{n}}(I) S$ is the monomial ideal of S obtained from I by setting $X_{i, j}=X_{i, n_{i}-1}$ for any $X_{i, j} \in I$ such that $n_{i} \leq j \leq r$. It is straightforward to show that if f_{1}, \ldots, f_{m} is a monomial generating sequence for I, then $p_{\underline{n}}\left(f_{1}\right), \ldots, p_{\underline{n}}\left(f_{m}\right)$ is a monomial generating sequence for $p_{\underline{n}}(I) S$.

Remark. (a) Let $\underline{1}=(1, \ldots, 1) \in \mathbb{N}^{d}$, then $p_{\underline{1}}=p$, where p is from Definition 3.1.18.
(b) If $\underline{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ such that $n_{1}, \ldots, n_{d}>r$, then $S=R^{\prime}$ and $p_{\underline{n}}(I) S=I$ for any monomial ideal $I \subseteq R^{\prime}$.

Example 3.1.21. Consider the following graph $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ with $G_{\omega}:=\left(P_{2}\right)_{\omega}=\left(v_{1} \xrightarrow{1} v_{2} \xrightarrow{2} v_{3}\right)$.

Let

$$
\begin{aligned}
I:= & I_{2, \min }\left(\left(\Sigma_{2} P_{2}\right)_{\lambda}\right)=\left(X_{1,2}^{3} X_{1,1}^{3} X_{1}^{4}, X_{1,1}^{4} X_{1} X_{2}, X_{1} X_{2} X_{2,1}^{3}, X_{1} X_{2} X_{3}^{2}, X_{2,2}^{3} X_{2,1}^{3} X_{2}^{3},\right. \\
& \left.X_{2,1}^{3} X_{2}^{2} X_{3}^{2}, X_{2}^{2} X_{3}^{2} X_{3,1}^{2}, X_{3,2}^{5} X_{3,1}^{2} X_{3}^{2}\right) R^{\prime}
\end{aligned}
$$

Let $\underline{n}=(2,3,1) \in \mathbb{N}^{3}$. Then $S=R\left[X_{1,0}, X_{1,1}, X_{2,0}, X_{2,1}, X_{2,2}, X_{3,0}\right]$ and setting $X_{1,2}=X_{1,1}$, $X_{3,1}=X_{3}$, and $X_{3,2}=X_{3}$ in I we have

$$
\begin{aligned}
p_{\underline{n}}(I) S= & \left(X_{1,1}^{3} X_{1,1}^{3} X_{1}^{4}, X_{1,1}^{4} X_{1} X_{2}, X_{1} X_{2} X_{2,1}^{3}, X_{1} X_{2} X_{3}^{2}, X_{2,2}^{3} X_{2,1}^{3} X_{2}^{3},\right. \\
& \left.X_{2,1}^{3} X_{2}^{2} X_{3}^{2}, X_{2}^{2} X_{3}^{2} X_{3}^{2}, X_{3}^{5} X_{3}^{2} X_{3}^{2}\right) R^{\prime} \\
= & \left(X_{1,1}^{6} X_{1}^{4}, X_{1,1}^{4} X_{1} X_{2}, X_{1} X_{2} X_{2,1}^{3}, X_{1} X_{2} X_{3}^{2}, X_{2,2}^{3} X_{2,1}^{3} X_{2}^{3}\right. \\
& \left.X_{2,1}^{3} X_{2}^{2} X_{3}^{2}, X_{2}^{2} X_{3}^{4}, X_{3}^{9}\right) R^{\prime} .
\end{aligned}
$$

Definition 3.1.22. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of $G_{\omega}, I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right), \underline{n} \in \mathbb{N}^{d}$ and P_{r} an r-path in $\left(\Sigma_{r} G\right)_{\lambda}$ with the corresponding generator $\underline{X}^{\underline{\alpha}}$ in I. We write

$$
P_{r} \stackrel{n}{\rightsquigarrow} v_{i_{1}, j_{1}} \cdots v_{i_{m}, j_{m}}=: \wp
$$

if the reduction is $\operatorname{red}\left(p_{\underline{n}}(\underline{X} \underline{\underline{\alpha}})\right)=X_{i_{1}, j_{1}} \ldots X_{i_{m}, j_{m}}$. We call that \wp is a path in $p_{\underline{n}}(I)$.
Remark. If \underline{n} is known from context, we usually write $P_{r} \rightsquigarrow \wp$ instead of $P_{r} \stackrel{n}{\rightsquigarrow} \wp$.
Example 3.1.23. In Example 3.1.21, $P_{2}:=v_{1,2} v_{1,1} v_{1,0} \xrightarrow{n} v_{1,1} v_{1,0}=: \wp$ since $X_{1,2}^{3} X_{1,1}^{3} X_{1,0}^{4}$ is the corresponding generator of P_{r} in I and $\operatorname{red}\left(p_{\underline{n}}\left(X_{1,2}^{3} X_{1,1}^{3} X_{1,0}^{4}\right)\right)=\operatorname{red}\left(X_{1,1}^{3} X_{1,1}^{3} X_{1,0}^{4}\right)=X_{1,1} X_{1,0}$.

Definition 3.1.24. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of $G_{\omega}, I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right), \underline{n} \in \mathbb{N}^{d}, P_{r}$ an r-path in $\left(\Sigma_{r} G\right)_{\lambda}$ with the corresponding generator $\underline{X^{\underline{\alpha}}}$ in I and $P_{r} \stackrel{n}{\rightsquigarrow} \wp$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ be
such that $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. Denote $v_{i, j} \smile\left(P_{r} \xrightarrow{\sim} \wp, \wp\right)$ if $v_{i, j} \in V^{\prime \prime} \cap V(\wp)$ and $X_{i, j}^{\delta^{\prime \prime}\left(v_{i, j}\right)} \mid p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)$ and denote $v_{i, j} \nsucc\left(P_{r} \xrightarrow{n} \wp, \wp\right)$) otherwise. In particular, if $P_{r}=\wp$, then denote $v_{i, j} \smile(\wp, \mathfrak{P})$ or $v_{i, j} \nsucc(\wp, \mathfrak{P})$ if $v_{i, j} \in V^{\prime \prime} \cap V(\wp)$ and $X_{i, j}^{\delta^{\prime \prime}\left(v_{i, j}\right)} \mid p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)$.

Remark. If \underline{n} and \mathfrak{P} are known from context, we write $v_{i, j} \smile\left(P_{r} \rightsquigarrow \wp\right)$ or $v_{i, j} \nsucc\left(P_{r} \rightsquigarrow \wp\right)$. In particular, if $P_{r}=\wp$, then write $v_{i, j} \smile \wp$ or $v_{i, j} \nsucc \wp$.

Example 3.1.25. A weighted suspension $(\Sigma G)_{\lambda}$ of $G_{\omega}:=\left(P_{1}\right)_{\omega}=\left(v_{1} \xrightarrow{1} v_{2}\right)$ is

Let $I:=I_{2, \min }\left(\left(\Sigma P_{1}\right)_{\lambda}\right)$ and $\underline{n}:=(1,1)$. Then $p_{\underline{n}}(I)$ is obtained from I by setting $X_{1,1}=X_{1,0}$ and $X_{2,1}=X_{2,0}$ in I. We have that $P_{2}:=v_{1,1} v_{1} v_{2} \stackrel{n}{\leadsto} v_{1} v_{2}$. Let $\underline{X} \underline{\underline{\alpha}}:=X_{1,1}^{2} X_{1,0} X_{2,0}$ be the corresponding generator of $v_{1,1} v_{1} v_{2}$ in I. Then $p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)=X_{1,0}^{3} X_{2,0}$. Let $\mathfrak{P}=\left\{v_{1,0}^{2}, v_{2,0}^{2}, v_{1,1}\right\}$. Then $v_{1,0} \smile\left(v_{1,1} v_{1,0} v_{2,0} \rightsquigarrow v_{1,0} v_{2,0}, \mathfrak{P}\right)$ since $X_{1,0}^{2} \mid X_{1,0}^{3} X_{2,0}, v_{2,0} \nsucc\left(v_{1,1} v_{1,0} v_{2,0} \rightsquigarrow v_{1,0} v_{2,0}, \mathfrak{P}\right)$ since $X_{2,0}^{2} \nmid X_{1,0}^{3} X_{2,0}, v_{1,1} \nsucc\left(v_{1,1} v_{1,0} v_{2,0} \rightsquigarrow v_{1,0} v_{2,0}, \mathfrak{P}\right)$ since $v_{1,1} \notin\left\{v_{1,0}, v_{2,0}\right\}$.

Lemma 3.1.26. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of $G_{\omega}, I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$, and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$. Then for any path \wp in $p_{\underline{n}}(I)$ such that $P_{r} \rightsquigarrow \wp$, we have that $v_{k, l} \smile\left(P_{r} \rightsquigarrow \wp\right)$ for some $v_{k, l} \in V^{\prime \prime}$.

Proof. Assume that $\wp:=v_{i_{1}, j_{1}} \ldots v_{i_{m}, j_{m}}$ and $\underline{X}^{\underline{\alpha}}$ is the corresponding generator of the r-path P_{r} in I. Then $\operatorname{red}\left(p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)\right)=X_{i_{1}, j_{1}} \ldots X_{i_{m}, j_{m}}$ and $p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right) \in p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$. So there exists some $v_{k, l} \in V^{\prime \prime}$ such that $v_{k, l} \in V(\wp)$ and $X_{k, l}^{\delta^{\prime \prime}\left(v_{k, l}\right)} \mid p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)$. Hence $v_{k, l} \smile\left(P_{r} \rightsquigarrow \wp\right)$.

Remark. One can think of $p_{\underline{n}}\left(\underline{X}^{\underline{\alpha}}\right)$ as the corresponding generator of $\left(P_{r} \rightsquigarrow \wp\right)$.
Definition 3.1.27. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of $G_{\omega}, I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$, and $\underline{n} \in \mathbb{N}^{d}$.
Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ be such that $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. For $v_{i, j} \in V^{\prime \prime}$, set

$$
\mathfrak{P}_{i, j}\left(p_{\underline{n}}(I)\right):=\left\{P_{r} \stackrel{n}{\rightsquigarrow} \wp \mid v_{i, j} \smile\left(P_{r} \rightsquigarrow \wp\right) \text { but } v_{k, l} \nsucc\left(P_{r} \rightsquigarrow \wp\right) \forall v_{k, l} \in V^{\prime \prime} \backslash\left\{v_{i, j}\right\}\right\} .
$$

If $\left(P_{r} \rightsquigarrow \wp\right) \in \mathfrak{P}\left(p_{\underline{n}}(I)\right)$ such that $P_{r}=\wp$, then we write $P_{r} \in \mathfrak{P}_{i, j}\left(p_{\underline{n}}(I)\right)$.

Remark. If $p_{\underline{n}}(I)$ is known from context, we usually write $\mathfrak{P}_{i, j}$ instead of $\mathfrak{P}_{i, j}\left(p_{\underline{n}}(I)\right)$. If $P_{r} \rightsquigarrow \wp$ is such that $P_{r}=\wp$, we simplify $P_{r} \rightsquigarrow \wp$ as P_{r}. For example,
$\mathfrak{P}_{i, j}(I)=\left\{P_{r} \mid P_{r}\right.$ an r-path in $\left(\Sigma_{r} G\right)_{\lambda}$ such that $v_{i, j} \smile P_{r}$ but $\left.v_{k, l} \nsim P_{r} \forall v_{k, l} \in V^{\prime \prime} \backslash\left\{v_{i, j}\right\}\right\}$.
$\mathfrak{P}_{i, j}(I)$ is a set of r-paths in $\left(\Sigma_{r} G\right)_{\lambda}$ that is uniquely "weighted covered" by $v_{i, j}$ when considering the "covering set" $\mathfrak{P}=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$. That's to say, when $\mathfrak{P}_{i, j}(I) \neq \emptyset$, for P_{r} in $\mathfrak{P}_{i, j}(I)$, we have that $v_{i, j} \in V^{\prime \prime}$ satisfies one of the constraints in Definition 3.1.3 and other vertices in $V^{\prime \prime}$ don't.

For $v_{i, j} \in V^{\prime \prime}$, we say that $v_{i, j}$ "weighted cover" ($\left.P_{r} \stackrel{n}{\rightsquigarrow} \wp\right)$, notationally, $v_{i, j} \smile\left(P_{r} \stackrel{n}{\leadsto} \wp\right)$, if $v_{i, j} \in V(\wp)$ and $X_{i, j}^{\delta^{\prime \prime}\left(v_{i, j}\right)} \mid p_{\underline{n}}\left(\underline{X}^{\alpha}\right)$, where $\underline{X} \underline{\underline{\alpha}}$ is the corresponding generators of P_{r} in I. Then one can mimic the interpretation of $\mathfrak{P}_{i, j}(I)$ to understand $\mathfrak{P}_{i, j}\left(p_{\underline{n}}(\underline{X} \underline{\underline{\alpha}})\right)$.

Example 3.1.28. In Example 3.1.25, we have that $\left(v_{1,1} v_{1,0} v_{2,0} \rightsquigarrow v_{1,0} v_{2,0}\right) \in \mathfrak{P}_{1,0}$. Let $\underline{X} \underline{\underline{\beta}}:=$ $X_{1,0} X_{2,0} X_{2,1}^{3}$ be the corresponding generator of $v_{1,0} v_{2,0} v_{2,1}$ in I. Then $p_{\underline{n}}(\underline{X} \underline{\beta})=X_{1,0} X_{2,0}^{4}$. We have that $v_{2,0} \smile\left(v_{1,0} v_{2,0} v_{2,1} \rightsquigarrow v_{1,0} v_{2,0}\right)$ since $X_{2,0}^{2} \mid X_{1,0} X_{2,0}^{4}$. Then $\left(v_{1,0} v_{2,0} v_{2,1} \rightsquigarrow v_{1,0} v_{2,0}\right) \notin \mathfrak{P}_{1,0}$. Also, for a fixed \underline{n}, there is no other $P_{3} \rightsquigarrow \wp$, therefore, $\mathfrak{P}_{1,0}=\left\{v_{1,1} v_{1,0} v_{2,0} \rightsquigarrow v_{1,0} v_{2,0}\right\}$.

Proposition 3.1.29. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of G_{ω} and $I=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$. If $\mathfrak{P}=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is a minimal f-weighted vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$, then $\mathfrak{P}_{i, j}(I) \neq \emptyset$ for any $v_{i, j} \in V^{\prime \prime}$.

Proof. Suppose that $\mathfrak{P}_{i, j}(I)=\emptyset$ for some $v_{i, j} \in V^{\prime \prime}$. Then since $I \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ and $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is minimal, by Fact 3.1.7, we have that $I \subseteq P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$, a contradiction.

We have a general version of Proposition 3.1.29, state in the following lemma:

Lemma 3.1.30. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-suspension of $G_{\omega}, I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$, and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an mirreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ doesn't occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$. Then $\mathfrak{P}_{i, j}\left(p_{\underline{n}}(I)\right) \neq \emptyset$ for any $v_{i, j} \in V^{\prime \prime}$. In particular, if $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$, then $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ doesn't occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$.

Proof. Suppose that $\mathfrak{P}_{i, j}\left(p_{\underline{n}}(I)\right)=\emptyset$ for some $v_{i, j} \in V^{\prime \prime}$. Then since $p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$, we have that $p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$, a contradiction.

Let $I_{k}:=P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occur in an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)=\bigcap_{i=1}^{n} I_{i}$ with $k \in\{1, \ldots, n\}$ such that $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ occur in an m-irreducible decomposition of $p_{\underline{n}}(I)$ for some $v_{i, j} \in V^{\prime \prime}$. Then since $p_{\underline{n}}(I) \subseteq I_{k}=P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$, we have that

$$
p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right) \subsetneq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)=I_{k}
$$

So

$$
\bigcap_{i=1}^{n} I_{i}=p_{\underline{n}}(I)=P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right) \cap \bigcap_{i=1}^{n} I_{i}=P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right) \cap \bigcap_{i=1, i \neq k}^{n} I_{i} .
$$

By Fact 2.2.23, the number of ideals in any irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$ is n, so the above decomposition on the right is also an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$. Then Fact 2.2.23 implies that $I_{k}=P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$, a contradiction.

3.2 Sufficient Conditions for Unmixedness

In this section, we prove the sufficient conditions for which the f-weighted r-path ideal of a weighted r-path suspension is unmixed. We divide the classification into 3 kinds of cases. We first discuss the sufficient conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed for the case $r=2$.

Proposition 3.2.1. Let $\left(\Sigma_{2} G\right)_{\lambda}$ be a weighted 2-path suspension of G_{ω} such that
(a) $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{i} v_{i, 1}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E\left(\left(\Sigma_{2} G\right)_{\lambda}\right)$,
(b) $\lambda\left(v_{i} v_{i, 1}\right) \leq f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i, 1} v_{i, 2}\right)\right)$ for $i=1, \ldots, d$,
(c) $f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \min \left\{f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right)\right\}$ for all 2-paths $v_{i} v_{j} v_{k}$ in G,
(d) for all 3-paths $v_{i} v_{j} v_{k} v_{l}$ in G : if $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<\lambda\left(v_{j} v_{k}\right)$, then $f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq$ $\lambda\left(v_{j} v_{k}\right)$,
(e) for all 3-cycles $v_{i} v_{j} v_{k} v_{i}$ in G : if $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{k}\right)$, then either $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq$ $\lambda\left(v_{k} v_{i}\right)$, or, $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq \lambda\left(v_{k} v_{j}\right)$ and $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$.

Let $I:=I_{2, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\underline{n}=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$. Then there exists at most one $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$. Note also that there exists a $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$, so $p_{\underline{n}}(I)$ is unmixed.

Proof. Suppose there exist $v_{i, \alpha}, v_{i, \beta} \in V^{\prime \prime}$ with $0 \leq \alpha<\beta \leq 2$ for some $i \in\{1, \ldots, d\}$. Then we have the following 3 cases (a), (b), and (c).
(a) Suppose that $\alpha=1$ and $\beta=2$. By Lemma 3.1.30, we have $\mathfrak{P}_{i, 1} \neq \emptyset \neq \mathfrak{P}_{i, 2}$. If $\left(P_{2} \underset{\sim}{n} \wp\right) \in \mathfrak{P}_{1,2}$, then $v_{1,2} \in V(\wp)$, as $\left(\Sigma_{2} G\right)_{\lambda}$ is a 2-path suspension, we have $P_{2} \rightsquigarrow \wp$ must be of the unique form $v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 2} v_{i, 1} v_{i, 0}$. So we have $\mathfrak{P}_{i, 2}\left(p_{\underline{n}}(I)\right)=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$. Hence $v_{i, 2} v_{i, 1} v_{i, 0} \notin \mathfrak{P}_{i, 1}$. Also, since $v_{i, 1}$ is in $V(\wp)$ for any $P_{r} \rightsquigarrow \wp$, we have that $v_{i, 1} v_{i, 0} v_{j, 0} \in \mathfrak{P}_{i, 1}$ for some edge $v_{i, 0} v_{j, 0} \in E(G)$. So we have that $v_{i, 1} \smile v_{i, 1} v_{i, 0} v_{j, 0}$ and then $\delta^{\prime \prime}\left(v_{i, 1}\right) \leq \lambda\left(v_{i, 0} v_{i, 1}\right) \leq f\left(\lambda\left(v_{i, 0} v_{i, 1}\right), \lambda\left(v_{i, 1} v_{i, 2}\right)\right)$ by Condition (b), implying $v_{i, 1} \smile v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting the condition $\mathfrak{P}_{i, 2}=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(b) Suppose that $\alpha=0$ and $\beta=2$. Then $\mathfrak{P}_{i, 2}=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$ and $\mathfrak{P}_{i, 0} \neq \emptyset$ by Lemma 3.1.30. It is straightforward to show that we have the following 3 cases:
(1) Assume that $v_{i, 1} v_{i, 0} v_{j, 0} \in \mathfrak{P}_{i, 0}$. Then we have that $v_{i, 0} \smile v_{i, 1} v_{i, 0} v_{j, 0}$, and so $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq$ $f\left(\lambda\left(v_{i, 0} v_{j, 0}\right), \lambda\left(v_{i, 0} v_{i, 1}\right)\right) \leq \lambda\left(v_{i, 0} v_{i, 1}\right)$ by Condition (a), implying $v_{i, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 2}=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(2) Assume that $v_{i, 0} v_{j, 0} v_{k, 0} \in \mathfrak{P}_{i, 0}$ or $\left(v_{i, 0} v_{j, 0} v_{j, 1} \rightsquigarrow v_{i, 0} v_{j, 0}\right) \in \mathfrak{P}_{i, 0}$. Then $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq \lambda\left(v_{i, 0} v_{j, 0}\right) \leq$ $f\left(\lambda\left(v_{i, 0} v_{j, 0}\right), \lambda\left(v_{i, 0} v_{i, 1}\right)\right) \leq \lambda\left(v_{i, 0} v_{i, 1}\right)$ by Condition (a). So we have that $v_{i, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 2}=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(3) Assume that $v_{j, 0} v_{i, 0} v_{k, 0} \in \mathfrak{P}_{i, 0}$. Then $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq f\left(\lambda\left(v_{j, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{k, 0}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ by Conditions (c) and (a), implying $v_{i, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 2}=\left\{v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(c) Suppose that $\alpha=0$ and $\beta=1$. Suppose that $\left(v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 1} v_{i, 0}\right) \in \mathfrak{P}_{i, 1}$, then $v_{i, 2} v_{i, 1} v_{i, 0}$ is not a path in $p_{\underline{n}}(I)$ and similar to Case (b), we have that $v_{i, 0} \smile\left(v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 1} v_{i, 0}\right)$, a contradiction. Similarly, we have that $v_{i, 2} v_{i, 1} v_{i, 0} \notin \mathfrak{P}_{i, 1}$. So there exists $v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 1}$. Then we have that $\left(v_{j_{1}, 1} v_{j_{1}, 0} v_{i, 0} \rightsquigarrow v_{j_{1}, 0} v_{i, 0}\right) \notin \mathfrak{P}_{i, 0}, v_{k, 0} v_{j_{1}, 0} v_{i, 0} \notin \mathfrak{P}_{i, 0}$ for any $v_{k, 0} v_{j_{1}, 0} \in E(G)$, and $v_{j_{1}, 0} v_{i, 0} v_{l, 0} \notin \mathfrak{P}_{i, 0}$ for any $v_{i, 0} v_{l, 0} \in E(G)$.
(1) Assume that $v_{k, 0} v_{i, 0} v_{l, 0} \in \mathfrak{P}_{i, 0}$ with $k \neq j_{1}$. (The following drawing shows part of $p_{\underline{n}}\left(\Sigma_{r} G\right)$
after setting $p_{\underline{n}}\left(v_{i, j}\right)=v_{i_{1}, j_{1}}$ and deleting the corresponding edges whenever $\left.p_{\underline{n}}\left(X_{i, j}\right)=X_{i_{1}, j_{1}}.\right)$

Since $v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 1}$, we have that $v_{j_{1}, 0}, v_{i, 0} \not \not \not v_{j_{1}, 0} v_{i, 0} v_{l, 0}$ through Conditions (a) and (c). Then since $p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$, we have that $v_{l, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{l, 0}$ by Lemma 3.1.26. So we have that $v_{l, 0} \smile v_{k, 0} v_{i, 0} v_{l, 0}$, contradicting $v_{k, 0} v_{i, 0} v_{l, 0} \in \mathfrak{P}_{i, 0}$.
(2) Assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ with $p_{1} \neq j_{1}$.

Similar to Case $(c)(1)$, we have that $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ and then $v_{p_{1}, 0} \smile\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow\right.$ $\left.v_{i, 0} v_{p_{1}, 0}\right)$, contradicting $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$.
(3) Assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, p_{2}} \in \mathfrak{P}_{i, 0}$ with $p_{1} \neq j_{1}$.

Similar to Case (c)(1), we have $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. As $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$, we have $v_{p_{1}, 0} \nsucc$ $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Then $f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right)<\delta^{\prime \prime}\left(v_{p_{1}, 0}\right) \leq \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ and hence $q_{2}=0$. As $v_{i, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ and $v_{i, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0}$, we have $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$.
(i) Assume that $j_{1} \neq p_{2}$. Then $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ is a 3 -path in G. As $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<$ $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ by Condition (d), contradicting $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ and $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$.
(ii) Assume that $j_{1}=p_{2}$.

Then $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$. So by Condition (e), we have the following 2 cases:
A. Assume that $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$. Similar to Case (c)(1), we have that $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. So we have that $v_{p_{1}, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0}$, contradicting $v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 0}$.
B. Assume now that $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)$ and $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \leq$ $\max \left\{\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right\}$. Then since $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{i, 1}$ and $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$, we have that $v_{j_{1}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$. Since $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0}$, we have that $v_{p_{1}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Note that for $i=1, \ldots, d$, by definition of $p_{\underline{n}}(I)$, there exists a generator where all variables are of the form $X_{i, i_{l}}$ with $i_{l} \in\{0,1,2\}$, so there exists a vertex $v_{i, i_{j}} \in V^{\prime \prime}$.

Starting here, we discuss the sufficient conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed if $r=3$.
Notation 3.2.2. We consider the next conditions on a weighted 3-path suspension $\left(\Sigma_{3} G\right)_{\lambda}$ of G_{ω}.
(a) $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{i} v_{i, 1}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$,
(b) $\lambda\left(v_{i, k} v_{i, k+1}\right) \leq f\left(\lambda\left(v_{i, k} v_{i, k+1}\right), \lambda\left(v_{i, k+1} v_{i, k+2}\right)\right)$ for $i=1, \ldots, d$ and $k=0,1$,
(c) $f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \min \left\{f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right)\right\}$ for all 2-paths $v_{i} v_{j} v_{k}$ in G
(d) for all 4-paths $v_{i} v_{j} v_{k} v_{l} v_{m}$ in G : if $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<\lambda\left(v_{j} v_{k}\right)$ or $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<$ $\lambda\left(v_{k} v_{l}\right)$, then $f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq \lambda\left(v_{j} v_{k}\right)$ or $f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq \lambda\left(v_{k} v_{l}\right)$,
(e) for all 3 -cycles $v_{i} v_{j} v_{k} v_{i}$ in G :
(1) if $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{k}\right)\right)$ or there exists $v_{i} v_{l} \in E(G)$ with $j \neq l \neq k$ such that $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<f\left(\lambda\left(v_{i} v_{l}\right), \lambda\left(v_{i} v_{k}\right)\right)$, then $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$ and $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq \lambda\left(v_{k} v_{j}\right)$, and
(2) if $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{k}\right)$, then
(i) $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq \lambda\left(v_{k} v_{i}\right)$, and
(ii) for any $v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}$,

$$
\left\{\begin{array}{l}
f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\}, \text { and } \\
f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right) \leq \max \left\{f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right), f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\},
\end{array}\right.
$$

and
(iii)

$$
\left\{\begin{aligned}
& f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} \\
& \forall v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right) \text { with } v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}, \\
& \text { or } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq \lambda\left(v_{j} v_{i}\right),
\end{aligned}\right.
$$

(f) for all 4-cycles $v_{i} v_{j} v_{k} v_{l} v_{i}$: if $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)$, then either

$$
\begin{equation*}
f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq \lambda\left(v_{k} v_{l}\right) \text { and } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq \lambda\left(v_{j} v_{i}\right) \tag{1}
\end{equation*}
$$

or
(2) (i) $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\}$, and
(ii) $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$, and
(iii)

$$
\left\{\begin{array}{l}
\text { either } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq \lambda\left(v_{k} v_{l}\right), \\
\text { or } f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \lambda\left(v_{l} v_{k}\right) \text { and } \\
\quad \text { if } v_{j} v_{l} \in E(G) \text {, then } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l}\right)\right)\right\}, \\
\text { or } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq \lambda\left(v_{k} v_{j}\right) \text { and } f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \lambda\left(v_{l} v_{i}\right) \text { and } \\
\quad \text { if } v_{j} v_{l} \in E(G), \text { then } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l}\right)\right)\right\},
\end{array}\right.
$$

and
(iv)

$$
\begin{aligned}
& \text { either } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq \lambda\left(v_{j} v_{i}\right) \\
& \text { or } f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \lambda\left(v_{l} v_{i}\right) \\
& \text { or } f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\} \text { and } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \leq \lambda\left(v_{k} v_{l}\right) \text {, } \\
& \text { or } \forall v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right) \text { with } v_{j} \neq v_{l_{1}, l_{2}} \neq v_{l}: \\
& \quad \text { either } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \leq \max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} \text {, } \\
& \quad \text { or } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} \text {, }
\end{aligned}
$$

and
(v)

$$
\left\{\begin{array}{l}
\text { either } f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq \lambda\left(v_{k} v_{l}\right), \\
\text { or } f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right) \geq \lambda\left(v_{l} v_{i}\right), \\
\text { or } \forall v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right) \text { with } v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}: \\
\quad \text { either } f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\}, \\
\quad \text { or } f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\} .
\end{array}\right.
$$

The next results show that $p_{\underline{n}}(I)$ is unmixed in the setting of Notation 3.2.2. See Proposition 3.2.43 for the full conclusion.

Proposition 3.2.3. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{\underline{n}}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right\}$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Then for $i=1, \ldots, d$, we have $v_{i, \alpha} \notin V^{\prime \prime}$ or $v_{i, \beta} \notin V^{\prime \prime}$ for any $(\alpha, \beta) \in\{(1,2),(1,3),(2,3)\}$. Proof. Proof by contradiction: assume that there exist such $v_{i, \alpha} \in V^{\prime \prime}$ and $v_{i, \beta} \in V^{\prime \prime}$. Then $\mathfrak{P}_{i, \alpha} \neq \emptyset$ by Lemma 3.1.30. So

$$
\delta^{\prime \prime}\left(v_{i, \alpha}\right) \leq \max \left\{\lambda\left(v_{i, \alpha} v_{i, \alpha-1}\right), f\left(\lambda\left(v_{i, \alpha+1} v_{i, \alpha}\right), \lambda\left(v_{i, \alpha} v_{i, \alpha-1}\right)\right)\right\}=f\left(\lambda\left(v_{i, \alpha+1} v_{i, \alpha}\right), \lambda\left(v_{i, \alpha} v_{i, \alpha-1}\right)\right),
$$

by Notation 3.2.2(b). Then for any $\left(P_{r} \rightsquigarrow \wp\right) \in \mathfrak{P}_{i, \beta}$ we have that $v_{i, \alpha} \smile\left(P_{r} \rightsquigarrow \wp\right)$, contradiction by the definition of $\mathfrak{P}_{i, \beta}$ and $\alpha \neq \beta$.

Proposition 3.2.4. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Then for $i=1, \ldots, d$, we have $v_{i, 0} \notin V^{\prime \prime}$ or $v_{i, 3} \notin V^{\prime \prime}$.

Proof. Proof by contradiction: assume that $v_{i, 0} \in V^{\prime \prime}$ and $v_{i, 3} \in V^{\prime \prime}$. Then $\mathfrak{P}_{i, 3}=\left\{v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}\right\}$ and $\mathfrak{P}_{i, 0} \neq \emptyset$, by Lemma 3.1.30. So we have the following 3 cases:
(a) Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j, 0} \in \mathfrak{P}_{i, 0}, v_{i, 1} v_{i, 0} v_{j, 0} v_{k, l} \in \mathfrak{P}_{i, 0}$, or $\left(v_{i, 1} v_{i, 0} v_{j, 0} v_{j, 1} \rightsquigarrow v_{i, 1} v_{i, 0} v_{j, 0}\right) \in \mathfrak{P}_{i, 0}$. Then we have that $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq f\left(\lambda\left(v_{i, 0} v_{j, 0}\right), \lambda\left(v_{i, 0} v_{i, 1}\right)\right) \leq \lambda\left(v_{i, 0} v_{i, 1}\right)$ by Notation 3.2.2(a), implying $v_{i, 0} \smile v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 3}=\left\{v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(b) Assume that $v_{i, 0} v_{j, 0} v_{k, 0} v_{l, m} \in \mathfrak{P}_{i, 0}, v_{i, 0} v_{j, 0} v_{j, 1} v_{j, 2} \in \mathfrak{P}_{i, 0},\left(v_{i, 0} v_{j, 0} v_{j, 1} v_{j, 2} \rightsquigarrow v_{i, 0} v_{j, 0} v_{j, 1}\right) \in \mathfrak{P}_{i, 0}$, or $\left(v_{i, 0} v_{j, 0} v_{j, 1} v_{j, 2} \rightsquigarrow v_{i, 0} v_{j, 0}\right) \in \mathfrak{P}_{i, 0}$. Then $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq \lambda\left(v_{i, 0} v_{j, 0}\right) \leq f\left(\lambda\left(v_{i, 0} v_{j, 0}\right), \lambda\left(v_{i, 0} v_{i, 1}\right)\right) \leq$ $\lambda\left(v_{i, 0} v_{i, 1}\right)$ by Notation 3.2.2(a). So we have that $v_{i, 0} \smile v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 3}=$ $\left\{v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.
(c) Assume that $v_{j, 0} v_{i, 0} v_{k, 0} v_{l, m} \in \mathfrak{P}_{i, 0}$ or $\left(v_{j, 0} v_{i, 0} v_{k, 1} v_{k, 0} \rightsquigarrow v_{j, 0} v_{i, 0} v_{k, 0}\right) \in \mathfrak{P}_{i, 0}$. Then $\delta^{\prime \prime}\left(v_{i, 0}\right) \leq$ $f\left(\lambda\left(v_{j, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{k, 0}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ by Notations 3.2.2(c) and (a), implying $v_{i, 0} \smile v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}$, contradicting $\mathfrak{P}_{i, 3}=\left\{v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}\right\}$.

Propositions 3.2.5 to 3.2 .15 will be used to prove a result similar to the one in Proposition 3.2.4.

Proposition 3.2.5. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow\right.$ $\left.v_{i, 1} v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 1} v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

Then we have that $v_{p_{1}, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$. Since $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$, through Notation 3.2.2(c) we have that $v_{j_{1}, 0}, v_{i, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$, contradicting Lemma 3.1.26.

Proposition 3.2.6. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any
$v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for a $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any 2-path $v_{i} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $p_{1} \neq j_{1}$ and $v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some 2-path $v_{i} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $p_{1} \neq j_{1}$ and $v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$.

Since $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$, we have that $v_{j_{1}, 0}, v_{i, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ by Notation 3.2.2(c). Note that $v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$, so $v_{p_{1}, 0}, v_{p_{2}, q_{2}} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, contradicting $p_{\underline{n}}(I) \subseteq P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ and Lemma 3.1.26.

Proposition 3.2.7. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m -irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for a $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any 2-path $v_{i} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $p_{1} \neq j_{1}$ and $v_{p_{2}, q_{2}}=v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 1} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some 2-path $v_{i} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $p_{1} \neq j_{1}$ and $v_{p_{2}, q_{2}}=v_{j_{1}, 0}$. Then $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G_{ω}.

Since $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$, we have that $v_{i, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$ and $f\left(\lambda\left(v_{i, 0} v_{i, 1}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<$ $f\left(\lambda\left(v_{i, 0} v_{i, 1}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right)$. Then $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{1}, p_{1}}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{1}, p_{1}}\right)\right\}$ and $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)$ by Notation 3.2.2(e)(1). Hence we can show $v_{j_{1}, 0}, v_{p_{1}, 0} \nsucc$ $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$ by way of contradiction. By similar to the proof of Proposition 3.2.3, we have that $v_{i, 1} \notin V^{\prime \prime}$, so $v_{i, 1} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.8. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3 -path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow\right.$ $\left.v_{k, 0} v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any 3-path $v_{k, 0} v_{i, 0} v_{p_{1}, 0}$ in G such that $k \neq j_{1} \neq p_{1}$.

Proof. Proof by contradiction: assume that $\left(v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{k, 0} v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some 3-path $v_{k, 0} v_{i, 0} v_{p_{1}, 0}$ in G such that $k \neq j_{1} \neq p_{1}$.

So we have that $v_{p_{1}, 0}, v_{p_{2}, q_{2}} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$. Then it follows that $v_{j_{1}, 0} \smile$ $\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$ or $v_{i, 0} \smile\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$ by Lemma 3.1.26. Hence $v_{j_{1}, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$ or $v_{i, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$ by Notation 3.2.2(c), contradicting the condition $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$.

Proposition 3.2.9. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m -irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for a $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any 3 -path $v_{k, 0} v_{i, 0} v_{p_{1}, 0} p_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $k \neq j_{1} \neq p_{1}$ and $v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Proof. Proof by contradiction: assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for a 3 -path $v_{k, 0} v_{i, 0} v_{p_{1}, 0} p_{p_{2}, q_{2}}$ in $\Sigma_{3} G$ such that $k \neq j_{1} \neq p_{1}$ and $v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Then we have that $v_{p_{1}, 0}, v_{p_{2}, q_{2}} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. So we have that $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ or $v_{i, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ by Lemma 3.1.26. Hence $v_{j_{1}, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$ or $v_{i, 0} \smile v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$ by Notation 3.2.2(c), contradicting $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$.

Proposition 3.2.10. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for a $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any 3-path $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in G such that $k \neq j_{1} \neq p_{1}$ and $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$.

Proof. Proof by contradiction: assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for a 3-path $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ in G such that $k \neq j_{1} \neq p_{1}$ and $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$. Then $v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0} v_{i, 0}$ is a 3 -cycle in G_{ω}.

Since $v_{i, 0} \not \not v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$, we have that $v_{i, 0} \nsucc v_{k, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$ by Notation 3.2.2(c). Since $v_{k, 0} \nsucc v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, we have that $v_{k, 0} \nsucc v_{k, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$. Since $v_{i, 0} \nsucc v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$ and $v_{i, 0} \smile v_{k, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$, we have

$$
f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\delta^{\prime \prime}\left(v_{i, 0}\right) \leq f\left(\lambda\left(v_{k, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right)
$$

By Notation 3.2.2(e)(1), we have that $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{1}, p_{1}}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{1}, p_{1}}\right)\right\}$ and $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)$. Hence similar to the proof of Proposition 3.2.7, $v_{j_{1}, 0}, v_{p_{1}, 0} \nsucc v_{k, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.11. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow\right.$ $\left.v_{i, 0} v_{p_{1}, 1} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 1} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

By Notation 3.2.2(b) we have

$$
\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right) \leq f\left(\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)\right)<f\left(\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)\right)+\lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)
$$

So we have that $v_{p_{1}, 1} \not \not v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$. Also, we have that $v_{i, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$ by Notation 3.2.2(c), and $v_{j_{1}, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$, contradicting Lemma 3.1.26.

Proposition 3.2.12. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow\right.$ $\left.v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

Proof. Proof by contradiction: assume that we have $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{i, 0} v_{p_{1}, 0} \in E(G)$ such that $p_{1} \neq j_{1}$.

By Notation 3.2.2(b) we have that

$$
\begin{aligned}
& f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)+\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right) \\
\leq & f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)+f\left(\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)\right) \\
< & f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)+f\left(\lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)\right)+\lambda\left(v_{p_{1}, 1} v_{p_{1}, 2}\right)
\end{aligned}
$$

we have that $v_{p_{1}, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$. Also, note that $v_{i, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow\right.$
$\left.v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(c), and $v_{j_{1}, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$, contradicting Lemma 3.1.26.

Proposition 3.2.13. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow\right.$ $\left.v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any 2-path $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ in G such that $p_{1} \neq j_{1} \neq p_{2}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some 2 -path $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ in G such that $p_{1} \neq j_{1} \neq p_{2}$.

By Notation 3.2.2(a),

$$
\lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right) \leq f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right)\right)<f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right)\right)+\lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right) .
$$

So we have that $v_{p_{2}, 0} \nprec v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Also, we have that $v_{i, 0} \nprec v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ by Notation 3.2.2(c), and $v_{j_{1}, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.14. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow\right.$ $\left.v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any 2-path $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ in G such that $p_{1} \neq j_{1}=p_{2}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some

2 -path $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ in G such that $p_{1} \neq j_{1}=p_{2}$.

By Notation 3.2.2(a),

$$
\lambda\left(v_{i, 0} v_{j_{1}, 0}\right) \leq f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)<f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)+\lambda\left(v_{j_{1}, 1} v_{j_{1}, 2}\right) .
$$

So we have that $v_{j_{1}, 0} \nsucc\left(v_{j_{1}, 1} v_{j_{1}, 0} v_{i, 0} v_{i, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{i, 1}\right)$. Additionally, we also have that $v_{i, 1}, v_{i, 0} \nsucc$ $\left(v_{j_{1}, 1} v_{j_{1}, 0} v_{i, 0} v_{i, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{i, 1}\right)$, contradicting Lemma 3.1.26.

Proposition 3.2.15. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for a $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any 3-path $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ in $\Sigma_{3} G$ such that $p_{1} \neq j_{1}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ such that $p_{1} \neq j_{1}$.

Then $v_{p_{1}, 0} \not \not v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ and $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$. Since $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$, we have that $v_{j_{1}, 0}, v_{i, 0} \not \not v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ by Notation 3.2.2(c). So we have that $v_{p_{2}, q_{2}} \smile$ $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ by Lemma 3.1.26. Hence

$$
f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)<\delta^{\prime \prime}\left(v_{p_{2}, q_{2}}\right) \leq \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right) .
$$

Thus, by Notation 3.2.2(b) we have that $q_{2}=0$ and then $q_{3}=0$ by Notation 3.2.2(a). Since $v_{i, 0} \smile$ $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ and $v_{i, 0} \nsucc v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0}$, we have that $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$.
(a) Assume that $p_{2} \neq j_{1} \neq p_{3}$. Then $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ is a 4 -path in G. So by Notations 3.2.2(d) and (c) we have

$$
\lambda\left(v_{i, 0} v_{p_{1}, 0}\right) \leq f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \leq f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)
$$

contradicting $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$.
(b) Assume that $j_{1}=p_{2}$.

Then by Notation 3.2.2(e)(2)(i), we have that $v_{p_{1}, 0} \nsucc v_{p_{3}, q_{3}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Observe that $v_{p_{3}, q_{3}}, v_{i, 0} \nsucc$ $v_{p_{3}, q_{3}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ and $v_{i, 1}, v_{i, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$. By Notation 3.2.2(e)(2)(ii), we have that $v_{j_{1}, 0} \nsucc$ $v_{p_{3}, q_{3}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.
(c) Assume that $j_{1}=p_{3}$. Then $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 4 -cycle in G.

So we have the following 3 cases:
(1) $f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(f)(1) or (f)(2)(iii). Then we have that $v_{p_{2}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. But $v_{j_{1}, 0}, v_{i, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, contradicting Lemma 3.1.26.
(2) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right\}$ and

$$
f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right),
$$

by Notations 3.2.2(f)(2)(ii) and (f)(2)(iii). Then we have that $v_{j_{1}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0}$ and $v_{p_{1}, 0} \nsim$ $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0}$. But $v_{i, 0}, v_{p_{2}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.
(3) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right\}$ and

$$
f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right) \text { and } f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right),
$$

by Notations $3.2 .2(f)(2)(i i)$ and (f)(2)(iii). Then $v_{j_{1}, 0} \nprec v_{p_{2}, 0} v_{j_{1}} v_{i, 0} v_{p_{1}, 0}, v_{p_{2}, 0} \nprec v_{p_{2}, 0} v_{j_{1}} v_{i, 0} v_{p_{1}, 0}$ and $v_{p_{1}, 0} \nsim v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. But $v_{i, 0} \nsucc v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.16. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Then for $i=1, \ldots, d$, we have $v_{i, 0} \notin V^{\prime \prime}$ or $v_{i, 2} \notin V^{\prime \prime}$.

Proof. Proof by contradiction: assume that $v_{i, 0} \in V^{\prime \prime}$ and $v_{i, 2} \in V^{\prime \prime}$. Then similar to the proof of Proposition 3.2.4, $v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0},\left(v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 2} v_{i, 1} v_{i, 0}\right) \notin \mathfrak{P}_{i, 2}$. Then $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$. Then one can check that $\left(P_{r} \rightsquigarrow \wp\right) \notin \mathfrak{P}_{i, 0}$ for any path \wp in $p_{\underline{n}}(I)$ with $v_{i, 0}, v_{j_{1}, 0} \in V(\wp)$ or with $v_{i, 0}, v_{i, 2} \in V(\wp)$. Combining $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 2}$ with Propositions 3.2.5 to 3.2.15, we have $\mathfrak{P}_{i, 0}=\emptyset$, contradicting Lemma 3.1.26.

Proposition 3.2.17. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 1}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\mathfrak{P}_{i, 0}=\emptyset$.

Proof. One can check that $\left(P_{r} \rightsquigarrow \wp\right) \notin \mathfrak{P}_{i, 0}$ for any path \wp in $p_{\underline{n}}(I)$ with $v_{i, 0}, v_{j_{1}, 0} \in V(\wp)$ or with $v_{i, 0}, v_{i, 2} \in V(\wp)$. So one can also check that the remaining 11 cases are identical to the ones in Proposition 3.2.5 to 3.2.15 and their corresponding proofs.

Proposition 3.2.18. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $\left(v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{i, 1} v_{i, 0} v_{j_{1}, 0}\right) \in \mathfrak{P}_{i, 1}$, then $\mathfrak{P}_{i, 0}=\emptyset$.

Proof. Note that $\wp \notin \mathfrak{P}_{i, 0}$ for any path \wp in $p_{\underline{n}}(I)$ with $v_{i, 0}, v_{j_{1}, 0} \in V(\wp)$ or with $v_{i, 0}, v_{i, 1} \in V(\wp)$.
(a) Assume that $\left(v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{k, 0} v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $k \neq j_{1} \neq p_{1}$.

Then $v_{j_{1}, 0}, v_{k, 0} \nsucc\left(v_{j_{1}, 1} v_{j_{1}, 0} v_{i, 0} v_{k, 0} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{k, 0}\right)$. Also, we have that $v_{i, 0} \nsucc\left(v_{j_{1}, 1} v_{j_{1}, 0} v_{i, 0} v_{k, 0} \rightsquigarrow\right.$ $\left.v_{j_{1}, 0} v_{i, 0} v_{k, 0}\right)$ by Notation 3.2.2(c), contradicting Lemma 3.1.26.
(b) Assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some $k \neq j_{1} \neq p_{1}$.

Then this case is similar to Case (a). Note that in this case, we may have that $v_{j_{2}, k_{2}}=v_{p_{2}, q_{2}}$.
(c) Assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}\right) \in \mathfrak{P}_{i, 0}$ or $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}$.

Then $v_{p_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$ by Notation 3.2.2(a). Also, note that $v_{i, 0} \nsucc$ $\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$ by Notation 3.2.2(c), and that $v_{j_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow\right.$ $\left.v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$, contradicting Lemma 3.1.26.
(d) Assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1} \neq p_{2}$.

Then we have that $v_{p_{2}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ by Notation 3.2.2(a), and $v_{i, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ by Notation 3.2.2(c) and $v_{p_{1}, 0}, v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, contradicting Lemma 3.1.26.
(e) Assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}=p_{2}$.

Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$. So we have $v_{p_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$. Since $v_{j_{1}, 0} \nsucc\left(v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{i, 1} v_{i, 0} v_{j_{1}, 0}\right)$, we have $v_{j_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$. Also, we have that $v_{i, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$ by Notation 3.2.2(c). Hence we have that $v_{p_{1}, 0}, v_{i, 0}, v_{j_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$, contradicting Lemma 3.1.26.
(f) Assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $j_{1} \neq p_{1}$ and $v_{p_{2}, q_{2}} \neq v_{j_{1}, 0} \neq v_{p_{3}, q_{3}}$.

By way of contradiction, we get that $v_{j_{1}, 0}, v_{i, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, so we have that $v_{p_{2}, q_{2}} \smile$ $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have $f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)<$ $\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)$. So we have that $q_{3}=0$ and then $q_{2}=0$. So we have that $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ is a 4-path in G. Hence by Notation 3.2.2(d),

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)>f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)
$$

contradicting Notation 3.2.2(c).
(g) Assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$.

Then similar to Case (e), we have that $v_{p_{1}, 0}, v_{i, 0}, v_{j_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$, contradicting Lemma 3.1.26.
(h) Assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{3}, q_{3}}$.

Since $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0}$ is a 4 -cycle in G, we have the following 2 cases by Notation 3.2.2(f):
(1) $f\left(\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)$ by Notation 3.2.2(f)(1). Then we have that $v_{p_{2}, q_{2}} \nsucc v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$. Since

$$
\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right)+f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)>f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)
$$

by Notation 3.2.2(a), we have that $v_{j_{1}, 0} \nsucc v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$. Also, $v_{i, 0} \nsucc v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$ by condition (c) and $v_{p_{1}, 0} \nsucc v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$, contradicting Lemma 3.1.26.
(2) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right\}$ by Notation 3.2.2(f)(2)(i). As $v_{j_{1}, 0} \nsucc\left(v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 1} \rightsquigarrow v_{i, 1} v_{i, 0} v_{j_{1}, 0}\right)$, we have that $v_{j_{1}, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 0} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$. Also, since $v_{i, 0} \nsucc\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 0} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$ by Notation 3.2.2(c), we have that $v_{p_{1}, 0} \nsucc$ $\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 0} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$. So we have that $v_{p_{1}, 0} \smile\left(v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 0} \rightsquigarrow v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}\right)$ by Lemma 3.1.26. So we have that $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$. Since

$$
\begin{aligned}
f\left(\lambda\left(v_{i, 0} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, q_{2}}\right)\right) & \leq f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right) \\
& <\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right)+f\left(\lambda\left(v_{j_{1}, 1} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)
\end{aligned}
$$

by Notation 3.2.2(c), we have that $v_{j_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$. Also, $v_{i, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$ by Notation 3.2.2(a) and $v_{p_{2}, q_{2}} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.19. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \in \mathfrak{P}_{i, 1}$ for some $v_{i, 0} v_{j_{1}, 0} \in E(G)$, then $\wp \notin \mathfrak{P}_{i, 0}$ for any path $\wp \in p_{\underline{n}}(I)$ with $v_{i, 0}, v_{j_{1}, 0} \in V(\wp)$ or with $v_{i, 0}, v_{i, 1} \in V(\wp)$

Proof. It is straightforward to show this statement.

Proposition 3.2.20. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m -irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{k, 0} v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}} \neq v_{k, 0} \neq v_{j_{1}, 0}$ and $j_{1} \neq p_{1}$.

Proof. Proof by contradiction: assume that $\left(v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{k, 0} v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}} \neq v_{k, 0} \neq v_{j_{1}, 0}$ and $j_{1} \neq p_{1}$.

Then $v_{j_{2}, k_{2}}, v_{j_{1}, 0}, v_{k, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{k, 0}$. Also, we have that $v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{k, 0}$ by Notation 3.2.2(c), contradicting Lemma 3.1.26. Note that in this case, we may have that $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$.

Proposition 3.2.21. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any
$v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}} \neq$ $v_{k, 0} \neq v_{j_{1}, 0}$ and $j_{1} \neq p_{1}$.

Proof. Proof by contradiction: assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}} \neq v_{k, 0} \neq v_{j_{1}, 0}$ and $j_{1} \neq p_{1}$.

Then the proof is similar to the proof of Proposition 3.2.20. Note that in this case, we may have that $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$, etc.

Proposition 3.2.22. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{k, 0}$ and $j_{1} \neq p_{1}$ and $v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Proof. Proof by contradiction: assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{k, 0}$ and $j_{1} \neq p_{1}$ and $v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Then by way of contradiction, we get that $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ and $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{k, 0}$. Since $v_{p_{1}, 0} \nsucc v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, we have that $f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ and then $q_{2}=0$. So we have that $v_{k, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ is a 4-path in G. Hence $f\left(\lambda\left(v_{k, 0} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right) \geq$ $\lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$, contradicting $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ and $v_{j_{1}, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{k, 0}$.

Proposition 3.2.23. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and
$P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{k, 0}$ and $j_{1} \neq p_{1}$ and $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$.

Proof. Proof by contradiction: assume that $v_{k, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{k, 0}$ and $j_{1} \neq p_{1}$ and $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$.

Then $v_{k, 0}, v_{j_{1}, 0} \nsucc v_{k, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Since $f\left(\lambda\left(v_{k, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right)>f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)$ and $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(e)(1). So we have that $v_{p_{1}, 0} \nsucc v_{k, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Also, we have that $v_{i, 0} \nsucc v_{k, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ by Notation 3.2.2(c), contradicting Lemma 3.1.26.

Proposition 3.2.24. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right\}$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}\right) \notin \mathfrak{P}_{i, 0}$ for any $p_{1} \neq j_{1}$ and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}$ and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}}$.

By Notation 3.2.2(a), we have $v_{p_{1}, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Also, note that $v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ by Notation 3.2.2(c), and that $v_{j_{2}, k_{2}}, v_{j_{1}, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.25. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{\underline{n}}}(I)$ and
$P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right\}$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}\right) \notin \mathfrak{P}_{i, 0}$ for any $p_{1} \neq j_{1}$ and $v_{p_{1}, 0}=v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}$ and $v_{p_{1}, 0}=v_{j_{2}, k_{2}}$.

By Notation 3.2.2(b), we have

$$
\lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right) \leq f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)<f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right) .
$$

So we have that $v_{p_{1}, 1} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1}$ and $v_{p_{1}, 1} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$. Since $v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 2 cases by Notation 3.2.2(e)(2)(iii):
(a) $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right) \leq \max \left\{\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)\right\}$. Then $v_{p_{1}, 0} \nsim$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1}$. Also, we have that $v_{i, 0} \nprec v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1}$ by Notation 3.2.2(a) and $v_{j_{1}, 0} \nprec$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1}$, contradicting Lemma 3.1.26.
(b) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$. Also, we have that $v_{i, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$ by Notation 3.2.2(c) and $v_{p_{1}, 0} \nprec v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1}$, contradicting Lemma 3.1.26.

Proposition 3.2.26. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $p_{1} \neq j_{1}$ and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}$
and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}}$.

Since

$$
\begin{aligned}
\lambda\left(v_{i, 0} v_{p_{1}, 0}\right) & \leq f\left(\lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \\
& <f\left(\lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right)+f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right)
\end{aligned}
$$

we have that $v_{p_{1}, 0} \not \not v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Also, we have that $v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ by Notation 3.2.2(c), and $v_{j_{2}, k_{2}}, v_{j_{1}, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.27. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $p_{1} \neq j_{1}$ and $v_{p_{1}, 0}=v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \rightsquigarrow v_{i, 0} v_{p_{1}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $p_{1} \neq j_{1}$ and $v_{p_{1}, 0}=v_{j_{2}, k_{2}}$.

Since $v_{i, 0} v_{p_{1}, 0} v_{j_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)>f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)$, we have the following 2 cases by Notation 3.2.2(e)(2)(iii):
(a) $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right) \leq \max \left\{\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)\right\}$.

Assume that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)<f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)$. Since $v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$ is a 3 -cycle in G, we have that $f\left(\lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(e)(1). Assume that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right) \geq f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{1}, 1}\right)\right)$. Then by Notation 3.2.2(b),

$$
\begin{aligned}
& f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right) \\
\leq & f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right) \\
< & f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right) .
\end{aligned}
$$

Thus, $v_{p_{1}, 0} \nsucc\left(v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}\right)$. Also, $v_{i, 0} \nsucc\left(v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(a) and $v_{j_{1}, 0} \nsucc\left(v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}\right)$, contradicting Lemma 3.1.26.
(b) $f\left(\lambda\left(v_{j_{1}, 0} v_{i_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then $v_{j_{1}, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$. By Notation 3.2.2(b) we have

$$
\begin{aligned}
& f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right) \\
\leq & f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right) \\
< & f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+f\left(\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right), \lambda\left(v_{p_{1}, 1} v_{p_{1}, 0}\right)\right)+\lambda\left(v_{p_{1}, 2} v_{p_{1}, 1}\right)
\end{aligned}
$$

So we have that $v_{p_{1}, 0} \nsucc\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$. Additionally, we also have that $v_{i, 0} \nsucc$ $\left(v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} \rightsquigarrow v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(c), contradicting Lemma 3.1.26.

Proposition 3.2.28. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}} \neq v_{p_{1}, 0} \neq v_{j_{1}, 0}$ and $v_{j_{2}, k_{2}} \neq v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}} \neq v_{p_{1}, 0} \neq v_{j_{1}, 0}$ and $v_{j_{2}, k_{2}} \neq v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$.

By way of contradiction, we get that $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{j_{1}, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$, we have that $f\left(\lambda\left(v_{j_{2}, k_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)<\lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then $k_{2}=0$, and so $v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ is a 4 -path in G. Since $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have $f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq$ $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(d). So we have that $v_{p_{1}, 0} \smile\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right)$, contradicting $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$.

Proposition 3.2.29. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $j_{1}=p_{2}$.

Proof. Proof by contradiction: assume $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $j_{1}=p_{2}$.

By way of contradiction, we get that $v_{j_{2}, k_{2}}, v_{j_{1}, 0}, v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)>f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)$, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)\right) \geq$ $\lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(e)(2)(i). So we have that $v_{p_{1}, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.30. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3 -path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$.

It is straightforward to show $v_{i, 0}, v_{j_{1}, 0}, v_{p_{2}, 0} \not \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ and $v_{i, 0}, v_{p_{2}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Then $v_{p_{1}, 0} \smile v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3-cycle and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<$ $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 2 cases by Notation 3.2.2(e)(2)(iii):
(a) $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right)\right\}$. So we have that $v_{p_{1}, 0} \smile v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0}$ or that $v_{p_{1}, 0} \smile\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right)$ since $v_{p_{1}, 0} \smile$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, a contradiction.
(b) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then we have that $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. So we have that $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. So we have that $v_{p_{1}, 0} \smile\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right)$, a contradiction.

Proposition 3.2.31. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m -irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{p_{2}, 0}$ and $j_{1} \neq p_{1}$.

Proof. Proof by contradiction: assume that $\left(v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{2}, 1} \rightsquigarrow v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}\right) \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{2}, 0}$ and $j_{1} \neq p_{1}$.

Then

$$
\begin{aligned}
f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) & \leq f\left(\lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right)\right) \\
& <f\left(\lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right)\right)+\lambda\left(v_{p_{2}, 0} v_{p_{2}, 1}\right)
\end{aligned}
$$

So we have that $v_{p_{2}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$. By way of contradiction, we get that $v_{i, 0}, v_{j_{1}, 0}, v_{p_{2}, 0} \nsucc$ $v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$. So we have that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{1}, 0}$ is a 4-cycle and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 2 cases by Notation 3.2.2(f):
(a) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(f)(1). So $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$.

By way of contradiction, $v_{i, 0}, v_{p_{1}, 0}, v_{p_{2}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, contradicting Lemma 3.1.26.
(b) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right\}$ by Notation 3.2.2(f)(2)(i). Then since $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$, we have that $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0}$. But by way of contradiction, we get that $v_{i, 0}, v_{j_{1}, 0}, v_{p_{2}, 0} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.32. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}} \neq$ $v_{p_{1}, 0} \neq v_{j_{1}, 0}, v_{j_{2}, k_{2}} \neq v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$ and $v_{j_{2}, k_{2}} \neq v_{p_{3}, q_{3}} \neq v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{1}, 1} v_{p_{1}, 2} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}} \neq v_{p_{1}, 0} \neq v_{j_{1}, 0}$, $v_{j_{2}, k_{2}} \neq v_{p_{2}, q_{2}} \neq v_{j_{1}, 0}$, and $v_{j_{2}, k_{2}} \neq v_{p_{3}, q_{3}} \neq v_{j_{1}, 0}$.

By way of contradiction, we get that $v_{p_{1}, 0} \smile v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Since $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have that $q_{2}=0$. By way of contradiction, we can only have the two cases $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ or $v_{p_{2}, q_{2}} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$.
(a) Suppose that $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{j_{1}, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$, we have that $k_{2}=0$ and $f\left(\lambda\left(v_{j_{2}, k_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)<\lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then $v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ is a 4-path in G. Since $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(d), contradicting $v_{p_{1}, 0} \smile v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$ and $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$.
(b) Suppose that $v_{p_{2}, q_{2}} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have that $q_{3}=0$ and $f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)<\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)$. Then $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ is a 4-path. Since $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(d), contradicting $v_{i, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ and $v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$.

Proposition 3.2.33. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$
and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}}=v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}}=v_{j_{2}, k_{2}}$.

By way of contradiction, we get that $v_{j_{2}, k_{2}}, v_{j_{1}, 0}, v_{i, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)\right) \geq$ $\lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(e)(2)(i). So we have that $v_{p_{1}, 0} \nsucc v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.34. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}} \neq v_{j_{2}, k_{2}}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}} \neq v_{j_{2}, k_{2}}$.

Then the proof is similar to the proof of Proposition 3.2.33.
Proposition 3.2.35. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and
$P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{2}, q_{2}}$ and $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$.

Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$ and

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{3}, q_{3}}\right)\right) \leq \max \left\{f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right), f\left(\lambda\left(v_{j_{1}, 0} v_{p_{3}, q_{3}}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right)\right\},
$$

by Notation 3.2.2(e)(2)(ii). So we have that $v_{p_{1}, 0}, v_{j_{1}, 0} \nsucc v_{p_{3}, q_{3}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. Also, we have that $v_{p_{3}, q_{3}}, v_{i, 0} \nsucc v_{p_{3}, q_{3}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.36. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$ and $v_{p_{3}, q_{3}} \neq v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$ and $v_{p_{3}, q_{3}} \neq v_{j_{1}, 0}$.

Then by way of contradiction, we get that $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ and $v_{i, 0}, v_{j_{1}, 0} \nsim$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Suppose that $v_{p_{2}, q_{2}} \smile v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Then as $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have that $q_{2}=0$ by Notation 3.2.2(b). Then $q_{3}=0$ by Notation 3.2.2(a). So we have that
$v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{p_{3}, 0}$ is a 4 -path in G. Since $\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)>f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)$, by Notation 3.2.2(d) we have

$$
\lambda\left(v_{i, 0} v_{p_{1}, 0}\right) \leq f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \leq f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right),
$$

a contradiction. Hence $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$ and so $v_{p_{1}, 0} \smile v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. By Notation 3.2.2(e)(2)(iii), we have the following 2 cases:
(a) $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right)\right\}$. Then since $v_{p_{1}, 0} \smile v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, we have that $v_{p_{1}, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, a contradiction.
(b) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. Then we have that $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Also, since $v_{i, 0}, v_{p_{2}, q_{2}} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, we have that $v_{p_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. So we have that $v_{p_{1}, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, a contradiction.

Proposition 3.2.37. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$ and $v_{p_{3}, q_{3}}=v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{1}, 0}$ and $v_{p_{3}, q_{3}}=v_{j_{1}, 0}$.

So we have that $q_{2}=0$. Since $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} \in \mathfrak{P}_{i, 1}$, we have that $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<$ $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$ and that $v_{i, 0}, v_{j_{1}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 3 -cycle in G, we have that $f\left(\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{p_{1}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right)\right\}$ or that $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(e)(2)(iii). So we have that $v_{p_{1}, 0} \notin$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ or $v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Hence by way of contradiction, we get that $v_{p_{2}, 0} \smile$ $v_{i, 0} v_{j_{1}, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ or $v_{p_{2}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. So we have that $\delta^{\prime \prime}\left(v_{p_{2}, 0}\right) \leq \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)$. Since
$v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0} v_{i, 0}$ is a 4 -cycle in G and $v_{j, 0} v_{l, 0} \in E(G)$, we have the following 3 cases by Notation 3.2.2(f):
(a) $f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(f)(1) or (f)(2)(iii). As $\delta^{\prime \prime}\left(v_{p_{2}, 0}\right) \leq$ $\lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)$, we have that $v_{p_{2}, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0}$, a contradiction.
(b) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)$ and

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right), f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right)\right\},
$$

by Notation 3.2.2(f)(2)(iii). Then $v_{p_{1}, 0}, v_{j_{1}, 0} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0}$. But we have that $v_{i, 0}, v_{p_{2}, 0} \nsucc$ $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.
(c) $f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$, and

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right), f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{1}, 0}\right)\right)\right\}
$$

by Notation 3.2.2(f)(2)(iii). Then $v_{p_{2}, 0}, v_{p_{1}, 0}, v_{j_{1}, 0}, v_{i, 0} \nsucc v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$. But we have that $v_{i, 0} \nsucc v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0}$, contradicting Lemma 3.1.26.

Proposition 3.2.38. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=$ $v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}}=v_{j_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}}=v_{j_{1}, 0}$.

Then by way of contradiction, we get that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$ and $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{1}, 0}$ is a 4-cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 2 cases by Notation 3.2.2(f):
(a) $f\left(\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)$ and $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(f)(1). Then $v_{p_{2}, q_{2}}, v_{j_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. But $v_{i, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, contradicting Lemma 3.1.26.
(b) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right\}$ by Notation 3.2.2(f)(2)(i). Then $v_{p_{1}, 0} \smile v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, a contradiction.

Proposition 3.2.39. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=$ $v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}} \neq v_{j_{1}, 0} \neq v_{p_{1}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{2}, q_{2}}$ and $v_{p_{3}, q_{3}} \neq v_{j_{1}, 0} \neq v_{p_{1}, 0}$.

Then $q_{2}=0$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{1}, 0}$ is a 4-cycle in G and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 5 cases by Notation 3.2.2(f):
(a) $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(f)(1) or (f)(2)(iv). Then we have that $v_{j_{1}, 0} \not \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{i, 0}, v_{p_{1}, 0} \not \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$, we have that $v_{p_{2}, q_{2}} \smile$ $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}}$. Since $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have that $q_{3}=0$ and $\lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)>$ $f\left(\lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)$. So we have that $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ is a 4 -path in G. Hence by Notation $3.2 .2(\mathrm{~d})$, we have the following which provides a contradiction

$$
\lambda\left(v_{i, 0} v_{p_{1}, 0}\right) \leq f\left(\lambda\left(v_{i, 0} v_{j_{1}, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right) \leq f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)
$$

(b) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \lambda\left(v_{p_{1}, 0} v_{i, 0}\right)$ by Notation 3.2.2(f)(2)(iv). Then we have that $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$. But $v_{i, 0}, v_{j_{1}, 0}, v_{p_{2}, q_{2}} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$, contradicting Lemma 3.1.26.
(c) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right\}$ and

$$
f\left(\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)\right) \leq \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right),
$$

by Notation 3.2.2(f)(2)(iv). By way of contradiction, we get that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$. So we have that $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0}$. Since $v_{i, 0}, v_{j_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0}$, we have that $v_{p_{2}, q_{2}} \smile$ $v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0}$. Then $v_{p_{2}, q_{2}} \smile v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$. Since $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, we have that $q_{3}=0$. So we have that $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$ is a 4 -path in G. Since $f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{p_{1}, 0}\right)\right)<$ $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have that $\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right) \leq f\left(\lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)$, contradicting $v_{p_{2}, q_{2}} \smile$ $v_{p_{2}, q_{2}} v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0}$ and $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$.
(d) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right) \geq \min \left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, q_{2}}\right)\right)$ and

$$
f\left(\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)\right\},
$$

by Notations 3.2.2(f)(2)(i) and (f)(2)(iv). Then $v_{p_{2}, q_{2}} \nsucc v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$. Since $v_{j_{1}, 0}, v_{i, 0} \nsucc$ $v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$, we have that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{j_{1}, 0} v_{i, 0}$. So we have $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$. But $v_{i, 0}, v_{j_{1}, 0}, v_{p_{2}, q_{2}} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}}$, contradicting Lemma 3.1.26.
(e) $f\left(\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right) \leq \max \left\{\lambda\left(v_{p_{2}, q_{2}} v_{j_{1}, 0}\right), f\left(\lambda\left(v_{p_{2}, q_{2}} v_{p_{1}, 0}\right), \lambda\left(v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}\right)\right)\right\}$ by Notation 3.2.2(f)(2)(iv). Then $v_{p_{2}, q_{2}} \nsucc v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$. But we have that $v_{i, 0}, v_{j_{1}, 0}, v_{p_{3}, q_{3}} \notin$ $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}}$, contradicting Lemma 3.1.26.

Proposition 3.2.40. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{1}, 0}=v_{p_{3}, q_{3}}$ and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}} \neq v_{p_{2}, 0}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{1}, 0}=v_{p_{3}, q_{3}}$ and $v_{p_{1}, 0} \neq v_{j_{2}, k_{2}} \neq v_{p_{2}, 0}$.

Then by way of contradiction, we get that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$. Since $v_{i, 0} v_{j_{1}, 0} v_{p_{2}, q_{2}} v_{p_{1}, 0}$ is a 4 -cycle in G_{ω} and $f\left(\lambda\left(v_{i, 1} v_{i, 0}\right), \lambda\left(v_{i, 0} v_{j_{1}, 0}\right)\right)<\lambda\left(v_{i, 0} v_{p_{1}, 0}\right)$, we have the following 4 cases by Notation 3.2.2(f):
(a) $f\left(\lambda\left(v_{p_{2}, 0} v_{j_{1}, 0}\right), \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)\right) \geq \lambda\left(v_{p_{2}, 0} v_{p_{1}, 0}\right)$ by Notation 3.2.2(f)(1) or (f)(2)(v). Then $v_{p_{2}, 0} \notin$ $v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Note that $v_{i, 0}, v_{p_{1}, 0} \nsucc v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$, so $v_{j_{1}, 0} \smile v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$. Since $v_{j_{1}, 0} \nsucc v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$, we have that $k=0$ and $f\left(\lambda\left(v_{j_{2}, k_{2}} v_{j_{1}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{i, 0}\right)\right)<\lambda\left(v_{j_{1}, 0} v_{i, 0}\right)$. So we have that $v_{j_{2}, k_{2}} v_{j_{1}, 0} v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0}$ is a 4 -path in G. Hence $\lambda\left(v_{i, 0} v_{p_{1}, 0}\right) \geq f\left(\lambda\left(v_{i, 0} v_{p_{1}, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right)$, contradicting $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$ and $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0}$.
(b) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right)$ by Notation 3.2.2(f)(2)(v). Then $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$. But $v_{i, 0}, v_{j_{1}, 0}, v_{j_{2}, k_{2}} \nsucc v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$, contradicting Lemma 3.1.26.
(c) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right\}$ and

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right), f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{2}, k_{2}}\right)\right)\right\}
$$

by Notations 3.2.2(f)(2)(i) and (f)(2)(v). So we have that $v_{j_{1}, 0} \nprec v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$. By way of contradiction we have that $v_{p_{1}, 0} \smile v_{p_{1}, 0} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$. Since $v_{p_{1}, 0} \nsucc v_{i, 0} v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0}$ we have that $v_{p_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$. But $v_{i, 0}, v_{p_{2}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{i, 0}$, contradicting Lemma 3.1.26.
(d) $f\left(\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right) \geq \min \left\{\lambda\left(v_{p_{1}, 0} v_{i, 0}\right), \lambda\left(v_{p_{1}, 0} v_{p_{2}, 0}\right)\right\}$ and

$$
f\left(\lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{2}, k_{2}}\right)\right) \leq \max \left\{\lambda\left(v_{j_{1}, 0} v_{p_{2}, 0}\right), f\left(\lambda\left(v_{j_{1}, 0} v_{i, 0}\right), \lambda\left(v_{j_{1}, 0} v_{j_{2}, k_{2}}\right)\right)\right\}
$$

by Notations 3.2.2(f)(2)(i) and (f)(2)(v). Then $v_{j_{1}, 0} \nsucc v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$. Similar to Case (c), we have that $v_{p_{1}, 0} \not \not v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$. But $v_{j_{2}, k_{2}}, v_{p_{2}, 0} \not \nsucc v_{p_{1}, 0} v_{p_{2}, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$, contradicting Lemma 3.1.26.

Proposition 3.2.41. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Assume that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \in \mathfrak{P}_{i, 1}$, then $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \notin \mathfrak{P}_{i, 0}$ for any $v_{j_{2}, k_{2}}=$ $v_{p_{3}, q_{3}}$ and $v_{p_{1}, 0} \neq v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Proof. Proof by contradiction: assume that $v_{i, 0} v_{p_{1}, 0} v_{p_{2}, q_{2}} v_{p_{3}, q_{3}} \in \mathfrak{P}_{i, 0}$ for some $v_{j_{2}, k_{2}}=v_{p_{3}, q_{3}}$ and $v_{p_{1}, 0} \neq v_{j_{1}, 0} \neq v_{p_{2}, q_{2}}$.

Then $k_{2}=0=q_{2}$ and the proof is similar to the proof of Proposition 3.2.32.

Proposition 3.2.42. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m-irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Then for $i=1, \ldots, d$, we have $v_{i, 0} \notin V^{\prime \prime}$ or $v_{i, 1} \notin V^{\prime \prime}$.

Proof. Proof by contradiction: assume that $v_{i, 0} \in V^{\prime \prime}$ and $v_{i, 1} \in V^{\prime \prime}$. Then similar to the proof of Proposition 3.2.16, we have that

$$
v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0}, \quad\left(v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 2} v_{i, 1} v_{i, 0}\right), \quad\left(v_{i, 3} v_{i, 2} v_{i, 1} v_{i, 0} \rightsquigarrow v_{i, 1} v_{i, 0}\right) \notin \mathfrak{P}_{i, 1}
$$

Proposition 3.2.17 and Lemma 3.1.30 imply that $v_{i, 2} v_{i, 1} v_{i, 0} v_{j_{1}, 0} \notin \mathfrak{P}_{i, 1}$ for any $v_{i, 0} v_{j_{1}, 0} \in E(G)$ Proposition 3.2.18 and Lemma 3.1.30 imply that $\left(v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{1}, 0} \rightsquigarrow v_{i, 1} v_{i, 0} v_{j_{1}, 0}\right) \notin \mathfrak{P}_{i, 1}$ for any $v_{i, 0} v_{j_{1}, 0} \in E(G)$. Proposition 3.2 .19 to 3.2 .41 and Lemma 3.1.30 say that $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}} \notin \mathfrak{P}_{i, 1}$ for any 3-path $v_{i, 1} v_{i, 0} v_{j_{1}, 0} v_{j_{2}, k_{2}}$ in $\Sigma_{3} G$. Thus, we get that $\mathfrak{P}_{i, 1}=\emptyset$, contradicting Lemma 3.1.30.

Proposition 3.2.43. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω} that satisfies the conditions from Notation 3.2.2. Let $I:=I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an m -irreducible decomposition of $p_{\underline{n}}(I)$ and $P\left(V^{\prime \prime} \backslash\left\{v_{i, j}\right\},\left.\delta^{\prime \prime}\right|_{V^{\prime \prime} \backslash\left\{v_{i, j}\right\}}\right)$ does not occur in any m-irreducible decomposition of $p_{\underline{n}}(I)$ for any $v_{i, j} \in V^{\prime \prime}$. Then there exists at most one $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$. Note also that there exists a $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$, so $p_{\underline{n}}(I)$ is unmixed.

Proof. It follows from Proposition 3.2.3, 3.2.4, 3.2.16, and 3.2.42

We discuss the sufficient conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed for the remaining cases $r \geq 4$.

Proposition 3.2.44. Assume that $r \geq 4$. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{i} v_{i, 1}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\lambda\left(v_{i, k} v_{i, k+1}\right) \leq f\left(\lambda\left(v_{i, k} v_{i, k+1}\right), \lambda\left(v_{i, k+1} v_{i, k+2}\right)\right)$ for $i=1, \ldots, d$ and $k=0, \ldots, r-2, f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ and for all 2-paths $v_{i} v_{j} v_{k}$ in G :

$$
f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right)=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right)
$$

Let $I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\underline{n} \in \mathbb{N}^{d}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ with $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$ be such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an irredundant m-irreducible decomposition of $p_{\underline{n}}(I)$. Then there exists a unique $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$. Note also that there exists a $v_{i, i_{j}} \in V^{\prime \prime}$ for $i=1, \ldots, d$, so $p_{\underline{n}}(I)$ is unmixed.

Proof. Suppose there exist $v_{i, \alpha}, v_{i, \beta} \in V^{\prime \prime}$ with $0 \leq \alpha<\beta \leq r$. Suppose that $v_{i, \beta} \smile\left(P_{r} \rightsquigarrow \wp\right)$ for some r-path P_{r} and some path $\wp \in p_{\underline{n}}(I)$, then we must have that $v_{i, \alpha} \in V(\wp)$. But since $\mathfrak{P}_{i, \alpha} \neq \emptyset$ by Lemma 3.1.30, it is straightforward to show that $v_{i, \alpha} \smile\left(P_{r} \rightsquigarrow \wp\right)$. So we have that $\mathfrak{P}_{i, \beta}=\emptyset$, contradicting Lemma 3.1.30. Note that for $i=1, \ldots, d$, by the definition of $p_{\underline{n}}(I)$, we have that there exists a generator where all variables are of the form $X_{i, i_{l}}$ with $i_{l} \in\{0, \ldots, r\}$, so there exists a vertex $v_{i, i_{j}} \in V^{\prime \prime}$.

Example 3.2.45. Let $r=4$ and $f=\min$. Let $\left(\Sigma_{4} G\right)_{\lambda}$ be a weighted 4 -path suspension of $G_{\omega}:=v_{1}-6 v_{2} \xrightarrow{6} v_{3} \xrightarrow{3} v_{4}:$

Then $\mathfrak{P}_{1}:=\left\{v_{1}^{6}, v_{2}^{6}, v_{3}^{6}, v_{4}^{3}\right\}$ is a minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$. It is depicted in the following drawing, where $v_{i}^{i_{j}} \in \mathfrak{P}_{1}$ if and only if it is encompassed by a circle. Note that
$\left|\mathfrak{P}_{1}\right|=4$.

In fact, it is straightforward to show that the cardinality of any minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$ is at least 4. Also, we can see that there always exists a minimal min-weighted 4-path vertex cover of cardinality 4 , generated from the min-weighted 4 -path vertex cover $\left\{v_{1}^{1}, v_{2}^{1}, v_{3}^{1}, v_{4}^{1}\right\}$. We see that $\mathfrak{P}_{2}:=\left\{v_{1}^{6}, v_{2,2}^{6}, v_{3}^{6}, v_{3,3}^{6}, v_{4,1}^{6}\right\}$ is another minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$ depicted in the following sketch.

Since $\left|\mathfrak{P}_{2}\right|=5$, we have that $I_{r, \min }\left(\left(\Sigma_{4} G\right)_{\lambda}\right)$ is mixed by the definition of mixedness and Fact 3.1.7.

Example 3.2.46. Let $r=4$ and $f=\min$. Let $\left(\Sigma_{4} G\right)_{\lambda}$ be a weighted 4 -path suspension of $G_{\omega}:=v_{1}-6 v_{2}-6<v_{3}-9<v_{4}:$

The only difference between the above graph $\left(\Sigma_{4} G\right)_{\lambda}$ and the one from Example 3.2.45 is the weight of $v_{3} v_{4}$. Then $\mathfrak{P}_{1}:=\left\{v_{1}^{6}, v_{2}^{6}, v_{3}^{6}, v_{4}^{6}\right\}$ is a minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$ depicted in the following.

In fact, it is straightforward to show that the cardinality of any minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$ is at least 4. Also, we can see that there always exists a minimal min-weighted 4-path vertex cover of cardinality 4 , generated from the min-weighted 4 -path vertex cover $\left\{v_{1}^{1}, v_{2}^{1}, v_{3}^{1}, v_{4}^{1}\right\}$. We see that $\mathfrak{P}_{2}:=\left\{v_{1}^{6}, v_{2}^{6}, v_{3}^{9}, v_{3,1}^{6}, v_{4,4}^{6}\right\}$ is another minimal min-weighted 4-path vertex cover of $\left(\Sigma_{4} G\right)_{\lambda}$ depicted in the following.

Since $\left|\mathfrak{P}_{2}\right|=5$, we have that $I_{r, \min }\left(\left(\Sigma_{4} G\right)_{\lambda}\right)$ is mixed by the definition of mixedness and Fact 3.1.7.

From Examples 3.2.45 and 3.2.46, we see that there must be some strict constraints on the weights of G to make $I_{r, \min }\left(\left(\Sigma_{4} G\right)_{\lambda}\right)$ be unmixed. We will show that in general when $r \geq 4$, if $I_{r, \min }\left(\Sigma_{4} G_{\omega}\right)$ is unmixed, then all edges in G have the same weight, i.e., $\omega=\left.\lambda\right|_{G}$ is a constant. This result can be found in Corollary 3.5.3, Proposition 3.2.44, and Theorem 3.3.4.

3.3 Necessary Conditions for Unmixedness

In this section, we prove the necessary conditions for which the f-weighted r-path ideal of a weighted r-path suspension is unmixed. We divide the classification into 3 kinds of cases. We first discuss the necessary conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed for the case $r=2$.

Lemma 3.3.1. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω}. If $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ is unmixed, then $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{i} v_{i, 1}\right)\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E(G)$ and $\lambda\left(v_{i, k} v_{i, k+1}\right) \leq f\left(\lambda\left(v_{i, k} v_{i, k+1}\right), \lambda\left(v_{i, k+1} v_{i, k+2}\right)\right)$ for $i=1, \ldots, d$ and $k=0, \ldots, r-2, f\left(\lambda\left(v_{i_{1}} v_{i_{2}}\right), \lambda\left(v_{i_{2}} v_{i_{3}}\right)\right) \leq \lambda\left(v_{i_{2}} v_{i_{2}, 1}\right), f\left(\lambda\left(v_{i_{1}} v_{i_{2}}\right), \lambda\left(v_{i_{2}} v_{i_{3}}\right)\right) \leq f\left(\lambda\left(v_{i_{1}} v_{i_{2}}\right), \lambda\left(v_{i_{2}} v_{i_{2}, 1}\right)\right)$ and $f\left(\lambda\left(v_{i_{1}} v_{i_{2}}\right), \lambda\left(v_{i_{2}} v_{i_{3}}\right)\right) \leq f\left(\lambda\left(v_{i_{3}} v_{i_{2}}\right), \lambda\left(v_{i_{2}} v_{i_{2}, 1}\right)\right)$ for all 2-paths $v_{i_{1}} v_{i_{2}} v_{i_{3}}$ in G.

Proof. Since $\left\{v_{1}^{1}, \ldots, v_{d}^{1}\right\}$ is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$, by Fact 3.1.6, there exists a minimal f-weighted r-path vertex cover $\left(V^{\prime \prime \prime}, \delta^{\prime \prime \prime}\right)$ of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left(V^{\prime \prime \prime}, \delta^{\prime \prime \prime}\right) \leq\left\{v_{1}^{1}, \ldots, v_{d}^{1}\right\}$. By the minimality of $V^{\prime \prime \prime}$, we have that $V^{\prime \prime \prime}=\left\{v_{1}, \ldots, v_{d}\right\}$ and so $\left|V^{\prime \prime \prime}\right|=d$. Hence by [7, Theorem $2.7]$, it suffices to show that if Conditions on weights are not satisfied, then there exists an f-weighted r-path vertex cover $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1$ and $\mathfrak{P}_{i, j} \neq \emptyset$ for each $v_{i, j} \in V^{\prime \prime}$. (a) Suppose that $a:=\lambda\left(v_{i, s-1} v_{i, s}\right)>f\left(\lambda\left(v_{i, s-1} v_{i, s}\right), \lambda\left(v_{i, s} v_{i, s+1}\right)\right)$ for some $i \in\{1, \ldots, d\}$ and some $s \in\{1, \ldots, r-1\}$. We use the following diagram as a guide for constructing \mathfrak{P}, where the column represents G and rows represent the r-whiskers in $\Sigma_{r} G$. A vertex encompassed by a circle is in $V^{\prime \prime}$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, s+1}^{1}, v_{i, s}^{a}, v_{k, r-s}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, k\}\right\}
$$

is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1, v_{i, r} \cdots v_{i, 1} v_{i} \in \mathfrak{P}_{i, s+1}$,
$v_{i, s} \cdots v_{i, 1} v_{i} v_{k} v_{k, 1} \cdots v_{k, r-s-1} \in \mathfrak{P}_{i, s}, v_{k, r} \cdots v_{k, 1} v_{k} \in \mathfrak{P}_{k, r-s}$, and $v_{t, r} \cdots v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any t in $\{1, \ldots, d\} \backslash\{i, k\}$.
(b) Suppose that $a:=\lambda\left(v_{i} v_{k}\right)>f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{k}\right)\right)$ for some $i \in\{1, \ldots, d\}$ and some $v_{i} v_{k} \in E(G)$. The following diagram has the same representation as in (a) except for the elements in $V^{\prime \prime}$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{k, r}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, k\}\right\}
$$

is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1, v_{i, 1} v_{i} v_{k} v_{k, 1} \cdots v_{k, r-2} \in \mathfrak{P}_{i, 1}$, $v_{i} v_{k} v_{k, 1} \cdots v_{k, r-1} \in \mathfrak{P}_{i, 0}, v_{k, r} \cdots v_{k, 1} v_{k} \in \mathfrak{P}_{k, r}$, and $v_{t, r} \cdots v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, k\}$.
(c) Suppose $a:=f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{k}\right)\right)>\lambda\left(v_{i} v_{i, 1}\right)$ for some $i \in\{1, \ldots, d\}$ and some $v_{i} v_{k} \in E(G)$.

It is straightforward to show that $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, r}^{1}, v_{i}^{a}, v_{k, r-1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, k\}\right\}$ is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1, v_{i, 1} v_{i} v_{k} v_{k, 1} \cdots v_{k, r-2} \in \mathfrak{P}_{i, 0}$, $v_{i} \cdots v_{i, r} \in \mathfrak{P}_{i, r}, v_{k, r} \cdots v_{k, 1} v_{k} \in \mathfrak{P}_{k, r-1}$, and $v_{t, r} \cdots v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, k\}$.
(d) Suppose that $a:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{j, 1}\right)\right)$ for some 2-path $v_{i} v_{j} v_{k}$ in G.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, r-1}^{1}, v_{j}^{a}, v_{j, 1}^{1}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1$,

$$
v_{i, r} \cdots v_{i, 1} v_{i} \in \mathfrak{P}_{i, r-1}, v_{i, r-2} \cdots v_{i} v_{j} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, r-2} \cdots v_{i} v_{j} v_{j, 1} \in \mathfrak{P}_{j, 1}, v_{k, r} \ldots v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}
$$

and $v_{t, r} \cdots v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.

We discuss the necessary conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed for the case $r=2$.

Theorem 3.3.2. Let $\left(\Sigma_{2} G\right)_{\lambda}$ be a weighted 2-path suspension of G_{ω}. If $I_{2, f}\left(\left(\Sigma_{2} G\right)_{\lambda}\right)$ is unmixed, then the weight function λ satisfies the constraints in Proposition 3.2.1.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if the constraints on 3-paths or 3cycles are not satisfied, then there exists an f-weighted 2-path vertex cover $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\Sigma_{2} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1$ and $\mathfrak{P}_{i, j} \neq \emptyset$ for each $v_{i, j} \in V^{\prime \prime}$. Without loss of generality, we assume that the weight function λ satisfies constraints in Lemma 3.3.1.
(a) Let $v_{i} v_{j} v_{k} v_{l}$ be a 3 -path in G_{ω} such that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<\lambda\left(v_{j} v_{k}\right)=: b$. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{j} v_{k}\right)=b$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{l}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{b}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 2-path vertex cover of $\left(\Sigma_{2} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, v_{k, 1} v_{k} v_{l} \in \mathfrak{P}_{k, 1}, \\
v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{l}\right)\right) \geq b$.

We have that $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{b}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}$ is an f-weighted 2-path vertex cover of $\left(\Sigma_{2} G\right)_{\lambda}$, and $v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}$, $v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(b) Let $v_{i} v_{j} v_{k} v_{i}$ be a 3 -cycle in G with $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{k}\right)=: a$. Suppose that we have $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{i}\right)=a$ and $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{j}\right)=: b$. So we have that $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\min \{a, b\}=: c$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 1}^{1}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{c}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 2-path vertex cover of $\left(\Sigma_{2} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$,

$$
v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 1}, v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

(c) Let $v_{i} v_{j} v_{k} v_{i}$ be a 3 -cycle in G with $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{k}\right)=: a$. Suppose that we have $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{i}\right)=a$ and $b:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<a$.

It is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{b}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 2-path vertex cover of $\left(\Sigma_{2} G\right)_{\lambda}$, and

$$
v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j} v_{i} v_{k} \in \mathfrak{P}_{k, 0}, v_{k, 1} v_{k} v_{j} \in \mathfrak{P}_{k, 1}, v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq a$.

It is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{b}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{a}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 2-path vertex cover of $\left(\Sigma_{2} G\right)_{\lambda}$, and

$$
v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j} v_{i} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
We discuss the necessary conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed for the case $r=3$.
Theorem 3.3.3. Let $\left(\Sigma_{3} G\right)_{\lambda}$ be a weighted 3-path suspension of G_{ω}. If $I_{3, f}\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ is unmixed, then the weight function λ satisfies the constraints in Proposition 3.2.43.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if the constraints on 4-paths or 3cycles or 4 -cycles are not satisfied, then there exists an f-weighted 3-path vertex cover $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\Sigma_{3} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1$ and $\mathfrak{P}_{i, j} \neq \emptyset$ for each $v_{i, j} \in V^{\prime \prime}$. Without loss of generality, we assume that the weight function λ satisfies the constraints in Lemma 3.3.1.
(a) Let $v_{i} v_{j} v_{k} v_{l} v_{m}$ be a 4 -path in G such that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<\lambda\left(v_{j} v_{k}\right)=$: a. Suppose that $f\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{k}\right)=a$ and $f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b$.
(1) Assume that $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{l, 1}^{1}, v_{l}^{b}, v_{m, 1}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{aligned}
& v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}, \\
& v_{l, 2} v_{l, 1} v_{l} v_{m} \in \mathfrak{P}_{l, 1}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{aligned}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$.
(2) Assume that $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{l}^{b}, v_{m, 1}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}, \\
v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$.
(b) Let $v_{i} v_{j} v_{k} v_{l} v_{m}$ be a 4-path in G such that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b$. Suppose that $f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{i}\right)\right)<\lambda\left(v_{j} v_{k}\right)=: a$ and $f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)<\lambda\left(v_{k} v_{l}\right)=b$.
(1) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<a$ and $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}, v_{l}^{b}, v_{m, 2}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 1} v_{k} v_{j} v_{i} \in \mathfrak{P}_{k, 1}, v_{k} v_{l} v_{m} v_{m, 1} \in \mathfrak{P}_{k, 0}
$$

$$
v_{l, 2} v_{l, 1} v_{l} v_{m} \in \mathfrak{P}_{l, 1}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$.
(2) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right) \geq a$ and $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}, v_{l}^{b}, v_{m, 2}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$,

$$
\begin{gathered}
v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 1} v_{k} v_{j} v_{i} \in \mathfrak{P}_{k, 1}, v_{k} v_{l} v_{m} v_{m, 1} \in \mathfrak{P}_{k, 0}, \\
v_{l, 2} v_{l, 1} v_{l} v_{m} \in \mathfrak{P}_{l, 1}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

(3) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)<a$ and $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{b}, v_{m, 2}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 1} v_{k} v_{j} v_{i} \in \mathfrak{P}_{k, 1}, \\
v_{k} v_{l} v_{m} v_{m, 1} \in \mathfrak{P}_{k, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$.
(4) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right) \geq a$ and $f\left(\lambda\left(v_{l, 1} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{j}^{a}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{b}, v_{m, 2}^{1}\right\} \sqcup\left\{v_{n}^{1} \mid n \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 3} v_{i, 2} v_{i, 1} v_{i} \in \mathfrak{P}_{i, 1}, v_{j} v_{k} v_{l} v_{m} \in \mathfrak{P}_{j, 0}, v_{k, 1} v_{k} v_{j} v_{i} \in \mathfrak{P}_{k, 1}, v_{k} v_{l} v_{m} v_{m, 1} \in \mathfrak{P}_{k, 0}, \\
v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{m, 3} v_{m, 2} v_{m, 1} v_{m} \in \mathfrak{P}_{m, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l, m\}$.
(c) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{k}\right)\right)=: a$. Suppose that $b:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{b}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and $v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i, 1} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(d) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{k}\right)\right)=: a$. Suppose that $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{j}\right)=: b$.
(1) Assume that $\lambda\left(v_{i} v_{k}\right)<a$ and $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{i}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 1}^{1}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 2}^{1}, v_{k}^{b}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 1} v_{j} v_{i} v_{i, 1} \in \mathfrak{P}_{j, 1}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i, 1} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, \\
v_{i} v_{k} v_{k, 1} v_{k, 2} \in \mathfrak{P}_{k, 2}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $\lambda\left(v_{i} v_{k}\right) \geq a$ or $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{i}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 1}^{1}, v_{i, 2}^{1}, v_{i}^{a}, v_{k}^{b}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
v_{j, 1} v_{j} v_{i} v_{i, 1} \in \mathfrak{P}_{j, 1}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i, 1} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(e) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<f\left(\lambda\left(v_{i} v_{l}\right), \lambda\left(v_{i} v_{k}\right)\right)=: a$ for some
$v_{i} v_{l} \in E(G)$ with $j \neq l \neq k$. Suppose that $b:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{b}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3 -path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$ and that $v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}$, $v_{l} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}$, and $v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(f) Let $v_{i} v_{j} v_{k}$ be a 3-cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<f\left(\lambda\left(v_{i} v_{l}\right), \lambda\left(v_{i} v_{k}\right)\right)=: a$ for some $v_{i} v_{l} \in E(G)$ with $j \neq l \neq k$. Suppose that $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{j}\right)=: b$.
(1) Assume that $\lambda\left(v_{i} v_{k}\right)<a$ and $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{i}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 1}^{1}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 1} v_{j} v_{i} v_{i, 1} \in \mathfrak{P}_{j, 1}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{l} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, \\
v_{i} v_{k} v_{k, 1} v_{k, 2} \in \mathfrak{P}_{k, 2}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(2) Assume that $\lambda\left(v_{i} v_{k}\right) \geq a$ or $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{i}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 1}^{1}, v_{i, 2}^{1}, v_{i}^{a}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
v_{j, 1} v_{j} v_{i} v_{i, 1} \in \mathfrak{P}_{j, 1}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{l} v_{i} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(g) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<\lambda\left(v_{i} v_{k}\right)=$: a. Suppose that we
have $f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)<\lambda\left(v_{k} v_{i}\right)=a$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<a$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{i, 1}^{1}, v_{i}^{a}, v_{k, 1}^{1}, v_{k}^{a}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 2}, v_{i, 1} v_{i} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, \\
v_{j, 1} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, v_{j, 1} v_{j} v_{i} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq a$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{a}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
v_{j, 2} v_{j, 1} v_{j} v_{i} \in \mathfrak{P}_{j, 2}, v_{i, 1} v_{i} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{j, 1} v_{j} v_{i} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(h) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<\lambda\left(v_{i} v_{k}\right)=$: a and there exists $v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}$. Suppose

$$
b:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\} .
$$

(1) Assume that $l_{1}=j$, then $l_{2}=1$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{j}^{b}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{j, 1} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, \\
v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $l_{1} \neq j$, then $l_{2}=0$.
(i) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{l_{1}, 1}^{1}, v_{j, 2}^{1}, v_{j}^{b}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 0}, v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{l_{1}} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, \\
v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{l_{1}} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(ii) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{l_{1}, 1}^{1}, v_{j}^{b}, v_{i, 2}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$,

$$
\begin{gathered}
v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 0}, v_{l_{1}} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, \\
v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{l_{1}} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

(i) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<\lambda\left(v_{i} v_{k}\right)=: a$ and there exists $v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}$. Suppose that

$$
b:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)>\max \left\{f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right), f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\}
$$

(1) Assume that $l_{1}=j$, then $l_{2}=1$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{j}^{b}, v_{i, 1}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{j, 1} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, \\
v_{i} v_{k} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{j, 1} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $l_{1} \neq j$, then $l_{2}=0$.
(i) Assume that $f\left(\lambda\left(v_{j} v_{j, 1}\right), \lambda\left(v_{j} v_{k}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{l_{1}, 1}^{1}, v_{j, 2}^{1}, v_{j}^{b}, v_{i, 1}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 1}, v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{l_{1}} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, \\
v_{i} v_{k} v_{j} v_{l_{1}} \in \mathfrak{P}_{i, 0}, v_{l_{1}} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}$.
(ii) Assume that $f\left(\lambda\left(v_{j} v_{j, 1}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{l_{1}, 1}^{1}, v_{j}^{b}, v_{i, 1}^{1}, v_{i}^{a}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 1}, v_{l_{1}} v_{j} v_{i} v_{k} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, \\
v_{i} v_{k} v_{j} v_{l_{1}} \in \mathfrak{P}_{i, 0}, v_{l_{1}} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}$.
(j) Let $v_{i} v_{j} v_{k}$ be a 3 -cycle in G such that $f\left(\lambda\left(v_{i} v_{i, 1}, \lambda\left(v_{i} v_{j}\right)\right)\right)<\lambda\left(v_{i} v_{k}\right)=: a$ and there exists $v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{3} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{j}$. Suppose that

$$
b:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\}
$$

and $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: c$.
(1) Assume that $l_{1}=k$, then $l_{2}=1$.
(i) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<c$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{j}^{c}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{b}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$,

$$
\begin{gathered}
v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{j} v_{i} v_{k} v_{k, 1} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, \\
v_{i} v_{k} v_{k, 1} v_{k, 2} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0} .
\end{gathered}
$$

(ii) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq c$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{c}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{b}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted 3 -path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, such that one has $v_{j} v_{i} v_{k} v_{k, 1} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in$ $\mathfrak{P}_{i, 1}, v_{i} v_{k} v_{k, 1} v_{k, 2} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any $t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.
(2) Assume that $l_{1} \neq k$, then $l_{2}=0$.
(i) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<c$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, 2}^{1}, v_{j}^{c}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{b}, v_{l_{1}, 2}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 2}, v_{j} v_{i} v_{k} v_{l_{1}} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{l_{1}, 0} v_{l_{1}, 1} \in \mathfrak{P}_{i, 0}, \\
v_{i} v_{j} v_{k} v_{l_{1}} \in \mathfrak{P}_{k, 0}, v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}$.
(ii) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq c$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j}^{c}, v_{i, 1}^{1}, v_{i}^{a}, v_{k}^{b}, v_{l_{1}, 2}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}\right\}
$$

is an f-weighted 3 -path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{j} v_{i} v_{k} v_{l_{1}} \in \mathfrak{P}_{j, 0}, v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{k} v_{l_{1}, 0} v_{l_{1}, 1} \in \mathfrak{P}_{i, 0}, \\
v_{i} v_{j} v_{k} v_{l_{1}} \in \mathfrak{P}_{k, 0}, v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 2}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\left\{i, j, k, l_{1}\right\}$.
(k) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have
$f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b$ and $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\}=: c$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j, 1}^{1}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{c}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j, 3} v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 1}, v_{i} v_{j} v_{k} v_{k, 1} \in \mathfrak{P}_{k, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j, 1}^{1}, v_{k}^{b}, v_{l}^{c}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j, 3} v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0} v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(l) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b$ and $c:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 2}^{1}, v_{i}^{a}, v_{j}^{c}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$,

$$
\begin{gathered}
v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, v_{k, 2} v_{k, 1} v_{k} v_{j} \in \mathfrak{P}_{k, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 3} v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0} .
\end{gathered}
$$

(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 2}^{1}, v_{i}^{a}, v_{j}^{c}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0} \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 3} v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(m) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=: a$. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{k}\right)=b$, and $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<$ $\lambda\left(v_{k} v_{j}\right)=: c$. Let $x:=\min \{b, c\}$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 2}^{1}, v_{i}^{a}, v_{j, 1}, v_{k, 1}^{1}, v_{k}^{x}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 2}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j, 3} v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(n) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{k}\right)=b$, and $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<$ $\lambda\left(v_{l} v_{i}\right)=a$. Let $c:=\min \{a, b\}$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j, 1}, v_{k, 1}^{1}, v_{k}^{x}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3 -path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$,

$$
\begin{gathered}
v_{i, 2} v_{i, 1} v_{i} v_{j} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j, 3} v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

(o) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have
$f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, v_{j} v_{l} \in E(G)$, and

$$
c:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l}\right)\right)\right\} .
$$

(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{c}, v_{k, 1}^{1}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3 -path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$,

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{l} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, v_{k, 2} v_{k, 1} v_{k} v_{j} \in \mathfrak{P}_{k, 1}, \\
v_{i} v_{j} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 3} v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{c}, v_{k}^{b}, v_{l, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{l} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{l, 3} v_{l, 2} v_{l, 1} v_{l} \in \mathfrak{P}_{l, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(p) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=a$, $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\}=: c$, and there exists $v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{j} \neq$ $v_{l_{1}, l_{2}} \neq v_{l}$ such that

$$
\begin{aligned}
x & :=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} \\
y & :=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} .
\end{aligned}
$$

Then $l_{1} \neq k$, and so $l_{2}=0$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{b}, v_{k}^{y}, v_{l, 1}^{1}, v_{l}^{a}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and for any $t \in\{1, \ldots, d\} \backslash\left\{i, j, k, l, l_{1}\right\}$,

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{l_{1}} \in \mathfrak{P}_{i, 0}, v_{j, 3} v_{j, 2} v_{j, 1} v_{j} \in \mathfrak{P}_{j, 0}, v_{i} v_{j} v_{k} v_{l_{1}} \in \mathfrak{P}_{k, 0} \\
v_{l} v_{i} v_{j} v_{k} \in \mathfrak{P}_{l, 0}, v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

(q) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=a$, $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\lambda\left(v_{k} v_{l}\right)$, and there exists $v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{j} \neq v_{l_{1}, l_{2}} \neq v_{l}$ such that

$$
\begin{gathered}
x:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\}, \\
y:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} .
\end{gathered}
$$

Then we have that $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)<f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)$, a contradiction.
(r) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=: a$. Suppose that we have $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=a$, and we have that there exists $v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}$ such that

$$
\begin{gathered}
c:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\}, \\
x:=f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\} .
\end{gathered}
$$

Then $l_{1} \neq k$, and so $l_{2}=0$. Let $y:=\min \{x, c\}$.
(1) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{y}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{a}, v_{l_{1}, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l, l_{1}\right\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{l_{1}} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, v_{k, 2} v_{k, 1} v_{k} v_{j} \in \mathfrak{P}_{k, 1}, \\
v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0}, v_{l} v_{i} v_{j} v_{l_{1}} \in \mathfrak{P}_{l, 0}, v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(2) Assume that $f\left(\lambda\left(v_{k, 1} v_{k}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{y}, v_{k}^{b}, v_{l}^{a}, v_{l_{1}, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\left\{i, j, k, l, l_{1}\right\}\right\}
$$

is an f-weighted 3 -path vertex cover, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{l_{1}} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{j, 0}, v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{k, 0},, \\
v_{l} v_{i} v_{j} v_{l_{1}} \in \mathfrak{P}_{l, 0}, v_{l_{1}, 3} v_{l_{1}, 2} v_{l_{1}, 1} v_{l_{1}} \in \mathfrak{P}_{l_{1}, 1}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(s) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=: a$. Suppose that we have
$f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b$ and $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\}=: c$.
(1) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j, 1}^{1}, v_{j}^{b}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{c}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$, and

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j, 2} v_{j, 1} v_{j} v_{k} \in \mathfrak{P}_{j, 1}, v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{j, 0}, \\
v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(2) Assume that $f\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right) \geq b$.

Then it is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{i, 1}^{1}, v_{i}^{a}, v_{j}^{b}, v_{k, 1}^{1}, v_{k}^{b}, v_{l}^{c}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k, l\}\right\}
$$

is an f-weighted 3-path vertex cover of $\left(\Sigma_{3} G\right)_{\lambda}$,

$$
\begin{gathered}
v_{i, 1} v_{i} v_{j} v_{k} \in \mathfrak{P}_{i, 1}, v_{i} v_{l} v_{k} v_{j} \in \mathfrak{P}_{i, 0}, v_{j} v_{i} v_{l} v_{k} \in \mathfrak{P}_{j, 0}, \\
v_{k, 3} v_{k, 2} v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}, v_{i} v_{j} v_{k} v_{l} \in \mathfrak{P}_{l, 0}, v_{t, 3} v_{t, 2} v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}
\end{gathered}
$$

for any $t \in\{1, \ldots, d\} \backslash\{i, j, k, l\}$.
(t) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b$ and $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\} \geq b$, a contradiction.
(u) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{k}\right)=b$, and $f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{j}\right)=: c$. Then this case is similar to Case (m).
(v) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{k}\right)=b$, and $f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=a$. Then this case is similar to Case (n).
(w) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, v_{j} v_{l} \in E(G)$, and

$$
c:=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l}\right)\right)\right\} .
$$

Then this case is similar to Case (o).
(x) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=: c, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<$ $\min \left\{\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right\}$, and there exists $v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{j} \neq v_{l_{1}, l_{2}} \neq v_{l}$ such that

$$
x:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\}
$$

$$
y:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} .
$$

Then this case is similar to Case (p).
(y) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4-cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=: c, f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\lambda\left(v_{k} v_{l}\right)$, and there exists $v_{k} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{j} \neq v_{l_{1}, l_{2}} \neq v_{l}$ such that

$$
\begin{gathered}
x:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\} \\
y:=f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{k} v_{j}\right), f\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{k} v_{l_{1}, l_{2}}\right)\right)\right\}
\end{gathered}
$$

Then this case is also similar to Case (p).
(z) Let $v_{i} v_{j} v_{k} v_{l}$ be a 4 -cycle such that $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{l}\right)=$: a. Suppose that we have $f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{i}\right), f\left(\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{k} v_{l}\right)\right)<\lambda\left(v_{k} v_{l}\right)=: b, f\left(\lambda\left(v_{l} v_{i}\right), \lambda\left(v_{l} v_{k}\right)\right)<\lambda\left(v_{l} v_{i}\right)=a$, and there exists $v_{j} v_{l_{1}, l_{2}} \in E\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ with $v_{i} \neq v_{l_{1}, l_{2}} \neq v_{k}$ such that

$$
\begin{aligned}
c & :=f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\} \\
x & :=f\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)>\max \left\{\lambda\left(v_{j} v_{k}\right), f\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{l_{1}, l_{2}}\right)\right)\right\} .
\end{aligned}
$$

Then this case is similar to Case (r).
We discuss the necessary conditions for $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ to be unmixed when $r \geq 4$.
Theorem 3.3.4. Assume that $r \geq$. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω}. If $I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ is unmixed, then the weight function λ satisfies the constraints in Proposition 3.2.44.

Proof. By Lemma 3.3.1 and its proof, it is enough to show that if $a:=f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{j}\right)\right)>$ $f\left(\lambda\left(v_{i, 1} v_{i}\right), \lambda\left(v_{i} v_{k}\right)\right)=: b$ for a 2-path $v_{j} v_{i} v_{k}$ in G_{ω}, then there exists an f-weighted r-path vertex cover $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\Sigma_{r} G\right)_{\lambda}$ such that $\left|V^{\prime \prime}\right|=d+1$ and $\mathfrak{P}_{i, j} \neq \emptyset$ for each $v_{i, j} \in V^{\prime \prime}$. It is straightforward to show that

$$
\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right):=\left\{v_{j, r-2}^{1}, v_{i}^{a}, v_{i, r-1}^{1}, v_{k, 1}^{1}\right\} \sqcup\left\{v_{m}^{1} \mid m \in\{1, \ldots, d\} \backslash\{i, j, k\}\right\}
$$

is an f-weighted r-path vertex cover of $\left(\Sigma_{r} G\right)_{\lambda}, v_{j, r} \cdots v_{j, 1} v_{j} \in \mathfrak{P}_{j, r-2}, v_{i, r-1} \cdots v_{i, 1} v_{i} v_{k} \in \mathfrak{P}_{i, r-1}$, $v_{i, r-2} \cdots v_{i, 1} v_{i} v_{j} v_{j, 1} \in \mathfrak{P}_{i, 0}, v_{k, r} \cdots v_{k, 1} v_{k} \in \mathfrak{P}_{k, 1}$ and to show that $v_{t, r} \cdots v_{t, 1} v_{t} \in \mathfrak{P}_{t, 0}$ for any
$t \in\{1, \ldots, d\} \backslash\{i, j, k\}$.

3.4 Sufficient Conditions for Cohen-Macaulayness

In this section, we prove the sufficient conditions for which the f-weighted r-path ideal of a weighted r-path suspension is Cohen-Macaulay for all $r \geq 2$.

Theorem 3.4.1. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that the weight function λ satisfies the constraints in Propositions 3.2.1, 3.2.43, or 3.2.44 when $r=2$ or 3 or $r \geq 4$, respectively. Then $I:=I_{r, f}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ is Cohen-Macaulay, $\left\{X_{i, j}-X_{i, j-1} \mid i=1, \ldots, d, j=1, \ldots, r\right\}$ is a homogeneous regular sequence for R^{\prime} / I, and

$$
\frac{R^{\prime}}{I+\left(X_{i, j}-X_{i, j-1} \mid i=1, \ldots, d, j=1, \ldots, r\right) R^{\prime}} \cong \frac{R}{I R}
$$

Proof. For $k=1, \ldots,(r-1) d$, let $i_{k}=\left\lfloor\frac{k+d-1}{d}\right\rfloor, j_{k}=k+\left(1-i_{k}\right) d$ and

$$
\underline{n}_{k}=(\underbrace{r-i_{k}+1, \ldots, r-i_{k}+1}_{j_{k} \text { times }}, \underbrace{r-i_{k}+2, \ldots, r-i_{k}+2}_{d-j_{k} \text { times }}) \in \mathbb{N}^{d} .
$$

For $k=1, \ldots,(r-1) d$, define a polynomial ring R_{k} by

$$
R_{k}=A\left[\begin{array}{cccccc}
0, & \cdots & 0, & X_{j_{k}+1, r-i_{k}+1}, & \cdots & X_{d, r-i_{k}+1} \\
X_{1, r-i_{k}}, & \cdots & X_{j_{k}, r-i_{k}}, & X_{j_{k}+1, r-i_{k}}, & \cdots & X_{d, r-i_{k}}, \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
X_{1,0}, & \cdots & X_{j_{k}, 0}, & X_{j_{k}+1,0}, & \cdots & X_{d, 0}
\end{array}\right]
$$

The polynomial ring R_{k} has $j_{k}\left(r-i_{k}+1\right)+\left(d-j_{k}\right)\left(r-i_{k}+2\right)$ variables. Then for $k=1, \ldots,(r-1) d$, $p_{\underline{n}_{k}}(I) R_{k}$ is the monomial ideal of R_{k} obtained from I by setting $X_{a, b}=X_{a, r-i_{k}}$ for $a=1, \ldots, j_{k}$ and $b=r-i_{k}+1, \ldots, r$ and setting $X_{a, b}=X_{a, r-i_{k}+1}$ for $a=j_{k}+1, \ldots, d$ and $b=r-i_{k}+2, \ldots, r$. Note that

$$
\frac{R_{1}}{p_{\underline{n}_{1}}(I)} \cong \frac{R^{\prime}}{I+\left(X_{1, r}-X_{1, r-1}\right)}
$$

and for $k=2, \ldots,(r-1) d$ we have inductively

$$
\begin{aligned}
\frac{R_{k}}{p_{\underline{n}_{k}}(I)} & \cong \frac{R_{k-1}}{p_{\underline{n}_{k-1}(I)}+\left(X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}}\right)} \cong \frac{R_{k-1} / p_{\underline{n}_{k-1}}(I)}{\left(X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}}\right)} \\
& \cong \frac{R_{k-2} /\left(p_{\underline{n}_{k-2}}(I)+\left(X_{j_{k-1}, r-i_{k-1}+1}-X_{j_{k-1}, r-i_{k-1}}\right)\right)}{\left(X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}}\right)} \\
& \cong \frac{R_{k-2}}{p_{\underline{n}_{k-2}}(I)+\left(X_{j_{k-1}, r-i_{k-1}+1}-X_{j_{k-1}, r-i_{k-1}}, X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}}\right)} \\
& \cong \ldots \\
& \cong \frac{R_{1}}{p_{\underline{n}_{1}}(I)+\left(X_{j_{l}, r-i_{l}+1}-X_{j_{l}, r-i_{l}} \mid l=2, \ldots, k\right)} \\
& \cong \frac{R^{\prime}}{I+\left(X_{j_{l}, r-i_{l}+1}-X_{j_{l}, r-i_{l}} \mid l=1, \ldots, k\right)},
\end{aligned}
$$

since $j_{1}=1, r-i_{1}+1=r-1+1=r$ and $r-i_{1}=r-1$. Hence

$$
\begin{aligned}
\frac{R}{I R} & =\frac{R_{(r-1) d}}{p_{\underline{n}_{(r-1) d}}(I)} \cong \frac{R^{\prime}}{I+\left(X_{j_{l}, r-j_{l}+1}-X_{j_{l}, r-j_{l}} \mid l=1, \ldots,(r-1) d\right)} \\
& =\frac{R^{\prime}}{I+\left(X_{i, j}-X_{i, j-1} \mid i=1, \ldots, d, j=2, \ldots, r\right)}
\end{aligned}
$$

Let $k \in\{1, \ldots,(r-1) d\}$. We set $R_{0}:=R^{\prime}$ and $\underline{n}_{0}:=(r+1, \ldots, r+1)$. Then by Propositions 3.2.1, 3.2.43 and 3.2.44, for any $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ such that $P\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ occurs in an irredundant m-irreducible decomposition of $p_{\underline{n}_{k-1}}(I)$, we have that there exists a unique $v_{i, i_{\alpha}} \in V^{\prime \prime}$ for $i=$ $1, \ldots, d$. So in $R_{k-1} / p_{\underline{n}_{k-1}}(I)$, the associated primes of $0=p_{\underline{n}_{k-1}}(I) / p_{\underline{n}_{k-1}}(I)$ are of the form $\overline{\left(X_{1, \beta_{1}}, \ldots, X_{d, \beta_{d}}\right) R_{k-1}}$. So we have that $X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}} \in \operatorname{NZD}_{R}\left(R_{k-1} / p_{\underline{n}_{k-1}}(I)\right)$. So we have that $X_{j_{k}, r-i_{k}+1}-X_{j_{k}, r-i_{k}}$ is $R_{k-1} / p_{\underline{n}_{k-1}}(I)$-regular. Thus, by the definition of the R^{\prime} / I-regular sequence, we have

$$
\left\{X_{i, j}-X_{i, j-1} \mid i=1, \ldots, d, j=2, \ldots, r\right\}=\left\{X_{j_{l}, r-j_{l}+1}-X_{j_{l}, r-j_{l}} \mid l=1, \ldots,(r-1) d\right\}
$$

is a homogeneous regular sequence for R^{\prime} / I. Since $R / I R$ is Artinian, it is Cohen-Macaulay. So by Fact 2.5.5, we have that R^{\prime} / I is Cohen-Macaulay.

3.5 Main Results

The main results of this chapter are in Theorems 3.5.5 and 3.5.6.
Corollary 3.5.1. Let $f=$ max. Then the constraints for λ in Propositions 3.2.1, 3.2.43, and 3.2.44 become

$$
\lambda\left(v_{i} v_{j}\right) \leq \min \left\{\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{j} v_{j, 1}\right)\right\}, \forall v_{i} v_{j} \in E(G)
$$

Corollary 3.5.2. Let $f=\mathrm{l} \mathrm{cm}$. Then the constraints for λ in Propositions 3.2.1, 3.2.43, and 3.2.44 become

$$
\lambda\left(v_{i} v_{j}\right) \mid \lambda\left(v_{i} v_{i, 1}\right) \text { and } \lambda\left(v_{i} v_{j}\right) \mid \lambda\left(v_{j} v_{j, 1}\right), \forall v_{i} v_{j} \in E(G)
$$

Corollary 3.5.3. Let $f=\min$. Then the constraints for λ in Proposition 3.2.1, 3.2.43, and 3.2.44 become

$$
\begin{gathered}
\lambda\left(v_{i} v_{j}\right) \leq \min \left\{\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{j} v_{j, 1}\right)\right\}, \forall v_{i} v_{j} \in E(G), \\
\lambda\left(v_{i, k}, v_{i, k+1}\right) \leq \lambda\left(v_{i, k+1} v_{i, k+2}\right), \forall i=1, \ldots, d \text { and } k=0, \ldots, r-2,
\end{gathered}
$$

and

$$
\begin{cases}\lambda\left(v_{i} v_{j}\right) \geq \lambda\left(v_{j} v_{k}\right) \text { or } \lambda\left(v_{k} v_{l}\right) \geq \lambda\left(v_{j} v_{k}\right) \text { for all } 3 \text {-paths } v_{i} v_{j} v_{k} v_{l} \text { in } G, & \text { if } r=2 \\ \lambda\left(v_{i} v_{j}\right) \geq \lambda\left(v_{j} v_{k}\right) \text { or } \lambda\left(v_{l} v_{m}\right) \geq \lambda\left(v_{k} v_{l}\right) \text { for all 4-paths } v_{i} v_{j} v_{k} v_{l} v_{m} \text { in } G, \text { and } \\ \text { the weights on edges satisfy } a=b \geq c \text { for all 3-cycles in } G, & \text { if } r=3 \\ \text { all edges in } G \text { have the same weight } & \text { if } r \geq 4\end{cases}
$$

Proof. We first show the equivalence for weight constraints on 4-paths in G when $r=3$. Let $v_{i} v_{j} v_{k} v_{l} v_{m}$ be a 4-path in G. On one hand, let $\lambda\left(v_{i} v_{j}\right) \geq \lambda\left(v_{j} v_{k}\right)$ or $\lambda\left(v_{l} v_{m}\right) \geq \lambda\left(v_{k} v_{l}\right)$, then by Notation 3.2.2(a), we have that $\min \left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)=\lambda\left(v_{j} v_{k}\right) \geq \lambda\left(v_{j} v_{k}\right)$ or $\min \left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)=$ $\lambda\left(v_{k} v_{l}\right) \geq \lambda\left(v_{k} v_{l}\right)$, so Notation 3.2.2(d) holds. On the other hand, without loss of generality, assume that $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{j} v_{k}\right)$, then $\min \left\{\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right\}=\lambda\left(v_{j} v_{i}\right)<\lambda\left(v_{j} v_{k}\right)$ by Notation 3.2.2(a) and $\min \left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{k}\right)$, so $\min \left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq \lambda\left(v_{k} v_{l}\right)$ by Notation 3.2.2(d). Hence $\lambda\left(v_{l} v_{m}\right) \geq \lambda\left(v_{k} v_{l}\right)$.

We then show the equivalence for weight constraints on 3 -cycles in G when $r=3$. Let $v_{i} v_{j} v_{k} v_{i}$ be a 3 -cycle in G. On one hand, let the weights on edges of the 3 -cycle $v_{i} v_{j} v_{k} v_{i}$ satisfy $a=b \geq c$, without loss of generality, assume that $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j} v_{k}\right)=\lambda\left(v_{k} v_{i}\right)$, then we have that

$$
\min \left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right)=\lambda\left(v_{j} v_{i}\right)<\lambda\left(v_{j} v_{k}\right)=\max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}
$$

and $\min \left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)=\lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{j}\right)$, and $\min \left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)=\lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{i}\right)$, so we proved Notations 3.2.2(e)(1) and (e)(2)(i), it is straightforward to show that Notations (e)(2)(ii) and (e)(2)(iii) hold. On the other hand, if $\lambda\left(v_{i} v_{j}\right)=\lambda\left(v_{j} v_{k}\right)=\lambda\left(v_{k} v_{i}\right)$, then we are done, so without loss of generality, assume $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{i} v_{k}\right)$, then $\min \left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<\min \left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{k}\right)\right)$ by Notation 3.2.2(a), so $\min \left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq \lambda\left(v_{k} v_{j}\right)$ by Notation 3.2.2(e)(1), hence $\lambda\left(v_{k} v_{i}\right) \geq$ $\lambda\left(v_{k} v_{j}\right)$, similarly, we have $\min \left(\lambda\left(v_{i} v_{i, 1}\right), \lambda\left(v_{i} v_{j}\right)\right)<\lambda\left(v_{i} v_{k}\right)$, so $\min \left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right) \geq \lambda\left(v_{k} v_{i}\right)$ by Notation 3.2.2(e)(2), so $\lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{i}\right)$, hence $\lambda\left(v_{k} v_{i}\right) \geq \lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{i}\right)$ and so $\lambda\left(v_{k} v_{i}\right)=$ $\lambda\left(v_{k} v_{j}\right)>\lambda\left(v_{i} v_{j}\right)$.

We show there is no weight constraint on any 4-cycles in G. It suffices to show that Notation $3.2 .2(\mathrm{f})(2)$ holds automatically provided that $f=$ min. It is straightforward to show that Notations (f)(2)(i), (f)(2)(ii), (f)(2)(iv) and (f)(2)(v) holds automatically. But Notation 3.2.2(2)(iii) is equivalent to either that $\lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{l}\right)$, that $\lambda\left(v_{l} v_{i}\right) \geq \lambda\left(v_{l} v_{k}\right)$, or that $\left(\lambda\left(v_{k} v_{l}\right) \geq \lambda\left(v_{k} v_{j}\right)\right.$ and $\left.\lambda\left(v_{l} v_{k}\right) \geq \lambda\left(v_{l} v_{i}\right)\right)$, which is equivalent to $\lambda\left(v_{k} v_{l}\right) \leq \max \left\{\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{l} v_{i}\right)\right\}$ or $\lambda\left(v_{k} v_{l}\right) \geq$ $\max \left\{\lambda\left(v_{k} v_{j}\right), \lambda\left(v_{l} v_{i}\right)\right\}$, but this holds automatically.

It is straightforward to show the equivalence for $r=2$ and $r \geq 4$.

Corollary 3.5.4. Let $f=\operatorname{gcd}$. Then the constraints for λ in Notation 3.2.2 become

$$
\begin{gathered}
\lambda\left(v_{i} v_{j}\right) \mid \lambda\left(v_{i} v_{i, 1}\right) \text { and } \lambda\left(v_{i} v_{j}\right) \mid \lambda\left(v_{j} v_{j, 1}\right), \forall v_{i} v_{j} \in E(G), \\
\lambda\left(v_{i, k}, v_{i, k+1}\right) \mid \lambda\left(v_{i, k+1} v_{i, k+2}\right), \forall i=1, \ldots, d \text { and } k=0, \ldots, r-2,
\end{gathered}
$$

and
(a) if $r=2$, then $\lambda\left(v_{j} v_{k}\right) \mid \lambda\left(v_{i} v_{j}\right)$ or $\lambda\left(v_{j} v_{k}\right) \mid \lambda\left(v_{k} v_{l}\right)$ for all 3-paths $v_{i} v_{j} v_{k} v_{l}$ in G,
(b) if $r=3$, then
(1) for all 4-paths $v_{i} v_{j} v_{k} v_{l} v_{m}$ in G : if $\lambda\left(v_{j} v_{i}\right)<\lambda\left(v_{j} v_{k}\right)$, then $\lambda\left(v_{k} v_{l}\right) \mid \lambda\left(v_{l} v_{m}\right)$,
(2) for all 3-cycles $v_{i} v_{j} v_{k} v_{i}$ in G : if $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{i} v_{k}\right)$, then $\lambda\left(v_{k} v_{i}\right)=\lambda\left(v_{k} v_{j}\right)$ and

$$
\begin{gathered}
\operatorname{gcd}\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{n, 0}\right)\right) \leq \max \left\{\operatorname{gcd}\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right), \operatorname{gcd}\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{n, 0}\right)\right)\right\} \\
\forall v_{j} v_{n, 0} \in E(G) \text { with } i \neq n \neq k,
\end{gathered}
$$

(3) for all 4-cycles $v_{i} v_{j} v_{k} v_{l} v_{i}$: if $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{i} v_{l}\right)$, then

$$
\left\{\begin{array}{l}
\text { either }\left(\lambda\left(v_{k} v_{l}\right) \mid \lambda\left(v_{k} v_{j}\right) \text { and } \lambda\left(v_{j} v_{i}\right) \mid \lambda\left(v_{j} v_{k}\right)\right), \\
\lambda\left(v_{l} v_{i}\right) \mid \lambda\left(v_{l} v_{k}\right) \\
\text { or } \lambda\left(v_{l} v_{k}\right) \mid \lambda\left(v_{l} v_{i}\right),
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\text { either } \lambda\left(v_{k} v_{l}\right) \mid \lambda\left(v_{k} v_{j}\right), \\
\lambda\left(v_{l} v_{k}\right) \mid \lambda\left(v_{l} v_{i}\right), \\
\text { or }\left(\lambda\left(v_{k} v_{j}\right) \mid \lambda\left(v_{k} v_{l}\right) \text { and } \lambda\left(v_{l} v_{i}\right) \mid \lambda\left(v_{l} v_{k}\right)\right),
\end{array}\right.
$$

(c) if $r \geq 4$, then all edges in G have the same weight.

Proof. We first show the equivalence for weight constraints on 4 -paths in G when $r=3$. Let $v_{i} v_{j} v_{k} v_{l} v_{m}$ be a 4 -path in G. On one hand, let $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{j} v_{k}\right)$ and assume that $\lambda\left(v_{k} v_{l}\right) \mid \lambda\left(v_{l} v_{m}\right)$, then $\operatorname{gcd}\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right)=\lambda\left(v_{k} v_{l}\right) \geq \lambda\left(v_{k} v_{l}\right)$, so Notation 3.2.2(d) holds. On the other hand, assume that $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{j} v_{k}\right)$, then $\operatorname{gcd}\left(\lambda\left(v_{j, 1} v_{j}\right), \lambda\left(v_{j} v_{i}\right)\right)=\lambda\left(v_{j} v_{i}\right)<\lambda\left(v_{j} v_{k}\right)$ by Notation 3.2.2(a) and $\operatorname{gcd}\left(\lambda\left(v_{i} v_{j}\right), \lambda\left(v_{j} v_{k}\right)\right)<\lambda\left(v_{j} v_{k}\right), \operatorname{sog} \operatorname{gcd}\left(\lambda\left(v_{k} v_{l}\right), \lambda\left(v_{l} v_{m}\right)\right) \geq \lambda\left(v_{k} v_{l}\right)$ by Notation 3.2.2(d), hence $\lambda\left(v_{k} v_{l}\right) \mid \lambda\left(v_{l} v_{m}\right)$.

We then show the equivalence for weight constraints on 3 -cycles in G when $r=3$. Let $v_{i} v_{j} v_{k} v_{i}$ be a 3 -cycle in G. On one hand, let $\lambda\left(v_{i} v_{j}\right)<\lambda\left(v_{i} v_{k}\right)$, assume that $\lambda\left(v_{k} v_{i}\right)=\lambda\left(v_{k} v_{j}\right)$ and that

$$
\begin{gathered}
\operatorname{gcd}\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{n, 0}\right)\right) \leq \max \left\{\operatorname{gcd}\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right), \operatorname{gcd}\left(\lambda\left(v_{j} v_{k}\right), \lambda\left(v_{j} v_{n, 0}\right)\right)\right\} \\
\forall v_{j} v_{n, 0} \in E(G) \text { with } i \neq n \neq k,
\end{gathered}
$$

then $\operatorname{gcd}\left(\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right) \leq \max \left\{\lambda\left(v_{j} v_{i}\right), \lambda\left(v_{j} v_{k}\right)\right\}$ and $\operatorname{gcd}\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)=\lambda\left(v_{k} v_{j}\right) \geq \lambda\left(v_{k} v_{j}\right)$, and $\operatorname{gcd}\left(\lambda\left(v_{k} v_{i}\right), \lambda\left(v_{k} v_{j}\right)\right)=\lambda\left(v_{k} v_{i}\right) \geq \lambda\left(v_{k} v_{i}\right)$, so Notations 3.2.2(e)(1) and (e)(2)(i) was proved. Hence it is straightforward to show that Notations 3.2.2(e)(2)(ii) and (e)(2)(iii) holds automatically.

On the other hand, then it is straightforward to show that we can deduce Notation 3.2.2(b)(2) in the corollary from Notation 3.2.2(e).

Theorem 3.5.5. Assume that H_{λ} is obtained by pruning a sequence of r-pathless leaves from G_{ω} and that H_{λ} is an r-path suspension of a weighted graph Γ_{μ}. Then the following conditions are equivalent:
(i) $I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay;
(ii) $I_{r, f}\left(G_{\omega}\right)$ is unmixed; and
(iii) the weight function λ satisfies the constraints in Propositions 3.2.1, 3.2.43, or 3.2.44 when $r=2$ or 3 or $r \geq 4$, respectively, where we rename the vertices of H_{λ} such that $V\left(\Gamma_{\mu}\right)=\left\{v_{i} \mid i=1, \ldots, d\right\}$,

$$
V\left(H_{\lambda}\right)=\left\{v_{i, j} \mid i=1, \ldots, d, j=0, \ldots, r\right\} \text { with } v_{i, 0}=v_{i}, \forall i=1, \ldots, d
$$

and $\left\{v_{i, 0} v_{i, 1} \cdots v_{i, r}\right\}_{i=1}^{d}$ are all the $d r$-whiskers.

Proof. (i) \Longrightarrow (ii) follows from Fact 2.7.8.
$(\mathrm{ii}) \Longrightarrow($ iii $)$ Assume that $I_{r, f}\left(G_{\omega}\right)$ is unmixed. By Lemma 3.1.11(b), $I_{r, f}\left(H_{\lambda}\right)$ is also unmixed. Then Statement (iii) follows from Theorem 3.3.2, 3.3.3 and 3.3.4.
(iii) \Longrightarrow (i) Assume condition (iii) holds. Then Theorem 3.4.1 implies that $I_{r, f}\left(H_{\lambda}\right)$ is CohenMacaulay. So Lemma 3.1.11(c) implies that $I_{r, f}\left(G_{\omega}\right)$ is as well.

Because of the following fact and Theorem 3.4.1, the main result of this chapter gives a formula to compute $\mathrm{r}_{R}\left(R / I_{r, f}\left(G_{\omega}\right)\right)$ for all trees such that $R / I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay.

Theorem 3.5.6. Assume that G_{ω} is a weighted tree. Then the following conditions are equivalent:
(i) $I_{r, f}\left(G_{\omega}\right)$ is Cohen-Macaulay;
(ii) $I_{r, f}\left(G_{\omega}\right)$ is unmixed; and
(iii) there exists a weighted tree Γ_{μ} and an r-path suspension H_{λ} of Γ_{μ} such that H_{λ} is obtained by pruning a sequence of r-pathless leaves from G_{ω}, the weight function λ satisfies the constraints in Propositions 3.2.1, 3.2.43, or 3.2.44 when $r=2$ or 3 or $r \geq 4$, respectively, where we rename the
vertices of H_{λ} such that we have that $V\left(\Gamma_{\mu}\right)=\left\{v_{i} \mid i=1, \ldots, d\right\}$,

$$
V\left(H_{\lambda}\right)=\left\{v_{i, j} \mid i=1, \ldots, d, j=0, \ldots, r\right\} \text { with } v_{i, 0}=v_{i}, \forall i=1, \ldots, d
$$

and $\left\{v_{i, 0} v_{i, 1} \cdots v_{i, r}\right\}_{i=1}^{d}$ are all the $d r$-whiskers.

Proof. (iii) $\Longrightarrow(\mathrm{i}) \Longrightarrow$ (ii) follows from Proposition 3.5.5.
(ii) \Longrightarrow (iii) Assume that $I_{r, f}$ is unmixed. Since G is finite, we prune a sequence of r-pathless leaves from G_{ω} to obtain a weighted graph H_{λ} that has no r-pathless leaves. Lemma 3.1.11(b) implies that $I_{r, f}\left(H_{\lambda}\right)$ is unmixed. So we have that $I_{r}\left(H_{\lambda}\right)$ is unmixed by Lemma 3.1.8. Hence H is an r-path suspension of a tree Γ by [2, Theorem 3.8 and Remark 3.9]. Finally, Proposition 3.5.5 implies the weight conditions on $E\left(H_{\lambda}\right)$.

Chapter 4

Cohen-Macaulay Type of Weighted

r-Path Ideals

Let \mathbb{K} be a field, $d \geq 2, R=\mathbb{K}\left[X_{1}, \ldots, X_{d}\right]$ and $\mathfrak{m}=\left(X_{1}, \ldots, X_{d}\right) R$. Let $G=(V, E)$ be a (finite simple) graph with vertex set $V=\left\{v_{1}, \ldots, v_{d}\right\}$ and edge set E. Let $r \geq 1$ be a positive integer and $R^{\prime}=\mathbb{K}\left[\left\{X_{i, j} \mid i=1, \ldots, d, j=0, \ldots, r\right\}\right]$.

In this chapter, we compute the type of the rings $R / I_{r}\left(G_{\omega}\right)$ when they are Cohen-Macaulay. This main result is in Theorem 4.2.25.

4.1 Background

Definition 4.1.1. The weighted r-path ideal associated to G_{ω} is the ideal $I_{r}\left(G_{\omega}\right):=I_{r, \max }\left(G_{\omega}\right) \subseteq R$ that is generated by the max-weighted paths in G of length r :

$$
I_{r}\left(G_{\omega}\right)=\left(\begin{array}{l|l}
X_{i_{1}}^{e_{i_{1}}} \ldots X_{i_{r+1}}^{e_{i_{r+1}}} & \begin{array}{l}
v_{i_{1}} \ldots v_{i_{r+1}} \text { is a path in } G \text { with } e_{i_{1}}=\omega\left(v_{i_{1}} v_{i_{2}}\right) \\
e_{i_{j}}=\max \left(\omega\left(v_{i_{j-1}} v_{i_{j}}\right), \omega\left(v_{i_{j}}, v_{i_{j+1}}\right)\right) \text { for } 1<j \leq r \\
\text { and } e_{i_{r+1}}=\omega\left(v_{i_{r}} v_{i_{r+1}}\right)
\end{array}
\end{array}\right) R .
$$

Remark. (a) $I_{r}\left(G_{1}\right)=I_{r}(G)$, where $1: E \rightarrow \mathbb{N}$ is the constant function $1(e)=1$.
(b) $I_{1}\left(G_{\omega}\right)=I\left(G_{\omega}\right)$.

Example 4.1.2. Consider the following weighted graph $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ from Example 3.1.17.

Then the weighted 2-path ideal of $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ is

$$
\begin{gathered}
I_{2}\left(\left(\Sigma_{2} P_{2}\right)_{\lambda}\right)=\left(X_{1,2}^{3} X_{1,1}^{4} X_{1}^{4}, X_{1,1}^{4} X_{1}^{4} X_{2}, X_{1} X_{2}^{3} X_{2,1}^{3}, X_{1} X_{2}^{2} X_{3}^{2}, X_{2,2}^{3} X_{2,1}^{3} X_{2}^{3}\right. \\
\\
\left.X_{2,1}^{3} X_{2}^{3} X_{3}^{2}, X_{2}^{2} X_{3}^{2} X_{3,1}^{2}, X_{3,2}^{5} X_{3,1}^{5} X_{3}^{2}\right) R^{\prime}
\end{gathered}
$$

Example 4.1.3. The minimal weighted 2-path vertex covers of $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ from Example 3.1.17 are displayed in the following sketches. In each diagram, all of the vertices encompassed by a circle form a weighted 2-path vertex cover of $\left(\Sigma_{2} P_{2}\right)_{\lambda}$.

Example 4.1.4. Consider the following graph $\left(\Sigma_{2} P_{2}\right)_{\lambda}$ from Example 3.1.17.

By Fact 3.1.7 and Example 4.1.3, the irredundant m-irreducible decomposition of $I_{2}\left(\left(\Sigma_{2} P_{2}\right)_{\lambda}\right)$ is

$$
\begin{aligned}
I_{2}\left(\left(\Sigma_{2} P_{2}\right)_{\lambda}\right)= & \left(X_{1}^{4}, X_{2}^{3}, X_{3}^{2}\right) R^{\prime} \cap\left(X_{1,1}^{4}, X_{2}^{3}, X_{3}^{2}\right) R^{\prime} \cap\left(X_{1,2}^{3}, X_{2}, X_{3}^{2}\right) R^{\prime} \cap\left(X_{1}^{4}, X_{2,1}^{3}, X_{3}^{2}\right) R^{\prime} \\
& \cap\left(X_{1,1}^{4}, X_{2,1}^{3}, X_{3}^{2}\right) R^{\prime} \cap\left(X_{1}, X_{2,2}^{3}, X_{3}^{2}\right) R^{\prime} \cap\left(X_{1}^{4}, X_{2}^{2}, X_{3,1}^{5}\right) R^{\prime} \cap\left(X_{1,1}^{4}, X_{2}^{2}, X_{3,1}^{5}\right) R^{\prime} \\
& \cap\left(X_{1,2}^{3}, X_{2}, X_{3,1}^{5}\right) R^{\prime} \cap\left(X_{1}, X_{2}^{3}, X_{3,1}^{2}\right) R^{\prime} \cap\left(X_{1}, X_{2,1}^{3}, X_{3,1}^{2}\right) R^{\prime} \cap\left(X_{1}^{4}, X_{2}^{2}, X_{3,2}^{5}\right) R^{\prime} \\
& \cap\left(X_{1,1}^{4}, X_{2}^{2}, X_{3,2}^{5}\right) R^{\prime} \cap\left(X_{1,2}^{3}, X_{2}, X_{3,2}^{5}\right) R^{\prime} .
\end{aligned}
$$

Definition 4.1.5. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω}. Consider the ideal $\mathfrak{m}^{[a(\lambda)]}=$ $\left(X_{1}^{a_{1}}, \ldots, X_{d}^{a_{d}}\right) R$, where for $i=1, \ldots, d, a_{i}=\sum_{k=0}^{r} e_{i, k}$ with

$$
e_{i, k}= \begin{cases}\lambda\left(v_{i} v_{i, 1}\right) & \text { if } k=0 \\ \max \left\{\lambda\left(v_{i, k-1} v_{i, k}\right), \lambda\left(v_{i, k} v_{i, k+1}\right)\right\} & \text { if } k=1, \ldots, r-1, \\ \lambda\left(v_{i, r-1} v_{i, r}\right) & \text { if } k=r .\end{cases}
$$

In words, $\mathfrak{m}^{\underline{a}(\lambda)}$ is the monomial ideal of R obtained from the monomial ideal $\left(g_{1}, \ldots, g_{d}\right) R^{\prime}$ by setting $\mathfrak{m}^{\underline{a}(\lambda)}=\left(p\left(g_{1}\right), \ldots, p\left(g_{d}\right)\right) R$, where g_{i} is the corresponding generator in $I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ of the r-whisker $v_{i} v_{i, 1} \ldots v_{i, r}$ from $\left(\Sigma_{r} G\right)_{\lambda}$ for $i=1, \ldots, d$.

Example 4.1.6. In Example 4.1.4, $\mathfrak{m} \underline{[a(\lambda)]}=\left(X_{1}^{a_{1}}, X_{2}^{a_{2}}, X_{3}^{a_{3}}\right) R$ with

$$
\begin{aligned}
& a_{1}=\sum_{k=0}^{2} e_{1, k}=\lambda\left(v_{1} v_{1,1}\right)+\max \left\{\lambda\left(v_{1} v_{1,1}\right), \lambda\left(v_{1,1} v_{1,2}\right)\right\}+\lambda\left(v_{1,1} v_{1,2}\right)=4+4+3=11, \\
& a_{2}=\sum_{k=0}^{2} e_{2, k}=\lambda\left(v_{2} v_{2,1}\right)+\max \left\{\lambda\left(v_{2} v_{2,1}\right), \lambda\left(v_{2,1} v_{2,2}\right)\right\}+\lambda\left(v_{2,1} v_{2,2}\right)=3+3+3=9 \\
& a_{3}=\sum_{k=0}^{2} e_{3, k}=\lambda\left(v_{3} v_{3,1}\right)+\max \left\{\lambda\left(v_{3} v_{3,1}\right), \lambda\left(v_{3,1} v_{3,2}\right)\right\}+\lambda\left(v_{3,1} v_{3,2}\right)=2+5+5=12
\end{aligned}
$$

Fact 4.1.7. It is straightforward to show that

$$
I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R=I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R+\mathfrak{m}^{[\underline{[a}(\lambda)]}, \text { where } \lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G}
$$

Because of the following fact, the main result of this chapter gives a formula to compute $\mathrm{r}_{R}\left(R / I_{r}\left(G_{\omega}\right)\right)$ for all trees such that $R / I_{r}\left(G_{\omega}\right)$ is Cohen-Macaulay.

Fact 4.1.8. [7, Proposition 3.7 and Theorem 3.11] Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq \min \left\{\lambda\left(v_{i}, v_{i, 1}\right), \lambda\left(v_{j}, v_{j, 1}\right)\right\}$ for all edges $v_{i} v_{j} \in E$.
(a) $R^{\prime} / I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)$ is Cohen-Macaulay.
(b) If $\Gamma_{\lambda^{\prime}}$ is a weighted tree and $R / I_{r}\left(\Gamma_{\lambda^{\prime}}\right)$ is Cohen-Macaulay, then there exists a weighted tree $H_{\omega^{\prime}}$ such that $\left(\Sigma_{r} H\right)_{\lambda^{\prime \prime}}$ is obtained by pruning a sequence of r-pathless leaves from $\Gamma_{\lambda^{\prime}}$ with $\lambda^{\prime \prime}=\left.\lambda^{\prime}\right|_{\Sigma_{r} H}$ and the weight function λ^{\prime} satisfies the above condition.

4.2 Type

Definition 4.2.1. Let $\left(\Sigma_{r-1} G\right)_{\lambda}$ be a weighted $(r-1)$-path suspension of G_{ω}. We define q : $V\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) \rightarrow V(G)$ as $q\left(v_{i, j}\right)=v_{i}$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ be such that $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. Then

$$
q\left(V^{\prime \prime}\right)=\left\{v_{i} \mid \exists v_{i, j} \in V^{\prime \prime}\right\}
$$

Set

$$
\mathrm{WCA}_{i}(\mathfrak{P})=\left\{v_{i, j} \in V^{\prime \prime} \mid \delta^{\prime \prime}\left(v_{i, j}\right) \leq \lambda\left(v_{i, j} v\right) \text { for some edge } v_{i, j} v \text { in }\left(\Sigma_{r-1} G\right)_{\lambda}\right\}, \forall i=1, \ldots, d
$$

and

$$
h_{i, k}=\max \left\{\lambda\left(v_{i, k} v\right) \mid v_{i, k} v \in E\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)\right\}, \forall i=1, \ldots, d, k=0, \ldots, r-1
$$

Define

$$
\begin{aligned}
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}: q\left(V^{\prime \prime}\right) & \longrightarrow \mathbb{N} \sqcup\{\infty\} \\
v_{i} & \longmapsto \begin{cases}\min \left\{\delta^{\prime \prime}\left(v_{i, j}\right)+\sum_{k=0}^{j-1} h_{i, k} \mid v_{i, j} \in \mathrm{WCA}_{i}(\mathfrak{P})\right\} & \text { if } \mathrm{WCA}_{i}(\mathfrak{P}) \neq \emptyset \\
\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proposition 4.2.2. Let $\left(\Sigma_{r-1} G\right)_{\lambda}$ be a weighted $(r-1)$-path suspension of G_{ω}. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ be such that $V^{\prime \prime} \subseteq V\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. Assume that $\mathrm{WCA}_{i}(\mathfrak{P}) \neq \emptyset$ for some $i \in\{1, \ldots, d\}$. If $v_{i, j_{1}}, v_{i, j_{2}} \in \mathrm{WCA}_{i}(\mathfrak{P})$ with $j_{1}<j_{2}$, then

$$
\delta^{\prime \prime}\left(v_{i, j_{1}}\right)+\sum_{k=0}^{j_{1}-1} h_{i, k}<\delta^{\prime \prime}\left(v_{i, j_{2}}\right)+\sum_{k=0}^{j_{2}-1} h_{i, k}
$$

So we have that

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i}\right)=\delta^{\prime \prime}\left(v_{i, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} h_{i, k}, \text { where } j_{0}:=\min \left\{j \mid v_{i, j} \in \mathrm{WCA}_{i}(\mathfrak{P})\right\}
$$

Proof. Suppose that $\delta^{\prime \prime}\left(v_{i, j_{1}}\right)+\sum_{k=0}^{j_{1}-1} h_{i, k} \geq \delta^{\prime \prime}\left(v_{i, j_{2}}\right)+\sum_{k=0}^{j_{2}-1} h_{i, k}$. Then we have that $\delta^{\prime \prime}\left(v_{i, j_{1}}\right) \geq$ $\delta^{\prime \prime}\left(v_{i, j_{2}}\right)+\sum_{k=j_{1}}^{j_{2}-1} h_{i, k}$. So we have that

$$
h_{i, j_{1}}<\delta^{\prime \prime}\left(v_{i, j_{2}}\right)+h_{i, j_{1}} \leq \delta^{\prime \prime}\left(v_{i, j_{2}}\right)+\sum_{k=j_{1}}^{j_{2}-1} h_{i, k} \leq \delta^{\prime \prime}\left(v_{i, j_{1}}\right) \text {, i.e., } h_{i, j_{1}}<\delta^{\prime \prime}\left(v_{i, j_{1}}\right)
$$

Hence we get that $\delta^{\prime \prime}\left(v_{i, j_{1}}\right)>h_{i, j_{1}}=\left\{\lambda\left(v_{i, j_{1}} v\right) \mid v_{i, j_{1}} v \in E\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)\right\}$, contradicting the definition of $\mathrm{WCA}_{i}(\mathfrak{P})$ and that $v_{i, j_{1}} \in \mathrm{WCA}_{i}(\mathfrak{P})$.

Example 4.2.3. A weighted 2-path suspension $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ of $G_{\omega}:=\left(P_{1}\right)_{\omega}=\left(v_{1} \xrightarrow[2]{2}\right)$ with a
weighted 3-path vertex cover $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ is given in the following sketch:

Since $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right)=\left(X_{1,2}^{5} X_{1,1}^{5} X_{1}^{2} X_{2}^{2}, X_{1,1}^{2} X_{1}^{2} X_{2}^{3} X_{2,1}^{3}, X_{1}^{2} X_{2}^{3} X_{2,1}^{4} X_{2,2}^{4}\right) R^{\prime}$, we have

$$
I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right) R=\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R
$$

Note that $q\left(V^{\prime \prime}\right)=\left\{v_{1}, v_{2}\right\}$. Since $\delta^{\prime \prime}\left(v_{1,1}\right)=3<5=\lambda\left(v_{1,1} v_{1,2}\right)$ and $\delta^{\prime \prime}\left(v_{1,2}\right)=6>5=\lambda\left(v_{1,1} v_{1,2}\right)$, we have that $\mathrm{WCA}_{1}(\mathfrak{P})=\left\{v_{1,1}\right\}$. Similarly, we have that $\mathrm{WCA}_{2}(\mathfrak{P})=\left\{v_{2,1}\right\}$, and so

$$
\begin{aligned}
& \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{1}\right)=\delta^{\prime \prime}\left(v_{1,1}\right)+\sum_{k=0}^{1-1} h_{1, k}=\delta^{\prime \prime}\left(v_{1,1}\right)+\max \left\{\lambda\left(v_{1} v_{2}\right), \lambda\left(v_{1} v_{1,1}\right)\right\}=3+\max \{2,2\}=5, \\
& \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{2}\right)=\delta^{\prime \prime}\left(v_{2,1}\right)+\sum_{k=0}^{1-1} h_{2, k}=\delta^{\prime \prime}\left(v_{2,1}\right)+\max \left\{\lambda\left(v_{1} v_{2}\right), \lambda\left(v_{2} v_{2,1}\right)\right\}=3+\max \{2,3\}=6
\end{aligned}
$$

Therefore, $P\left(V^{\prime \prime}, \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)=\left(X_{1}^{5}, X_{2}^{6}\right) R \supseteq\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R=I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right) R$.

The following theorem is a key for decomposing $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R$ with $\lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G}$ and hence $I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R$. The proof is somewhat technical. The reader may wish to follow the argument with Example 4.2.3 as a motivating example.

Theorem 4.2.4. Let $\left(\Sigma_{r-1} G\right)_{\lambda}$ be a weighted $(r-1)$-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq$ $\lambda\left(v_{i}, v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ be such that $V^{\prime \prime} \subseteq$ $V\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. Then $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R \subseteq P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$ if and only if $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is a weighted r-path vertex cover of $\left(\Sigma_{r-1} G\right)_{\lambda}$.

Proof. \Longrightarrow Assume that $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R \subseteq P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$. Let $P_{r}:=v_{p_{1}, q_{1}} \cdots v_{p_{r+1}, q_{r+1}}$ be an r-path in $\left(\Sigma_{r-1} G\right)_{\lambda}$. Set

$$
e_{p_{k}, q_{k}}= \begin{cases}\lambda\left(v_{p_{1}, q_{1}} v_{p_{2}, q_{2}}\right) & \text { if } k=1, \\ \max \left\{\lambda\left(v_{p_{k-1}, q_{k-1}} v_{p_{k}, q_{k}}\right), \lambda\left(v_{p_{k}, q_{k}} v_{p_{k+1}, q_{k+1}}\right)\right\} & \text { if } k=2, \ldots, r, \\ \lambda\left(v_{p_{r}, q_{r}} v_{p_{r+1}, q_{r+1}}\right) & \text { if } k=r+1\end{cases}
$$

Then $X_{p_{1}}^{e_{p_{1}, q_{1}}} \cdots X_{p_{r+1}}^{e_{p_{r+1}, q_{r+1}}} \in \llbracket I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R \rrbracket \subseteq \llbracket P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right) \rrbracket$. So we have that

$$
X_{i_{0}}^{\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{0}}\right)} \mid X_{p_{1}}^{e_{p_{1}, q_{1}}} \cdots X_{p_{r+1}}^{e_{p_{r+1}, q_{r+1}}} \text { for some } v_{i_{0}} \in q\left(V^{\prime \prime}\right)
$$

Hence we have that $v_{i_{0}}=v_{p_{l}}$ for some $l \in\{1, \ldots, r+1\}$ and
$\min _{v_{i_{0}, j} \in \mathrm{WCA}_{i_{0}}(\mathfrak{P})}\left\{\delta^{\prime \prime}\left(v_{i_{0}, j}\right)+\sum_{k=0}^{j-1} h_{i_{0}, k}\right\}=\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{0}}\right) \leq \sum_{k=0}^{r+1} \mathbb{1}_{k} e_{p_{k}, q_{k}}$, where $\mathbb{1}_{k}= \begin{cases}1 & \text { if } p_{k}=i_{0}, \\ 0 & \text { otherwise } .\end{cases}$
So we have that $v_{p_{l}}=v_{i_{0}} \in q\left(V^{\prime \prime}\right)$. Since P_{r} is an r-path in $\Sigma_{r-1} G$, we have that P_{r} is of the following form.

where q_{1} or q_{r+1} may be 0 . Let $M_{0}:=\max _{1 \leq k \leq r+1}\left\{q_{k} \mid i_{0}=p_{k}\right\}$. Then we have that

$$
M_{0}= \begin{cases}q_{1} & \text { if } i_{0}=p_{1} \\ q_{r+1} & \text { if } i_{0}=p_{r+1} .\end{cases}
$$

Since $\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i}\right)<\infty$, we have that $\mathrm{WCA}_{i_{0}}(\mathfrak{P}) \neq \emptyset$. Set $j_{0}:=\min \left\{j \mid v_{i_{0}, j} \in \mathrm{WCA}_{i_{0}}(\mathfrak{P})\right\}$. Then by Proposition 4.2.2, we have that

$$
\begin{equation*}
\delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} h_{i_{0}, k}=\min _{v_{i_{0}, j} \in V^{\prime \prime}}\left\{\delta^{\prime \prime}\left(v_{i_{0}, j}\right)+\sum_{k=0}^{j-1} h_{i_{0}, k}\right\} \leq \sum_{k=0}^{r+1} \mathbb{1}_{k} \cdot e_{p_{k}, q_{k}}=\sum_{k=0}^{M_{0}} e_{i_{0}, k} . \tag{4.2.4.1}
\end{equation*}
$$

Suppose that $j_{0}>M_{0}$. Then since $e_{i_{0}, k} \leq h_{i_{0}, k}$ for $k=0, \ldots, M_{0}$, by Inequality (4.2.4.1), we have that

$$
\delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{M_{0}} e_{i_{0}, k} \leq \delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{M_{0}} h_{i_{0}, k} \leq \delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} h_{i_{0}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{0}, k}, \text { i.e., } \delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right) \leq 0
$$

contradicting $\delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right) \geq 1$ by the definition of $\delta^{\prime \prime}$. So $j_{0} \leq M_{0}$ and there must exist a sub-path of P_{r} of the form

$$
v_{i_{0}, 0}=v_{i_{0}, 1}=\cdots \sim v_{i_{0}, M_{0}}
$$

Since $0 \leq j_{0} \leq M_{0}$, there exists a vertex in this path of the form $v_{i_{0}, j_{0}}=v_{p_{k}, q_{k}}$ for some k in $\{1, \ldots, r+1\}$. So $v_{p_{k}, q_{k}}=v_{i_{0}, j_{0}} \in \mathrm{WCA}_{i}(\mathfrak{P}) \subseteq V^{\prime \prime}$.
(a) Assume that $0=j_{0}<M_{0}$. Since $\lambda\left(v_{i} v_{j}\right) \leq \min \left\{\lambda\left(v_{i}, v_{i, 1}\right), \lambda\left(v_{j}, v_{j, 1}\right)\right\}$ for all edges $v_{i} v_{j} \in E$ and $M_{0} \geq 1$, we have that $e_{i_{0}, 0}=\lambda\left(v_{i_{0}, 0} v_{i_{0}, 1}\right)=h_{i_{0}, 0}$. Since $v_{i_{0}, j_{0}} \in \mathrm{WCA}_{i_{0}}(\mathfrak{P})$, we have that $\delta^{\prime \prime}\left(v_{i_{0}, 0}\right) \leq h_{i_{0}, 0}=e_{i_{0}, 0}$.
(b) Assume that $0<j_{0}<M_{0}$. Since $v_{i_{0}, j_{0}} \in \mathrm{WCA}_{i_{0}}(\mathfrak{P})$, we have that $v_{i_{0}, j_{0}}$ weighted-covers the edge $v_{i_{0}, j_{0}-1} v_{i_{0}, j_{0}}$ or $v_{i_{0}, j_{0}} v_{i_{0}, j_{0}+1}$, i.e., $\delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right) \leq \max \left\{\lambda\left(v_{i_{0}, j_{0}-1} v_{i_{0}, j_{0}}\right), \lambda\left(v_{i_{0}, j_{0}} v_{i_{0}, j_{0}+1}\right)\right\}=e_{i_{0}, j_{0}}$.
(c) Assume that $j_{0}=M_{0}$. Since $e_{i_{0}, k} \leq h_{i_{0}, k}$ for $k=0, \ldots, j_{0}-1$, by Inequality (4.2.4.1), we have

$$
\delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} e_{i_{0}, k} \leq \delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} h_{i_{0}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{0}, k}=\sum_{k=0}^{j_{0}} e_{i_{0}, k}, \text { i.e., } \delta^{\prime \prime}\left(v_{i_{0}, j_{0}}\right) \leq e_{i_{0}, j_{0}}
$$

So $v_{i_{0}, j_{0}}$ weighted-covers P_{r}. Thus, $V^{\prime \prime}$ is a weighted r-path vertex cover of $\Sigma_{r-1} G$.
\Longleftarrow Assume that $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is a weighted r-path vertex cover of $\left(\Sigma_{r-1} G\right)_{\lambda}$. We need to show that every monomial generator of $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R$ is in $P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$. We let $\underline{X}^{\underline{b}}:=$ $X_{i_{1}}^{e_{i_{1}, j_{1}}} \ldots X_{i_{r+1}}^{e_{i_{r+1}, j_{r+1}}}$ be such a generator corresponding to an r-path $P_{r}:=v_{i_{1}, j_{1}} \cdots v_{i_{r+1}, j_{r+1}}$ in $\left(\Sigma_{r-1} G\right)_{\lambda}$. We need to show that $\underline{X^{\underline{b}}} \in P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$. Note that $X_{i_{1}, j_{1}}^{e_{i_{1}, j_{1}}} \cdots X_{i_{r+1}, j_{r+1}}^{e_{i_{r+1}, j_{r+1}}}$ is of the following form. We replace each vertex in P_{r} with the corresponding variable and its exponent.

where j_{1} or j_{r+1} may be 0 . Since P_{r} is an r-path in $\left(\Sigma_{r-1} G\right)_{\lambda}$ and $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is a weighted r-path vertex cover of $\left(\Sigma_{r-1} G\right)_{\lambda}$, we have that $v_{i_{l}, j_{l}}$ weighted-covers the r-path P_{r} for some $l \in\{1, \ldots, r+1\}$. So $v_{i_{l}, j_{l}} \in \mathrm{WCA}_{i_{l}}(\mathfrak{P})$ and then

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{l}}\right)=\min _{v_{i_{l}, t} \in \mathrm{WCA}_{i_{l}}(\mathfrak{P})}\left\{\delta^{\prime \prime}\left(v_{i_{l}, t}\right)+\sum_{k=0}^{t-1} h_{i_{l}, k}\right\} \leq \delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} h_{i_{l}, k}
$$

Let $M_{0}:=\max _{1 \leq k \leq r+1}\left\{j_{k} \mid i_{l}=i_{k}\right\}$. Then $j_{l} \leq M_{0}$. Since $v_{i_{l}, j_{l}}$ weighted-covers the r-path P_{r}, $\delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right) \leq e_{i_{l}, j_{l}}$. So

$$
\delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} e_{i_{l}, k} \leq e_{i_{l}, j_{l}}+\sum_{k=0}^{j_{l}-1} e_{i_{l}, k}=\sum_{k=0}^{j_{l}} e_{i_{l}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{l}, k}, \text { i.e., } \delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} e_{i_{l}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{l}, k} .
$$

(a) Assume that $j_{l}=0$. Then

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{l}}\right) \leq \delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} h_{i_{l}, k}=\delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} e_{i_{l}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{l}, k}=\sum_{k=0}^{r+1} \mathbb{1}_{l, k} e_{i_{k}, j_{k}}=b_{i_{l}}
$$

where $\mathbb{1}_{l, k}=\left\{\begin{array}{ll}1 & \text { if } i_{k}=i_{l} \\ 0 & \text { otherwise }\end{array}, \forall k=1, \ldots, r+1\right.$.
(b) Assume that $j_{l}>0$. Then $M_{0} \geq 1$. Since $\lambda\left(v_{i} v_{j}\right) \leq \min \left\{\lambda\left(v_{i}, v_{i, 1}\right), \lambda\left(v_{j}, v_{j, 1}\right)\right\}$ for all edges $v_{i} v_{j} \in E$, we have that $e_{i_{0}, 0}=\lambda\left(v_{i_{0}, 0} v_{i_{0}, 1}\right)=h_{i_{0}, 0}$. Also, since $e_{i_{0}, k}=h_{i_{0}, k}$ for $k=1, \ldots, j_{l}-1$, we have that

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{l}}\right) \leq \delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} h_{i_{l}, k}=\delta^{\prime \prime}\left(v_{i_{l}, j_{l}}\right)+\sum_{k=0}^{j_{l}-1} e_{i_{l}, k} \leq \sum_{k=0}^{M_{0}} e_{i_{l}, k}=\sum_{k=0}^{r+1} \mathbb{1}_{l, k} e_{i_{k}, j_{k}}=b_{i_{l}}
$$

So $X_{i_{l}}^{\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{i_{l}}\right)} \mid \underline{X^{\underline{b}}}$. Thus, $\underline{X}^{\underline{b}} \in P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$.
Proposition 4.2.5. Let $\left(\Sigma_{r-1} G\right)_{\lambda}$ be a weighted $(r-1)$-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq$ $\lambda\left(v_{i}, v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j}, v_{j, 1}\right)$ for all $v_{i} v_{j} \in E$. The monomial ideal $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R$ can be written as a finite intersection of m-irreducible ideals of the form $P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$ with $V^{\prime \prime} \subseteq$ $V\left(\Sigma_{r-1} G\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$.

Proof. Fact 2.2 .38 gives a decomposition of $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right) R$. Let $J:=\left(X_{b_{1}}^{\beta_{b_{1}}}, \ldots, X_{b_{s}}^{\beta_{b_{s}}}\right) R$ occur in the decomposition. Without loss of generality, assume that $b_{1}, \ldots, b_{s} \in \mathbb{N}$ are distinct, and let
$k \in\{1, \ldots, s\}$. By Fact 2.2 .38 , there exists a generator $p\left(X_{i_{1}, j_{1}} \ldots X_{i_{r+1}, j_{r+1}}\right)$ with $v_{i_{1}, j_{1}} \ldots v_{i_{r+1}, j_{r+1}}$ an r-path in $\left(\Sigma_{r-1} G\right)_{\lambda}$ such that for some $c(k) \in\{1, \ldots, r+1\}$, we have that $i_{c(k)}=b_{k}$ and

$$
\beta_{b_{k}}= \begin{cases}e_{b_{k}, 0} & \text { if } M_{k}=0 \\ \lambda\left(v_{b_{k}, M_{k}} v_{b_{k}, M_{k}-1}\right)+\sum_{l=0}^{M_{k}-1} h_{b_{k}, l} & \text { if } M_{k} \geq 1\end{cases}
$$

where $M_{k}:=\max _{1 \leq n \leq r+1}\left\{j_{n} \mid b_{k}=i_{n}\right\} \leq r-1$ and

$$
e_{i_{m}, j_{m}}= \begin{cases}\lambda\left(v_{i_{1}, j_{1}} v_{i_{2}, j_{2}}\right) & \text { if } m=1, \\ \max \left\{\lambda\left(v_{i_{m-1}, j_{m-1}} v_{i_{m}, j_{m}}\right), \lambda\left(v_{i_{m}, j_{m}} v_{i_{m+1}, j_{m+1}}\right)\right\} & \text { if } m=2, \ldots, r \\ \lambda\left(v_{i_{r}, j_{r}} v_{i_{r+1}, j_{r+1}}\right) & \text { if } m=r+1\end{cases}
$$

We repeat the process for each $k \in\{1, \ldots, s\}$ and set $V^{\prime \prime}=\left\{v_{b_{1}, M_{1}}, \ldots, v_{b_{s}, M_{s}}\right\}$. Then $q\left(V^{\prime \prime}\right)=$ $\left\{v_{b_{1}}, \ldots, v_{b_{s}}\right\}$. Define

$$
\begin{aligned}
\delta^{\prime \prime}: V^{\prime \prime} \longrightarrow \mathbb{N} \\
v_{b_{k}, M_{k}} \longmapsto\left\{\begin{array}{ll}
\lambda\left(v_{b_{k}, M_{k}} v_{b_{k}, M_{k}-1}\right) & \text { if } M_{k} \geq 1 \\
\beta_{b_{k}}\left(=e_{b_{k}, 0}\right) & \text { if } M_{k}=0
\end{array}, \forall k=1, \ldots, s .\right.
\end{aligned}
$$

We claim $J=P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$. It is enough to show $\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{b_{k}}\right)=\beta_{b_{k}}$ for $k=1, \ldots, s$. Let $\mathfrak{P}:=\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$. Since $\left|V^{\prime \prime}\right|=\left|q\left(V^{\prime \prime}\right)\right|$, we have $\left|\mathrm{WCA}_{k}(\mathfrak{P})\right| \leq 1$ for $k=1, \ldots, s$. There are two cases:
(a) Assume that $M_{k} \geq 1$. Since $v_{b_{k}, M_{k}} \in V^{\prime \prime}$ and $\delta^{\prime \prime}\left(v_{b_{k}, M_{k}}\right)=\lambda\left(v_{b_{k}, M_{k}} v_{b_{k}, M_{k}-1}\right)$, we have that $v_{b_{k}, M_{k}} \in \mathrm{WCA}_{b_{k}}(\mathfrak{P})$. Therefore, we have that $\mathrm{WCA}_{b_{k}}(\mathfrak{P})=\left\{v_{b_{k}, M_{k}}\right\}$, and hence

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{b_{k}}\right)=\delta^{\prime \prime}\left(v_{b_{k}, M_{k}}\right)+\sum_{l=0}^{M_{k}-1} h_{b_{k}, l}=\lambda\left(v_{b_{k}, M_{k}} v_{b_{k}, M_{k}-1}\right)+\sum_{l=0}^{M_{k}-1} h_{b_{k}, l}=\beta_{b_{k}} .
$$

(b) Assume that $M_{k}=0$. Then $j_{c(k)} \in\left\{0, \ldots, M_{k}\right\}=\{0\}$ and so $j_{c(k)}=0$. Then

$$
e_{i_{c(k)}, j_{c(k)}}= \begin{cases}\lambda\left(v_{i_{1}, j_{1}} v_{i_{2}, j_{2}}\right) & \text { if } c(k)=1, \\ \lambda\left(v_{i_{r}, j_{r}} v_{i_{r+1}, j_{r+1}}\right) & \text { if } c(k)=r+1, \\ \max \left\{\lambda\left(v_{i_{c(k)-1}, j_{c(k)-1}} v_{i_{c(k)}, j_{c(k)}}\right), \lambda\left(v_{i_{c(k)}, j_{c(k)}} v_{i_{c(k)+1}, j_{c(k)+1}}\right)\right\} & \text { if } 2 \leq c(k) \leq r-1\end{cases}
$$

$\delta^{\prime \prime}\left(v_{i_{c(k)}, j_{c(k)}}\right)=\delta^{\prime \prime}\left(v_{b_{k}, 0}\right)=\beta_{b_{k}}=e_{b_{k}, 0}=e_{i_{c(k)}, j_{c(k)}}$, and $v_{i_{c(k)}, M_{k}}=v_{b_{k}, 0}=v_{b_{k}, M_{k}} \in V^{\prime \prime}$. So $v_{b_{k}, 0} \in \mathrm{WCA}_{b_{k}}(\mathfrak{P})$ and thus $\mathrm{WCA}_{b_{k}}(\mathfrak{P})=\left\{v_{b_{k}, 0}\right\}$. Hence

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{b_{k}}\right)=\delta^{\prime \prime}\left(v_{b_{k}, 0}\right)+\sum_{l=0}^{0-1} h_{b_{k}, l}=\delta^{\prime \prime}\left(v_{b_{k}, 0}\right)=\beta_{b_{k}} .
$$

Example 4.2.6. Consider the following graph $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.3.

By Example 4.2.3, $I_{3}\left(\left(\Sigma_{2} P_{1}\right)\right) R=\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R$. By Fact 2.2.38,

$$
\begin{aligned}
I_{3}\left(\left(\Sigma_{2} P_{1}\right)\right) R= & \left(X_{1}^{12}, X_{1}^{4}, X_{1}^{2}\right) R \cap\left(X_{1}^{12}, X_{1}^{4}, X_{2}^{11}\right) R \cap\left(X_{1}^{12}, X_{2}^{6}, X_{1}^{2}\right) R \cap\left(X_{1}^{12}, X_{2}^{6}, X_{2}^{11}\right) R \\
& \cap\left(X_{2}^{2}, X_{1}^{4}, X_{1}^{2}\right) R \cap\left(X_{2}^{2}, X_{1}^{4}, X_{2}^{11}\right) R \cap\left(X_{2}^{2}, X_{2}^{6}, X_{1}^{2}\right) R \cap\left(X_{2}^{2}, X_{2}^{6}, X_{2}^{11}\right) R \\
= & \left(X_{1}^{2}\right) R \cap\left(X_{1}^{4}, X_{2}^{11}\right) R \cap\left(X_{1}^{2}, X_{2}^{6}\right) R \cap\left(X_{1}^{12}, X_{2}^{6}\right) R \\
& \cap\left(X_{1}^{2}, X_{2}^{2}\right) R \cap\left(X_{1}^{4}, X_{2}^{2}\right) R \cap\left(X_{1}^{2}, X_{2}^{2}\right) R \cap\left(X_{2}^{2}\right) R .
\end{aligned}
$$

Let $J_{1}=\left(X_{1}^{2}\right) R$. Then $b_{1}=1$ and $\beta_{b_{1}}=\beta_{1}=2$. Consider the generator $X_{1,0}^{e_{1,0}} X_{2,0}^{e_{2,0}} X_{2,1}^{e_{2,1}} X_{2,2}^{e_{2,2}}:=$ $X_{1}^{2} X_{2}^{3} X_{2,1}^{4} X_{2,2}^{4}$ of $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right)$. Then $M_{1}:=0$ and $\beta_{1}=e_{1,0}=2$. Let $V^{\prime \prime}=\left\{v_{1,0}\right\}$ and $\delta^{\prime \prime}: V^{\prime \prime} \longrightarrow \mathbb{N}$ be given by $v_{1} \longmapsto e_{1,0}=2$. Since $q\left(V^{\prime \prime}\right)=\left\{v_{1}\right\}, \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{1}\right)=\delta^{\prime \prime}\left(v_{1,0}\right)=2$. So we have that

$$
P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)=P\left(\left\{v_{1}^{2}\right\}\right)=\left(X_{1}^{2}\right) R=J_{1} .
$$

Let $J_{2}=\left(X_{1}^{4}, X_{2}^{11}\right) R$. Then $b_{1}=1, b_{2}=2$, and $\beta_{b_{1}}=\beta_{1}=4$ and $\beta_{b_{2}}=\beta_{2}=11$. Consider the generator $X_{1,1}^{e_{1,1}} X_{1,0}^{e_{1,0}} X_{2,0}^{e_{2,0}} X_{2,1}^{e_{2,1}}:=X_{11}^{2} X_{1}^{2} X_{2}^{3} X_{2,1}^{3}$ of $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right)$. Then $M_{1}:=1$ and $\beta_{1}=$ $\lambda\left(v_{1,1} v_{1,0}\right)+h_{1,0}=2+2=4$. Consider the generator $X_{1,0}^{e_{1,0}} X_{2,0}^{e_{2,0}} X_{2,1}^{e_{2,1}} X_{2,2}^{e_{2,2}}:=X_{1}^{2} X_{2}^{3} X_{2,1}^{4} X_{2,2}^{4}$ of $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda}\right)$. Then $M_{2}:=2$ and $\beta_{2}=\lambda\left(v_{2,2} v_{2,1}\right)+h_{2,0}+h_{2,1}=4+3+4=11$. Let $V^{\prime \prime}=\left\{v_{1,1}, v_{2,2}\right\}$ and $\delta^{\prime \prime}: V^{\prime \prime} \longrightarrow \mathbb{N}$ be given by $v_{1} \longmapsto \lambda\left(v_{1,1} v_{1,0}\right)=2$ and $v_{2,2} \longmapsto \lambda\left(v_{2,2} v_{2,1}\right)=4$. Then $q\left(V^{\prime \prime}\right)=\left\{v_{1}, v_{2}\right\}$ and so $\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{1}\right)=\delta^{\prime \prime}\left(v_{1,1}\right)+h_{1,0}=2+2$ and

$$
\gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{2}\right)=\delta^{\prime \prime}\left(v_{2,2}\right)+h_{2,0}+h_{2,1}=4+3+4=11 .
$$

So we have that

$$
P\left(q\left(V^{\prime \prime}\right), \gamma\left(V^{\prime \prime}, \delta^{\prime \prime}\right)\right)=P\left(\left\{v_{1}^{4}, v_{2}^{11}\right\}\right)=\left(X_{1}^{4}, X_{2}^{11}\right) R=J_{2} .
$$

The next result is our first decomposition needed for computing $\mathrm{r}_{R^{\prime}}\left(R^{\prime} / I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)\right)$.

Theorem 4.2.7. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{i} v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j} v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E$. We have

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) w . r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right) \text {, where } \lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G},
$$

and

$$
I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) w . r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)+\mathfrak{m}^{[\underline{a}(\lambda)]}
$$

Proof. Note that $I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R=I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R+\mathfrak{m}^{[\underline{a}(\lambda)]}$ by Fact 4.1.7. Then it is enough to show that, by[9, Theorem 7.5.3],

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \mathrm{w} . r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)
$$

By Proposition 4.2.5, the monomial ideal $I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R$ can be written as a finite intersection of m-irreducible ideals of the form $P\left(q\left(V^{\prime \prime}\right):=\left\{v_{i_{1}}, \ldots, v_{i_{t}}\right\}, \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$ with $V^{\prime \prime} \subseteq V\left(\Sigma_{r-1} G\right)$ and $\delta^{\prime \prime}: V^{\prime \prime} \rightarrow \mathbb{N}$. Then by Theorem 4.2.4,

$$
\begin{aligned}
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R & \subseteq \bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right) \\
& \subseteq \\
& =\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}} \text { in the decomp. of } I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right) \\
& \left.\left.I_{r-1} G\right)_{\lambda^{\prime}}\right) R .
\end{aligned}
$$

So we have that

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)
$$

Example 4.2.8. Consider the following weighted 3-path suspension $\left(\Sigma_{3} P_{1}\right)_{\lambda}$ of $G_{\omega}:=\left(P_{1}\right)_{\omega}=$
$\left(v_{1} \xrightarrow{2} v_{2}\right)$.

Let $\lambda^{\prime}=\left.\lambda\right|_{\Sigma_{2} P_{1}}$. Since $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}\right)=\left(X_{1,2}^{5} X_{1,1}^{5} X_{1}^{2} X_{2}^{2}, X_{1,1}^{2} X_{1}^{2} X_{2}^{3} X_{2,1}^{3}, X_{1}^{2} X_{2}^{3} X_{2,1}^{4} X_{2,2}^{4}\right)$, by Theorem 4.2.7, we have two infinite intersections:
$I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}\right) R=\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { w. } r \text {-path v. cover of }\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)$,
and

$$
\begin{aligned}
I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda^{\prime}}\right) R & =\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R+\left(X_{1}^{14}, X_{2}^{13}\right) R \\
& =\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { w. } r \text {-path v. cover of }\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)
\end{aligned}
$$

The next result is key for our second decomposition result, Corollary 4.2.11.
Lemma 4.2.9. Let $\mathfrak{p}:=\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right), \mathfrak{P}:=\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ be such that $V_{1}^{\prime \prime}, V_{2}^{\prime \prime} \subseteq V\left(\left(\Sigma_{r-1} G\right)_{\lambda}\right)$ and $\delta_{1}^{\prime \prime}, \delta_{2}^{\prime \prime}$: $V^{\prime \prime} \rightarrow \mathbb{N}$. If $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right) \leq\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$, then $P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right) \subseteq P\left(q\left(V_{2}^{\prime \prime}\right), \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right)$.

Proof. Let $X_{i}^{\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}^{\left(v_{i}\right)}}$ be a generator of $P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right)$. Then $V_{1}^{\prime \prime} \subseteq V_{2}^{\prime \prime}$ implies we have that $X_{i}^{\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{i}\right)} \in P\left(q\left(V_{2}^{\prime \prime}\right), \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right)$ and

$$
\begin{aligned}
\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{i}\right) & =\min \left\{\delta_{1}^{\prime \prime}\left(v_{i_{j}, t}\right)+\sum_{k=0}^{t-1} h_{i_{j}, k} \mid v_{i_{j}, t} \in \mathrm{WCA}_{i_{j}}(\mathfrak{p})\right\} \\
& \geq \min \left\{\delta_{2}^{\prime \prime}\left(v_{i_{j}, t}\right)+\sum_{k=0}^{t-1} h_{i_{j}, k} \mid v_{i_{j}, t} \in \mathrm{WCA}_{i_{j}}(\mathfrak{P})\right\}=\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{i}\right)
\end{aligned}
$$

It follows that $X_{i}^{\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{i}\right)} \mid X_{i}^{\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{i}\right)}$, and hence $P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right) \subseteq P\left(q\left(V_{2}^{\prime \prime}\right), \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right)$.
Example 4.2.10. Consider the following two pairs of sets $\mathfrak{p}:=\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right):=\left\{v_{1,1}^{4}, v_{2}^{5}, v_{2,1}^{6}\right\}$ and $\mathfrak{P}:=\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right):=\left\{v_{1,1}^{3}, v_{1,2}^{6}, v_{2}^{5}, v_{2,1}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.3.

Since $V_{1}^{\prime \prime} \subseteq V_{2}^{\prime \prime}$ and $\delta_{1}^{\prime \prime} \geq\left.\delta_{2}^{\prime \prime}\right|_{V_{1}^{\prime \prime}}$, we have that $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right) \leq\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$. Similar to Example 4.2.3, we have that $\mathrm{WCA}_{1}(\mathfrak{p})=\left\{v_{1,1}\right\}$ and $\mathrm{WCA}_{2}(\mathfrak{p})=\emptyset$. Therefore, $\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{2}\right)=\infty$ and

$$
\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{1}\right)=\delta_{1}^{\prime \prime}\left(v_{1,1}\right)+\sum_{k=0}^{1-1} h_{1, k}=\delta_{1}^{\prime \prime}\left(v_{1,1}\right)+\max \left\{\lambda\left(v_{1} v_{2}\right), \lambda\left(v_{1} v_{1,1}\right)\right\}=4+\max \{2,2\}=5
$$

Also, since $q\left(V_{1}^{\prime \prime}\right)=\left\{v_{1}, v_{2}\right\}$, we have that $P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right)=\left(X_{1}^{5}, X_{2}^{\infty}\right) R=\left(X_{1}^{5}\right) R$. Then from Example 4.2.3, we have that

$$
P\left(q\left(V_{2}^{\prime \prime}\right), \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right)=\left(X_{1}^{5}, X_{2}^{6}\right) R \supseteq\left(X_{1}^{5}\right) R=P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right)
$$

Here is our second decomposition result for computing $\mathrm{r}_{R^{\prime}}\left(R^{\prime} / I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)\right)$.
Corollary 4.2.11. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{i}, v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j}, v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E$. We have

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { min. w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right), \text { where } \lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G}
$$

and

$$
I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { min. w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)+\mathfrak{m}^{[\underline{a}(\lambda)]}
$$

Proof. By Fact 4.1.7 and [9, Theorem 7.5.3], it is enough to prove that

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { min. w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)
$$

By Theorem 4.2.7, it is enough to show that

$$
=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { weighted. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)
$$

\subseteq follows because every minimal weighted r-path vertex cover is a weighted r-path vertex cover.
\supseteq follows from Fact 3.1.6 and Lemma 4.2.9.

Example 4.2.12. Consider the following weighted 3-path suspension $\left(\Sigma_{3} P_{1}\right)_{\lambda}$ of $G_{\omega}:=\left(P_{1}\right)_{\omega}=$ $\left(v_{1} \xrightarrow{2} v_{2}\right)$.

We depict the minimal weighted 3-path vertex covers of $\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}$ with $\lambda^{\prime}=\lambda \mid \Sigma_{2} P_{1}$ in the following sketches:

Since $I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}\right)=\left(X_{1,2}^{5} X_{1,1}^{5} X_{1}^{2} X_{2}^{2}, X_{1,1}^{2} X_{1}^{2} X_{2}^{3} X_{2,1}^{3}, X_{1}^{2} X_{2}^{3} X_{2,1}^{4} X_{2,2}^{4}\right)$, by Corollary 4.2.11, we have that

$$
\begin{aligned}
I_{3}\left(\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}\right) R= & \left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R=\left(X_{1}^{2}\right) R \cap\left(X_{2}^{2}\right) R \cap\left(X_{1}^{7}, X_{2}^{3}\right) R \cap\left(X_{1}^{12}, X_{2}^{3}\right) R \\
& \cap\left(X_{1}^{4}, X_{2}^{7}\right) \cap\left(X_{1}^{7}, X_{2}^{6}\right) \cap\left(X_{1}^{12}, X_{2}^{6}\right) R \cap\left(X_{1}^{4}, X_{2}^{11}\right) R .
\end{aligned}
$$

This decomposition is redundant. Thus, the decomposition in Corollary 4.2 .11 may be redundant.

In light of the preceding example, we define another order from which we can produce an irredundant decomposition. Lemma 4.2.21 is the key for understanding how this ordering helps with irredundancy.

Definition 4.2.13. Given minimal weighted r-path vertex covers $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right),\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ of $\left(\Sigma_{r-1} G\right)_{\lambda}$, we write $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right) \leq_{p}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ if $q\left(V_{1}^{\prime \prime}\right) \subseteq q\left(V_{2}^{\prime \prime}\right)$ and $\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)} \geq\left.\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right|_{q\left(V_{1}^{\prime \prime}\right)}$. A minimal weighted
r-path vertex cover $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)$ is \nless-minimal if there is not another minimal weighted r-path vertex cover $\left(V^{\prime \prime \prime}, \delta^{\prime \prime \prime}\right)$ such that $\left(V^{\prime \prime}, \delta^{\prime \prime}\right)<_{p}\left(V^{\prime \prime \prime}, \delta^{\prime \prime \prime}\right)$.

Example 4.2.14. Consider the following two minimal weighted 3-path vertex covers $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right):=$ $\left\{v_{1,2}^{5}, v_{2}^{3}\right\}$ and $\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2,1}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.12.

Then $q\left(V_{1}^{\prime \prime}\right)=\left\{v_{1}, v_{2}\right\}=q\left(V_{2}^{\prime \prime}\right)$. Since

$$
\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{1}\right)=\delta_{1}^{\prime \prime}\left(v_{1,2}\right)+h_{1,1}+h_{1,0}=5+5+2=\delta_{2}^{\prime \prime}\left(v_{1,2}\right)+h_{1,1}+h_{1,0}=\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{1}\right)
$$

and $\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{2}\right)=\delta_{1}^{\prime \prime}\left(v_{2}\right)=3<3+3=\delta_{2}^{\prime \prime}\left(v_{2,1}\right)+h_{2,0}=\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{2}\right)$, we have that $\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}<$ $\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}$. So $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)>_{\mathcal{R}}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$. Hence $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)$ is not \boldsymbol{p}-minimal.

Lemma 4.2.15. Let $\mathfrak{p}:=\left(W^{\prime}, \delta^{\prime}\right)$ and $\mathfrak{P}:=\left(W^{\prime \prime}, \delta^{\prime \prime}\right)$ be two minimal weighted r-path vertex covers of $\left(\Sigma_{r-1} G\right)_{\lambda}$ such that $\left(W^{\prime \prime}, \delta^{\prime \prime}\right) \leq_{p}\left(W^{\prime}, \delta^{\prime}\right)$, then $\left|\left(W^{\prime \prime}, \delta^{\prime \prime}\right)\right|=\left|\left(W^{\prime}, \delta^{\prime}\right)\right|$ and $q\left(W^{\prime \prime}\right)=q\left(W^{\prime}\right)$.

Proof. Since $\left(W^{\prime}, \delta^{\prime}\right)$ is a minimal weighted r-path vertex cover of $\left(\Sigma_{r-1} G\right)_{\lambda}$, for a distinct pair $v_{i_{1}, j_{1}}, v_{i_{2}, j_{2}} \in W^{\prime}$, we have that $i_{1} \neq i_{2}$. Also, since $q\left(W^{\prime \prime}\right) \subseteq q\left(W^{\prime}\right),\left|W^{\prime \prime}\right|=\left|q\left(W^{\prime \prime}\right)\right| \leq\left|q\left(W^{\prime}\right)\right|=$ $\left|W^{\prime}\right|$. Suppose that $\left|W^{\prime \prime}\right|<\left|W^{\prime}\right|$. Then there exists $v_{i, j} \in W^{\prime}$ such that $v_{i} \notin q\left(W^{\prime \prime}\right)$. Since $\left(W^{\prime}, \delta^{\prime}\right)$ is a minimal weighted r-path vertex cover of $\left(\Sigma_{r-1} G\right)_{\lambda}$, there is an r-path P_{r} in $\left(\Sigma_{r-1} G\right)_{\lambda}$ that can only be weighted-covered by $v_{i, j}$. By assumption, P_{r} can be weighted-covered by some $v_{k, l} \in W^{\prime \prime}$, so $v_{k} \in q\left(W^{\prime \prime}\right)$. Also, since $v_{i} \notin q\left(W^{\prime \prime}\right)$, we have that $k \neq i$. Let $\alpha=\min \left\{b \mid v_{k, b} \in \mathrm{WCA}_{k}(\mathfrak{p})\right\}$ and $\beta=\min \left\{b \mid v_{k, b} \in \mathrm{WCA}_{k}(\mathfrak{P})\right\}$. So we have that $\alpha, \beta \leq l$. Since $\gamma_{\left(W^{\prime \prime}, \delta^{\prime \prime}\right)} \geq \gamma_{\left(W^{\prime}, \delta^{\prime}\right)}$, we have that $\alpha \leq \beta$ similar to the proof of Proposition 4.2.2. If $\alpha<l$, then it is straightforward to show that P_{r} can also be weighted-covered by $v_{k, \alpha} \in W^{\prime}$, a contradiction. Assume that $\alpha=l$. Then $\alpha=\beta=l$ and so $v_{k, \beta} \in W^{\prime \prime}$ weighted-cover P_{r}. Since

$$
\delta^{\prime \prime}\left(v_{k, \alpha}\right)+\sum_{b=0}^{\alpha-1} h_{k, b}=\gamma_{\left(W^{\prime \prime}, \delta^{\prime \prime}\right)}\left(v_{k}\right) \geq \gamma_{\left(W^{\prime}, \delta^{\prime}\right)}\left(v_{k}\right)=\delta^{\prime}\left(v_{k, \alpha}\right)+\sum_{b=0}^{\alpha-1} h_{k, b}
$$

we have that $\delta^{\prime}\left(v_{k, \alpha}\right) \leq \delta^{\prime \prime}\left(v_{k, \alpha}\right)$. So P_{r} can also be weighted-covered by $v_{k, \alpha} \in W^{\prime}$, a contradiction.

Hence $\left|W^{\prime \prime}\right|=\left|W^{\prime}\right|$ and thus $\left|q\left(W^{\prime \prime}\right)\right|=\left|q\left(W^{\prime}\right)\right|$. Since $q\left(W^{\prime \prime}\right) \subseteq q\left(W^{\prime}\right)$, we have that $q\left(W^{\prime \prime}\right)=$ $q\left(W^{\prime}\right)$.

Example 4.2.16. Consider the minimal weighted 3-path vertex covers $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2}^{3}\right\}$ and $\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2,1}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.18(a).

By Example 4.2.18(a), $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)<_{p}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$. Then $\left|\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)\right|=\left|\left\{v_{1,2}, v_{2}\right\}\right|=2=\left|\left\{v_{1,2}, v_{2,1}\right\}\right|=$ $\left|\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)\right|$ and $q\left(V_{1}^{\prime \prime}\right)=\left\{v_{1}, v_{2}\right\}=q\left(V_{2}^{\prime \prime}\right)$.

The following theorem can be used as an algorithm to find the set of p-minimal weighted r-path vertex covers of $\left(\Sigma_{r-1} G\right)_{\lambda}$ from the set of minimal weighted r-path vertex covers.

Theorem 4.2.17. Let $\mathfrak{p}:=\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right), \mathfrak{P}:=\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ be two minimal weighted r-path vertex covers of $\left(\Sigma_{r-1} G\right)_{\lambda}$. Then $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right) \leq_{\beta}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ if and only if $q\left(V_{1}^{\prime \prime}\right)=q\left(V_{2}^{\prime \prime}\right)$ and for any $v_{i_{l}} \in q\left(V_{1}^{\prime \prime}\right): j_{1, l}>$ $j_{2, l}$ or $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right) \geq \delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)$ with $j_{1, l}:=\left\{j \mid v_{i_{l}, j} \in V_{1}^{\prime \prime}\right\}$ and $j_{2, l}=\left\{j \mid v_{i_{l}, j} \in V_{2}^{\prime \prime}\right\}$.

Proof. By Lemma 4.2.15, $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right) \leq_{\beta}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ if and only if $q\left(V_{1}^{\prime \prime}\right)=q\left(V_{2}^{\prime \prime}\right)$ and $\left.\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right|_{q\left(V_{1}^{\prime \prime}\right)} \geq$ $\left.\gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right|_{q\left(V_{1}^{\prime \prime}\right)}$ if and only if $q\left(V_{1}^{\prime \prime}\right)=q\left(V_{2}^{\prime \prime}\right)$ and for any $v_{i_{l}} \in q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{i_{l}}\right) \geq \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\left(v_{i_{l}}\right)$ if and only if $q\left(V_{1}^{\prime \prime}\right)=q\left(V_{2}^{\prime \prime}\right)$ and for any $v_{i_{l}} \in q\left(V_{1}^{\prime \prime}\right), \delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)+\sum_{k=0}^{j_{1, l}-1} h_{i_{l}, k} \geq \delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)+$ $\sum_{k=0}^{j_{2, l}-1} h_{i_{l}, k}$ by Proposition 4.2.2. We claim that for $v_{i_{l}} \in q\left(V_{1}^{\prime \prime}\right), \delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)+\sum_{k=0}^{j_{1, l}-1} h_{i_{l}, k} \geq$ $\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)+\sum_{k=0}^{j_{2, l}-1} h_{i_{l}, k}$ if and only if $j_{1, l}>j_{2, l}$, or $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right) \geq \delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)$.
\Longleftarrow Assume that $j_{1, l}>j_{2, l}$, or $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right) \geq \delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)$. Then

$$
\alpha:=\left(\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)+\sum_{k=0}^{j_{1, l}-1} h_{i_{l}, k}\right)-\left(\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)+\sum_{k=0}^{j_{2, l}-1} h_{i_{l}, k}\right)=\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)+\sum_{k=j_{2, l}}^{j_{1, l}-1} h_{i_{l}, k}
$$

To prove our statement, it is equivalent to show that $\alpha \geq 0$.
(a) If $j_{1, l}>j_{2, l}$, then $\alpha \geq \delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)+h_{i_{l}, j_{2, l}}>h_{i_{l}, j_{2, l}}-\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right) \geq 0$.
(b) If $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right) \geq \delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)$, then $\alpha=\delta_{1}^{\prime \prime}\left(v_{i_{l}, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right) \geq 0$.
\Longrightarrow Suppose that $j_{1, l}<j_{2, l}$, or $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i, j_{1, l}}\right)<\delta_{2}^{\prime \prime}\left(v_{i, j_{2, l}}\right)$. Then

$$
\alpha:=\left(\delta_{1}^{\prime \prime}\left(v_{i l, j_{1}, l}\right)+\sum_{k=0}^{j_{1, l}-1} h_{i l, k}\right)-\left(\delta_{2}^{\prime \prime}\left(v_{i, j_{2, l}}\right)+\sum_{k=0}^{j_{2, l}-1} h_{i l, k}\right)=\delta_{1}^{\prime \prime}\left(v_{i,, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i l, j_{2, l}}\right)-\sum_{k=j_{1, l}}^{j_{2, l}-1} h_{i l, k} .
$$

To prove our statement, it is equivalent to show that $\alpha<0$.
(a) If $j_{1, l}=j_{2, l}$ and $\delta_{1}^{\prime \prime}\left(v_{i_{1}, j_{1, l}}\right)<\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)$, then $\alpha=\delta_{1}^{\prime \prime}\left(v_{i, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i_{i}, j_{2, l}}\right)<0$.
(b) If $j_{1, l}<j_{2, l}$, since $v_{i_{l}, j_{1, l}} \in V_{1}^{\prime \prime}$ and $V_{1}^{\prime \prime}$ is a minimal weighted r-path vertex cover, we have $\delta_{1}^{\prime \prime}\left(v_{i_{l}}, j_{1, l}\right) \leq h_{i_{l}, j_{1, l}}$, so $\alpha=\delta_{1}^{\prime \prime}\left(v_{i, j_{1, l}}\right)-\delta_{2}^{\prime \prime}\left(v_{i_{l}, j_{2, l}}\right)-\sum_{k=j_{1, l}}^{j_{2, l}-1} h_{i_{l}, k}<\delta_{1}^{\prime \prime}\left(v_{i, j_{1, l}}\right)-h_{i_{l}, j_{1, l}} \leq 0$.

Example 4.2.18. We have the following examples:
(a) Consider the following two minimal weighted 3-path vertex covers $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2}^{3}\right\}$ and $\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2,1}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.14.

Then $q\left(V_{1}^{\prime \prime}\right)=\left\{v_{i_{1}}:=v_{1}, v_{i_{2}}:=v_{2}\right\}=q\left(V_{2}^{\prime \prime}\right)$. Note that

$$
\begin{aligned}
& j_{1,1}=\min \left\{j \mid v_{i_{1}, j} \in V_{1}^{\prime \prime}\right\}=\min \left\{j \mid v_{1, j} \in V_{1}^{\prime \prime}\right\}=2, \\
& j_{1,2}=\min \left\{j \mid v_{i_{2}, j} \in V_{1}^{\prime \prime}\right\}=\min \left\{j \mid v_{2, j} \in V_{1}^{\prime \prime}\right\}=0, \\
& j_{2,1}=\min \left\{j \mid v_{i_{1}, j} \in V_{2}^{\prime \prime}\right\}=\min \left\{j \mid v_{2, j} \in V_{2}^{\prime \prime}\right\}=2, \\
& j_{2,2}=\min \left\{j \mid v_{i_{2}, j} \in V_{2}^{\prime \prime}\right\}=\min \left\{j \mid v_{2, j} \in V_{2}^{\prime \prime}\right\}=1 .
\end{aligned}
$$

Since $j_{1,1}=2=j_{2,1}$ and $\delta_{1}^{\prime \prime}\left(v_{1, j_{1,1}}\right)=\delta_{1}^{\prime \prime}\left(v_{1,2}\right)=5=\delta_{2}^{\prime \prime}\left(v_{1,2}\right)=\delta_{2}^{\prime \prime}\left(v_{1, j_{2,1}}\right)$, and $j_{1,2}=0<1=j_{2,2}$, we have that $\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)<_{\mathcal{2}}\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)$ by Theorem 4.2.17.
(b) Consider all the minimal weighted 3-path vertex covers of $\left(\Sigma_{2} P_{1}\right)_{\lambda^{\prime}}$ from Example 4.2.12. Applying Theorem 4.2.17 repeatedly, we get all the \mathfrak{p}-minimal weighted 3 -path vertex covers depicted
in the following.

The next two results are key for our third and final decomposition result.

Proposition 4.2.19. For every minimal weighted r-path vertex cover $\mathfrak{p}:=\left(W^{\prime}, \delta^{\prime}\right)$ of $\left(\Sigma_{r-1} G\right)_{\lambda}$, there is a p-minimal weighted r-path vertex cover $\left(W^{\prime \prime}, \delta^{\prime \prime}\right)$ of $\left(\sum_{r-1} G\right)_{\lambda}$ such that $\left(W^{\prime \prime}, \delta^{\prime \prime}\right) \leq_{\kappa}$ $\left(W^{\prime}, \delta^{\prime}\right)$.

Proof. If $\left(W^{\prime}, \delta^{\prime}\right)$ is itself a p-minimal weighted r-path vertex cover for $\left(\Sigma_{r-1} G\right)_{\lambda}$, then we are done. If $\left(W^{\prime}, \delta^{\prime}\right)$ is not p-minimal, then by Lemma 4.2 .15 , the size of $q\left(W^{\prime}\right)$ cannot be decreased, so for some $v_{i} \in q\left(W^{\prime}\right)$ the function $\gamma_{\left(W^{\prime}, \delta^{\prime}\right)}\left(v_{i}\right)=\delta^{\prime}\left(v_{i, j_{0}}\right)+\sum_{k=0}^{j_{0}-1} h_{i, k}$ with $j_{0}:=\left\{j \mid v_{i, j} \in \mathrm{WCA}_{i}(\mathfrak{p})\right\}$ from Proposition 4.2.2 can be increased, which is done by increasing j_{0} and assigning an appropriate value to $\delta^{\prime}\left(v_{i, j_{0}}\right)$ since $\left(W^{\prime}, \delta^{\prime}\right)$ is minimal. We increase $\gamma_{\left(W^{\prime}, \delta^{\prime}\right)}\left(v_{i}\right)$ for each $v_{i} \in q\left(W^{\prime}\right)$ such that any further increase would cause the set not to be a weighted r-path vertex cover. This process terminates in finitely many steps because $j_{0} \leq r$. Denote the new set $\left(W^{\prime \prime}, \delta^{\prime \prime}\right)$. Then $\left(W^{\prime \prime}, \delta^{\prime \prime}\right)$ is minimal since the size of $W^{\prime \prime}$ cannot be decreased by Lemma 4.2.15 and $\delta^{\prime \prime}$ cannot be increased. Thus, by construction, $\left(W^{\prime \prime}, \delta^{\prime \prime}\right)$ is a \nless-minimal weighted r-path vertex cover for $\left(\Sigma_{r-1} G\right)_{\lambda}$ such that $\left(W^{\prime \prime}, \delta^{\prime \prime}\right) \leq_{p}\left(W^{\prime}, \delta^{\prime}\right)$.

Example 4.2.20. Consider the following minimal weighted 3-path vertex cover $\mathfrak{p}:=\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right):=$ $\left\{v_{1,2}^{5}, v_{2}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.18(a).

Note that $\gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\left(v_{1}\right)$ cannot be increased. Assume that $v_{2,1} \in V^{\prime \prime}$. Then setting $\delta^{\prime \prime}\left(v_{2,1}\right)=3$,
we have that $\mathfrak{p}^{\prime}:=\left(V_{1}^{\prime \prime \prime}, \delta_{1}^{\prime \prime \prime}\right)=\left\{v_{1,2}^{5}, v_{2,1}^{3}\right\}$ is a minimal weighted 3 -path vertex cover by Example 4.2.18(a). However, since $v_{1,2} \in V^{\prime \prime}$, we have that $v_{2,2}$ cannot be used to replace $v_{2,1}$ in $V_{1}^{\prime \prime \prime}$ to generate a minimal 3 -path vertex cover, otherwise, the 3 -path $v_{1,1} v_{1} v_{2} v_{2,1}$ will be left uncovered. Thus, $\left(V_{1}^{\prime \prime \prime}, \delta_{1}^{\prime \prime \prime}\right)$ is \boldsymbol{p}-minimal and $\left(V_{1}^{\prime \prime \prime}, \delta_{1}^{\prime \prime \prime}\right)<_{p}\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)$.

Lemma 4.2.21. Let $\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right),\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)$ be two minimal weighted r-path vertex covers of $\left(\Sigma_{r-1} G\right)_{\lambda}$. Then $\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right) \leq_{\mathcal{R}}\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)$ if and only if $P\left(q\left(V_{1}^{\prime}\right), \gamma_{\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right)}\right) \subseteq P\left(q\left(V_{2}^{\prime}\right), \gamma_{\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)}\right)$.

Proof. $\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right) \leq_{p}\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)$ if and only if $q\left(V_{1}^{\prime}\right) \subseteq q\left(V_{2}^{\prime}\right)$ and $\left.\gamma_{\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right)}\right|_{q\left(V_{1}^{\prime}\right)} \geq\left.\gamma_{\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)}\right|_{q\left(V_{1}^{\prime}\right)}$ if and only if $P\left(q\left(V_{1}^{\prime}\right), \gamma_{\left(V_{1}^{\prime}, \delta_{1}^{\prime}\right)}\right) \subseteq P\left(q\left(V_{2}^{\prime}\right), \gamma_{\left(V_{2}^{\prime}, \delta_{2}^{\prime}\right)}\right)$.

Example 4.2.22. Consider the following two minimal weighted 3-path vertex covers ($V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}$) := $\left\{v_{1,2}^{5}, v_{2}^{3}\right\}$ and $\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right):=\left\{v_{1,2}^{5}, v_{2,1}^{3}\right\}$ of $\left(\Sigma_{2} P_{1}\right)_{\lambda}$ from Example 4.2.18(a).

Then $\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)<_{\mathcal{R}}\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)$ by Example 4.2.18(a). Note also that

$$
P\left(q\left(V_{2}^{\prime \prime}\right), \gamma_{\left(V_{2}^{\prime \prime}, \delta_{2}^{\prime \prime}\right)}\right)=\left(X_{1}^{12}, X_{2}^{6}\right) R \subseteq\left(X_{1}^{12}, X_{2}^{3}\right) R=P\left(q\left(V_{1}^{\prime \prime}\right), \gamma_{\left(V_{1}^{\prime \prime}, \delta_{1}^{\prime \prime}\right)}\right) .
$$

Next, we present our third and final decomposition result which will yield the type computation in Theorem 4.2.25.

Theorem 4.2.23. Given a weighted r-path suspension of $G_{\omega}\left(\Sigma_{r} G\right)_{\lambda}$ such that $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{i}, v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j}, v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E$, we have an irredundant parametric decomposition

$$
I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) p \text {-min. w. } r \text {-path v. c. of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)+\mathfrak{m}^{[\underline{a}(\lambda)]}, \lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G} .
$$

Proof. By Fact 4.1.7 and [9, Theorem 7.5.3], to verify this result, it is enough to show that we have an irredundant decomposition

$$
I_{r}\left(\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right) R=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)} \boldsymbol{p}^{p \text {-min. w. } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} 1 P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right) .
$$

Lemma 4.2 .21 shows that this intersection is irredundant. So by Corollary 4.2.11, it is enough to show that

$$
=\bigcap_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right) \text { min. weighted } r \text {-path v. cover of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left.\left(V^{\prime \prime}, \delta^{\prime \prime}\right)\right)} P\left(q\left(V^{\prime \prime}\right), \gamma_{\left(V^{\prime \prime}, \delta^{\prime \prime}\right)}\right)\right.
$$

\subseteq follows as every p-minimal weighted r-path vertex cover is a minimal weighted r-path vertex cover.
\supseteq follows from Proposition 4.2.19 and Lemma 4.2.21.
Example 4.2.24. Consider the graph $\left(\Sigma_{3} P_{1}\right)_{\lambda}$ from Example 4.2.12. Then by Theorem 4.2 .23 and Example 4.2.18(b), we have an irredundant parametric decomposition

$$
\begin{aligned}
I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right) & =\left(X_{1}^{12} X_{2}^{2}, X_{1}^{4} X_{2}^{6}, X_{1}^{2} X_{2}^{11}\right) R+\mathfrak{m}^{[\underline{[a(\lambda)]}} \\
& =\left[\left(X_{1}^{2}\right) R \cap\left(X_{2}^{2}\right) R \cap\left(X_{1}^{12}, X_{2}^{6}\right) R \cap\left(X_{1}^{4}, X_{2}^{11}\right) R\right]+\left(X_{1}^{14}, X_{2}^{13}\right) R
\end{aligned}
$$

The next theorem is the fourth main result of this thesis.
Theorem 4.2.25. Let $\left(\Sigma_{r} G\right)_{\lambda}$ be a weighted r-path suspension of G_{ω} such that $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{i}, v_{i, 1}\right)$ and $\lambda\left(v_{i} v_{j}\right) \leq \lambda\left(v_{j}, v_{j, 1}\right)$ for all edges $v_{i} v_{j} \in E$.

$$
\mathrm{r}_{R^{\prime}}\left(\frac{R^{\prime}}{I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)}\right)=\sharp\left\{p \text {-minimal weighted } r \text {-path vertex covers of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right\}, \lambda^{\prime}=\left.\lambda\right|_{\Sigma_{r-1} G} \text {. }
$$

Proof. We compute

$$
\begin{aligned}
\mathrm{r}_{R^{\prime}}\left(\frac{R^{\prime}}{I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)}\right) & =\mathrm{r}_{R^{\prime}}\left(\frac{R^{\prime}}{I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right)+\left(X_{i}-X_{i, k} \mid 1 \leq i \leq d, 1 \leq k \leq r\right) R^{\prime}}\right) \\
& =\mathrm{r}_{R}\left(\frac{R}{I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R}\right) \\
& =\sharp\left\{\text { ideals in an irredundant parametric decomposition of } I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R\right\} \\
& =\sharp\left\{\nsim \text {-minimal weighted } r \text {-path vertex covers of }\left(\Sigma_{r-1} G\right)_{\lambda^{\prime}}\right\},
\end{aligned}
$$

where the first equality is from Facts $4.1 .8(\mathrm{a})$ and 2.7.6, and Theorem 3.4.1, the second equality is from Theorem 3.4.1, the third equality is from Fact 2.7.7 since $\operatorname{dim}\left(\frac{R}{I_{r}\left(\left(\Sigma_{r} G\right)_{\lambda}\right) R}\right)=0$, and the last
equality is from Fact 4.2.23.

Remark. Because of Fact 4.1.8, we use Theorem 4.2.25 to compute $\mathrm{r}_{R}\left(R / I_{r}\left(G_{\omega}\right)\right)$ for all weighted trees G_{ω} such that $I_{r}\left(G_{\omega}\right)$ is Cohen-Macaulay.

Example 4.2.26. Consider Example 4.2.24. Then by Theorem 4.2.25, we have that

$$
\mathrm{r}_{R^{\prime}}\left(R^{\prime} / I_{3}\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)=4
$$

We observe that the smallest number of vertices for one of the 3 -path vertex covers of $\left(\Sigma_{3} P_{1}\right)_{\lambda}$ is 2. Then by Facts 3.1.7 and 2.2.28, $\operatorname{dim}\left(R^{\prime} / I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)\right)=8-2=6$. Since $R^{\prime} / I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)$ is Cohen-Macaulay by Fact 4.1.8(a), depth $\left(R^{\prime} / I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)\right)=\operatorname{dim}\left(R^{\prime} / I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)\right)=6$. Hence

$$
\operatorname{Ext}_{R^{\prime}}^{6}\left(\mathbb{K}, R^{\prime} / I_{3}\left(\left(\Sigma_{3} P_{1}\right)_{\lambda}\right)\right) \cong \mathbb{K}^{4}
$$

Chapter 5

Future work

5.1 Generalized Weighted Simplicial Complex

The Stanley-Reisner correspondence uses simplicial complexes to study square-free monomial ideals. In order to use similar techniques to study certain non-square-free monomial ideals, in the future, we will define a weighted version of the notion and then define a weighted version of Stanley-Reisner ideals. As in the classical setting, we'll see whether these ideals yield an irredundant irreducible decomposition. In terms of the decomposition, we will define the Alexander dual of a weighted simplicial complex and dual of any monomial ideal, to see whether Alexander duality commutes with the weighted Stanley-Reisner correspondence, and see how it is related to the dual defined by E. Miller [8].

5.2 More classifications

We focus on classifying the edge-weighted graphs whose f-weighted r-path ideal is CohenMacaulay over a field \mathbb{K}. As for the unweighted case, we cannot expect a general classification theorem. We've completed the classification for weighted r-suspensions. In the future, we plan to use combinatorial analysis to classify all weighed K_{n}-coronas with $n \geq 2$ and weighted chordal graphs such that their f-weighted r-path ideals are Cohen-Macaulay.

Definition 5.2.1. Let $n \geq 1$. A graph G is called a K_{n}-corona if there is a subgraph H of G such that each vertex of H is affixed a distinct completed graph K_{n}. An edge-weighted graph G_{ω} is called
a weighted K_{n}-corona if the underlying graph G is K_{n}-corona.

Definition 5.2.2. A graph G is called chordal if every cycle of length >3 has a chord. An edgeweighted graph G_{ω} is called a weighted chord graph if the underlying graph G is chordal.

The examples for the K_{n}-corona and chordal are in the following:

Example 5.2.3. Let G be the following graph.

Then G is K_{4}-corona, since we have a subgraph H of G

such that each vertex a, b, c, d, e of H is affixed to a distinct complete graph K_{4}. Note that G is not chordal since the 4 -cycle b \qquad c \qquad d \qquad e \qquad b in G doesn't have a chord.

Example 5.2.4. For the following weighted chordal graph G_{ω}, we draw part of the weights of G.
For the unweighted edges, one can put any reasonable weights on them to define $\omega: E \rightarrow \mathbb{N}$.

We can show that the f-weighted r-path ideal $I_{r, f}\left(G_{\omega}\right)$ of G_{ω} cannot be Cohen-Macaulay when $r=1$. By definition, $I_{1, f}\left(G_{\omega}\right)$ is the same the weighted edge ideal of G_{ω} [10, Definition 3.1].

Conjecture 5.2.5. For weighted K_{n}-coronas with $n \geq 2$, there is a classification result of CohenMacaulay f-weighted r-path ideals.

Conjecture 5.2.6. For weighted chordal graphs, there is a classification result of Cohen-Macaulay f-weighted r-path ideals as in [6].

Conjecture 5.2.7. For all weighted r-path suspensions, weighted K_{n}-coronas and weighted chordal graphs and any function f, when the f-weighted r-path ideals are Cohen-Macaulay, we can compute their type combinatorially.

Bibliography

[1] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings revised edition, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
[2] Daniel Campos, Ryan Gunderson, Susan Morey, Chelsey Paulsen, and Thomas Polstra. Depths and Cohen-Macaulay properties of path ideals. J. Pure Appl. Algebra, 218(8):1537-1543, 2014.
[3] Aldo Conca and Emanuela De Negri. M-sequences, graph ideals, and ladder ideals of linear type. J. Algebra, 211(2):599-624, 1999.
[4] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin, fifth edition, 2018. Paperback edition of [MR3644391].
[5] David S. Dummit and Richard M. Foote. Abstract algebra. John Wiley \& Sons, Inc., Hoboken, NJ, third edition, 2004.
[6] Jürgen Herzog, Takayuki Hibi, and Xinxian Zheng. Cohen-Macaulay chordal graphs. J. Combin. Theory Ser. A, 113(5):911-916, 2006.
[7] Bethany Kubik and Keri Sather-Wagstaff. Path ideals of weighted graphs. J. Pure Appl. Algebra, 219(9):3889-3912, 2015.
[8] Ezra Miller. Alexander duality for monomial ideals and their resolutions. arXiv preprint math/9812095, 1998.
[9] W. Frank Moore, Mark Rogers, and Keri Sather-Wagstaff. Monomial ideals and their decompositions. Universitext. Springer, Cham, 2018.
[10] Chelsey Paulsen and Keri Sather-Wagstaff. Edge ideals of weighted graphs. J. Algebra Appl., 12(5):1250223, 24, 2013.
[11] Keri Sather-Wagstaff. Homological algebra notes. Unpublished lecture notes. Available at http: //ssather. people. clemson. edu/notes. html, 2009.
[12] Richard P. Stanley. The upper bound conjecture and Cohen-Macaulay rings. Studies in Applied Mathematics, 54:135-142, 1975.
[13] Rafael H. Villarreal. Cohen-Macaulay graphs. Manuscripta Math., 66(3):277-293, 1990.
[14] Shuai Wei. Cohen-Macaulay type of weighted edge ideals and path ideals. MS thesis, Clemson University, Clemson, SC, USA, 2019.

