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Abstract

Formal software verification systems must be designed to adapt to growth in the scope and

complexity of software, driven by expanding capabilities of computer hardware and domain of po-

tential usage. They must provide specification languages that are flexible and rich enough to allow

software developers to write precise and comprehensible specifications for a full spectrum of object-

based software components. Rich specification languages allow for arbitrary extensions to the library

of mathematical theories, and critically, verification of programs with such specifications require a

universal automated prover. Most existing verification systems either incorporate specification lan-

guages limited to first-order logic, which lacks the richness necessary to write adequate specifications,

or provide automated provers covering only a fixed collection of mathematical theories, which lack

the compass to specify and verify sophisticated object-based software.

This dissertation presents an overall design of Uni-Prover, a universal automated prover for

atomic sequents to verify software specified with rich languages. Such a prover is a necessary element

of any adequate automated verification system of the future. The design contains components to

accommodate changes or upgrades that may happen. The congruence class registry at the center

of Uni-Prover handles all core manipulations necessary to verify programs, and it includes a multi-

level organization for effective searching of the registry. The full functional behavior of the registry

component is described mathematically, and a prototype implementation is given. Additionally,

the “contiguous instantiation strategy,” a strategy that requires neither user-supplied heuristics nor

triggers when instantiating universally quantified theorems in any theory, is detailed to minimize

verification steps by avoiding the proliferation of sequents in the instantiation process.
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Chapter 1

Introduction

Software correctness is becoming increasingly important as advancements in computer tech-

nology have resulted in society’s pervasive dependence on software. Unlike testing, that aims to

detect errors in programs but cannot confirm their absence, formal verification can prove that soft-

ware behaves correctly for all valid inputs, when that software is mathematically specified and

specifications are well-formed. Formal verification of component-based software is the focus of this

dissertation.

The foundations of formal software specification and verification date back to the work of

James C. King [30] and Sir Charles Antony Richard Hoare [26]. King presented a prototype descrip-

tion of a program verifier, which translates programs to machine code and proves their correctness

upon applying rules of logic. The work by Hoare described the use of axioms and rules to prove

the correctness of computer programs written using a simplified higher-level language. Neverthe-

less, since the inception of the idea and a more recent ‘verifying compiler’ grand challenge [27],

software verification remains a work in progress. The current state of the field in formal methods,

programming language, and software engineering research communities is discussed in Chapter 2.

Formal verification of software produces substantial benefits in software engineering. How-

ever, specification and verification add an extra layer of complexity and costs to the traditional

software development process. Therefore, software components must be designed and specified to

be reusable so that their code is verified once, and the cost of its initial development and verification

can be amortized over multiple uses.

Formal verification systems must be designed to manage the rapid growth in software com-
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plexity resulting from the increase in the capabilities of computer hardware and continuing plethora

of high level languages. As computer hardware becomes powerful, developers quickly create a grander

and more elaborate software system that the hardware can support. One consequence is that software

progressively becomes larger and more complex. Accordingly, any satisfactory software verification

system must include powerful mechanisms for handling the scalability issue.

A central scalability challenge concerns how to describe complex software components com-

prehensibly and precisely. In software development, objects are typically named according to some

metaphorical model of what they could be thought of (queues, stacks, trees, etc.), and the opera-

tions are named with verb phrases suggesting their metaphorical effect on their object parameters be

(enqueue, advance_right, etc.). While a useful starting point, the metaphorical models themselves

are not supportive of rigorous software specification and verification, so precisely formulated math-

ematical theories must be introduced to provide formal domains as the abstract spaces in which to

describe the values of the objects. Such abstract spaces are ”obvious” for built-in objects, such as

integers, but not for more complex ones.

Furthermore, formal pre-conditions and post-conditions are required to describe operations

that manipulate objects to support mathematical reasoning about the software. A postulate here

is that if a piece of software or its design is intellectually tractable enough that software engineers

can establish the requirements for it and implement it correctly, then there is a collection of mathe-

matical theories in which formal specifications for this software can be formulated, so that, crucially

these specifications will also be intellectually tractable. The specifications that meet this level of

intellectual tractability are what we term “rich” in this dissertation. Mathematically-extendable rich

specifications are necessary to scale up and describe the rich behavior of sophisticated object-based

software components. In turn, formal verification needs to scale up to handle rich specifications. We

explain this central idea in more detail in the following section.

1.1 Rich Specification of Object-Based Software Components

Object-based software components contain both internal and external details. A compo-

nent’s implementation details are considered internal. Implementation details are generally complex

and likely to change [54], an observation that initiated the construction and use of objects in the six-

ties. On the other hand, the component’s specification details are considered external and not likely
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to change. The separation enables software developers to write correct programs where the speci-

fications provide the necessary information for clients while employing alternative implementations

for unavoidable efficiency tradeoffs.

A good software design should separate component specifications and implementations, as

Parnas proposed in [54]. It is unnecessary to overload the client with details irrelevant to their

understanding and use of the component. The two principles underlying this design are information

hiding and abstraction. The principles are explained in the following section.

1.1.1 Information Hiding and Abstraction in Specification

Information hiding decouples the exterior details of the component from the internal details.

A properly formulated software component specification achieves this separation by hiding complex

implementation details from clients. The specification should provide a simpler conceptual view of

the component with the state (types) of objects, operations, and their parameters. It should also

describe how the software component will be used and what the expected results should be after

use.

The component specification must be sufficient to communicate all necessary information

to the client without revealing how it is implemented. This communication is effectively achieved

through abstraction. Abstraction is a technique for developing component specifications that are

comprehensible to users without the knowledge of the internals. It complements information hiding

by describing the effects of using the component without revealing how those effects are achieved.

Abstraction uses mathematical models and notations (abstractions) provided by the specification

language.

The specification of a component can be informal or formal. However, only formal specifi-

cations are amenable to automated verification. Formal specification uses a traditional language of

mathematics, which has a couple of millennia of refinement behind it. It is a universal international

language for everyone. It has a rigorous foundation and has been proven adequate for all science

and engineering. Mathematical language is also precise, extendable, and expressive.

While formal specifications offer more benefits than informal specifications, it does not

mean that all formal specifications achieve the optimal level of abstraction. For example, a software

component specified using a language limited to natural number theory may be formal, but will

result in unreadable specifications with limited abstraction. Generally, if a specification language
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includes just a fixed set of mathematical theories, such a language is still limited and is insufficient to

achieve simple, precise, and comprehensible specifications of the behavior of all software components,

i.e, such specifications are not rich.

Software specifications may also fail to meet the abstraction goal because they are writ-

ten directly to describe the implementation code, even if they are formal. Such specifications are

often more complex than necessary and limited to a single implementation. For example, a speci-

fication for a sorting algorithm written based on a specific implementation would require separate

specification for each sorting setup. In contrast, a general, well-engineered prioritizing specification

will be universal, and allow multiple implementations that use different data structures and sorting

algorithms [66, 64].

1.1.2 Need for Specificationally Rich Languages

Just as programming languages had to advance from earlier high-level languages, such as

C, FORTRAN, and Pascal, to modern-day object-based languages, such as C++ and Java, in

order to accommodate the expanding software industry, specification languages have to advance

too. Programming needs object-based languages to facilitate the construction of intellectually com-

plex software components, so specification needs specificationally rich languages to write desirable

component specifications that are comprehensible, simple, scalable, and amenable to automated

verification.

When using languages with limited expressiveness to develop software specifications, the

specifications quickly become unwieldy as the behavior of software gets complex. Specification

languages must be rich, meaning extendable with abstract theories necessary to provide the expres-

siveness software engineers need to write specifications at an appropriate level of abstraction. The

varying complexity of software means the specification language should be adaptable. The notion

of richness can be viewed as an “insight optimization” capability of specification languages to allow

software components to be described in a way that is most desirable.

1.1.3 Expressiveness in Specification Languages

Richness in a formal specification language includes expressiveness, which depends on the

underlying mathematical logic. For example, a language system that extends to first-order logic
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allows quantification over variables making it more expressive than propositional logic, which does

not support quantification. Given its expressiveness over propositional logic, first-order specifications

can be more abstract than specifications written in propositional logic. In this case, first-order

logic provides more mathematical entities that can describe software behavior at a higher level of

abstraction. We can say specification languages based on first-order logic are “richer” than those

based on propositional logic.

Higher-order logic is more expressive than first-order logic. It permits quantification over

functions and predicates, and it allows predicates to receive predicate premises. Therefore, specifi-

cation languages that extend to higher-order logic are richer than those based on first-order logic.

Operationally this means that they provide the full expressive power of set theory-based mathemat-

ical logic.

Specificationally rich languages extend higher-order logic and are not restricted to a fixed

set of mathematical theories, which can offer only limited language constructs, but rather allow for

additional mathematical theories as needed so developers can define and use any sophisticated math-

ematical entities to accurately and clearly describe a component’s behavior. This flexibility means

any arbitrary mathematical theory can be conceived, given that it provides suitable mathematical

models and notations for describing the component in an optimally insightful way.

1.2 Verification Support for Specificationally Rich Languages

The challenge with the flexibility that comes from specificationally rich languages is the

support needed to verify programs specified with such languages. The underlying mathematics used

in specificatinally rich languages can be extended, and the verification system must include an au-

tomated prover that can work with arbitrary theories, which means any prover that relies on fixed

underlying mathematical theories (e.g., use of specialized decision procedures) is inadequate. Chap-

ter 2 discusses related existing verification systems to motivate the need for a universal automated

prover that can work with specificationally rich languages.
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1.3 Problem Statement

Current verification systems are either limited in their usage or the scope of programs they

can verify. They are interactive or automated.

Interactive verification systems require humans with specialized knowledge and experience

to guide the verification process, limiting their use to only experts.

Some automated verification systems incorporate specification languages limited to first-

order logic, which lacks the richness necessary to write adequate specifications for a full spectrum

of object-based software components. Others employ an automated prover subsystem that can only

work with a fixed collection of mathematical theories, limiting the range of programs they can verify

within the available computing resources—time and space.

The challenge is to design a universal automated prover that is not specialized in particular

theories, yet is capable of effectively proving a full spectrum of programs that use specificationally

rich languages.

1.4 Research Approach

This research is based on the RESOLVE, which is an integrated programming language for

verification with a rich specification language. The verification approach is based on Uni-Prover—a

Universal Automated Prover for atomic sequents that we have designed.

The Uni-Prover differs from the previous RESOLVE minimalist rewrite prover [58] in its

verification capability and technical approach. Designed to explore the limits of a simple prover for

verifying well-designed software, the minimalist prover rewrites terms repeatedly to arrive at a proof,

and is shown to function well with the collection of theories that occur in components commonly used

as classroom examples. It’s approach may not scale up effectively when the verification conditions

become more challenging for sophisticated components, such as ones presented in [66], and thus

accommodate the full specification capabilities of the RESOLVE.

The minimalist prover is designed to work with a previous version of the RESOLVE Veri-

fication Condition (VC) generator. The VCs were not generated in a sequent form, so the prover

could not leverage sequents. Since then, more developments have been done to the verifying com-

piler, and its current VC generator produces simplified VCs in sequent form [61]. The Uni-Prover is

designed especially for VCs in sequent form. Nevertheless, the results of this work apply to any ver-
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ification system that produces sequent VCs or can be extended in that direction. The sequent VCs

for Uni-Prover are atomic, consisting of ground terms, and have no logical operators and quantifiers.

A detailed discussion of the RESOLVE verification system, along with prior work, is presented in

Chapter 3.

The Uni-Prover is designed to work with specificationally rich languages, and we have spec-

ified and implemented its central component, the congruence class registry. The following section

summarizes the fundamental properties of Uni-Prover compared to existing provers, including those

based on decision procedures.

1.4.1 A Summary of Uni-Prover

When programs with rich specifications are verified, the generated sequent VCs frequently

lie outside the scope of decision procedures. While the theory domain of decision procedures can be

extended to verify the additional sequent VCs, it can only be done with a significant development

cost. Unlike decision procedures, in no case would it be necessary to modify or extend the universal

prover whenever new mathematical theories are added to the library.

The prover designed in this work verifies atomic sequent VCs that are “obvious” relative

to supporting theories that have been appropriately developed: A sequent VC is obvious if its

correctness can be established from the available theorems in relatively few proof steps. The working

hypothesis is that the resulting VCs would be comparatively straightforward if the software is well-

engineered, with suitable specifications and code annotations [31].

Figure (1.1) Provability scope for verification conditions

Sequent VCs generated from programs fall within the spectrum presented in Figure (1.1).

They may be either provable or unprovable. Provable VCs are obvious relative to the current state of

the library. Unprovable VCs are either invalid or not sufficiently obvious for automated verification.

If a sequent VC is not sufficiently obvious, it might be because the available theorems in the library
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are not sophisticated enough, or because it cannot be proved within the resource constraints of the

prover.

While the goal of any verification system is to prove all VCs generated from a program, many

verification systems are limited by the kinds of sequent VCs they can prove. We have illustrated the

verification scope of our prover compared to decision procedures in Figure (1.2). The blue region

denotes a space of all possible sequent VCs generated. A small subset of these sequent VCs are

mathematically trivial and provable using uninterpreted function decision procedures shown in the

green region.

Like uninterpreted function decision procedures, all other decision procedures are domain-

specific and prove a limited set of sequent VCs. For example, the Pressburger arithmetic solver is

limited to the Pressburger arithmetic theory. Even though it extends what can be proved beyond an

uninterpreted function decision procedure, it is still limited by the sequent VCs it can prove within

the available computing resources. Example verification coverage of a decision procedure is shown

in the orange region. Sequent VCs outside this region may be proved if another decision procedure

is developed or an existing one is extended.

The universal automated prover in this work is not limited to a specific domain of theorems.

Unlike decision procedures, it can work with arbitrary theories. At its core is the congruence class

registry with congruence property of equality. Any atomic sequent VC in an uninterpreted form

can be verified based on the congruence property of equality. If our prover is only built with

this capacity, its coverage will coincide with that of the uninterpreted function decision procedure

in green. However, Uni-Prover is desigened to verify many more sequent VCs depending on the

theories (T), available computing memory (M), and the duration (D) it takes to prove a sequent VC.

Every added theory in the mathematical library gives our prover more power to prove more sequent

VCs. Example coverage of our prover is shown in the diagram in purple containing all sequent VCs

provable with respect to T, M, and D.

The math library contains all theories developed for the verification system. Most of these

theories will be irrelevant for the sequent VC S. T will be a subset of theories that are relevant to S.

The universal automated prover in this dissertation works with an extendable mathemati-

cal library, and any arbitrary theory that can be conceived. Programmers and mathematicians are

responsible for elaborating the mathematical library with suitable theorems and reformulating the

specifications to produce sufficiently obvious VCs. When more suitable and well-developed mathe-
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matical theorems (T) are introduced into the library, more sequent VCs can be proven. The prover

must effectively keep the duration (D) minimum and use only the available memory (M). This flexi-

bility is possible only if the prover can maintain a consistent performance when working with both

the library’s old and new theorems. This is a critical point, because the prover will not be tuned or

rebuilt to accommodate what needs to be proved.

Figure (1.2) Verification scope for Uni-Prover relative to other verification systems

When VCs are complex, the number of verification steps (D) can be numerous and pos-

sibly unbounded. The Uni-Prover incorporates novel, generic, and well-engineered strategies and

components to achieve the effectiveness needed to reduce the number of verification steps.

The central component we have developed is the congruence class registry, which records the

sequent VC to be proved and handles all necessary manipulations to establish whether the sequent

VC is correct. The congruence class registry is designed with effectiveness in mind. Among its

features is the four-tiered organization that is aimed to support effective searching. The Congruence

Class Registry is explained in Chapter 9.

Additionally, we have developed a contiguous instantiation strategy designed to work with

any universally quantified theorem. The strategy is general, and it does not require users to provide

customized heuristics or triggers. Its effectiveness is in keeping the sequent VC to be verified from

branching into many sequents during the verification process. A comparison of the contiguous

instantiation strategy to other existing strategies and a complete description of how it works is

provided in Chapter 5.
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1.5 Contributions

This research addresses the limitations of existing verification systems noted in the problem

statement.

The central contribution is a design of Uni-Prover—a Universal Automated Prover for

Atomic Sequents. The prover is not limited to a fixed set of theories. It is intended to verify

automatically a full spectrum of object-based software components with rich specifications. Such a

prover will be crucial for any full-fledged automated verification system of the future.

Contributions that support Uni-Prover include development of a full mathematical speci-

fication of the congruence class registry, the core component in the Uni-Prover. The specification

describes its functional behavior, serves as an abstraction to support multiple implementations, and

will ultimately allow the verification of the core of the prover itself. The registry includes a multi-level

searching strategy designed to search congruence classes in the registry effectively. Development of a

triggerless and non-heuristic contiguous instantiation strategy designed to work with any universally

quantified theorem effectively is a key contribution. The strategy is intended to limit the number of

sequents a prover has to verify to conclude whether a target sequent is correct or not, minimizing

the number of verification steps it takes.

An illustrative rich specification that uses new mathematical developments to capture the

behavior of a generic data abstraction for navigable exploration trees is a motivational contribution.

1.6 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 presents an overview of related

verification systems. Chapter 3 provides a background of the RESOLVE verification system with an

emphasis on prior prover efforts.

Chapter 4 presents an overview of the Uni-Prover designed in this work. Chapter 5 discusses

the contiguous instantiation strategy for universal quantified theorems.

Chapter 6 presents an example of data abstraction in a specificationally rich language for

object-based software components.

Chapter 7 discusses the motivation for congruence class registry and briefly describes its

mathematical specification. Chapter 8 explains mathematical developments to facilitate the speci-

fication of the congruence class registry. Chapter 9 presents the mathematical specification of the
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congruence class registry. Chapter 10 presents an overall design of the Uni-Prover, and a prototype

implementation of the congruence class registry. Finally, Chapter 11 contains a summary and future

directions.
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Chapter 2

Related Work

This chapter describes the main characteristics of extant verification systems, their strengths,

and their limitations in supporting specificationally rich languages. Prior work in the RESOLVE

language literature is detailed in the next chapter.

2.1 Classification of Provers

A prover is an integral part of the verification system. It is ultimately responsible for

establishing the correctness of programs, theorems, or both. They can be interactive, automated,

or auto-active. Interactive provers involve users in directing the verification process. Users need

training and experience to be able to utilize the tactics relating to the new theories effectively. In

contrast, automated provers do not need user interactions to complete verification.

Theorem provers are mainly interactive requiring experts with specialized experience to

guide the verification of mathematical theorems. Example interactive theorem provers include Lean

Theorem Prover [16], which is recently updated to Lean 4 [47] with extensible implementation. Other

interactive theorem provers are ACL2 [46], Coq [8], Isabelle [50], which we summarize in Table 2.1.

Theorem provers are not the focus of this work.

The focus is on automated provers for programs. Section 2.2 contains a classification of

automated provers and places the proposed work in the context of others. In Section 2.3, we discuss

related automated verification systems to show the need and justification of the system selected for

this work. The discussion in Section 2.4 summarizes our findings on existing related work.
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2.2 Classification in Automated Provers

This section presents three classes of automated provers. The characteristics of each class

is described to motivate this work.

2.2.1 Decision Procedures

Decision procedures are designed for a specific mathematical domain to maximize their

verification efficiency in solving particular problems in their domains. While they achieve a high

efficiency in their domains, decision procedures are the least flexible. They are typically hard-coded

to utilize domain-specific information and only work on a limited class of decidable theories. New

theorems can be accommodated in decision procedures, but they come with significant development

and certification costs.

Many decision procedures exist in formal verification systems. One example is uninterpreted

function solver, a decision procedure for uninterpreted functions. The second example is a fast linear

arithmetic theory solver [19], which is used in Z3 [15] and Yices [18]. Fast linear arithmetic theory

solver is specifically designed to provide efficient theory propagation and fast backtracking for only

quantifier-free linear arithmetic equalities and inequalities. Z3’s another decision procedure is a

generalized efficient array procedure, which is presented in [13].

A RESOLVE-specific example decision procedure is the SplitDecision system [1] developed

at The Ohio State University. SplitDecision procedure is developed for RESOLVE’s widely used

mathematical theories, such as sets, integers, and strings. The limitations allow it to employ specific

heuristics to improve the performance, but leave it inadequate for proving programs specified using

rich languages.

2.2.2 SMT Solvers

Satisfiability Modulo Theory (SMT) solvers are designed to operate with a fixed set of

mathematical theories, making them fast and reliable for automated verification. SMT solvers

generalize Boolean satisfiability (SAT) and establish program correctness by first expressing the

verification problem as a SAT problem. The SAT problem itself is a well-known NP-complete

problem [52]. Different branch-and-bound techniques (such as Davis-Putnam-Logemann-Loveland

(DPLL) [49]) efficiently solve the problem by decreasing the search space for the most practical
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formulae.

SMT solvers are limited to first-order theories, which are not expressive enough to capture

the behavior of all object-based components at the level of abstraction needed. Z3 [15] for example,

is a widely employed SMT solver in automated verification systems. It has been used in Dafny [42],

HAVOC [39], spec#[7], Why3 [20] and others. Another SMT solver is Yieces [18]. Yieces has been

used in program verification and model checking. It is mostly integrated as the primary decision

procedure in theorem provers such as PVS [53]. Yieces employs a modern variant of DPLL as a

SAT-solving decision procedure.

While SMT solvers are useful, their limitation to first-order theory restricts their usability

to verification of programs with specifications based on first-order theory. However, their efficiency

and reliability have influenced their application in many provers, which integrate them to simplify

the verification process by dealing with formulas or proof obligations that prepositionally would not

contribute to the proof.

The universal automated prover proposed in this work does not incorporate SMT solvers,

though it does not mean that it could not be used in conjunction with such solvers.

2.2.3 Term Rewriting Provers

Automated provers based on term rewriting are flexible and general compared to SMT

solvers. They are based on rewriting terms, and they go through a series of deductions, applying

theorems at each step. Term rewriting provers start with facts (givens) and goals and transform

them on each step until one of the goals is proven valid from the givens. This deduction process is

similar to how humans would approach a verification problem. Example verification systems with

provers that have employed term-rewriting include ACL2 prover [46] and the RESOLVE minimalist

prover [58].

Term rewriting was proposed to solve the problem of reasoning about equality and has

been one of the successful methods explained in [29]. Term rewriting works by replacing terms

(subexpressions) with other terms. The prover proposed in this work focuses its techniques at the

clause (expression) level, because such an approach is efficient. Clauses in this work are considered

atomic, free from any logical operators. One example we discuss in a later section is the use of

elaboration rules, which are defined and created from the theorems at the clause level. Even though

elaboration rules are represented by clauses from the theorem, applying them involves working at a
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term level.

A significant difference between the term rewriting provers and the prover in this work is

in the rewriting process itself. When a theorem instance is added to the sequent as part of an

elaboration process, an entire collection of congruence classes is rewritten and not just a term as it

would be in term rewriting provers. It takes many rewriting steps to get the same results we intend

to achieve in one congruence class rewrite.

2.3 Related Automated Verification Systems

The prover in this work does not fall in any of the classifications provided in Section 2.2.

It bears some similarities to term rewriting provers, but most features are unique and set it apart

from existing provers.

This section summarizes existing automated verification systems most related to our work.

The focus is on their support of specificationally rich languages, higher-order assertions, extendable

mathematical library, and automation, the four essential features at the core of the automated prover

discussed in this work. Table 2.1 contains a characterization of existing systems using these four

features.

2.3.1 KeY

KeY [2] is a verification system that uses Java Modeling Language (JML)[40] to specify

the behavior programs through specialized classes and methods level comments. JML syntax and

semantics extend that of Java programing language, tying the two languages together.

JML* [65] extends JML to support abstraction and modular verification. JML* specifica-

tions can hide the implementation details and achieve reusable abstractions and scalable verification.

The two major abstraction support in KeY includes method contracts and loop invariants.

KeY does not support higher-order logic. It employs Dynamic Logic (DL) for Java, a first-

order, multi-modal logic that extends Hoare Logic[26]. All proof obligations in KeY are represented

in what are known as DL formulas before a theorem prover for logic can establish their correctness.

Verification in KeY is automatic for programs free from recursion and loops. For programs

that fail to verify automatically, KeY offers an interactive proof assistant for users to guide the proof

process manually. In this mode, users can apply inference rules (or tactics) in steps towards the
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goal.

KeY has tailored sets of hard-coded sequent calculus rules are defined in “taclet” (i.e., tactics)

language. The rules are applied by the user or a prover depending on whether the verification is

interactive or automatic.

2.3.2 Dafny

Dafny [42] is a program verification system that uses Dafny, an object oriented, imperative

specification and programming language. Its programming and specification languages are the same.

The expressions have similar syntax and meaning. Dafny offers features from object-based, imper-

ative, sequential, and functional programming. It supports class types, sets, sequences, algebraic

data types, and has a limited collection of (parametric) data objects for which it has proof support.

The programmer can use Dafny to specify programs through specification constructs built in the

programming language, just like Eiffel [45, 44], JML [40], and Spec# [7], where specifications are

not separated from program code.

Verification of a program in Dafny employs both Boogie [6] and Z3 [15]. The program to

be verified is translated to an equivalent intermediate verification language, Boogie. Dafny then

uses the Boogie tool to generate first-order proof obligations for the target program. The proof

obligations are then sent to Z3 (a first-order SMT solver) prover for verification. Boogie is a layer

on which verifiers for other languages can be built on top.

For non-trivial programs, Dafny may require assistance in the form of hints from the user

to establish the program’s correctness. The language provides constructs for the user to write,

prove, and use lemmas. Lemmas in Dafny are implicitly ghost methods defined to take parameters,

preconditions and postconditions (describing the behavior of each lemma), and statements (providing

the proof of the defined behaviors) within the body.

2.3.3 Prusti

Rust [32] is a programming language designed for performance, reliability, and productivity.

Rust is unique with its ownership type system, that sets it apart from many programming languages

by eliminating problems caused by reference aliasing, data races, and dangling pointers.

Prusti [4, 3] is a formal verification system that leverages Rust’s type system allowing
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simplified specification and verification of Rust programs. In Prusti, Implicit Dynamic Frame (IDF),

a variant of the traditional separation logic, is used. Prusti verifier is a general-purpose deductive

verifier with the goals of verifying expressive program properties, alleviating programmers from

annotation burden, and providing an easy integration to the Rust programmer’s workflow.

Prusti verification is based on Viper [48], an intermediate language providing a verification

infrastructure for tools based on separation logic and other permission logic. Verification in Viper,

as in Dafny, employs both Boogie [6] and Z3 [15].

2.3.4 Why3

Why3 [20] is a verification platform for deductive programs that uses a logic language

Why3 and a programming language WhyML for the specification and implementation of functional

programs, respectively. The two languages are tied together, and any logical symbol can be used in

both languages. Why3 is based on first-order logic and deals with higher-order logic assertions by

converting them to first-order logic used by the backend provers.

WhyML allows programmers to annotate their implementations with loop invariants and

progress metrics used for termination. Programs are verified by generating verification conditions

(VCs), which are then sent to one of the external provers. The employed prover can be automatic

or interactive. The set of provers currently used includes Coq[8], PVS[53], Vampire[34], and Z3[15].

Why3 is classified as an automatic verification system, and users have no direct control over

how proof is carried out. Instead, Why3 automatically generates proof obligations and translates

them to an acceptable format for external provers.

Why3 comes with a standard library of logical theories containing reusable theory modules

with definitions, predicates, and lemmas helpful in specifying programs. In addition to built-in

theories describing integers, lists, functions, and trees, the library can be extended with new theories

written by the user. This feature sets Why3 apart from many existing verification systems, making

it closer in spirit to the RESOLVE Uni-Prover discussed in this work.

A key difference between Why3 and Uni-Prover is that the latter employs a mathematical

library that can deal with higher-order theories. Specifications in Why3 are based on first-order

logic with few extensions to higher-order logic. In principle, the Uni-Prover in this work can be

integrated as one of the external provers for Why3.
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2.3.5 AutoProof

AutoProof [62] is an automated verification system to verify functional properties of se-

quential object-oriented programs. It works with Eiffel [45, 44], a language to specify and verify

programs. Verification of programs in AutoProof is automated, but users are expected to provide

annotations along with their program. The annotations use Eiffel language constructs, including

preconditions and postconditions, invariants, variants, and inline assertions.

AutoProof provides a specification library known as the Mathematical Model Library (MML)

usable in complex specifications. MML contains classes linked to background mathematical theories

for sets, relations, functions, and other theories to abstractly model interfaces. MML is extendable

with new classes wrapping a new mathematical construct written by a user through logic classes.

The limitation is that, all the extensions have to be compatible with supported Boogie types.

Unlike Dafny and KeY, the model-based specification style followed in AutoProof allows

users to model interfaces in an implementation-neutral way. This property provides the separation

between specifications and implementation needed to achieve a higher level of abstraction than Dafny

and KeY. Despite the extension capabilities available in AutoProof, the limitation to Boogie types

precludes it from supporting full specificational richness.

Verification of programs in AutoProof works by converting the input program into a col-

lection of verification conditions (VCs) in a two-step process, whereby Eiffel-specified programs are

first converted to a Boogie program which is then used by the Boogie tool to generate VCs. The

correctness of each VC is established with an SMT solver. Z3 is used as the default solver.

2.4 Discussion

A summary of existing verification systems is given in Table (2.1). They are separated into

automated systems, such as AutoProof, Dafny, KeY, RESOLVE, VeriFast, Prusti, and Why3, and

interactive systems, such as Coq, Lean, and PVC.

Automated verification systems require less interactive effort and expertise from the user.

However, not all automated verification systems employ specificationally rich languages. Their spec-

ifications are limited to first-order logic. Some verification systems have an extensible mathematical

library but within first-logic. Why3 and RESOLVE provers support higher-order specifications with

some limitations. Why3 deals with higher-order assertions by converting them to first order(with
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some limitations). The Uni-Prover does not directly accommodate quantifiers in code annotations

and existentially quantified theorems in mathematical developments. Table (2.1) acknowledges these

limitations with a ∗ in the 4th column. This research is based on the RESOLVE verification system,

which has an extendable mathematical library and can support higher-order logic.

Interactive verification systems have extensible mathematical libraries and support higher-

order logic. Their specification languages are rich and can describe software at the right level of

abstraction. However, they lack automation in verification because users need to interact with the

verification process to guide the proof.

Table (2.1) Summary of Current Full Verification Efforts

Program
Verification

Effort

Fully
Automated
Verification

Has Extensible
Mathematical

Library

Supports
Higher Order
Specification

Supports
Specification-

ally Rich
Language

Dafny Yes No No No
Prusti Yes No No No
WhY3 Yes Yes Yes* No
KeY Yes No No No

AutoProof Yes Yes No No
RESOLVE(with Uni-Prover) Yes Yes Yes* Yes

Coq No Yes Yes Yes
Lean No Yes Yes Yes
PVS No Yes Yes Yes
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Chapter 3

RESOLVE Background

This chapter summarizes prior foundational work on RESOLVE that forms the basis for

this research. We include a brief history of the development of the RESOLVE language, with em-

phasis on work to establish correctness. We discuss various verification efforts and two existing

RESOLVE provers, along with details of the current RESOLVE verifying compiler and its architec-

ture. The chapter concludes with examples in the RESOLVE language as a prelude to the rest of

the dissertation.

3.1 RESOLVE Verification System Foundations

The RESOLVE verification system is based on results from over three decades of research

since the idea was conceived in the 1980’s. An excellent summary of the RESOLVE research efforts

can be found in [51, 57]. This section discusses verification research most related to this work.

3.1.1 The Role of Verification in Software Reusability

Joan Krone’s work in 1988 [35] addresses the design and development of verifiable and

reusable software. Reusability is a critical software design principle to amortize the cost of for-

mal specification and verification. A reusable component must have a separate conceptual module

(specifications) from the realization module (implementation). The separation is essential to verify

programs solely based on their specifications and promote efficiency through a choice of implemen-

tation for the concept specifications.
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Krone’s work motivated the need for a system with a specification language independent

from a programming language. The specification language should describe the component’s functions

precisely and concisely. Meanwhile, the programming language should make it possible to write

modular, efficient, and reusable code. Most importantly, Krone’s work provides a set of rigorous

mathematical proof rules for programming language constructs to establish code correctness. These

proof rules have motivated many subsequent RESOLVE efforts.

3.1.2 Computer Program Verification: Improvements for Human Rea-

soning

In 1995, Wayne Heym presented an indexed method for reasoning about modular imperative

programs [25]. This method is an alternative to the traditional goal-directed formal reasoning

method, such as the one presented in Krone’s work. The indexed method is more natural and it

fits how programmers reason about code from top to bottom. It formalizes the informal reasoning

practice where programmers look at a statement and focus on how it affects the values of variables

after its execution and conditions that hold on each branch for those values. The method has been

used extensively in undergraduate computer science education [9].

The indexed method offers two benefits. First, it allows users to select the order in which

groups of statements can be reasoned about independently. Second, the mathematical assertion

structure built in the indexed method matches the static structure of the programs. However, the

indexed method uses many names in the verification process to maintain the naturalness, increasing

the number of steps needed in automated verification and generating assertions that may not be

necessary for proving the goals.

3.1.3 Direct Reasoning

A key complication in reasoning about programs is the use of references. References are un-

avoidable for efficient computing. Copying references (as opposed to entire objects) allows constant-

time data movement and parameter passing for all objects. The downside of copying references

is complicated reasoning caused by aliasing when objects are mutable. The RESOLVE language

includes swapping as an efficient alternative to copying [23].

Beginning with the prior work of Harms on swapping, Kulczycki presents the idea of direct
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reasoning [36]. Direct reasoning is possible in languages with “clean semantics”. Semantics for a

language are considered clean if the representation of the program’s state is a collection of abstract

values of all defined variables, and invoking an operation only affects parameters accessible to the

operation. Direct reasoning is achieved using the swap operation for data movement, avoiding

parameter aliasing, and encapsulating data structures involving references. Kulczycki’s work includes

a specification of a data abstraction for capturing references on which other components can be

layered.

3.1.4 Mechanical and Modular VC Generation for Object-Based Software

In 2011, Heather Harton conceived fully mechanizable proof rules for RESOLVE language

constructs and developed an automated verification condition (VC) generator, a key subsystem of

the RESOLVE verification system. Harton’s work [24] leverages the principles outlined in Krone’s

work and uses goal-directed proof rules that are sound, complete, and amenable to automation for

a language with clean semantics. Harton’s VC generator has been intergrated into a Web IDE for

RESOLVE and has been used extensively in CS education [10, 12, 11, 21].

The RESOLVE VC generator mechanically produces a collection of mathematical assertions

that correspond to the correctness of the code. VCs are generated from annotated code (e.g.,

loops with invariants and progress metrics) using specifications and proof rules. The VC generator

also incorporates simplification of generated VCs whenever possible. VC simplification is a topic

investigated further in work by Sun [61] discussed in the next section.

3.1.5 Specification and Mechanical Verification of Performance Profiles

of Software Components

Nighat Yasmin’s work in [67] focuses on performance verification for component-based soft-

ware. She extended the RESOLVE language by introducing performance specifications (profiles)

layered on top of the existing functional specification language, and extended the formal RESOLVE

proof system with necessary augmentations to support performance verification. The performance

profiles only include duration (timing), but the results can be extended to displacement (space)

bounds.

Yasmin’s work provides a set of mechanizable proof rules usable in the performance VC
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generation process and presents a prototype implementation of a performance VC generator for

experimentation. The implementation only considers execution time performance profiles. Space

constraints are left for a future extension of his work.

3.1.6 Towards Automated Verification of Object-Based Software With

Reference Behaviour

Yu-Shan Sun’s work focuses on automated verification of object-based software with (and

without) reference behavior [61]. The work is motivated because not all reasoning about reference

behavior is avoidable. Sun’s work captures unavoidable acyclic reference behavior using automation-

friendly abstractions. The work includes specified and implemented components encapsulating ref-

erence behavior where objects share a global state.

A specification and verification system that handles shared states among objects has been

developed for experimentation. A VC generator employing sequent-based logical reduction rules

that produce more simplified (parsimonious) VCs for verification has also been developed. The VC

generator is currently not integrated into the current online RESOLVE verifying compiler that uses

an automated prover designed and developed by Hampton Smith [58] to discharge VCs. Smith’s

work is summarized in 3.2.2.

3.1.7 Scaling Up Automated Verification

The most recent work on RESOLVE verification was by Daniel Welch in 2019 [66]. Welch

investigated complexities for developers in specifying component-based software and writing an-

notations for implementations. The process is made easier through a Formalization Integrated

Development Environment (F-IDE) developed to support the formal specification and automated

verification of object-based software. The F-IDE is user-friendly, and it includes features to support

specification writing, especially for complex software components. Some of the features include re-

sponsive editing, assistance for design-by-contract, the interplay of multiple artifacts, and the use

of new mathematical models to specify object-based interfaces. Welch’s work includes a non-trivial

component-based case study involving multiple theory, specification, and implementation units.
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3.2 Prior RESOLVE Work on Automated Provers

This section discusses two existing RESOLVE automated provers as a precursor to the design

of the prover in this dissertation. The first prover is the SplitDecision procedure discussed in Section

3.2.1. A general, minimalist automated prover is discussed in Section 3.2.2. Both provers are based

on a thesis that verifying a well-engineered and well-specified software accompanied by expressive

and extensible mathematical library results in VCs that are straightforward for verification [31].

3.2.1 RESOLVE SplitDecision Procedure

The SplitDecision procedure either proves the generated VCs or simplifies them for another

automated prover [1]. SplitDecision procedure was designed from the ground up and developed using

RESOLVE/C++ [28] at The Ohio State University. The version of RESOLVE used, unlike the one

in this dissertation, allows and uses only a fixed number of mathematical theories. initial prototype

worked with only a subset of string theory, one of RESOLVE’s commonly used theories. Limiting

the SplitDecision procedure to string theory allowed more optimizations tailored to make it fast

and capable of proving more VCs from programs involving strings. The earlier experiments showed

SplitDecision is faster and more effective in proving the VCs compared to the in-house RESOLVE

automated prover (that is not specialized for any theories) and Isabelle [50].

The initial success in the SplitDecision procedure led to extensions in its theory domain to

handle finite sets, tuples, and integer theory. Such extensions come with substantial development

costs, given that decision procedures are developed for a fixed set of theories. While SplitDecision

procedure is efficient and fast, it cannot work with specificationally rich languages where mathemat-

ical theories are not fixed.

3.2.2 A Minimalist Automated Prover

The most recent version of the RESOLVE prover developed at Clemson University is a min-

imalist automated prover [58]. This rewrite prover is flexible compared to SplitDecision procedure

presented earlier. Its ability to work with an extensible mathematical library broadens the types of

VCs it can prove, and it is a first prototype on the efforts to develop a general prover.

The minimalist prover was developed to establish that for software designed for verification,

many VCs are straightforward to prove. While the prover functions well with the collection of theories
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that occur in components commonly used as classroom examples, it’ approach cannot effectively scale

for sophisticated components, such as ones presented in [66] and the navigable tree data abstraction

in this dissertation. The techniques incorporated are not uniform in how they perform on different

theorems, and many more rewriting steps may be required to conclude the correctness of more

challenging VCs. The non-uniform performance causes the minimalist prover fail to find proofs even

when they exist.

Additionally, the minimalist prover is designed to work with the previous version of the

RESOLVE VC generator, which did not produce VCs in a sequent form. Since then, more develop-

ment has been done to the verifying compiler. The current version produces more simplified VCs in

sequent form [61].

The Uni-Prover designed in this work is not based on decision procedures, leverages VCs

in sequent form, and employs effective strategies that reduce the number of steps taken to verify

target sequent VCs. Critically, it provides a uniform and effective performance when dealing with

arbitrary theories.

Table (3.1) summarizes the characteristics of three automated provers in the RESOLVE

literature. SplitDecision contains decision procedures for a fixed set of mathematical theories, and

hence, does not support a specificationally rich language. Its verification scope is also theory limited.

Minimalist prover works with an extensible math library. However, it works effectively only with a

set of theories routinely used in classroom examples, and its performance does not scale uniformly

to be effective for new theories. Its verification capability is thus limited under reasonable resource

constraints. The Uni-Prover supports an extensible math library, higher-order specification, and

specificationally rich languages, and has been designed to be effective. Its verification scope is not

as limited compared to Minimalist Rewrite Prover.

Table (3.1) Comparison of Automated RESOLVE Provers

RESOLVE
Prover

Supports
Extensible

Mathematical
Library

Supports
Higher Order
Specification

Supports
Specification-

ally Rich
Language

Provable VCs
within

Resource
Bounds

SplitDecision No No No Theory Limited
Minimalist Rewrite Prover Yes Yes* Yes Limited

Uni-Prover Yes Yes* Yes Not as Limited
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3.3 A Summary of the RESOLVE Framework

The RESOLVE verification system is composed of several subsystems presented in Section

3.3.1. Salient features of the language are discussed in Section 3.3.2.

3.3.1 The RESOLVE Verification System Architecture

Figure (3.1) shows the current RESOLVE verification system architecture [61]. On the left

is a software specialist who writes component specifications using preferred mathematical models

and notations that support automated verification. They also annotate their code with assertions

such as loop invariants, progress metrics, representation invariants, and abstraction relations for

verification.

The specifications and assertive code are then provided to a sequent VC generator, which

uses a set of modular proof rules to generate a collection of mathematical assertions (sequent VCs)

that correspond to the code’s correctness. Harton developed the first VC generator, as discussed in

Section 3.1.4. The most recent development is discussed in Section 3.1.6.

Figure (3.1) RESOLVE verification system architecture

The automated prover must establish the correctness of all sequent VCs before declaring

the code is valid. Verifying some of the sequent VCs may require the prover to draw mathematical

theorems from the library to assist with the verification process. The theorems are from the theories
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developed by a math specialist who writes sound and sufficiently complete theories. The theories

must be supported by proofs done once with human assistance and confirmed by a proof checker[59].

The prover will only consider proof-checked theories relevant to the domain of the annotated code,

which means the theories must be developed in a modular form to achieve finer granularity.

3.3.2 The RESOLVE Language and Its Salient Features

RESOLVE is a rich language that supports programmers in specifying precisely and concisely

software behavior and writing their implementations. A detailed description of RESOLVE’s key

features may be found in [37]. The features are summarized below.

First, RESOLVE integrates specification and programming languages but keeps the two

languages independent of each other. The separation allows the specifications to be entirely math-

ematical, distinguishing RESOLVE language from many of its counterparts summarized in Section

2.3.

Second, the RESOLVE system incorporates an extensible mathematical library, allowing

arbitrary mathematical theories and theory extensions to be added. This feature is necessary to

make the specification language rich enough to write precise abstract specifications and verify a

broad spectrum of programs.

Finally, the RESOLVE language has clean semantics [36] to deal with the unwanted effects

of aliasing due to uncontrolled referencing and mutation, which in turn complicate reasoning. With

clean semantics, the program’s state and its effect on the variables are kept local to ensure that only

values of explicitly mentioned list of state-space variables can change.

3.4 Specifying and Implementing a Stack Component

This section presents a concrete example of a specified and implemented component using

RESOLVE language to illustrate the features described in Section 3.3.2.

3.4.1 A RESOLVE Component Specification

RESOLVE concepts are interfaces with specifications that formally describe the functional

behavior of components. We present an example concept named Stack_Template, which describes
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the behavior of stacks and their usable operations. A specification of Stack_Template is presented in

Listing (1), followed by a discussion on key RESOLVE language constructs used in the specification.

Concept Stack_Template (type Entry ; evaluates Max_Depth : Integer ) ;

uses String_Theory , Integer_Ext_Theory ;

requires 1 <= Max_Depth ;

Type Family Stack is modeled by Str (Entry ) ;

exemplar S ;

constraint |S | <= Max_Depth ;

initialization ensures S = Empty_String ;

end ;

Operation Push (alters E : Entry ; updates S : Stack ) ;

requires 1 + |S | <= Max_Depth ;

ensures S = <#E> o #S ;

Operation Pop (replaces R : Entry ; updates S : Stack ) ;

requires 1 <= |S | ;

ensures #S = <R> o S ;

−− remaining ope ra t i on s omitted f o r b r ev i ty −−

end ;

Listing (1) An abstract specification for a Stack data structure

The stack concept in Listing (1) is parameterized with a generic type Entry and an integer

value Max_Depth, which allows a stack of any valid type and size to be created. Max_Depth is pre-

ceded by evaluates, a parameter mode specifying its additional properties. In this case, evaluates

mode specifies that Max_Depth can be an expression that evaluates to an integer value, including a

constant.

Because theories used in the specification of the concept are kept separate (which emphasizes

the modular approach used in RESOLVE [60]), the uses statement gives the concept access to the

theories that are available for writing specifications and for verifying VC’s. In Stack_Template,

String_Theory and Integer_Ext_Theory are imported.

Stack_Template is generic and can be instantiated to create a stack of any particular type.

RESOLVE uses the keyword Type Family to specify that the concept exports a family of types

Stack modeled as a string of Entry. An exemplar keyword is used to introduce an example stack S
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used in the subsequent assertions specifying more properties on a created stack. The first assertion

constraint bounds the length of a stack S to Max_Depth, and the second assertion initialization

specifies an initial value of every Stack S variable is an empty string.

Operations in the concept are specified using an optional requires clause (pre-condition)

and an ensures clause (post-condition). As a part of specifications, operation parameters are pre-

ceded by modes. In principle, parameter modes simplify specifications by eliminating assertions

describing the parameters in the requires and ensures clause. During verification, proof obli-

gations are generated for each parameter mode. A list of parameter modes used in specifying

Stack_Template are presented in Figure (3.2).

Figure (3.2) A list of parameter modes used in Stack_Template

The specifications for each operation in the concept serve as a contract between the client

and an implementer. In the requires clause, responsibilities for the client are specified. The client

must fulfill all specified obligations before calling the operation. For example, an operation Push in

the Stack_Template adds a new entry into the stack. The requires clause, therefore, restricts the

operation from being called when the stack is full. The client must ensure that the stack has room

for at least one new entry before using operation Push. Mathematically, the restriction is stated in

the requires clause as 1 + ∣S∣ ≤ Max_Depth. The vertical bars around S is a string length operator

defined in the string theory.

An implementer uses the specified behavior in the ensures clause to write code that achieves
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the operation’s goal. Mathematically, it is stated in the ensures clause as S = ⟨#E⟩ ○#S. Because

it is often necessary to refer to both input and output values of parameters in the ensures clause,

a # sign is used as a prefix to indicate the incoming value of a parameter before the operation call.

Its use in the assertion S = ⟨#E⟩ ○#S means that the outgoing value of stack S is a concatenation of

an incoming entry value (#E) and incoming stack (#S). The string concatenation operator ○ and a

singleton string constructor operator ⟨...⟩ are defined in string theory.

3.4.2 A RESOLVE Concept Implementation

A specified component can be implemented in multiple ways for different performance trade-

offs. It is a modular approach used in RESOLVE, allowing clients to rely solely on specifications to

use components and simplify their reasoning. This section describes how a concept is implemented

in RESOLVE. In particular, we present an array implementation of Stack_Template in Listing (2).

Realization Array_Realiz for Stack_Template ;

uses Integer_To_String_Function_Theory ;

Type Stack is represented by Record

Contents : Array 1 . . Max_Depth of Entry ;

Top : Integer ;

end ;

convention

0 <= S .Top <= Max_Depth ;

correspondence

Conc .S = Reverse (Iterated_Concatenation (1 , S .Top ,

Stringify_Z_Entity (S . Contents ) ) ) ; −− Stringed_Z_Entity

end ;

Procedure Push (alters E : Entry ; updates S : Stack ) ;

S .Top := S .Top + 1 ;

E :=: S . Contents [S .Top ] ;

end ;

Procedure Pop (replaces R : Entry ; updates S : Stack ) ;

R :=: S . Contents [S .Top ] ;

S .Top := S .Top − 1 ;

end ;
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Procedure Depth (restores S : Stack ) : Integer ;

Depth := S .Top ;

end ;

Procedure Rem_Capacity (restores S : Stack ) : Integer ;

Rem_Capacity := Max_Depth − S .Top ;

end ;

Procedure Clear (clears S : Stack ) ;

S .Top := 0 ;

end ;

end ;

Listing (2) Array implementation of a Stack_Template

The specification in Listing (1) models a Stack mathematically as a string of entries. The

implementation can use any data structure that can accommodate the behavior specified for a Stack

for its representation. In this particular implementation, a Stack is represented in the code as a

Record (similar to a struct in C) with two fields. The first field Contents is an array of entries

with Max_Depth as its maximum size. The second field Top is an index in the array representing

the top of the Stack. The convention clause specifies a realization invariant to restrict the Top of

the Stack within specified bounds. The realization invariant is assumed true before each operation,

except for the initialization. It should also be guaranteed to be true after each operation specified

in the concept, at the end of initialization, and at the beginning of finalization.

The correspondence assertion in the RESOLVE realization in Listing 2 is the abstraction

relation between the mathematical conceptualization of Stack and its representation in the imple-

mentation. It provides a mathematical interpretation as an abstract value of an internal representa-

tion. The relation has to be well-founded to represent all legitimate values of a Stack representation,

and the abstraction should fit within the conceptual constraints. The correspondence presented in

Listing (2) states that the user’s conceptual stack Conc.S, which is a mathematical string of entries,

is a reverse of concatenated elements in the array S.Contents from the first position to S.Top in the

internal representation.

Each operation specified in the Stack_Template must be implemented by writing a pro-

cedure. All procedures in Listing (2) use the RESOLVE swap operator denoted by a symbol ∶=∶.

The swap operator is used to exchange values in two variables without copying their content, and
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it is available for all programming types. It allows efficient movement of large arbitrary structures

in constant time and without introducing aliasing [23]. If and when necessary, a copy operation can

be imported explicitly.

The first procedure implements Push operation by incrementing S.Top to point to the next

empty slot in the content stack S.Contents and then swapping the value in E into the content stack

at position S.Top. The second procedure implements the operation Pop, and uses the swap operation

to swap out the value at the top of the contents stack. Because the top value is removed from the

content stack, S.Top is decremented by one to point to the top occupied index. For brevity, other

procedures to complete the realization for the stack template are just included in Listing (2).

3.4.3 Enhancements

Only orthogonal and efficiently realizable primary operations are specified in the core concept

to prevent specifications from becoming unwieldy. Any other helpful operation implemented using

primary operations can be specified and implemented as a secondary operation.

In RESOLVE, a specification inheritance mechanism, called an “enhancement,” permits a

straightforward extension of a concept. An example enhancement operation for Stack_Template,

one to flip a stack, is specified and realized in Listing (3).

Enhancement Flipping_Capability for Stack_Template ;

Operation Flip (updates S : Stack ) ;

ensures S = Reverse(#S) ;

end Flipping_Capability ;

Realization Flipping_Realiz for Flipping_Capability of Stack_Template ;

Procedure Flip (updates S : Stack ) ;

Var Temp : Stack ;

Var Next_Entry : Entry ;

While ( 1 <= Depth (S) )

maintaining #S = Reverse (Temp ) o S ;

decreasing |S | ;

do

Pop (Next_Entry , S) ;

Push (Next_Entry , Temp ) ;

end ;

32



Temp :=: S ;

end Flip ;

end Flipping_Realiz ;

Listing (3) Flippling capability enhancement specification and realization

The Flipping_Capability enhancement is specified with just an ensures clause, which

guarantees a reversed stack at the end of an operation call. It uses a string reversal operator from

string theory. Its implementation employs a while loop to pop the top element in the stack and push

it onto a temporary local stack (Temp) iteratively. The while loop is annotated with an invariant

in the maintaining clause, and a progress metric in a decreasing clause to support automated

verification.

Assertions like invariants and progress metrics are the only assistance the programmer pro-

vides to the verification. No further interactions are needed during the verification process. All

practical automated verification systems, including RESOLVE, demand these assertions be included

in the code for automated verification [56].
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Chapter 4

Uni-Prover Overview

This chapter presents an overview of the Uni-Prover and the steps it takes to verify sequent

VCs. Unlike many existing provers described in the previous two chapters, this prover is designed

for verification of atomic sequent VCs. The chapter begins with a summary of sequent VC basics.

4.1 RESOLVE Sequent VC Basics

Verification of correctness for the RESOLVE implementation involves the generation of

Verification Conditions (VCs) as described in Section 3.3.1. VCs are proof obligations that are

necessary and sufficient to establish code correctness.

Each VC is a logical statement with two main parts, goals and givens. In each part of

the VC are ground clauses without any logical connectors. Currently, the RESOLVE VC generator

produces VCs in a sequent form, as discussed in Sun’s work [61]. They can be naturally reinterpreted

as ground clause atomic sequents in the form of Γ⇛ ∆, where Γ denotes a set of positive ground clauses

called antecedents (givens) and ∆ denotes a set of positive ground clauses called succedents(goals).

The arrow (⇛) joining the two sides of the sequent is a set implication arrow, and it means

that the conjunct of all clauses in the antecedent implies the disjunct of clauses in the succedent.

Givens are conjoined and goals are disjoined, so the sequent is true iff one of the goals is provable

using all of the givens.

Because the VCs generated in RESOLVE are naturally represented as sequents, we use the

term "sequent VCs" throughout this work. A general representation of a sequent VC is shown in
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(3.1), where ground clauses A1,A2...Am are the antecedents and S1,S2...Sn are succedents.

{A1,A2, ...,Am}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Γ

⇛ {S1,S2, ...,Sn}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆

(3.1)

To demonstrate how close the generated VC in RESOLVE is to a sequent, in Listing (4) is

an example VC with three ground clauses as givens and one ground clause as a goal. This particular

VC is generated from verification of code for a Stack Flip enhancement in Listing 3. The symbol ○

is used for concatenation of two strings; a superscript Rev is a string reversal operator; the pair of

angled brackets ⟨⟩ is a stringify operator; and Λ is an empty string. All these notations and operators

are defined in string theory.

Goals :

S = (⟨E⟩ ○ T)Rev ○ U

Givens :

1 . S = TRev ○ R

2 . V = ⟨E⟩ ○ U

3 . V = R ○ Λ

Listing (4) A sample generated VC in RESOLVE

The ground clause sequent VC representing the VC in Listing (4) is shown in 3.2 below. The con-

version from the VC to sequent VC is straightforward. All givens in the VC become the antecedents,

and goals become succedents.

{S = TRev ○ R,V = ⟨E⟩ ○ U,V = R o Λ} ⇛ {S = (⟨E⟩ ○ T)Rev ○ U} (3.2)

Having VCs in a sequent form allows us to take advantage of the sequent calculus rules

to make the proof process more effective using a divide and conquer strategy. The prover in this

work applies immediately to systems where VCs are already generated in a sequent format, but

the benefits offered by the approach open the opportunity for systems that generate VCs in other

formats to consider the direction in [61].
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4.2 Central Role of a Congruence Class Registry

The Uni-Prover is designed to verify sequent VCs by optimizing the number of verification

steps necessary to establish correctness. In this work, we have designed, specified, and implemented

a prototype of its central component, the congruence class registry. The registry handles equalities

effectively (refer to Section 4.3.5) and works with a contiguous instantiation strategy that requires

neither user-supplied heuristics nor triggers when instantiating universally quantified theorems in

any theory.

The congruence class registry stores a sequent VC that is to be verified in congruence classes

and effectively handles all the manipulations necessary to establish that the sequent VC is correct.

Figure 4.1 illustrates the effectiveness of the Registry in storing the sequent VC. On the left is the

client side, including the initial target sequent VC to be proved. The entailed sequent accounts

for equalities in the antecedent and contains all clauses created as a consequence of applying those

equalities, making the entailed sequent very large. Additionally, the sequent continues to grow as

theorems are applied.

Figure (4.1) Conceptual visualization of a sequent VC in the Registry

The entailing sequent VC on the left is illustrated in the Congruence Class Registry on the

right conceptually. The Registry is designed and specified such that an actual realization could store

the information economically, with minimal replication such as of the ground terms and trees. In

this sense, the duplication of subtrees in the illustration is strictly to ease conceptual understanding.
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The Registry design makes it possible to fold together the antecedents and succedents.

It uses congruence classes to deal with equality and allows the entailing sequent to be kept in a

compressed form on each verification step. The two sides are related through a correspondence, and

the sequent VC in the registry can be re-interpreted to the largely entailing sequent through it. The

correspondence is indicated by the large arrow pointing from the registry.

The compression achieved by an implementation of the registry is central for effective veri-

fication, though at the conceptual level this compression is not visible in the illustration here or in

subsequent ones in this Chapter. Compression details may be found in Chapter 10.

The verification process starts with the registration of the sequent VC. We explain the

sequent registration process using an example in section 4.3. Using sequent calculus, the sequent

VC can be declared correct if one clause registered from the succedent ends up in the same congruence

class as another clause registered from the antecedent, meaning that a given matches a goal that

proves the VC. Some sequent VCs are trivial, direct result of simple logic rules, and immediately

provable. Therefore, once the registration is complete, those sequent VCs can be determined if they

are correct. Many other sequent VCs involve drawing theorems from the mathematical library to

support the verification process by enriching the sequent VC under verification with more antecedents

or succedents.

The following section describes how a sequent VC is registered and proved without involving

theorems. The illustrations shows step by step how the Registry stores the sequent VC shown in

Figure (4.1). Section 4.4 explains how theorems are involved in the verification process as and when

necessary.

4.3 Sequent VC Registration in a Congruence Class Registry

Figure (4.2) shows an example sequent VC presented in two forms. On the left is a traditional

format using a set implication arrow. On the right is a nested list form, which is easy to process

through a position indicated by the red arrow. A RESOLVE nested list component with all necessary

operations for processing a sequent VC is provided in appendix E. From here onwards, we will use

A to indicate the antecedent side of the sequent VC and S for succedent.
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Figure (4.2) Two forms representing a sequent VC

4.3.1 Registering Variables and Constants

Before a sequent can be registered, elements that constitute the sequent must be registered.

The congruence class registry concept specifies the operations necessary for a client to achieve the

intended functionality. An implementer uses the concept to write realizations that achieve the

specified behavior. The diagrams used in this explanation, as in Figure (4.3), have two sides. The

client-side on the left illustrates the use of specified operations to register or search the registry. On

the right is a visual representation of the congruence class registry (CC_Reg) illustrating how the

called operations change its state. The right side still uses terms in the concept just for generality

in our explanations, leaving a more specific discussion of an implementation to Chapter 10. The

following is a discussion on how to register variables and constants in sequent VCs.

A clause in a sequent VC is registered by processing the nested list bottom-up starting with

variables and constants followed by the operators. The list position is advanced until variables and

constants are found and registered before pulling back to an outer list where operators are placed

as they would be in a syntax tree.

Suppose the client first registers the left-most clause and the left-most term. For the sequent

VC in Figure (4.2), the client must advance the position to the list labeled a, which is registered

first. The registration of a variable a is shown in Figure (4.3).

The congruence class registry starts empty and gets populated as a sequent VC is registered.

For each registered label from the sequent VC, a congruence class (shown in red) and a cluster (shown

in green) are created. A cluster is a subclass that groups together all trees in the congruence class

that have similar root node label. Initially, every class will only have one cluster. But they may

contain more than one cluster, as more trees get added into the congruence class. The class and

cluster currently being registered are shown in dotted circles, and those previously added are shown
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in solid circles. The organization of trees in congruence classes and clusters is to ensure effective

searching as described in a later Section 4.5.

Each created cluster has a label and an argument list containing congruence classes for the

arguments. The cluster argument list (Clstr_Arg) holds the arguments relevant to the registered

node label. The Clstr_Arg list is shown in Figure (4.3) on the bottom left of the registry. Variable

and constants have zero arguments, and therefore, the cluster argument string is empty during

their registration. However, when operators are registered, their arguments are appended to the

Clstr_Arg list using registry operations.

Figure (4.3) Registering a variable a into the registry

Every created class and cluster is designated by a unique number in the registry. Congruence

classes have Congruence Class Designators (C_Cls_Dsntr), and clusters have Cluster Designators

(Clstr_Dsntr). Only congruence class designators are included in the diagrams used for the dis-

cussion in this section. More details about cluster designators are found in section 4.5.

The first created class for a variable a is assigned a class designator of 1. The designator

is found after incrementing Top_CC_Dsntr that keeps track of the most recently used designa-

tor. Each class designator is mapped to its respective class through Congruence Class Designated

(CC_Designated) function. Once a class is created, a client is provided with an accessor to the

class. In Figure (4.3), the accessor to the created class is represented by the arrow from the label

on the client-side to the class in the registry.
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The variable b is registered next using exact same process above. A new cluster and class

are created in the registry as shown in Figure (4.4). As for a, b also has no arguments. Therefore,

Clstr_Arg_Lst is empty.

Figure (4.4) Registering a variable b into the registry

4.3.2 Registering a Cluster With Arguments

Now that a and b are registered, a + operator on the immediate outer list (see the position

arrow in Figure (4.5)) can be registered. In contrast to variables and constants, the + operator has

arguments. The congruence class designators for a and b are appended to the cluster argument list

(Clstr_Arg_Lst) before a class and cluster for the + operator are created. In Figure (4.5), the

created class for the + operator is designated by 3, which is now our Top_CC_Dsntr.

4.3.3 Registering an Existing Cluster

For effective searching, the registry does not store any duplicates, as we demonstrate in

Figure 4.6 when a subexpression 9 ⋅ a is registered. Because a constant 9 is not yet in the registry, a

new cluster and congruence class are created and assigned 4 as a designator. However, no registration

happens when we get to variable a, as it already exists in the registry. Even though variable a is

registered, the client must retrieve its accessor and append it to the argument list because a is one

of the arguments for the dot operator.
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Figure (4.5) Registering an addition operator with a and b as arguments

4.3.4 Top-Level Class Registration

Now that we have registered both a + b and 9 ⋅ a, the sequent clause a + b ≤ 9 ⋅ a can ul-

timately be registered. At the root of this clause is the operator ≤, and its registration requires

congruence classes 3 and 5 as arguments. Figure (4.7) shows a new class and cluster created for

the operator ≤. At this point, the registration for the clause is complete. This is a ”top level” class,

and an attribute A for antecedent is added to indicate which side of the sequent VC the registered

clause came from. The role of this information is to determine the correctness of the sequent VC as

we explain in the subsequent sections. Top-level classes for clauses from the succedent are supplied

with S as an attribute.

All low-level classes are supplied with a default attribute determined by the client. The

default attribute are not shown in the illustrations used in explaining the registration process in this

chapter. Default attribute is explained further in Section 9.1.

4.3.5 Registering an Equality in the Antecedent

Equalities must be handled differently from other predicates for performance reasons. In the

registry, they are handled through congruence classes, where classes with trees known to be equal are

merged into a single class. For example, the equality predicate a + b = 8 in our example sequent VC

is recorded by merging the congruence class for a + b and the class for 8. The registration process
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Figure (4.6) Registering a ground term 9 ⋅ a

follows the usual bottom-up approach, and only a constant 8 needs to be registered, as the term

a + b in a + b = 8 is already registered. The registration of 8 is shown in Figure (4.8).

With a + b and 8 registered, their classes are merged into a single class when we get to the

registration of = operator. The state of the registry after merging the two classes is shown in Figure

(4.9). The new class is assigned the minimum of two designators 3 and 7 of the merged classes. The

designator 7 also points to the newly created class as the client still holds its accessor. Thus, if the

client uses 7 at any point, it is going to access the new class. This design ensures a clean separation

between accessors and designators, which is critical in reasoning, as explained in section 7.3.1.

In most cases, as a consequence of having two classes merged, a cascade of updates on

other congruence classes follows. After the updates, all congruence classes in the registry with

trees containing either a + b or 8 will now include both trees. Figure 4.10 shows this expansion in

congruence class 6. The initial tree with a subtree a + b is now equal to a tree with a subtree 8.

The full-scale effect of merging two classes may cause more classes to collapse, resulting in more

congruent classes in the registry. While the importance of the collapse is not striking in this simple

example, its general cascading impact is at the heart of the registry.

The sequent VC is proved correct in the registry if clauses from both the antecedent and

succedent are in the same congruence class. This is concluded from the registry when trees are in

the same class tagged by both attributes, A and S. For our example sequent VC, once the succedent
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Figure (4.7) Adding attributes to top-level class during registration

clause is ultimately determined to exist in the registry, the succedent attribute is added to class 6,

and we can conclude that the sequent VC is correct.

This example illustrates the simpler case in verification where the target sequent VC is

immediately provable to be correct given its antecedents. The more general case occurs when the

antecedents are insufficient to verify the sequent VC and require an elaboration of mathematical

theorems on the sequent VC before establishing its correctness.

4.4 Employing Theorems to Verify Sequent VCs

The theorems are stored in the mathematical library and must be already proven true

independently to support verification in a reasonable number of steps. The library houses many

theories put together in theory units, and only theorems relevant to the target sequent VC are

selected for effectiveness in the verification process. Literature is replete with theorem selection

using heuristics, as discussed further in Chapter 5.

Once theorems are selected, they are instantiated and used in the verification process. Sev-

eral instantiation techniques exist, and a few are described in chapter 5. Some techniques can be

costly. For instance, a straightforward instantiation strategy explained in section 5.1.1 can lead to

an exponential number of sequents to be proved, in order to prove a given initial sequent VC. It is

too costly to use, in general.
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Figure (4.8) Registering a constant 8 into the registry

Other instantiation techniques such as E-matching [14] and those used in [68, 55] are based

on heuristics and not applicable in a general case where arbitrary theorems can be conceived. The

Uni-Prover is designed to work with arbitrary theorems, and specialized instantiation strategies are

inadequate.

We employ contiguous instantiation that does not require human intervention or hints. This

strategy is described in detail in Section 5.2. It works with elaboration rules generated from the

relevant theorems and involves counter-matching clauses in the rules to those in the registry, a

process that is central to achieving contiguous instantiation and avoiding one sequent exploding

into many. The following subsection discusses the idea of elaboration rules and how contiguous

instantiation employs a counter-matching process for effectiveness.

4.4.1 Contiguous Instantiation Strategy for Uni-Prover

Elaboration rules are created to ensure only one instantiated clause of the theorem is in-

troduced in the sequent VC being verified, making the instantiation effective by ensuring only one

sequent is processed for verification.

Elaboration rules are generated automatically from theorems written in Universally Disjunc-

tive Form (UDF), for example T1 in Figure 4.11. In general, if given UDFi = ∀x1 ∶ S,⋯, ∀xj ∶ S,C1,1∨⋯∨Ci,k

with a set of clauses {Ci,1⋯,Ci,m,⋯,Ci,k}. For each determinate clause Ci,m in the set {Ci,1⋯,Ci,m,⋯,Ci,k},
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Figure (4.9) Merging two classes known to be equal in the registry

an elaboration rule is created where {Ci,1,⋯,Ci,k} ∼ {Ci,m} are precursor clauses, and {Ci,m} is a re-

sultant clause. The theorem UDFi could produce up to k distinct elaboration rules determined by

the number of determinate clauses in the theorem.

A theorem of the form p Ô⇒ q reduces to the two disjuncts ¬p ∨ q. In the example theorem

T1 here, there are three disjuncts. So for T1, three elaboration rules (R1, R2, and R3) are created.

An elaboration rule has a precursor part on the left of the arrow and a resultant part on the right.

The rules are created by picking one clause at a time to be the resultant clause, and the remaining

clauses become precursor clauses. For instance, R1 has n ≤ m as a resultant clause, which makes m = n

and m ≤ n precursor clauses. The number of elaboration rules created out of a theorem depends on

the number of clauses. Details about elaboration rules are presented in Section 5.2.4.

Counter-matching precursor clauses is what drives the contiguous instantiation strategy.

A precursor clause is counter-matched if it matches a clause in the sequent VC that is on the

side indicated by the attribute on that precursor clause. There are two attributes used, A is for

antecedent, and S is for succedent. For example, the first clause in the rule R1 is tagged with S,

which means its counter-match must be in the succedent of the sequent VC. Similarly, the second

clause should counter-match a clause in the antecedent. Once all precursor clauses in a rule are

counter-matched, an instance of the resultant clause is added to either the antecedents or succedents

of the target sequent VC. The attribute attached to the resultant clause determines which side of
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Figure (4.10) Updating class 6 after merging class 3 and 7

Figure (4.11) Creating elaboration rules from theorem T1

the target sequent the instance should be added. Details on how clause attributes are decided can

be found in section 5.2.6.

Figure 4.12 presents a counter-matching example for a rule R1 used in the verification of a

sequent VC provided above the dotted line. The sequent includes all relevant integer theorems (ΘZ)

necessary to prove its correctness. These theorems are converted to elaboration rules, which are then

applied one after the other to elaborate the sequent VC. One of these rules is R1 from the integer

theorem in Figure (4.11). To find if any of the rule’s precursor clauses counter-match a clause in the

sequent VC, ground terms from the sequent likely to result in a counter-match are selected. In this

case, 3 ⋅ b and 3 ⋅ (a + 1) are selected for m and n respectively. The substitution results in an instance

of the rule R1 (IR1). To find if the first clause resulted in a counter-match, we check if there is a
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Figure (4.12) Elaboration rule counter-matching example

similar clause in the succedent of the sequent VC, and here, we find one. Similarly, we can find a

matching clause in the antecedent of the sequent for the second precursor clause.

Once the precursor clauses in this rule are counter-matched, the next step is to include an

instance of the resultant clause on the succedent of the sequent. This step is shown in the elaborated

sequent VC in Figure 4.12. The resultant VC is ”more” provable, because there is an additional goal

in it; recall that the goals is succedent are disjuncts.

4.4.2 Registering a Non-Trivial Congruence Class

In registering clusters, some arguments may consist of simple classes containing one cluster,

and others may involve non-trivial classes with more than one cluster. The registration of clusters

in earlier sections used arguments with simple classes. This section describes the case involving

arguments with non-trivial classes.

We start with a sequent VC registration involving a non-trivial class 3 shown in Figure

(4.13), followed by a similar case of how resultant trees are registered in Section 4.4.3. The sequent

VC used in this explanation is equivalent to the earlier one, with an equality predicate coming first.

The equality is registered starting from the innermost lists with the variables a and b. The

term a + b is then registered followed by a constant 8. When we get to the = operator, a class for

the term a + b and for the constant 8 are merged to a single class, as illustrated in Figure (4.13).

The second clause requires the registration of the second term 9 ⋅ a shown in Figure (4.14),

before we can ultimately register it. The arguments needed for the registration of ≤ at the root

of the second clause are 3 and 6. While a class 6 is simple, class 3 is considered non-trivial as it
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Figure (4.13) Registering equality as the first clause in a sequent VC

contains more than one cluster. Figure (4.15) demonstrates the difference of creating a cluster with

a non-trivial class in the argument. The trees formed in the new cluster consist of a combination of

all trees existing in the non-trivial class causing an expansion observed when class 3 is used in the

argument.

4.4.3 Resultant Clause Registration in a Congruence Class Registry

Figure (4.16) shows the registration of the elaboration rule’s resultant clause. On the left is

theorem T2, which is first rewritten in the disjunctive form before being used to create elaboration

rules. One of the rules created is R5. To facilitate searching and registration, R5 is represented in a

tree form. The two trees before the arrow are precursor trees, and the one after is the resultant tree.

All precursor trees must be counter-matched for the resultant tree to be registered. A successful

counter-match will translate the elaboration rule’s constants (0) and variables (m,n,p) to registry’s

congruence classes (Cm,Cn,Cp). If the rule is deterministic, constants and variables in the resultant

tree will be a subset of those in the precursor tree. Therefore, the classes needed for the resultant

clause can be determined easily.

The registration of a resultant tree is similar to sequent registration in section 4.4.2. Non-

trivial classes are involved, and a similar expansion happens as a cluster is created. See class 30 in

Figure (4.16).
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Figure (4.14) Registering a dot operator with 9 and a as arguments

In Figure (4.16), the resultant tree registration begins with the constant 0. A class 29 is

created and becomes our first argument for the ≤ operator. The second argument is a class Cp

designated by 25. As observed in the diagram, Cp is non-trivial and contains many trees. The two

classes are used as arguments for the new cluster created in class 30.

For a given rule, all of its matching instances in the registry are considered before moving to

the next rule. Not finding a match for a rule does not preclude it from future matches. Therefore,

to ensure that each rule is entirely considered in the process, we will effectively cycle through the

rules until: (1) the sequent VC is proved, or (2) the rules do not contribute anything new to the

registry, or (3) the allocated computing resources to the prover are exhausted.

4.5 Counter-Matching Process in the Registry

Counter-matching a precursor tree is a top-down process starting from the root node and

searching for matches in the registry. The matching process is straightforward when matching trees

to trees. However, if trees in the registry were stored distinctly, searching for matches would be

highly inefficient as each entity in the registry would have to be investigated to establish a match.

To make the searching process effective, the registry in this work stores trees in congruence classes,

which makes the matching problem more complicated than simple tree matching. It takes additional

registry organization and more sophisticated strategies to search the registry and perform counter-
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Figure (4.15) Registering ≤ operator with a non-trivial class in the argument list

matching effectively.

4.5.1 Registry Organization for Searching

The registry is organized in a four-tiered representation with varieties at the highest level

and followed by its refinement, the congruence classes. The next level is termed stands, which

refine the congruence classes, and finally, at the lowest level are congruence clusters. Using the

precursor tree on the left of Figure (4.17), we illustrate how counter-matching is achieved in the

registry and describe how the four-tiered organization makes the searching process effective.

4.5.2 Searching for Potentially Matching Clusters

The counter-matching of a precursor tree in Figure (4.17) starts at the top by looking in the

registry for a class tagged with S that contains trees with ≤ as the root node label. In practice, the

registry will have many congruence classes, and exhaustively searching all classes will be expensive.

We need a better way to narrow our search to only classes that can lead us to a match.

We utilize congruence class varieties to narrow down the search for the root node label to

a few potential classes. Varieties are shown in Figure (4.18), and they contain an ordered list of

classes with at least one tree having the root node label required. For example, searching for the

first precursor tree in Figure (4.16) starts with the root node ≤, and the first variety in Figure (4.18)
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Figure (4.16) Registering a resultant tree with classes on the leaves

helps to eliminate all other classes in remaining varieties. The search in the variety goes through

classes one by one in a specific order. The class selected must be tagged with an attribute matching

the one in the precursor tree. The attribute match is a requirement to achieve counter-matching.

In practice, congruence classes in the registry contain many trees, and searching within

classes presents a similar challenge where trees are searched exhaustively to establish a match. Our

solution is to refine the congruence classes into clusters, the subclasses containing trees with the

same root label. In a registry’s organization, congruence clusters are the finest refinement, making

them easy to manipulate.

The number of clusters in a congruence class can be large, which presents a problem in

searching. In Figure (4.17), class 30 has three clusters. While this example does not show the scale

of the problem, we can still observe that cluster 54 has only trees with < operator as a root and

should be eliminated from the search for ≤ operator. We have introduced stands in the registry to

solve this problem.

Stands are shown in Figure (4.19). They keep all clusters of trees having the same root node

label. For each class, there will be a stand for each root node. In our search of ≤ operator, the first

stand with cluster 55 and 53 is enough. The clusters in the stand are kept in order, and the search

in Figure (4.17) starts with the lowest cluster. All other stands are therefore eliminated from the

search.
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Figure (4.17) Using clusters to find label instances in congruence classes effectively

4.5.3 Counter-Matching Within a Cluster

Now that we have the list of potential clusters, searching can proceed to the next level down

from the root node of the precursor tree in Figure 4.17. The requirement here is to get a match

in the registry for the two product operators in the root branches. In the registry organization,

we have clusters, which keep two crucial pieces of information: the root label and an argument

string containing class designators for the root arguments. Therefore, instead of searching the entire

registry to find the operators in the root branches, we can follow the cluster’s argument string classes

and determine if they contain trees with the product as a root label.

The first cluster to check in class 30 is cluster 53, which comes first in its stand. Suppose

its argument string contains class 24 and 26, the task would be to find if these two classes contain

trees with the product as root label. In this example, both classes contain the product operator.

Otherwise, the search should consider the next cluster in the stand. The two classes with product

operators match our precursor tree from its root down to the arguments in the first level. The classes

that match the two product operators are shown with the dotted lines in Figure (4.17).

When the matching process is complete, the last level in precursor trees contains variables

and constants translated to congruence classes. The translation uses clusters found in the classes

for the operators discovered on the level preceding the variables and constants. For each cluster,

argument classes are selected for the variables and constants to match their occurrence in the tree.
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Figure (4.18) Using varieties to find classes in the registry effectively

The precursor tree in Figure (4.17) has all variables already translated to congruence classes.

To describe the translation, we should start from classes 24 and 26 found for product operators in the

previous level. Each product operator has two variables. The goal is to match them to congruence

classes while ensuring that any variable occurring in more than one place in the tree is matched to

the same congruence class.

To match the first two variables, we start with the first cluster in the stand for the product

operator inside class 24. The cluster will provide us with classes for the arguments. Assuming the

classes in the argument string for the selected cluster are Cm and Cp, the translated tree will have

the two classes, which replace the variable m and p respectively. Since the variable p is the second

argument for both the first and second product operator, the clusters we choose in class 24 and 26

must have the same class in their arguments for p. We have selected a cluster in class 24 with Cp

for a variable p, which forces the cluster we select in class 26 to contain Cp for the variable p.

Because the cluster selected in class 26 must have Cp as one of its classes in the arguments,

if a cluster is found, it concludes a counter-match for the respective precursor tree. Otherwise, it

is a miss-match, and another cluster in class 24 is selected. A counter-match for the entire rule is

reached only when congruence classes for the variables match their occurrences in all precursor trees.

If the rule is determinate, successful translation of variables in the precursor trees means that the

resultant tree can also be translated. The resultant tree is then registered to elaborate the sequent
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Figure (4.19) Using stands to find clusters in congruence classes effectively

VC in the registry. A detailed explanation of determinate and indeterminate rules is the topic of

Section 5.3.1.

4.5.4 Partitioned Search State for Precursor Clauses

The elaboration rules may be applied more than once during instantiation. Both uncounter-

matched rules and counter-matched rules must be re-explored as the state of the registry changes

with each sequent VC elaboration. If a rule is revisited, starting over by matching a precursor clause

that was processed before is ineffective. The matching process can be made more effective by keeping

the node’s state information usable when a node in the clause is revisited.

At every point in the search, two accessors representing the state of the search are recorded

at the node on the precursor tree at the client side: One accessor for a class and one for a cluster.

These two accessors make it clear which class or cluster was last searched in the registry, when

backtracking on a search or when revisiting a rule, and the new search can start from there.
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4.6 Summary

This chapter has presented an overview of the Uni-Prover. We have discussed the central

role of the congruence class registry in verifying sequent VC. The discussion has involved descriptive

examples and diagrams showing how sequent VCs are registered, how equality in the antecedent

is handled, and how elaboration rules are instantiated through searching of precursor clauses for

counter-matching and registration of resultant clauses once counter-matched is achieved. The elab-

oration rules are going to be applied likely many times during the verification process of the sequent

VC. The search state is intended to keep the search effective when elaboration rules are revisited.

This chapter serves the additional purpose of setting the stage for the discussion in later

chapters that contain a rigorous description of the mathematics involved and a formal specification

of the congruence class registry.
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Chapter 5

Contiguous Instantiation Strategy

This chapter describes the contiguous instantiation strategy, a technique designed and devel-

oped as a part of this work with the goal of providing effective instantiation of universally quantified

theorems. The strategy is fully automatic and requires neither user-supplied heuristics nor triggers

when instantiating universally quantified theorems in any theory, yet avoids proving of one sequent

VC from expanding into proving many.

5.1 Motivation

Various quantifier instantiation techniques have been developed and utilized in different

verification systems. While the goal remains the same, how instantiation takes place may have

a costly consequence that limits the system’s scalability and effectiveness. This section presents

two existing instantiation techniques and their challenges to motivate the need for the contiguous

instantiation technique developed in this work.

5.1.1 Straightforward Automated Instantiation

Straightforward automated instantiation for universally quantified theorems uses arbitrarily

selected ground terms from the sequent VC to instantiate the theorem. Even if the selection is based

on relevant heuristics, the process can become expensive. Arbitrary selection of ground terms means

the resulting theorem instance can cause the target sequent VC to fork into multiple sequents as

explained below.
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If a theorem instance with either a conjunction or a disjunction of ground clauses is added

to a sequent VC, either the ∧Left or ∨Right sequent deduction rule is applied to remove the

logical connectives. The rules are stated in (5.1) below, where added disjunctive clauses (ψ ∨ ϕ)

or conjunctive clauses (ψ ∧ ϕ) to the conclusion of the rule result in the branching of the sequent

into two premises, each with one of the added clauses—causing a challenge in applying these rules

to the target sequent VC, which may fork into many sequents if the added theorem instance is a

conjunction or a disjunction of ground clauses.

∨Left ∶ Γ, ψ⇛ ∆ Γ, ϕ⇛ ∆

Γ, ψ ∨ ϕ⇛ ∆
∧Right ∶Γ⇛ ∆, ψ Γ⇛ ∆, ϕ

Γ⇛ ∆, ψ ∧ ϕ (5.1)

Generally, if an instance of n disjunctively or conjunctively connected ground clauses is added

to the sequent VC, the sequent branches into n premises to be proved separately. The additional

sequents VCs increase the number of steps in the proof process and minimize the possibility of

verifying the original sequent in the allotted time.

The following example demonstrates how an arbitrary selection of ground terms from the

sequent can create an instance of the theorem that leads to an expensive proof process. Suppose we

want to establish the correctness of sequent VC 5.2 below generated from verifying a sum of squares

(SS) program. Because the two clauses in the antecedent are not sufficient to prove this sequent

VC, the automated prover must draw relevant theorems from the mathematical library to proceed

with the verification process.

{SS =
CBd−1
∑
i=1

i2,CBd ≤ Bd + 1} ⇛ {SS =
Bd

∑
i=1

i2,CBd ≤ Bd} (5.2)

The library houses all mathematical theorems developed in the verification system, and only

a smaller set relevant to the target sequent VC is extracted and used to support the proof. Theorems

are relevant if and only if they exclusively include the operators available in the target sequent VC.

Below are three example theorems relevant to sequent VC 5.2 expressed in Universally Disjunctive
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Form (UDF).

T1 ∶ ∀m,n ∶ Z,m = n ∨ ¬m ≤ n ∨ ¬n ≤ m

T2 ∶ ∀m,n ∶ Z,m ≤ n ∨ n + 1 ≤ m

T3 ∶ ∀m,n ∶ Z,m = n ∨ ¬m + p = n + p

Suppose T2 is arbitrarily selected for straightforward instantiation where ground terms SS

and Bd are arbitrarily chosen and substituted for the variables in T2, [m↝ SS,n↝ Bd]. After substi-

tution, the resulting instance of T2 is SS ≤ Bd ∨ Bd + 1 ≤ SS. The problem with this arbitrarily created

instance is manifested when added to the sequent VC as part of the sequent VC elaboration process.

Figure (5.1) illustrates what happens when SS ≤ Bd ∨ Bd + 1 ≤ SS is added to the sequent VC

5.2. The target sequent VC forks into two premises, which must be proved before we can conclude

the original sequent VC is correct. Our hypothesis is that if ground terms are carefully chosen, it is

possible to avoid forking of the target sequent VC. The contiguous instantiation strategy presented

in Chapter 5 achieves just that.

{SS ≤ Bd ∨ Bd + 1 ≤ SS, SS=
CBd−1
∑
i=1

i2, CBd ≤ Bd + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ϕ

} ⇛ {SS=
Bd

∑
i=1

i2, CBd ≤ Bd
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ψ

}

{SS ≤ Bd, ϕ} ⇛ {ψ} {Bd + 1 ≤ SS, ϕ} ⇛ {ψ}

Figure (5.1) Branching of a target sequent VC in straightforward instantiation

Figure (5.2) provides a complete general illustration of a verification system employing a

straightforward instantiation technique. The diagram starts with a collection of generated sequent

VCs provided to the prover for verification. The target sequent VC is the one currently considered for

verification. Each sequent VC has the antecedents represented with A′is and succedents represented

with S′js. The two sides are separated by a vertical line representing the set implication arrow (⇛)

underneath.

If we assume the target sequent VC’s current state has insufficient antecedents (A1 and A2)

to prove it, then relevant theorems must be selected from the math library. In this case, T1,T2, and

T3 are selected as shown in Figure (5.2). From the three theorems, T2 is arbitrarily selected and
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Figure (5.2) Elaborating a target sequent VC by adding an instance I

arbitrarily instantiated. A straightforward automated instantiation of T2 will involve an arbitrary

selection of ground terms from the target sequent VC, followed by ground terms substitution to

create an instance I of the theorem.

Once I is created, it is added to the sequent VC as part of an elaboration process shown

in Figure (5.2). The resulting sequent VC now includes I,A1,A2 as antecedents. An instance I

is considered to contain three disjunctively connected ground clauses C1, C2, and C3 (see the right

lower corner of Figure (5.2)), and when added to the sequent VC, the VC forks into three premises

each containing one of the clauses in I. We demonstrate this step in Figure (5.3), where the first

sequent VC contains C1, the second contains C2, and the last one contains C3. Each resulting sequent

VC is now considered one at a time as the new target sequent for the next verification process.

The proliferation of sequent VCs as the theorem instance is added to the target sequent makes this

strategy inadequate for this work as it bogs down the verification process.

5.1.2 E-Matching

E-matching [14] is a common strategy used for quantifier instantiation in verification sys-

tems, such as Simplify [17] and Z3 [15]. It is a pattern-driven instantiation technique, and it works

by embedding a pattern to a universally quantified formula, which acts as a trigger for the respec-

tive formula to be instantiated. The pattern contains a set of terms used in pattern matching. A
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Figure (5.3) Proliferation of target sequent VCs following inclusion of I

pattern match determines the formula to be instantiated and the respective ground terms from the

E-graph (Equality-graph) to be used for instantiation. E-graph is a congruence-closed representation

of ground facts, and it is used to compute equalities between terms efficiently. The E-matching tech-

nique works with expressions and faces multiple challenges that make it prone to matching loops.

Importantly, it needs human assistance.

To show how E-matching uses triggers for instantiation, let us consider an example quantifier

formula ∀x ∶ Int,f(x) = 45 ∗ g(x) + 99. A possible trigger pattern for this formula is {f(x)}. When

a ground term such as f(Y) is encountered in the E-graph, it will trigger the entire quantifier

body to be instantiated through as substitution x = Y. The result is an instance of the formula

f(Y) = 45 ∗ g(Y) + 99. Similar results can be found with {g(x)} as a trigger pattern.

Consider another quantified formula ∀i ∶ Int ∶∶ 0 < i Ô⇒ f(i) = i ∗ f(i − 1). One possible

trigger pattern for this formula is {f(i)}. When a ground term f(x) is encountered in the E-graph,

it triggers a full instantiation of the formula, which includes a term f(x − 1). The problem with this

pattern match is the term f(x − 1), which yields another possible instantiation on the same formula

causing an indefinite process in a matching loop. If {f(i − 1)} is selected as trigger pattern instead,

the instantiation still ends in a matching loop.

Ongoing research efforts have been directed toward solving the matching loop problem in

E-matching. Among them is the work by Ge et al. in [22] and the work by Barbosa in [5], both

efforts illustrate how to deal with matching loops automatically.

60



A related problem is caused by trigger selection when a too-conservative trigger is picked,

causing essential formulas needed by the proof to be skipped. On the other hand, if a pattern chosen is

not sufficiently conservative, it may lead to an overwhelming number of formula instantiations leading

to performance issues. Trigger patterns must be constructed carefully, which requires experience

and tuning. Currently, automated trigger creation techniques such as one presented in [41] do exist.

Though the technique achieves performance gain and improves predictability, in the general case,

human assistance is necessary to create triggers successfully.

5.1.3 Discussion

The instantiation technique needed for this work must be effective to reduce the number of

steps taken to verify the correctness of the target sequent VC. While the straightforward instantiation

technique is simple, it leads to a more expensive proof process by introducing more sequent VCs that

have to be proved. Because the computing resources are limited, these additional steps minimize

the chances of verifying the target sequent VC. Hence the need for a technique that keeps the target

sequent VC from forking.

E-matching uses triggers as programming tactics applied to reduce the search space. How-

ever, mathematicians develop theorems without considering triggers that may be created later. The

creation and use of triggers lack the sophistication needed for a general case. There is a need for

an instantiation technique that, unlike E-matching, eliminates the need to create triggers while

achieving the necessary sophistication.

The contiguous instantiation strategy presented in Section 5.2 is triggerless and uses the-

orems that are broken down into elaboration rules. Additionally, unlike triggers that are specific

to a rule resulting in a single instantiation, the strategy proposed here finds all instances for the

elaboration rule at hand until all instantiation options are exhausted.

5.2 The Contiguous Instantiation Strategy in Detail

Contiguous instantiation is a novel non-heuristic strategy for instantiation of universally

quantified theorems. It is engineered to address the fundamental problems in E-matching and

straightforward instantiation strategies explained in Section 5.1. Together with other components

and strategies designed in this work, contiguous instantiation is intended to optimize the verification
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process by reducing the number of steps taken to prove a sequent VC.

Unlike E-matching, contiguous instantiation is triggerless, and it avoids sequent VC forking

caused by a Straightforward instantiation of theorems. Being “contiguous” means the instantiation

steps are taken systematically through a purpose-driven selection of ground terms from the sequent

VC. In this strategy, every ground term selection is motivated to achieve a “counter-matching” of

clauses in elaboration rules and sequent VC. Counter-matching was introduced in Section 4.5, this

section presents more details.

5.2.1 Theorem Presentation for the Continguous Instantation Strategy

The contiguous instantiation strategy works with theorems presented in a Disjunctive Nor-

mal Form (DNF). DNF theorems naturally correspond to sequents and are suitable for automated

verification. DNF theorems can be combined with universal quantifiers to get Universally quantified

Disjunctive Formulas (UDF). In UDF theorems, quantifiers are at the front and succeeded by a dis-

junct of positive and or negative predicate clauses. The general form of theorems in UDF is shown

in Fig. 5.4(a). Each theorem contains predicate clauses represented by Pm. The clauses have terms

(Ti,Tj,Tk) with quantified variables xn. We have also provided integer theorems presented in UDF

as examples in Fig. 5.4(b).

Figure (5.4) (a). General form of theorems presented in Universally Disjunctive Form (UDF) (b).
Example integer theorems in UDF
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5.2.2 Using UDF Theorems in Verification

Once theorems are expressed in universally disjunctive form, using them to verify sequents

involves a left universal quantifier rule (∀Left). To demonstrate its use, suppose a sequent Γ⇛ ∆

requires theorems from the library to be verified. Theorems relevant to the sequent will be extracted

and instantiated using the ∀Left rule. The ∀Left rule shown in (5.3) illustrates how relevant

theorems Θ, (∀x ∶ T, ψ) are incorporated in the antecedent of the sequent in the rule’s conclusion.

Θ represents a collection of all relevant theorems to this sequent from the library, and (∀x ∶ T, ψ)

is the target theorem currently considered. The rule’s premise shows an instantiation of the target

theorem through ground term substitution ψ[x↝ t] and elaboration of sequent by including the

instantiated theorem.

∀Left ∶ Θ, ψ[x↝ t],Γ⇛ ∆

Θ, (∀x ∶ T, ψ),Γ⇛ ∆
(5.3)

5.2.3 Counter-Matching in Contiguous Instantiation Strategy

Consider an example theorem UDF2 shown in Fig. 5.5(a). UDF2 contains two predicates P1

and P2 with terms T1, T2, and T3. If {A1(G1,G2,G3),A2(G1,G2)} ⇛ {S1(G1,G2,G3,G4),S2(G1,G2)} is

the sequent VC to be proved, and UDF2 is among the relevant theorems extracted to support with

the verification process, then UDF2 is included in the antecedent of the sequent VC as explained

in Section 5.2.2. The sequent VC has ground clauses A1,A2, S1,S2 and ground terms G1 to G4, all

expressed in general terms to demonstrate how counter-matching works generally.

This discussion also uses an actual example theorem and sequent VC shown in Figure 5.5(b).

This sequent VC is generated from verifying a sum of squares (SS) program and was presented in

earlier chapters.

UDF2 must be instantiated to elaborate our sequent VC using the ∀Left rule. Ground terms

from the sequent VC are selected and substituted accordingly. Suppose a predicate P1(T1,T2) in

UDF2 instantiate to a ground clause S1 in the succedent of the sequent VC via substitution of ground

terms G1,G2,G3, and G4 as illustrated in Figure 5.6(a). Similarly, a predicate clause m ≤ n Figure

5.5(b) is instantiated to CBd ≤ Bd as shown in Figure 5.6(b).

Because the variables involved in the second predicate clause P2(T3) are a subset of variables

in P1(T1,T2), after P1 is instantiated, the instantiation of P2(T3) is deterministic and straightforward.
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Figure (5.5) (a). Adding UDF2 in a sequent represented in general terms. (b). Example integer
theorem added to a sequent VC

Figure (5.6) (a). Ground terms substitution for the predicate P1. (b). Example ground terms
substitution for the predicate m ≤ n

Let us assume P2 has instantiated to a ground clause D as shown in Figure 5.9. An instance of P2 does

not counter-match any clause in the sequent VC, and in this work, it is called uncounter-matched

clause.

Figure (5.7) (a). Ground terms substitution for the predicate P2. (b). Example ground terms
substitution for the predicate n + 1 ≤ m

At this point, we have created an instance S1 ∨ D of the theorem UDF2 with two disjunctive

ground clauses, S1 (after instantiating P1), and D (after instantiating P2). Next, S1 ∨ D is added to

the sequent VC’s antecedent to form an elaborated sequent A1 ∧ A2, S1 ∨ D ⇛ S1 ∨ S2. It is critical
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to note that our choice to instantiate P1 to a clause S1 was intentional. As we can observe, the

elaborated sequent VC now has a ground clause S1 on both sides demonstrating the fundamental

idea of counter-matching. The choice of the word “counter” is to insist on the fact that the goal is for

the instantiated clause to match a ground clause on the opposite side of the sequent VC. Therefore,

the ground terms are chosen to achieve that goal. In the case of our example, the ground terms

were purposely selected to create an instance S1, which counter-matches S1 in the succedent of the

sequent VC.

5.2.4 Effectiveness of the Contiguous Instantiation Strategy

The effectiveness of contiguous instantiation as compared to straightforward instantiation

and E-Matching is demonstrated when either ∨Left or ∧Right rule is applied to the elaborated

sequent VC with a counter-matched clause like A1 ∧ A2, S1 ∨ D ⇛ S1 ∨ S2 found above. The ∨Left

rule is applied to the sequent VC A1 ∧ A2, S1 ∨ D ⇛ S1 ∨ S2, which branches into two premises shown

in Figure (5.8).

Figure (5.8) (a) Applying the ORLeft rule in a sequent with counter-matched clauses. (b). An
example illustrating an application of the ORLeft rule on a sequent with counter-matched clauses

Among the two premises, A1 ∧ A2,S1 ⇛ S1 ∨ S2 is an instance of an axiom rule with a ground

clause S1 appearing on both sides of the sequent. This premise reduces to true by the rules of the

sequent calculus. Axiom instances do not split any further, and their correctness can be established

immediately. Therefore, only the correctness of the second premise needs to be established.

Contiguous instantiation strategy is designed around the counter-matching strategy, which

starts when ground terms are being selected. The selection is systematic, and motivated to ensure
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that theorem clauses are counter-matched with ground clauses in the sequent VC. As a result, the

proof process is going to focus on a single target sequent by having the others reducing to true.

Therefore, we can deduce that:

— Any counter-matched clause results in a premise that is an instance of an axiom rule.

— Only the premise with an uncounter-matched ground clause remains to be verified.

The two findings above allow us to create elaboration rules from the UDF theorems and use

them instead in the instantiation process. To demonstrate how elaboration rules are created, consider

UDFi = ∀x1 ∶ S, ⋯, ∀xj ∶ S,C1,1∨⋯∨Ci,k with a set of clauses {Ci,1⋯,Ci,m,⋯,Ci,k}. For each determinate

clause Ci,m in the set {Ci,1⋯,Ci,m,⋯,Ci,k}, an elaboration rule is created where {Ci,1,⋯,Ci,k} ∼ {Ci,m}

are precursor clauses, and {Ci,m} is a resultant clause. The theorem UDFi could produce up to k

distinct elaboration rules determined by the number of determinate clauses in the theorem. Once

elaboration rules are created, the instantiation of theorems is reduced to an instantiation of elabo-

ration rules. Each rule is instantiated by counter-matching all the precursor clauses and elaborating

the sequent VC using only the resultant clause. As concluded above, all counter-matched clauses

create instances of the axiom rule and reduce to true. Therefore, the proof continues by dealing

with a single sequent VC containing the added resultant clause. The use of elaboration rules in

instantiation is explained in Section 5.2.6.

5.2.5 Counter-Matching of Negative Predicate Clause

The theorems used in the discussion above involved positive predicate clauses only. However,

UDF theorems can contain negative clauses. This section explains how negative clauses are counter-

matched.

Consider UDF3 in Figure (5.9) with a positive predicate P1 and a negative predicate Q1.

If {A1(G1,G2,G3),A2(G1,G2)} ⇛ {S1(G2,G3),S2(G1,G2)} is the sequent VC to be proved and UDF3 is

among the relevant theorems extracted to support the verification process, then UDF3 is included in

the antecedent of the sequent VC as explained in Section 5.2.2. The sequent VC has ground clauses

A1,A2, S1,S2 and ground terms G1,G2, and G3.

Suppose we instantiate Q1(T2,T3) in the theorem to a ground clause A1 in the sequent VC.

The instantiation of Q1 is shown in Figure (5.10), with G1,G2 and G3 used as ground terms. G1 and

G3 are also used to instantiate P1 to create an instance of UDF3. Figure (5.11) shows the sequent VC
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Figure (5.9) (a). Adding UDF3 with a negative predicate to a sequent. (b). An example integer
theorem with a negative predicate added to a sequent

elaboration and the application of the ∨Left rule. It should be noted that, because Q1 is negative,

after being added to the antecedent of the sequent VC, the ¬Left rule is applied to the premise

that contains Q1, as shown in Figure (5.12). As an effect of this rule, Q1 ends up in the succedent

as a positive clause. Any negative clause in the theorem must end up in the succedent as a positive

clause, and its counter-match must be in the antecedent of the sequent VC. Our choice of the ground

terms G1,G2, and G3 were intentional to create a counter-match between an instance of Q1, which will

end in the succedent with a ground clause in the antcedent of the sequent VC.

Figure (5.10) (a). Ground terms substitution for a negative predicate Q1. (b). An example ground
terms substitution for a negative predicate m ≤ n + 1

5.2.6 Counter-Matching With Elaboration Rules

The discussion in Sections 5.2.4 and 5.2.5 suggested the use of elaboration rules in contiguous

instantiation. Instead of dealing with an entire UDF theorem for the counter-matching of clauses,

elaboration rules created from the theorems are utilized. However, to directly capture all cases

encountered when dealing with theorems, elaboration rules are annotated with extra information to
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Figure (5.11) (a) The ORLeft rule. (b). Applying ORLeft rule to a sequent with a negative clause

Figure (5.12) (a). The NotLeft rule of sequent calculus. (b). Applying NotLeftRule to a sequent
with a negative clause

support the counter-matching and sequent VC elaboration process.

The following are two key pieces of information that should be included in elaboration rules.

First is which side of the sequent VC should the counter-matching ground clause be. This information

is annotated to the precursor clauses depending on whether they were positive or negative. For

example, consider a UDF theorem T1 with three predicate clauses, two of which are negative, and

one is positive. Fig. 5.13 shows three rules that are generated from T1. For rule R1 first precursor

clause is positive, and it is annotated with S to mean its counter-match ground clause should come

from the succedent. The second precursor clause is negative and annotated with A. Its counter-match

should come from the antecedent.

The second piece of information is attached to the resultant clauses. This information helps

determine where the resultant clause should be added to the sequent as part of the sequent VC
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elaboration step. The annotation also depends if the clause is negative or positive. A negative

clause is annotated with S and goes to the succedent. Positive clauses are annotated with A and go

into the antecedent.

Figure (5.13) Creating elaboration rules from a theorem T1

The goal of using elaboration rules is to ensure all precursor clauses are counter-matched,

then only the resultant clause is added to the sequent VC. Adding one resultant clause to the target

sequent VC keeps the verification process single-threaded.

5.3 Visualizing Contiguous Instantiation Strategy Process

Figure (5.14) demonstrates the entire process involved in contiguous instantiation of an

elaboration rule. From the left, relevant theorems and a collection of respective elaboration rules

are selected from the math library. One rule after the other is selected from the collection and

contiguously instantiated. In the diagram, the rule PaRa is selected for instantiation. Pa is considered

to contain two precursor clauses C1 and C2 (see the bottom right of the diagram). Before instantiating

the rule, a counter-match must be established between precursor clauses (C1 and C2) in the rule and

ground clauses in the target sequent VC. No triggers are necessary for the matching process, and no

matching loops are possible.

Once a counter-match is established, an instance of the resultant clause (IRa) is created and

used to elaborate the target sequent VC, which becomes the only new target in the next process. No

forking of the sequent VC happens in contigous instantiation, which keeps the verification process

focusing on a single sequent.

69



Figure (5.14) General diagram illustrating contiguous instantiation process and its effectiveness

5.3.1 Contiguous Instantiation Cases

Contiguous instantiation involves two prominent cases, determinate and indeterminate

cases. In the determinate case, the free variables in the uncounter-matched predicate clause are a

subset of the free variables found in the counter-matched predicate clauses of the disjunctive formula

UDFi. It makes the instantiation of the uncounter-matched predicate clause completely determined

by the ground terms used in the counter-matched predicate clauses. The instantiation process

discussed above is determinate, and section 5.3.1.1 describes the same process using general terms

and later defines a general sequent elaboration rule for any determinate case instantiation.

When variables in the uncounter-matched clause are not in the set of variables in counter-

matched clauses, the instantiation becomes indeterminate. Further investigation is required to de-

termine other instantiation paths. Otherwise, the uncounter-matched clause is abandoned. The

indeterminate case in contiguous instantiation is explained in section 5.3.1.2.

5.3.1.1 Determinate Case

Consider UDFi below expressed in a traditional implication statement. Its contiguous in-

stantiation involves finding a substitution Sb = x1 ↝ G1,x2 ↝ G2,⋯xk ↝ Gk such that all but one of

the predicates P1,P2,⋯,Q1,⋯Qn counter-match appropriate ground clauses in Γ and ∆. The one

unconter-matched predicate clause can either be positive or negative.
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UDFi ≡ ∀x1 ∶ S1,⋯∀xk ∶ Sk,Q1 ∧ Q2∧⋯∧Qn ⇒ P1 ∨ P2∨⋯∨Pm

For the positive case, suppose Cu ≡ Pu[Sb] is the uncounter-matched ground clause, and all

the counter-matched ground clauses are denoted by Cj ≡ Pj[Sb] for j ∶ (N[1⋯m] ∼ {u}) and Dj ≡ Qj[Sb]

for j ∶N [1⋯n], and Γ′ ≡ Γ ∼ {D1,⋯,Dn} and ∆′ ≡ ∆ ∼ {C1,⋯,Cu−1,Cu+1,⋯,Cm}. Then the general sequent

VC elaboration rule will be as follows:

Γ′ ∪ {D1,⋯,Dn,Cu} ⇛ ∆′ ∪ {C1,⋯,Cu−1,Cu+1,⋯,Cm}
Γ′ ∪ {D1,⋯,Dn} ⇛ ∆′ ∪ {C1,⋯,Cu−1,Cu+1,⋯,Cm}

For the negative case, suppose Du ≡ Qu[Sb] is the uncounter-matched negated ground clause,

and all the counter-matched ground clauses are denoted Cj ≡ Pj[Sb] for j ∶N [1⋯m] and Dj ≡ Qj[Sb]

for j ∶ (N[1⋯n] − {u}, and Γ′ ≡ Γ ∼ {D1,⋯,Du−1,Du+1,⋯,Dn} and ∆′ ≡ ∆ ∼ {C1,⋯,Cm}. Then the general

sequent VC elaboration rule is:

Γ′ ∪ {D1,⋯,Du−1,Du+1⋯,Dn} ⇛ ∆′ ∪ {C1,⋯,Cm,Du}
Γ′ ∪ {D1,⋯,Du−1,Du+1⋯,Dn} ⇛ ∆′ ∪ {C1,⋯,Cm}

5.3.1.2 Indeterminate Case

For the indeterminate case, a basic example would involve just a single predicate clause.

Consider UDF3 ≡ ∀x1,x2 ∶ Z, (x1⋅x2) = (x2⋅x1) and UDF4 ≡ ∀x1,x2 ∶ N,x1 ≤ (x1 + x2). A contiguous in-

stantiation of UDF3 would involve finding a subterm (e.g., G1⋅G2) in the sequent Γ⇛ ∆, which would

lead to a ground substitution Sb3 ≡ x1 ↝ G1,x2 ↝ G2, creating an instance G1⋅G2 ≡ (x1⋅x2)[Sb3], a

subterm in the sequent Γ⇛ ∆. This case has a term level determinacy whichever ground terms are

used for the first term, the other can be determined. The following is a sequent VC elaboration rule

is:

Γ′ ∪ {(G1, ⋅G2) = (G2⋅G1)} ⇛ ∆

Γ⇛ ∆

The theorem UDF4 raises a term level variant of the indeterminacy issue. First, let’s consider

x1 as a targeted term to be the uncounter-matched one. If a subterm (G1 + G2) of the sequent Γ⇛ ∆

is identified to match the theorem term (x1 + x2), then x1 can be instantiated, and the sequent VC

elaboration rule is:
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Γ′ ∪ {G1 ≤ (G1 + G2)} ⇛ ∆

Γ⇛ ∆

However, if the term (x1 + x2) is considered as the target uncounter-matched subterm, find-

ing ground term for x1 makes (x1 + x2) indeterminate. Suppose a ground term G1 of the sequent

Γ⇛ ∆ is selected to match the theorem term x1, then for a prospective additional antecedent clause

G1 ≤ (G1 + G2) there would be a second indeterminate choice of a subterm G2 of the sequent Γ⇛ ∆, and

the prospective additional clause would have multiple subterm attachments to the sequent Γ⇛ ∆.

The general indeterminate case for UDFi ≡ ∀x1 ∶ S1,⋯,∀xk ∶ Sk,P1 ∨ ¬Q1∨⋯,¬Qn can be de-

scribed by considering a ground term substitution Sb ≡ x1 ↝ G1,x2 ↝ G2,⋯,xk ↝ Gk such that all

but one of the predicates P1,P2,⋯,Pm,Q1,⋯,Qm counter-matches appropriate ground clauses in Γ

or ∆. Suppose Pu is the uncounter-matched predicate clause. If Pu is indeterminate, the set of

its variables will not be found within counter-matched clauses. That is, for V,W ∶ ℘({x1,⋯,xk}),

P1,∨⋯∨Pu−1 ∨ Pu+1∨⋯∨¬Qn⌈V⌉, and Pu⌈W⌉, W ∼ V ≠ ∅. Additionally, if Pu ≡ R(T1,T2,⋯,Th), and Tt

is a legitimate target term for being unmatched then for i ∶N [1⋯h] with Yi ∶ ℘(W) and Ti⌈Yi⌉,

⋃i∶N[1⋯h]∼{t} Yi ≡ W.

Suppose all counter-matched ground clauses are denoted by Cj ≡ Pj[Sb] for j ∶ (N[1⋯m] ∼ {u}),

and Dj ≡ Qj[Sb] for j ∶N [1⋯n] then Γ′ ≡ Γ ∼ {D1,⋯,Dn} and ∆′ ≡ ∆ ∼ {C1,⋯,Cu−1,Cu+1⋯,Cm}. For the

uncounter-matched predicate clause Pu, all the ground terms Fi ≡ Ti[Sb] for i ∶ (N[1⋯h] ∼ {t}) must

occur somewhere in the sequent Γ⇛ ∆ (but not necessarily the target ground term Ft ≡ Tt[Sb]).

Then the VC sequent rule is:

Γ′ ∪ {D1,⋯,Dn,R(F1,F2,⋯,Ft,⋯,Fh} ⇛ ∆′ ∪ {C1,⋯,Cu−1,Cu+1,⋯,Cm}
Γ′ ∪ {D1,⋯,Dn} ⇛ ∆′ ∪ {C1,⋯,Cu−1,Cu+1,⋯,Cm}

So, in this less constrained situation, the sequent extension adds a new relationship R between

subterms Fi, all but one of which were at least already under consideration.
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5.4 Summary

Universally quantified theorems need to be routinely instantiated in proving VCs. From

among the relevant theorems, picking ones that avoid proving of one sequent VC becoming proving

of many is critical. The contiguous instantiation strategy discussed in the chapter is designed to

achieves this goal, automatically and without relying on heuristics.
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Chapter 6

A Specificationally Rich Data

Abstraction

The specification and use of generic data abstractions make scalable software verification

feasible, and most modern programming languages support the construction of reusable software

components to encapsulate data abstractions. Several automated verification systems, such as those

summarized in [33], have been developed to facilitate automated verification of component-based

software.

A central argument in this dissertation is that for a component-based approach to scale,

specifications of data abstractions that components encapsulate need to be written in a rich language.

This chapter presents a compelling example. When specifications such as the one presented here are

routinely developed and used, specialized procedures for verification for particular theories would be

of limited use. A prover, such as the Uni-Prover in this dissertation, is required.

This chapter explains a formal specification of a novel, generic data abstraction for manipu-

lating a tree position using RESOLVE specification language. The tree position facilitates navigation

and modification of a tree structure while avoiding explicit references, making automated verifica-

tion of code built using the specified trees plausible. The tree abstraction we present is generic,

parameterized by the type of information the tree contains and the number of children for each

node. It contains operations to modify and navigate the tree but does not include a search oper-

ation. However, provided operations in the abstraction can be used to realize various search trees
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and implement a map data abstraction, as the authors have shown elsewhere in a thesis [43].

Figure (6.1) contains a UML diagram that illustrates relationships between different tree

components. However, only the artifacts highlighted in gray are discussed in this chapter.

Figure (6.1) A UML diagram showing relationships of components in RESOLVE

6.1 Encapsulating a Navigable Tree Position in a Data Ab-

straction

In imperative programming practice and literature, trees are realized via pointers—structural

pointers between nodes and external pointers to nodes as tree positions. However, explicit manipula-

tion of pointers is inherently complex and difficult to reason about [63, 38, 61]. To locally encapsulate

this complexity, the use of reusable and comprehensible data abstractions is essential. The navigable

tree data abstraction proposed here is surprisingly simple and presents a labeled tree and a single

position within that tree where manipulations can be performed. While navigational operations

allow access to other parts of the tree, other operations support changing the tree’s shape and label-

ing. Verification of code underlying these operations do indeed involve pointers, but once verified,
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the abstraction’s reusability means that the upfront cost can be amortized over many deployments.

In such deployments, the programmer’s code is relieved from reasoning about explicit references, as

would be necessary if traditional tree realizations were being manipulated.

Figure (6.2) (a). An informal presentation of a tree position. (b). Formalization of a tree position
showing a path with two sites and remainder tree

Figure (6.2) shows an example tree position for an instance of a generic tree abstraction

we propose. The tree abstraction has been instantiated with integers as node labels and 3 as the

maximum number of children for each node. The fat arrow in Figure 6.2(a) is used as an indicator

of the current tree position. By the nature of trees, any particular position factors a tree into

two disjoint parts—the remainder tree below the position indicator and a path before the position

indicator. If a path includes all side branches to its left and right, then the underlying tree can be

recovered. Further, movements between nearby positions can readily be specified. A tree position

path contains sites. Each site records the label for that path position, the string of subtrees that

lie to the left of the path (Left Tree String), and the string of subtrees that lie to the right of

the path (Right Tree String). Figure 6.2(b) presents a formal illustration of the tree position with
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the remainder tree shown in blue and the path in green. A formal discussion on a tree position is

provided in Section 6.2.

A navigable tree data abstraction uses operations Advance and Retreat to navigate the

exploration tree. These operations can move the current tree position to or from any one of the k

immediate subtrees of the remainder tree. Operation Advance moves the current tree position to

the next with an effect of adding one site to the path. Operation Retreat has an opposite effect to

Advance. It reconstructs a new remainder tree using the last added site in the path and the current

remainder tree, which is similar to navigating back to the previous tree position. For example, from

a tree position in Figure 6.3(a), advancing to the next tree position in direction 2 will land us to

a tree position in Figure 6.3(b), and we can retreat from tree position in Figure 6.3(b) to Figure

6.3(a).

Figure (6.3) (a). A current tree position before advancing. (b). Updated tree position after
advancing

The other operations included in the tree abstraction are Add_Leaf and Remove_Leaf.

They create or modify trees by adding or removing a node from a tree. A new node is added to a

tree using the operation Add_Leaf. For this operation to work, the tree position should be at the

end, where the remainder tree is an empty tree (Ω) (see Figure 6.4(a)). Adding a new node, say

with a label 16 at this position, results in a tree in Figure 6.4(b).

Only leaves are removable from a tree using the operation Remove_Leaf. While Add_Leaf

and Remove_Leaf may seem restrictive, another operation, Swap_Rem_Trees (Swap Remainder

Trees) allows the remainder tree of two different tree positions to be swapped in and out, essentially

making it possible to add new nodes in the middle of the tree. Swapping is used rather than copying

of references or values [23]. Swapping does not compromise abstract reasoning, and is efficient
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for data movement as tree content in the generic abstraction can be of arbitrary type (not just

Integers).

Figure (6.4) (a). An example tree position at an end. (b). Updated tree position with an added
leaf

Boolean operations At_an_End (At an End) and At_a_Leaf (At a Leaf) are useful in

checking the current tree position if it is at the end or at a leaf, respectively.

The specification for an exploration tree containing operations discussed above is provided

in Listing (5). For space consideration, only the essential parts of the interface are shown. Defined as

a Concept in RESOLVE, the interface describes the behavior of all primary operations necessary to

make it useful. The parameters on each operation have a type and preceded by specification modes.

For example, the parameter dir (direction) used in the Advance operation is of type Integer, and

P is of type Tree_Posn (tree position). The operation Advance updates the tree position along

the specified direction. The parameter mode updates is used along with P to explicitly specify

its behavior before and after the operation is called. Other parameter modes in RESOLVE were

discussed in Section 3.4.1.

Concept Exploration_Tree_Template ( . . . ) ;

⋮

Operation Advance ( evaluates dir : Integer ; updates P : Tree_Posn ) ;

Operation At_an_End ( restores P : Tree_Posn ) : Boolean ;

Operation Retreat ( updates P : Tree_Pos ) ;

Operation Add_Leaf ( (alters Labl : Node_Label ;

updates P : Tree_Posn ) ;
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Operation Remove_Leaf ( replaces Leaf_Labl : Node_Label ;

updates P : Tree_Posn )

Operation At_a_Leaf ( restores P : Tree Posn ) ;

Operation Swap_Label (updates Labl : Node_Label ; updates P : Tree_Posn ) ;

Operation Swap_Rem_Trees ( updates P , Q : Tree_Posn ) ;

⋮

end Exploration_Tree_Template ;

Listing (5) A skeleton version of the RESOLVE specification of an exploration tree

6.2 The Exploration Tree Data Abstraction

This section presents an exploration tree data abstraction written using a general tree theory

containing mathematical theorems with definitions, notations, and predicates necessary to author

succinct specifications. The general tree theory is explained in the next section.

6.2.1 A General Tree Theory

A significant challenge in writing theory for structures such as trees is the wide range of

applications trees have in computing. Developing and verifying theories for each application will be

costly. A practical solution is to develop a general theory for all applications. Generic theories are

complex, and their development is not a trivial task. Nevertheless, their continuous reuse amortizes

the up-front development and verification effort once developed and verified.

General Tree Theory used in this work is presented fully in Appendix D. This section covers

a few definitions, predicates, and notations used in specifying the concept and operations in the

coming section.

The first definition we present is a root label function Rt_Lab, which returns a root node

label from a non-empty tree. Here is how it works, suppose we are given the remainder tree in

Figure 6.3(a). Rt_Lab function will return an integer label 20 as a root node label.

A second function is root branches (Rt_Brhs), which extract all branches from the root

node and return them as a string of trees. For the remainder tree in Figure 6.3(a), the root branches

returned by this function will include T3, a tree with root node 18, and T4.
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A third function is Uniform Tree Positions (U_Tr_Pos), which returns a collection of all

tree positions in a specified tree with k maximum number of children in a node and Node_Label as

a node type.

A fourth function height (ht) is inductively defined to return an integer value representing

the tree’s maximum depth. For example, the height of an empty tree is 0.

Finally, Listing (6) defines a site and a tree position. A site is mathematically modeled as

a Cartesian Product (Cart_Prod) of a node label (Lab) and a string of trees (Str(Tr)). A tree

position is modeled as a Cart_Prod of a path, and the remainder tree (Rem_Tr).

Def . Site = Cart_Prod

Lab : El ;

LTS , RTS : Str (Tr) ;

end ;

Def . Tree_Posn = Cart_Prod

Path : Str (Site ) ;

Rem_Tr : Tr ;

end ;

Listing (6) The mathematical definition of a site and a tree position in the theory

6.2.2 A Formal Specification of An Exploration Tree

The first part of the specification describing the behavior of an exploration tree is pre-

sented in Listing (7). The Exploration_Tree_Template is parameterized by a generic node type

Node_Label, and integer values k and Initial_Capacity. The value k sets the maximum number

of children for each node, and the Initial_Capacity places a shared upper bound on the number

of nodes for all trees created within a single instantiation of the template.

Concept Exploration_Tree_Template ( type Node_Label ;

evaluates k , Initial_Capacity : Integer ) ;

uses General_Tree_Theory . . . . ;

requires 1 ≤ k and 0 < Initial_Capacity . . ;

Var Remaining_Cap : N ;

initialization ensures Remaining_Cap = Initial_Capacity ;
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Type Family Tree_Posn ⊆ U_Tr_Pos (k , Node_Label ) ;

exemplar P ;

initialization ensures P .Path = Λ and P .Rem_Tr = Ω ;

finalization ensures Remaining_Cap = #Remaining_Cap +

N_C (P .Path Ψ P .Rem_Tr ) ;

⋮

end Exploration_Tree_Template ;

Listing (7) RESOLVE concept for exploration tree

The specifications in Listing (7) are written using mathematical notations and definitions

from different RESOLVE theories. The uses statement provides the concept with access to the

General_Tree_Theory and any other theories used.

The requires clause next is specified to provide concept level restrictions on the values

to be supplied by the client as parameters during an instantiation of the concept. The first clause

ensures k is within the valid bounds, and no tree is created with zero children. The second clause is

to ensure Initial_Capacity can never be zero.

The Remaining_Cap is a concept variable shared across all instantiated trees, and not

each tree to be constrained individually to allow safe memory sharing [61]. The Remaining_Cap is

specified as a natural number and initialized to Initial_Capacity.

The Type Family clause specifies Tree_Posn, a type exported by the template, as a subset

of all uniform tree positions defined by k and Node_Label. The exported type is a whole family of

types, each with different contents and not just one type, which emphasizes the generic nature of

this abstraction.

The exemplar clause introduces a name P as an example tree position used in specifying

initialization and finalization ensures clause. Initially, a created tree position P will have

its path equal to an empty string (Λ) and its remainder tree equal to an empty tree (Ω). At the end of

its use, the finalization clause guarantees that a count of tree nodes belonging to the tree object

is added back to the remaining capacity. The initial or incoming remaining capacity is differentiated

from the outgoing or final remaining capacity using a # symbol used as a prefix for the former.

A complete specification for an exploration tree should have all primary operations specified.
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Some of these operations were mentioned in Listing 5, and their details are provided in [43]. The

following is a detailed mathematical description for an operation Advance.

The operation Advance takes in the current tree position P and updates it to a new tree

position depending on the advancing direction dir. The tree position P and direction dir are

supplied as parameters preceded by modes specifying their behavior before and after the operation

is called.

A mathematical specification describing the behavior of operation Advance is provided in

Listing (8). The requires clause uses two conditions to specify the operation’s behavior before

behavior before the user calls it. The first condition restricts the operation to only nonempty

remainder trees because advancing to an empty tree is impossible. The second condition requires

the supplied integer value dir to be within valid bounds as only advancing from a node to one of

its branches is possible.

Operation Advance ( evaluates dir : Integer ; updates P : Tree_Posn ) ;

requires P .Rem_Tr ≠ Ω and 1 ≤ dir ≤ k

ensures P .Rem_Tr = ̸( Prt_Btwn (dir − 1 , dir , Rt_Brhs(#P .Rem_Tr ) ) )

and P .Path = #P .Path o ⟨( Rt_Lab(#P .Rem_Tr ) ,

Prt_Btwn (0 , dir − 1 , Rt_Brhs(#P .Rem_Tr ) ) ,

Prt_Btwn (dir , k , Rt_Brhs(#P .Rem_Tr ) ) )⟩ ;

Listing (8) Formal specification of an Advance operation

The ensures clause specifies two postconditions describing what happens after the operation

is called. Two parts are updated, the first condition updates the remainder tree, and the second

condition updates the path. Each part is described separately next.

The first part of ensures clause uses a function Rt_Brhs to return a string containing

all branches of a root node for a given tree. A Part Between operator (Prt_Btwn) will return a

substring between two specified intervals of a given string. In the first part, the Prt_Btwn operator

extracts a needed tree branch between two directions, dir − 1 and dir. The tree branch extracted

is in a string format, and a destring (̸1) operator is used to produce the entry in a singleton string.

The second part updates the tree position by adding a new site to its existing path. The new
1Current RESOLVE compiler parses only ASCII characters, so all mathematical characters used are converted to

ASCII equivalents
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site is a result of advancing into the remainder tree leaving behind a root node label specified by

Rt_Lab(#P.Rem_Tr) and the string of branches on the left and right of the advancing direction. The

left branches are specified by Prt_Btwn(0,dir − 1,Rt_Brhs(#P.Rem_Tr)) and the right branches

are specified by Prt_Btwn(dir,k,Rt_Brhs(#P.Rem_Tr)).

6.2.3 Concept Enhancements

We present Position_Depth_Capability specified in Listing (9) as one of the enhance-

ments that extend the application of our tree data abstraction. The goal of this enhancement is to

find the longest path from the root node to one of the empty trees in the remainder tree.

Enhancement Position_Depth_Capability for Exploration_Tree_Template ;

Operation Position_Depth ( restores P : Tree_Posn ) : Integer ;

ensures Position_Depth = ( ht(#P .Rem_Tr ) ) ;

end Position_Depth_Capability ;

Listing (9) An example specification a RESOLVE enhancement

The mathematical description in Listing (9) only specifies the postcondition as the operation

is called on tree position P. The operation returns an integer value representing the height of P’s

remainder tree, as specified in the ensures clause.

The Position_Depth_Capability enhancement is implemented in Listing (10). The im-

plementation uses both recursion and iteration, and to establish their correctness, the implementer

annotated the code with termination (decreasing) clause and loop invariant (maintaining).

Realization Obv_Rcsv_Realiz for Position_Depth_Capability

of Exploration_Tree_Template ;

Recursive Procedure Position_Depth (restores P : Tree_Posn ) : Integer ;

decreasing ht(P .Rem_Tr ) ;

Var PrevDir , NextHeight , MaxBrHeight : Integer ;

If (At_an_End (P) ) then

Position_Depth := 0 ;

else

PrevDir := 0 ;

NextHeight := 0 ;

MaxBrHeight := 0 ;
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While ( PrevDir < k )

maintaining P .Path = #P .Path and P .Rem_Tr = #P .Rem_Tr and

MaxBrHeight = Ag(max , 0 , ht [ [ Prt_Btwn (0 , PrevDir ,

Rt_Brhs (P .Rem_Tr ) ) ] ] ) and PrevDir <= k ;

decreasing k − PrevDir ;

do

Increment (PrevDir ) ;

Advance (PrevDir , P) ;

NextHeight := Position_Depth (P) ;

If (MaxBrHeight < NextHeight ) then

MaxBrHeight := NextHeight ;

end ;

Retreat (P) ;

end ;

Position_Depth := MaxBrHeight + 1 ;

end ;

end Position_Depth ;

end Obv_Rcsv_Realiz ;

Listing (10) Implementing Position_Depth_Capability enhancement

The maintaining clause is specified as a conjunction of four main parts. The first two

parts guarantee that the tree position is returned to its initial state at the end of the operation. The

third part maintains the Maximum Branch Height (MaxBrHeight) on every iteration. This part is

defined using an aggregate function (Ag), which has three arguments. The first argument, max, is a

binary operator that returns a maximum value between two given values. The second argument is

0, a base height for an empty string. The third argument is ht is the height function applied to a

string of trees found through a function Rt_Brhs. The extra square brackets [[ . . . ]] used with the

function ht implies ht is applied to each tree in the string.

6.3 VC Generation Progress

The RESOLVE verification system has made considerable progress towards VC generation

of implementations such as one in Listing (10). The VCs are not discharged as yet, and this work is
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a progress towards the verification object based software components such as one presented in this

chapter.

For the implementation provided in Listing (10), 40 VCs were successfully generated for

verification. After a visual inspection of every VC, Table (6.1) was created to illustrate their distri-

bution. We classified 24 VCs as mathematically trivial for verification. These VCs can quickly be

verified from the antecedents (Givens) in a few steps using the theory of equality. The second class

has 10 VCs; these are more challenging, requiring algebra and additional theorems to establish their

correctness. The last 6 VCs are too costly to establish their correctness in few steps. A detailed

classification on sequent VCs and their provability is presented in Section 1.4.1.

Table (6.1) A Breakdown of Generated VCs for Listing 10

Reason for
VCs

Generated
VCs

Mathematically
Trivial VCs

More
Challenging

VCs

Too Costly to
Establish

requires Clause 8 5 3 0
ensures Clause 8 5 3 0

Base Case 12 12 0 0
Inductive Case 8 0 2 6
Termination 4 2 2 0

Total 40 24 10 6

Two sequent VCs below are selected to illustrate the results of our experimentation. The first

VC is shown in Listing 11 and it corresponds to an inductive case of one loop invariant conjuncts. In

the verification process, the generated VCs are supplied to an automated prover. With the assistance

of theorems from the library, VCs are formally verified by the prover. The validity of the received

VC is established when any of the Goal assertions can be proved by the known facts from the Given

assertions (which includes relevant theorems from the library). For the VC in Listing 11 it turns

out to be trivial, and its correctness can be established by Given #3, which proves the first goal

assertion.

Goal :

( ( 1 + PrevDir ’ ’ ) ≤ k) or

(1 + Ag(max , 0 , ht [ [ Prt_Btwn (0 , PrevDir ’ ’ ,

Rt_Brhs (P ’ ’ ’ . Rem_Tr ) ) ] ] ) ≤ ht(P .Rem_Tr ) ) or (P .Rem_Tr = Empty_Tree )

Given :

1 . (P ’ ’ . Rem_Tr = DeString (Prt_Btwn ( ( ( 1 + PrevDir ’ ’ ) − 1) , (1 + PrevDir ’ ’ ) ,

Rt_Brhs (P ’ ’ ’ . Rem_Tr ) ) ) )
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2 . (P ’ ’ . Path=(P ’ ’ ’ . Path o ⟨Rt_Lab (P ’ ’ ’ . Rem_Tr )⟩ o ⟨Prt_Btwn(0 ,(1+PrevDir ’ ’ −1) ,

Rt_Brhs (P ’ ’ ’ . Rem_Tr ) )⟩ o ⟨Prt_Btwn (1 + PrevDir ’ ’ ,k , Rt_Brhs (P ’ ’ ’ . Rem_Tr ) )⟩) )

3 . ( (1 + PrevDir ’ ’ ) ≤ k)

4 . (P ’ ’ ’ . Path = P .Path )

5 . (P ’ ’ ’ . Rem_Tr = P .Rem_Tr )

6 . (PrevDir ’ ’ ≤ k)

7 . (1 ≤ k)

8 . (k > 0)

Listing (11) A VC generated from the inductive case of the loop invariant

The second VC presented is generated from the decreasing clause of the While loop to

show termination. Compared to the previous one, this VC shown in Listing 12 would require simple

algebra to the first assertion in the Goal to establish its correctness.

Goal :

( ( 1 + (k − (1 + PrevDir ’ ’ ) ) ) ≤ (k − PrevDir ’ ’ ) ) or

(1 + Ag(max , 0 , ht [ [ Prt_Btwn (0 , PrevDir ’ ’ ,

Rt_Brhs (P ’ ’ ’ . Rem_Tr ) ) ] ] ) ≤ ht(P .Rem_Tr ) ) or (P .Rem_Tr = Empty_Tree )

Given :

1 . (P ’ ’ . Rem_Tr = DeString (Prt_Btwn ( ( ( 1 + PrevDir ’ ’ ) − 1) ,

(1 + PrevDir ’ ’ ) , Rt_Brhs (P ’ ’ ’ . Rem_Tr ) ) ) )

2 . (P ’ ’ . Path = (P ’ ’ ’ . Path o ⟨Rt_Lab (P ’ ’ ’ . Rem_Tr )⟩) o

⟨Prt_Btwn (0 , (1 + PrevDir ’ ’ − 1) , Rt_Brhs (P ’ ’ ’ . Rem_Tr ) )⟩ o

⟨Prt_Btwn ( (1 + PrevDir ’ ’ ) , k , Rt_Brhs (P ’ ’ ’ . Rem_Tr ) )⟩)

3 . ( (1 + PrevDir ’ ’ ) ≤ k)

4 . (P ’ ’ ’ . Path = P .Path )

5 . (P ’ ’ ’ . Rem_Tr = P .Rem_Tr )

6 . (PrevDir ’ ’ ≤ k)

7 . (1 ≤ k)

8 . (k > 0)

Listing (12) A VC generated to establish termination of the loop
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6.4 Summary

Generation of sequent VCs is a big step toward verification of the code. The challenge

faced by verification systems when proving implementation, such as one in Listing (10), is the use

of Exploration_Tree_Template specified using the non-trivial General_Tree_Theory for which

there are no special-purpose solvers. The current version of the RESOLVE automated prover cannot

handle the verification of all sequent VCs either due to its limitations, motivating the universal

automated prover for atomic sequents discussed in this work.
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Chapter 7

Congruence Class Registry Overview

Congruence Class Registry is at the core of the Uni-Prover. This chapter motivates its need,

explains its design, and presents a brief discussion on the concept that describes its behavior. The

mathematics necessary to describe the concept formally and a formal specification are the topics of

subsequent chapters.

7.1 Motivation

The primary goal of using the congruence class registry is to deal with equality predicates

in sequent VCs effectively. Equalities are pervasive in math specifications and theories, and for

effectiveness in verifying programs, they must be handled differently from other predicates.

7.1.1 Why Equality Cannot Be Treated Like Any Other Predicate

The automated prover may use rules of logic to prove sequent VCs and, when necessary, can

use mathematical theorems from the library to prove each sequent VC in the collection. While using

theorems from the library is reasonable for other predicates, the general approach is inefficient for

equalities because of their pervasiveness—an excessive number of steps that would be taken when

using equality theorems from the library.

Consider two equality predicates a = b and b = c. If equality is not handled specially, and

recovered from a theory in the library, deducing that a = c would require drawing the transitivity

theorem from the library and instantiating it properly before we can conclude a = c. It is contrary to
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how humans would deal with such simple equality. The knowledge of equality accumulated over time

allows humans to deduce simple equalities from a given set of equations quickly. For our example, it

is easy for humans to look at a = b and b = c, and quickly deduce a = c. Using a general, mechanized

approach that goes through many steps to establish even simple equalities undesirable.

The main problem with building the theory of equality into the library and treating it

like any other predicate is the excessive number of steps taken, even for straightforward conclusions.

Besides, selecting theorems from the library tend to bring all other related theorems into the process.

These additional theorems lead to an extensive collection of equality facts added to the sequent being

verified. Most of these facts would not contribute to the proof of the sequent, and including them

introduces mostly unnecessary steps.

Additionally, equalities are characterized by equivalence and congruence properties, which,

when employed, affect all terms in the sequent VC introducing many irrelevant equality facts. Those

irrelevant equality facts clutter the sequent VC, potentially causing extra steps that do not contribute

to the final result. The following example demonstrates the problems.

Consider {a = b,b = c,d = c,e = d + f} ⇛ {F(a + f) = F(e)}, a sequent VC with four equal-

ities in the antecedent. One crucial equality fact needed for verification of this sequent VC is

F(a + f) = F(a + f), which results from applying the reflexivity property of equality on every term in

the sequent VC. As a result, in addition to F(a + f) = F(a + f), other irrelevant equality facts from

all other terms are simultaneously added as shown in Figure (7.1). These extra equality facts do not

contribute to the proof, and they cause even more facts to be added when other equality rules are

applied.

Figure (7.1) Applying reflexivity property from the library to a sequent VC

Additional equalities come from congruence relations of functions. In the presence of func-
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tions in sequents, the equality facts about their arguments can be congruently related through func-

tion application. For example, for a single-argument function f(a), knowing a = b, we can deduce

f(a) = f(b) through function application. So both equivalence and congruence properties introduce

more equalities in the sequent.

7.1.2 Efficient Handling of Equality Using Congruence Classes

Because of the equivalence and congruence properties of equality, terms can be partitioned

into congruence classes. The congruence classes efficiently establish all equalities and their conse-

quences, without having to instantiate and use equality results from the theory library. Additionally,

congruence class components can be efficiently implemented. Therefore, we can leverage the prop-

erties of congruence classes and deal with equality predicates in sequent VCs by partitioning their

terms into congruence classes. The following is a simple example of how effectively congruence

classes deal with equality and its consequences.

Consider {a = b,b = c} ⇛ {F(a) ≥ F(c)}, a sequent VC with two equality predicates in the

antecedent. The congruence class partition in Figure (7.2) is produced by applying a congruence

closure on the sequent. Each term in the sequent is initially in its congruence class, and the classes

collapse as the equalities are introduced. For example, when a = b is introduced into the partition,

{a} and {b} merges to {a,b}. Any change in the partition can cause other classes to be updated

accordingly. Thus, {F(a)} and {F(b)} that used to be in separate classes, collapse to a single class

{F(a),F(b)} as a consequence of {a,b}. With congruence classes, the knowledge of a and b being

equal is kept by the fact that a and b are in the same class.

Figure (7.2) Dealing with equalities using congruence classes

After b = c is introduced into the partition, and all classes are updated, the final partition

in Figure (7.2) has the necessary capability to establish other related equalities quickly. Compared

to using equality theory in the library, all equalities are established using the partition in a single

step. In the example above, we can immediately establish a, b, and c as equal terms because they
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are in the same congruence class.

Congruence classes also deal with the unnecessary clutter in a sequent VC on applying the

equality properties. For example, equalities like a = b and b = a must appear in the sequent VC

when applying the symmetric property. They are now represented by a single class {a,b} in the

congruence class partition.

We have developed the congruence class registry that leverages the ability of congruence

classes to deal with all equalities efficiently. The challenges are in integrating congruence classes with

the sequent calculus and in developing elaboration rules to support all the manipulations necessary

to prove a sequent VC. The following sections describe the congruence class registry and its central

role in Uni-Prover.

7.2 Multi-Level Organization of Congruence Classes

Congruence classes in the registry are collections of trees, and searching is not straightfor-

ward as it would be with individual trees. So using a congruence class registry in turn introduces a

non-trivial searching challenge. The search process must be as effective as possible to minimize the

number of steps taken to prove sequent VCs.

To facilitate effective searching, we have organized the registry into four levels. The orga-

nization avoids the investigation of every tree entity in the registry as it would be in regular tree

searching. The following sections discuss these levels, and explain how they make searching effective.

7.2.1 Congruence Classes and Varieties

Figure (7.3) illustrates the congruence class registry with classes and subclasses. The collec-

tions of trees registered from expressions and subexpressions in the sequent VC and elaboration rules

are on the right of the diagram. As explained in Section 7.1.2, initially, singleton congruence classes

with single trees are created in the registry. When equalities are registered, congruence classes with

subexpressions known to be equal will collapse into a single congruence class containing trees from

both classes.

Congruence classes presented in red circles represent one of the levels used in the registry

organization. Each class in the registry is designated with a unique number called a congruence

class designator (C_Cls_Dsntr).
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Figure (7.3) Congruence class varieties, classes, and clusters

To minimize the potential classes to be searched, classes are organized into varieties. This

organization keeps an ordered list of all congruence classes containing at least one tree with the

root node label designating a variety. Varieties are shown on the left of Figure (7.3). Each registry

label determines a single variety. For ≤, the variety contains congruence class 30,31 and any other

class that has a tree with ≤ at the root. When the class searched falls under a variety, searching is

narrowed to only classes within the variety, and all other varieties are eliminated.

7.2.2 Congruence Clusters and Stands

For even more effective searching and to support counter-matching of clauses, we introduce

another level in the registry organization called congruence clusters to further refine the classes.

If we denote the congruence class for a tree representing a term T as C_Cls(T), and its

congruence cluster by C_Clstr(T), then the key property of congruence clusters is that for any
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function f and g at the root of two terms with subtree terms R,S,T and U is the following:

If C_Clstr(f(R,S)) = C_Clstr(g(T,U)),

then f = g, and C_Cls(R) = C_Cls(T) and C_Cls(S) = C_Cls(U)

Congruence clusters being more refined than congruence classes means the following:

If C_Clsrt(S) = C_Clstr(T), then C_Cls(S) = C_Cls(T)

A critical observation on the cluster organization: Clusters are the most primitive refine-

ment. They are partitions and respect each other’s boundaries. They do not overlap and have a

downward completeness property where everything is in a cluster. If a tree is in a cluster, its subtrees

must be in some clusters too. These properties are essential in searching. It means that by search-

ing the lower level like clusters, we are still searching for the same things in the higher level, just

in smaller chunks and without crossing the boundaries of the higher level. This property explains

the exhaustiveness in these levels, where going through the lower level one by one will eventually

get through the higher level, making the searching efficient by not losing anything. Congruence

clusters are designated in the registry with unique numbers called congruence clusters designators

(Clstr_Dsntr), as shown in green in Figure (7.4).

The organization in the registry provides yet another opportunity to further confine our

search to clusters with similar “root node labels” (Rt_Lab) that we call congruence class stands.

Stands are shown in Figure (7.4). They group clusters that contain trees with the same root node

label in a congruence class.

If we denote congruence class stand as C_Stand, then for terms S and T, stands have

the property that C_Stand(S) = C_Stand(T) if and only if C_Cls(S) = C_Cls(T), and Rt_Lab(S)

= Rt_Lab(T). Therefore, if C_Clstr(S) = C_Clstr(T), then C_Stand(S) = C_Stand(T).

Figure (7.4) shows several stands designated by the classes and registry labels. When

searching a congruence class, a stand with clusters having trees with the root node label being

searched is retrieved first. Only clusters within the identified stand are checked, and other clusters

in the class are eliminated from the search. For example, searching for a tree with a root node ≤

limits our search to only clusters 55 and 53 in the first stand shown in the diagram.
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Figure (7.4) Congruence class registry stands

Each level in the registry serves a purpose, and collectively they make searching in the

registry more effective. Taken together, the registry concept is capable of supporting operations to

prove a sequent VC.

7.3 Summary of the Congruence Class Registry Concept

We have detailed the congruence class registry template in Chapter 9. This section briefly

discusses the congruence class registry template. It provides an introduction of key details at an

informal level.

The congruence class registry concept is parameterized, and a client should supply types

and values to instantiate it. The client in the context of this section is the component that uses

the congruence class registry. Listing (13) shows a few of these parameters starting with tree

node label (Tr_Nd_Lab) and tree category tag(Tr_Cgry_Tag), which are types. For example, if

Integer is used as the tree node label type, then variables, constants, and operators in sequent VCs,

which are represented as strings, will be converted into integers. The other two parameters set
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the maximum number of congruence classes (C_Cls_D_Cap) and clusters (Clstr_D_Cap) for the

registry. Additional parameters and details are discussed later in Chapter 9.

The specifications written in the concept use definitions and notations defined in the library

of RESOLVE theories, including the general tree theory. All used theories are brought into the scope

through the concept uses statement.

The uses statement is followed by a concept level requires clause, which sets some boundaries

to the values provided through the parameters. For example, the two assertions in the requires

clauses provided in Listing (13) set a lower bound for C_Cls_D_Cap and Clstr_D_Cap provided

by the client.

The following definitions specify two values used in the registry to designate congruence

class and clusters. Mathematically, both C_Cls_Dsntr and Clstr_Dsntr are defined as a finite set

of natural numbers in an interval from 0 to the respective maximum designator capacity.

7.3.1 Registry Types and Abstraction

The central type exported by the concept is the congruence class registry (CC_Reg) type.

But to add entries to the registry and search, handles are needed for classes and clusters. So first

we discuss the handle types that we term designators.

Designators for classes and clusters are only usable inside the registry. Outside, clients are

provided accessors, allowing them access to registered clusters and classes. Without the introduction

and use of these types, direct pointers or numbers must be exported to client for manipulation and

that would violate abstraction.

Accessors and designators must be described separately without complicating reasoning as

accessors will not be changing, but designators change as congruence classes and clusters get merged.

We have achieved a clean separation between designators and accessors by having the con-

cept exporting two types, C_Cls_Accessor (Congruence Class Accessor) and Clstr_Accessor

(Cluster Accessor). As shown in Listing 13, C_Cls_Accessor and Clstr_Accessor are specified

as a subset of C_Cls_Dsntr and Clstr_Dsntr, respectively. Even though accessors are specified as

numbers, the only operations allowed are Replica for creating copies and Are_Equal for equality

check. Clients cannot perform any other arithmetic operations on the accessors.

Another aspect of this separation is to allow more than one congruence class registry to be

created, and in a parallel processing environment, the exported accessors will be available to clients
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for each created registry.

The congruence class registry (CC_Reg) type is modeled mathematically as a Cartesian

Product (Cart_Prod) of different elements. Listing (13) only mention a few of them. The first

is a function CC_Designated, mapping congruence class designators to created congruence classes.

The second, Top_CC_Dsntr, keeps track of the most recently used class designator. The third is

a function Cr_Designated used to map cluster designators to clusters. The recently used cluster

designator is also kept in Top_Cr_Dsntr. The rest of the elements of this mathematical tuple can

be found in Chapter 9.

Concept Congruence_Registry_Temp (type Tr_Nd_Lab , Tr_Cgry_Tag ;

eval C_Cls_D_Cap , Clstr_D_Cap , . . . . ) ;

uses Relativization_Ext for General_Tree_Theory ;

requires 0 < C_Cls_D_Cap and 0 < Clstr_D_Cap . . . ;

Def . C_Cls_Dsntr : ℘fin(N) =N [0...C_Cls_D_Cap];

Def . Clstr_Dsntr : ℘fin(N) =N [0...Clstr_D_Cap];

Type_Family C_Cls_Accessor ⊆ C_Cls_Dsntr ;

Oper Replica ( restores c : C_Cls_Accessor ) : C_Cls_Accessor ;

Oper Are_Equal ( restores c , d : C_Cls_Accessor ) : Boolean ;

Type_Family Clstr_Accessor ⊆ Clstr_Dsntr ;

Oper Replica ( restores p : Clstr_Accessor ) : Clstr_Accessor ;

Oper Are_Equal ( restores c , d : Clstr_Accessor ) : Boolean ;

Type_Family CC_Reg ⊆

Cart_Prod

CC_Designated : C_Cls_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) ) ,

Top_CC_Dsntr : C_Cls_Dsntr ,

Cr_Designated : Clstr_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) )

Top_Cr_Dsntr : Clstr_Dsntr ,

⋮

end ;

Abbnl Def . C_Class (Rg : CC_Reg ) : ℘fin(℘(EStF_Tr (Tr_Nd_Lab ) ) ) = ( . . . ) ;

−−Reg i s t ry ope ra t i on s are shown in upcoming l i s t i n g s −−

end Congruence_Registry_Temp ;
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Listing (13) Congruence class registry concept types

7.3.2 Concept Conciseness and Comprehensibility

Conciseness and comprehensibility of the concept are necessary to make it usable. The

following have been considered in the specifications to reduce the mental effort in understanding the

non-trivial registry concept specifications for both clients and implementers of the congruence class

registry concept.

First, reducing the number of pieces of the mathematical CC_Reg model is essential in

making the concept usable. The model of the state of the registry contains only what is essential,

independent, and sufficient to directly or indirectly (through definitions in the theories and those

local to the concept) specify everything needed in the registry. For example, while the registry has

four levels, they are a refinement (derivative) of each other, and only congruence classes and clusters

are necessary to describe the registry’s state fully. The varieties and stands can be described entirely

using classes and clusters. This property has allowed us to export only two accessors to the client,

and they are sufficient to provide full access to the registry.

Second, we have introduced abbreviational (Abbnl) definitions that are defined locally in

the concept to replace parts of the specifications that appear several times throughout the concept.

With abbreviational definitions, only their names appear on other parts of the concept. For example,

abbreviational definition C_Class described in Listing 13 allows us to use only the name C_Class

instead of entirely writing out what it defines in every occurrence in the concept.

7.4 Operations to Register a Cluster

The concept describes primary operations to modify the state of the registry, navigate the

registry, observe its status, and get values from the registry. An exhaustive list of operations is

provided in Appendix C. This section presents the first set of primary operations in Listing (14)

used for registration.

Oper Register_Cluster_Lbld (preserves Lab :Tr_Nd_Lab , replaces

c : C_Cls_Accessor , alters atb : Tr_Cgry_Attbt , updates Rg :CC_Reg ) ;
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Oper Is_Already_Reg_Clstr ( preserves Lab : Tr_Nd_Lab ,

restores Rg : CC_Reg ) : Boolean

Oper Get_Accr_for ( preserves Lab : Tr_Nd_Lab ,

replaces c : C_Cls_Accessor , updates Rg : CC_Reg ) ;

Oper Append_to_Arg_Lst ( restores c : C_Cls_Accessor ,

updates Rg : CC_Reg affecting_only Clstr_Arg_Lst ) ;

Listing (14) Congruence class registering operations

The key operation in this set is Register_Cluster_Lbld, which creates a new congruence

class and cluster given a tree node label and arguments appended in the argument list. It returns

an accessor to the new addition through the replaces mode parameter. The other three operations

are used together with Register_Cluster_Lbld in the registration process. The following is an

example registration for illustration.

Consider a sequent VC {a + b ≤ 9 ⋅ a,a + b = 8} ⇛ {8 ≤ 9 ⋅ a} in Figure (7.5) placed in a nested

list form. We can process the sequent from left to right to register it. The clause a + b ≤ 9 ⋅ a

will be registered first, starting with a, followed by b, and building the expression bottom-up.

Let us assume a and b are already registered, and a + b is the term being registered, as shown

in Figure (7.5). The client must check the clusters existence in the registry using the operation

Is_Already_Reg_Clstr before registration. If already registered, its class accessor can be retrieved

using operation Get_Accr_for. In most cases, accessors are retrieved to be used in registering an

operator as we build up an expression bottom up. Figure (7.6) shows a snippet of the RESOLVE

code in a component using the operations in Listing (14) called before the plus operator is registered.

The code uses an if condition in lines 8 and 14 to check if a and b are registered. In

the case they are registered, only their accessors are retrieved and stored in c and d, respectively.

Otherwise, they are registered, and their accessors are returned by replacing the values in c and

d accordingly. The argument list is left empty when a and b are registered, as variables have no

arguments. However, to register a plus operator, c and d must be appended to the argument list

before the register operation is called. On line 23, a check is made to see if the cluster for a plus

operator with arguments c and d is already registered. In the example, the cluster is new and is

registered on line 26.
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Figure (7.5) Registering a + operator with a and b as arguments

7.5 Congruence Operations

Listing (15) shows two congruence operations specified in the concept to deal with equality

predicates in the antecedent of the sequent VC. The first operation Make_Congruent takes two

congruence class accessors for two classes that are known to be equal and merge them into a single

class. The second operation Are_Congruent checks if two provided congruence accessors are already

congruent.

Oper Make_Congruent (restores c , d : C_Cls_Accessor , updates Rg : CC_Reg ) ;

Oper Are_Congruent ( restores c , d : C_Cls_Accessor ,

restores Rg : CC_Reg ) : Boolean ;

Listing (15) Congruence operations in the registry

The two operations can be used together to ensure that operation Make_Congruent is

only called with non-congruent class accessors. To illustrate this use, consider the same sequent

VC {a + b ≤ 9 ⋅ a,a + b = 8} ⇛ {8 ≤ 9 ⋅ a} used above, this time we proceed with the registration of
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Figure (7.6) RESOLVE code to register a term a + b

a + b = 8. Figure (7.7) shows the effect of calling the Make_Congruent operation on two classes, one

for + operator and another for a constant 8.

The accessor for a + b and 8 must be retrieved from the registry by the client. Figure (7.8)

shows a RESOLVE code using the Make_Congruent operation. The code retrieves the needed acces-

sors using the Get_Accr_for operation first and call Make_Congruent if and only if Are_Congruent

returns false.

7.6 Searching Operations

Searching the registry involves mainly moving from one class to another and from one cluster

to another. The operations in Listing (16) are specified to traverse and search the registry.

Oper Advance_CC_Accr_for ( restores x : Tr_Nd_Lab ,

updates c : C_Cls_Accessor , restores Rg :CC_Reg ) ;

Oper Is_Vrty_Maximal_for (restores x :Tr_Nd_Lab , restores c : C_Cls_Accessor ,

restores Rg :CC_Reg ) : Boolean ;

Oper Advance_Clstr_Accr_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , updates p : Clstr_Accessor ,

restores Rg :CC_Reg ) ;

Oper Is_Stand_Maximal_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,

restores Rg : CC_Reg ) : Boolean ;
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Figure (7.7) Registering an equality predicate a + b = 8

Figure (7.8) RESOLVE code using Make_Congruent operation

Listing (16) Registry searching operations

The search for a precursor tree in the registry starts at the root, where the right class and

cluster are located first before moving to the next level. The precursor tree in Figure (7.9) has a ≤ at

the root. Therefore, a variety designated by ≤ is retrieved, and one class after another is searched.

To advance between classes within a variety, Advance_CC_Accr_for operation is normally used

within a loop. The loop continues until we find the right cluster or the classes are exhausted in a

variety. A boolean operation Is_Vrty_Maximal_for returns true when classes in the variety are

exhausted and can be used as a loop condition.
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Figure (7.9) Searching a precursor tree in the registry

Clusters inside a class are searched to match the precursor tree root and root branches.

The root on the precursor tree in Figure (7.9) needs to match a cluster with a root label ≤, and

its branches should have classes with trees having a product operator as a root. Therefore, a stand

for ≤ in the first class of ≤ variety is searched starting with the first cluster. If the cluster does not

match what we are looking for, the next one is checked. Moving from one cluster to another within

a stand is facilitated by operation Advance_Clstr_Accr_for. To check if the clusters in the stand

are exhausted, a boolean operation Is_Stand_Maximal_for is used.

7.7 Summary

This chapter has motivated the need for a congruence class registry and summarized the

concept that specifies its behavior informally. The formal specification of the concept in detail is

provided in Chapter 9. The next chapter describes mathematical developments used in the formal

specification of the registry.
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Chapter 8

Reusable Registry Mathematics

This chapter contains the mathematical definitions that underlie the formal specification of

the congruence class registry in the next Chapter 9. The mathematics we introduce are intended to

be abstract, simple, and general to achieve the comprehensibility and reusability in the specifications

where they are used. Specific properties for each definition are stated in Appendix B.

This chapter is meant to be a reusable mathematical unit that can be used in any specifica-

tion. The motivation and purpose of many definitions will likely be obvious only after reading the

next chapter where they are used. So a co-reading of these two chapters is unavoidable.

8.1 Partition

The design of our congruence class registry is based on the fact that the congruence classes

are partitions. The classes are independent and do not overlap. So in this section, we define

partitions, congruence partitions, complete congruence partitions, and sub-partitions.

8.1.1 Refines Relationship

The following definition is used in defining sub-partition in Section 8.1.5. The refines rela-

tionship holds between two sets of sets in which all elements in one set are found in the other other

set.

A set K refines L when a union of elements A in K is equal to a union of elements C in L, and
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for any A and C, either A and C are independent, or A is contained in C.

Def .(K∶ ℘(℘(S∶ Set))) Refines (L∶ ℘(℘(S)))∶ B = (⋃
A∶K

A =⋃
C∶L

C

and ∀A∶ K,∀C∶ L,A ∩ C = ∅ or A ⊆ C);

8.1.2 Set Partition

A partition is a set of sets where each set in the partition is independent and does not overlap

others. The predicate Is_Partition_of is a Boolean operator that specifies P as a partition of S

if a union of all cells C in P equals S, and for any arbitrary set A and B in P, they are either disjoint

or equal. This predicate is useful in defining a congruence partition in the following section.

Def ∶ Is_Partition_of(S ∶Set,P ∶ ℘(℘(S)) ∼{{∅}}) ∶ B = (⋃
C∶P

C = S and

∀A,B ∶ P, A ∩ B = ∅ or A = B)

8.1.3 Congruence Partition

A congruence partition contains independent congruence classes. The registry in this work

contains congruence classes, which are collections of trees—trees that denote clauses of atomic

sequents. So a congruence partition of a collection of trees with more specific properties is defined

next.

The predicate Is_Congruence_Partition is a Boolean operator defined for the partition P

defined as a finite set of trees. In this case, P is a congruence partition if, first of all, it is a partition,

and secondly, if any tree exists in a partition, then there is a class in the partition that contains it.

This definition becomes helpful in defining a complete congruence partition in the following section.

Def ∶ Is_Congruence_Partition(P ∶ ℘fin(℘(EStF_Tr(Γ ∶ Set)))) ∶ B = (

Is_Partition_of(⋃
C∶P

C,P) and ∀α ∶ Str(P),∀F ∶ Γ, if Jn[Ag(L○,{Λ})(⟨[[[α]]]⟩),{F}]∩⋃
C∶P

C ≠ ∅,

then ∃D ∶ P ∋ Jn[Ag(L○,{Λ})(⟨[[[α]]]⟩),{F}] ⊆ D);
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8.1.4 Complete Congruence Partition

A complete congruence partition defines a property for trees in the registry where if a class

for the root is in a congruence partition, so are classes for its root branches. Classes for trees in the

registry are built bottom-up, and the completeness property ensures the lower-level classes in the

tree are congruence partitions before the level next up.

The predicate Is_Cplt_Congr_Prttn specifies a partition P as a complete congruence

partition if, first of all, P is a congruence partition, and secondly, for any tree created with a node

and branches among them T, if the resulting tree is in the partition, then all branches are in the

partition, including T.

This predicate is used in the registry constraints specification to ensure that the congruence

classes defined locally as an abbreviation in Section 9.4.1 have the completeness property.

Def ∶ Is_Cplt_Cngr_Prttn(P∶ ℘(℘(EStrF_Tr(Γ∶ Set)))) ∶ B = (

Is_Congruence_Partition(P) and ∀β, γ ∶ Str(EStrF_Tr(Γ)),∀G∶ Γ,T∶ EStrF_Tr,

if Jn(β ○ ⟨T⟩ ○ γ,G) ∈ ⋃
C∶ P

C, then T ∈⋃
C∶P

C);

8.1.5 Sub-partition

The registry contains congruence classes kept in levels defined in Section 8.2. The levels

have the property that they refine each other. Refinement is defined in Section 8.6 and used here to

define sub-partition.

Generally, a sub-partition of a partition defines a partition for a refinement in sets of sets.

The predicate Is_Subpartition_of is an infix operator, which specifies a set K as a sub-partition

of set L if K and L are both partitions, and K refines L.

This predicate is used in the specification of constraints presented in Section 9.5, and specify

that the lower levels in the registry are always a sub-partition of higher levels.

Def ∶ (K∶ ℘(℘(S ∶ Set)))Is_Subpartition_of(L∶ ℘(℘(S)))∶ B = (

Is_Partition_of(⋃
A∶K

A,K) and Is_Partition_of(⋃
A∶K

A,L) and K Refines L);
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8.2 Congruence Clusters, Stands, and Varieties

The definitions here formally describe the formation of clusters, stands and varieties, which

are useful in specifying operations involving those notions in the registry.

8.2.1 Cluster Formation

Clusters in the registry are at the lowest level in the organization and refine stands. A

cluster is created from a root node and trees on the root branches. Therefore, given a set of trees,

we can formulate a collection of all possible clusters from root nodes and root branches. The

operator Cluster_from returns this collection of clusters from a collection of trees. This operator is

useful in specifying registry operations Register_Cluster_Lbld, Is_Already_Reg_Clstr, and

Get_Accr_for presented in Section 9.6. The Cluster_from operator is also used in defining

Prpr_Cluster in the next section.

Def ∶ Cluster_from(R∶ ℘(℘(EStF_Tr(Γ∶ Set))), α∶ Str(R),F∶ Γ)∶ ℘(EStF_Tr(Γ)) = (

Jn[Ag(L○,{Λ})(⟨[[[α]]]⟩),{F}]);

8.2.2 Proper Cluster

The Cluster_from operator returns a collection of all possible clusters from the trees in the

registry. This collection may contain clusters that do not belong in the registry. On the contrary, a

proper cluster must be in the registry.

The definition of a Prpr_Cluster is more restrictive compared to Cluster_from. It in-

cludes a condition that all clusters P created using Cluster_from must be in the registry R. This

operator is used in the specification of registry concept constraints presented in Section 9.5.

Def ∶ Prpr_Cluster(R∶ ℘(℘(EStrF_Tr(Γ∶ Set)))∶ ℘(℘(EStrF_Tr(Γ))) = {

P∶ ℘(EStrF_Tr(Γ)) ∣ ∃ α∶ Str(R),∃ F∶ Rt_Lab[⋃
C∶R

C] ∋ Cluster_from(R, α,F)= P

and P ∩ ⋃
C∶R

C ≠ ∅};
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8.2.3 Stand Formation

Stands refine congruence classes, and they are formed by a collection of clusters of trees

with the same root label. A Stand_from operator is defined to return a set of all clusters having

the same root node label F from a provided set of trees. The operator Stand_from is used in the

next definition.

Def . Stand_from(C∶ ℘(EStrF_Tr(Γ∶ Set)),F ∶ Γ)∶ ℘(C) = {T∶ C ∣ Rt_Lab(T) = F};

The operator Stand_for returns a nonempty set of stands. Each stand is described by the

Stand_from operator applied at a set level on R and a set of root node labels on each C in R. This

operator is also used in the specification of registry concept constraints presented in Section 9.5.

Def . Stand_for(R∶ ℘(℘(EStrF_Tr(Γ ∶Set)))) ∶ ℘(℘(EStrF_Tr))) = (

Stand_from[R,⋃
C∶R

Rt_Lab[C]] ∼ {{∅}}]);

8.2.4 Variety Formation

At the top most level in the registry are the verieties refined by congruence classes. A

variety is formed by a collection of classes with trees having the same root label. The Variety_from

operator is defined to form a collection of classes with a tree T having a root node label F. The

operator Variety_from is used in defining Variety_for next.

Def . Variety_from(D∶ ℘(EStF_Tr(Γ∶ Set)),F∶ Γ) ∶ ℘(D) = {T∶ D ∣ Rt_Lab(T) = F};

The operator Variety_for returns a set of all varieties from a collection of trees D for each

root label available in D. The collection is defined using Variety_from operator applied at a set

level on a set of trees and root node labels in D. This operation is also used in the specification of

registry concept constraints presented in Section 9.5.

Def . Variety_for(D∶ ℘(EStF_Tr(Γ∶ Set)))∶ ℘(D) = (Variety_from[{D},Rt_Lab(D)]);
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8.3 Index Sets

The classes and clusters in the congruence class registry will be mapped from specific desig-

nators. While classes and clusters are designated differently, they are refinements of each other and

their designators map to the same set of trees. At an abstract level, these designators are indices in

a mapping function. The next two definitions Idx_Rfln and Mnml_Idx_Rfln describe the relation

between the two index sets.

Stands in the registry are designated with a pair containing a root label and a class. Each

pair maps to stand. Similarly, clusters are designated by a cluster designator, and each designator

maps to a cluster. Because every stand contains a list of clusters, we can create a new mapping

between each stand designator and a set of cluster designators it contains. This new mapping is

defined by the operator Idx_Rfln, which is used in the next definition Mnml_Idx_Rfln.

Def . Idx_Rfln(ER∶ (I∶ Set) → ℘(S∶ Set),E∶ (J∶ Set) → ℘(⋃
i∶ I

ER(i)))∶ J→ ℘(I) =

λj∶ J.{i∶ I ∣ ER(i) ∩ E(j) ≠ ∅};

The operator Mnml_Idx_Rfln is used in specifying abbreviational definitions in the registry

to describe the mapping from designators in cases where merging happens and more than one

designator points to the same thing in the registry. This definition introduces ordering in those

designators.

Compared to the Idx_Rfln operator defined above, Mnml_Idx_Rfln introduces the notion

of well-ordering on the index sets the operator Idx_Rfln is used to define. This definition is used

in specifying abbreviational operator Mnml_VCC_Dsntr presented in Section 9.4.6.

Def . Mnml_Idx_Rfln(ER∶ (I∶ Set) → ℘(S∶ Set),E ∶(J ∶Set) → ℘(⋃
i∶I

ER(i)),

⪯ ∶ Wl_Ordng)∶ J→ ℘(I) = λj ∶ J.{i∶ Idx_Rfln(ER,E)(j) ∣ ∀h∶ Idx_Rfln(ER,E)(j),

if ER(i) = ER(h), then i ⪯ h};
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8.4 Merging in the Registry

The definitions in this section are provided to specify an operation Make_Congruent in

Section 9.6.2. The operation makes two classes known to be equal in the registry congruent, affecting

mapping functions. The definitions here describe how the classes relate to each other after merging

and how functions are updated.

The operation Mrg_Val_at explains the behavior of mapping functions after two sets

mapped from different domains are merged to form a new set. This operation finds its use in

specifying Make_Congruent in Section 9.6.2, which merges two classes to a single class.

The operator takes an old mapping function that maps the two indices to different sets and

returns a new mapping function with both indices mapping to the union of the two sets.

Def . Mrg_Val_at(c,d∶ (D∶ Set),F∶ D→ ℘(S∶ Set)) ∶ D→ ℘(S) =

λa∶ D.
⎛
⎜⎜
⎝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(c) ∪ F(d) if F(a) ∩ (F(c) ∪ F(d)) ≠ ∅

F(a) otherwise

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞
⎟⎟
⎠

The operation Mrg_Val_at identifies two mapping functions, an old mapping before two

sets merge and a new mapping after merge. The Subset function (⊑SF) is true when the set created

by the old function is the subset of the set created by the new function. The subset function is also

used in the specification of Make_Congruent in Section 9.6.2.

Def .(F∶ (D∶ Set) → ℘(S∶ Set)) ⊑SF (G∶ D→ ℘(S)) ∶ B = (∀d∶ D,F(d) ⊆ G(d));

In the registry, merging two classes may cause a cascade of other classes collapsing as other

classes become congruent. The behavior of the mapping function as the registry goes through this

cascade of class merges is defined by the operator CCD_Rpr_Fnal.

This operator uses Ptrn_Indcd_by and Clr_Ext to describe repaired function F as the

classes are merged. Definitions Prtn_Indcd_by and Clr_Ext are provided in Section 8.6.

Def . CCD_Rpr_Fnal(F∶ (D∶ Set) → ℘(℘(EStrF_Tr(Γ∶ Set))) ∶ D→ ℘(℘(EStF_Tr(Γ))) =

λd∶ D.(Prtn_Indcd_by(Clr_Ext(F));
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We can define more properties for the two functions before and after merging classes in the

registry using the predicate SubDsgnts. In this case, the first mapping function (E) sub-designates

the second mapping function (F) if the non-empty set created by the first function is a subset

of the non-empty set created by the second function. This predicate is also helpful in specifying

Make_Congruent operation in Section 9.6.2.

Def . (E∶ (I∶ Set) → ℘(℘(S∶ Set ∼ ∅)) SubDsgnts (F∶ I→ ℘(℘(S∶ Set ∼ ∅)) ∶ B =

(∀i∶ I,E(i) ⊆ F(i));

8.5 Factorization

This section contains definitions that are used in specifying consistency in tagging. Every

class and cluster will be tagged with extra information to aid in searching the registry. The client

relates clusters and classes to tags. While in the registry, designators are either mapped to tags with

one function, and mapped to to classes and clusters in other mapping. We provide two definitions

that describe a cross-mapping needed state consistency in tagging from the two parallel mapping

functions with the same domain. The resulting function creates a mapping between their ranges.

The predicate Is_L_Fctbl_for is a Boolean operator that defines two mapping functions,

G and H, with the same domain D as left factorable for any domain c and d only if the function G

maps c and d to the same range value, then H also maps c and d to the same range value.

Def . Is_L_Fctbl_for(G∶ (D∶ Set) → (R∶ Set),H∶ D→ (S∶ Set)∶ B = (

∀c,d∶ D, if G(c) = G(d), then H(c) = H(d));

The domain LLFn is defined as a set containing a pair of left factorable functions G and H

and used as a domain in an implicit definition of Left Factor (LFctr) provided below.

Def . LFFn∶ ℘(Fn ×Fn) = { G,H ∶ Fn ×Fn ∣ Is_L_Fctbl_for(G,H)}

Given that G and H are left fuctorable functions, we can provide an implicit definition of

a left factor (LFctr) as a function that maps an image of G to an image of H where for any d in
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the domain of G, the value a function LFctr maps to, given G(d) is equal to the value a function H

maps d. This function and the predicate Is_L_Fctbl_for are used in the specification of registry

concept constraints presented in Section 9.5.

Implicit Def . LFctr(( G,H )∶ LFFn)∶ Im(G) → Im(H) is

∀d∶ Dom(G),LFctr( G,H )(G(d)) = H(d);

8.6 Auxiliary Definitions

The definitions in this section do not appear directly in the congruence class registry speci-

fications but are used in defining congruence class repair functional in Section 8.4.

8.6.0.1 Connected Via

The operator Cnctd_via defines a set of all D’s such that there exists a string α such that

any two Q’s say E and F, which happens to be consecutive and forms a string ⟨E⟩ ○ ⟨F⟩. If ⟨E⟩ ○ ⟨F⟩

is a substring of ⟨C⟩ ○ α ○ ⟨D⟩, then their intersection should be nonempty if C and D are connected.

This definition is used in Prtn_Indcd_by defined next.

Def . Cnctd_via(Q∶ ℘(℘(S∶ Set)),C∶ Q)∶ ℘(Q) = {

D∶ Q ∣ ∃α∶ Str(Q) ∋ ∀E,F∶ Q, if⟨E⟩ ○ ⟨F⟩ Is_Substring ⟨C⟩ ○ α ○ ⟨D⟩, then EIF ≠ ∅};

8.6.0.2 Partition Induced By

From a function F that maps D to S, Prtn_Indcd_by returns an updated F, where for any

domain d in set D, a map is created to everything connected to F(d) via a set defined by applying F

to every element in D (F[D]).

Def . Prtn_Indcd_by(F∶ (D∶ Set) → ℘(S∶ Set))∶ D→ ℘(S) =

λd∶ D.
⎛
⎝ ⋃
A∶Cnctd_via(F[D],F(d))

A
⎞
⎠
;
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8.6.0.3 Induced Expansion

The operator Indcd_Exp of a mapping function F given R returns an updated function F,

where for any domain d, it will be mapped to a union of a set defined by F(d) and a collection of all

C’s in R such that each C overlaps F(d). This definition is used in Clr_Ext defined next.

Def . Indcd_Exp(F∶ (D∶ Set→ ℘(S ∶ Set),R∶ ℘(S))∶ D→ ℘(S) =

λ d∶ D.
⎛
⎝
F(d) ∪ ⋃

C∶R∋C∩F(d)≠∅
C
⎞
⎠
;

8.6.0.4 Cluster Extension

This definition explicitly describes a mapping function F used in the Indcd_Exp operator as

a mapping from a set D to a set of set of trees. The operator Clr_Ext returns an updated F described

using the Indcd_Exp operator, where F and proper clusters in F are used. In this definition, we are

looking for proper clusters that overlap with what F maps to given the domain set D.

Def . Clr_Ext(F∶ (D∶ Set) → ℘(℘(EStrF_Tr(Γ ∶Set))))∶ D→ ℘(℘(EStrF_Tr(Γ))) =

Indcd_Exp(F, Prpr_Cluster(F)));

8.7 Summary

The mathematical development presented in this chapter should be considered strictly a first

presentation of the ideas involved. The focus has been on formalizing the Registry specification, and

there is room for improvements to the development. An Appendix B contains the definitions and

essential results in the form of theorems and corollaries. Those results underpin the adequacy and

consistency of the specifications in the next chapter.
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Chapter 9

Registry Specification

This chapter presents a formal specification of the congruence class registry. The entire

concept Congruence_Registry_Temp is given in Appendix C. This chapter presents the concept in

parts along with a detailed description of each part.

It is important to keep in mind that the formal specification (concept) is the view that a

client sees, and it reveals nothing about any realization, opening the possibility for an implementer

to choose details that will lead to efficiency.

9.1 Concept Parameters

The Congruence_Registry_Temp includes several concept parameters shown in Listing 17.

The tree node label (Tr_Nd_Lab), tree category tag (Tr_Cgry_Tag), and tree category attribute

(Tr_Cgry_Attbt) are types specified by the client during the instantiation of the concept using a

facility. For example, if an Integer is used as the tree node label type, variables, constants, and

operators represented as strings in the sequent VCs must be converted into integers. The client

also provides a default attribute (Dflt_Attbt) used in the registration of clusters. The following

parameters are three integer upper bounds for the congruence class designator (C_Cls_D_Cap),

cluster designator (Clstr_D_Cap), and an argument list (Arg_Lst_Cap). The client is also expected

to provide a mapping between the classes and the tags to aid searching in the registry. This mapping

is specified by a category tag function (Cat_Tag_Fn) supplied as a parameter. All parameters are

supplied before the registry is created. Therefore, they should be doable in external terms without
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the client knowing how things are represented inside the registry.

Concept Congruence_Registry_Temp (

type Tr_Nd_Lab , Tr_Cgry_Tag , Tr_Cgry_Attbt ;

eval C_Cls_D_Cap , Clstr_D_Cap , Arg_Lst_Cap : Integer ;

eval Dflt_Attbt : Tr_Cgry_Attbt ;

Def Is_Consistent_Tagging (

Cat_Tag_Fn : ℘fin (℘(EStF_Tr (Tr_Nd_Lab ) ) )→Tr_Cgry_Tag ) :B) ;

uses Relativization_Ext for General_Tree_Theory ;

requires 0 < C_Cls_D_Cap and 0 < Clstr_D_Cap and 0 < Arg_Lst_Cap

and 0 < Rt_Lab_Cap which_entails C_Cls_D_Cap ,

Clstr_D_Cap , Arg_Lst_Cap , Rt_Lab_Cap :N ;

Def . C_Cls_Dsntr : ℘fin(N) =N [ 0 . . . C_Cls_D_Cap ] ;

Def . Clstr_Dsntr : ℘fin(N) =N [ 0 . . . Clstr_D_Cap ] ;

⋮

end Congruence_Registry_Temp ;

Listing (17) Congruence class registry concept parameters

The mathematics used in the specification of this registry are included in the uses clause,

and the bounds for the integer values supplied by the client must be non-negative.

As explained in Chapter 7, each congruence class and cluster in the registry is represented

by a designator. The two designators are defined in the concept as a finite set of natural numbers

(N) in an interval starting from 0 to C_Cls_D_Cap for C_Cls_Dsntr, and from 0 to Clstr_D_Cap

for Clstr_Dsntr, as shown in Listing 17. The square brackets [...] is a set operator that applies in

this case N to every element in the set within the bracket.

Concept Congruence_Registry_Temp (type Tr_Nd_Lab , Tr_Cgry_Tag ; . . . ) ;

⋮

Type_Family C_Cls_Accessor ⊆ C_Cls_Dsntr ;

exemplar c ;

initialization

ensures c = 0 ;

Oper Replica (restores c : C_Cls_Accessor ) : C_Cls_Accessor ;

ensures Replica = c ;

Oper Are_Equal (restores c , d : C_Cls_Accessor ) : Boolean ;
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ensures Are_Equal = (c = d) ;

Type_Family Clstr_Accessor ⊆ Clstr_Dsntr ;

exemplar p ;

initialization

ensures p = 0 ;

Oper Clstr_Reset (replaces p : Clstr_Accessor ) ;

ensures p = 0 ;

⋮

end Congruence_Registry_Temp ;

Listing (18) Congruence class registry types

9.2 Congruence Class and Cluster Accessors

The congruence class accessor (C_Cls_Accessor) and cluster accessor (Clstr_Accessor)

are two accessor types exported by the registry. Each accessor is specified in Listing 18 as a type

family and mathematically modeled as a subset of designators.

The accessors are specified as natural numbers. However, the client cannot perform normal

arithmetic operations on them. Only three operations specified in the concept are allowed to operate

on these accessors. This design is part of the information hiding limiting the client’s knowledge of

how accessors are represented inside. Only the type is exported, and to operate on accessors, only

three operations specified are useful. The first operation Replica returns a copy of the supplied

accessor. The second operation Are_Equal, returns true when two accessors are equal. Finally,

operation Clstr_Reset restart a cluster accessor to its initial value.

9.3 Congruence Class Registry Model

The central type exported by the concept is the Congruence Class Registry (CC_Reg), which

is mathematically modeled as a Cartesian product of nine fields shown in Listing (19). The first

member of the tuple associates congruence class designator with a class it designates. The next one

(Top_CC_Dsntr) keeps track of the top designator assigned so far, so that a new designator can be

given to the next new class.
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Concept Congruence_Registry_Temp (type Tr_Nd_Lab , Tr_Cgry_Tag ; . . . ) ;

⋮

Type_Family CC_Reg ⊆

Cart_Prod

CC_Designated : C_Cls_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) ) ,

Top_CC_Dsntr : C_Cls_Dsntr ,

Cr_Designated : Clstr_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) )

Top_Cr_Dsntr : Clstr_Dsntr ,

Clstr_Arg_Lst : Str (C_Cls_Dsntr ) ,

Ctr_Tag : Clstr_DsntrÐ→Tr_Cat_Tag ,

S_Tag : Tr_Nd_Lab×C_Cls_DsntrÐ→Tr_Cat_Tag ,

V_Tag : Tr_Nd_LabÐ→Tr_Cat_Tag ,

CC_Attbt : C_Cls_DsntrÐ→Tr_Cgry_Attbt

end ;

exemplar Rg ;

⋮

end Congruence_Registry_Temp ;

Listing (19) Congruence class registry mathematical model

Cluster designators are associated with clusters in the next mapping Cr_Designated (Clus-

ter Designated). The top cluster designator used so far is tracked in (Top_Cr_Dsntr) for the same

reason above as for (Top_CC_Dsntr).

The cluster argument list (Clstr_Arg_Lst) is specified as a string of congruence class

designators. The cluster argument list is mostly used in building up clusters. It keeps designators

representing the classes for cluster arguments. The formation of clusters is a bottom-up process

where once classes for subtrees are known, they are added to the argument list and used in creating

a cluster on an upper level. The cluster argument list is also used in a top-down searching process

where searching the next level down from a node will use a list of congruence classes it contains.

The cluster tagging function (Ctr_Tag) maps a cluster designator to a tree category tag.

Similarly, the stand tagging function (S_Tag) and variety tag function (V_Tag) map their respective

designators to tree category tags. The last member is a function CC_Attbt (congruence class

attribute), which maps the congruence class designators to tree category attributes defined by the
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client.

9.4 Abbreviational Definitions

Abbreviational definitions are local to the concept and simplify the specification of con-

straints and operations in the concept. In this section, each abbreviational definition is described in

the order they are presented in Listing (20).

9.4.1 Congruence Class

An operator C_Class returns a set of congruence classes in the congruence class registry

Rg. It is defined in Listing (20) as a finite set of set of trees, equal to a set obtained by applying the

congruence class designated function (CC_Designated) on each active congruence class designator

from 1 to Top_CC_Dsntr.

9.4.2 Registry Label

An operator Rgry_Lab returns a set of root node labels from a collection of all trees in the

registry Rg. It is defined in Listing (20) as a finite set of tree node labels, equal to a set obtained by

applying a root label function (Rt_Lab) on each C in a union of all congruence classes in the registry

(Rg).

9.4.3 Variety Class

An operator Variety_Cls returns a set of congruence classes in the registry with trees hav-

ing a root node label equal to x. It is defined in Listing (20) as a set of trees (EStF_Tr(Tr_Nd_Lab)),

equal to a set of T’s such that a root node label returned by a function Rt_Lab on T equals x.

9.4.4 Stand Designator

An operator Stand_Dsntr returns a set of stand designators in the congruence class reg-

istry Rg. It is defined in Listing (20) as a finite set of pairs formed by a cross between a set

of root labels in the registry (Rgry_Lab(Rg)) and congruence class designators in the active set

N[1..Rg.Top_CC_Dsntr].
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9.4.5 Stand Class

An operator Stand_Cls returns a congruence class in the registry with a stand designated

by a root node label x and a class accessor c. It is defined in Listing (20) as a set of trees in the

intersection of a variety class containing trees with root node label x and those in a class designated

by c.

9.4.6 Minimal Varietal Congruence Class Designator

An operator Mnml_VCC_Dsntr returns a set of minimal congruence class designators for

a root node label x. It is defined in Listing (20) as a finite set of class designators obtained by

a minimal index reflection operator (Mnml_Idx_Rfln) given a mapping function CC_Designated,

congruence classes for each root label v, and an ordering function ≤. In this case, Mnml_Idx_Rfln

returns a set of congruence class designators for the provided root label x.

9.4.7 Minimal Congruence Class Designator

An operator Mnml_CC_Dsntr return a set of all minimal congruence class designators in

the registry for every root node label available in the registry. It is defined in Listing (20) as a finite

set of class designators obtained by Mnml_VCC_Dsntr operator for the registry Rg, and every root

node label x in the set of root labels Rgry_Lab(Rg).

9.4.8 Minimal Stand Cluster Designator

An operator Mnml_SClstr_Dsntr returns a set of minimal stand cluster designators for a

root node label x. It is defined in Listing (20) as a finite set of cluster designators obtained by a

minimal index reflection operator given a mapping function Cr_Designated, stand classes for each

stand designator v,a , and an ordering function ≤. In this case, Mnml_Idx_Rfln returns a set of

cluster designators for the provided stand designator x,c .

Concept Congruence_Registry_Temp (type Tr_Nd_Lab , Tr_Cgry_Tag ; . . . ) ;

⋮

Abbnl Def . C_Class (Rg : CC_Reg ) : ℘fin (℘(EstF_Tr (Tr_Nd_Lab ) ) ) = (

Rg . CC_Designated [N [ 1 . . Rg . Top_CC_Dsntr ] ] ) ;

Abbnl Def . Rgry_Lab (Rg : CC_Reg ) : ℘fin (Tr_Nd_Lab ) = (
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Rt_Lab [⋃C∶C_Class(Rg) C ] ) ;

Abbnl Def . Variety_Cls (Rg :CC_Reg , x : Rgry_Lab (Rg) ) :

℘(EStF_Tr (Tr_Nd_Lab ) ) = {T : ⋃C∶C_Class(Rg) C ∣ Rt_Lab (T) = x}

Abbnl Def . Stand_Dsntr (Rg : CC_Reg ) : ℘fin (Tr_Nd_Lab × C_Cls_Dsntr ) = (

Rgry_Lab (Rg) × N [ 1 . . Rg . Top_CC_Dsntr ] ) ;

Abbnl Def . Stand_Cls (Rg :CC_Reg , x ,c : Stand_Dsntr (Rg) ) :

℘(EStF_Tr (Tr_Nd_Lab ) ) =

(Variety_Cls (Rg , x) ∩ Rg . CC_Designated (c) ) ;

Abbnl Def . Mnml_VCC_Dsntr (Rg : CC_Reg , x : Rgry_Lab (Rg) ) :

℘
fin (C_Cls_Dsntr ) = Mnml_Idx_Rfln (

Rg .CC_Designated , λ v : Rgry_Lab (Rg) . Variety_Cls (Rg , v) , ≤) (x) ;

Abbnl Def . Mnml_CC_Dsntr (Rg : CC_Reg ) : ℘fin (C_Cls_Dsntr ) =

⋃x∶Rgry_Lab(Rg) Mnml_VCC_Dsntr (Rg , x) ;

Abbnl Def . Mnml_SClstr_Dsntr (Rg : CC_Reg , x : Rgry_Lab (Rg) ,

c : Mnml_VCC_Dsntr (Rg , x) ) : ℘fin (Clstr_Dsntr ) =

Mnml_Idx_Rfln (Rg .Cr_Designated ,

λ v ,a : Stand_Dsntr (Rg) . Stand_Cls (Rg , λ v ,a ) , ≤) (λ x ,c ) ;

⋮

end Congruence_Registry_Temp ;

Listing (20) Local abbreviational definitions

9.5 Concept Constraints

Assertions in the constraints clause must be valid for every exported congruence class

registry. Constraints are specified to set boundaries on the fields used in the CC_Reg model. The

first set of these assertions is provided in Listing (21). A complete concept containing all assertions

together is presented in Appendix C. The set in Listing (21) constrain the bounds for designators.

Type_Family CC_Reg ⊆

Cart_Prod

CC_Designated : C_Cls_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) ) ,

Top_CC_Dsntr : C_Cls_Dsntr ,

Cr_Designated : Clstr_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) )
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Top_Cr_Dsntr : Clstr_Dsntr ,

Clstr_Arg_Lst : Str (C_Cls_Dsntr ) ,

⋮

end ;

exemplar Rg ;

⋮

constraints 0 ≤ Rg . Top_CC_Dsntr and Rg . Top_CC_Dsntr ≤ C_Cls_D_Cap

and 0 ≤ Rg . Top_Cr_Dsntr and Rg . Top_Cr_Dsntr ≤ Clstr_D_Cap and

|Rg . Clstr_Arg_Lst | ≤ Arg_Lst_Cap and ( | | Rgry_Lab (Rg) | | ≤ Rt_Lab_Cap

which_entails | | Rgry_Lab (Rg) | | : N) and

Listing (21) Congruence class registry concept constraints part 1

The second set of constraints is provided in Listing (22). The four assertions in this group

are specified to guarantee consistency between functions and operators defined locally in the con-

cept to those defined in theories. For example, the first assertion in this group uses a defined

boolean operator Is_Cplt_Cngr_Prttn in the theory to guarantee that the congruence class re-

turned by a locally defined operator C_Class is a complete congruence partition. The predicate

Is_Cplt_Cngr_Prttn is described in Section 8.1.4.

Similarly, the second assertion guarantees applying cluster designated function on each active

cluster designator in the interval N[1..Rg.Top_Cr_Dsntr] forms a set of clusters that must be equal

to a set of proper clusters obtained through an operator Prpr_Cluster, which is explained in Section

8.2.2.

The which_entails clause follows additional properties of the operator Prpr_Cluster

defined in Appendix B to specify what the preceding assertions entail when they are true. The

statements state that the collection of congruence clusters is a sub-partition of stand classes, and

the collection of stand classes is a sub-partition of congruence classes and variety classes in the

registry. The predicate Is_Subpartition_of is used in specifying these assertions and is described

in Section 8.1.5.

Type_Family CC_Reg ⊆

Cart_Prod

. . .

Cr_Designated : Clstr_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) )
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Top_Cr_Dsntr : Clstr_Dsntr ,

. . .

end ;

exemplar Rg ;

⋮

( Is_Cplt_Cngr_Prttn (C_Class (Rg) ) and

Rg . Cr_Designated [N [ 1 . . Rg . Top_Cr_Dsntr ] ] = Prpr_Cluster (C_Class (Rg) )

and Stand_Cls [ {Rg} , Stand_Dsntr (Rg) ] = Stand_for (C_Class (Rg) )

and Variety_Cls [ {Rg} , Rgry_Lab (Rg) ] = Variety_for (⋃C∶C_Class(Rg) C)

which_entails Rg . Cr_Designated [N [ 1 . . Rg . Top_Cr_Dsntr ] ]

Is_Subpartition_of Stand_Cls [ {Rg} , Stand_Dsntr (Rg) ] and

Stand_Cls [ {Rg} , Stand_Dsntr (Rg) ] Is_Subpartition_of C_Class (Rg) and

Stand_Cls [ {Rg} , Stand_Dsntr (Rg) ] Is_Subpartition_of

Vrty_Cls_for [⋃C∶C_Class(Rg) C , Rgry_Lab (Rg) ] ) and

Listing (22) Congruence class registry concept constraints part 2

The final set of constraints are in Listing (23). The first assertion in this set describes a clus-

ter argument list (Clstr_Arg_Lst), a string of minimal congruence class designators. The second

assertion guarantees the two registry functions Cr_Designated, and Ctr_Tag are left factorable

functions. Which entails, first, we can create a left factorable function (LFFn) as a pair of the two

functions, Rg.Cr_Designated and Rg.Ctr_Tag, and second, a cross-map function between clusters

and cluster tags returned by LFctr( Rg.Cr_Designated,Rg.Ctr_Tag ) has a consistent tagging.

That is, the tagging information for the cluster is consistent with the actual content of the cluster.

Similar to how the cluster designated function and cluster tag function are constrained

above, the two sets of constraints that follows achieve the same guarantees for varieties and stands.

Type_Family CC_Reg ⊆

Cart_Prod

. . .

Cr_Designated : Clstr_DsntrÐ→℘(EStF_Tr (Tr_Nd_Lab ) )

. . .

Clstr_Arg_Lst : Str (C_Cls_Dsntr ) ,

Ctr_Tag : Clstr_DsntrÐ→Tr_Cat_Tag ,

121



S_Tag : Tr_Nd_Lab×C_Cls_DsntrÐ→Tr_Cat_Tag ,

V_Tag : Tr_Nd_LabÐ→Tr_Cat_Tag ,

CC_Attbt : C_Cls_DsntrÐ→Tr_Cgry_Attbt

end ;

exemplar Rg ;

⋮

Rg . Clstr_Arg_Lst : Str (Mnml_CC_Dsntr (Rg) ) and

(Is_L_Fctbl_for (Rg .Cr_Designated , Rg . Ctr_Tag )

which_entails

Rg .Cr_Designated , Rg . Ctr_Tag : LFFn and

Is_Consistent_Tagging (LFctr ( Rg .Cr_Designated , Rg . Ctr_Tag ) ) and

(Is_L_Fctbl_for (λ x : Rgry_Lab (Rg) . ( Variety_Cls (Rg ,x) ) , Rg .V_Tag )

which_entails

λ x : Rgry_Lab (Rg) . ( Variety_Cls (Rg , x) ) , Rg .V_Tag : LFFn and

Is_Consistent_Tagging (

LFctr ( λ x : Rgry_Lab (Rg) . ( Variety_Cls (Rg , x) ) , Rg .V_Tag

(Is_L_Fctbl_for (λ N : Stand_Dsntr (Rg) . ( Stand_Cls (Rg , N) ) , Rg .S_Tag )

which_entails

λ N : Stand_Dsntr (Rg) . ( Stand_Cls (Rg , N) ) , Rg .S_Tag : LFFn and

Is_Consistent_Tagging (

LFctr ( λ N : Stand_Dsntr (Rg) . ( Stand_Cls (Rg , N) ) , Rg .S_Tag ) )

⋮

Listing (23) Congruence class registry concept constraints part 3

9.6 Concept Primary Operations

The following operations are primary to the concept and specified to be orthogonal and

efficiently realizable.

9.6.1 Register Cluster Operation

A cluster is registered using an operation Register_Cluster_Lbld specified in Listing

(24). The operation has four parameters, a tree node label (Lab), a congruence class accessor (c),
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tree category attribute (Tr_Cgry_Attbt) and a registry (Rg).

The operation Register_Cluster_Lbld has four preconditions specified in the requires

clause. The first one restricts its use to the registration of a new cluster only, and the next three

guarantee a room in the registry for a new cluster and class.

The ensures clause has several assertions that can be grouped into sets of relating assertions.

The first set is for congruence classes, and the first assertion guarantees the Top_CC_Dsntr is up-

dated. The next assertion ensures the incoming value in c is now replaced with a new Top_CC_Dsntr.

Because the created cluster would be the first one in the congruence class accessed by c, the following

assertion guarantees the created congruence class (CC_Designated(c)) is equal to the newly created

cluster. It is important that the added congruence class not to affect any existing classes in the reg-

istry. This restriction is explicitly enforced by the next assertion using a restricted to symbol (↿) to

specify which part of the registry is updated by the operation. The user also provides an attribute

(Tr_Cgry_Attbt) for top-level classes identifying them as either coming from the antecedent or

succedent. Other registered classes are supplied with a default attribute.

A similar set of assertions above are used to specify changes in the registry for congruence

clusters, and once a new cluster is created, the last assertion ensures the congruence cluster argument

is left empty (Rg.Clstr_Arg_Lst = Λ) for the next cluster.

Oper Register_Cluster_Lbld ( preserves Lab : Tr_Nd_Lab ,

replaces c : C_Cls_Accessor , alters atb : Tr_Cgry_Attbt , updates

Rg : CC_Reg ) ;

requires Cluster_from (

C_Class (Rg) , Rg . CC_Designated [ [ Rg . Clstr_Arg_Lst ] ] , Lab ) ⋂

⋃C∶CClass(Rg) C = ∅ and

Rg . Top_CC_Dsntr + 1 ≤ C_Cls_D_Cap and

Rg . Top_Cr_Dsntr + 1 ≤ C_Clstr_D_Cap and

| | Rgry_Lab (Rg) | | + 1 ≤ Rt_Lab_Cap ;

ensures Rg . Top_CC_Dsntr = #Rg . Top_CC_Dsntr + 1 and

c = Rg . Top_CC_Dsntr and Rg . CC_Designated (c) = Cluster_from (

C_Class(#Rg) , #Rg . CC_Designated [ [#Rg . Clstr_Arg_Lst ] ] , Lab ) and

Rg . CC_Designated ↿ (C_Cls_Dsntr ∼ {c}) =

#Rg . CC_Designated ↿ (C_Cls_Dsntr ∼ {c}) and

Rg . CC_Attbt (c) = atb and
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Rg . CC_Attbt ↿ (C_Cls_Dsntr ∼ {c}) =

#Rg . CC_Attbt ↿ (C_Cls_Dsntr ∼ {c})

Rg . Top_Cr_Dsntr = #Rg . Top_Cr_Dsntr + 1 and

Rg . Cr_Designated (Rg . Top_Cr_Dsntr ) = Rg . CC_Designated (c) and

Rg . Cr_Designated ↿ N [ 1 . .#Rg . Top_Cr_Dsntr ] =

#Rg . Cr_Designated ↿ N [ 1 . .#Rg . Top_Cr_Dsntr ] and

Rg . Clstr_Arg_Lst = Λ

Listing (24) Specifications for Register Cluster Labeled operation

9.6.2 Making Classes Congruent and Checking

Two classes in the registry with trees known to be equal are merged into a single class,

and the new class contains trees from both classes. The operation Make_Congruent is called for

this purpose. This operation also works with Are_Congruent operation, which checks to see if two

classes in the registry are already congruent.

The operation Make_Congruent receives two accessors, c and d, and updates the registry

by merging the two designated classes to a single class if and only if the congruence classes contain

trees known to be equal.

The operation is specified in Listing (30) with a requires clause that needs c and d to be

minimal congruence class designators and designate different congruence classes. The operation

Are_Congruent also specified in Listing (30), is used to determine if the supplied accessors c and d

are congruent, a case where the Make_Congruent operation cannot be called.

The ensures clause in the Make_Congruent operation has six post-conditions to describe

the behavior of the Make_Congruent operation after it is called. The first two conditions are to

guarantee that by calling the operation, no changes happen to the registry’s top congruence class

designator (Top_CC_Dsntr), and top cluster designator (Top_Cr_Dsntr).

The next two assertions use an infix operator SubDsgnts described in Section 8.4 to specify

the state of a newly created class in relation to the two individual classes designated by c and d.

The Minimum Fixed Point (MFP) is applied after merging c and d using the function

Mrg_Val_at, and followed by successive approximation to the function CC_Designated as con-

gruence classes collapse following a merge of classes designated by c and d. The Make_Congruent
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operation does not change the cluster argument list, and this is stated in the last assertion.

Oper Make_Congruent ( restores c , d : C_Cls_Accessor , updates Rg : CC_Reg ) ;

requires c , d : Mnml_CC_Dsntr (Rg) and

Rg . CC_Designated (c) ≠ Rg . CC_Designated (d) ;

ensures Rg . Top_CC_Dsntr = #Rg . Top_CC_Dsntr and

Rg . Top_Cr_Dsntr = #Rg . Top_Cr_Dsntr and

#Rg . CC_Dsignated SubDsgnts Rg . CC_Designated and

#Rg . Cr_Dsignated SubDsgnts Rg . Cr_Designated and

Rg . CC_Designated = MFPwrt (

⊑SF , CCD_Rpr_Fnal (Mrg_Val_at (c , d , #Rg . CC_Designated ) ) )

and Rg . Clstr_Arg_Lst = #Rg . Clstr_Arg_Lst ;

Oper Are_Congruent ( restores c , d : C_Cls_Accessor ,

restores Rg : CC_Reg ) : Boolean ;

ensures Are_Congruent = ( c , d : Mnml_CC_Dsntr (Rg) and

Rg . CC_Designated (c) = Rg . CC_Designated (d) ) ;

Listing (25) Specifications for Make Congruent operation

9.6.3 Multi-Level Traversal and Search Operations

Searching the registry for a tree starts at the root, where a class and a matching cluster

must be found before progressing to the next level. The operations described in this section achieves

movement from one class to another within a variety, and from one cluster to another in a stand.

The first operation Advance_CC_Accr_for is used to get the next congruence class accessor

in the variety. The current accessor c is supplied by the user as a parameter, and after the operation

is called, the new accessor for the next congruence class is returned by replacing the value in c.

The Advance_CC_Accr_for operation is specified in Listing (26). The preconditions in

the requires clause needs the supplied tree node label x to be in the set of registry labels, and at

least one active congruence class designator after supplied accessor c for the operation to be called.

The tree node label x can be checked if it is in the set of registry label using an opera-

tion Is_Rgry_Lab. To check whether the active congruence class designators in the variety list

are exhausted, the operation Is_Vrty_Maximal_for is called first. This operation returns true

when the supplied congruence class accessor c is the last one in the variety list. The operations
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Is_Rgry_Lab and Is_Vrty_Maximal_for are also specified in Listing (26).

Once the operation Advance_CC_Accr_for is called, the minimum designator for the class

considered next in the variety is assigned to c, as stated in the the ensures clause. The minimum

designator is returned as many class designators will point to the same class when classes are merged

in the registry.

Oper Advance_CC_Accr_for ( restores x : Tr_Nd_Lab ,

updates c : C_Cls_Accessor , restores Rg : CC_Reg ) ;

requires x : Rgry_Lab (Rg) and Mnml_VCC_Dsntr (Rg , x) ⋂

N [c + 1 . . Rg . Top_CC_Dsntr ] ≠ ∅ which_entails

(Mnml_VCC_Dsntr (Rg , x) ⋂

N [c + 1 . . Rg . Top_CC_Dsntr ] ) : (℘(N) ∼ {∅});

ensures c = GLB (Mnml_VCC_Dsntr (Rg , x) ⋂

N [#c + 1 . . Rg . Top_CC_Dsntr ] ) ;

Oper Is_Vrty_Maximal_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores Rg : CC_Reg ) : Boolean ;

requires x : Rgry_Lab (Rg) ;

ensures Is_Vrty_Maximal_for = (Mnml_VCC_Dsntr (Rg , x) ⋂

N [#c + 1 . . Rg . Top_CC_Dsntr ] = ∅) ;

Oper Is_Rgry_Lab ( restores x : Tr_Nd_Lab ,

restores Rg : CC_Reg ) : Boolean ;

ensures Is_Rgry_Lab = (x : Rgry_Lab (Rg) ) ;

Oper Advance_Clstr_Accr_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , updates p : Clstr_Accessor ,

restores Rg : CC_Reg ) ;

requires x : Rgry_Lab (Rg) and c : Mnml_VCC_Dsntr (Rg , x) and

p : Mnml_SClstr_Dsntr (Rg , x , c) and

Mnml_SClstr_Dsntr (Rg , x , c) ⋂ N [p + 1 . . Rg . Top_Cr_Dsntr ] ≠ ∅

which_entails (Mnml_SClstr_Dsntr (Rg , x , c) ⋂

N [p + 1 . . Rg . Top_Cr_Dsntr ] ) : (℘(N) ∼ {∅});

ensures p = GLB (Mnml_SClstr_Dsntr (Rg , x , c) ⋂

N [#p + 1 . . Rg . Top_Cr_Dsntr ] ) ;

Oper Is_Stand_Maximal_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,
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restores Rg : CC_Reg ) : Boolean ;

ensures Is_Stand_Maximal_for = (x : Rgry_Lab (Rg) and

c : Mnml_VCC_Dsntr (Rg ,x) and Mnml_SClstr_Dsntr (Rg , x , c) ⋂

N [p + 1 . . Rg . Top_Cr_Dsntr ] = ∅) ;

Listing (26) Specifications for advance accessor operations

The second operation Advance_Clstr_Accr_for gets the next congruence cluster accessor

in a stand after a user supplied accessor p. The next cluster accessor is returned by replacing incoming

value in p at the end of the operation.

The operations Is_Rgry_Lab and Is_Stand_Maximal are useful in checking the precon-

ditions for this Advance_Clstr_Accr_for before it is called. Once the operation is called, the

minimum designator for the cluster considered next in the stand is assigned to p, as stated in the

the ensures clause.

9.6.4 Remaining Capacity Operations

The three operations in Listing (27) are possible for getting the remaining capacities in

the registry. The first operation Rmng_CC_Dsntr_Cap returns a count of unused congruence class

designators in the registry. The second operation Rmng_Clstr_Dsntr_Cap returns a count on

unused congruence cluster designators in the registry. Finally, the operation Rmng_Lab_Cap returns

the remaining node label capacity in the registry.

Oper Rmng_CC_Dsntr_Cap (restores Rg : CC_Reg ) : Integer ;

ensures Rmng_CC_Dsntr_Cap = (C_Cls_D_Cap − Rg . Top_CC_Dsntr ) ;

Oper Rmng_Clstr_Dsntr_Cap (restores Rg : CC_Reg ) : Integer ;

ensures Rmng_Clstr_Dsntr_Cap = (C_Clstr_D_Cap − Rg . Top_Cr_Dsntr ) ;

Oper Rmng_Lab_Cap (restores Rg : CC_Reg ) : Integer ;

ensures Rmng_Lab_Cap = (Rt_Lab_Cap − | | Rgry_Lab (Rg) | | ) ;

Listing (27) Specifications for remaining capacity operations
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9.6.5 Minimal Stand Cluster Designator

Clusters in a particular stand will be merged when classes are merged in the registry,

and when that happens, multiple designators end up pointing to the same cluster. The opera-

tion Is_Mnml_SClstr_Dsntr returns true when a supplied cluster accessor p is a minimum stand

cluster designator among those pointing the same cluster. Listing (28) formally specify the operation

Is_Mnml_SClstr_Dsntr .

Oper Is_Mnml_SClstr_Dsntr ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,

restores Rg : CC_Reg ) : Boolean ;

ensures Is_Mnml_SClstr_Dsntr = (x : Rgry_Lab (Rg) and

c : Mnml_VCC_Dsntr (Rg ,x) and p : Mnml_SClstr_Dsntr (Rg , x , c) ) ;

Listing (28) Specifications for Is Minimal Stand Cluster Designator operation

9.6.6 Registry Tag Operations

The client supplies extra information called tags to clusters, stands, and varieties, which

help aid in searching the registry. One example of tags a client can provide are fragments discussed

in Section 10.3. Once the tags are attached, the client can get them using the three operations

specified in Listing (29).

Oper Get_Ctr_Tag_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,

restores Rg : CC_Reg , replaces Tg : Tr_Cgry_Tag ) ;

requires x : Rgry_Lab (Rg) and c : Mnml_VCC_Dsntr (Rg , x) and

p : Mnml_SClstr_Dsntr (Rg , x , c) ;

ensures Tg = (Rg . Ctr_Tag (p) ) ;

Oper Get_Stand_Tag_for ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,

restores Rg : CC_Reg , replaces Tg : Tr_Cgry_Tag ) ;

requires x : Rgry_Lab (Rg) and c : Mnml_VCC_Dsntr (Rg , x) ;

ensures Tg = (Rg .S_Tag (x ,c) ) ;

Oper Get_Vrty_Tag_for ( restores x : Tr_Nd_Lab ,

restores Rg : CC_Reg , replaces Tg : Tr_Cgry_Tag ) ;
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requires x : Rgry_Lab (Rg) ;

ensures Tg = (Rg .V_Tag (x) ) ;

Listing (29) Specifications for registry tag operations

9.6.7 Argument List Operations

Registration of a cluster needs the respective arguments in the registry before the reg-

ister cluster operation is called. The operation Append_to_Arg_Lst in Listing (30) is used to

append congruence class accessors for arguments to the cluster argument list in the registry. Dur-

ing the registration process, arguments in the registry are removed one by one using an operation

Rmv_First_Arg_Dsntr_to. The client can keep track of the length of the argument list as argu-

ments are removed using an operation Arg_Lst_Length, which tells how many arguments are still

in the list. At any point, the client can get the list of all arguments for a cluster by calling the

operation List_Args_from. This operation is used in the top-down searching of clusters.

Oper Append_to_Arg_Lst ( restores c : C_Cls_Accessor ,

updates Rg : CC_Reg affecting_only Clstr_Arg_Lst ) ;

requires |Rg . Clstr_Arg_Lst | + 1 ≤ Arg_Lst_Cap ;

ensures Rg . Clstr_Arg_Lst = #Rg . Clstr_Arg_Lst ○ ⟨c⟩ ;

Oper Rmv_First_Arg_Dsntr_to ( replaces c : C_Cls_Accessor ,

updates Rg : CC_Reg affecting_only Clstr_Arg_Lst ) ;

requires 1 ≤ |Rg . Clstr_Arg_Lst | ;

ensures c = ̸(Prt_btwn (0 , 1 , #Rg . Clstr_Arg_Lst ) )

and Rg . Clstr_Arg_Lst =

Prt_btwn (1 , |#Rg . Clstr_Arg_Lst | , #Rg . Clstr_Arg_Lst ) ;

Oper Arg_Lst_Length ( restores Rg : CC_Reg ) : Integer ;

ensures Arg_Lst_Length = |Rg . Clstr_Arg_Lst | ;

Oper List_Args_from ( restores x : Tr_Nd_Lab ,

restores c : C_Cls_Accessor , restores p : Clstr_Accessor ,

updates Rg : CC_Reg , affecting_only

Clstr_Arg_Lst ) ;

requires x : Rgry_Lab (Rg) and c : Mnml_VCC_Dsntr (Rg , x) and
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p : Mnml_SClstr_Dsntr (Rg , x ,

c) ;

ensures Rg . CC_Designated [ [ Rg . Clstr_Arg_Lst ] ] =

Arg_Str_for (C_Class (Rg) , Rg . Cr_Designated (p) ) ;

Listing (30) Specifications for argument list operations

9.7 Summary

The complete specification of the concept presented in this chapter is presented in Appendix

C, and its mathematics is presented in Appendix B. The abstract and formal specification makes it

possible to create more than one implementation depending on different performance trade-offs and

ultimately check the correctness of a prover implementation itself.
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Chapter 10

Prover Design and Registry

Implementation

This chapter presents a design of Uni-Prover in Section 10.1, and a description of a prototype

implementation of the congruence class registry component in Section 10.2. The implementation

limits the number of steps taken to prove a sequent VC, making it possible to prove a wider swath

of VCs. It has been integrated into the RESOLVE verifying compiler.

10.1 Uni-Prover Design

Figure (10.1) shows an overall design of Uni-Prover with all core components necessary to

perform the functions described in Chapter 4. We have harnessed the idea of designing for change

where components are created to accommodate upgrades or changes that may happen in the future.

This design allows us to incorporate, for example, the grayed-out components intended to further

optimize the registry when developed. Nevertheless, the other components are sufficient to provide

the functionality without them. All components are designed to be modular, flexible, and reusable.

The congruence class registry in orange is a central component doing most of the heavy

lifting for the Uni-Prover. Its specification and implementation form the core of this dissertation,

and they are presented in Chapter 9 and Section 10.2, respectively. The following is a discussion

of other components that will work with the registry to perform the functions necessary for the
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Uni-Prover to prove a sequent VC effectively.

Figure (10.1) Overall Uni-Prover design

On the left is Sequent Registering Concept (SRC), whose implementation uses three other

concepts, VC Presenter (VCP), Congruence Class Registry (CCR), and Fragment Calculator (FC)

to register sequent VCs into the registry. The VCP hands over one sequent VC at a time to the SRC

implementation, which uses operations from the CCR to register the sequent VC. The SRC implemen-

tation attach attributes along with tags supplied by the client and FC to classes and clusters it creates

in the registry. Attributes are used in verification of the sequent VC, and tags aids searching in the

registry. The FC works with Fragment Registry, which collects all fragments created from relevant

theorems through Fragment Extractor. Fragments and their use in the registry are presented in
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Section 10.3.1.

Theorems in Uni-Prover are presented through elaboration rules, which are then used

to verify sequent VCs. The process starts with the Relevant Theorem Extractor (RTE) compo-

nent, which uses the Theory Library Keeper and VC Presenter to retrieve theorems from the

library relevant to the target sequent VC to be proved. RTE is intended to keep the instantia-

tion process effective by selecting only those theorems with a potential to prove the target sequent

VC. The Elaboration Rules Creator uses RTE and Fragment Calculator to create elaboration

rules from relevant theorems and tag them with information representing their fragments in the

Fragment Registry.

Once elaboration rules are created, the Elaboration Rules Cycler component cycles them

and presents one rule after another for instantiation. The cycler can be optimized to prioritize

some rules over others. Once a rule is selected, its precursor clauses are counter-matched with

what we have in the registry. Matching is the function of a Clause Counter Matcher, which can

use the Fragment Calculator to optimize its matching process by using the fragments tagged in

the clusters and classes. Once all precursor clauses are counter-matched, the implementation for

the Resultant Registering Concept registers the resultant clause to the registry. At the same

time, it uses the Fragment Calculator to add fragment information to the registered clause. The

Elaborator component coordinates the functions of the three components, the Clause Counter

Matcher, Resultant Registering Concept, and Elaboration Rule Cycler.

10.2 A Protoype Implementation of the Registry

We present a prototype implementation of the congruence class registry based on the soft-

ware development principles discussed in Section 1.1. This prototype is a baseline for future imple-

mentations and future optimizations discussed in Section 10.3.

The congruence class registry performs all manipulations necessary to prove atomic sequents

effectively. Classes in the registry contain a collection of trees, making a description of the registry

and its implementation a challenge. The main limitation facing the Uni-Prover is resource usage,

so the design of every structure, process, and strategy used in Uni-Prover needs to be as effective

as possible. The following are the design decisions we have made for the array-based prototype

implementation in this work.
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Figure (10.2) shows four main record data structures we have created for the four levels in

the congruence class registry. Each record has fields pointing directly to the necessary information

required by the level or indirectly to another record. For this implementation, integers are used as

pointers on each field. Integers are easy to manipulate and can be used with array structures for

random access in constant time.

Figure (10.2) Main structures for the congruence class registry levels

A record is created for every constructed congruence class, cluster, stand, and variety. At

each level, any new record created is stored in a data structure capable of supporting needed updates

and access. The array data structure is selected for this implementation as it provides constant-time

access to its elements, which is necessary for some of the computation-intensive operations in the

registry. The following is a discussion on each array structure used in our implementation.

10.2.1 Congruence Class Array

Figure (10.3) shows a congruence class array (CC_Arr) structure that keeps all created con-

gruence class records (CCls_Rec) in the registry. Each class in the registry is assigned a designator

(CC_Dsntr), which is used as an index in CC_Arr for the created CCls_Rec. The size CCC of the

congruence class array is determined by the congruence class designator capacity (C_Cls_D_Cap)

set by the client during an instantiation of the registry. The following is a discussion on each field

in the CCls_Rec.
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Congruence classes contain stands for each root node label they hold. We keep an ordered list

of stands in a class, and the CCls_Rec keeps a pointer to the first stand in the field Fst_Stnd. Stands

are stored in the stand array structure explained in section 10.2.3. A Tag field in CCls_Rec points

to a secondary structure with extra information to make the searching effective. Proposed secondary

structures are discussed in section 10.3 as a future direction of this work. Other information currently

incorporated in CCls_Rec are the attributes (Attbt). Attbt that identify the side of the sequent

VC for the final class record created for the clause in the sequent VC. Two attributes are useful, the

antecedent and succedent.

The FASOP field in CCls_Rec points to a structure FASOP, which keeps the first position in

the argument string that a congruence class occurred. All arguments are handled by a secondary

structure Cluster Argument Array (Clstr_Arg_Arr) described in section 10.2.5. For any class’

first occurrence in Clstr_Arg_Arr, its position is kept in the FASOP for effective searching and

updating. Additionally, Lst_ASP holds a position in FASOP for the respective class that last occurred

in Clstr_Arg_Arr. The final field is essential when two classes are merged, and one class becomes

dominant. The Dmnt_Cls field for the non-dominant class will point to the dominant class, and the

dominant class will point to itself.

Figure (10.3) Congruence class array structure
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10.2.2 Cluster Array

Figure (10.4) shows a cluster array (Clstr_Arr) structure that keeps all created cluster

records (Cltr_Rec) in the registry. Cluster designators (Clstr_Dsntr) are used as indices to

Clstr_Arr for each Cltr_Rec created. The size CLC of the cluster array is determined by the

cluster designator capacity (Clstr_Dsntr_Cap) set by the client during an instantiation of the

registry. The following is a discussion on each field in a Cltr_Rec.

The first two fields represent a label and a string of arguments defining a cluster. The argu-

ments are kept in a secondary structure Clstr_Arg_Arr explained in section 10.3. The Arg_Str

field in Cltr_Rec holds a pointer to the position in Clstr_Arg_Arr representing the arguments

associated with the cluster.

Because every cluster belongs to a class, a Cls field points to the CC_Arr holding the

CCls_Rec the cluster belongs. Clusters can also be tagged with extra information to assist with

searching. Such information is managed by a different structure and is decoupled from the registry.

Only a Tag pointer to the extra information is kept in the Cltr_Rec.

Figure (10.4) Congruence cluster array structure
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10.2.3 Stand Array

Stands contain a list of clusters with the same root node label. Figure (10.5) shows a stand

Array (Stnd_Arr) that keeps all stand records (Stnd_Rec) created in the registry. Each Stnd_Rec

created has a pointer (Fst_S_Clr) to the Clstr_Arr holding the first stand cluster in the ordered

list of clusters the respective stand has. All stands within a congruence class are kept in an ordered

list. We can move to the next stand in the list by following the next congruence class stand pointer

(Nxt_CC_Stnd).

Figure (10.5) Congruence cluster array structure

Stands in different classes that are designated by the same label (Lab) are joined together

in a doubly-linked list to form a variety. The two pointers Nxt_V_Stnd and Prv_V_Stnd are used

to navigate this variety list.

10.2.4 Variety Array

Variety keeps a list of congruence classes containing at least one tree with the root node

label designating the variety. Figure (10.6) shows a variety array (Vrty_Arr) that keeps all variety

records (Vrty_Rec) created in the registry. Each Vrty_Rec has a pointer to the first stand in the list

of stands belonging to a variety. The size of Vrty_Arr (RLC) is bounded by the root label capacity
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(Rt_Lab_Cap) set by the client upon instantiation of the registry.

Figure (10.6) Congruence cluster array structure

10.2.5 Cluster Argument Array

Before the Register_Cluster_Lbld operation is called, a cluster to be registered must be

checked if it already exists in the registry. This check involves looking at the node label and the

arguments if they exist in the registry. Because the check is frequent, it causes the operation to be

expensive, requiring effective structures that are practical and efficient.

Another expensive operation is Make_Congruent. The operation is called to merge two

classes, which might be arguments to some clusters, which in turn may cause cascade of clusters and

classes to merge following a collapse of two classes. Whenever Make_Congruent operation is called,

arguments must be updated accordingly to keep the search effective.

A structure handling cluster arguments must effectively support frequent searching and up-

dates for the two operations above to be practical. We have developed a cluster argument array

(Clstr_Arg_Arr) structure in Figure (10.7) to handle all cluster arguments created. Each argu-

ment is a cluster argument record (Clstr_Arg_Rec) kept in the Clstr_Arg_Arr. The fields in

Clstr_Arg_Rec are designed to allow effective searching and updates, and their relation can be

visualized as a tree shown in Figure (10.8).
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Figure (10.7) Congruence cluster argument array structure

Each node in the tree is a Clstr_Arg_Rec and an entry in the Clstr_Arg_Arr. The first

field Nxt_Arg in Clstr_Arg_Rec points to the next node in the tree, and the previous node is

reached through Prev_Arg. Each argument in a cluster is a class, and CC_Num points to the class

in CC_Arr for which Clstr_Arg_Rec is created.

The argument string tree is built in levels. The first level is for the first argument, the

second level is for the second argument, and progressing similarly for later levels. The number of

levels is bounded by Max_Arg_Lst_Len set by the client. The field Fst_Clstr in Clstr_Arg_Rec

points to the first cluster in Clstr_Arr with the argument created. This field is updated on the

last recorded argument for the cluster. For example, a cluster with class 9 and 7 as arguments, the

Fst_Clstr field is not changed when creating Clstr_Arg_Rec for 7 but updated when creating

Clstr_Arg_Rec for the second argument 9. An argument string ⟨9,7⟩ is shown in see Figure (10.8)

as an example.

For a class that appears on different arguments, the positions within a level are connected

in a list. Its first position in the argument array is kept in FASOP for each level. The Nxt_Same_Pos

field points to the next occurrence of the same class in Clstr_Arg_Rec within a level. The last

field, Alt_Arg, is an alternative argument and connects all Clstr_Arg_Rec in the same level under

the same parent.

139



Figure (10.8) Congruence cluster argument string tree structure

10.2.6 Sequent Verification Status Check Using Bit Arrays

An expensive process in the implementation is to check whether a sequent VC is proven.

This check must happen in every new cluster registration and every update in the registry. Because

of how frequently we have to check if a sequent VC is proven, the operation must be effective and

involve fast and practical structures.

A sequent VC is proved when two similar clauses appear on both sides of the sequent VC,

a case in the registry where a top-level class will have both attributes. For effectiveness, before the

two classes are merged, the attributes must be updated and merged.

We have employed bit arrays, an array data structure that compactly stores bits. Bit arrays

are efficient for storing and and they maximally use data cache. They are effective at exploiting bit-

level parallelism in hardware to perform constant-time bit-wise operations. In many cases, individual

bits cannot be accessed. However, bit-wise operations like OR, AND, XOR, and NOT can be used

to determine the position state in a vector.

Here, we can efficiently merge bit arrays representing two classes to one by using an OR

operation. On every merge, attributes of a newly formed class are checked using a cardinality

operation to see if it includes all attributes.
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10.3 Future Optimizations

The congruence class registry component developed in this work is flexible and reusable.

The flexibility in the design is achieved by decoupling components that are intended to support the

registry. This component-based design increases flexibility by allowing necessary changes on these

secondary components without changing the core component. We have followed the principle of

separation of concerns by limiting information known to the registry about the secondary structures.

This way, secondary components can be developed independently.

The rest of this section proposes additional structures and optimizations that can be incor-

porated into the congruence class registry for effective searching and updates.

10.3.1 Precursor Patterns, Skeleton Patterns, and Skeleton Fragments

Precursor patterns Pi,n contain the same operators, variables, and constants as in precursor

trees. Skeleton patterns also have a structure similar to precursor trees, except that all constants and

variables replaced with empty trees (Ω). From each precursor clause in the set {Ci,1,⋯,Ci,k} ∼ {Ci,m},

a skeleton pattern Si,n is created. Because the skeleton patterns are only a structure of node labels

with empty tree leaves, many of the precursor patterns will likely map to the same skeleton pattern.

Each skeleton Si,n is decomposed into skeletal fragments Fi,n,p—one for each subtree of Si,n, and Si,n

itself. The skeleton fragments are proposed to aid in the counter-matching process and improve the

searching process.

For example, consider a theorem UDF1 ∶ ∀x,y,z ∶ Z, if x ≤ y and 0 ≤ z then x ⋅ z ≤ y ⋅ z with

three clauses. From UDF1, three elaboration rules can be created. We have selected one of the rules

shown in Figure (10.9) to illustrate the role of skeleton patterns and fragments.

Figure (10.9) Elaboration rule represented by expression trees

Elaboration rule R1 has two precursor patterns P1,3 and P1,2, and a resultant pattern C1,1.
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The two precursor patterns P1,3 and P1,2, form two skeletons patterns S1,3 and S1,2, which are further

broken down into a set of skeleton fragments Fi as shown in Figure (10.10).

Figure (10.10) Transformation of expression trees to skeleton fragments

10.3.2 Using Skeleton Fragments for Effective Searching

A standard precursor tree matching starts from the root node and searches for a class in

the registry with a cluster having a similar root node. A cluster provides classes in its argument

to match the root branches of the precursor tree in the next level. As explained in section 4.5,

this process is repeated until the variables and constants are replaced with congruence classes. A

precursor tree is matched if the variables and constants are translated to congruence classes and

match their occurrences in the tree. If the cluster does not match the precursor tree at any point in

the search, the search backtracks and other classes and clusters are selected and tried.

Standard precursor tree matching searches the registry blindly. As a result, too much effort

may be wasted on a search when a mismatch is discovered. The skeleton fragments and patterns

reduce this search cost by considering whether a suitable skeleton fragment exists in the cluster

before searching it. If looking for fragments is fast, it will save the time spent following clusters that

will end ultimately in a mismatch.

It is possible to perform a calculation that can quickly determine if a skeleton fragment

exists in a cluster. The thesis is that the preliminary computational check will be cheaper than an

exhaustive search into the clusters only to find it is not a match. Finding a fragment in a cluster does

not guarantee a complete precursor clause match that includes variables and constants. However, it

eliminates all clusters without target fragments from the search.
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10.3.3 Fragments Registry

The plan is to develop a fragment registry to hold all fragments that exist in the congru-

ence class registry. From a tree representing a clause, the registry will store created fragments

(while rejecting duplicates) by contiguously enumerating the collection of fragments created. This

enumeration is intended to allow fast searching of fragments.

The promised performance gain in skeleton fragment matching is based on the thesis that

computation for the fragment’s existence could be more efficient than a blind search. To achieve

this computational efficiency, we propose an implementation of fragments registry using bit arrays.

The expectation is that the bit vector will not be long since the number of theorems that relate

to the sequent being proved will be small. The search is expected to take advantage of the fast

computation that can be done using bit array operations to check the status of bits in arrays or to

merge bit arrays.

10.4 Integration with the RESOLVE Verifying Compiler

We have developed a Java implementation of the array-based congruence class registry

following the implementation details described in Section 10.2. The end goal is for the registry

to be integrated into the RESOLVE verifying compiler to work in conjunction with the sequent

VC generator [61] and mathematical units to establish correctness of VC sequents generated from

RESOLVE software.

While much work remains, at this time, the congruence class registry, the core piece of the

Uni-Prover, has been successfully integrated within the existing RESOLVE verifying compiler. The

reigstry works with the sequent VC generator, and sequent VCs are successfully registered. Because

other necessary components to integrate the mathmematical library are not yet built, the registry

can only verify a subset of sequent VCs that do not need any theorems for verification. For the

Uni-Prover, and hence, the RESOLVE verifying compiler to be fully functional, all other important

components described in our design have to be built.
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Chapter 11

Summary and Future Work

The work presented here addresses the challenge of proving software in several ways. First, it

introduces the idea of “specificationally rich language,” necessary for describing object-based software

adequately and laying the foundation for the design of a prover capable of working with an extendable

mathematical library to verify implementations. Secondly, because of the need for an extensible

mathematical library, this work notes that, existing automated verification systems are limited in

what they can achieve. Currently, automated verification systems are limited by specialized decision

procedures working with a fixed collection of theories. This research has taken a fundamental step

in overcoming this limitation by conceiving a Universal Automated Prover for atomic sequents (Uni-

Prover), that can work with an extendable mathematical library.

The central contribution is a universal prover that will become a necessary piece of any ade-

quate automated verification system of the future. This dissertation presents an overall design of the

Uni-Prover, and a prototype implementation of a formally specified central piece in the prover—the

congruence class registry. The prover is designed for change, allowing currently proposed compo-

nents to function fully with or without future upgrades, changes, or optimizations. The registry is

designed to be effective and includes strategies geared to minimize the number of verification steps.

One of the strategies developed is the multi-level searching for congruence classes in the registry.

At the core of the prover is the contiguous instantiation strategy, a trigger-less and effective

strategy that does not need user-supplied heuristics, to instantiate universal quantified theorems.

The dissertation has developed a formal specification and a prototype implementation of the

congruence class registry. The specification is written using new mathematical definitions purposely
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developed in this work to make the specifications comprehensible and concise. Its mathematical

model is designed with essential functions which are independent and adequate to describe the

behavior of the registry concisely. The specification also includes operations to register new classes

and clusters, search the registry, and make equal classes congruent.

With a prototype implementation of a congruence class registry, this research has shown

that a critical part of the Uni-Prover can be realized. Currently, the prototype is integrated into

the RESOLVE verifying compiler and is able to prove sequent VCs that do not require theorems

to be verified. Sample sequet VC proofs are shown in Appendix F. The full-functioning Uni-Prover

requires all components proposed in the design to be implemented.

The rest of this chapter discusses the remaining work to realize Uni-Prover, additional

components for optimizing the core component, and future research directions to extend this work.

11.1 Completing a Fully Functional Uni-Prover

As illustrated in Figure 10.1, the following are the main components to be completed for a

working Uni-Prover.

• Sequent Registering Component, which registers sequent VCs using the operations in the

congruence class registry.

• Clause Counter Matcher, which uses the operations in the congruence class registry to match

the precursor clauses to the clusters inside the registry.

• Resultant Registering Component, which uses the operations in the congruence class registry

to register a resultant clause.

• Relevant Theorem Extractor, which extracts a subset of theorems relevant to the target

sequent VC being proved.

• Elaboration Rules Creator, which creates elaboration rules from a set of relevant theorems.

• Elaboration Rules Keeper, which keeps all elaboration rules created from the relevant theo-

rems.

• Elaboration Rules Cycler, which optimally cycles through the elaboration rules to ensure

most promising rules are instantiated first and used to elaborate the sequent VC in the registry.
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• Elaborator, which coordinates precursor clause counter-matching process, registration of re-

sultant clause, and use of the rule suggested by the Elaboration Rule Cycler compoent.

11.2 Future Optimizations

The following components, noted in Chapter 10, are intended to optimize the core component

by providing the supporting structures necessary to make the searching process in the registry much

more effective.

• Fragment Extractor, which creates fragments out of the relevant theorems selected for the

target sequent VC.

• Fragment Registry, which stores all fragments created from relevant theorems.

• Fragment Calculator, which perform all calculations needed to assign, update fragments

numbers, and check the existence of a fragment.

In general, the above optimizations can be done without major changes to the existing

system. This is the goal of designing for change.

11.3 Future Verification with Uni-Prover

Uni-Prover is designed to verify all obvious sequent VCs generated from programs. If the

theories are well developed initially, relatively infrequently mathematicians will need to be involved

in elaborating the mathematical library with more sophisticated theories to make the VCs obvious

for verification. For testing this goal, a verification of an implementation of a component using

exploration trees presented in Chapter 6 is suggested. For example, a map implementation using

exploration trees presented in [43] is an ideal candidate to establish the progress of a Uni-Prover-

based verification system.

This work has used the RESOLVE verification system as the framework, with the currently

developed congruence class registry integrated into the verifying compiler. However, the design of

Uni-Prover can be integrated to other automated verification systems. For example, it can be used

as one of the backend prover in Why3 [20].
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11.4 Prover Verification

This research has only developed an array-based implementation for the congruence class

registry, and future research may consider implementing the registry using other structures. One

advantage of having the congruence class component specified is the ability to develop many imple-

mentations for different performance trade-offs.

Another research direction is to build on the principles of modular software design, with sep-

arate specifications and implementations of components such as the Registry. This design provides

an opportunity to verify the correctness of each component and eventually establish the correctness

of Uni-Prover itself.

11.5 Opportunities for Education and Training

One main contribution of the RESOLVE verification system is in education. For decades it

has been used as a tool in multiple universities to teach foundations in software development and

reasoning. The goal is to teach students to write verifiable software that also has other desirable char-

acteristics, such as understandability and maintainability. Using the RESOLVE verifying compiler,

students learn to write specifications and implementations, and verify their code for correctness.

A fully developed Uni-Prover integrated into the RESOLVE verifying compiler can provide

more opportunities for graduate students and researchers to experiment with and reason about

more sophisticated concepts. Currently, the scope and usage of the RESOLVE verification system

as well as other systems are limited, in part because of the limitations of the underlying prover.

The Uni-Prover is an important step in helping students and researchers explore the full compass of

automated formal verification.
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Appendix A Congruence Class Registry Specification
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Appendix B Mathematical Developments for the Registry

This appendix contains the mathematical definitions necessary to specify the congruence class reg-

istry.
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Appendix C A Data Abstraction for Navigable Trees
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Appendix D The General Tree Theory
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Appendix E Specification of a Nested List Concept
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Appendix F Sample Sequent Proof Using Uni-Prover
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