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Abstract

This dissertation investigates the functional graphical models that infer the functional con-

nectivity based on neuroimaging data, which is noisy, high dimensional and has limited samples.

The dissertation provides two recipes to infer the functional graphical model: 1) a fully Bayesian

framework 2) an end-to-end deep model.

We first propose a fully Bayesian regularization scheme to estimate functional graphical

models. We consider a direct Bayesian analog of the functional graphical lasso proposed by Qiao

et al. (2019). We then propose a regularization strategy via the graphical horseshoe. We compare

both Bayesian approaches to the frequentist functional graphical lasso, and compare the Bayesian

functional graphical lasso to the functional graphical horseshoe. We applied the proposed methods

with electroencephalography (EEG) data and diffusion tensor imaging (DTI) data. We find that the

Bayesian methods tend to outperform the standard functional graphical lasso, and that the functional

graphical horseshoe performs best overall, a procedure for which there is no direct frequentist analog.

Then we consider a deep neural network architecture to estimate functional graphical mod-

els, by combining two simple off-the-shelf algorithms: adaptive functional principal components

analysis (FPCA) (Yao et al., 2021a) and convolutional graph estimator (Belilovsky et al., 2016). We

train our proposed model with synthetic data which emulate the real world observations and prior

knowledge. Based on synthetic data generation process, our model convert an inference problem as

a supervised learning problem. Compared with other framework, our proposed deep model which

offers a general recipe to infer the functional graphical model based on data-driven approach, take

the raw functional dataset as input and avoid deriving sophisticated closed-form. Through simula-

tion studies, we find that our deep functional graph model trained on synthetic data generalizes well

and outperform other popular baselines marginally. In addition, we apply deep functional graphical

model in the real world EEG data, and our proposed model discover meaningful brain connectivity.
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Finally, we are interested in estimating casual graph with functional input. In order to pro-

cess functional covariates in causal estimation, we leverage the similar strategy as our deep functional

graphical model. We extend popular deep causal models to infer causal effects with functional con-

foundings within the potential outcomes framework. Our method is simple yet effective, where we

validate our proposed architecture in variety of simulation settings. Our work offers an alternative

way to do causal inference with functional data.
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Chapter 1

Introduction

In recent decades, data is explosively emerging thanks to the development of big data

industries. Analyzing big data becomes critical since many of data are high-dimensional, high

volumes, highly noisy and time-sensitive. Applications such as biological science, public health, social

science and medical science, etc. share the common interests at processing observation measures over

time, and thereby has introduced variety of machine learning and statistical modelling. A typical

time series analysis that takes time series data as multivariate data has a few assumptions, such as

stationary over time, evenly spaced measurements, etc. However, time series methodologies ignore

the essential information of the smooth function underneath the generating process of the data.

In addition, time series methodologies may erroneously assume independence among data points

after removing the trends and seasonality patterns. Functional data analysis (FDA) is a branch of

statistics to handle the data on a finite set of points as a function of continuous variable possibly

with noise. The data may or may not be a time series. FDA consider discrete measurements from

a function instead of multivariate data in time series analysis, and the whole function is viewed as

as a single observation. Similarly, we could conduct statistical modelling or prediction upon the

functional data.

In order to study the functional data analysis, one of the most typical FDA applications is

the modern functional neuroimaging, such as functional magnetic resonance imaging (fMRI; Shappell

et al., 2019), electroencephalography (EEG; Zhang et al., 1995) , magnetoencephalography (MEG;

Hämäläinen et al., 1993) and positron emission tomography (PET; Bailey et al., 2005). These

techniques collect the measurements of brain activity over time in the experiment, and such mea-
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surements could be considered as functional data. With more developed data collection, methods

for dealing with these functional data are in high demand.

Among functional data analysis for neuroimaging, one particular interesting problem in

neuroscience is to study the graph structure for brain connectivity. Based on multivariate functional

data collected from brain processes under different experiments, a reliable statistical tool is required

to understand and estimate the brain connectivity. Specifically, our design goal can be summarized

as the following:

• Accurate Estimation: We aim to infer the brain connectivity as close as the ground truth

so that it could reflect the scientific findings.

• Interpretability: Our design should balance between model interpretability and accuracy,

since in neuroscience, researchers sometimes not only want to know the inferred brain connec-

tivity, but also prefer to understand why.

• Model Confidence: In many cases, we prefer to provide estimated graph with uncertainty

measurements, so that the neuroimaging researcher is able to judge accordingly.

• Causal Effects: Beyond graph topology inference, can we conduct causal inference based on

functional data?

Nevertheless, the research for graphical structure learning from multivariate functional data is under-

developed before Zhu et al. (2016). Qiao et al. (2019) proposed a functional Gaussian graphical

models which demonstrate a reasonable brain connectivity estimation, but their methods lack of

measures of uncertainty about the connectivity. On the other hand, existing work uses the basis

transformation to represent the functional data, which is a feature extraction that can often lose

important information. Therefore, we explore two paths of functional graphical models: 1) Bayesian

and 2) deep learning frameworks. Our proposed Bayesian framework is able to provide an inter-

pretable graph structure estimation with edge confidence, whereas deep learning based approach

could achieve the most accurate inference with one unified framework. Besides, we are also inter-

ested in answering causal effects with functional data since causal inference with functional data

domain lack the attention from research community. For example, are the ordinary causal models

suitable for functional data for treatment effect estimation? In the thesis, we explore a few popular

causal models with functional confounders by taking advantages of deep learning framework for
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causal estimation.

For the rest of introduction chapter, we introduce basic definitions and background for our

works in this thesis. We first provide a brief, intuitive primer on the Gaussian graphical model and

the algorithm graphical lasso. Then we review the dimension reduction method FPCA, which is

a fundamental technique for infinitely dimensional functional data. To motivate our proposals, we

then discuss functional (Gaussian) graphical models proposed by Qiao et al. (2019), an undirected

graphical model to handle multivariate functional data. In addition, the empirical risk minimization

is reviewed to present the principle behind deep functional graphical models in Section 2.3. At the

end of this chapter, the structure and contribution of this dissertation is provided.

1.1 Gaussian Graphical Models and the Graphical Lasso

We first introduce the Gaussian Graphical Model (GGM) and a specific algorithm Graphical

Lasso, which is used to handle multivariate data. Suppose the random vector y = (y1, · · · , yp)T

follows a multivariate Gaussian distribution with mean µ and covariance matrix Σ. Then we define

Θ = Σ−1 as the precision matrix, or concentration matrix. A GGM is based on an undirected graph

G = (V,E), where V = {1, . . . , p} is a non-empty set of vertices and E ⊆ {(i, j), i < j} is a set of

edges representing unordered pairs of vertices (also called nodes). Each variable yi represents a node

in the graph, and E determines the precision matrix, for i ̸= j, (Θ)ij ̸= 0 if and only if (i, j) ∈ E.

By Theorem 2.2 in Rue and Held (2005), we thus have that E encodes a Markov property in the

distribution. Letting N (i) = {j : (i, j) ∈ E} and adopting the convention that yA = (yj : j ∈ A)T

for a set of indices A, we have that, for any node i, yi|y(−i)
d
= yi|yN (i). Extending this with

V = {1, . . . , p}, it follows that yu |= yv|yV \{u,v} if and only if (Θ)uv = 0, where |= denotes statistical

independence. This is the pairwise Markov property. By this property, learning the graph associated

with a Gaussian graphical model is equivalent to estimating the precision matrix of the multivariate

Gaussian distribution, making it a covariance estimation problem (Dempster, 1972).

Given a sample yi, i = 1, . . . , n, stored in a data matrix Y = (y1 · · ·yn)T , the goal is to

estimate and select non-zero elements of Θ, thereby obtaining an estimate of the undirected graph

associated with the GGM. The log-likelihood of Θ (up to an additive constant) can be written as

l(Θ) = log detΘ− tr (SΘ/n) , (1.1)
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where S = YTY. The quantity −l(Θ) is a convex function of Θ and the maximum likelihood

estimator of Σ is Σ̂ = S/n. This estimator enjoys nice properties such as consistency, but can be

unstable when p ≈ n. Further, even when Σ̂−1 exists, it can be an unsatisfactory estimator of Θ

due to the fact that it will generally not be sparse, even if Σ̂ is sparse.

To find a more stable estimator of Θ that is simultaneously sparse, Yuan and Lin (2007)

proposed to solve a lasso-type regularized version of the likelihood objective function by finding

Θ̂ = arg min
Θ∈M+

{− log detΘ + tr (SΘ/n) + λ∥Θ∥1} , (1.2)

where M+ is the space of p × p symmetric positive definite matrices, the norm ∥ · ∥1 is the sum of

the absolute values of the off-diagonal elements, and λ is a non-negative tuning parameter to control

the number of zeros in the estimated precision matrix. This is a semi-definite programming problem

for the precision matrix Θ. Yuan and Lin (2007) solved this problem with the so-called maxdet

algorithm (Vandenberghe et al., 1998), while Friedman, Hastie, and Tibshirani (2008) proposed a

more efficient coordinate descent algorithm for solving (1.2). This is the graphical lasso, an approach

that has since become very popular for structure learning in GGMs.

Wang (2012) considered the fully Bayesian version of the graphical lasso by recognizing that

solving (1.2) is equivalent to finding the maximum a posteriori (MAP) estimator in the following

model,

p(yi | Θ) = N(yi | 0, Θ−1), i = 1, . . . , n (1.3)

p(Θ | λ) ∝
∏
i<j

DE(θij | λ)

p∏
i=1

Exp

(
θii |

λ

2

)
, Θ ∈M+, (1.4)

where N(·|0,Θ−1) denotes the density of a N(0,Θ−1) distribution, and likewise for the double

exponential (DE) and exponential (Exp) distributions. Using a hierarchical representation of this

model (Kyung et al., 2010) and matrix partitioning techniques similar to those employed by Banerjee

et al. (2008) and Friedman et al. (2008), Wang (2012) developed an efficient Gibbs sampler for

exploring the full posterior distribution and thus was able to extensively compare the results of the

MAP and posterior mean estimators.
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1.2 Functional Principal Component Analysis

To allow a graphical model to take functional data as input, the most common tech-

nique is functional principal component analysis. For subject i, i = 1, . . . , n, let the underly-

ing, infinite dimensional function of interest be denoted gi(t), t ∈ T . We assume that g1, . . . , gn

are identically distributed and independent zero-mean functions in L2(T ) with covariance func-

tion cov(gj(s), gj(t)) =: Σ(s, t), (s, t) ∈ T × T , where T is a compact interval on the real line.

Karhunen (1946) and Loeve (1963) independently discovered the functional principal component

analysis (FPCA) expansion (e.g., Bosq, 2012),

gi(t) =

∞∑
k=1

aikϕk(t), (1.5)

where {ϕk(t)}∞k=1 are the orthonormal set of eigenfunctions with corresponding eigenvalues {λk}∞k=1

satisfying Σ(s, t) =
∑∞

k=1 λkϕk(s)ϕk(t), by Mercer’s Theorem, and aik =
∫
gi(t)ϕk(t)dt are the

functional principal component (FPC) scores of gi, uncorrelated across k with E(aik) = 0 and

var(aik) = λk. By assumption, the aik are independent across i. Like ordinary principal com-

ponents analysis (e.g. Jolliffe, 2002), the expansion can be truncated to obtain a finite-dimensional

approximation to the infinite-dimensional process. In what follows, the proposed Bayesian functional

graphical models in Chapter 2.2 can work with any basis expansion (e.g., wavelets or Fourier), but

we use FPCA in simulation and application due to the mean square optimality of the truncated

approximation.

Performing FPCA in practice amounts to finding the spectral decomposition of an approx-

imation to the covariance function. When gi, i = 1, . . . , n, are observed on the same evenly spaced

grid t1, . . . , tm independent of i, this amounts to standard singular value decomposition of the sam-

ple covariance matrix. For irregularly spaced functions and/or different numbers of observations

on each function, SVD will likely provide a poor approximation to the true eigensystem associated

with Σ(·, ·). In this case, Yao et al. (2005) proposed the PACE algorithm for performing FPCA via

conditional expectation. In our applications of section 4, to apply our method of Bayesian models

we use SVD for the EEG example and PACE for the diffusion MRI example, as the latter involves

irregularly sampled longitudinal data.
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1.3 Functional Gaussian Graphical Models

For a particular subject i, suppose we (discretely) observe p functions gi1(t), . . . , gip(t) where

gij is the function observed on node j. Suppose further that each function is a Gaussian process

so that (gi1, . . . , gip) is a realization from a p−dimensional multivariate Gaussian process (MGP).

As in typical GGMs, we associate to the MGP an undirected graph G = (V,E) that represents the

conditional dependence network. Here, conditional dependence of the functions gij and gij′ is in

terms of the cross-covariance function,

Cjj′(s, t) = cov (gij(s), gij′(t) | gk(·), k ̸= j, j′) , (1.6)

assumed to be the same for i = 1, . . . , n.

With the covariance function in hand, we can use FPCA and approximate each gij with the

M -dimensional truncation,

gMij (t) =

M∑
k=1

aijkϕjk(t), M <∞. (1.7)

The superscript M here is used to denote the parameter is dependent on M , but we may omit the

superscripts for simplicity hereafter when the content is clear. The function for subject i at node j

can thus be represented with the coefficient vector aM
ij = (aij1, . . . , aijM )T , so that each subject’s

entire functional information over all p nodes is encoded in aM
i = ((aM

i1 )T , . . . , (aM
ip )T )T ∈ RMp,

where for notational simplicity we suppose the truncation level M is the same at each node. Under

the Gaussian assumption and independently observed subjects, the Kahrunen-Loéve Theorem tells

us that aM
i

iid∼ NMp(0, (ΘM )−1). For learning the graphical model, Qiao et al. (2019, Lemma 1)

show that, in the finite-rank case (in which the M -truncated approximation is exact),

EM =
{

(i, j) : ∥ΘM
ij ∥F ̸= 0, (i, j) ∈ V 2, i ̸= j

}
, (1.8)

where ΘM
ij is the M ×M block submatrix of ΘM corresponding to the node pair (i, j) ∈ V ×V and

∥·∥F is the Frobenius norm. Thus, structure learning in the functional graphical model is equivalent

to finding the (i, j) pairs for which ∥ΘM
ij ∥F ̸= 0.

The connection in (1.8) to the graphical lasso and the group lasso (Yuan and Lin, 2006) led
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Qiao et al. (2019) to propose estimating the graph from functional data with

Θ̂M = arg max
ΘM

log detΘM − tr
(
SMΘM

)
− λn

∑
i ̸=j

∥ΘM
ij ∥F

 (1.9)

where SM is the sample covariance matrix computed from estimated FPC scores âM
i ∈ RMp, found

via SVD or otherwise, and λn > 0 is a tuning parameter. As with the group lasso, blockwise sparsity

is achieved as λn →∞. Qiao et al. term this approach the functional graphical lasso (fglasso). The

edge set of the estimated graph is then ÊM =
{

(i, j) : ∥Θ̂M
ij ∥F ̸= 0, (i, j) ∈ V 2, i ̸= j

}
. Rather than

using identical truncated number M across j = 1, . . . , p, one can select Mj separate for each j, as

different functional variables may have different smoothness levels. Qiao et al. (2019) show that

the fglasso enjoys model selection consistency, and provide a block coordinate descent algorithm for

optimizing the objective function.

1.4 Empirical Risk Minimization Principles

Empirical Risk Minimization (ERM) is the foundation of deep model training criteria. It

is a general framework applied in many methods for supervised learning such as classification and

regression. We aim to select a function f among possible set of functions F to minimize the risk.

Consider input space X and output space Y, the problem of interest is to learn the function between

X and Y:

f : X → Y (1.10)

where the estimator f could be called regressor or classifier in different tasks. Assume data X × Y

and (x1, y1), . . . , (xn, yn) are sampled i.i.d. from a joint distribution P (x, y). In the statistical

learning, our goal is to pick a f∗ so that it could minimize the average loss (risk), i.e.

f∗ = arg min
f∈F

Ep(L(f(x), y)). (1.11)

where loss function L(·, ·) is a continuous function which measures the performance of f . An example

of loss function is the binary cross entropy loss for binary classification. The best function f∗ is the
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one with smallest true risk, i.e. the Bayes classifier

f∗ = I

[
P (x, y)

P (x)
> 0.5

]
(1.12)

where the P (x, y) is defined as the joint distribution of X and Y , and P (x) is the marginal distri-

bution over X.

In general, the joint distribution P is unknown and estimating P from data is often com-

putationally intractable. Even though Bayes posterior is often hard to directly calculate, the data

are sampled from P , and thereby we could get a reasonable approximation through empirical risk

minimization

f = arg min
f∈F

1

n

∑
i

L(f(xi), yi). (1.13)

How close the empirical risk is to the (true) risk depends on following conditions. First, the more

training data we could get from P , the closer we would expect empirical risk to true risk. Addition-

ally, the complicated joint distribution P would lead to a poor approximation which requires more

data. Furthermore, a large set of possible functions F or complex f would make the approximation

challenging. In addition, the appropriate loss function L is also critical to improve the similarity

between empirical risk and true risk (Vapnik, 1999).

It is straightforward to pick a simple function among a small set of possible functions to

achieve better performance, but it may increase the minimum value of true risk. This is a variance-

bias trade-off issue. Therefore, the typical empirical risk consists of a loss term and also a regular-

ization term, where the loss function is used to penalize the training error and the regularization

term is to penalize the function complexity.

1.5 Structure and Contribution of the Thesis

The work presented in this thesis focuses on graphical structure learning on multivariate

functional data. In the first part of the thesis we develop a fully Bayesian framework of functional

graphical models based on functional graphical lasso prior and horseshoe prior. On the other hand,

we develop a deep learning architecture which can infer graph topology based on adaptive FPCA

and data-driven framework. Finally, we provide deep learning based model for causal estimation

with functional confoundings within the potential outcome framework.
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In Chapter 2, we first introduce the background of our proposals, functional graphical

models and deep neural networks, respectively. We then propose a fully Bayesian regularization

scheme for estimating functional graphical models based on functional lasso and Horseshoe prior.

We provide efficient Gibbs sampling algorithms for both of our proposed models, exploiting auxiliary

variables to produce a set of easily-sampled conditional distributions. In addition, we propose a

neural architecture for end-to-end functional graphical model that consist of adaptive basis layer

and convolutional layer, i.e. Deep Functional Graphical Model (Deep FGM). We improve existing

functional graphical model architectures by integrating a trainable basis that is implemented through

neural networks instead of manually tuned basis transformation used in classic functional data

analysis, and the covariance matrix of basis coefficients are further processed by convolutional neural

networks, where we backprogagate the gradients obtained by comparing prediction graph and target

graph.

In Chapter 3, we first introduce fundamental concepts of causal inference and one of the

most popular frameworks: potential outcome model. We then explore a few variants of causal

models which under the umbrella of potential outcome model to estimate causal effects and predict

heterogeneous treatment effects. Then we dive deep into three models, S-learner, T-learner, and

TARNet combined with adaptive FPCA, showing that this simple combination could allow causal

inference to be applied with functional data domain.

In Chapter 4, we present numerical experiments based on proposed methods for estimating

functional graphical models and causal models. To validate our hypothesis, we design a variety of

experiments to compare Bayesian FGM with baselines. To validate prior assumption, we compare

Bayesian fglasso and Bayesian functional graphical Horseshoe. We also compare deep model per-

formance with the frequentest and Bayesian models. Lastly, we validate the deep causal models

through a series of settings which are common in real world.

Applications to neuroimaging such as EEG and DTI data are represented in Chapter 5.

Lastly, we conclude our thesis in Chapter 6, which summarizes the thesis and propose the future

work.
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Chapter 2

Estimation of Functional Graphical

Models

In this Chapter, we discuss two methods to estimate functional graphical model: one method

falls into a fully Bayesian regularization framework, and the other one leverages deep model tech-

niques. In the Bayesian framework, we first consider a direct Bayesian analog of the functional

graphical lasso proposed by Qiao et al. (2019), then extend the regularization strategy via the

graphical horseshoe. In the framework of using deep model, we consider the deep graphical model

proposed by Belilovsky et al. (2016). Based on limitations of Belilovsky et al. (2016), we propose to

integrate adaptive basis layer proposed from Yao et al. (2021a). By combining two simple off-the-

shelf algorithms, we could take functional data directly as input and embed the adaptive basis into

the model and achieve end-to-end fashion of training.

This chapter is organized as follows: preliminaries give a brief literature reviews of functional

graphical models and compare state-of-the-art methodologies for graphical models with functional

inputs; Bayesian functional graphical models demonstrate our proposed approach, i.e. Bayesian

fglasso and functional graphical horseshoe; Deep functional graphical models presents a neural net-

work architecture for functional graphical model estimation.
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2.1 Preliminaries

In this section, we review the background of our proposed methods, i.e. graphical models

and two research lines for graph learning from multivariate data, and then we focus on introducing

development of functional graphical models and the motivation for Bayesian and deep functional

graphical models.

2.1.1 Graphical Models and Functional Graphical Models

Graphical models use graphs to model and draw inferences concerning conditional inde-

pendence among a collection of random variables or processes, each of which is associated with a

particular location (also called a node or a vertex). They have been used to study flow cytometry

between cell proteins (Friedman et al., 2008), to estimate networks from gene expression data (Li

et al., 2019), and to identify communicating regions from electroencephalography (EEG) data (Qiao

et al., 2019). In this work we are focused on Gaussian graphical models, where the data follow a

multivariate Gaussian distribution. In this case estimating the edge set is equivalent to identifying

the nonzero elements of the precision matrix associated with the Gaussian distribution.

Broadly speaking, frequentist studies of graphical models have either involved neighborhood

selection (Meinshausen et al., 2006) or the graphical lasso (Yuan and Lin, 2007; Friedman et al.,

2008). The neighborhood selection method employs regression of each variable on the remaining

variables with regularization, and then summarizing the neighborhoods together. Cai et al. (2011)

proposed constrained L-1 minimization for sparse precision matrix, which is a Dantzig-type variant

of the neighborhood approach. For extension of this research line, see Peng et al. (2009); Cai et al.

(2016); Qiu et al. (2016); Sun and Zhang (2013). On the other hand, Friedman et al. (2008) proposed

the graphical lasso via a Gaussian log-likelihood with the lasso regularization on the entire precision

matrix. The glasso has proven to be useful and is a widely used procedure, due to the sparsity and

convergence rates that have been studied (Lam and Fan, 2009) as well as associated computational

techniques (Friedman et al., 2008; Zhu et al., 2014). A Bayesian version of the graphical lasso was

proposed by Wang (2012), who illustrated potential differences between the posterior mean and the

posterior mode that might be encountered. Li et al. (2019) extended the ideas of Wang (2012)

by proposing a graphical horseshoe estimator, along with an efficient Markov chain Monte Carlo

(MCMC; Gelfand and Smith, 1990) algorithm for its implementation.
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To date, most of the graphical modeling literature has focused on data in which each node

has an associated scalar or vector-valued response variable. However, many real world applications

involve the collection of functional data at each node. In this case, we have a collection of subjects

for whom a set of continuously-supported random functions are (discretely) observed, one function

at each node, where the support may be time- or spatially-indexed, or both. For example, in

neuroscience there is much interest in studying connectivity; e.g., in terms of connected regions

of interest measured in functional magnetic resonance imaging (fMRI; Shappell et al., 2019) or

communicating electrodes in electroencephalography (EEG; Zhang et al., 1995) corresponding to

associated regions of neuronal activity. Alternatively, in social network analysis and marketing,

it is possible to observe and record online behavior patterns among baskets of different goods for

each customer over a period of time to identify related types of products. Compared to scalar or

vector-valued graphical models, functional graphical models remain vastly under-explored. Qiao

et al. (2019) proposed a functional version of the graphical lasso along with a block-coordinate

descent algorithm for optimizing the loss function. Qiao et al. (2020) model such data using doubly

functional graphical model through a nonparametric approach to smooth p covariance matrices,

where the graph is functional in nature. Based on the setting of Qiao et al. (2019), Zapata et al.

(2019) decomposed a functional graphical model into a sequence of standard multivariate graphical

models under an assumption with partial separability for multivariate functional data. Li and Solea

(2018) proposed a nonparametric functional graphical model based on conditional dependence by

constructing additively nested Hilbert spaces and additive precision operator. In addition, Solea and

Li (2020) relaxed the multivariate Gaussian process assumption by introducing the functional copula

Gaussian graphical model. Around the same time, Zhu et al. (2016) proposed a Bayesian framework

for working with functional graphical models directly in the space of infinite-dimensional random

functions, essentially extending the work of Dawid and Lauritzen (1993) to function space by using

hyper-inverse Wishart priors to a priori model the space of plausible, decomposable graphs. Recently,

Zhang et al. (2021a) proposed a Bayesian model for functional graphical models in which independent

Laplace priors are placed on reparameterized partial correlations associated with basis coefficients,

inducing a so-called normal hypo-exponential shrinkage prior and allowing the graph to functionally

evolve over time. They utilize basis function representations that models the within-functional

correlations, then employ Bayesian regularization in the basis space assuming independence of basis

coefficients across different nodes. Compared with Zhang et al. (2021a), our proposed method is
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for a overall static graph with assumption that different basis coefficients could be dependent across

nodes. To the best of our knowledge, Zhu et al. (2016) and Zhang et al. (2021a) are the only works

on Bayesian functional graphical models.

Our work in section 2.2 is motivated by neuroimaging data that typically have low signal-

to-noise ratios caused by non-neural noise arising from cardiac and respiratory processes or scanner

instability, a problem that is exacerbated by the typically small numbers of subjects available from

such studies. For instance, in Section 5.2 we study the effects of traumatic brain injury on con-

nectivity of the human brain. The diffusion-weighted magnetic resonance imaging data consist of

longitudinal measurements of white matter integrity within 26 regions of interest in 34 subjects, 17 of

whom have been diagnosed with a traumatic brain injury (TBI). We aim to assess chronic structural

connectivity differences between the TBI and non-TBI groups using the sparse, irregularly-measured

longitudinal data — a goal for which few techniques currently exist. Further, quantifying model un-

certainty is important. For example, Greenlaw et al. (2017) used an imaging genetics example to

demonstrate dramatic differences in associations between genetic variations and brain imaging mea-

sures that might be identified when accounting for uncertainty in a model estimate versus using an

optimization-based point estimate alone.

2.1.2 Deep Learning On Multivariate Functional Data

Deep neural network, which has been successfully and widely adopted in both academic

and industrial, is originally inspired from biological neuron in human brain. The oldest neural

network is simulated with electronic circuits by Warren McCulloch and Walter Pitts to show how

neuron works in human brains in 1943 (McCulloch and Pitts, 1943). The application based on

deep neural network is emerging happens after 2010 thanks to the computational power of GPU and

large number of data produced from internet. The deep neural network architecture has experienced

multiple evolution, such as auto-differentiable infrastructure development (Abadi et al., 2015), novel

neural network architectures, novel data representation (graph neural network from Kipf and Welling

(2016), language model from Devlin et al. (2018), etc.), and so on. Based on large amount of

innovations and research work, modern neural network has become much deeper, and can almost

convert almost any kind of the data format into dense vector, which is called “embedding” within

deep neural network community, and thereby deep neural network is also named as “deep learning”

(LeCun et al., 2015). During last decade, more and more types of neural network architectures
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are proposed and specifically developed for different applications in variety of domains. Besides

the most common multi-layer proceptron, convolutional neural networks (Krizhevsky et al., 2012)

are further developed and used in computer vision, speech recognition (Abdel-Hamid et al., 2014);

For sequential data with temporal dynamic behaviors like time series and natural languages, the

recurrent neural networks (Rumelhart et al., 1985) are widely used, and long-short term memory

(LSTM) (Hochreiter and Schmidhuber, 1997) with gate units is developed to solve the long-term

dependence issue and avoid gradient vanishing problem; latest Transformers (Vaswani et al., 2017)

which leverage self-attention to weight the importance of the input data has even shown great

success among natural language processing (Devlin et al., 2018), computer vision (Dosovitskiy et al.,

2020), and even optimal control (Chen et al., 2021); Deep models also dominate the generative

models, such as variation auto-encoder (Kingma and Welling, 2013), generative adversarial network

(GAN) (Goodfellow et al., 2014), and diffusion model (Reddy et al., 2021), which can generate high

dimensional, complex data without any supervision.

Nevertheless, applying deep neural networks into functional data domain is emerging in the

recent years. Wang et al. (2021) propose to use multi-layer perceptron to estimate the mean function

of functional data and perform non-parametric regression. In the Deep-FDA proposed by Perdices

et al. (2021), they represent functional data by embedding through autoencoder neural network

for clustering task. Thind et al. (2022) propose functional neural network taking functional inputs

and covariates through multi-layer perceptrons with functional weighting based on basis expansion.

Wang and Cao (2022) utilized multi-layer perceptron to consume the multi-dimensional functional

data to de-noise and recover 2D signal or 3D neuroimaging data. Yao et al. (2021a) projected

functional data into embedding through adaptive basis function learned by micro-network in neural

network. According to our best knowledge, estimating functional graphical models based on deep

neural network gets limited attentions. Therefore, one goal of this thesis aim to investigate how to

leverage deep neural network in estimating functional graphical model.

On the other hand, we review and list the state-of-art methods for graphical models with

functional inputs as shown in Figure 2.1. The top panel in the Figure 2.1 illustrates the conventional

workflow used in Zhu et al. (2016); Qiao et al. (2019); Niu et al. (2021). First, they project functional

data into finite dimensional space through orthogonal basis functions (say of order M) to get the

score A with dimension pM , where p denotes the number of nodes. Then after transforming to

covariance matrix ATA with dimension pM × pM , they use method, like frequentest fglasso (Qiao
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(a)

(b)

(c)

(d)

Figure 2.1: The overview of different architectures among graphical models for multivariate func-
tional data. (a) The workflow of functional graphical models (Qiao et al., 2019; Niu et al., 2021;
Zhu et al., 2016) utilizes basis expansion (orthogonal basis representation or functional principal
components) combining with block coordinate descent or Bayesian regularization to infer a static
graph. (b) Zhang et al. (2021b) uses the basis expansion strategy as well, then they adopts Bayesian
regularization with a N-hypo mixture prior which allows the estimation of network can vary over the
functional domain. The basis expansion approach in top-two frameworks can involve any general
basis functions, such as functional principal component, wavelets, Fourier bases or B-splines. (c)
Yan et al. (2019) treats the discretely sampled data from subjects as time series and leveraging
grouping-based graph convolutional neural network for classification based on correlation matrices.
(d) Our proposed neural network architecture for estimating functional graphical models consists of
adaptive FPCA inspired by Yao et al. (2021a) and convolutional neural network.
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et al., 2019), or Bayesian estimators (Niu et al., 2021; Zhu et al., 2016), to infer the estimated

precision/adjacency matrix with dimension p × p. The second top panel demonstrates the data

forward pass to infer dynamic graph over a time interval (Zhang et al., 2021a). With the same

shape of input, they also employ basis function representation approach to have the scores but

have assumption of the independence of the bases across nodes. Similarly, then they transformed

data through ATA and utilize the Bayesian regularization techniques and yield M -pair estimated

precision matrices, which result in a time-varying graph. Furthermore, the third panel from the

top is overview of GroupINN architecture aiming at classifying multivariate functional data (Yan

et al., 2019). Instead of functional data analysis, they treat the discretely observed functional values

{X(t1), . . . , X(tT )} as a time series and obtain a correlation-based matrix for each subject. They

proposed a grouping-based graph convolutional neural network for a classification task.

In the setting of above state-of-the-art methods, two approaches that deal with infinite

dimensional functional data are included, i.e, discretization and basis expansion. Obviously, the

discretization of functions has drawbacks that it assumes the stationarity of the data over time.

The frequentest FGM (Qiao et al., 2019) and Bayesian FGM (Niu et al., 2021; Zhang et al., 2021b)

utilized standard dimension reduction then formulation on the (blockwise) precision matrix with

regularization techniques. The popular bases are functional principal component (Li and Hsing,

2010; Yao et al., 2005; Silverman, 1996) or mathematical basis like Fourier bases, B-splines, wavelets

(Cai et al., 2011; Aston et al., 2010). These basis functions and the number of bases need to be

pre-determined with domain knowledge or the empirical characteristics of applications. For example,

functional principal components work better for sparse and smooth functions (Baladandayuthapani

et al., 2014; Aston et al., 2010); Fourier bases are suitable for functions with stationary periods;

wavelets are more proper for irregular functions with spikes and discontinuities. The basis pre-

selection needs domain knowledge and is not an easy task. On the other hand, separable dimension

reduction task is aiming at retaining as much input information as possible and the basis function

representations does not involve task-related information, which may introduce bias into graph

inference. Yao et al. (2021a) embed adaptive FPCA into neural network and achieve end-to-end

fashion of training for regression task. In their framework the bases is data-driven and learned

specifically for their task.
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2.2 Bayesian Functional Graphical Models

In this section, we propose two different regularization schemes for functional graphical

models. The first approach we consider is a direct Bayesian version of the frequentist functional

graphical lasso proposed by Qiao et al. (2019). We propose also a functional graphical horseshoe, due

to the horseshoe’s known improvements upon the lasso’s tendency to over-shrink large coefficients

and under-shrink small coefficients in high-dimensional problems (Wang, 2012; Li et al., 2019).

Whereas most existing Bayesian approaches to covariance or precision matrix estimation assume

structure such as banded covariance (e.g., Banerjee and Ghosal, 2014) or decomposable graphs

(e.g., Rajaratnam et al., 2008; Xiang et al., 2015; Zhu et al., 2016), neither the Bayesian functional

graphical lasso nor the functional graphical horseshoe assume any structure other than sparsity. We

provide efficient Gibbs sampling algorithms for both of our proposed models, exploiting auxiliary

variables to produce a set of easily-sampled conditional distributions. Through extensive simulation

studies in Section 4.1, we evaluate both the classification accuracy and fidelity of the estimated

coefficients. We apply our proposed Bayesian functional graphical horseshoe to two motivating data

sets in Section 5.1 and 5.2, the EEG alcoholic versus control study presented by Qiao et al. (2019),

and a novel study of white matter connectivity between healthy patients and those with a history

of traumatic brain injury using data obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). The code for implementing our proposed algorithms is available at https://github.com/

jjniu/BayesFGM.

2.2.1 The Bayesian Fglasso

It is well known that frequentist optimization of objective functions may often be viewed

as maximum a posteriori (MAP) estimation under a Bayesian model, provided there exists a prior

density corresponding to the penalty term in the objective function. For the fglasso objective function

in (1.9), the Bayesian counterpart uses a prior on the precision matrix given by

π(Θ) ∝ exp

−λ∑
i̸=j

∥Θij∥F

 , (2.1)

where ∥ · ∥F denotes the Frobenius norm and Θij ∈ RM×M is the (i, j)th submatrix in Θ associated

with the conditional cross-correlation between node i and node j, i, j = 1, . . . , p; i ̸= j. Since
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the precision matrix is symmetric, we need only to consider the upper off-diagonal elements for

computational simplicity. As used in the Bayesian group lasso hierarchical representation (Kyung

et al., 2010), we have the following identity,

exp(−λ∥Θij∥F ) =

∫ ∞

0

(
1

2πτ2ij

)M2

2

exp

(
−∥Θij∥2F

2τ2ij

) (λ2

2

)M2+1
2

(τ2ij)
M2+1

2 −1

Γ
(
M2+1

2

)
× exp

(
−
λ2τ2ij

2

)
dτ2ij .

(2.2)

Thus, we can rewrite π(Θ) as a scale mixture of a multivariate normal distribution on the off-

diagonal elements. Let ωij = vec(Θij) ∈ RM2

, for i, j = 1, . . . , p, i ̸= j. Then we can introduce the

auxiliary latent parameters τ = (τij), so the prior in (2.1) can be attained as a gamma mixture of

normals, leading to the functional graphical lasso hierarchy

ωij |τ2ij ∼ NM2(0, τ2ijIM2); τ2ij ∼ Gamma

(
M2 + 1

2
,
λ2

2

)
. (2.3)

We assume the basis expansion is a lossless or approximately lossless representation from

the raw data gij(t) to aMij , where isomorphic transformation ensures that any basis coefficients can

be considered as transformed raw data rather than estimated parameters (Morris et al., 2011).

Denote with âi = (âTi1, . . . , â
T
ip)T ∈ RMp the estimated M -truncated functional principal component

scores for the observed functions on sample i, gi1(·), . . . , gip(·), where for simplicity we assume the

truncation level M is the same across all p nodes. When (gi1(·), . . . , gip(·)) are drawn from an MGP,

âi is assumed following an Mp-dimensional Gaussian distribution. Then the Bayesian fglasso model

can be expressed as

p(âi|Θ) = NMp(âi|0,Θ−1), i = 1, . . . , N

p(Θ|λ) =
1

C

Mp∏
ℓ=1

Exp

(
θℓℓ|

λ2

2

)∏
i<j

NM2(ωij |0, τ2ijIM2)Gamma

(
τ2ij |

M2 + 1

2
,
λ2

2

)
,

(2.4)

where θ11, . . . , θpp are the diagonal elements of Θ and C is a normalizing constant.

The hierarchical representation in (2.3) facilitates the use of conditional conjugacy in de-

riving a block Gibbs sampler for exploring the posterior distribution. For a fixed regularization
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parameter λ, the posterior distribution associated with the Bayesian fglasso model (2.4) is given by

p(Θ, τ2|S, λ) ∝|Θ|n2 exp

{
− tr(

1

2
SΘ)

}Mp∏
ℓ=1

λ2

2
exp

(
−λ2

2
θℓℓ

)

×
∏
i<j

(
1

2πτ2ij

)M2

2

exp

(
−∥Θij∥2F

2τ2ij

)

×


(

λ2

2

)M2+1
2

(τ2ij)
M2+1

2 −1

Γ
(
M2+1

2

) exp

(
−
λ2τ2ij

2

) 1Θ∈M+ ,

(2.5)

where S =
∑n

i=1 âiâ
T
i is the sample scatter matrix of the functional principal component (fpc)

scores. This representation allows us to adapt the block Gibbs sampling scheme proposed by Wang

(2012).

By assumption, the off-diagonal entries of each block submatrix on the main diagonal,

Θii, i = 1, . . . , p, are all zeros. Partition the precision and sample fpc score covariance matrix as

follows:

Θ =

Θ11 θ12

θT12 θ22

 , S =

S11 s12

sT12 s22

 (2.6)

where we define

θ12 =

θ̄12
0

 . (2.7)

With Θ permuted so that the last column / row corresponds to node j and score k, θ̄12 =

cov(âjk, (â1, . . . , âj−1, âj+1, . . . , âp)T ) ∈ RM(p−1) with âk ∈ RM the collection of fpc scores at node

k. The 0 ∈ RM−1 vector follows from âjk being uncorrelated with other scores at node j.

Define T =
(
τ2ij
)
p×p
⊗JM×M where τii = 0 for i = 1, . . . , p and JM×M = 11T is the matrix

with all ones. We similarly partition it as

T =

T11 t12

tT12 0

 , (2.8)

where

t12 =

t̄12
0

 (2.9)
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with t̄12 ∈ RM(p−1) defined analogously to θ̄12.

The conditional distribution of the nonzero variables in the last column (or row) of Θ is

p(θ̄12, θ22|Θ11,T,S, λ) ∝ (θ22 − θ̄T12Θ
−1
11 θ̄12)

n
2

× exp

{
−1

2
[θ̄T12D

−1
τ θ̄12 + 2s̄T12θ̄12 + (s22 + λ2)θ22]

} (2.10)

where Dτ = diag(t̄12) and Θ−1
11 ∈ RM(p−1)×M(p−1) is the cross covariance matrix associated with

the remaining p − 1 nodes. We make a change of variables, β = θ̄12, γ = (θ22 − θ̄T12Θ
−1
11 θ̄12), and

denote C = (D−1
τ + (s22 + λ2)Θ−1

11 )−1. This implies

β, γ|Θ11,T,S, λ ∼ NM(p−1)(−Cs̄21,C)Gamma

(
n

2
+ 1,

s22 + λ2

2

)
. (2.11)

All elements in the matrix Θ can be sampled by sampling one row and column at a time, permuting

Θ after each iteration. Due to the structure of âi, we first cycle through all columns corresponding

to the same node, then move to next node.

After complete updating of all the off-diagonal elements, the diagonal elements of Θ and

the shrinkage parameters τij need to be sampled. The full conditional distributions of (τ2ij)
−1 are

seen to be independently inverse Gaussian with mean
√

λ2

∥Θij∥2
F

and shape λ2. Put another way,

the reparameterized model based on one particular permutation of Θ under the Bayesian functional

graphical lasso is

β|Θ11,T,S, λ ∼ NM(p−1)(−Cs̄21,C)

γ|S, λ ∼ Gamma

(
n

2
+ 1,

s22 + λ2

2

)
1

τ2ij
|Θij , λ

indep.∼ Inverse Gaussian

(√
λ2

∥Θij∥2F
, λ2

)
, i, j = 1, . . . , p; i ̸= j.

(2.12)

Since γ > 0 with probability one, the positive definite constraint on Θ is maintained in each

iteration. The argument for the functional case is adapted from that given by Wang (2012). Suppose

at the current iteration the sample Θ(c) is positive definite, so all its pM corresponding leading

principal minors are positive. After updating the particular column and row of Θ by sampling

β and γ by (2.12), the new sample Θ(c+1) has the same leading principal minors as Θ(c) except

the one corresponding to the updated column/row, which is of order pM . It is easy to find that
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Algorithm 1 Bayesian functional graphical lasso Gibbs sampler

Input: Sum of the products matrix S, i.e., S = YTY.
Output: MCMC sample of the precision matrix Θ(1), . . . ,Θ(L).
Initialization: Set p to be number of nodes in graph, set initial values Θ(0) = I, Σ(0) = I, T(0) = J,
where I is pM × pM identity matrix and J is a pM × pM matrix with all elements equal to one
while Convergence criteria are not met do

for i = 1, . . . , p do
Partition Θ(l), S and T(l) into p × p blocks (focus on updating ith column block of Θ
corresponding node i)
for j = 1, . . . ,M do

1. Partition Θ(l), S and T(l) as in (2.6) and (2.8)
2. Draw γ(l+1) ∼ Gamma

(
n
2 + 1, s22+λ

2

)
3. Draw β(l+1) ∼ N(p−1)M (−C(l)s̄21,C

(l)),where C(l) = (D−1
τ

(l) + (s22 + λ)Θ−1
11 )−1(l)

4. Update θ
(l+1)
21 = (β(l+1),0), θ

(l+1)
12 = θT21

(l+1), θ
(l+1)
22 = γ(l+1) + βT (l+1)Θ−1

11

(l+1)
β(l+1)

end

Update T(l+1) by sampling (1/τ2ij)
(l+1)|Θ(l+1), λ ∼ Inverse Gaussian

(√
λ2

∥Θ(l+1)
ij ∥2

F

, λ2

)
for

i, j = 1, . . . , p
end

Store the realization of precision matrix Θ(l+1) Increment l← l + 1.
end

this last leading principal minor is det(Θ(c+1)) = γ det(Θ
(c)
11 ), where det(Θ

(c)
11 ) is the (pM − 1)th

leading principal minor of Θ(c) excluding the updated column and row. Thus γ > 0 means that

det(Θ(c+1)) > 0 and all leading principal minors of the updated matrix are positive. To ensure each

MCMC realization Θ(m) ∈ M+ for m = 0, 1, 2, . . ., it is only required that the chain is initialized

with Θ(0) ∈M+. Algorithm 1 details the Bayesian fglasso Gibbs sampler.

Given the MCMC output of a sample of precision matrices, Θ(1), . . . ,Θ(L), several inferential

procedures are possible for constructing an estimate of Θ. Continuous shrinkage priors do not put

positive probability mass on exact zeros in the precision matrix, and Carvalho et al. (2010) argue that

using (non zero) posterior means as the basis for inference is often preferable to binary thresholding

due to the estimator’s optimality under squared error loss. Nevertheless, it is sometimes necessary

to produce a sparse estimate with exact zeros, especially in the case of graphical models. Carvalho

et al. (2010) and Wang (2012) discuss some possible thresholding rules. In our case, we construct the

precision matrix (and thus graph) estimate by Bayesian false discovery rate (FDR) based inference

or confidence regions of {Θ̂ij}i<j , which is discussed in Section 2.2.3.

The Bayesian fglasso proposed here assumes that the regularization parameter λ is fixed,

meaning that it must be tuned and selected a priori. Cross-validation is computationally expensive,
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especially for Bayesian models implemented via MCMC. Further, Wasserman and Roeder (2009)

show that cross-validation based on the log-likelihood loss function tends to lead to overfitting and

unnecessarily dense graphs. Other than cross validation, approaches such as Akaike information

criterion (AIC), Bayesian information criterion (BIC), and stability selection (Meinshausen et al.,

2006) have been well studied in the graphical model literature. In the functional case, though,

AIC/BIC does not work well, since it is unclear how to calculate the effective degrees of freedom.

Thus, selecting an appropriate hyperparameter λ ahead of time is a nontrivial task. On the other

hand, in the Bayesian framework, we can (for instance) assign a gamma prior λ2 ∼ Gamma(s, r).

In this case, the full conditional for λ is

λ2|T,Θ ∼ Gamma

(
s + pM +

p(p− 1)(M2 + 1)

4
, r +

∑
l θll +

∑
i<j τ

2
ij

2

)
. (2.13)

This can in turn be incorporated into the Gibbs sampler given in Algorithm 1 as an additional

sampling step. To simplify the computation in algorithm, we assume identical M across j under the

assumption that the corresponding covariance operators share similar complexity structure.

In general, different functional variables may have different smoothness levels, we could

assume different truncated number Mj across j = 1, . . . , p. With different truncated number, Θij is

a rectangle block with size Mi×Mj and Θ has dimension
∑p

j=1 Mj . It is straightforward to modify

the algorithm with nonsquare blocks. The full conditional for λ is updated as

λ2|T,Θ ∼ Gamma

s +
∑
j

Mj +
∑
i<j

MiMj − 1

2
, r +

∑
l θll +

∑
i<j τ

2
ij

2

 . (2.14)

2.2.2 The Functional Graphical Horseshoe

In the presence of sparsity, as is often the case for precision matrices associated with GGMs,

it is desirable to have a shrinkage approach that yields exact or values close to zero for the true

null cases while simultaneously shrinking the truly non-zero cases as small as possible so that the

resulting estimates have little bias. To address this desire, Carvalho et al. (2010) proposed the

horseshoe prior. The prior has high probability concentration near zero and and is heavy-tailed,

properties that contribute to desired shrinkage behavior. Further, the prior can be expressed as

a scale mixture of Gaussian distributions and thus is easily incorporated into a Gibbs sampler for

posterior exploration. Carvalho et al. (2010) originally proposed the horseshoe for the sparse normal
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means model, but it was recently extended by Li et al. (2019) to estimation of GGMs. Li et al. (2019)

established that the resulting horseshoe estimates are close to be unbiased least-square estimates

with high probability and, further, that the Bayesian graphical lasso tends to be further away from

the least squares estimates than the graphical horseshoe (the least squared estimate does not exist

when n < p). In this section, we propose an extension of graphical horseshoe regularization to the

case of functional graphical models.

We define the functional graphical horseshoe by using horseshoe priors on each off-diagonal

block of the precision matrix and exponential priors on the diagonal elements. This yields the

following prior:

θℓℓ ∼ Exp(λ2
ℓℓ/2), ℓ = 1, . . . , pM

ωij
indep.∼ NM2(0, λ2

ijτ
2I), i, j = 1, . . . , p, i ̸= j

λij
iid∼ C+(0, 1), i, j = 1, . . . , p

τ ∼ C+(0, 1),

(2.15)

where ωij = vec(Θij) and C+(0, 1) represents the half-Cauchy distribution with density p(x) ∝

(1 + x2)−1, x > 0. As in other versions of the horseshoe prior, the global shrinkage parameter τ is

determined by the sparsity of the entire precision matrix, whereas the local shrinkage parameters λij

preserves blocks with ∥Θij∥ ̸= 0 by allowing them to be pulled toward zero considerably less than

the zero blocks. Unlike Li et al. (2019), but similar to Wang (2012), we specify an Exp(λ2
ℓ,ℓ/2) prior

for the diagonal elements of Θ. This is convenient for deriving the full conditional distributions and

does not affect inference since the graph is determined by the off-diagonal elements.

The full conditional distribution of Θ under the assumption of multivariate Gaussian like-

lihood is given by

p(Θ|λ,Λ, τ,S) ∝ |Θ|n2 exp

{
− tr(

1

2
SΘ)

}∏
l=1

λ2
ll

2
exp

(
−λ2

ll

2
θll

)
×
∏
i<j

NM2(ωij |0, λ2
ijτ

2I)C+(λij |0, 1)1Θ∈M+ .

(2.16)

where Λ = {λij}pi,j=1. The standard technique for creating a straightforward Gibbs sampler

with the functional graphical horseshoe is to use the realization of Makalic and Schmidt (2016)

that if x2|a ∼ inverse Gamma(1/2, 1/a) and a ∼ inverse Gamma(1/2, 1/A2), then, marginally,

x ∼ C+(0, A). Thus, we introduce latent variables νij and ζ to facilitate conditional conjugacy
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when updating the shrinkage parameters λij and τ .

Under the parameter-expanded hierarchical model, the full conditional distribution of the

precision matrix is given by

p(Θ|S,Λ, τ,V, ζ) ∝ |Θ|n2 exp

{
− tr(

1

2
SΘ)

}Mp∏
l=1

λ2
ℓℓ

2
exp

(
−λ2

ℓℓ

2
θll

)

×
∏
i<j

NM2(ωij |0, λ2
ijτ

2I)
∏
i<j

ν
− 1

2
ij λ−3

ij exp

(
− 1

λ2
ijνij

)
ν
− 3

2
ij exp

(
− 1

νij

)

× ζ−
1
2 τ−3 exp

(
− 1

τ2ζ

)
ζ−

3
2 exp

(
−1

ζ

)
.

(2.17)

We can use a data-augmented Gibbs sampler with the same matrix permutation as used for the

Bayesian fglasso proposed in Subsection 2.2.1.

In each iteration, the rows and columns of the Mp−dimensional matrices Θ, S, Λ =

{λ2
ij}p×p ⊗ JM×M , and V = {ν2ij}p×p ⊗ JM×M are partitioned the same way as in Subsection

2.2.1 to derive the full conditional distributions; i.e.,

Θ =

Θ11 θ12

θT12 θ22

 , S =

S11 s12

sT12 s22

 ,

Λ =

Λ11 λ12

λT
12 λ22

 , V =

V11 ν12

νT12 ν22

 ,

(2.18)

where the blocks are arranged as before. The derivation of full conditionals for the last column θ12

and θ22 is similar to the Bayesian fglasso by changing variables. The conditional distribution of

nonzero variables of the last column in Θ is

p(θ̄12, θ22|−) ∝
(
θ22 − θ̄T12Θ

−1
11 θ̄12

)n
2

exp

{
−1

2
[θ̄T12D

−1
τ θ̄12 + 2s̄T12θ̄12 + (s22 + λ2

22)θ22]

}
, (2.19)

where Dτ = τ2diag(λ̄12). Making a change of variables by β = θ̄12, γ = (θ22 − θ̄T12Θ
−1
11 θ̄12), and

letting C = (D−1
τ + (s22 + λ2

22)Θ−1
11 )−1 , then the full conditional of β, γ is

β, γ|− ∼ N(p−1)M (−Cs̄21,C)Gamma

(
n

2
+ 1,

s22 + λ2
22

2

)
(2.20)

As for the Bayesian fglasso, we first cycle through all columns corresponding to the same node, then
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Algorithm 2 Bayesian functional graphical horseshoe Gibbs sampler

Input: Sum of the products matrix S, i.e., S = YTY.
Output: Samples of precision matrix Θ̂.
Initialization: Set p to be number of nodes in graph, set initial values Θ = I, Σ = I, Λ = J, V = J,
where I is pM × pM identity matrix and J is a pM × pM matrix with all elements equal to one
while Given the current Θ ∈ M+ and τ , repeat for a large number of iterations until convergence
is achieved do

for i = 1, . . . , p do
Partition Θ, S, T and V into p × p blocks (focus on updating ith column block of Θ
corresponding node i and all the other nodes)
1. for j = 1, . . . ,M do

(1) Partition Θ(l), S, Λ(l) and V(l) as (2.18)

(2) Draw γ(l+1) ∼ Gamma

(
n
2 + 1,

s22+(λ
(l)
22 )

2

2

)
(3) Draw β(l+1) ∼ NM(p−1)(−C(l)s̄21,C

(l)),

where C(l) = (D
(l)
τ

−1 + (s22 + (λ
(l)
22 )2)(eΘ−1

11 )(l))−1

(4) Update θ
(l+1)
21 = (β(l+1),0), θ

(l)
12 = θT21, θ

(l)
22 = γ(l+1) + (β(l+1))T (Θ−1

11 )(l+1)β(l+1)

end

2. Update Λ(l+1), i.e., draw sample (λ2
ij)

(l+1) ∼ inverse Gamma

(
M2+1

2 , 1

ν
(l)
ij

+
∥Θ(l+1)

ij ∥2
F

2τ2(L)

)
3. Update V(l+1), i.e., draw sample ν

(l+1)
ij ∼ inverse Gamma

(
1, 1 + 1

(λ2
ij)

(l+1)

)
4. Update τ (l+1) and ζ(l+1), i.e., (τ2)(l+1) ∼ inverse Gamma

(
M2(p−1)p+2

4 , 1
ζ(l) +

∑
i<j

∥(Θij)
(l+1)∥2

F

2(λ2
ij)

(l+1)

)
,

ζ(l+1) ∼ inverse Gamma
(

1, 1 + 1
(τ2)(l+1)

)
end
Store the sample precision matrix Θ Increment l← l + 1.

end

move to next node. After the entire Θ is updated, the local and global shrinkage parameters λij and

τ need to be sampled. Through conditional conjugacy, the full conditional distributions of λij , νij , τ
2,

and ζ are quickly seen to be inverse Gamma. The condition Θ ∈ M+ is maintained during each

iteration as long as the starting value is positive definite, for the same reason that positive definite

constraint is satisfied in the Bayesian fglasso sampler. The full Gibbs sampler is summarized in Al-

gorithm 2. In the case of different truncated number of principal components for each node, the algo-

rithm is straightforward. The block Θij is rectangle and (λ2
ij)

(l+1) ∼ inverse Gamma(
MiMj+1

2 , 1

ν
(l)
ij

+

∥Θ(l+1)
ij ∥2

F

2τ2(L) ) and (τ2)(l+1) ∼ inverse Gamma
(∑

i<j MiMj+1

2 , 1
ζ(l) +

∑
i<j

∥(Θij)
(l+1)∥2

F

2(λ2
ij)

(l+1)

)
.

2.2.3 Bayesian FDR-based Inference and Confidence Regions

Our goal is to identify significant conditional dependence between different nodes, which

can subsequently be mapped into edges in the estimated graph. An intuitive way is to identify
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blocks with the Frobenius norm of block at least δ, which could be a practical threshold. Another

way is to identify significant blocks by multiple statistical hypothesis tests. The former way ignores

the variability in the data, while the latter one only focus on statistical significance and ignores the

practical significance. We consider the direct posterior probability approach; i.e., Bayesian FDR-

based inference (Storey, 2003; Morris et al., 2011) to achieve the goal in a way considering both

statistical and practical significance.

First, we compute the edge strength as ∥Θ̂ij∥F by (1.8) for i, j = 1, . . . , p for each sample

of the precision matrix. Then we define a threshold δ as practical significance, which could be

determined by or associated with some prior knowledge such as the desired sparsity of graph. For

example, the value of δ for a desired sparsity level of 95% will be higher than the one for the desired

sparsity level is 90%. Further, we could compute the posterior probability of ∥Θ̂ij∥F at least δ

intensity as

pδij = Pr{∥Θ̂ij∥F > δ} ≈
L∑

l=1

1

L
I{∥Θ̂l

ij∥F > δ} (2.21)

for i, j = 1, . . . , p, here L is length of MCMC output. The quantities 1 − pδij can be considered

as a natural “Bayesian posterior p-value” or “positive false discovery rate” analogue of p-value

(also named “q-value” by Storey (2003)), defined as the Frobenius norm of a block in precision

matrix with at least δ. Given a significance level α, we then identify the significant blocks by

E = {(i, j) : pδij > ϕδ
α}, where ϕδ

α is a threshold on the posterior probabilities that controls the

average Bayesian FDR at level α. Follow the similar strategy from Morris et al. (2011), we sort the

pδij by descending order to yield pδ(ij). Then

ϕδ
α = pδ(i∗j∗), where (i∗, j∗) = arg max{(i, j) :

1

B

∑
(ij)

(1− pδ(ij)) ≤ α} (2.22)

(i∗, j∗) is the last index for which the cumulative average of the sorted local FDRs 1 − pδij is less

than or equal to average Bayesian FDR of α.

Another method to identify significant blocks among blockwise precision matrix is credible

regions by Mahalanobis distance (McLachlan, 1999). Let θ̂ij be vectorized representation of Θ̂ij .

For each edge, we have θ̂
(1)
ij , . . . , θ̂

(L)
ij posterior samples, then we could have sample covariance Σθij .
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The approximate (1− α)× 100% joint confidence region for θ̂ij is

Rij = {θ̂ij |(θ̂ij − θ̄ij)
T Σ−1

θ̂ij
(θ̂ij − θ̄ij) ≤ q∗} (2.23)

where q∗ is the smallest possible q such that

L∑
l=1

I{(θ̂ij − ¯̂
θij)

T Σ−1

θ̂ij
(θ̂ij − θ̄ij) ≤ q} ≥ L(1− α). (2.24)

The approximate volume of confidence regions with level (1−α)×100% (hyper-ellipse) is proportional

to χ2
p′α|Σθ̂ij

| 12 , where p′ is the dimension of θ̂ij .

2.3 Deep Functional Graphical Models

In this section, we explore a neural network based framework to estimate functional graph-

ical models. Conventional methods require intermediate steps to generate basis representation of

functional data, for example, PCA scores. We wonder if there exist a learnable mapping between

functional data and basis function, so that we could avoid manually tuned basis transformation. In

addition, it is ideal to convert every components in the processing pipeline to be differentiable so

that we could leverage popular deep neural network to optimize the parameters automatically, also

called end-to-end differentiation. We propose an end-to-end functional graph estimation based on

neural network trained with risk minimization. We present our approach in the following parts: Sec-

tion 2.3.1 describe the empirical risk minimization and how we use synthetic data generation process

to convert a inference problem to be a learning problem; Section 2.3.2 demonstrate how we design

our neural network architecture to make entire training end-to-end differentiable, and also discuss

the training objective of our method. Through simulation studies in Section 4.2, we evaluate our

proposed model through area under the ROC curves (AUC). In Section 5.1, we apply our proposed

deep model to EEG alcoholic vs control study presented by Qiao et al. (2019).

2.3.1 Empirical Risk Minimization and Synthetic Data

We have three challenges to leverage deep learning in functional graph estimation: 1) one

constraint is that the data such as EEG and DTI is limited, whereas the neural networks can easy
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get overfitting since well developed neural network are data hungry; 2) our task is an inference task

that we don’t have the ground truth label, and our goal is to infer the underlying structure from mul-

tivariate functional data. This conflicts with the design of modern neural network: neural networks

need to be trained through auto-differentiable system (for example, TensorFlow, PyTorch, etc.)

with supervision; 3) we aim to consume the functional data directly instead of using conventional

dimension reduction techniques (ex: FPCA) to train the network end-to-end.

To overcome the first two issues, we leverage the graph estimation framework proposed

by Belilovsky et al. (2016) and adapt it to the functional settings. They assume the mapping

between covarianve matrix and graph structure is learnable. They propose to use neural network to

approximate this mapping and train with synthetic data so that it can produce ground truth, where

the synthetic data follows the assumption about the real data and graph structure. Therefore, we

convert a inference task to be a prediction task. To input the functional data directly, we leverage

the idea of Yao et al. (2021a), which is a neural network based adaptive FPCA. Therefore, our

proposed architecture is demonstrated in last panel of Figure 2.1. Instead of separable workflows

in the above three methods of Figure 2.1, our workflow is fully neural network based and can be

end-to-end trained.

Considering the functional dataset g(t) = {gij(t)}N,p
i=1,j=1 consisting of N i.i.d. samples with

p functional variable gij(t) individually. Based on (1.6) and (1.7), we have

Cjj′(s, t) ≈ cov
(
gMij (s), gMij′(t) | gMk (·), k ̸= j, j′

)
=

M∑
k=1

σjj′kϕk(s)ϕk(t) (2.25)

where σjj′k = cov(ajk, aj′k|ahk, h ̸= j, j′), which is the covariance matrix of PCA coefficients pro-

jected on kth basis ϕk(t) and Σk = (σjj′k)p×p. We aim to estimate the connectivity between different

nodes based on Cjj′(s, t). Assuming the functional data gij(t) can be lossless expressed through k

basis functions, the connectivity could be defined as

Yjj′ =


1 σjj′k ̸= 0 for ∀k,

0 otherwise.

(2.26)

Among all existing methods, which provide estimator f from Σ to Y , they first calculate the PCA

scores based on pre-determined basis functions, then use the covariance of PCA scores as input to

28



Algorithm 3 Procedure of Generating Synthetic Data Set

for i = 1, · · · , N do
sample Gi ∼ P(G)
sample Θk ∼ P(Θ|G = Gi) for k = 1, · · · ,K
for k = 1, · · · ,K do

Ak ←− {aik ∼ N(0, (Θk)−1)}
end

gij(t) ←−
∑K

k=1 aijk · ϕk(t) for i = 1, · · · , N, j = 1, · · · , p, where ϕk(t) is the pre-specific basis
function
Construct (gi(t), Yi) pairs from (Gi, gi(t))

end

infer the graph. In the contrast, by (2.25) and (2.26) we could consider the problem of graph learning

by building the mapping from input G(t) to edge connectivity Y, i.e.

f : G(t)→ Y (2.27)

As we discussed in Section 1.4, the best f is the one with minimum risk E(L(f(G(t),Y ))). To pick

f among possible mappings, we follow the framework for graph discovering proposed by Belilovsky

et al. (2016). First, we need to generate a number of multivariate functional dataset with known

connectivity Y . These graphs may have some specific sparsity or structures. Then the best mapping

could be chosen by taking these synthetic data as input. Finally, we apply the mapping f on the

real data to get the estimated connectivity Ŷ . In other words, we convert the graph learning to an

edge classification problem based on pre-generated synthetic data. This method is attractive since

we have the ground truth, which can be used to fit neural network.

As discussed in Section 1.1, the nonzero element in the precision matrix corresponds to the

connection between nodes. According to equation (2.26), edges in the graph are related to covariance

of basis coefficients on the basis functions, i.e. Yjj′ = I[σjj′k ̸= 0,∃k]. Therefore, in this case,

determining the underlying graph of the multivariate functional dataset is equivalent to determine

the precision matrix Θk associated to graph projected on each basis. In summary, we generate

gij(t) =
∑K

i=1 aijk ·ϕk(t) for i = 1, . . . , N and j = 1, . . . , p to consist N ×p functional dataset, where

ϕ(t) = {ϕk(t)}Kk=1 was K-dimensional pre-defined basis functions and aijk is element of aik sampled

from multivariate Gaussian distribution with covariance matrix Σk. Θk = (Σk)−1 determine the

graph structure and could be sampled among possible graphs with specific characteristics. The

procedure is summarized in Algorithm 3.
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The synthetic functional data could be adaptive to any types of domain knowledge or the

real world data which is ground truth. For example, we could simulate synthetic data with desired

sparsity level, graph structure, and also according to the property of functional data we could use

appropriate basis functions. The synthetic data implicitly contains the prior information of graph.

The prior information consists of the possible set of mapping f and make empirical risk more closely

to the true risk. In the following section, we discuss to design a deep neural network with functional

dataset as input to approximate the best edge classifier f to minimize the empirical risk.

2.3.2 Deep Functional Graphical Models

The architecture of our network (See Figure 2.2) is inspired by the properties of functional

data illustrated in (2.25) and (2.26). Our input is a multivariate functional dataset and it has two

main properties: 1) Infinite dimension. Unlike regular scalar data or time series, functional data

such as EEG signal or fMRI is intrinsically infinite dimensional and generated by smooth underlying

process. 2) Multivariate. Multivariate functional data is a set of functions for different nodes. The

nodes are areas of interest from a space. Nodes may not be isolated and some nodes may form a

meaningful subset. The graph information are sufficiently contained in the covariance matrices of

basis scores. Our full network is visualized in Figure 2.2 consisting of Basis layer and convolutional

layer. The basis layer helps to consume infinite functional data and project the graph information

on the adpative basis functions. Further, the convolutional neural network is employed to take the

covariance matrices to estimate the edge probability.

In order to make a model to consume the functional data set, we need to have a dimension

reduction module like basis expansion. The conventional basis expansion is to project the function

onto several pre-selected bases, i.e.,

aijk =

∫
βk(t) · gij(t)dt (2.28)

and assume the truncated basis coefficients aij = (aij1, · · · , aijK) are lossless contained the informa-

tion of functional data gij(t). Unlike traditional pre-selection of basis functions, {βk(t)}Kk=1 in the

architecture are approximated by K multi-layer perceptrons. The details of basis node is illustrated

in Figure 2.3. The multi-layer perceptions take time point t, a 1-dimensional scalar value, as input.

The inner product of approximated basis function β̂(t) and functional data gij(t) (over identical
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Figure 2.2: Deep FGM overview: the functional data set (N × p× T ) is fed into basis layer. After
basis layer, each curve conducts inner product operation with basis function through basis layer,
then a aggregated covariance Σ̂ ∈ Rp×p×K are convoluted by dilated-2D convolutional layer. Finally,
we output the edge estimation based on neural network prediction. Basis layer consists of K basis
nodes, which are multi-layer perceptron illustrated in Figure 2.3. “CNN” stands for convolutional
neural network which stacks multiple convolutional layer demonstrated in Figure 2.4.

time grid) then produces the estimated basis coefficients. This method was first proposed by Yao

et al. (2021a) for functional data regression problem, where regularization term for βk(t) could be

added into loss function to achieve sparse and orthogonal bases.

Our architecture differ from other neural network that our input is the whole data set instead

of individual data point. In other words, we could understand one functional data set as a data point

in our case. Therefore, as the input dimension is N × p× T , where N is number of replication, p is

the number of nodes and T is the number of time points collected for each function. Each function

gij(t) goes through basis layer and then we could have the estimated basis scores Â = {Âk}Kk=1 with

dimension N × p × K. Further, transformation of ÂT
k Âk are made separately for each basis node

output. The aggregated “covariance” Σ̂ = {ÂT
k Âk}Kk=1 with dimension p× p×K then is the input

for the next convolutional layer.

We use convolutional neural network to take the Σ̂, which represents the graph information

of the input and is sufficient for edge classification based on conventional graph learning methods

(Zhu et al., 2016; Qiao et al., 2019; Zhang et al., 2021a; Niu et al., 2021). The motivation of using

convolutional neural network is that Σ̂ composes of K 2D arrays containing covariance matrix based
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Figure 2.3: The kth basis node in the basis layer, where MLP indicates multi-layer perceptron with
3 hidden layers. ⟨·, ·⟩ denotes inner product operation (Yao et al., 2021a). The input of the basis
node is the function gij(t), and its output is the basis coefficient corresponding to the learned basis.

on K basis functions. This input is similar with image data, which is a 3 slices of 2D array with R,

G, B channels. In addition, convolutional neural network has characteristics of local connections,

shared weights and stacked multiple layers (LeCun et al., 2015). We found these properties are im-

portant for graph learning, since we should leverage the local connection characteristic. Additionally,

convolutional neural network use small size of shared kernels, so that the number of parameters is

highly reduced compared with traditional spectral graph theory (Chung and Graham, 1997). Oth-

erwise, the number of parameters would be exponentially increased with number of nodes, which

is computationally intractable. Furthermore, convolutional neural network could contain multiple

layers which capture the hierarchical patterns of graphs. Therefore, we apply convolutional neural

network to graph structure learning. Note that adopting convolutional neural network to learn graph

structure is not first proposed in our work. Scarselli et al. (2008) proposed the concept of graph

convolutional neural network (GCN), which is very popular to process graph data. Belilovsky et al.

(2016) also consider convolutional neural network as graph estimator for multivariate scalar data

case. Their work use 2D convolution neural network instead of standard graph convolution network

since they pre-compute the covariance matrix as data representation. To be more specific, Σ̂ flows

into a standard convolutional neural network, shown in Figure 2.4. We use multiple layers of 2D

convolution with RELU activation and dropout allowing us for fast training and avoid overfitting.

Lastly, the feature representation is fed into a last 1× 1 convolutional layer with sigmoid activation

function to predict edges as binary classification task, which classify non-zero entries in the desired

precision matrix.

The architecture (as shown in Figure 2.2) consists of two types of layers: a basis layer and a
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Figure 2.4: A convolutional module stacked with 2 hidden convolution layers and a dense layer with
sigmoid activation function. The input of the CNN module is the covariance of basis coefficients
Σ̂ ∈ Rp×p×K , and its output is the predicted edge probability.

convolutional layer. The input is the functional data set g(t) ∈ RN×p×T , where N represents number

of samples, p denotes number of nodes in each graph, and T denotes the number of measurement

over time. We fetch g(t) into the basis layer, where basis layer is shown in Figure 2.3. We leverage

basis layer implementation from Yao et al. (2021a). The basis layer functions as dimension reduction

and the output is {Ak}Kk=1 that represent the estimated basis scores based on the adaptive basis

functions. Compare with conventional methods like PCA scores, our learned basis function offer the

powerful non-linear approximation capability and it is fully data-driven.

Then, we transform the basis layer output Âk to be a covariance matrix by ÂT
k Âk. We fetch

the covariance matrix into a multiple layers of convolutional operations. The convolution neural

network aims to predict the graph precision matrix, where each element in the precision matrix

represents the corresponding edge connection. We stack multiple 2D convolution layer as shown in

Figure 2.4. The detailed forward pass procedure is described in Algorithm 4.

During training phase, our goal is to reconstruct target graph from our synthetic data. We

use binary cross-entropy loss as following:

L(fW (g(t)), Y ) =
∑
i ̸=j

(Y ij log(f ij
W (g(t))) + (1− Y ij) log(1− f ij

W (g(t)))) (2.29)

where Y is the ground truth of edge connection and fW indicates the non-linear mappings between

G(t) and Y which is approximated through our proposed Deep FGM. In order to obtain the ground

truth, we generate synthetic data to emulate data sparsity and Gaussianity with different graph

topology structures (ex: star, cluster, etc.) since deep models are data hungry. The detailed data

generation flow can be found at Algorithm 3. Note that it is obvious that the model generalization is

heavily relied on synthetic data generation process. Therefore, any prior knowledge can be injected
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Algorithm 4 Deep Functional Graphical Model Forward Pass

Input: multivariate functional dataset {gij(t1), . . . , gij(tT )}, for i = 1, . . . , N, j = 1, . . . , p.

Output: estimation for edges Ŷ .
Parameters: kth Basis layer neural network fWβk with weights W βk , for k = 1, . . . ,K, convolua-
tional layer fW c with weights WC , integration weights w1, . . . , wT for trapezoid rule;
for i = 1, . . . N do

for j = 1, . . . , p do
for k = 1, . . . ,K do

âijk ←−< βk(t), gij(t) >=
∑T

l=1 wl · fWβ
k

(tl) · gij(tl)
end

end

end

Âk ←− (âijk)N×p, for k = 1, . . . ,K

Σ̂←− (ÂT
1 Â1, . . . , Â

T
KÂK)

Ŷ = fW c(Σ̂), where Σ̂ has dimension p× p×K.
return Ŷ

into synthetic data generation process to guarantee in-distribution prediction during testing. Based

on Equation 2.29, we use batch gradient descent as optimizer to train our network parameters using

Tensorflow (Abadi et al., 2015). Detailed training configurations can be found in Chapter 4.

After training, we obtain the optimized network parameters. During inference phase, we

fetch the raw functional graphical data, and our network propagate it through adaptive basis layer

to generate basis scores. Then, a covariance matrix which is transformed from basis scores flow

through the convolution neural network to infer the corresponding graph.
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Chapter 3

Causal Inference with Functional

Confounding

In this chapter, we discuss the causal effect estimation with the functional covariates. First,

we introduce background and current development of causal inference with application of machine

learning in Section 3.1. In Section 3.2, we review the potential outcome framework and introduce two

basic causal models, S-learner and T-learner. Further, In Section 3.3 the functional regression which

is the basic method to handle functional covariate is discussed. Lastly, we propose causal models

for functional confounders with implementation of neural networks in Section 3.4 and validate the

proposal in Section 4.3 through simulation studies.

3.1 Causal Inference with Machine Learning

It is well known that the causality is different than statistical correlation. The causality

can imply correlation, but in the contrast, correlation cannot infer causality. If two variables, say X

and Y , are correlated, it may have following possibilities: X causes Y ; Y causes X; X and Y have

common causes but they do not cause each other; etc. Let’s illustrate differences between causality

and correlation through the famous ice cream and drowning example. In the most cities, the daily

sales of ice cream display an increasing trend with the daily rates of drowning. Can we conclude that

ice cream leads to the drowning? Apparently, such conclusion does not logically make sense. In fact,
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people have more ice cream when the temperature is increasing, and people are more willing to go

swimming when temperature is high, which causes the number of drowning increasing. Therefore,

there exists no direct causal relationship between ice cream and drowning rate.

Pearl and Mackenzie (2018) describes problems of causal inference as a hierarchy of three

types with increasing difficulty (often called “Causal Ladder”): 1) prediction, 2) intervention, and

3) counterfactuals. The first ladder is prediction, which is a typical task of the supervised machine

learning, i.e. estimating P (y|x). P (y|x) is a conditional distribution which can be calculated from

P (y|x) = P (x,y)
P (x) which indicates the association between X and Y from observable data. However,

if two variables are correlated, we cannot infer that the change of X determines the change of Y .

The second level is intervention. In the concept of intervention, we are interested in that whether

the outcome variable Y changes when we perturb the variable of interest X, i.e. estimating do-

calculus P (y|do(x)) (Pearl, 2009) which is different with P (y|x). More specifically, by performing

an intervention on a system we could change its distribution, and thereby the original distribution

P (y|x) may not be valid. Considering the above example, let X be the ice cream sale rate and Y be

the drowning rate in a particular city, and we assume the drowning rate functions properly P (y|x)

should be a unimodal distribution centered around βx. P (y|do(x)) would not be dependent on x

and is generally the same as p(y), which is the marginal distribution of the drowning rate. The

is because an exogenous intervention of ice cream sale rate (say, ice cream duty free policy) won’t

actually cause the drowning rate to be increased or decreased. Since that the do caculus without

intervention is equivalent to the original distribution, the intervention subsumes the prediction,

justifying its higher level in the ladder. At the highest level – counterfactuals, we are allowed to ask

questions like “Given the variables Z were observed to be z, if variables X were forced to be x then

how likely is that variables Y would be y”. Here the question is conditional on the new information

Z. For example, “Given that Ben and John did not attend the seminar yesterday, if Ben joined the

seminar, how likely John would also come?” Note that by setting Z as empty, we recover a family of

interventional questions. Thus, the counterfactuals subsume the intervention, which is categorized

as the top of the causal ladder. As our modeling evolving from prediction to counterfactual along

the causal ladder, we need more sophisticated data and methodologies.

In applications where we try to control or choose x based on the conditions we estimated

(the interventional level), we should use P (y|do(x)) instead of P (y|x). For example, we are not

merely interested in the association between treatment X and outcome Y . We prefer to measure

36



the effect of the treatment and proactively choose the treatment given our understanding of how

it affects the outcome. Similar applications occur in a variety of the real-world scenarios, such as

online advertising, online recommendation system, reinforcement learning, etc.

The effective way to estimate P (y|do(x)) is randomized controlled experiments or A/B

tests where x is controlled. In the randomized experiments, we measure the outcome differences

between treatment and control group to infer causality. Nevertheless, the true randomized controlled

experiments may be impossible or at least impractical in many situations. For example, it is unethical

in the experiment that forcing some subjects to smoke and the other to use placebo to study the effect

of smoking on health. On the other hand, the randomized experiments only study the average of

subjects, and it is not applicable to explain the causal effect for individuals. Instead of randomized

experiments, we can estimate P (y|do(x)) through observational study. That means we have no

control or intervention over subjects, and we simply observe the subjects and collect the observational

data. But the core issue is we do not know the counterfacutal outcome. In other words, we do not

know whether the subject would have a different outcome if it took a different treatment.

There are mainly two research efforts on causal inference from observational data: potential

outcome framework (Rubin, 1974) and structural causal models (Pearl, 2009). The potential out-

come model (also called the Neyman-Rubin causal model) is the most widely used framework for

causal inference. In the randomized experiments, we use expected differences of outcome between

treatment and control group to measure causal effect. But in observational study, it is impossible to

observe both potential outcome simultaneously. This “missing data” issue is a fundamental problem

in causal inference through observational study. Under the potential outcome framework, the miss-

ing counterfactuals are estimated from observational data then causal effect is calculated. Structural

causal model is associated with a directed acyclic graph (DAG), which is a probabilistic graphical

model that encodes the flow of data generating process. Nodes in the graph are divided into endoge-

nous and exogenous variables, while each edge represents causal relationship among nodes modeled

by simultaneous structural equations (Pearl, 2009). We can study the dependence or conditional

dependence between variables through DAG based on observational data.

With the emerging development of machine learning, more powerful machine learning meth-

ods are applied in causal inference to measure the causal effects, understand the heterogeneous im-

pact of interventions, and design targeted assignment mechanisms. These machine methods includes

regularization methods (LASSO) (Bloniarz et al., 2016), tree-based methods (CART) (Athey and
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Imbens, 2016), ensemble learning (random forest) (Wager and Athey, 2018), Bayesian nonparmatric

(BART, Gaussian Process, Dirichlet Process) (Chipman et al., 2010; Alaa and Van Der Schaar,

2017; Schwartz et al., 2011), and also popular deep learning methods such as multi-layer percep-

tron (MLP), convolutional neural network, Recurrent neural networks (RNN), graph neural network

(GNN), generative adversarial network (GAN), representation learning, reinforcement learning, etc.

(Koch et al., 2021). Recalling that machine learning models are initially designed for prediction tasks

with large and complex data, where it is not inherently designed for causal inference, one has to

leverage existing machine learning tools in a delicate way so that we could overcome key challenges

in causal inference, such that overlap, unconfoundedness, balance, etc (Yao et al., 2021b).

Machine learning as a tool extends the causal inference on complex data, such as text, time

series, networks, and images. Bica et al. (2020) introduce the Counterfactual Recurrent Network

(CRN), which is a sequence-to-sequence model to estimate time-varying treatment effects by RNN.

Cheng et al. (2021) propose to estimate the long-term treatment effect through representation learn-

ing and two heads of CFRNet (Shalit et al., 2017) with an RNN by conditioning on time-varying

confoundings. In network domain, Ma and Tresp (2021) explore the causal effect estimation within

the TARNet framework by learning node representation via GNN, which aggregates treatment in-

formation of local neighbors and the graph structure separately. In summary, variety of research

on latent confounding encoded in texts, images, graph and so on, are investigated in the causal

inference area based on CNN, RNN, GNN, even large pre-trained language model (Devlin et al.,

2018). More detailed examples can be found in Koch et al. (2021).

Within the existing framework of causal models, for time-varying data, most studies explore

the causal effects in the assumption of data stationarity by using time-series analysis (Lim, 2018;

Bica et al., 2020; Cheng et al., 2021). However, existing methods lacks of considering non-stationary

cases, such as functional data ECG, EEG, fMRI, etc. Hence, the issue of how to estimate the causal

effect and recover the individual treatment effect in the presence of functional confoundings is still

under-developed, to our best knowledge.

In this work, we propose to investigate the causal effect estimation conditioning on the

functional confounders under the general interference through functional data analysis. First, we

review the potential outcome framework and the three key assumptions for causal inference, and

functional regression in functional data analysis. Then we explore three causal models S-learner,

T-learner and TARNet, integrating with the basis expansion in the functional data analysis. Our
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experimental results in Section 4.3 show that the proposed methods could accurately estimate the

causal effects.

3.2 Potential Outcome Framework

As we know, the ideal scenario to measure causal effect is applying different treatments to

the same group. However, such scenario can only be achieved by a randomized controlled experiment.

In the randomized experiment, we control the treatment assignment such that

{Yi(0), Yi(1) |= Wi}, (3.1)

where we define outcome Yi ∈ R and treatment assignment Wi ∈ {0, 1}. In the randomized experi-

ment we can have that

ATE = E[Yi(1)]− E[Yi(0)]

= E[Yi(1)|Wi = 1]− E[Yi(0)|Wi = 0]

= E[Yi|Wi = 1]− E[Yi|Wi = 0]

(3.2)

where ATE stands for the average treatment effect, and our goal is to estimate the ATE. According

to the equation above, it is highly impossible to have both Yi(0) and Yi(1) at the same time, but

we can consistently estimate ATE in a randomized experiment. In this work, we mainly focus on

average treatment effect estimation in the presence of functional confounders, as shown in Figure 3.1.

For example, the outcome Yi could be the quality-adjusted life years, the treatment Wi is smoking

quitting therapy and the covariantes Xi(t) are electrical medical records over a time period including

weight, blood pressure etc. In this case, a therapist may prescribe the treatment to patients with

weights or blood pressure change, and we want to study the causal effects in the setting where the

treatment assignment may be associated with time-varying pre-treatment covariantes X(t). If we

directly use the differences of the average of observed outcome between treated and control group, it

may lead to spurious effects like the famous Simpson’s paradox. In addition, the confounders affect

the treatment assignment that lead to selection bias, which is a phenomenen that the distribution

of the treatment and control group are not matched. Thereby, selection bias would also bias the

counterfactual outcome estimation. How to ease the bias caused by confounding variables is the one

of the most important topics in causal inference, a procedure called deconfounding. If treatment
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Figure 3.1: The three-variable causal DAG with functional confounders. W represents the treatment
assignment indicator; X(t) represents the functional covariate; Y represents the potential outcome.

assignment Wi is as good as random conditioning on X, it is sufficient to estimate the average causal

effect by controlling covariates, i.e.,

{Yi(0), Yi(1) |= Wi}|Xi(t) (3.3)

This assumption is often named as unconfoundedness assumption (Rosenbaum and Rubin, 1983).

Besides, two other commonly used assumptions are stable unit treatment value assumption (SUTVA)

and positivity. SUTVA contains consistency assumption and non-interference assumption: consis-

tency assumes that the observed treatments is the same as the potential interventions we are in-

terested in; the non-interference assumes the independence of each subject. On the other hand,

positivity assumes that for any value of covariate, treatment assignment is not deterministic, be-

cause it will be meaningless to study the treatment effect with deterministic treatment assignment.

Given the unconfoundedness we can express the ATE in terms of conditional outcomes as

ATE = E[Yi(1)− Yi(0)]

= E[E[Yi(1)|Xi(t)]− E[Yi(0)|Xi(t)]]

= E[E[Yi(1)|Xi(t),Wi = 1]− E[Yi(0)|Xi(t),Wi = 0]]

= E[µ(1)(Xi(t))− µ(0)(Xi(t))]

(3.4)

where µ(w)(Xi(t)) = E[Yi|Xi(t),Wi = w]. This directly suggests that estimation strategy, i.e.,

ˆATE =
1

n

n∑
i

(
µ̂(1)(Xi(t))− µ̂(0)(Xi(t))

)
(3.5)
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We could consider machine learning methods such as linear regression, random forest, or neural

networks to fit the potential outcome functions µ(w)(Xi(t)). Usually this type of model deconfounds

through regression on covariates and blocks the back-door path between confounders and outcome,

also called outcome modelling. Recall in the Figure 3.1, the direct path from W to Y is the causal

path, whereas the back-door path is the path “W −X(t)− Y ”.

In contrast, we could also block the back-door path between treatment and confounders,

which introduces the treatment modelling. The most important tool in treatment modelling is

propensity score,

e(x(t)) = P (Wi|Xi(t) = x(t)) (3.6)

i.e., the propensity score is defined upon conditional probability of being treated. We can use the

variability of the propensity score to measure how far we are from a randomized experiment. Under

the unconfoundedness assumption, we can express the average treatment effect as

ATE = E[Yi(1)− Yi(0)]

= E

[
WiYi

e(Xi(t))
− (1−Wi)Yi

1− e(Xi(t))

] (3.7)

which implies the following unbiased inverse propensity weighted estimator for the average treatment

effect, i.e.,

ˆATEIPW =
1

n

n∑
i=1

(
WiYi

ê(Xi(t))
− (1−Wi)Yi

1− ê(Xi(t))

)
. (3.8)

where ê(X(t)) could be estimated through machine learning methods like logistic regression, or

neural networks.

However, the accuracy of potential outcome estimation and especially propensity score esti-

mation will affect the average treatment effect estimation (Imai and Ratkovic, 2014). Double robust

modelling (Funk et al., 2011) is a method that combines estimates from both the outcome modelling

µ̂(w)(x(t)) and treatment modelling ê(x(t)), so that the estimation is robust even when one of the

outcome models or propensity score is not appropriate. This methods is also named as augmented

inverse propensity weighting (AIPW). Given estimates µ̂(w)(x(t)) and ê(Xi(t)) from any machine
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learning methods, the estimated average treatment effect can be expressed as

ˆATEAIPW =
1

n

n∑
i=1

(
µ̂(1)(Xi(t))− µ̂(0)(Xi(t))+

Wi

ê(Xi(t))

(
Yi − µ̂(1)(Xi(t)

)
− 1−Wi

1− ê(Xi(t))

(
Yi − µ̂(0)(Xi(t))

) (3.9)

In the above equation, the term 1
n

∑n
i=1

(
µ̂(1)(Xi(t))− µ̂(0)(Xi(t))

)
is the direct outcome estimator

and the rest term is an IPW estimator applied to the residuals. In another words, AIPW employs

propensity score re-weighting on the residuals to debias the direct outcome estimate. For more details

about the application of machine learning and deep learning methods in causal effect estimation, we

refer to Chernozhukov et al. (2018); Farrell et al. (2021).

Instead of using population-level ATE, we are also interested in how treatment effects vary

across people. The individual treatment effect of the ith subject is defined as

ITEi = Yi(1)− Yi(0). (3.10)

It is almost impossible to estimate ITEi since we cannot have both potential outcomes at the same

time. So in practice, to study the treatment heterogeneity we collect some covariates and see how

the treatment effects change with them, i.e., the conditional average treatment effect (CATE)

CATE = E[Yi(1)− Yi(0)|Xi(t) = x(t)]. (3.11)

CATE is also called heterogeneous treatment effect and represents the average treatment effect

among all subjects who have the same covariate values.

Under unconfoundedness, we can express the CATE as

CATE = E[Yi(1)− Yi(0)|Xi(t) = x(t)]

= E[Yi(1)|Xi(t) = x(t),Wi = 1]− E[Yi(0)|Xi(t) = x(t),Wi = 0]

= E[Yi|Xi(t) = x(t),Wi = 1]− E[Yi|Xi(t) = x(t),Wi = 0]

= µ(1)(x(t))− µ(0)(x(t)).

(3.12)

The most straightforward way to estimate the CATE is to use machine learning to predict µ(1)(x(t))

42



and µ(0)(x(t)), then

ˆCATE = µ̂(1)(x(t))− µ̂(0)(x(t)). (3.13)

In this case, if we fit a single model µ̂(Xi(t),Wi) to all the data and ˆCATE = µ̂(Xi(t), 1)−

µ̂(Xi(t), 0), this is called S-learner (Künzel et al., 2019); if we fit separate models on the treated

and control models, i.e., µ̂(1)(x(t)) and µ̂(0)(x(t)) and ˆCATE = µ̂(1)(x(t))− µ̂(0)(x(t)), this is called

T-learner (Künzel et al., 2019; Johansson et al., 2020).

In order to use S/T-learner to learn the heterogeneous treatment effect, we need to choose

a method for predicting Y from X(t). We could use functional regression in the functional data

analysis, which will be discussed in next section.

3.3 Functional Regression

We review the most commonly used functional regression – Functional Linear Models (FLM)

as following (Ramsay and Dalzell, 1991; Hastie and Mallows, 1993). The FLM is an extension of

linear model to functional covariates, i.e.,

Yi = B0 +

∫
Xi(t)B(t)dt + ϵi (3.14)

where B0 is the intercept, Yi ∈ R is scalar response, Xi(t) ∈ L(T ) is a functional covariate, B(t) ∈

L(T ) is coefficient function, and residual term ϵi ∼ N(0, σ2). By the KL expansion (1.5), Xi(t) =∑∞
k=1 aikϕk(t), and B(t) =

∑∞
k=1 bkϕk(t). Then FLM can be expressed as

Yi = B0 +

∞∑
k=1

bkaik + ϵi. (3.15)

Therefore, the general functional regression model can be written as

Yi = f(ai) + ϵi. (3.16)

where ai = (ai1, ai2, · · · ) We can observe that functional regression can be converted to regression

on the basis representation. The basis functions here could be Fourier basis functions, B-spline,

or functional principal component calculated from spectral decomposition of covariance function

of X(t). We discuss the drawback of the pre-determined basis selection in Section 2.1.2. So in the
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following proposed work, we employ the similar strategy in Section 2.3, i.e., adaptive basis expansion

through neural network (Yao et al., 2021a).

3.4 Causal Models with Functional Confoundings

In this section, we explore three causal models, i.e., S-learner, T-learner and TARNet (Shi

et al., 2019) for functional confounders. As we discussed in section 3.2, S-learner is an outcome

model with a single prediction for all data. The S-learner takes covariate X(t) and treatment W

as input, and uses the single prediction to produce two estimated potential outcomes: µ̂(x(t),W )

and µ̂(x(t), 1−W ). To produce the counterfactual potential outcome, we need to set the treatment

input with 1 −W . Then we can simply estimate the CATEs based on µ̂(x(t), 1) − µ̂(x(t), 0). To

handle the functional covariate, we use the adpative basis (Yao et al., 2021a) then use the vector of

basis scores aik as input. If we use the multi-layer perceptron to implement µ̂(·, ·), the architecture

for S-learner with functional confounder is shown in Figure 3.2. The basis layer approximates each

basis function through neural network and produces a vector of basis scores a, then we concatenate

treatment W and a together and feed them into a standard multi-layer perceptron network. To

learn basis functions and estimate outcomes, the loss function aim to minimize the mean squared

error:

Ls (Y, µ(X(t),W )) = MSE [Y, µ(X(t),W )] (3.17)

where the networks weights are updated based on backpropogation algorithms. The regularization

term for basis orthogonality and sparsity could be added with objective function. Details are il-

lustrated in Yao et al. (2021a). During testing phase, we compute CATEs based on two estimated

outcome by flipping input treatment signals.

An improved version is T-learner which is based on two heads, that fit separate models on

the treated and controls. Similar to S-learner, T-learner produces two estimated potential outcome

µ̂0(X(t)) and µ̂(1)(X(t)), but T-learner use separate models to approximate each outcome. We use

the adaptive basis to convert the functional covariate into basis representation the same as above

S-learner. The transformed functional data are fed into two independent models (two multi-layer

perceptrons). Similarly, we implement it through neural network minimizing the MSE loss between

predicted and observed outcomes. In order to train two models separately, we set W = 1, where the
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Figure 3.2: S-learner with functional confounder. W , X(t) and Ŷ (·) represent treatment indicator,
functional covariate and corresponding outcomes respectively. The details of basis node is illustrated
in Figure 2.3. “MLP” represents the regular multi-layer perceptron.

head for 1−W would be disabled, and vice versa. The architecture of the T-learner with functional

confounder is illustrated in Figure 3.3. The joint loss function for T-learner is

Lt(Y, µ(0)(X(t), 0)) = MSE[Y, µ(1)(X(t), 1)] + MSE[Y, µ(0)(X(t), 0)]

=
1

n

n∑
i=1

(Wi(Y − Ŷi1)2) + ((1−Wi)(Y − Ŷi0)2).
(3.18)

In the testing phase, T-learner produces both treated and control predictions independently, then

we could use their differences to estimate the heterogeneous treatment effect.

Lastly, TARNet proposed by Shi et al. (2019) extends based on T-learner with an ex-

tra representation layer as shown in Figure 3.3. The modification from T-learner to TARNet is

straightforward: the TARNet aims to learn a shared representation function Φ(X(t)) (also called

“embedding” in deep learning terms) where data are balanced in the representation space. In other

words, the distributions of the representations Φ(X(t)|W = 0) and Φ(X(t)|W = 1) are similar

to each other after de-confounding. In our implementation, we simply insert a shared multi-layer

perceptron network in front of two outcome network. We use the same training objective and pre-

diction procedure as T-learner. As we show in our experiments, TARNet outperform S-learner and

T-learner in most cases, demonstrating that learning a good shared representation of treatment and

control groups is essential for causal effects estimation (Shi et al., 2019).
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Figure 3.3: TARNet architecture for causal inference with functional input. Note that T-learner has
the same architecture as TARNet except the MLP module. Both red and blue heads are implemented
by multi-layer perceptron, but they have different pairs of parameters. W , X(t) and Ŷ (·) represent
treatment indicator, functional covariate and corresponding outcomes respectively.
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Chapter 4

Numerical Experiments

In this chapter, we benchmark proposed approach and baseline based on simulation dataset.

In Section 4.1, we first designed simulation studies to assess the performance of posterior inference

using the Bayesian functional graphical lasso and horseshoe outlined in Section 2.2. This allows us

to compare the frequentist fglasso of Qiao et al. (2019), Bayesian fglasso, and functional graphical

horseshoe to each other across a variety of scenarios. We assess classification accuracy and fidelity

of the estimates of both the zero and non-zero entries of the precision matrices in Section 4.1.

As a matter of practicality for researchers interested in implementing the proposed techniques, we

also compare the computational expense associated with each procedure across different computing

environments (R, NumPy, and TensorFlow). In Section 4.2, we compare the proposed deep model

with the frequentist fglasso of Qiao et al. (2019) and Bayesian functional graphical horseshoe in five

different settings corresponding to different types of graph structures. We evaluate the performance

of proposed deep model through the area under the ROC curves. Lastly, to benchmark the proposed

causal models in Section 3.4, we simulate synthetic and semi-synthetic data with ground truth of

treatment effect. We evaluate our methods on ATE, CATE, precision estimation of Heterogeneous

Effect (PEHE) and test MSE in three senarios, i.e., randomized trials, observational study with

selection bias as well as observational study under complex treatment heterogeneity.
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4.1 Experiments for Bayesian Functional Graphical Models

For our simulation studies, we considered different sample sizes (N = 5, 20, 100, 200), graph

sizes (p = 10, 30, 50), two different types of networks, and both sparse- and dense-sampled functions.

Similar to the simulation studies considered by Qiao et al. (2019), we simulate functional data with

gij(t) = s(t)T δij , i = 1, . . . , n, j = 1, . . . , p, where s(t) ∈ L(T )5 contains the first five Fourier basis

functions, and δij ∈ R5 is a zero mean Gaussian random vector. Hence, δi = (δTi1, . . . , δ
T
ip)T ∈ R5p

follows a multivariate Gaussian distribution with covariance matrix Σ = Θ−1, where the underlying

graph is determined by the sparsity pattern of Θ. We consider here two types of networks:

• Network 1: A block banded matrix Θ with Θjj = I5, Θj,j−1 = Θj−1,j = 0.4I5, and Θj,j−2 =

Θj−2,j = 0.2I5 for j = 1, · · · , p, and 0 elsewhere. The network results in each node being

connected to its immediate neighbors, and weaker connection to its second-order neighbors.

• Network 2: For j = 1, . . . , 10, 21, . . . , 30, . . . , the corresponding submatrices in Θ are the same

as those in Network 1 with p = 10, indicating every alternating block of 10 nodes are connected

as Network 1. For j = 11, . . . , 20, 31, . . . , 40, . . . , we set Θjj = I5, so the remaining nodes are

fully isolated.

For each network, we generate n realizations of δ ∼ N5p(0,Θ−1). The observed data are

then generated as hijk = gij(tik) + eijk, eijk ∼ N(0, 0.52), k = 1, . . . , T , where subject i was

observed at time points ti1, . . . , tiT ∈ [0, 1]. We consider two sampling schemes from the functions:

• Dense design with equally spaced measurements: Each function was recorded on a regular grid

between 0 and 1, i.e., ti1 = 0, . . . , tiT = 1 and T = 100, i = 1, . . . , N .

• Sparse design with irregularly-spaced measurements: Each function was recorded randomly;

i.e., tik are drawn randomly between 0 and 1 for k = 1, . . . , 9.

Our proposed graphical models work with any choice of basis representation, but we choose

the data-driven functional PCA approach, due to the mean-square optimality discussed in Section

1.2 and the smoothness of the simulated data. Consistently, we also implement FPCA in our

application part. Thus, to implement any of the approaches considered, we need to compute the

first M estimated principal components scores of gij . We use the PACE algorithm (Yao et al.,

2005) for the irregularly sampled setting via the fdapace package in R (Carroll et al., 2020b).
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Network 1, p = 10, dense data
N = 20 N = 100 N = 200

Bayes 0.65 (0.10) 0.88 (0.04) 0.94 (0.03)
FGM 0.66 (0.06) 0.84 (0.03) 0.90 (0.03)

Network 1, N = 100, dense data
p = 10 p = 30 p = 50

Bayes 0.88 (0.04) 0.86 (0.02) 0.83 (0.02)
FGM 0.84 (0.03) 0.84 (0.02) 0.85 (0.02)

Network 1, p = 10, N = 100
Dense Sparse

Bayes 0.88 (0.04) 0.83 (0.04)
FGM 0.84 (0.03) 0.80 (0.04)

p = 10, N = 100, dense data
Network 1 Network 2

Bayes 0.88 (0.04) 0.91 (0.04)
FGM 0.84 (0.03) 0.92 (0.04)

Table 4.1: The mean area under the ROC curves for Bayesian fglasso and FGM. Standard errors
are shown in parentheses.

For the regularly sampled case, we use ordinary singular value decomposition. We determine the

truncation level M in (1.7) using the minimum number of principal component to capture 95% of

the variability over all nodes for the SVD method and PACE algorithm. For both the Bayesian

functional graphical lasso and the Bayesian functional graphical horseshoe, a total of 10,000 MCMC

iterations are performed after 1000 burn-in iterations. Convergence is assessed via trace plots of

randomly selected elements of Θ.

We first compare the frequentist fglasso to our proposed Bayesian fglasso model with a

fixed regularization parameter λ. The primary differences then are the point estimates of Θ (MAP

estimate versus posterior mean) and the thresholding rule used to select the graph. With MAP

estimation, the zeros are automatically produced as part of the optimization. For the Bayesian pro-

cedure, elementwise equal-tailed credible intervals are constructed from the MCMC output, whence

elements of Θ̂ are selected via those intervals that do not contain zero. Then ∥Θ̂ij∥F is the estimate

for edge between node i and j, which follows Qiao et al. (2019). For both methods and for a grid

of λ values, we compute the true positive rate, TPRλ = TP/(TP + FN), and false positive rate,

FPRλ = FP/(FP +TN), where TP and TN stand for true positives and negatives, respectively in

terms of network edges correctly identified, and similarly for FP and FN . With these measures we

can compute the areas under the associated ROC curves (AUCs), where values closer to 1 indicate

better discriminative power between the true zero and non-zero edges in the true graph.

Table 4.1 displays the AUC values for the various settings described above. As expected

from the correspondence between the frequentist and Bayesian formulations of the objective, we see

very similar performance between the two approaches across each scenario considered. This suggests

that, as far as graphical model selection is concerned, the frequentist and Bayesian implementations

of the fglasso have equivalent discriminative ability with fixed a regularization parameter. However,
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Network 1 Network 2
p=10 p=30 p=50 p=10 p=30 p=50

fg
la
ss
o

FPR (%) 6.07 (3.59) 0.95 (0.46) 13.87 (0.65) 8.61 (4.38) 1.13 (0.53) 16.06 (1.05)
FNR (%) 38.82 (6.00) 62.46 (5.61) 32.27 (4.45) 24.44 (9.69) 50.00 (3.80) 27.78 (5.69)
ERR (%) 18.44 (3.73) 9.01 (1.01) 15.33 (0.67) 11.78 (4.34) 4.16 (0.48) 16.41 (1.06)

F 1 0.71 (0.06 0.52 (0.06) 0.41 (0.02) 0.72(0.09) 0.60 (0.04) 0.21 (0.02)
Sparsity (%) 26.89 5.75 18.14 22 4.16 17.71

fg
h
o
r
se

FPR (%) 18.57 (8.27) 2.14 (0.60) 1.03 (0.36) 10.83 (6.97) 0.74 (0.64) 0.40 (0.21)
FNR (%) 22.35 (9.41) 36.14 (3.35) 41.81 (4.18) 24.44 (9.69) 41.11 (3.08) 43.06 (3.11)
ERR (%) 20.00 (6.13) 6.60 (0.78) 4.26 (0.37) 13.56 (6.16) 3.24 (0.52) 1.66 (0.23)

F 1 0.75(0.08) 0.72(0.03) 0.68(0.03) 0.70 (0.11) 0.69(0.03) 0.67(0.04)
Sparsity (%) 40.89 (6.38) 10.23 (0.57) 5.56 (0.54) 23.78 (5.63) 4.34 (0.72) 2.07 (0.22)

F
G
M

FPR (%) 81.07 (10.11) 44.58 (4.48) 31.35 (4.08) 50.00 (16.76) 19.39 (6.44) 11.14 (2.22)
FNR (%) 4.71 (6.86) 12.28 (2.48) 19.28 (4.68) 1.11 (3.33) 17.04 (5.79) 19.72 (5.19)
ERR (%) 52.22 (5.28) 40.34 (3.85) 30.39 (3.44) 40.22 (13.42) 19.24 (5.87) 11.40 (2.10)

F 1 0.58 (0.03) 0.36 (0.02) 0.30 (0.02) 0.51 (0.09) 0.36 (0.06) 0.30 (0.04)
Sparsity (%) 86.44 50.23 35.26 59.78 23.33 13.18

True sparsity (%) 37.78 13.1 7.92 20 6.21 2.94

Table 4.2: Summary statistics of false positive (FPR), false positive rate (FNR), mislassification
rate (ERR), F1 (Dice) score and estimated graph sparsity of graph estimation with 10 data sets
generated by dense functional data with underground Network 1 and 2 separately. “fglasso” refers
to the Bayesian functional graphical lasso method with gamma prior for shrinkage parameter λ;
“fghorse” refers to the functional graphical horseshoe method, while “FGM” refers to the frequentist
version of functional graphical lasso model proposed by Qiao et al. (2019). The means are reported
here, the standard errors are shown in paratheses.

the Bayesian approach facilitates additional flexibility in how the regularization parameter is treated.

While it is possible to estimate λ with, e.g., cross-validation, it can be computationally expensive to

do so. On the other hand, assigning a prior distribution to the regularization term, or circumventing

an explicit λ altogether via, e.g., the horseshoe, allows the appropriate penalty to be learned from

the data along with the remaining parameters in the model, so that it only needs to be fit once. We

consider this approach next.

Next we compare the frequentist fglasso to the hierarchical Bayesian fglasso (as opposed

to the fixed-λ Bayesian fglasso considered above) and the functional graphical horseshoe in terms

of misclassification error and graph similarity when the regularization parameter is determined as

it would be in practice. The frequentist fglasso requires tuning of the regularization parameter,

either through cross-validation or by setting it to yield a desired sparsity level. For the frequentist

fglasso we use 10-fold cross-validation for model selection, since in practice the true sparsity of the

underlying graph will most likely be unknown. In frequentist fglasso, the sparsity of estimated graph

could be tuned by regularized parameter λ. In the Bayesian framework, the credible level could also

impact the sparsity. As the Bayesian fglasso behaves differently than the horseshoe, and to reduce

the number of false positives, we use 90% credible intervals for the hierarchical Bayesian fglasso, and
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50% credible intervals for thresholding with the functional graphical horseshoe. Table 4.2 reports

the false positive rate (FPR), false negative rate (FNR), overall misclassification rate, the F1 score

(also known as Dice coefficient), and resulting sparsity levels for p = 10, 30, 50 nodes, and N = 100

subjects with densely-sampled functions under both Network 1 and 2. The scores are averaged over

10 replications of each scenario. With the exception of p = 10 nodes in Network 2, the functional

graphical horseshoe always has the highest F1 score, indicating the strongest graph similarity. We

further see that the functional graphical horseshoe has the results with closest sparsity level to the

true sparsity level. The frequentist fglasso generally performs the worst, due to the overly dense

graphs that it produces, reflecting known risks of using log-likelihood-based cross-validation in this

type of model (Wasserman and Roeder, 2009).

Further we turn our attention to a direct comparison between the Bayesian fglasso and

the functional graphical horseshoe. One advantage of the horseshoe prior is that the global/local

shrinkage in the model automatically adapts to the observed data. To allow for such “automatic”

adaptation in the Bayesian fglasso, we use the augmented version of the model in which a hyperprior

is assigned, λ2 ∼ Gamma(1, 0.01). In this comparison, we consider fpc scores generated from p = 10

nodes with N = 100 observations and rank M = 5 in the basis expansion, using Network 1 defined

above. For evaluation, we construct credible regions for each model. Given confidence level, the

volume of credible regions is proportional to |Σθ̂ij
| 12 . Performance characteristics are quantified in

Table 4.3, where normalized logarithm of |Σθ̂ij
| 12 are reported. In addition, Bayesian FDR pδij are

calculated, where 1− pδij can be considered “q-values”, or estimates of the local false discovery rate

(Storey, 2003).

Figure 4.1 depicts the Bayesian FDR-based “q-value” for the off-diagonal blocks, separated

by the zeros, those with edge weight 0.2, and those with edge weight 0.4. We use the identical

practical significance threshold δ (60% quantile of off-diagonal ∥Θ̂ij∥F ) for both Bayesian functional

lasso and horseshoe. We can make several observations from this figure. First, the Bayesian fglasso

results in more false positives, compared to the lower false positive rate with the same rule applied to

the functional graphical horseshoe. Thus, the Bayesian functional graphical lasso exhibits behavior

similar to that which is known about its scalar counterpart. The stronger mass near the origin

applied by the horseshoe compared to the Bayesian graphical lasso (Li et al., 2019, Theorem 3.2)

results in much better identification of the true zeros in the model. Second, for the truly non-

zero entries in Θ, the functional graphical horseshoe q-values have a wider gap compared with the
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Figure 4.1: Histograms of “q-values” (Storey, 2003) for Bayesian functional lasso (top) and horseshoe
(bottom).

Bayesian fglasso. This does not necessarily suggest superior estimation fidelity, however. In the

Table 4.3 we see the volume of the functional graphical horseshoe credible regions growing as the

signal size goes from 0.2 to 0.4, as would be expected from the results of Van Der Pas et al. (2014),

whereas the hierarchical Bayesian fglasso exhibits no such behavior. Performance characteristics

of confidence regions are quantified in Table 4.3. In terms of normalized logarithm of confidence

region volume, the horseshoe again shows very faithful recovery of the true zeros due to its local-

global shrinkage property. For the non-zero estimates, however, we observe more uncertainty with

the Bayesian functional graphical horseshoe growing with signal size from 0.2 to 0.4, while fglasso

has less uncertainty with the strong signal. We recognize that edge selection via Bayesian FDR /

credible regions under the horseshoe tends to be conservative and that the volumes of the credible

regions tends to grow with size of the true signal (Van Der Pas et al., 2014).

Lastly, as a pragmatic matter, we evaluate the computational speed and the scalability of

our proposed block Gibbs samplers in three different environments, R, NumPy, and TensorFlow. Our

proposed Gibbs sampler for the functional graphical horseshoe has similar computational complexity

as the Bayesian fglasso, so we only show the results of Bayesian functional graphical lasso. We use

52



0 edges 0.2 edges 0.4 edges
fglasso 0.304 (0.056) 0.019 (0.079) -0.962 (0.150)
fghorse -0.579 (0.037) 0.169 (0.152) 1.650 (0.060)

Table 4.3: Summary of average credible region volumes (log value) corresponding to edges with
weights 0, 0.2 and 0.4 for Bayesian functional glasso and horseshoe based on 10 replications. The
numbers in the parentheses are standard deviation.

Figure 4.2: Computational cost as a function of p for the block Gibbs sampler under three envi-
ronments, R (R), NumPy (np), Tensorflow (tf). Estimated wall time (left) and its logarithm (right)
versus number of nodes p. Note the difference in the range of p in the left and right plots, and the
change in ranking at lower numbers of nodes versus higher numbers.

simulated data from Network 1 with N = 100 and rank M = 5 while varying the number of nodes

up to p = 300. All computations are run on a standard x86 machine (28-core CPU with 120G

memory), using R or Python. For each such simulated data set, we measure the wall time required

to generate 2,000 full iterations of the Gibbs sampler. We provide implementation code for the

different environments at https://github.com/jjniu/BayesFGM.

Figure 4.2 displays the results, where the right panel is on the log scale for p = 1, . . . , 100

for finer distinction. It takes about 1.9 min, 0.72 min, and 9 min to generate 2,000 iterations under

p = 10 nodes with R, NumPy and TensorFlow, respectively. On the other hand, with p = 200, pure

R takes 262.29 hours, NumPy takes 128.12 hours, and TensorFlow takes 53.5 hours. In general, we

see that TensorFlow is the slowest language with small graphs, but that it also scales at a much

lower rate that NumPy or R. Of the approaches considered, NumPy is the fastest for graphs of size up

p ≈ 100, but TensorFlow is preferable for extremely large graphs. It is no surprise that base R is the

slowest and scales at the worst rate. R is known for its tendency to be slow with iteration-intense

tasks due to its repeated data type conversion on each iteration. It is likely that interfacing R with

C++ via the Rcpp package (Eddelbuettel and François, 2011) would yield much better results when
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working in pure R, but we did not consider that approach here.

4.2 Experiments for Deep Functional Graphical Models

In the experiments of Deep FGM, we use the procedure demonstrated in Algorithm 3 to

generate a number of functional data sets corresponding to five different kinds of graph structures,

i.e. random, cluster, small-world, star and scale-free graphs. Random graph is generated with sparse

random connections; cluster graph is formed from the disjoint union of complete graphs; small-world

graph means that most nodes are not neighbors of one another, but they can be connected by small

number of steps via other nodes; star graph means a single central node exists which connected

to all rest nodes; scale-free network means the distribution of number of neighbors for each node

follows a heavy-tailed distribution. We provide examples in Figure 4.3. We use the scikit-learn

(Pedregosa et al., 2011) to produce sparse precision matrices with 95% sparsity level, BDgraph R-

package to generate data from cluster networks based on the G-Wishart distribution (Mohammadi

et al., 2015) and rags2ridges R-package (Peeters et al., 2021) to generate data from small-world,

star and scale-free networks. We use first four Fourier bases to generate functional data. Note that

we consider identical Θk in Algorithm 3 for each basis coefficient to simplify the generation process

of synthetic data. We repeat the experiment for 100 different graphs (of synthetic testing set for

deep models) with 20, 40 nodes and sample observations with different size ranging 15, 40, 100. In

neuroscience, one often has limited number of samples for inferring graph structure, and thereby we

evaluated the robustness of Deep FGM by applying our model with small sample sizes (N = 40, 15).

We compare our neural network based solution (called ’Deep FGM’ in Table 4.4) with

baselines including both the frequentist and Bayesian methods: functional graphical lasso (Qiao

et al., 2019) and functional graphical Horseshoe in Section 2.2.2. The functional graphical lasso

(denoted as ‘FGM’ in Table 4.4) is a frequentest method imposing a block sparsity constraint on

the blockwise precision matrix of basis coefficients. Functional graphical Horseshoe is a Bayesian

functional graphical method with Horseshoe regularization. For dimension reduction, each baseline

uses functional principal components or Fourier bases. We select the number of principal components

based on 95% of variation explained (FVE), or use first 5 Fourier bases, which guarantee to cover

the true bases in synthetic generation procedure.

For Deep FGM configuration, we use Adam optimization (Kingma and Ba, 2014) in Ten-
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Figure 4.3: Samples of generated synthetic data with following topology: (a) random (b) cluster (c)
small-world (d) star (c) scale-free graphs

sorflow with learning rate set to be 3 × 10−4. We set neural network in basis node with 3 layers,

and each layer is 64 dimensions. We set the convolution kernel size to be 50 with dropout rate to

be 0.1. For the adaptive basis layer, we set number of basis nodes to be 4. We use RELU activation

for all layers execept the last layer, which we use sigmoid function to produce edge classification

probability.

To evaluate the estimation performance, we use the same metrics as Qiao et al. (2019), which

is the average area under the ROC curve (AUC). For the frequentist method, fglasso directly returns

adjacency matrix with weights under the optimal regularizer setting on the testing data; Bayesian

functional Horseshoe returns MCMC samples of blockwise precision matrix and the Frobenius norm

of each block of posterior mean is used for edge estimation. For Deep FGM, we prepare 5000

training/validation data sets to train deep FGM with different input configurations, and we train

each network for 100 epochs. After each epoch, we evaluate the model using the validation data,

and keep the model with the highest AUC.

Table 4.4 reports the average AUCs with the corresponding standard deviation for Deep

FGM and baseline methods in 5 graph types, i.e. random, cluster, small-world, star and scale-

free. Deep FGMs outperform baselines in most cases even with small data sets (sample size is 40
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Graph p N Deep FGM
FGM fghorse

FPCA Fourier FPCA Fourier

Random

20
100 0.85 (0.09) 0.85 (0.08) 0.81 (0.07) 0.88 (0.08) 0.89 (0.08)
40 0.83 (0.10) 0.76 (0.08) 0.76 (0.08) 0.81 (0.08) 0.81 (0.08)
15 0.77 (0.09) 0.69 (0.09) 0.69 (0.09) 0.70 (0.10) 0.69 (0.12)

40
100 0.79 (0.05) 0.76 (0.04) 0.76 (0.04) 0.79 (0.02) 0.79 (0.03)
40 0.76 (0.05) 0.70 (0.03) 0.70 (0.03) 0.71 (0.04) 0.71 (0.03)
15 0.67 (0.04) 0.63 (0.03) 0.63 (0.03) 0.64 (0.04) 0.64 (0.03)

Cluster

20
100 0.93 (0.09) 0.85 (0.12) 0.86 (0.12) 0.84 (0.12) 0.84 (0.13)
40 0.87 (0.10) 0.81 (0.13) 0.81 (0.13) 0.79 (0.22) 0.80 (0.18)
15 0.80 (0.12) 0.74 (0.14) 0.75 (0.15) 0.74 (0.15) 0.74 (0.15)

40
100 0.90 (0.05) 0.84 (0.06) 0.84 (0.06) 0.87 (0.05) 0.86 (0.05)
40 0.85 (0.06) 0.74 (0.07) 0.75 (0.07) 0.79 (0.08) 0.79 (0.08)
15 0.78 (0.08) 0.75 (0.07) 0.75 (0.07) 0.78 (0.08) 0.78 (0.08)

Small-World

20
100 0.99 (0.01) 0.93 (0.03) 0.93 (0.03) 0.93 (0.03) 0.93 (0.03)
40 0.94 (0.02) 0.68 (0.04) 0.68 (0.04) 0.77 (0.04) 0.77 (0.04)
15 0.83 (0.03) 0.60 (0.04) 0.60 (0.04) 0.61 (0.04) 0.61 (0.04)

40
100 0.98 (0.01) 0.93 (0.02) 0.93 (0.02) 0.93 (0.01) 0.93 (0.01)
40 0.93 (0.01) 0.69 (0.04) 0.68 (0.04) 0.78 (0.04) 0.78 (0.04)
15 0.82 (0.02) 0.60 (0.03) 0.64 (0.02) 0.60 (0.03) 0.63 (0.03)

Star

20
100 1.00 (0.00) 0.83 (0.05) 0.83 (0.05) 0.78 (0.02) 0.78 (0.02)
40 1.00 (0.00) 0.70 (0.05) 0.79 (0.05) 0.71 (0.03) 0.71 (0.04)
15 1.00 (0.01) 0.76 (0.08) 0.76 (0.08) 0.64 (0.05) 0.65 (0.04)

40
100 1.00 (0.00) 0.77 (0.04) 0.77 (0.04) 0.69 (0.04) 0.69 (0.04)
40 1.00 (0.01) 0.65 (0.04) 0.65 (0.04) 0.66 (0.06) 0.66 (0.06)
15 0.95 (0.12) 0.73 (0.07) 0.73 (0.07) 0.65 (0.05) 0.65 (0.05)

Scale-Free

20
100 1.00 (0.00) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02) 0.98 (0.02)
40 0.98 (0.01) 0.81 (0.06) 0.85 (0.05) 0.88 (0.05) 0.86 (0.05)
15 0.91 (0.04) 0.68 (0.07) 0.68 (0.07) 0.68 (0.05) 0.68 (0.06)

40
100 0.98 (0.02) 0.95 (0.03) 0.94 (0.03) 0.99 (0.01) 0.99 (0.01)
40 0.93 (0.02) 0.82 (0.04) 0.81 (0.04) 0.89 (0.04) 0.89 (0.03)
15 0.90 (0.03) 0.71 (0.05) 0.71 (0.05) 0.75 (0.07) 0.75 (0.08)

Table 4.4: The area under the ROC curves. The means are demonstrated here with the standard
errors in parenthesis. “Deep FGM” refers to the proposed deep learning model; “fghorse” refers
to the functional graphical horseshoe method proposed by Niu et al. (2021); “FGM” refers to the
frequentist version of functional graphical lasso model proposed by Qiao et al. (2019).

and 15) marginally. In the case of random Gaussian graphs, Bayesian functional Horseshoe has

superior performance with larger data sets (N = 100). The frequentist FGM shows fair performance

compared with the other two. For cluster graphs we can see that, Deep FGM performs particularly

well in larger data sets settings compared with two baselines. Bayesian functional Horseshoe has

similar performance as Deep FGM when graph has more nodes but small dataset (p = 40, N = 15).

For smaller graph, The frequentist FGM shows better performance than Bayesian method, whereas

Bayesian approach outperform frequentist approach when graph is large. Particularly, our deep

models outperforms on AUC (close to 1) on small-world and star networks, which is more close to

real world dataset. The AUCs of Deep FGM for large data sets in both p = 20, 40 cases are 1 or close

to 1 and also work much better than baseline in other cases. In the last scenario, scale-free graph,

our networks still have best performance in the most settings and improve the AUC marginally

compared with baselines in small dataset cases. Table 4.4 shows that our model is performance
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superior other approaches even with very the limited number of observations to N = 15. Overall,

the experiment results demonstrate that our method is competitive to baselines and can be adaptive

to specific graph structures.

Note that our experiments can be further enhanced with different basis functions. Since our

proposal aims to validate the whole framework, experiments on specific basis settings is beyond the

scope of this work, and we leave it in the future work.

4.3 Experiments for Deep Causal Models

Our experiment is based on synthetic data since it is almost impossible to know the counter-

factual outcome based on real world data. Additionally, it is difficult to have a perfect observational

data with ground truth of ATE or ITE. To evaluate our causal model with ground truth, we consider

three different simulation data settings. The first settings is a randomized trial with no treatment

propensity. The second settings is to mimic observational data with selection bias. In the third

scenario, we use the Infant Health and Development Program (IHDP) dataset in a naturalistic

simulation introduced in Hill (2011) to generate semi-synthetic functional dataset. For the third

scenario, we adopt 25 covariates that are collected from designed randomized experiment of IHDP,

and these variables are relevant to infant and his/her mother, such as birth weight, head circumfer-

ence, prenatal care, education, alcohol, etc. In the treatment group, infants are treated with more

intensive care and visit. The outcomes are generated based on certain generation procedures to

mimic the conditions with selection bias and complex confoundedness in the realistic observational

data. The strategy is inspired from Hill (2011) and Yao et al. (2021a). Note that the original IHDP

data is not a typical functional data. To create a functional confounding experiment, we convert

each covariate feature as functional data by setting covariates as functional basis coefficients.

We consider the covariate Xi(t) =
∑50

k=1 aikϕk(t). For the fist two scenarios, the coefficient

aik = zikrik, rik are i.i.d. sampled from uniform distribution on [−
√

3,
√

3] and ϕk(t) are kth

Fourier basis function. We set the number of Fourier basis to be 50. The discrete observable data

are sampled as Xi(tk), k = 1, . . . , T , where subjects i was recorded at t1, . . . , tT ∈ [0, 1].

• Scenario 1 (Randomized Trial): zi1 = zi3 = 5, zi2 = zi10 = 3, and zik = 1 for the rest k. The
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outcome is generated as

Yi(0) = a2i5 = (⟨X,ϕ5⟩)2

Yi(1) = a2i5 + 4 = (⟨X,ϕ5⟩)2 + 4

(4.1)

where ⟨·, ·⟩ is the inner product operation, and the functional covariate depends on the 5th ba-

sis. It is a randomized experiment with treatment fraction 0.5, and the treatment propensities

don’t depend on the covariate. The treatment effect function is constant and the main effect

is nonlinear. Thereby, the outcome surfaces are parallel across treatment and control groups;

Both ITEs and ATE are 4.

• Scenario 2 (Selection Bias): We use the similar setting as Scenario 1: zi1 = zi3 = 5, zi2 =

zi10 = 3, and zik = 1 for the rest k. Except we define the outcome as

ei = logit−1(ai5 − 2)

Wi = Bernoulli(ei)

Yi(Wi) = a2i5 + 4Wi = (⟨X,ϕ5⟩)2 + 4Wi

(4.2)

where ei indicates the propensity score for ith subject. In this case, it is generally not a

randomized experiment, since the treatment propensities depend on X(t). The propensity

score is correlated with the main effect, and we set the treatment effect to be 4 as ground

truth. The total sample size including treatment and control group is 1000 for both Scenario

1 and 2.

• Scenario 3 (Treatment Effect Heterogeneity): We leverage the IHDP data which contains

25 covariates for 139 treated subjects and 608 control subjects. As we mentioned before, we

treat these 25 covariates as functional data, and thereby each covariates is corresponding basis

coefficient. Formally, We define IHDP data as Ai = (ai1, · · · , ai25) ∈ R25, where we set first

25 basis coefficients as IHDP covariates, and the rest of aik to be 0. Then generate nonlinear

and non-parallel outcome across treatment conditions as follow

Yi(0) = exp((Ai + Wi)β) = exp(

25∑
k=1

(⟨Xi, ϕk⟩+ 0.5)βk),

Yi(1) = Aiβ − wi =

25∑
k=1

⟨Xi, ϕk⟩βk − wi.

(4.3)
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Following Hill (2011), Wi is an offset vector with all the entries equal to 0.5, β is a vector of

coefficients randomly generated with a discrete distribution based on values (0, 0.1, 0.2, 0.3, 0.4)

of probability (0.6, 0.1, 0.1, 0.1, 0.1). In the ith generation, wi was set such that the ITE equals

to 4.

We use 80% training/validation and 20% testing split for all experiments. Among 80% split,

we use 15% as validation set to select proper hyper-parameters via evaluation, and rest of them as

training set. After training, we calculate the CATE and the ATE on the entire simulation dataset.

Following Hill (2011), we reported the Precision Estimation of Heterogeneous Effects (PEHE) to

evaluate model performance on simulations. Smaller PEHE is better and optimal PEHE is 0. PEHE

is defined as

PEHE =

√√√√ 1

N

n∑
i=1

(CATEi − ˆCATEi)2. (4.4)

We also report ATE, the bias |ATE − ˆATE| and MSE on testing data for evaluation. We train

1000 epochs and evaluate the model using the validation set after each epoch, then keep the model

with the best PEHE. After training we can estimate causal effects in the whole dataset or held-out

testing dataset. Here we apply the whole dataset for inference ATE/CATE and testing dataset for

prediction (metric MSE). We can get two predictions for each unit: Ŷ (W ) and Ŷ (1−W ), then the

estimated CATE for the out-of-sample data is

ˆCATE = (1− 2W )(Ŷ (1−W )− Ŷ (W )) (4.5)

and the estimated average treatment effect can be calculated by,

ˆATE =
1

N

N∑
i=1

ˆCATEi. (4.6)

In the Table 4.5, we present the results for S-learner, T-learner and TARNet combining with

functional data analysis. To easily demonstrate our experiments, the underlying true treatment effect

value is set as 4 among all three simulation cases, and the ideal ATE should be as close as 4. As

shown in the table, in case 1 (randomized experiment), S-learner works best in case 1 with PEHE

0.16, but it also shows S-learner has worst estimation on CATE, which is reflected by Test MSE.

T-learner and TARNet have close results and generalize well on CATE of testing set. In case 2,
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which is not an randomized controlled experiment, we find T-learner and TARNet are perform worse

then S-learner on PEHE, and the variance of ATE is much larger than S-learner. This is because

the main effect is correlated with propensity score and the three methods are not robust enough

to capture it. In the case 3 with semi-synthetic observational data, S-learner perform worst and

is not capable of handling the unbalance and treatment-effect heterogeneous data. Since S-learner

(as shown in Figure 3.2) is a predictor for the outcome, it is reasonable that the S-learner perform

well when the treatment is a strong indicator for outcome, but performs bad if the confounding

has strong correlation with treatment or outcome. In case 3, the treatment is a weak indicator,

and confounding is close to real world and much complicated than first two scenario. Therefore,

the S-learner tends to be biased towards zero and shrink the treatment effect to the halfway. The

T-learner outperform S-learner on PEHE, since T-learner fit two independent outcome models based

on different treatments. TARNet with an additional MLP, which model the non-linearity of X(t)

and share the same feature representation of treatment and control group, outperform the others in

case 3.

Overall, we observe that three methods in most cases produce reasonable ATE for the

functional confoundings (except S-learner in case 3), which illustrates that the causal inference is

still effective within the functional data analysis framework, even adopting with deep model. The

TARNet often outperform S-learner and T-learner on Test MSE in case 1 and 2, but worst in case

3, indicating that TARNet generalize well when the confounding is simply constructed, but may be

overfitting when confounding is complicated like real-world data. Additionally, by adding selection

bias (scenario 2) and leverage real world data (scenario 3), the causal estimation becomes vulnerable

for functional data, meaning that we still have gap to effectively handle real world causal inference

in functional data.
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Scenario Methods ATE PEHE Bias Test MSE

1
S-learner 3.94 (0.15) 0.16 0.06 0.163
T-learner 3.77 (0.21) 0.31 0.23 0.005
TARNet 3.83 (0.21) 0.27 0.17 0.003

2
S-learner 4.24 (0.14) 0.28 0.24 0.278
T-learner 3.61 (1.41) 1.46 0.39 0.170
TARNet 4.11 (1.13) 1.14 0.11 0.040

3
S-learner 1.79 (6.38) 6.75 2.21 0.416
T-learner 3.82 (2.73) 2.73 0.18 0.289
TARNet 3.94 (1.62) 1.63 0.06 0.421

Table 4.5: Summary of results in experiments. The method with the best PEHE is marked in bold.
The “ATE” is the expected value of the overall ˆCATE; the standard deviation of ˆCATE is reported
in parentheses and “Bias” denotes the bias to true treatment effect 4. For Bias, PEHE, and Test
MSE, smaller is better. The ideal ATE is 4.
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Chapter 5

Applications to Neuroimaging

Data

In this chapter, application on alcoholic study and structural connectivity after traumatic

brain injury leverage Bayesian functional graphical model or deep FGM to infer the brain connec-

tivity based on real world data.

5.1 Application on Alcoholic Study

Here we apply our proposed functional graphical horseshoe method to an electroencephalog-

raphy (EEG) dataset from an alcoholism study originally reported by Zhang et al. (1995). The

data, freely available at https://archive.ics.uci.edu/ml/datasets/eeg+database, consist of

122 subjects, 77 of whom were identified as alcoholics, and 45 in the control group. Signals were

initially collected from 64 electrodes placed on subjects’ scalps at standard positions, and captured

voltage signals at 256 Hz during a one-second time period. 120 trials were collected per subject.

During each trial, the subject was exposed to either a single stimulus (a single picture) or two

stimuli (a pair of pictures) shown on a computer monitor. The interest here is in estimating a

graphical network representing functional connections between different brain regions. Assuming

that the data g1(t), . . . , g64(t) jointly follow from a 64-dimensional multivariate Gaussian process

(MGP), Zhu et al. (2016) and Qiao et al. (2019) both analyzed the data via functional graphical
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model methodology. We filtered the signals through a banded filter between to obtain α frequencies

between 8 and 12.5 Hz, as the α band has been shown to differentiate between alcoholic and control

groups under this task. Moreover, we take the average of all trials for each subject, resulting in a

single event-related potential curve at each electrode for each subject. The filtering was performed

by applying the eegfilter function in the eegkit package (Helwig, 2018) in R. Since the data

are regularly and densely sampled, we employed the regular SVD method to compute the principal

component scores â. The truncated number of fpcs are selected so that at least 95% of the vari-

ation in the filtered signal trajectories for control and alcoholic curves are captured by the basis

representations. For each MCMC run, 10,000 iterations were retained after an initial burn-in period

of 1000 iterations. To be conservative and achieve a higher level of sparsity, we are interested in

finding the edges through Bayesian FDR-based inference by thresholding block ∥Θ̂ij∥F by ϕδ
α, that

controls the overall average FDR at level α = 0.01 ∼ 0.05 and practice significance δ is 60% quantile

of off-diagonal ∥Θ̂ij∥F .

The results are summarized in Figure 5.1. The weight of each edge is evaluated as pδij , the

posterior probability of Frobenius norm of the estimated matrix for that edge of at least δ; i.e.,

Pr{∥Θ̂ij∥F > δ}. As pδij is greater than ϕδ
α, it indicates independence between node i and j; on

the other hand, if pδij is less than ϕδ
α, we infer that node i and node j have conditional dependence.

The threshold ϕδ
α is a cutpoint on the posterior probabilities that control the average Bayesian FDR

at level α. The practical threshold δ is selected to be the 60% percentile of ∥Θ̂ij∥F and α is 0.01

and 0.05 for upper and lower graphs in Figure 5.1. In the weighted graphs, thicker edges indicate

larger weights. We can see that most of the common edges have strong weights. By contrasting

the alcoholic and control graphs, we see that the alcoholic group contains more edges connecting

the frontal-central regions than the control group. It also appears that the right parietal region

tends to have more connection in the alcoholic group than in the control group. Finding a more

densely connected frontal region and differences in the right parietal region agrees with that which

was found by Zhu et al. (2016). There are clear differences, of course, just as there were between

functional graphical models estimated by Qiao et al. (2019) and Zhu et al. (2016). We remark that

Qiao et al. (2019) specifically tuned their functional graphical lasso to obtain only 5% sparsity for

ease of presentation. Overall, however, we find qualitative agreement with the analysis of Zhu et al.

(2016), despite the fact that their assumed model was quite different from our functional graphical

horseshoe, and the fact that our approach does not assume a decomposable graph.
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Figure 5.1: Functional brain connectivities for the alcoholic (left) and control (right) groups con-
structed by Bayesian functional graphical Horseshoe by controlling false discovery rate α 1% (upper)
and 5% (lower)
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Figure 5.2: Functional brain connectivities for the alcoholic (left) and control (right) groups con-
structed by Deep FGM with 95% (upper) and 90% (lower) sparsity level. The thickness of edges
indicates the weights. Blue lines denote edges identified only in the alcoholic group, red denote
edges identified only in the control group, and orange denote edges identified both by in alcoholic
and control groups.
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In addition, we apply Deep FGM proposed in Section 2.3 to the real world EEG data, and

we are interested at getting insights from deep learning method. We train two models separately

for alcoholic and control groups. Both models are trained on synthetic data using random Gaussian

graphs with 95% sparsity level. For two group of dataset, we set N = 77 and N = 45 respectively

(see details in section 4.2). The reason we train two different models instead of identical one is that

the strength of regularization could be different with size of data sets. Besides the regularization

property, both networks are implicitly trained with the same assumptions due that the synthetic

data generation process are same. The average testing AUCs for synthetic data are 0.723 and 0.725

for alcoholic and control graphs based on 100 replications. Figure 5.2 shows the estimated networks

for the alcoholic and non-alcoholic groups at roughly 95% and 90% sparsity level. From the result, we

see that the brain networks have some interesting patterns for the two groups. Firstly, the alcoholic

and control groups share similar cluster patterns, which may reveal the existence of some regional

patterns for brain activity. Moreover, both alcoholic and control group have few connectivity in

the parietal area. Furthermore, we observe that less connected central areas are in both alcoholic

and control graphs and increased functional connectivity exists in the occipital area in the alcoholic

graph compared with control one. Overall, our findings have some similar patterns with results in

Qiao et al. (2019); Zhu et al. (2016); Solea and Dette (2021).

5.2 Structural Connectivity after Traumatic Brain Injury

It is known that traumatic brain injuries can cause acute disconnections in white matter

tracts (Rutgers et al., 2008), and there is interest in studying what happens to these connections

during the chronic phase after such injuries. To address this question, we applied our proposed

Bayesian functional graphical horseshoe to diffusion tensor imaging data (DTI) obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI). The data consist of 34 subjects, 17 of whom

have been identified as having experienced traumatic brain injury (TBI) with the remaining 17

being healthy controls. The control subjects were selected from a much larger group via propensity

score matching to control for confounding variables such as patient’s age, sex, whole brain volume,

and Alzheimer’s disease status. The data contain initial and follow-up measurements of fractional

anisotropy in each of p = 26 regions of interest (ROI) in the brain, resulting in irregularly measured

longitudinal data for each ROI. For each subject, anywhere from one to nine time points are available,
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each separated by several months. The data preprocessing includes eddy-correction (Andersson and

Sotiropoulos, 2016), brain extraction, (Smith, 2002) and intensity normalization (Jenkinson and

Smith, 2001; Jenkinson et al., 2002). For each voxel in a brain image, the fractional anisotropy

(FA) is calculated as FA = (3/2)((λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2)1/2(λ2
1 + λ2

2 + λ2
3)−1/2, where

λ1, λ2 and λ3 are the eigenvalues associated with the x−, y− and z− directions of the diffusion

tensor and λ̄ = λ1+λ2+λ3

3 is the mean diffusivity. FA indicates the degree of anisotropy of a diffusion

process valued between 0 and 1. If the FA is close to 0, the diffusion is unrestricted in all directions,

indicating loosely structured (i.e., deteriorated) white matter, whereas FA close to 1 means that the

diffusion mainly occurs only along one axis, thus indicating stronger white matter in that area. The

voxel-wise FA values are averaged to summarize the observed FA in each ROI at each time point.

In total, we focus on exploring the connectivity (conditional dependence in brain atrophy) between

52 ROIs. Each ROI considered is listed in Table 5.1.

Similar to the EEG study, we assume the longitudinal data g1(t), . . . , g52(t) jointly follow

a 52-dimensional MGP. We use the PACE algorithm of Yao et al. (2005) to carry out FPCA using

fdapace package (Carroll et al., 2020a), where the truncation level of fpc scores is selected by

capturing 95% of the variance in the curves. Then we fit our functional graphical horseshoe model

via the Gibbs sampler discussed in 2.2.2, running the MCMC for 100,000 iterations after an initial

10,000-iteration burn-in period. The estimated graphs are constructed based on Bayesian FDR-

based inference from the approximate posterior sample, at level α = 0.1 and practice significance δ

is 60% quantile of off-diagonal ∥Θ̂ij∥F .

The estimated FA networks for the TBI and control groups are plotted in top panel of

Figure 5.3. The sparsity levels for the TBI and control groups are 4.60% (62 edges) and 2.94% (39

edges), respectively. Twelve edges are common to both graphs, indicated by orange lines in the

figure. The estimated FA networks by FGM from Qiao et al. (2019) for TBI and control groups

are also given in bottom panel of Figure 5.3. In both results, the TBI group tends to have more

connections between different ROIs, particularly within right hemisphere. In most types of brain

damage and dysfunction, performance IQ (PIQ) tends to deteriorate faster than verbal IQ (VIQ),

leading to a PIQ/VIQ discrepancy. The increased connectivity in the right hemisphere observed

here may reflect degraded right hemisphere functioning as PIQ deteriorates.

We see overall a denser set of connections in the TBI group than in the healthy controls.

This agrees with results reported by Kook et al. (2021) in a study of children with a history of
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Label Hemisphere ROI
CST left, right Corticospinal tract
ICP left, right Inferior cerebellar peduncle
ML left, right Medial lemniscus
SCP left, right Superior cerebellar peduncle
CP left, right Cerebral peduncle
ALIC left, right Anterior limb of internal capsule
PLIC left, right Posterior limb of internal capsule
PTR left, right Posterior thalamic radiation, includes optic radiatio
ACR left, right Anterior corona radiata
SCR left, right Superior corona radiata
PCR left, right Posterior corona radiata
CGC left, right Cingulum, cingulate gyrus
CGH left, right Cingulum (hippocampus), cingulate gyrus
FX ST left, right Fornix (cres) / Stria terminalis
SLF left, right Superior longitudinal fasciculus
SFO left, right Superior fronto-occipital fasciculus, could be a part of ante-

rior internal capsule
IFO left, right Inferior fronto-occipital fasciculus
SS left, right Sagittal stratum, includes inferior longitudinal fasciculus

and inferior fronto-occipital fasciculus
EC left, right External capsule
UNC left, right Uncinate fasciculus
FX left, right Fornix, column and body of fornix
GCC left, right Genu of corpus callosum
BCC left, right Body of corpus callosum
SCC left, right Splenium of corpus callosum
RLIC left, right Retrolenticular part of internal capsule
TAP left, right Tapatum

Table 5.1: Index of the “Eve” white matter atlas labels corresponding to Figure 5.3 the TBI con-
nectivity study.

TBI compared to a group with extra-cranial injury. The increased structural connectivity observed

here in the TBI patients may reflect so-called “axonal sprouting” occurring as disconnected neurons

attempt to reconnect to a network from which they have been isolated. This results in “improved”

connectivity, but nevertheless a deterioration of functional activation and task performance. It is also

possible that there are no entirely new structural connections between areas, but that the weight of

the white matter tracts in the areas may increase, on average, because targeted selection of cortical

modules necessary to participate in a given task breaks down in the presence of a brain injury.

Indeed, enlargement of the activation field in stroke recovery has been observed in the literature

(Lindow et al., 2016). Our results here support the previously observed phenomenon in which white

matter tracts evince increased connectivity in the chronic phase after disconnection of the tracts in

the acute phase (Rutgers et al., 2008).
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Figure 5.3: The estimated weighted brain connectivity graphs for TBI (left) and control (right)
groups by Bayesian horseshoe (upper) and the frequentist fglasso (lower). Nodes names are marked
with abbreviation of ROIs, which are defined in Table 5.1. The thicker edges indicate larger weights;
Blue lines denote edges identified only by the TBI group, red denote edges identified only by the
control group, and orange denote edges identified by both groups.
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Chapter 6

Conclusions and Future works

In this dissertation, we have discussed two different approaches for constructing undirected

graphical models for multivariate functional data. We also study how to apply causal inference

with functional covariates based on deep model. On the heels of many outstanding contributions,

our explorations provide additional pathways to estimate functional graphical model via Bayesian

framework, and improves the existing functional graphical model architecture through deep learn-

ing techniques. In addition, we demonstrate how our methods can be particularly applied in the

neuroimaging domain of EEG and DTI data. In this chapter, we conclude the thesis and some

directions for future research.

6.1 Conclusions

In this this thesis, we first consider a Bayesian framework for graphical models associated

with functional data. We proposed a fully Bayesian version of the functional graphical lasso as

well as a novel functional graphical horseshoe prior. We provide also easily implemented Gibbs

samplers via auxiliary variables to induce conditional conjugacy and adapting matrix partitioning

techniques that have been used for other MCMC implementations of Bayesian graphical models.

We compared these models to each other in several simulated scenarios. The Bayesian fglasso with

fixed regularization term and the frequentist fglasso performed almost identically in terms of edge

selection, as would be expected, with the exception that the Bayesian approach allows access to the

full posterior distribution so that any quantity of interest can be obtained, not just the posterior
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mode. The hierarchical Bayesian extension of the fglasso and the functional graphical horseshoe were

directly compared to each other. The simulation results demonstrated that the functional graphical

horseshoe is much better at avoiding false positives than either the frequentist or Bayesian fglasso

and is still able to detect relatively weak signals. The superior balance between false positives and

false negatives results in the functional graphical horseshoe exhibiting generally superior similarity

to the underlying true graph. We also applied the functional graphical horseshoe to two applications

in neuroimaging, one a previously studied EEG example, and the other involving DTI measurements

to compare white matter integrity in people with and without a history of traumatic brain injury.

The ability of the functional graphical horseshoe to avoid false positives is a critical characteristic

for application in functional neuroimaging, as this field is often criticized for its abundance of false

positives (Eklund et al., 2016). In addition, both EEG and MRI are notorious for having weak signal-

to-noise ratios, making methods that are powerful at detecting weak signals quite useful. Indeed, the

results in Section 5.2 suggest that our proposed methods may be helpful for understanding functional

reorganization, a process in which many weak connections form.

In order to leverage powerful nonlinear approximation capability of deep model, we propose

a graph estimator based on deep learning, called Deep FGM. Our architecture directly takes the

functional data as input and does not require handcrafted bases to manually tuned functional basis

transformation compared with conventional functional graphical models. The optimal bases could

be learned for particular data and graph structure is trained in an end-to-end procedure. Unlike

traditional dimension reduction methods like basis expansion or FPCA, which try to retain as much

functional data information as possible, deep learning techniques allows us to back-propagate the

task relevant gradient to adaptive FPCA module, so the projected scores in basis space specifically

contains feature variation that are most relevant to the graph learning task. In addition, the learned

graph estimator can generalize to different graph properties and structures. The specific domain

knowledge about the graphical structure and also about data could be contained in the synthetic data

and then learned by deep model. This mechanism saves some tedious mathematical derivation for

different assumption in different scenarios. In the proposed deep model, we could obtain empirical

performance under the synthetic settings. Finally the experiment results show that our learned

graph estimator outperforms strong baseline methods in variety of scenarios and we could find some

meaningful graphs in the alcoholic studies based on previous researches.

Furthermore, we investigate a model architecture that takes the functional covariate for
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treatment effect estimation. Our method links the observed functional data by ordinary causal

models. Based on simulation data results, our experiments demonstrate the effectiveness by em-

bedding deep model for functional data within causal inference architecture. Causal inference with

functional confounders is relatively under-exploited compared with other data settings, such as tab-

ular data, image, text, etc. The proposed method is essential to unlock causal inference to be

adopted in functional data domain. On the other hand, the counterfactual predictions of causal

models have the potential to be used as part of clinical decision support system to address relevant

medical challenge involving some functional confounders like ECG signal, fMRI, EEG, etc.

6.2 Implications and Recommendations for Further Works

While our work suggests promising results, particularly by extending the graphical horseshoe

and deep neural networks to functional graphical models, much work still remains. For Bayesian

models, the selection of the basis may impact the graph estimation, the sensitivity of basis based

on the methods could be explored in the future works. Our proposed Gibbs samplers are efficient

in small to moderately-sized scenarios, but the computational experiments show the practical limi-

tations as the size of the graph grows large. Another future line of research would be investigating

more computationally efficient MCMC techniques for exploring the posterior distributions, or other

posterior approximation methods to infer in extremely high dimensional problems. Alternatively,

the current algorithm and its implementation could be further improved by using efficient parallel

computations among different blocks/nodes. Also, a particular bottleneck is the computation of

inverse matrix at each iteration, and we could make use of the structure of the problem to accelerate

the algorithm. For example, the whole inverse may not be explicitly required, and approximate

matrix inversion algorithms might be feasible enough. There also remains deeper theoretical devel-

opment of Bayesian approaches to functional graphical models, which to date the amount of data

are still limited. Furthermore, the current Bayesian methods estimates the separate functional net-

works independently even though they may share similar patterns. We could consider Bayesian joint

functional graphical lasso/horseshoe to estimate separate functional graphical models for different

groups under the assumption that the groups can share similar graph properties. Lastly, our work

focus on a static network structure over function domain among variables, while another possible

future direction could extend our model to dynamic graphs changing over time.

72



Though the deep functional graphical model shows better performance on AUCs compared

with Bayesian and Frequentest methods, it highly rely on the design and generation of synthetic

data. With more specific domain knowledge about the type of graph structure, sparsity level and

data characteristics, the in-sample distribution will be closer to the out-of-sample distribution, which

can result in more accurate graph estimation. With little prior information, the standard random

synthetic data may introduce some bias. Therefore, the methodology and framework of synthetic

generation could be further developed for more accurate graph inference. In addition, theoretical

consistency for deep neural network is still needed to be further developed.

On the other hand, the causal research we present in Chapter 4 still has gaps when functional

confounding involves complicated real world data. The current gap which is caused by overfitting is

still not clear: whether the overfitting is caused by functional basis layer or unobserved confound-

ings. Additionally, we will aim to build better balancing representations and to provide theoretical

guarantees for the expected error on the counterfactual.
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