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Abstract

This dissertation proposes three novel Bayesian modeling techniques to addresses the chal-

lenges arising from the complex, underlying features of biomedical data. These models are motivated

by three different biomedical studies. The first is an analysis of data collected from six efficacy and

safety clinical trials of buprenorphine maintenance treatment for opioid use disorder. The focus of

this study is to overcome the problem of non-adherence by trial participants that, if left unaccounted

for, obscures the true effect of buprenorphine on illicit opioid use. The second study is the assessment

of hemodialysis cannulation skill through the use of a sensor-based simulator that provides objective

metrics quantifying various facets of cannulation skill. The main objective of this study is to identify

salient features from a high-dimensional feature space that influence multiple cannulation outcomes

that are highly correlated, both implicitly and by design, while also addressing the presence of mul-

ticollinearity within the feature space. The third and final study focuses on modeling an individual’s

probability of disease from data collected on pooled specimens. The primary barrier of this study

is measurement error: the individual disease statuses are likely to be obscured by the group testing

protocol and the testing responses (on pools and individuals) are subject to misclassification due to

imperfect testing. The key objective of this study is to develop a flexible model that can account

for imperfect testing and can be used to analyze data arising from any group testing protocol. A

key attribute of the proposed modeling techniques is that they scale easily to extremely large data

sets. The scalability of the modeling strategies discussed here is accomplished by introducing care-

fully constructed latent random variables to develop Markov chain Monte Carlo (MCMC) sampling

algorithms that consist primarily of Gibbs steps. This results in efficient computation of posterior

estimates, especially in large data scenarios.
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Chapter 1

Introduction

Modern advances in medicine and technology have resulted in the collection of large, complex

datasets. Motivated by three biomedical applications, this dissertation proposes novel statistical

modeling techniques to address the challenges that arise from the complicated, underlying features

of these datatsets. The first motivating application is an analysis of data collected from six efficacy

and safety clinical trials of buprenorphine maintenance treatment for opioid use disorder. The

second study is the assessment of hemodialysis cannulation skill through the use of a sensor-based

simulator that provides objective metrics that could be useful for assessing various aspects of skilled

cannulation. The final study analyzes data collected on pooled specimens with the goal of modeling

an individual’s probability of disease.

There have been nearly 500,000 overdose deaths from opioids in the United States alone in

the last 20 years, with associated annual costs exceeding $1 trillion [Kuehn, 2021]. To mitigate these

issues arising from the opioid epidemic, it is essential to understand the effectiveness and safety of

treatments. In substance abuse trials aimed at assessing the efficacy of various treatments and dosing

protocols, the observational aspect of non-adherence can complicate the analysis. Buprenorphine is

heavily used as a medication for opioid use disorder treatment (MOUD), and it has been shown that

illicit opioid use and the number of weeks abstinent from illicit opioid use are significantly associated

with daily buprenorphine adherence [Fiellin et al., 2006]. Many studies have been conducted to assess

the effectiveness of various formulations and doses of buprenorphine on detoxification, retention in

treatment, and on the elimination of illicit opioid use [Ling et al., 2010]. However, these studies do not

acknowledge the problem of non-adherence by trial participants on buprenorphine. Non-adherence
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is a primary barrier to being able to accurately assess the effectiveness of MOUD in clinical trials.

When analyzing the relationship between buprenorphine and illicit opioid use, failing to account for

the patterns in daily dose adherence will obscure the true effect of buprenorphine on opioid usage.

The first project of this dissertation is motivated by and applied to publicly available data from

six efficacy and safety clinical trials of buprenorphine maintenance treatment with detailed logs of

patient buprenorphine dose. Trial participants were expected to attend weekly follow-up clinic visits

with opiate urinalysis testing, and administration of buprenorphine doses varied across the six trials.

This dissertation develops a functional generalized linear mixed model that views buprenorphine dose

history as a time-varying covariate in order to estimate dose effect while accounting for lapses in

adherence. The proposed model also makes use of random effects to account heterogeneity across

trials, and to account for heterogeneity across subjects within studies. We cast our problem into the

Bayesian paradigm to facilitate both parameter estimation and inference, and given the complexities

of our problem, priors are chosen to regularize the estimation of the model parameters. The proposed

methodology is used to re-assess the efficacy of buprenorphine as a MOUD, but it also demonstrates

a modeling technique that can be used to directly acknowledge and account for the effect of non-

adherence when assessing treatment effects and dosing protocols in medication assisted treatment

trials.

End-stage kidney disease (ESKD) is the final stage of chronic kidney disease, leading to

permanent kidney failure. With its prevalence increasing, ESKD is a leading public health problem

[Wong et al., 2018]. Medicare costs associated with ESKD treatments account for approximately

7% of the total Medicare budget [Saran et al., 2020]. Hemodialysis is the most popular modality of

dialysis treatment for ESKD [Thurlow et al., 2021], where a surgically created vascular access is can-

nulated so the patient’s blood can be pumped through a dialysis machine in order to remove waste

products and excess fluids. The hemodialysis cannulation procedure is critical for ESKD treatment,

as patients’ survival depends on successful cannulation of their vascular accesses at least three times

a week. Unfortunately, hemodialysis cannulation is a notably challenging procedure for a variety of

reasons including non-standard geometries of vascular accesses and lack of training opportunities for

clinicians [Moist et al., 2013]. Consequently, accurate cannulation of vascular accesses for successful

hemodialysis is a critical and complex skill, and lack of cannulation skill results in poor clinical out-

comes due to miscannulation. One of the main reasons for miscannulation is infiltration, which occurs

when the clinician punctures through the vascular access causing blood to leak out [Brouwer, 2011].

2



Infiltration can lead to adverse medical complications and even loss of a functioning vascular access -

a catastrophic event for ESKD patients that would lead to death. Consequently, it is imperative that

cannulation be performed by skilled clinicians, and learning how to cannulate vascular accesses for

successful hemodialysis requires targeted training. Simulators have been successfully applied for as-

sessment and training of clinical skills in a variety of medical specialties, with their ability to provide

objective feedback being a key advantage [Noureldin et al., 2016; Zendejas et al., 2013]. Simulators

provide trainees with the benefit of practicing clinical skills in a simulated, low-stakes, safe environ-

ment to instill confidence in skill prior to actual clinical practice, and to reduce any patient risks.

The second project of this dissertation comes from the analysis of a simulator-based cannulation skill

assessment study. A custom, state-of-the-art hemodialysis cannulation simulator, containing sensors

that provide quantitative data measuring various facets of cannulation skill, was designed [Liu et al.,

2020; Singapogu et al., 2021] and previous work has demonstrated its use to successfully quantify

cannulation skill [Liu et al., 2021]. The sensor data results in a high-dimensional feature space of

process metrics that allow the simulator to provide objective metrics used to measure outcomes of

cannulation that are closely related to clinical outcomes. Building upon our previous research [Liu

et al., 2021; Petersen et al., 2022], this project aims to identify salient process metrics from a high-

dimensional feature space that influence multiple outcomes of interest; namely, the probability of

successful cannulation and the quality of the cannulation task. This dissertation proposes a shared

random parameter model under the Bayesian framework to jointly model two objective outcome

metrics. These two outcomes are correlated both implicitly and by design, and we accommodate

this dependence through the use of shared random effects that acknowledge subject-specific tenden-

cies in cannulation performance. A two-stage data augmentation scheme is developed to construct

a computationally efficient posterior sampling algorithm that is scalable to large datasets and easy

to implement. The proposed approach has the ability to successfully identify salient features that

influence cannulation performance, even under this high-dimensional setting with highly correlated

outcomes and features. We apply a sparse principal component analysis (SPCA) technique that

transforms the candidate feature space for the probability of success model in order to overcome the

problem of multicollinearity and assist in identifying significant covariates.

The third and final project of this dissertation focuses on the development of a new modeling

technique designed for the analysis of group testing data (i.e., data collected on pooled specimens).

The concept of using pooling as a more cost effective data collection technique is becoming a main-
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stream approach in a variety of applications such as infectious diseases [Westreich et al., 2008;

Krajden et al., 2014; Lewis et al., 2012], animal disease testing [Dhand et al., 2010], environmental

monitoring [Heffernan et al., 2014], and drug discovery [Hughes-Oliver, 2006]. In particular, pooled

data is collected by first combining several specimens (e.g., blood, urine, etc.), collected from in-

dividuals, into a pooled sample, and this pooled sample is then measured for a characteristic of

interest; e.g., in infectious disease studies, the pooled outcome is typically binary indicating dis-

ease status. With group testing, information on several individuals is obtained at the expense of

a single diagnostic test, thus reducing the cost of data collection. However, the statistical analysis

of measurements (either binary or continuous) taken on pools is often faced with many challenges;

the individual measurements are obscured by a group testing protocol and the effect of imperfect

assays. This problem of developing regression methods for group testing data with measurement

error has been explored elsewhere: McMahan et al. [2017] proposed a Bayesian approach for the

regression analysis of group testing data within a generalized linear model framework, and Liu et al.

[2021] developed a novel Bayesian generalized additive model. Both of these methods can account

for imperfect testing and can be used to analyze data collected according to any group testing pro-

cess. The work presented here capitalizes on this previous research to develop a new methodology

that is far more flexible. In particular, this dissertation proposes a Bayesian additive regression trees

(BART) modeling framework to estimate regression models in potentially misclassified group testing

data with individual-level covariate information. BART is a Bayesian, nonparametric approach to

function estimation using regression trees [Chipman et al., 2010]. It is an ensemble, machine learn-

ing approach within the Bayesian paradigm, so uncertainty about both the functional form and the

parameters will be accounted for in the posterior predictive distribution. BART accommodates non-

linear effects and high-order interactions without explicit specification, and overfitting is controlled

by a regularization prior leading to increased accuracy and precision, and a better understanding of

any complex effects.

The remainder of this dissertation is organized as follows. In Chapter 2, a functional general-

ized linear mixed effects model is developed to assess opioid use disorder treatments in trials subject

to non-adherence. Chapter 3 develops generalized linear models with shared subject-specific random

effects to jointly model the quality of cannulation and the probability of a successful cannulation

using haptic feedback from a cannulation simulator. In Chapter 4, we develop a general Bayesian

additive regression trees modeling approach for potentially misclassified group testing data with
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individual-level covariate information. We illustrate the BART framework by applying the proposed

approach to chlamydia test data from the State Hygienic Laboratory at the University of Iowa,

which screens individuals for chlamydia using a group testing protocol. The modeling techniques

introduced in these chapters are estimated within the Bayesian paradigm, with prior specifications

chosen to regularize the estimation of model parameters and to aid in variable selection. In Chapter

5, we conclude with a summary discussion of the work presented in this dissertation.
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Chapter 2

Assessing opioid use disorder

treatments in trials subject to

non-adherence via a functional

generalized linear mixed effects

model

2.1 Introduction

There have been nearly 500,000 overdose deaths from opioids in the United States alone in

the last 20 years, with associated annual costs exceeding $1 trillion [Kuehn, 2021]. The treatment

of opioid use disorder (OUD) is inherently complex, with clinician assessment of the patient, comor-

bidities, suitability for one of the three FDA-approved medications, psychosocial counseling and care

for comorbidities [Kampman and Jarvis, 2015]. One of the two more heavily utilized medications in

OUD treatment is buprenorphine, an opioid partial agonist. Studies have been conducted to assess

the effectiveness of various formulations and doses of buprenorphine on detoxification, retention in

treatment, and on the elimination of illicit opioid use [Ling et al., 2010]. A meta analysis of clinical

6



trials found that any dose over 2mg of buprenorphine was useful at retaining patients in treatment

but only higher doses (16mg or more) reduced illicit opioid use [Mattick et al., 2014]. It has been

shown that illicit opioid use and the number of weeks abstinent from illicit opioid use are significantly

associated with daily buprenorphine adherence [Fiellin et al., 2006]. Given the potential interaction

between buprenorphine dosing and adherence, further investigations aimed at better understand-

ing these interactions are warranted and will support translational clinical research that seeks to

optimize the overall effectiveness of medications for OUD treatment (MOUD).

A challenge to being able to accurately assess the effectiveness of MOUD in clinical trials

is non-adherence. For example, a multicenter, randomized clinical trial (CSP-999) considered the

effectiveness and safety of four buprenorphine dose levels (1, 4, 8, 16, or 32 mg/day), which were

administered daily in clinic. Due to the mode of delivery, adherence for this study was directly

observed, i.e., patients were either present or absent from the clinic visit. Figure 2.1 provides a

depiction of dose history over a 50 day period for four randomly selected CSP-999 trial patients.

In particular, three of the selected patients were assigned to a 16 mg/day dose while the remaining

patient was assigned to a 8 mg/day dose. Days when patients missed a dose (i.e., were non-adherent)

are represented by a dose level of 0 mg/day. Induction and re-induction after a lapse in dosing can

be seen by increasing dose levels from 0 mg/day to the assigned levels. Failing to account for the

patterns in adherence depicted in Figure 2.1 when trying to relate assigned dose to opioid use will

obscure the true effect of buprenorphine on illicit opioid use. In particular, not accounting for these

patterns will lead to underestimation of the effect (or log-odds) of dose on reducing illicit opioid use.

Given the challenge of non-adherence in substance abuse trials aimed at assessing efficacy

of various treatments and dosing protocols, the goals of this paper are two-fold. First we seek to

develop and demonstrate a methodology that can be used to directly acknowledge and account for

the effects of adherence when assessing treatment effects. Second, we seek to use our proposed

model to assess the effectiveness of buprenorphine as a MOUD. To this end, we compiled, aligned,

and harmonized publicly available data from six efficacy and safety clinical trials of buprenorphine

maintenance treatment with detailed logs of patient buprenorphine dose. For more on the combined

data set and merging steps, see Bergen et al. [2022]. As a part of these trials, patients were expected

to attend weekly follow-up clinic visits with opiate urinalysis testing. Dose administration varied

across the 6 trials, with CSP-999 being the only trial requiring daily doses to be self-administered

in clinic. Weekly dose adherence for the remaining trials were reconstructed using other available

7
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Figure 2.1: The four figures depict a time series of daily dose of buprenorphine taken by four
randomly selected subjects, each coming from the CSP-999 trial, for the first 50 days of the study.

information, e.g., self reported non-adherence, returned pills, etc. Also available, were a collection of

various sociodemographic and substance use variables that were included in the analysis to address

potential confounding.

To analyze these data, we develop a generalized linear functional mixed effects model. The

proposed model views daily dose level as a functional covariate whose value reflects the mg/day dose

taken, with a value of 0 corresponding to days when the subject is non-adherent. By construction,

our model has several key features. First, we can extract an estimate of, and conduct inference

about, the dose effect for individuals with strict adherence (i.e., 100% compliance with the prescribed

dosing protocol). Second, we can assess the effect of different types of dose self-administration or

medication adherence patterns on illicit opioid use. Our model makes use of random effects to

account for across trial heterogeneity, and across subject heterogeneity within studies. To complete
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model fitting, we cast our model into the Bayesian paradigm and develop a custom Markov chain

Monte Carlo (MCMC) posterior sampling algorithm.

2.2 Materials and Methods

2.2.1 Generalized Linear Functional Mixed Effects Model

In what follows, we outline the prominent features of our proposed model, which was de-

signed to relate illicit opioid use to time-varying dose adherence while controlling for various de-

mographic and drug use history factors purported to be related to the same. To this end, let Yij ,

for j = 1, . . . , ni, and i = 1, . . . ,m, be a binary indicator such that Yij = 1 denotes the event

that the ith individual has a positive urinalysis test during the jth clinic visit with urinalysis and

Yij = 0 otherwise. To relate the observed test data to the available covariates, we posit the following

generalized linear functional mixed effects model

νij = g−1(πij) = log

(
πij

1− πij

)
=

∫
Aij

Dij(s)β(s)ds+ x′
ijα+ γ0i + γ1k(i), (2.1)

where g(·) is the logit link function which is used to relate the linear predictor, νij , to the probability

of relapse, πij = P (Yij = 1). To elucidate the key feature of our model adopted to capture the effect

of dose adherence, we note that the first term on the right hand side of (2.1) is the functional

component which consists of the time varying buprenorphine dose curve (Dij(·); e.g., see Figure

2.1), the functional coefficient (β(·)), and the time frame (Aij) leading up to the urinalysis clinic

visit over which the dose levels are allowed to impact the probability of relapse. The remaining

components of the model consist of xij a P−dimensional vector of demographic and drug use history

risk factors whose first entry is a one to allow for the usual intercept, α the corresponding vector

of regression coefficients, γ0i a subject-specific random effect entered into the model to account for

the heterogeneity across subjects, γ1k(i) = γ1k if the ith subject is part of the kth trial, and γ1k is

a random effect specified to account for the heterogeneity across trials, k = 1, . . . ,K. Herein, the

random effects distributions were taken to be

γ0i
iid∼ N(0, σ2

0)

γ1k
iid∼ N(0, σ2

1),

(2.2)
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and note, here the random effects are taken to be independent given the nesting of subjects within

trials. A few comments on the form of the model are warranted. First, through adopting the

functional regression framework, we are able to directly acknowledge and estimate the effect of time

varying dose adherence, whereas more traditional variable aggregation techniques (e.g., average

dose) fail to acknowledge key trends in dose adherence; e.g., waning adherence from the point of

care or weekly patterning. Second, the time window (i.e., Aij) should be selected so that the upper

bound is just before the jth clinic visit with urinalysis for the ith individual and that the length of

the interval reflects the approximate elimination time for buprenorphine; i.e., buprenorphine doses

taken prior to the lower bound are no longer present in the patient’s system and therefore cannot

impact the probability of opioid use. Generally speaking, it typically takes five half-lives for a drug

to completely leave a subject’s system. Thus, given that the elimination half-life of buprenorphine

is 24 to 42 hours, we specified a time window consisting of 15 days to more than adequately capture

the relevant dose history. Lastly, given the form of the proposed model, we can extract dose effect

for individuals with strict adherence to their prescribed dosing regime. To see this, we note that if

a subject adheres to the dosing regime, then Dij(s) = Dij for all s. Thus, we would have that

∫
Aij

Dij(s)β(s)ds =

∫
Aij

Dijβ(s)ds = Dij

∫
Aij

β(s)ds

= Dijβ
∗

where β∗ =
∫
Aij

β(s)ds. Note, β∗ represent the usual increase in log odds associated with a one unit

increase in buprenorphine dose level. Thus, by estimating β(·) we can also estimate β∗.

Estimating the buprenorphine dose effect β(·) in model (2.1) is challenging from both a

theoretical and computational perspective because of its infinite dimension. To reduce the number

of unknown parameters needed to be estimated while also maintaining adequate modeling flexibility,

we approximate β(·) using B-splines [Ramsay and Silverman, 2005]. This leads to the following

representation of β(·):

β(·) =
L∑

l=1

ηlbl(·), (2.3)

where bl(·) is a spline basis function and ηl is the corresponding spline coefficient, for l = 1, . . . , L.

The L spline basis functions are fully determined once the degree and knot set are specified, thus the
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only unknown parameters in (2.3) are the spline coefficients. In specifying the basis functions, the

degree controls the overall smoothness of the basis functions and the number of knots determines

the overall modeling flexibility; for further discussion, see Ramsay and Silverman [2005]. We suggest

selecting a relatively large knot set (e.g., 5-6 knots) and then regularize the estimation of the spline

coefficients through the methodology outlined below.

Using the spline representation of β(·) depicted in (2.3), we can re-express the functional

component in model (2.1) as follows

∫
Aij

Dij(s)β(s)ds =

∫
Aij

Dij(s)

(
L∑

l=1

ηlbl(s)

)
ds

=
L∑

l=1

(∫
Aij

Dij(s)bl(s)ds

)
ηl

:= m′
ijη,

(2.4)

where mij is an L-dimensional vector whose lth element is mijl =
∫
Aij

Dij(s)bl(s)ds and η =

(η1, . . . , ηL)
′. Thus, the linear predictor of our model can be expressed as

νij = m′
ijη + x′

ijα+ γ0i + γ1k(i). (2.5)

2.2.2 Prior Specification

To facilitate both parameter estimation and inference, we cast our problem into the Bayesian

paradigm. The first step in this process involves specifying prior distributions for all unknown pa-

rameters. Given the complexities of our problem, priors are chosen to regularize the estimation of

the parameters. In particular, the prior for the spline coefficients is designed to encourage smooth-

ness in the functional estimate while the prior for the regression coefficients is meant to ”shrink”

unimportant variables toward zero. In what follows, we briefly expand on these specifications.

To avoid overfitting issues and to encourage smooth functional estimates, herein we adopt a

prior for the spline coefficients which leverages a covariance structure inspired by the usual roughness

penalty [Hastie et al., 2009]. This common penalty encourages smoothness by penalizing for abrupt

changes in the function through the following:

∫ [
β(2)(s)

]2
ds = η′Rη,

11



where β(2)(·) denotes the second derivative of β(·) and R is an L × L matrix with entries Rll′ =∫
b
(2)
l (s)b

(2)
l′ (s)ds with b

(2)
l (·) being the second derivative of bl(·). Note, the spline representation

adopted for β(·) is key to being able to represent this penalty as the quadratic form depicted above;

for details of this derivation, see Hastie et al. [2009]. Capitalizing on the structure of this penalty

and the duality that exists between regularized estimation and prior distributions in the Bayesian

paradigm, we specify the following smoothing penalty inspired prior distribution for η:

η ∼ N(0, λR−1)

λ ∼ Inv-Gamma(aλ, bλ).

In the prior specification above, the additional variance parameter λ governs the amount of smooth-

ness and controls the trade off between over and underfitting the data.

To aid in variable selection, we adopt the generalized double Pareto shrinkage prior, proposed

by Armagan et al. [2013], for all of the regression coefficients with the exception of the intercept;

i.e., we specify

α0 ∼ N(0, τ0)

αp ∼ GDP (ψ = bδ/aδ, aδ) , for p = 1, . . . P − 1,

where GDP(ψ, aδ) refers to the generalized double Pareto distribution [Armagan et al., 2013]. Under

these prior choices, setting τ0 to be large provides a vague prior on α0, while the hyperparameters

aδ > 0 and bδ > 0 govern the amount of shrinkage. In particular, these parameters control the

dispersion, with aδ controlling the heaviness of the tails of the distribution. A typical default

specification, and the one adopted herein, is to set aδ = bδ = 1 which leads to Cauchy-like tail

behavior which is known to have desirable Bayesian robustness properties [Armagan et al., 2013].

Finally, we place inverse gamma priors on the variance components of the random effects;

i.e., we specify

σ2
q ∼ Inv-Gamma(aq, bq), q = 0, 1.

This specification is common among the literature and it leads to a proper posterior [Seltzer et al.,
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1996]. Based on the prior specifications outlined above, we develop a Markov chain Monte Carlo

(MCMC) sampling algorithm which facilitates both posterior estimation and inference. In what

follows, we provide a brief overview of this algorithm and its construction.

2.2.3 Data Augmentation and Posterior Sampling

With ease of implementation and computational efficiency in mind, herein we outline the

construction of a posterior sampling algorithm that consists solely of Gibbs steps [Gelman et al.,

2013]. To accomplish this, we consider a two-stage data augmentation process. The first stage

follows the work of Polson et al. [2013], and introduces carefully constructed Pólya-Gamma latent

random variables so that the logistic function can be hierarchically expressed as a scale mixture of

normals, where the mixing distribution is Pólya-Gamma; for further details see Polson et al. [2013].

The second stage decomposes the generalized double Pareto shrinkage prior as a scale mixture of

normals; for further discussion see Armagan et al. [2013]. For the specific details of this two-stage

data augmentation process, see Section A.1 of Appendix A.

The data augmentation scheme outlined above leads to the following full conditionals

α|Y ,w,η,γ0,γ1, τ ∼ N(µα,Σα)

η|Y ,w,α,γ0,γ1, λ ∼ N(µη,Ση)

λ|η ∼ Inv-Gamma(a∗λ, b
∗
λ)

σ2
q |γq ∼ Inv-Gamma(a∗q , b

∗
q)

wij |α,η, γ0i,γ1k(i) ∼ PG(b∗δ/a
∗
δ , a

∗
δ)

τp|αp, δp ∼ Inv-Gaussian(a∗τp , b
∗
τp)

δp|αp ∼ Gamma(a∗δp , b
∗
δp),

where the specific form of the parameters of these distributions are given in Section A.1 of Appendix

A. These full conditionals were used to construct an MCMC algorithm in the usual manner; for

further discussion see Gelman et al. [2013].
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Table 2.1: Sociodemographic characteristics and drug use history for the individuals used in the
analysis.

Demographics Sociodemographics
Age Mean SD Income Mean SD

36.14 9.85 20834 30025
Gender N % Employment History N %
Male 2017 67 Skilled Manual 889 29
Female 1005 33 Never Gainfully 653 22
Race N % Machine Operator 445 15
White 2001 66 Clerical/Sales 407 13

Hispanic 495 16 Administrative 239 8
Black 422 14 Unskilled 235 8

American Indian 50 2 Business Manager 101 3
Asian 48 2 Executive 53 2
Other 6 < 1 Work Type N %

Fulltime 1758 58
Drug Use History Unemployed 582 19

Years of Opiate Abuse Mean SD Irregular PT 284 9
8.23 8.41 Regular PT 232 8

Heroin Use N % Retired 84 3
YES 2354 78 Student 64 2
NO 668 22 Controlled 17 < 1

Mode of Opiate Abuse N % Military 1 < 1
IV 1710 57 Education N %

Snort 1089 36 High School 1456 48
Oral 122 4 Partial College 829 27

Smoking 74 2 Partial High School 304 10
Other 22 1 Standard College 213 7

Sublingual 5 < 1 Junior High School 116 4
Cocaine Use N % Complete Graduate School 89 3

YES 1837 61 Less than 7th Grade 15 1
NO 1185 39 Marital Status N %

Meth Use N % Married 1038 34
NO 2304 76 Never Married 1014 33
YES 718 24 Divorced 602 20

Alcohol Use N % Separated 261 9
YES 1891 63 Widowed 87 3
NO 1131 37 Remarried 20 1

Tranquilizer Use N % Living Arr N %
NO 1997 66 Partner & Child 1251 41
YES 1025 34 Partner Only 537 18

Marijuana Use N % Parents 294 10
YES 1953 65 Family 263 9
NO 1069 35 Friends 255 8

PCP Use N % Alone 190 6
NO 2545 84 Child Only 183 6
YES 477 16 Controlled 25 1

No Stable 24 1
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2.3 Secondary Data Analysis of Buprenorphine Efficacy

2.3.1 Trial Data

Clinical trial data for this analysis was sourced from the Clinical Trials Network (CTN)

at NIDA’s Data Share resource (datashare.nida.nih.gov). Using the search keyword opiate, we

identified 10 efficacy and safety trials involving detoxification or maintenance treatment of DSM-IV

opioid dependence. We selected six efficacy and safety trials focused on buprenorphine maintenance

treatment for analysis. Detailed information on these trials are provided in Table 1 of Appendix

A.2.

2.3.2 Patient Characteristics

The data consists of 55,739 urinalysis results from 3,022 subjects who participated in one

of the six aforementioned clinical trials aimed at assessing the efficacy of buprenorphine for treating

OUD. The number of urinalyses (i.e., urine drug screens for opioids) per subject ranged from 1 to

60 urinalyses, while the mean number of urinalyses per subject was 18.44 and the median was 18.

The data was harmonized across the six trials and candidate predictors with a missingness greater

than 25% were filtered out. This resulted in 18 demographic, sociodemographic, and substance use

variables (excluding prescribed buprenorphine dose, handled by the functional component of the

model). Missing demographic, sociodemographic, and substance use variables were imputed using

the regularized iterative factorial analysis for mixed data (qualitative and quantitative variables)

algorithm [Audigier et al., 2016], implemented by the imputeFAMD function in the missMDA R package.

Summaries of the retained variables (with imputed values included) are given in Table 2.1. The

daily dose of buprenorphine taken by each patient was either reported (CSP-999) or inferred from

alternate information. Daily dose could vary throughout time for a variety of reasons; e.g., adherence,

induction, re-induction after lapse in dosing, modification by a provider’s clinical judgement, etc.

Given the number of demographic and substance use variables considered, the reference

group is specifically white men with a high school diploma who are employed full time doing skilled

manual labor, married and living with a partner or child, and their primary mode of opioid use

being intravenous, with a history of heroin, cocaine, alcohol and marijuana use and no history of

methamphetamine, tranquilizer, or PCP use. The mean age, income, and years of opioid use are

36.14 years, $20,834 per year and 8.23 years, respectively (presented in Table 2.1), while the mean

15
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Table 2.2: Treatment and outcome characteristics of individuals used in the analysis. Urinalysis is
a binary indicator that takes value 1 to denote a positive opioid drug screen and 0 otherwise.

Mean Median Range
Daily Dose 12.65 14 0-90
Days in Trial 112.70 87 1-527
Urinalysis 0.41 0 0-1

dose is 12.65 mg/day (presented in Table 2.2). When we discuss conditional probabilities of relapse,

comparisons will be made with respect to this hypothetical individual in the reference group by

changing specific variables as noted.

2.3.3 Functional General Linear Mixed Model

The outcome variable in this analysis was the urinalysis test result for illicit opioid use (1=posi-

tive drug screen vs 0=negative drug screen). Through the model in (2.1), we relate the daily dose

patterns leading up to the clinic visit with urinalysis, while controlling for the 18 demographic,

sociodemographic, and substance use variables detailed in Table 2.1. For the functional dose com-

ponent in model (2.1), the time trajectory was chosen to be the 15 days leading up to the current

urinalysis clinic visit and, for the B-spline basis expansion of the coefficient function in (2.3), we

specify the degree to be 3 to construct cubic basis functions. Two interior knots were placed at

the 33.33th and 66.67th percentiles of our 15-day time range. This leads to five fully determined

spline basis functions and, hence, five spline basis coefficients to estimate. For the priors outlined

in Section 2.2.2, we take τ0 = 1000 to specify a vague prior on the global intercept α0 and let

a0 = b0 = 0.001, a1 = b1 = 0.005, aδ = 1, bδ = 1, aλ = 1, bλ = 0.005. These hyperparameter

values are chosen so to produce uninformative, proper prior specifications. For sampling, we retain

5,000 MCMC iterates after a burn-in of 5,000 samples. Convergence of the MCMC chains were

assessed in the usual manner; i.e., trace plots. To summarize our analysis, we report the estimated

posterior means (point estimates of the effects), estimated posterior standard deviations (measures

of uncertainty), and 95% equal-tailed credible intervals.

Figure 2.2 summarizes the estimated functional coefficient β̂(t) (black solid line), which

represents the buprenorphine daily dose effect for the 15 days leading up to a clinic visit with

urinalysis. The dashed lines are the 95% credible interval limits. On the horizontal axis, if t is the

day of the current urinalysis clinic visit, then t − 15 represents 15 days prior and t − 1 represents
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one day prior. Table 2.3 reports the demographic and substance use variables that were found to

be significant. Of the 54 fixed effects, four were deemed to be important by the model (i.e., their

estimated credible intervals did not contain zero). Table 2.3 summarizes these significant factors by

reporting the estimated posterior means (point estimate of the effect), estimated posterior standard

deviations (measure of uncertainty), and 95% equal-tailed credible intervals. The analogous results

for the full set of demographic and substance use variables are provided in Tables 2 and 3 in Section

A.3 of Appendix A.
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Figure 2.2: Estimated buprenorphine dose effect for the 15 days leading up to a urinalysis test,
with 95% equal-tailed credible interval limits displayed as black dashed lines. The intersection of
the vertical and horizontal lines is the point at which the credible interval is entirely below zero,
marking the point where the dose effect becomes significant.

As previously stated, daily dose adherence was only directly recorded for patients in the

CSP-999 trial. Specifically, while the assigned daily dose of buprenorphine was recorded as a part

of the five other trials, adherence was not. For these trials, dose adherence was reconstructed using

other available information, e.g., self reported non-adherence, returned pills, etc. To examine how
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Table 2.3: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95)
for the significant fixed effects.

Variable Est ESE CI95
Intercept 2.05 0.27 (1.54, 2.61)
Age -0.02 0.01 (-0.03, -0.01)
Work Type (Ref: Fulltime)
Unemployed 0.33 0.14 (0.05, 0.59)
Heroine Use (Ref: YES)
No Heroine Use -0.57 0.21 (-1.00, -0.16)
Mode of Opioid Abuse (Ref: IV)
Oral -1.32 0.23 (-1.78, -0.88)

the buprenorphine dose reconstruction could have impacted our results, we reran our analysis on

data from the CSP-999 trial only. A summary of these results can be found in Section A.3 of

Appendix A.

To extract an estimate of dose effect for subjects that were strictly adherent to their assigned

dosing regime, we compute the following integral for each realization β(s), denoted β(g)(s), drawn

from the posterior

β∗(g) =

∫
Aij

β(g)(s)ds,

with β∗(g) being a posterior realization of β∗. Table 2.4 provides a summary of these results for both

the full and reduced (CSP-999) analysis to include the posterior mean estimate (point estimate of the

effect), estimated standard deviation of the posterior (measure of uncertainty), and 95% equal-tailed

credible interval.

Table 2.4: Analysis results: Summary includes the posterior mean estimate (Est), the estimated
standard deviation of the posterior (ESE), and the estimated 95% equal-tailed credible interval
(CI95) for the dose effect (i.e., β∗) for the full and reduced (CSP-999) analysis.

Est ESE CI95
All Trials -0.09 <0.01 (-0.09, -0.08)
CSP-999 -0.11 0.01 (-0.12, -0.10)
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2.4 Discussion

The primary focus of our analysis is two-fold. First, we wish to demonstrate a novel ap-

proach to account for non-adherence that commonly arises in medication assisted treatment trials;

especially those targeting substance use disorders. Second we wish to refine the understanding of

the effectiveness of buprenorphine as a MOUD, while accounting for the potential non-adherence of

study patients. To accomplish both of these tasks, we investigated the influence of multiple demo-

graphic, sociodemographic, drug use history, and treatment variables on the risk of illicit opioid use

with publicly available individual patient data from six federally-sponsored buprenorphine efficacy

and safety trials. To acknowledge and account for patterns of non-adherence, we conceptualized

the daily dose histories of the study patients as a functional covariate and we estimated an asso-

ciated functional effect. A summary of this estimated functional is provided in Figure 2.2. From

these results, we identify several key findings. First, these results suggest that buprenorphine, as

an MOUD, significantly reduces the risk of illicit opioid use. This can be seen from the fact that

the point estimates, and associated credible intervals, are all below zero; i.e., the integral over the

the product of this functional and Dij(·) ≥ 0 results in a negative quantity. Second, we find that

dose history extending to approximately 12.5 days prior to an opioid screening visit is significantly

related to the risk of short term lapses. Third, the risk of illicit opioid use is related to dosing

adherence patterns throughout the considered 15 day window leading up to the urinalysis, although,

recent patterns have more influence. This can be seen from the decreasing nature of the functional

estimate, especially for the five (approximately) days before the urinalysis test. Fourth, based on

our estimated functional, we are able to extract an estimate of dose effect for subjects that were

strictly adherent to their assigned dosing protocol. Based on this approach, we estimate that the

log-odds of short-term lapse decreases by 0.09 with every 1 mg/day increase in dose; see Table 2.4.

This new assessment of the efficacy of buprenorphine as an OUD treatment is unobscured by the

effects of non-adherence and leverages six NIDA-sponsored efficacy and safety trials to render its

conclusions.

When examining the association between risk of illicit opioid use and the other demographic,

sociodemographic, and drug use history variables, four of the 54 were found to be significant. In

particular, we find that increasing age is protective, while being unemployed, having a drug use

history of using heroine and a drug use history of using opioids intravenously are associated with
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an increased risk of illicit opioid use. A similar finding that increasing age is associated with no

positive urine drug screen was recently reported in an analysis of Veterans Administration patients

undergoing buprenorphine treatment [Crist et al., 2021]. The protective nature of employment for

patients in recovery [Hser et al., 2015] is concordant with unemployment being identified as a risk

factor for illicit opioid use. Older age, no heroine use history and no IV drug use have already been

reported as protective with respect to successful opioid use outcomes (abstinent during week 24 and

≥ 2 of the previous 3 weeks) in a secondary data analysis of the Prescription Opioid Addiction

Treatment Study (POATS or CTN-0300) [Weiss et al., 2010; Dreifuss et al., 2013], one of six CTN

trials included in this study. Notably, the largest protective effect we observed was ”primary mode

of opioid abuse” with the log-odds of short-term lapse decreasing by 1.32 when the primary mode of

abuse is oral. This could be attributable to the severity of the opioid use disorder, with intravenous

use being a hallmark of more severe cases.

When examining the results of the sensitivity analysis (see Section A.3 of Appendix A) of

the CSP-999 trial only, we note several similarities and differences. Importantly, the full and CSP-

999 analysis came to virtually the same conclusions with regard to the efficacy of buprenorphine as

an OUD treatment. In particular, the estimates of β(·) are not statistically different from each other.

However, the estimate from the full analysis is slightly attenuated toward zero when compared to the

CSP-999 only analysis. This feature can also be observed in the effect estimate reported in Table 2.4.

A plausible explanation for this would be that our approach to reconstructing dose histories for the

study patients, though effective, was not perfect, and therefore introduced ”measurement error” into

this variable. A hallmark of measurement error is the attenuation of effect estimates toward zero;

e.g., see Stefanski [2000]. When comparing the estimated effects of demographic, sociodemographic,

and substance use variables we find that most are not statistically different, yet there are differences

in those deemed to be significant by the two analyses. These differences are likely attributable to

increased precision due to larger sample sizes in the full analysis and differences in the demographic

distribution across the full and reduced data.

We also acknowledge the lack of other risk factors that could be used to better under-

stand/predict short-term lapse. Inclusion of time varying predictors such as current stress levels,

occurrences of major life events (e.g., familial death, loss of job, etc.), and other psychological mea-

sures would undoubtedly enhance our model. However, the impact of not having these variables is

mitigated by the adoption of subject specific random effects.
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Importantly, this study was specifically aimed at estimating the effectiveness of recent

buprenorphine treatment at reducing short term lapse. With that being said, this analysis did

not consider adherence and its impact on illicit opioid use over longer periods of time and the sub-

sequent associations with OUD related adverse outcomes, which is a far more complex problem.

Studies aimed at these more long term outcomes could reveal OUD treatment strategies that would

be poised to positively impact public health. That is, there have been nearly 500,000 overdose

deaths from opioids in the United States alone in the last 20 years [Kuehn, 2021]. Further, OUD

related mortality appears to be increasing. Specifically, the CDC estimates that overdose deaths

from opioids increased to 75,673 in the 12-month period ending in April 2021, up from 56,064 in

2020 [Center for Disease Control and Prevention, 2021]. Moreover, less than one-third of patients

enrolled in comprehensive health care with current OUD are being treated with one of three ap-

proved medications for OUD [Lapham et al., 2020]. Extended MOUD treatment (> 1 vs ≤ 1 year)

appears to reduce mortality [Ma et al., 2019]. Thus, conducting more in depth studies relating

MOUD treatment to long term outcomes has the potential to identify OUD treatment strategies

that can be more effectively utilized to treat this epidemic and shift current clinical practice. Future

research efforts will be aimed at studying these more complex topics related to dose, adherence and

treatment outcomes and their association with OUD related mortality rates.

2.5 Conclusions

Inspired by the challenge of adherence in MOUD trial analysis, this work proposed a generalized

linear functional mixed effects model that can acknowledge and account for the effects of adherence

when assessing treatment effects. The proposed model was applied to six buprenorphine MOUD

clinical trials in an effort to refine our understanding about time dependent effects that buprenor-

phine has on treating OUD. In particular, we find that buprenorphine dose history approximately

12.5 days prior to an opioid screening visit is significantly related to the risk of short term lapses,

with the more recent history being more impactful. Further, we are able to extract an estimate

of dose effect that is not obscured by adherence issues. That is, we estimate that the log-odds of

short-term lapse decreases by 0.09 with every 1 mg/day increase in buprenorphine dose.
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Chapter 3

High dimensional Bayesian joint

modeling of skill and probability of

successful simulated cannulation

attempts

3.1 Introduction

End-stage kidney disease (ESKD) is the final stage of chronic kidney disease (CKD), leading

to permanent kidney failure. CKD is a leading public health problem [Wong et al., 2018], with

substantial associated costs and high morbidity and mortality rates [Collaboration, 2020; Saran et al.,

2020], mainly attributable to ESKD treatments. Indeed, the Medicare costs associated with ESKD

account for approximately 7% of the total Medicare budget [Saran et al., 2020]. The progression

of CKD to ESKD results in the need for renal replacement therapy (RRT) [Walbaum et al., 2021].

The prevalence of ESKD is increasing [Wong et al., 2018], and the worldwide use of RRT for ESKD

is expected to more than double by 2030 [Thurlow et al., 2021].

Dialysis is the leading form of RRT, and hemodialysis is the most popular modality [Thurlow

et al., 2021]. During hemodialysis treatment, the patient’s blood is pumped through a dialysis
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machine to remove waste products and excess fluids. In order to perform a successful dialysis

treatment, a vascular access is surgically created to the bloodstream, typically through the creation

of an arteriovenous fistula (AVF) [Singapogu et al., 2021]. The hemodialysis cannulation (HDC)

procedure requires the following steps: accurately locate where to insert the needle, needle insertion

until blood enters the cannula (referred to as ‘flashback’), advancing the needle forward to allow

sustained blood flow (i.e., attaining ‘stable blood flashback’), and securing the needle [Brouwer,

2011]. The HDC procedure is critical for ESKD treatment, as patients’ survival depends on successful

cannulation of their vascular accesses three times a week. This is a notably challenging procedure

because vascular accesses (typically AVF) are patient-specific anatomical structures that are in

non-standard geometries and have varying blood flow [Moist et al., 2013]. Consequently, accurate

cannulation of AVFs for successful hemodialysis is a critical and complex skill, and it is imperative to

avoid miscannulation [Lok et al., 2020; Brouwer, 2011]. One of the main reasons for miscannulation

is infiltration, which occurs when the clinician punctures through the AVF causing blood to leak out

[Brouwer, 2011]. Infiltration can lead to adverse medical complications and even loss of a functioning

vascular access [Lee et al., 2006]. Thus, lack of cannulation skill can result in poor clinical outcomes,

even morbidity and death. It is crucial cannulation is performed by skilled clinicians, and there is

a pressing need to properly train clinicians to safely and effectively cannulate vascular accesses for

hemodialysis.

Simulators have been successfully applied for assessment and training of clinical skills in a

variety of medical specialties, with their ability to provide objective feedback being a key advantage

[Noureldin et al., 2016; Zendejas et al., 2013]. Simulators provide trainees with the benefit of

practicing clinical skills in a simulated, low-stakes, safe environment to instill confidence in skill prior

to actual clinical practice, and to reduce any patient risks. A custom, state-of-the-art hemodialysis

cannulation simulator was designed [Liu et al., 2020; Singapogu et al., 2021] and previous work

has demonstrated its use to successfully quantify cannulation skill [Liu et al., 2021]. The simulator

is comprised of four fistulas with various geometrical and physical characteristics, two different

skin thicknesses, and two different motor vibration intensities. It contains four types of sensors

that measure various facets of cannulation skill; for details, see Liu et al. [2020]. The quantitative

data from these sensors result in over 400 descriptors quantifying summaries of time, force, motion

smoothness, palpation, needle angle/location, etc. Based on these sensor data, this simulator has

the ability to provide objective metrics used to measure outcomes of cannulation that are closely
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related to clinical outcomes [Liu et al., 2020, 2021].

Liu et al. [2021] devised four objective metrics to measure cannulation outcomes based on

recommendations from the recent Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines,

which defines skilled cannulation to be time-efficient with only one needle insertion attempt, stable

flashback, no infiltration, and minimal patient pain [Lok et al., 2020]. In what follows, we briefly

describe the four metrics; for further details, see Liu et al. [2021].

The first metric, flash efficiency (eff), measures the quality of blood flashback. It is defined

to be the ratio measuring efficiency of time spent inside the simulated vascular access obtaining

flashback, relative to the time spent under the skin. The second metric is number of attempts (atts),

which counts the number of needle insertion attempts after initial insertion. Per the KDOQI guide-

lines, more than one insertion attempt is undesirable because it can lead to patient discomfort and

damage to the vascular access. The third metric, stb, is a binary indicator of stable flashback attain-

ment; i.e., stb=1(0) represents the ability (inability) to maintain stable flashback. The last metric is

number of infiltrations (infls) estimates the number of infiltrations that occurs during cannulation

by counting the number of times flashback occurs and then disappears. KDOQI guidelines stress

the importance of avoiding infiltration because of the associated clinical complications [Lok et al.,

2020].

The indicator of stable flashback, stb, signals sustained blood flow and completion of the

cannulation task. It quantifies an outcome of cannulation as defined by the KDOQI guidelines,

and it corresponds to the clinical scenario where successful cannulation is identified as sustained

blood flow for hemodialysis. Petersen et al. [2022] used stb as an outcome metric to model the

probability of successful cannulation and successfully identified salient palpation metrics. However,

note that this metric does not account for any errors or inefficiencies before stable flashback was

ultimately attained. Indeed, even with stable blood flashback resulting in a successful cannulation,

adverse events such as infiltration or multiple insertion attempts can still occur and lead to patient

discomfort along with clinical complications [Lok et al., 2020]. Liu et al. [2021] combined the

four previously described metrics into a continuous metric, ocScore, quantifying overall quality of

cannulation. This composite metric was formulated to facilitate precise measurement of cannulation

performance based on cannulation outcomes as defined by the KDOQI guidelines. In particular,
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ocScore is a penalized version of flash efficiency and is defined to be

ocScore = eff (1− 0.25(I[atts> 1] + I[infils> 1] + I[stb= 0])).

The penalties imposed are related to the occurrence of one or more of three distinct adverse events,

based upon assessment of the assessment of the KDOQI guidelines’ definition of quality cannulation;

namely, infiltration, requiring multiple insertion attempts, and inability to attain stable flashback.

The range of this metric is [0, 1], and effective cannulation will produce ocScore values closer to 1;

for further details, see Liu et al. [2021].

Building upon our previous research [Liu et al., 2021; Petersen et al., 2022], this work

aims to identify salient process metrics from a high-dimensional feature space that influence the

probability of successful cannulation (i.e., the probability of attaining stable flashback) and the

quality of cannulation (i.e., ocScore). In this article, we develop a shared random parameter model

under the Bayesian framework to jointly model the ocScore and stable flashback. These two outcomes

are correlated both implicitly and by design, and we accommodate this dependence through the use

of a shared random effect that acknowledge subject-specific tendencies in cannulation performance.

The proposed methodology is motivated by and applied to a study of cannulation skill assessment

from the sensor-based simulator data.

The remainder of this article is organized as follows. In Section 3.2, we develop the proposed

methodology, including prior model specifications and data augmentation steps used to construct an

efficient posterior sampling algorithm. Section 3.3 reports the results of a simulation study conducted

to assess the performance of the proposed approach. Section 3.4 presents the analysis results for the

motivating study. We conclude with a summary discussion in Section 3.5. Additional details and

simulation results are provided in Appendix B.2.

3.2 Methodology

3.2.1 Model Notation

In what follows, we outline the prominent features of our proposed model. To this end, let

Yij ∈ [0, 1) be the ocScore for the ith subject during their jth trial (cannulation) after kij attempts,

for j = 1, . . . , ni, and i = 1, . . . ,m. To relate the observed ocScore data to the available process
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features, we posit the following linear mixed model:

Yij = x′
ijβ + γi + ϵij , (3.1)

where xij = (1, xij1, xij2, . . . , xijP )
′ is a (P+1)-dimensional vector of covariates, β = (β0, β1, . . . , βP )

′

is the corresponding vector of regression coefficients with global intercept β0, and ϵij denotes ran-

dom error. We assume that the errors are independent and identically distributed as normal random

variables; i.e., ϵij
iid∼ N(0, σ2

ϵ ). The second term in model (3.1) is a subject-specific random effect,

denoted by γi, entered into the model to account for the heterogeneity across subjects. Herein, the

distribution for the random effects is taken to be γi
iid∼ N(0, σ2

γ).

To model the probability of success, let Sij(k) be the binary indicator of stable flashback

for the ith individual’s jth trial (cannulation) on their kth attempt, k = 1, . . . , kij . To relate the

observed stable flashback data to the available process features, we propose the following generalized

linear mixed model:

πij := P
(
Sij(k) = 1 | zij

)
= [1 + exp(−νij)]−1

, with νij := z′
ijα+ ζγi, (3.2)

where we’ve used the logit link function to relate the linear predictor νij to the probability of stable

flashback. The first term of model (3.2) consists of a (Q + 1)-dimensional vector of covariates,

zij = (1, zij1, zij2, . . . , zijQ)
′, specific to the jth trial of the ith subject, and α = (α0, α1, . . . , αQ)

′

is the corresponding vector of regression coefficients. The second term consists of the same subject-

specific random effect, γi, that is shared with model (3.1), while ζ is the association parameter that

can take into account the interdependence between ocScore and success. In particular, ζ allows the

subject-specific propensity towards higher ocScores to contribute to the subject-specific propensity

towards obtaining or failing to obtain stable flashback. We incorporate this association parameter

because we expect the random effects of (3.2) to potentially have different magnitude, scale, and/or

sign than the random effects of (3.1).

Within a prospective cannulation trial, participants are allowed to attempt cannulation as

many times as needed or until they give up, resulting in kij attempts. Hence, success (i.e., attaining

stable flashback) is observed as an attempt-based metric; that is, for each attempt during a trial, we

observe success or failure. However, we model success as a trial-based metric that is a function of the
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number of attempts. In particular, if the first stable flashback is obtained on the kth attempt, then

kij = k and Sij(k) = Sij = 1. If no stable flashback is obtained after k attempts and the participant

gives up, then kij = k and Sij(k) = Sij = 0.

3.2.1.1 Sparse Principal Component Analysis

The process features used in model (3.2) are highly correlated with one another. This

presence of multicollinearity can lead to highly unreliable estimates for the regression coefficients

and inflated standard errors, particularly when modeling a binary outcome. Principal component

analysis (PCA) mitigates some of the issues associated with multicollinearity and the estimation

of regression parameters by transforming the original feature space into a collection of orthogonal

features; namely, principal components [Jolliffe, 2002]. The resulting principal components are

linear combinations of all features in the original feature space. While coefficient estimation using

principal components instead of the original feature space leads to biased estimates, the variability

of the estimates themselves can be greatly reduced.

With each principal component being a linear combination of all features, it is difficult

to interpret the estimation results and identify variables of importance. As a remedial measure,

we will apply a sparse principal component analysis (SPCA) technique [Zou et al., 2006] to the

success model (3.2). Zou et al. [2006] showed that PCA can be formulated as a regression-type

optimization problem. SPCA produces modified principal components with sparse loadings by

imposing the lasso constraint on the corresponding PCA regression coefficients, so that each principal

component is a linear combination of only a subset of the covariates [Zou et al., 2006]. This leads to

more interpretable principal component loadings that will assist in identifying significant covariates.

The spca function in the elasticnet R package [Zou and Hastie, 2020] will output the modified

principal component loadings, where sparsity can be enforced by specifying the number of principal

components to use and the number of non-zero elements in each of the loadings. In what follows,

we outline the reformulation of model (3.2) under SPCA.

For notational convenience, let zij := (1, z∗
ij)

′, where z∗
ij = (zij1, . . . , zijQ)

′ is the subset of

zij that excludes the first entry associated with the global intercept. We assume that the predictor

variables z∗
ij have been standardized. Define V ∗ to be the Q × L matrix whose columns are the

sparse loadings for the first L modified principal components of the predictor variables, z∗
ij , across

all trials and participants, where L ≤ Q. To accommodate the intercept term, define
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V =

1 0′

0 V ∗


to be the (L + 1) × (L + 1) block diagonal matrix. Then, let cij = zijV := (1, c∗ij)

′ denote the

derived input vector, where c∗ij = z∗
ijV

∗ is the vector of the first L modified principal component

scores for the ith participant’s jth trial. With this, we can replace the linear predictor expression

of model (3.2) with the following (reduced) SPCA transformation:

νij = c′ijθ + ζγi, (3.3)

where θ = V ′α is the vector of (L + 1) regression coefficients we wish to estimate. By replacing

the original covariates with the modified principal components with sparse loadings, we can obtain

much more stable estimates of the original model coefficients, α, without hindering our ability to

identify significant predictors.

3.2.2 Prior Specifications

To facilitate both parameter estimation and inference, we cast our model into the Bayesian

paradigm and develop a Markov chain Monte Carlo (MCMC) posterior sampling algorithm. The

first step in this process involves specifying prior distributions for all unknown parameters. Given

the large number of covariates, priors are chosen to regularize the estimation of parameters. In

particular, the priors for the regression coefficients are designed to “shrink” unimportant variables

towards zero. In what follows, we briefly expand on these specifications.

To aid in variable selection, we adopt the generalized double Pareto shrinkage prior [Ar-

magan et al., 2013] for all regression coefficients with the exception of the intercepts; i.e., for the

ocScore model coefficients β = (β0, β1, . . . , βP )
′, we specify

β0 ∼ N(0, σ2
ϵ τ0)

βp ∼ GDP (σϵbδ/aδ, aδ), for p = 1, . . . , P,
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and, for the stable flashback SPCA model coefficients θ = (θ0, θ1, . . . , θL)
′, we specify

θ0 ∼ N(0, ρ0)

θl ∼ GDP (bλ/aλ, aλ), for l = 1, . . . , L,

where GDP (σϵbδ/aδ, aδ) and GDP (bλ/aλ, aλ) refer to generalized double Pareto distributions.

Under these prior specifications, setting τ0 and ρ0 large provides vague priors for the intercepts

β0 and θ0, respectively, while the hyperparameters aλ, bλ > 0 and aδ, bδ > 0 govern the amount

of shrinkage. A typical default specification is to set both hyperparameters equal to 1, leading to

Cauchy-like tail behavior which is known to have desirable Bayesian robustness properties [Armagan

et al., 2013]. We adopt this default specification for the stable flashback model; i.e., aλ = bλ = 1. On

the other hand, the ocScore model has a high-dimensional feature space. It could be very dense or

very sparse, and setting the hyperparameters to their default specification could be very restrictive

[Armagan et al., 2013]. As an alternative, we choose hyper-priors to allow the data to inform us

about the values of aδ and bδ. In particular, we use p(aδ) = 1/(1 + aδ)
2 and p(bδ) = 1/(1 + bδ)

2

to correspond to generalized Pareto hyper-priors with location parameter 0, scale parameter 1 and

shape parameter 1 [Armagan et al., 2013].

Next, we place an inverse gamma prior on the variance component of the subject-specific

random effects γi; i.e., we specify σ2
γ ∼ Inv −Gamma(aγ , bγ). This specification is common among

the literature and it leads to a proper posterior [Seltzer et al., 1996]. For the random effects asso-

ciation parameter, ζ, in the SPCA model (3.3), we specify the following conjugate Normal prior:

ζ ∼ N(0, σ2
ζ ), where σ

2
ζ is set large to provide a vague prior for ζ. Finally, we place a uniform prior

on the variance component of the random error ϵij ; i.e., we specify p(σϵ) ∝ 1/σϵ.

Based on the prior specifications outlined above, we develop a Markov chain Monte Carlo

(MCMC) sampling algorithm which facilitates both posterior estimation and inference. In what

follows, we provide a brief overview of this algorithm and its construction.

3.2.3 Data Augmentation and Posterior Sampling

With ease of implementation and computational efficiency in mind, herein we outline the

construction of a posterior sampling algorithm that consists solely of Gibbs steps [Gelman et al.,

2013]. To accomplish this, we consider a two-stage data augmentation process. The first stage
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introduces carefully constructed Pólya-Gamma latent random variables so that the logistic function

can be hierarchically expressed as a scale mixture of normals, where the mixing distribution is

Pólya-Gamma [Polson et al., 2013]. The second stage decomposes the generalized double Pareto

shrinkage prior as a scale mixture of normals [Armagan et al., 2013]. For the specific details of this

two-stage data augmentation process, see Appendix B.1. This data augmentation scheme leads to

the following full conditionals:

β | Y ,γ, σ2
ϵ , τ ∼ N(µβ, Σβ)

θ | S,ω,γ, ζ,ρ ∼ N(µθ, Σθ)

ζ | S,ω,θ,γ, σ2
ζ ∼ N(µζ , Σζ)

σ2
γ | γ ∼ Inv −Gamma(a∗γ , b

∗
γ)

σ2
ϵ | Y ,β,γ ∼ Inv −Gamma(a∗ϵ , b

∗
ϵ )

ωij | θ, γi, ζ ∼ PG(kij , νij)

τp | βp, δ, σ2
ϵ ∼ Inv −Gaussian(µτp , δ

2
p), p = 1, . . . , P

δp | βp, σ2
ϵ ∼ Gamma(a∗δp , b

∗
δp), p = 1, . . . , P

ρ−1
l | θl, λl ∼ Inv −Gaussian(µρl

, λ2l ), l = 1, . . . , L

λl | θl ∼ Gamma(a∗λl
, b∗λl

), l = 1, . . . , L,

where the specific form of the parameters of these distributions are given in Appendix B.1. Recall

the hyper-priors specified for aδ and bδ discussed in Section 3.2.2. The corresponding full conditional

posterior distributions are given in Appendix B.1. For sampling, we use an embedded griddy Gibbs

sampling scheme; for details, see Armagan et al. [2013].

These full conditionals were used to construct an MCMC algorithm in the usual manner

[Gelman et al., 2013]. Recall from Section 3.2.1.1, θ is the vector of regression coefficients associated

with the SPCA model (3.3) for stable flashback. At each iteration, we can use the draw from the

posterior of θ to recover a draw from the posterior of α in order to conduct posterior inference

on the fixed effects from the stable flashback model (3.2). In the following section, we conduct a

numerical study to evaluate the performance of our posterior sampling algorithm.
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3.3 Simulation Study

We simulate data from the following shared random effects model:

Yij =x′
ijβ + γi + ϵij , ϵij

iid∼ N(0, 1.25) (3.4)

πij := P
(
Sij(k) = 1 | zij

)
= [1 + exp(−νij)]−1

, with νij := z′
ijα+ ζγi, (3.5)

where γi
iid∼ N(0, .95) and ζ = 0.85, for j = 1, . . . , 16; i = 1, . . . , 50; yielding 800 total observations

of both outcome measures, Yij and Sij(k).

In model (3.4), we let xij = (1, xij1, . . . , xij400)
′, where the P=400 covariates of xij are

independent, and each covariate is generated as normally distributed with mean zero and variance

0.102; i.e., xijk ∼ N(0, 0.102), for k = 1, . . . , 400. The corresponding model coefficients, β =

(β0, β1, . . . , β400)
′, are defined as follows. We set β0=0.45, the first 80 fixed effects are non-zero, and

the remaining 320 are zero. In particular, βp=1 for 1 ≤ p ≤ 40; βp=-1 for 41 ≤ p ≤ 80; and βp=0

for 81 ≤ p ≤ 400.

In model (3.5), we let zij = (1, zij1, . . . , zij10)
′, where the vector of the Q = 10 covari-

ates (zij1, . . . , zij10)
′ is generated as normally distributed with mean one and variance one, and a

covariance structure specified as follows. The first 5 covariates (zij1, . . . , zij5)
′ are correlated such

that the pairwise correlations between the components of (zij1, . . . , zij5)
′ are r|k−l| with r=0.90,

for k, l = 1, . . . , 5. The remaining 5 covariates (zij6, . . . , zij10)
′ are specified to be independent and

identically distributed, and are independent of the first 5 covariates. The corresponding, true model

coefficients are defined to be α = (α0, α1, . . . , α10)
′ = (1.05,−1, 0, 1, 1, 0, 0, 0, 0, 0, 0)′. To address

the multicollinearity that is present in the covariates zij , we will conduct posterior estimation and

inference using an SPCA model of form (3.3) in place of (3.5), where each of the L=10 modified

principal component loadings vl have 5 non-zero elements, for l = 1, . . . , 10. This data simulation

process was repeated for 500 independent data sets, and estimation results were averaged over these

500 data sets. We used our posterior sampling algorithm to draw 2,500 samples after a burn-in of

2,500 samples. Trace plots were used to assess the convergence of the MCMC chains.

Tables 7 - 10 in Appendix B.2 report the estimation results for the intercept and the 400

fixed effects associated with the covariates in model (3.4). For each parameter, the values of ‘Bias’

and ‘SSD’ are the empirical bias and standard deviation, respectively, of the 500 posterior mean
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estimates; the value of ‘ESE’ is the averaged estimated posterior standard deviation; and the value

of ‘CP95’ is the empirical coverage probability of the nominal 95% equal-tail credible interval. Table

3.1 summarizes how successful our approach was at correctly identifying significant predictors (i.e.,

truly non-zero regression coefficients) in model (3.4). It reports the average proportion of times

the covariates, corresponding to truly zero and non-zero regression coefficients, were identified as

statistically significant. The results in these tables indicate that our approach can identify the truly

significant predictor variables in a high-dimensional setting (Table 3.1) while producing accurate,

reliable estimates of these parameters. Moreover, the empirical bias is small relative to the true

value of the corresponding parameter, and SSD and ESE values are relatively close in agreement for

each parameter (Tables 7 - 10). Notice that the empirical coverage probabilities of the 95% equal-

tail credible intervals are slightly below the nominal level for nonzero coefficients and slightly above

for zero coefficients. This is to be expected from our shrinkage prior specification with the non-

default hyperparameter setting. Indeed, this prior specification says that, apriori, we believe that

the distribution is concentrated around zero. This ‘drags’ the posterior estimates towards zero and

the shrinkage penalization pushes the credible intervals towards zero as we inject more information.

Table 3.1: Average proportion of times regression coefficients βp in model (3.4) deemed important.

Avg Proportion
β ̸= 0 (81) 0.998
β = 0 (320) 0.011

Table 11 in Appendix B.2 reports the estimation results for the intercept and the 10 fixed

effects associated with the covariates in model (3.5). For each parameter, the value of ‘Bias’ and

‘SSD’ is the empirical bias and standard deviation of the 500 posterior mean estimates; the value

of ‘ESE’ is the averaged estimated posterior standard deviation; and the value of ‘CP95’ is the

empirical coverage probability of the nominal 95% equal-tail credible interval. Table 3.2 summarizes

how successful our approach (along with the proposed SPCA technique) was at correctly identifying

significant predictors (i.e., truly non-zero regression coefficients) in model (3.5). It reports the

average proportion of times the covariates, corresponding to truly zero and non-zero regression

coefficients, were identified as statistically significant. The results in these two tables indicate that

our approach with the SPCA technique can identify the truly significant predictor variables (Table

3.2) and produce stable and reliable estimates, even in the presence of multicollinearity. Moreover,
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the empirical bias is small relative to the true value of the corresponding parameter, SSD and ESE

values are relatively close in agreement for each parameter, and the empirical coverage probabilities

of the 95% equal-tail credible intervals are roughly at the nominal level (Table 11).

Table 3.2: Average proportion of times regression coefficients αq in model (3.5) deemed important.

Avg. Proportion
α ̸= 0 (4) 0.941
α = 0 (7) 0.042

Overall, the results of this numerical study suggest that our proposed approach performs

well; our algorithm successfully identifies the truly influential features in a high-dimensional setting

with the presence of multicollinearity, and has the ability to produce accurate, stable estimates of

model parameters. Therefore, we conclude that the proposed approach is appropriate for analyzing

the motivating data.

3.4 Analysis of Cannulation Skill Data

Ethics approval for this study was provided by the Institutional Review Boards (IRB) of

Clemson University and Prisma Health (IRB number: Pro00064701). This study examine data

collected from 52 healthcare professionals, with some degree of clinical experience in cannulation,

who were recruited at a regional ESKD meeting. Upon providing informed consent to participate

in the experiment, each participant was asked to perform 16 trials on the simulator to allow for

different scenarios. Each of the four fistulas were presented four times, and the order of fistulas and

their intensities were randomized. One of the two simulated skin thicknesses were used to conduct

the first 8 trials, and the latter 8 trials were conducted using the other skin thickness. Each trial,

or prospective cannulation, consists of two fundamental parts: the first is palpation, where subjects

identify the location and orientation of the fistula; then, participants insert the needle to obtain

blood flashback. Data on 83 of the trials were excluded due to testing purposes or unavailability

of sensor data. Therefore, the dataset comprised of a total of 670 trials from 45 participants was

identified for analysis. The median number of trials per participant is 15 and the typical number of

insertion attempts per trial is one, as shown in Table 3.3. The average ocScore was 0.39, and stable

flashback was attained in 84% of the cannulation trials (presented in Table 3.3).

Tables 12 - 14 in Appendix B.3 list the process metrics that will be used as covariates in the
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Table 3.3: Trial and outcome characteristics of individuals used in the analysis. ocScore is a contin-
uous outcome that takes values between 0 and 1. Stable flashback is a binary indicator that takes
value 1 to denote a stable flashback and 0 otherwise.

Mean Median Range
Trials 14.89 15 11-16

Attempts 1.23 1 1-7
ocScore 0.39 0.40 0-1

Stable Flashback 0.84 1 0-1

model for ocScore. This results in the estimation of P=449 fixed effects in the ocScore component

of the model. Table 15 in Appendix B.3 lists the process metrics that will be used as covariates

in the model for stable flashback. This leads to the estimation of Q=16 fixed effects in the stable

flashback component of the model. To address the presence of multicollinearity among the features

used in the prediction of stable flashback, we will conduct posterior estimation and inference using

the SPCA model (3.3) in place of (3.2), where only the first L=5 modified principal components are

incorporated. Sparsity is enforced as the number of non-zero elements in each of the loadings. In

particular, the first two modified principal component loadings are restricted to having 5 non-zero

elements, the third loading restricted to 4 non-zero elements, and the fourth and fifth loadings are

restricted to having 3 and 2 non-zero elements, respectively. For the priors outlined in Section 3.2.2,

we take τ0 = ρ0 = 1000 to specify vague priors on the global intercepts β0, θ0, σ
2
ζ = 1000 to specify

a vague prior on the random effects association parameter ζ, and we set aγ = bγ = 0.01. These

hyperparameter values were chosen so to produce uninformative, proper prior specifications. For

our posterior sampling algorithm, we retain 2,500 MCMC iterates after a burn-in of 2,500 samples.

Convergence of the MCMC chains were assessed in the usual manner; i.e., trace plots.

Table 3.4 summarizes the estimation results for the shared subject-specific random effect,

and its association parameter. The association parameter ζ is significantly different from zero (i.e.,

its estimated credible interval does not contain zero) and the posterior mean estimate of ζ is a

relatively large, positive value (Table 3.4). This indicates that there is a strong, positive association

between a participant’s ocScore and their cannulation success. In particular, as the value of ocScore

increases by one unit, the log-odds of attaining stable flashback increases. This is to be expected

because ocScore was devised as a function of the indicator of stable flashback in which ocScore

decreases when stable flashback is not attained.

Table 3.5 reports the covariates of the ocScore component of the model that were deemed to
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Table 3.4: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95)
for subject-specific random effect and association parameter.

Param. Est ESE CI95

σ2
γ 0.01 0.00 (0.01, 0.02)

ζ 8.99 1.32 (6.50, 11.75)

be significant. Of the 449 fixed effects for ocScore, 22 were found to be important by the model (i.e.,

their estimated credible intervals did not contain zero). Table 3.6 reports the covariates of stable

flashback that were deemed to be significant. Of the 16 fixed effects, 8 were deemed to be important

by the stable flashback model. Both Tables 3.5 and 3.6 summarize the significant features by

reporting the estimated posterior means (point estimate of the effect), estimated posterior standard

deviations (measure of uncertainty), and 95% equal-tailed credible intervals.

Table 3.5: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95)
for the significant fixed effects for ocScore .

Variable Est ESE CI95 Variable Est ESE CI95
Intercept 0.39 0.02 (0.36, 0.43) total forcedctf2 0.02 0.01 (0.01, 0.03)
ldljV 0.06 0.01 (0.03, 0.09) zdctf10 0.02 0.01 (0.00, 0.04)
avgV -0.03 0.02 (-0.07, -0.00) vdctf9 -0.02 0.01 (-0.03, -0.01)
zdctf7 0.03 0.01 (0.02, 0.05) sparcV 0.02 0.01 (0.00, 0.03)
Nzfftf9 0.03 0.01 (0.01, 0.05) beta 2 -0.02 0.01 (-0.03, -0.01)
Nzdctf8 -0.03 0.01 (-0.04, -0.01) Nyfftf1 0.02 0.01 (0.00, 0.03)
Nxfftf5 0.03 0.01 (0.01, 0.04) Nzfftf2 0.02 0.01 (0.00, 0.04)
Alphadctpow10 0.03 0.01 (0.00, 0.06) total forcefftpow2 -0.02 0.01 (-0.03, -0.00)
xfftf7 -0.02 0.01 (-0.04, -0.00) dAlphafftf10 0.01 0.01 (0.00, 0.02)
Nzdctf9 -0.02 0.01 (-0.04, -0.01) vfftf6 0.01 0.01 (0.00, 0.03)
bf ldljV -0.02 0.01 (-0.04, -0.01) Nxdctf4 -0.01 0.01 (-0.03, -0.00)

The metrics ldljV, sparcV, and LDLJ S are all measures of motion smoothness, where larger

values are an indication of smoother motion or reduced “shakiness”. From Tables 3.5 and 3.6, we can

conclude that smooth, controlled motion increases the log-odds of success and improves the quality of

cannulation. Moreover, as the average velocity of motion increases, the quality of cannulation lessens

(as indicated by the negative sign for the effect of avgV in Table 3.5). In addition, the metrics beta02,

beta 0, and beta 2 describe the relative needle orientation (angular position) at various phases of the

cannulation task. In particular, beta 0 and beta 2 are the needle angles measured instantaneously

at the point of insertion and after flashback, respectively. beta02 is the needle angle approximated
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Table 3.6: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95)
for the significant fixed effects for stable flashback .

Variable Est ESE CI95
Intercept 1.65 0.19 (1.29, 2.03)
sparcV 0.60 0.06 (0.49, 0.71)
ldljV 0.54 0.05 (0.44, 0.64)
LDLJ S 0.22 0.04 (0.15, 0.30)
avg alpha S -0.14 0.07 (-0.29, -0.00)
palp force range -0.11 0.06 (-0.23, -0.00)
a2 -0.10 0.03 (-0.16, -0.05)
beta02 -0.08 0.03 (-0.14, -0.03)
beta 0 -0.08 0.03 (-0.14, -0.03)
beta 2 -0.08 0.03 (-0.13, -0.03)

by the needle tip location at two distinct points in time: point of insertion, and after flashback.

From Table 3.5, as the angle of the needle increases after flashback (i.e., as beta 2 ) increases, the

quality of cannulation depreciates. However, if the angular position of the needle orientation steepens

during any phase of the cannulation task, the log-odds of successfully cannulating decreases (Table

3.6). Further, the hemodialysis cannulation procedure requires appropriate palpation for locating

the fistula, and palp force range measures the range of forces applied during palpation. We see that,

as palpation force increases, the log-odds of success decreases (Table 3.6). People who are not as

skilled in cannulation tend to palpate with more force and, from our results, they are less likely

to successfully complete cannulation compared to those who palpate with less force. Most of the

remaining features summarized in Tables 3.5 and 3.6 do not have useful interpretations that help

identify what trainees could improve upon.

3.5 Discussion

Motivated by and applied to a study of simulation-based cannulation skill assessment, we

have developed a shared random parameter model to jointly model two objective outcome measures

of simulation-based cannulation skill and identified salient process features from a high-dimensional

feature space that influence the probability of successful cannulation (i.e., the probability of attaining

stable flashback) and the quality of cannulation (i.e., ocScore). While the two outcomes are correlated

by formulation (ocScore is functionally dependent on stable flashback), they are also correlated

implicitly: subjects that consistently obtain stable flashback are inherently more likely to have a
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better quality cannulation compared to those who do not. The shared random effects allow for an

implicit correlation between a participant’s ability to attain stable flashback and the quality of their

cannulation.

There are a few limitations worth noting. Sensor-based metrics that are undefined if a

participant fails to complete various phases of the cannulation task were excluded from the analysis.

It is of interest to accommodate these metrics with potentially informative missingness so that we

can examine the effects of all of the available features. In addition, the cannulation simulator is

made up of artificial materials for various components such as skin, fistulas, tissue, etc., and thus

has restrictions in realism and functionality.

To conclude, by identifying errors through the use of sensor-based metrics, simulators im-

prove upon conventional skill assessment and reduce subjectivity. The main advantage of simulators

is their ability to provide objective feedback to allow for a fine-grained assessment of skill and a

more consistent, complete evaluation based on measurements unaffected by subjective biases. The

results from this study suggest that the implementation of simulator-based training will lead to the

improvement in end-stage kidney disease patient outcomes.
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Chapter 4

Bayesian Additive Regression

Trees for Group Testing Data

4.1 Introduction

When a high volume of specimens (such as blood, urine, swabs, etc.) need to be screened for

the presence of a disease, it is not always feasible to do individual testing. Group testing, also known

as pooled testing, pulls the individual specimens into groups or pools to get an overall positive or

negative test response for each pool. Robert Dorfman [Dorfman, 1943] conceptualized the idea of

group testing during World War II to screen US soldiers for syphilis. In most group testing protocols,

if a pooled specimen tests negatively, then all contributing individuals are declared to be disease

free at the expense of a single diagnostic test. In contrast, if a pooled specimen tests positively,

the pool is resolved algorithmically to determine which individuals are positive. Dorfman’s idea

to pool individual specimens has since become a mainstream approach to screen large populations

for multiple diseases because of its ability to provide substantial cost savings when compared to

individual testing. It is used to screen a variety of infections including HIV, HCV, and HBV

[Westreich et al., 2008; Krajden et al., 2014; Sarov et al., 2007; Kleinman et al., 2005], chlamydia

and gonorrhea [Lewis et al., 2012], influenza [Van et al., 2012], the Zika virus [Saá et al., 2018], and

COVID-19 [Bish et al., 2021; Torres et al., 2020]. Group testing also arises in other applications,

such as animal disease testing [Dhand et al., 2010], environmental monitoring [Heffernan et al., 2014],
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and drug discovery [Hughes-Oliver, 2006].

Statistical research in group testing focuses on either estimation or case identification prob-

lems. The former, which is the focus of this article, involves using pooled testing outcomes and

individual-level covariates (e.g., age, race, presence of symptoms, etc.) to develop regression meth-

ods that model the probability of disease for individuals. Noteworthy research in the development of

group testing regression methods include parametric approaches by Vansteelandt et al. [2000], Huang

and Tebbs [2009], and Chen et al. [2009] as well as semiparametric and nonparametric approaches

by Delaigle and Meister [2011], Delaigle et al. [2014], and Delaigle and Hall [2015]. A limitation of

these regression methods is that only the initial (master) pool responses are used in the estimation

of the corresponding models. That is, if individuals residing in positive master pools are retested,

their subsequent responses are not utilized. If additional retesting responses are available, including

them in the analysis can improve one’s inference for the covariate effects.

Far fewer regression methods are available that can incorporate this extra information. No-

tably, McMahan et al. [2017] proposed a Bayesian approach for the regression analysis of group

testing data within a generalized linear model (GLM) framework. The strengths of this approach

are 3-fold. First, this approach can seamlessly incorporate all of the testing data collected from

any group testing protocol (including retesting responses); second, it can estimate assay accuracy

probabilities along with the regression coefficients (whereas previous regression methods require the

assay accuracy probabilities to be known); and third, it can naturally incorporate historical infor-

mation about disease prevalence and assay performance. More recently, Liu et al. [2021] expanded

on the Bayesian methodology of McMahan et al. [2017] and developed a generalized additive regres-

sion model for group testing data that relaxes the linearity assumptions of conventional methods

to allow for nonlinear covariate effects. However, the main limitation of Liu et al. [2021] is that

the additivity assumption precludes interactions among covariates unless manually added and, with

many variables, important interactions could be missed.

In this article, we propose a Bayesian additive regression trees (BART) modeling framework

to estimate regression models using group testing data. BART is a powerful machine learning

technique for predictive modeling that employs a nonparametric, tree-based approach. A major

advantage of BART is its Bayesian structure and its ability to capture/quantify uncertainty in model

estimates. The proposed framework retains the strengths of McMahan et al. [2017], and addresses

the limitations of Liu et al. [2021] to allow for a more flexible and robust modeling approach.
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Indeed, BART automates the detection of nonlinear relationships and interactions among predictor

variables to reduce researchers’ discretion [Chipman et al., 2010]. This leads to increased accuracy

and precision, and allows for a better understanding of any complex, nonlinear effects.

The remainder of this article is organized as follows. In Section 4.2, we introduce the

proposed BART model and describe modeling assumptions. In Section 4.3, we describe the data

augmentation steps that facilitate our Bayesian framework and introduce our posterior sampling

algorithm. In Section 4.4, we present the results of multiple simulations to assess the performance

of our proposed method under a variety of settings for group testing protocols. In Section 4.5, we

present analysis results for Iowa chlamydia data to illustrate the proposed technique. Finally, in

Section 4.6, we conclude with a summary discussion and describe future research.

4.2 Notation and Model Formulation

Consider a setting in which group testing is used to screen N individuals for a binary

characteristic, such as disease status. Let Ỹi, for i = 1, ..., N , denote the true disease status of the

ith individual, with the usual convention that Ỹi = 1 denotes that the individual is truly positive

and Ỹi = 0 otherwise. Let xi = (xi1, . . . , xiQ)
′ denote a vector of covariates observed for the ith

individual. For ease of exposition, we aggregate the individuals’ true infection statuses and covariates

as Ỹ = (Ỹ1, . . . , ỸN )′ and X = (x1, · · · ,xN ), respectively. For modeling purposes, we assume

that the individuals’ true disease statuses are conditionally independent given the individual-level

covariate information, and that the relationship between Ỹi and xi is given by

Φ−1
(
P (Ỹi = 1

∣∣xi)
)
= f(xi), (4.1)

where Φ(·) is the cumulative distribution function of a standard normal random variable (i.e., the

probit link function), and f(·) is an unknown function. To model this relationship, we consider

approximating f(·) by an ensemble of K regression trees; i.e., we approximate (4.1) by a sum-of-

trees model, where

f(xi) ≈ η(xi) :=
K∑

k=1

g(xi;Tk,Mk). (4.2)

40



The number of regression treesK is (typically) fixed. Tk is the kth regression tree structure consisting

of a set of interior nodes, a set of bk terminal nodes, and the decision rules connecting the interior

nodes to the terminal nodes. The interior node decision rules are binary splits based on the single

predictors in the form of {x ∈ A} versus {x /∈ A}, where A is a subset of the range of x. These

decision rules provide information on which covariate to split on and the associated cutoff value.

Mk = (µ1k, . . . , µbkk)
′ denotes the bk-dimensional vector of parameters associated with the terminal

nodes of Tk. Given Tk and Mk, the function g(xi;Tk,Mk) outputs µtk if xi is assigned to the t-th

terminal node based on the interior node decision rules. Note that, based on the structure of the kth

tree, g(xi;Tk,Mk) could depend on a single component or multiple components of xi. Hence, each

µtk ∈Mk could represent a main effect or an interaction effect. In this way, g(xi;Tk,Mk) can aptly

account for many features; e.g., nonlinear effects and interactions of varying orders. As the number

of trees K increases, the predictive performance of BART dramatically increases until leveling off

[Chipman et al., 2010]. Thus, if BART is used for prediction or to estimate the unknown f(·), it is

important to avoid choosing K too small. Chipman et al. [2010] recommends setting K=200 as the

default number of trees, as it has been shown that BART yielded excellent predictive performance

under this choice for K.

To illustrate the main idea of a sum-of-trees model, consider an example with K=2 trees

and Q=3 covariates. Suppose we are given the two trees in Figure 4.1. Each tree uses two predictors

to split the data into subgroups; the first tree of Figure 4.1 (k=1) uses xi1 and xi2, while the second

tree (k=2) uses xi3 and xi2. For each tree, each xi value is assigned to a single terminal node by

following a sequence of decision rules at each interior node from top to bottom where it is then

assigned a parameter value associated with that terminal node. Consider the hypothetical data

from 5 subjects given in Table 4.1. We can see that the quantity that is being ‘summed’ in the final

sum-of-trees model for the ith subject is the terminal node parameter value that each tree structure

assigns to the ith subject.

Table 4.1: The values of
∑2

k=1 g(xi;Tk,Mk) from the regression trees in Figure 4.1.

i xi1 xi2 xi3 g(xi;T1,M1) g(xi;T2,M2)
∑2

k=1 g(xi;Tk,Mk)
1 56 110 -13 µ31 µ12 µ31 + µ12

2 27 173 -3 µ21 µ32 µ21 + µ32

3 41 94 5 µ11 µ22 µ11 + µ22

4 30 213 -9 µ21 µ12 µ21 + µ12

5 48 168 39 µ31 µ32 µ31 + µ32
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Figure 4.1: Illustrating the sum of regression trees using a simple two regression tree example.

If the individuals’ true disease statuses were observed, we could fit the sum-of-trees model

via standard statistical software; e.g., Bayestree, bartMachine, and bart [Chipman and McCulloch,

2016; Kapelner and Bleich, 2022; McCulloch et al., 2021]. However, in the group testing setting,

the individual disease statuses are likely to be obscured by the testing protocol and the testing

responses (on pools and individuals) are subject to misclassification due to imperfect assays. The

observed data available for fitting of the sum-of-trees model consists of error contaminated test

results that are taken on pools and/or individuals according to a group testing protocol. Further

complicating the data structure, many group testing protocols require individuals to be tested in

multiple, possibly overlapping, pools [Gastwirth and Johnson, 1994; Johnson and Gastwirth, 2000;

Krajden et al., 2014]. Thus, to maintain generality, we track pool membership through the index

sets Pj ⊂ {1, 2, . . . , N}, for j = 1, ..., J , where Pj consists of the indices of the individuals who

contributed to the jth pool. Let Zj denote the test outcome observed from assaying the jth pool,

with the convention that Zj = 1 denotes the event that the pool tested positively and Zj = 0

otherwise. To relate the test outcomes to the individual level covariates and to allow for imperfect

testing, we assume that Sej = P (Zj = 1 | Z̃j = 1) and Spj = P (Zj = 0 | Z̃j = 0), where Sej and

Spj are the sensitivity and specificity of the assay when used to test the jth pool and Z̃j is the true

status of the pool. A few comments are warranted. First, the true status of a pool is said to be

positive (Z̃j = 1) if it contains at least one truly positive individual and negative (Z̃j = 0) otherwise;

i.e., Z̃j = I(
∑

i∈Pj
Ỹi > 0). Like the individuals’ true statuses, the Z̃j ’s are also unobserved due
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to the effect of imperfect testing. Second, we consider pool-specific testing accuracies (i.e., Sej and

Spj) to account for changes in these measures that are related to the use of different assays or other

factors that could impact the assay’s performance; e.g., specimen type, pool size (i.e., cardinality of

Pj).

In some settings, it may be reasonable to assume that the assay accuracies are known

a priori. However, in others this may be an untenable assumption. When the pool-specific assay

accuracies (i.e., Sej and Spj) are unknown, we would like to estimate them along with the sum-of-trees

model parameters, following the approach of McMahan et al. [2017]. To do so, we first divide the test

outcomes into L different strata based on relevant factors; e.g., pool size and specimen/assay type.

Define the index set M(l) = {j : the jth test outcome is a part of the lth strata}. We assume that

the test accuracies vary across these strata, but are constant within strata. Thus, we define Se(l) and

Sp(l) to be the sensitivity and specificity of the assay associated with the lth strata; i.e., Sej = Se(l)

and Spj = Sp(l) if and only if j ∈ M(l). Proceeding in this fashion leads to a straightforward way

of estimating these unknown quantities as well as a way to inject information about them through

prior specifications; for further discussion, see Section 4.5. Based on the relations outlined above,

and a few mild assumptions, the conditional distribution of the observed test data Z = (Z1, ..., ZJ)
′

is given by

π(Z
∣∣Se,Sp,X,T ,M) =

∑
Ỹ ∈{0,1}N

[
L∏

l=1

∏
j∈M(l)

{
S
Zj

e(l)(1− Se(l))
1−Zj

}Z̃j

×
{
(1− Sp(l))

ZjS
1−Zj

p(l)

}1−Z̃j

×
N∏
i=1

{Φ(ηi)}Ỹi {1− Φ(ηi)}1−Ỹi

]
(4.3)

where Se = (Se(1), ..., Se(L))
′, Sp = (Sp(1), ..., Sp(L))

′, T = (T1, ..., TK)′, M = (M1, . . . ,MK)′, and

ηi = η(xi). A few comments regarding (4.3) are warranted. First, to derive (4.3), we assume

that the observed testing responses Z are conditionally independent given their true statuses Z̃ =

(Z̃1, . . . , Z̃J)
′, and that Z | Z̃ does not depend on the covariates X. These assumptions are common

among the group testing literature; e.g., see Vansteelandt et al. [2000]; Xie [2001]. Second, evaluating

the data model outlined in (4.3) requires taking the sum over the set {0, 1}N , which denotes the

collection of all 2N possible realizations of Ỹ . For this reason, directly evaluating (4.3) can be

computationally burdensome if at all feasible. Admittedly, under specific group testing strategies
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(e.g., master pool testing) simplifications are possible, yet not in the general case. To overcome this

limitation, we make use of a data augmentation strategy, described in Section 4.3.1, to develop a

posterior sampling algorithm that circumvents the need to directly evaluate this data model.

4.2.1 Prior specifications

To complete our Bayesian model, we specify priors for each of the unknown model param-

eters; i.e., the parameters governing the sum-of-trees model and the testing accuracies. Recall, the

sum-of-trees model (4.2) is determined by the K trees (T1,M1), . . . , (TK ,MK). Thus, we must im-

pose priors on the kth tree structure, Tk, and the terminal node parameters given the tree structure,

Mk | Tk, for k = 1, . . . ,K. Assuming that the trees and associated terminal node parameters,

(T1,M1), . . . , (TK ,MK), are independent of each other, we can write the prior distribution as

π {(T1,M1), . . . , (TK ,MK)} =
K∏

k=1

π(Tk,Mk)

=
K∏

k=1

π(Mk | Tk)π(Tk)

=
K∏

k=1

bk∏
t=1

π(µtk | Tk)π(Tk), (4.4)

where the last line of (4.4) follows from assuming that the terminal node parameters are conditionally

independent given the tree structure. To elicit priors for each Tk and µtk | Tk, we follow the work

of Chipman et al. [2010]. In particular, we simplify prior specifications by using identical forms for

all π(Tk) and for all π(µtk | Tk), t = 1, . . . , bk; k = 1, . . . ,K.

Following the work of Chipman et al. [2010], the prior specification for the tree structure,

π(Tk), is based on three probabilistic rules that control the size (i.e., number of terminal nodes) of

the tree, the variables selected to split on, and the location of the splits. The size of the tree is

determined based on the depth of the terminal nodes, where a node at depth d ∈ {0, 1, 2, . . . } is

nonterminal (i.e., an interior node) with probability α(1 + d)−β , where α ∈ (0, 1) and β ∈ [0,∞).

The default values of the hyperparameters recommended by Chipman et al. [2010], and used herein,

are α = 0.95 and β = 2. This default specification tends to a priori favor smaller trees; i.e., trees

having 2 to 3 terminal nodes. For nonterminal nodes, the variable to split on is randomly selected

from the set of available covariates; and the location of the split, given the selected splitting variable,

is randomly selected from the discrete set of observed values of that variable.
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Attention is now turned to the prior for the terminal node parameters given the tree struc-

ture; i.e., π(Mk | Tk). Following Chipman et al. [2010], we assume that the interval (Φ[−3.0],Φ[3.0])

contains most of the classification probability values of interest, a case which will often be of practi-

cal pertinence. The following conjugate normal prior is specified for each terminal node parameter,

given the tree structure: µtk ∼ N(0, σ2
µ), where σµ = 3.0/

(
H
√
K
)
, and H is such that η(xi) will be

in the interval (−3.0, 3.0) with high probability. The aim of this prior is to provide model regulariza-

tion; it has the ability to shrink the terminal node parameters, limiting the effect of the individual

tree components. As H or the number of trees K is increased, greater shrinkage will be applied to

the terminal node parameters. The recommended default hyperparemeter setting is H = 2, which

is used herein. For further details about the sum-of-trees prior specifications, see Chipman et al.

[2010].

Finally, to acknowledge uncertainty in the assay accuracies, we need to elicit prior distribu-

tions for Se(l) and Sp(l), for l = 1, . . . , L. Given the form of (4.3), we naturally specify the following

independent Beta priors:

Se(l) ∼ Beta(ae(l), be(l))

Sp(l) ∼ Beta(ap(l), bp(l)), for l = 1, . . . , L. (4.5)

When historical information about assay performance is available (e.g., from pilot studies used to

validate the testing assay), we can incorporate it into the model by choosing hyperparameter values

that reflect our prior belief about assay accuracy through the use of informative priors. We illustrate

the use of informative priors for the assay accuracies in Section 4.5.

4.3 Posterior Inference

4.3.1 Data augmentation

Recall that evaluating (4.3) is computationally infeasible. To facilitate the development of

an efficient posterior sampling algorithm and to avoid having to directly evaluate the data model

outlined in (4.3), we propose a two-stage data augmentation strategy. In the first stage, we introduce

the individuals’ true disease statuses Ỹi as latent random variables and instead consider the joint
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conditional distribution

π(Z, Ỹ
∣∣Se,Sp,X,T ,M) =

L∏
l=1

∏
j∈M(l)

{SZj

e(l)(1− Se(l))
1−Zj}Z̃j

× {(1− Sp(l))
ZjS

1−Zj

p(l) }1−Z̃j

×
N∏
i=1

{Φ(ηi)}Ỹi{1− Φ(ηi)}1−Ỹi (4.6)

Making use of the fact that our data model uses the probit link function, the second stage of our

data augmentation strategy introduces a carefully constructed latent random variable, ωi, for each

individual, for i = 1, . . . , N . These random variables are structured to be mutually independent and

normally distributed such that ωi > 0 if Ỹi = 1 and ωi ≤ 0 if Ỹi = 0; for details, see Albert and Chib

[1993]. This stage of our data augmentation procedure yields the following augmented likelihood:

π(Z, Ỹ ,ω
∣∣Se,Sp,X,T ,M) =

L∏
l=1

∏
j∈M(l)

{SZj

e(l)(1− Se(l))
1−Zj}Z̃j

× {(1− Sp(l))
ZjS

1−Zj

p(l) }1−Z̃j

×
N∏
i=1

ϕ(ωi − ηi)ξ(ωi), (4.7)

where ω = (ω1, . . . , ωN )′, ϕ(·) denotes the standard normal PDF, and ξ(ωi) = I(Ỹi = 1, ωi >

0)+I(Ỹi = 0, ωi ≤ 0). This two-stage data augmentation procedure, together with the proposed prior

specifications, allows for the construction of an easy-to-implement, fully Gibbs sampling algorithm

to be used for posterior inference.

4.3.2 Posterior sampling algorithm

In this section, we briefly describe the full conditional posterior distributions used in this

algorithm. A complete, description of the posterior sampling algorithm is provided in Appendix C.

Attention is first turned to the latent random variables introduced through the data augmen-

tation procedure; i.e., Ỹ and ω. It follows from the conditional distribution in equation (4.6) that the

full conditional posterior of Ỹi is Bernoulli; i.e., Ỹi
∣∣Z, Ỹ−i,Se,Sp,T ,M ∼ Bernoulli {p∗i1/(p∗i0 + p∗i1)},
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where Ỹ−i is the vector Ỹ with the ith element removed, and

p∗i1 = Φ(ηi)
L∏

l=1

∏
j∈Ii(l)

S
Zj

e(l)(1− Se(l))
1−Zj

p∗i0 = {1− Φ(ηi)}
L∏

l=1

∏
j∈Ii(l)

{
S
Zj

e(l)(1− Se(l))
1−Zj

}I(sij>0) {
(1− Sp(l))

ZjS
1−Zj

p(l)

}I(sij=0)

.

In the above expressions, sij =
∑

i′∈Pj :i′ ̸=i Ỹi′ ; and the index set Ii(l) = {j ∈ M(l) : i ∈ Pj} keeps

track of the pools that belong to the lth strata to which the ith individual was a member of. It

follows from (4.7) that the full conditional posterior of ωi is truncated normal, where the truncation

depends on the ith latent disease status Ỹi; that is,

ωi | Ỹi,T ,M ∼


TN{ηi, 1, (0,∞)}, if Ỹi = 1

TN{ηi, 1, (−∞, 0)}, if Ỹi = 0,

(4.8)

for i = 1, . . . , N , where TN{µ, σ2, (a, b)} denotes a truncated normal distribution with mean µ,

variance σ2, and support over the interval (a, b); see Albert and Chib [1993].

Given the carefully constructed latent random variables and the form of the augmented like-

lihood (4.7), sampling the sum-of-trees model parameters is straightforward following the Bayesian

backfitting algorithm of Chipman et al. [2010]. For details and complete expressions for the poste-

riors of the sum-of-trees model parameters, refer to Appendices C.1, C.2, and C.3.

Under the prior specifications in (4.5), the full conditional distributions for the assay accu-

racies Se and Sp are also Beta; that is,

Se(l) | Z, Ỹ ∼ Beta(a∗e(l), b
∗
e(l))

Sp(l) | Z, Ỹ ∗ ∼ Beta(a∗p(l), b
∗
p(l)), for l = 1, . . . , L,

where a∗e(l) = ae(l) +
∑

j∈M(l) ZjZ̃j , b
∗
e(l) = be(l) +

∑
j∈M(l)(1 − Zj)Z̃j , a

∗
p(l) = ap(l) +

∑
j∈M(l)(1 −

Zj)(1− Z̃j), and b
∗
p(l) = bp(l) +

∑
j∈M(m) Zj(1− Z̃j).

A complete, step-by-step description of the posterior sampling algorithm is provided in

Appendix C.4.
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4.3.3 Variable Selection

After running the posterior sampling algorithm long enough after an appropriate burn-in

period, we obtain a sequence of S successive sum-of-trees model draws. These simulated sum-of-trees

models can be used to assess variable importance via the ‘model-free’ variable selection approach

of Chipman et al. [2010], which selects those variables that appear most often in the sum-of-trees

model draws. For the sth MCMC iterate’s simulated sum-of-trees model, let zsq be the proportion

of all splitting rules that use the qth covariate component. With this, we define

vq =
1

S

S∑
s=1

zsq (4.9)

to be the average use per splitting rule for the qth covariate component, for q = 1, . . . , Q. The

covariates with larger values of vq contribute the most information for predicting the outcome.

While a large number of regression trees is needed for prediction and estimation, this vari-

able selection strategy is actually much more effective when the number of trees is small, because

predictors are forced to compete with each other to improve the fit [Chipman et al., 2010]. We il-

lustrate this variable selection strategy and compare its performance with a small and large number

of trees in Sections 4.4 and 4.5.

4.4 Simulation Studies

In this section, we conduct numerical studies to examine the performance of our estimation

method. We consider two population-level models, both of which following the form of (4.1), for

xi = (xi1, xi2, xi3)
′, where xi1, xi2

ind.∼ Uniform(0, 10), and xi3 ∼ Bernoulli(0.5).

In the first model (M1),

f(xi) = sin(π · xi1)− 1.25,

while in the second model (M2),

f(xi) = β0 + β1xi1 + β2xi2 + β3xi3,
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where β = (β0, β1, β2, β3)
′ = (−0.85, 0.55,−1.25,−0.35)′. The first model (M1) was chosen to

examine BART’s performance when the data structure exhibits nonlinear patterns. Further, only

one of the covariates (xi1 in particular) was chosen to be truly related to the individual statuses Ỹi

so we can explore BART’s variable selection performance. The second model (M2) is linear and was

chosen so we can explore what is potentially lost or gained from using the BART approach compared

to conventional methods (e.g., generalized linear regression methods).

To closely mimic the features of the motivating Iowa chlamydia data analyzed in Section

4.5, we generated N = 5000 individual true statuses Ỹi from both models (M1 and M2) to induce a

relatively low population prevalence around 10% - 15%. This sample siz is chosen to be roughly one

third of the motivating data’s sample size. The majority of master pools in the motivating data were

of size four, so we randomly assigned the generated individual statuses to pools of size four. For the

simulation of the observed testing responses Zj , we consider two group testing protocols: master

pool testing (MPT) and Dorfman testing (DT). With MPT, only the non-overlapping, initial master

pools are tested and no further testing is performed, regardless of the outcome. DT is a two-stage

hierarchical testing procedure where the master pools are tested in the first stage (like MPT) and

in the second stage, positive pools are resolved by retesting each individual separately. Even if the

same assay type is used, there could be differences in its accuracy when testing master pools as

opposed to individuals. Thus, the testing outcomes can be divided into L = 2 strata: master pool

test outcomes with assay accuracies Se(1), Sp(1) and individual retest outcomes with assay accuracies

Se(2), Sp(2). For each model (M1 and M2) and protocol (MPT and DT), we examine two settings

for the assay accuracy probabilities. In the first, sensitivity and specificity are assumed to be known

and we set Sej = 0.95 and Spj = 0.98 for all j = 1, . . . , J . In the second setting, we assume that

assay accuracies are unknown and are estimated simultaneously along with the sum-of-tress model

parameters. Only DT is implemented under this setting, and assay accuracies vary across the L = 2

strata: master pool tests have accuracies Se(1) = 0.95, Sp(1) = 0.98, and individual retests have

accuracies Se(2) = 0.98, Sp(2) = 0.99. Note that MPT is for estimation purposes only, as positive

pools are not resolved further, and is not implemented in the second setting.

To examine BART’s overall performance when a small or large ensemble of trees is used, we

fit two BART models with K=20 and K=200 trees, respectively. For the BART model parameters,

we use the default prior specifications of Chipman et al. [2010], as described in Section 4.2.1. Under

the setting with unknown accuracies, we assume that no prior knowledge about test performance
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is available and specify flat, uninformative Beta priors for the assay accuracy probabilities. That

is, Se(l), Sp(l) ∼ Beta(1, 1). For purposes of comparison, we also fit the Bayesian generalized lin-

ear model (GLM) described in McMahan et al. [2017], where flat priors were placed on all GLM

parameters.

We used our posterior sampling algorithm for the BART models (and wthe posterior sam-

pling algorithm outlined in McMahan et al. [2017] for GLM) to draw 2500 samples after a burn-in of

2500 samples. Trace plots were used to assess convergence. All results are based on 500 independent

group testing data sets. To examine classification accuracy, we conducted a receiver operating char-

acteristic (ROC) curve analysis which was summarized by using the area under the curve (AUC). To

assess out-of-sample classification accuracy for each model fit, we simulated 1,000 new individuals

using the process outlined above and then used our model fits to predict their infection probabilities

and compute the associated AUC scores. BART can also be used to screen for variable selection, as

described in Section 4.3.3. To illustrate this strategy and examine the variable selection performance

for both of the BART model fits, the average use per splitting rule, vq, defined in (4.9), is recorded

for each component of xi over the 2500 MCMC samples.

Figure 4.2 shows the in-sample data results when estimating f(·) in Model 1 (M1), assuming

assay accuracy probabilities are known, by using the three model fits: BART with K=20 trees (left),

BART with K=200 trees (middle), and GLM (right). In each subfigure, we display the mean of the

500 estimated functions - i.e., posterior means - from each simulation (solid red curves) along with

the 0.025 & 0.975 quantiles of the 500 posterior means (dashed red curves). The black solid curve in

each subfigure is the true function f(·) in model M1. The mean estimated functions from both of the

BART fits are in agreement with the true regression function of model M1, indicated by Figure 4.2.

This showcases BART’s ability to model nonlinear effects between response and predictor variables,

while also illustrating the limitations of conventional linear methods.

Next, we summarize the ROC analysis for both models M1 and M2 under the two group

testing protocols (MPT and DT), when the assay accuracy probabilities are known. Table 4.2 reports

the average (and sample standard deviation in parentheses) of 500 AUC scores for in-sample and

out-of-sample predictions. For model M1, this table shows that the average AUC scores for the

two BART models are significantly larger than that for the conventional GLM. When nonlinear

effects between response and predictor variables are present, our BART approach has notably better

classification accuracy. When the effects between response and predictor variables are truly linear,
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Figure 4.2: In-sample simulation results for MPT (top row) and DT (bottom row) when assay
accuracy probabilities are known for the three model fits BART with K=20 trees (left), BART
with K=200 trees (middle), and GLM (right). The black solid curve in each subfigure is the true
function f(·) in model M1. In each subfigure the following are displayed as red curves: the average
of 500 posterior mean estimates (solid curves) and the .025 & .975 posterior mean quantiles (dashed
curves).

BART and GLM have similar predictive accuracy (indicated by the AUC scores for model M2 in

Table 4.2), and we can conclude that the proposed BART methodology performs just as well as the

conventional GLM.

Figure 4.3 plots the average use per splitting rule measures (4.9) for the three covariates for

MPT (top row) and DT (bottom row) for models M1 (left) and M2 (right) under the BART fits

with K=20 trees (blue lines) and K=200 trees (red lines), when the assay accuracy probabilities are

known. Over the 2500 MCMC iterations for model M1, the fitted sum-of-trees models increasingly

incorporate the covariates that are truly important for prediction as the number of trees K decreases
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Table 4.2: Average estimated AUC and sample standard deviation (in parentheses) for the three
model fits (BART with K=20, BART with K=200 trees, and GLM) when the assay accuracy
probabilities are known.

Model GT Protocol BART(K=20) BART(K=200) GLM

M1
MPT

In-Sample 0.758 (0.013) 0.773 (0.013) 0.537 (0.015)
Out-of-Sample 0.743 (0.023) 0.750 (0.020) 0.523 (0.025)

DT
In-Sample 0.799 (0.007) 0.816 (0.007) 0.544 (0.010)

Out-of-Sample 0.773 (0.018) 0.777 (0.017) 0.527 (0.023)

M2
MPT

In-Sample 0.983 (0.002) 0.986 (0.001) 0.985 (0.001)
Out-of-Sample 0.974 (0.004) 0.976 (0.004) 0.980 (0.003)

DT
In-Sample 0.986 (0.001) 0.988 (0.001) 0.985 (0.001)

Out-of-Sample 0.977 (0.004) 0.977 (0.004) 0.980 (0.003)

from K=200 to K=20. This is particularly true for DT protocol compared to MPT. For model M1,

xi1 has a significantly larger average use value compared to the other two covariates, suggesting that

xi1 is important for predicting the outcome. For model M2, the average use measures for the three

covariates are not drastically different in value, suggesting that all three are useful for prediction.

We now turn our attention to the simulation results for models M1 and M2 when the assay

accuracy probabilities are unknown (and estimated simultaneously with other model parameters),

under the DT protocol. Summaries of the results are provided in Appendix C.5. Table 16 summarizes

the estimation results for the unknown assay accuracy probabilities; namely, the screening accuracies

of the pools, Se(1) and Sp(1), and the confirmatory accuracies for the individuals, Se(2) and Sp(2).

Estimates of the accuracies in Table 16 exhibit little (if any) average bias, there is close agreement

between SSD and ESE, and credible intervals attain their nominal level. We can conclude that BART

provides reliable inference for the assay accuracies, even when providing no information in the prior

distributions. Figure 2 shows the in-sample data results under DT when estimating f(·) in Model

M1, assuming assay accuracy probabilities are unknown, using the three model fits BART with

K=20 trees (left), BART with K=200 trees (middle), and GLM (right). The estimated functions

appear to be analogous to that with known accuracies under DT (Figure 4.2). Further, the ROC

analysis results reported in Table 17 are identical to that of the BART fits with known accuracies

under DT (Table 4.2). Finally, from the average variable use measures plotted in Figure 3, we see

that BART still correctly identifies the truly influential variables with unknown assay accuracies.

Thus, we can conclude from these findings that BART’s overall performance is unaffected by the

estimation of unknown assay accuracies. Overall, the simulation results outlined above suggest the
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Figure 4.3: Simulation results for MPT (top row) & DT (bottom row) for model M1 (left) and
model M2 (right) when assay accuracy probabilities are known. For each covariate, the average use
proportion (averaged over the 500 simulations) is plotted for the two BART fits with K=20 trees
(red) and K=200 trees (blue).

our approach outperforms conventional methods when nonlinear effects are present, and performs

just as well as conventional methods when only linear effects are present. The unknown assay

accuracy probabilities do not impact BART’s predictive accuracy nor its ability to provide reliable

inference. These numerical studies provide us with the confirmation that our proposed approach

can be used in group testing data estimation.

4.5 Iowa Chlamydia Data Analysis

The State Hygienic Laboratory (SHL) at the University of Iowa is the largest public health

laboratory in Iowa. Each year the lab tests thousands of Iowa residents for chlamydia and gonorrhea

as part of federally sponsored STD assessment & prevention programs. The SHL receives both

endocervical swab and urine specimens each day; their current protocol is to use Dorfman testing
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(DT) for all endocervical swab specimens collected from females, usually in master pools of size

four, and to use individual testing for all other specimens (i.e., urine specimens). Individual swab

specimens residing in master pools which test positively are retested immediately in order to provide

final diagnoses to patients in a timely manner. To test both the urine and endocervical swab

specimens, the SHL uses the Aptima Combo 2 Assay (AC2A). Pilot data describing the accuracy of

the AC2A for individual testing are summarized in the product literature, available at www.fda.com;

see also Gaydos et al. [2003]. We also summarize these pilot data in Table 18 in Appendix C.6.

To illustrate the BART methodology described in this paper, our analysis specifically ex-

amines the chlamydia data collected on N = 13, 862 female subjects during the 2014 calendar year.

The available data consists of test results for 2286 swab master pools (1 of size 2; 12 of size 3;

and 2273 of size 4), 416 individual swab specimens, and 4316 individual urine specimens. Dorfman

retesting results on positive swab master pools are also included. Additionally, six covariates to

be included in the model were collected on each individual: age (in years, denoted by xi1), a race

indicator (xi2 = 1 if Caucasian and xi2 = 0 otherwise), an indicator denoting whether the patient

reported a new sexual partner in the last 90 days (xi3 = 1 if affirmative and xi3 = 0 otherwise), an

indicator denoting whether the patient reported having multiple sexual partners in the last 90 days

(xi4 = 1 if affirmative and xi4 = 0 otherwise), an indicator denoting whether the patient reported

sexual contact with an STD-positive partner in the previous year (xi5 = 1 if affirmative and xi5 = 0

otherwise), and an indicator denoting whether the patient presented with symptoms (xi6 = 1 if af-

firmative and xi6 = 0 otherwise). To relate an individual’s chlamydia disease status to the available

covariates, we consider the following BART model

Φ−1
[
P (Ỹi = 1

∣∣xi)
]
=

K∑
k=1

g(xi;Tk,Mk)

under two specifications, namely with K=20 trees and K=200 trees, for i = 1, 2, . . . , 13, 862, where

xi = (xi1, xi2, . . . , xi6)
′.

We use the priors outlined in Section 4.2.1. For model parameters associated with the K

regression trees, we use the default prior specifications of Chipman et al. [2010]. Although the same

testing assay (AC2A) was used on all specimen types, it is important to acknowledge differences in

how it may perform on swab versus urine specimens [Gaydos et al., 2003], and to recognize that

there could be differences in its performance when testing pools as opposed to individuals. With
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this in mind, we posited three (L = 3) sensitivity and specificity parameter pairs: Se(1) and Sp(1) for

swab specimens tested individually, Se(2) and Sp(2) for urine specimens tested individually, and Se(3)

and Sp(3) for swab specimens tested in pools. For these six parameters, we chose very informative

Beta priors based on the individual AC2A pilot data; for further details, refer to Appendix C.6.

For purposes of comparison, we also consider a Bayesian generalized linear model (GLM), following

McMahan et al. [2017].

First, we seek to compare the predictive performance of a BART model with K=20 trees

(a small number of trees for variable selection), a BART model with K=200 trees (a large number

of trees for flexible prediction), and the Bayesian GLM fit of McMahan et al. [2017]. To do so, we

randomly split the data into a training and test set where 85% of the data was used to train the

model and the remaining 15% was allocated to the test set. Note that the true responses (individual

disease statuses) are obscured by the assay testing errors. Therefore, it is not appropriate to conduct

an ROC curve analysis as was done in the simulation studies of Section 4.4. Instead, we will examine

the predictive error through the log-likelihood. For both BART and GLM, using the posterior mean

parameter estimates, we computed the log-likelihood as a measure of overall fit. Table 4.3 reports

the calculated log-likelihood from both the in-sample and out-of-sample data. The BART models

results in a larger log-likelihood for in- and out-of-sample, implying that they fit the data better

than the GLM model. For confirmation, we fit a ‘age-only’ model (i.e., only the age covariate xi1

was included) to the data to compare the regression function fits for GLM, BART with 20 trees,

and BART with 200 trees. Figure 4.4 displays the posterior mean estimated functions against the

age covariate for the model fits. This figure confirms the findings in Liu et al. [2021] regarding the

nonlinear effect of age, particularly for specific subsets of age. Our BART approach extends the

methodology of Liu et al. [2021] by accommodating the nonlinearity of age, as well as allowing for

potential nonlinear interactions of multiple covariates without having to explicitly specify them.

Table 4.3: In- and out-of-sample log likelihood calculated with posterior mean estimates of the
assay accuracy probabilities (sensitivity and specificity) and the individual probabilities of being
truly positive for chlamydia.

BART(K=20) BART(K=200) GLM
In-Sample -3329.85 -3320.62 -4379.05

Out-of-Sample -595.75 -594.95 -802.07

Table 4.4 reports the posterior mean estimates, estimated posterior standard deviations,
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Figure 4.4: Estimation results from the age-only model from GLM (dot-dashed black curve), BART
with K=20 trees (dashed red curve), and BART with K=200 trees (dotted blue curve).

and 95% equal-tail credible intervals for the six assay accuracy probabilities previously described.

Note that the BART models produces specificity estimates that are similar to those produced by

the GLM fit, and the amount of variability in these estimates is also similar. On the other hand, the

BART model produces slightly larger sensitivity estimates than GLM, and the variability in these

estimates is notably larger for GLM.

Finally, BART can also be used to assess variable importance by calculating the average

variable use per splitting rule for each covariate, as discussed in Section 4.3.3. Figure 4.5 plots

the average use for the 6 covariates under the two BART fits. It appears that all 6 covariates are

important in the prediction of disease status. As the number of trees decreases from K=200 to

K=20, the fitted sum-of-trees models increasingly incorporate the variable age but the multiple

partners variable is incorporated less often. From this, we can conclude that age is one of the more
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Table 4.4: Iowa Chlamydia Data. Results from estimating the assay accuracy probabilities Se(l) and
Sp(l), for l = 1, 2, 3. Posterior mean estimates (Est), estimated posterior standard deviations (ESE),
and 95% equal-tail credible intervals (CI95) are provided.

BART(K=20) BART(K=200) GLM

Param. Descrip. Est ESE CI95 Est ESE CI95 Est ESE CI95

Se(1) Swab Ind. 0.98 0.01 (0.97, 0.99) 0.98 0.01 (0.97, 0.99) 0.97 0.04 (0.84, 0.99)
Se(2) Urine Ind. 0.95 0.02 (0.91, 0.97) 0.95 0.02 (0.91, 0.97) 0.90 0.10 (0.56, 0.97)
Se(3) Swab Pool 0.94 0.02 (0.91, 0.97) 0.94 0.02 (0.91, 0.97) 0.91 0.10 (0.57, 0.97)

Sp(1) Swab Ind. 0.97 0.00 (0.97, 0.98) 0.97 0.00 (0.97 0.98) 0.97 0.00 (0.96, 0.98)
Sp(2) Urine Ind. 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.98, 0.99)
Sp(3) Swab Pool 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.99, 0.99) 0.99 0.00 (0.98, 0.99)

influential predictors of chlamydia infection status and having multiple sexual partners is the least

influential predictor of chlamydia infection status.

4.6 Discussion

BART is an attractive approach for developing flexible predictive models and, in particular,

it offers the ability to provide uncertainty in estimates. In this article, we have developed a general

Bayesian additive regression trees (BART) approach with potentially misclassified group testing

data with individual-level covariate information. The proposed method extends the methodology

described in McMahan et al. [2017] and Liu et al. [2021] to allow for a more flexible estimation

framework that has the ability to handle nonlinear main effects and multi-way interaction effects

without any input from the researcher. It also has the ability to assess variable importance using a

‘model-free’ approach.

Several modeling extensions could be of interest. Our proposed BART approach inspires

the exploration of other advanced machine learning techniques that could be used for estimation in

the group testing setting. One possible extension would be the development of regression techniques

used to analyze data that incorporates the testing responses from multiplex assays; i.e., assays that

test specimens for multiple diseases simultaneously. Another useful modeling extension would be

incorporating the ‘dilution effect’, and common concern that arises in group testing. This occurs

if the signal from a positive individual’s specimen is diluted past an assay’s threshold of detection

when it is pooled with multiple negative specimens.
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Figure 4.5: Average variable use for the BART models with 20 (red) and 200 (blue) trees.
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Chapter 5

Discussion

In this dissertation we developed three models that were directly inspired by complex data

collected as a part of several biomedical studies. The three models were all Bayesian in nature and

made use of regularizing priors as a means to smooth functional estimates and perform variable

selection. For all models, fitting was facilitated through the development of custom MCMC routines

that consisted entirely of Gibbs steps which involve sampling from common distributions. For this

reason, the proposed algorithms are computationally efficient, easy to implement, and scale well to

larger data sets.
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Appendix A Supplementary Material for Chapter 2

A.1 Posterior Distributions

We assume conditional independence given the covariate effects and random effects and observe that

Yij depends on the model parameters only through the linear predictor, νij . Hence, the likelihood

can be expressed as

p(Y |ν) ∝
∏
i,j

g(νij)
Yij{1− g(νij)}1−Yij ,

where g(·) is defined to be the logit link function.

We develop a two-stage data augmentation process to construct a posterior sampling algo-

rithm consisting only of Gibbs steps. In the first stage, we exploit a hierarchical representation of

the proposed data model by introducing Póyla - Gamma latent random variables wij ; for further

details see Polson et al. [2013]. Under this specification, the joint density of the observed and latent

data for the ith individual is given by

p(Yi,wi|νi) ∝ exp

{
−1

2
(hi − νi)

′Wi(hi − νi)

}
×
∏
j

ξ(wij),

where hi = (κi1/wi1, . . . , κini
/wini

)′ are synthetic responses with κij = Yij − 1/2, Wi = diag(wi),

ξ(wij) = f(wij |1, 0) exp{κ2ij/(2wij)}, and f(wij |a, b) denotes the Pólya - Gamma density with pa-

rameters (a, b); for further details, see Polson et al. [2013].

Attention is now turned to the second stage of the data augmentation process and the con-

struction of the hierarchical representation of the joint posterior distribution. Recall from Chapter

2, we specify a generalized double Pareto shrinkage prior for all of the regression coefficients with

the exception of the intercept; i.e.,

α0 ∼ N(0, τ0),

αp ∼ GDP (ψ = bδ/aδ, aδ) , for p = 1, . . . P − 1.

As noted by Proposition 1 of Armagan et al. [2013], the generalized double Pareto shrinkage prior

can be represented as a scale mixture of normal distributions. Thus, for the regression coefficients,
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the following hierarchical representation provides the same prior specifications as those given above:

α ∼ N(0,T ), where T =diag(τ ), τ = (τ0, τ1, . . . , τP−1)
′

τp
ind.∼ Exponential(δ2p/2), for p = 1, . . . , P − 1

δp
iid∼ Gamma(aδ, bδ), for p = 1, . . . , P − 1.

The δp’s are the global shrinkage parameters, while the τp’s are the local shrinkage parameters and

override the impact of the global shrinkage components for the variable fixed effects that are not

near zero [Armagan et al., 2013].

In deriving the full conditional distributions, for notational convenience, a dot · is used as

shorthand for all the parameters one is conditioning on; e.g., we may write the posterior p(α
∣∣Y ,w,η,γ, τ )

as p(α
∣∣·).
We begin by deriving the full conditional distribution for the spline coefficients η, based on

the smoothing penalty inspired prior distribution outlined in Chapter 2. Letting hη = (hη
1 , . . . ,h

η
n)

′,

where hη
i := hi −Xiα− 1ni

γ0i − 1ni
γ1k(i), and M = (M1, . . .Mn)

′, W = diag(w),

p(η|·) ∝ p(Y ,w|ν)p(η|τ )

∝ exp

{
−1

2
(hη −Mη)

′
W (hη −Mη)

}
× exp

{
−1

2
η′ (λ−1R

)
η

}
∝ exp

{
−1

2
(η − µη)

′
(Ση)

−1
(η − µη)

}
,

where Ση =
(
M ′WM + λ−1R

)−1
and µη = ΣηM

′Whη. Recognizing this as the kernel of a

normal density, we have that

η
∣∣· ∼ N(µη,Ση).

Further, the full conditional distribution for the variance parameter λ associated with the smoothing

prior for the spline coefficients η is derived as follows.

p(λ
∣∣·) ∝ p(η

∣∣λ)p(λ)
∝ (λ−1)L/2 exp

{
−λ

−1

2
η′Rη

}
× (λ−1)aλ−1 exp

{
−λ−1bλ

}
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∝ (λ−1)a
∗
λ−1 exp

{
−λ−1b∗λ

}
,

where a∗λ = aλ + L/2 and b∗λ = bλ + 0.5 · η′η. Recognizing this as the kernel of a Gamma density,

we find that

λ
∣∣· ∼ Inv-Gamma(a∗λ, b

∗
λ).

Given the hierarchical representation of the priors placed on the regression coefficients, let

hα = (hα
1 , . . . ,h

α
n)

′ where hα
i := hi − Miη − 1niγ0i − 1niγ1k(i), and let X = (X1, . . . ,Xn)

′. We

derive the full conditional distribution for the regression coefficients α as follows.

p(α
∣∣·) ∝ p(Y ,w

∣∣α)p(α
∣∣τ )

∝ exp

{
−1

2
(hα −Xα)

′
W (hα −Xα)

}
× exp

{
−1

2
α′T−1α

}
∝ exp

{
−1

2
(α− µα)

′
(Σα)

−1
(α− µα)

}
,

where Σα =
(
X ′WX + T−1

)−1
and µα = ΣαX

′Whα. Recognizing this as the kernel of a Normal

density, we find that

α
∣∣· ∼ N(µα,Σα).

Next, we derive the full conditional of the local shrinkage parameters τp, for p = 1, . . . , P − 1:

p(τp
∣∣·) ∝ p(αp

∣∣τp)p(τp∣∣δp)
∝ exp

{
−
τ−1
p

2
α2
p

}
× exp

{
−τp

δ2p
2

}

∝ exp

{
−
δ2p
(
τ−1
p − µp

)2
2 (µp)

2
τ−1
p

}
,

where µp =
√
δ2p/α

2
p. Recognizing this as the kernel of an inverse-Gaussian density, we find that

τ−1
p

∣∣· ∼ Inv-Gaussian(µp, δ
2
p), for p = 1, . . . , P − 1.
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Moreover, the full conditional distribution for the global shrinkage parameters δp is derived

as follows. Exploiting the fact that the Laplace density is a scale mixture of normals with an

exponential mixing density [Park and Casella, 2008]:

p(δp
∣∣·) ∝ p(αp

∣∣τp)p(τp∣∣δp)p(δp)
∝ δp

2
exp {−δp|αp|} × (δp)

aδ−1
exp {−δpbp}

∝ (δp)
a∗
δp

−1
exp

{
−δp(b∗δp)

}
,

where a∗δp = aδ + 1 and b∗δp = bδ + |αp|. Recognizing this as the kernel of a Gamma density, we find

that

δp
∣∣· ∼ Gamma(a∗δp , b

∗
δp), for p = 1, . . . , P − 1.

We turn our attention to the random effects and derive the full conditional for the subject-

specific random effects, γ0 = (γ01, . . . , γ0N )′, where N is the number of participants in the study.

Let h0 = (h0
1, . . . ,h

0
N )′ where h0

i := hi −Miη −Xiα− 1niγ1k(i), and let Z0 = diag(1n1 , . . . ,1nN
),

where ni is the number of observations from the ith individual, i = 1, . . . , N .

p(γ0

∣∣·) ∝ p(Y ,w
∣∣ν)p(γ0

∣∣σ2
0)

∝ exp

{
−1

2

(
h0 −Z0γ0

)′
W
(
h0 −Z0γ0

)}
× exp

{
−1

2
γ′
0

(
σ−2
0 In

)
γ0

}
∝ exp

{
−1

2
(γ0 − µ0)

′
(Σ0)

−1
(γ0 − µ0)

}
,

where Σ0 =
(
Z ′

0WZ0 + σ−2
0 In

)−1
and µ0 = Σ0Z

′
0Wh0. Recognizing this as the kernel of a normal

density, we find that

γ0

∣∣· ∼ N(µ0,Σ0).

The full conditional distribution for the variance component of the subject-specific random effects,

σ2
0 , is derived as follows.

p(σ2
0

∣∣·) ∝ p(γ0

∣∣σ2
0)p(σ

2
0)
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(
σ−2
0

)n/2
exp

{
−σ

−2
0

2
γ′
0γ0

}
×
(
σ−2
0

)a0−1
exp

{
−σ−2

0 b0
}

∝
(
σ−2
0

)a∗
0−1

exp
{
−σ−2

0 (b∗0)
}
,

where a∗0 = a0 +N/2 and b∗0 = b0 + 0.5 · γ′
0γ0. Recognizing this as the kernel of a Gamma density,

we find that

σ2
0 ∼ Inv-Gamma(a∗0, b

∗
0).

Next, we derive the full conditional for the trial-specific random effects γ1 = (γ11, . . . , γ1K)′,

where K is the number of trials in the study. Let h1 = h − Mη − Xα − Z0γ0, and let Z1 =

diag(1m1 , . . . ,1mK
)′ where mk is the number of observations coming from trial k, k = 1, . . . ,K.

Then,

p(γ1

∣∣·) ∝ p(Y ,w
∣∣ν)p(γ1

∣∣σ2
1)

∝ exp

{
−1

2

(
h1 −Z1γ1

)′
W
(
h1 −Z1γ1

)}
× exp

{
−1

2
γ′
1

(
σ−2
1 IK

)
γ1

}
∝ exp

{
−1

2
(γ1 − µ1)

′
(Σ1)

−1
(γ1 − µ1)

}
,

where Σ1 =
(
Z ′

1WZ1 + σ−2
1 IK

)−1
and µ1 = Σ1Z

′
1Wh1. Recognizing this as the kernel of a normal

density, we find that

γ1

∣∣· ∼ N(µ1,Σ1).

The full conditional distribution for the variance component of the trial-specific random effects, σ2
1 ,

is derived as follows.

p(σ2
1

∣∣·) ∝ p(γ1

∣∣σ2
1)p(σ

2
1)(

σ−2
1

)K/2
exp

{
−σ

−2
1

2
γ′
1γ1

}
×
(
σ−2
1

)a1−1
exp

{
−σ−2

1 b1
}

∝
(
σ−2
1

)a∗
1−1

exp
{
−σ−2

1 (b∗1)
}
,

where a∗1 = a1 +K/2 and b∗1 = b1 + 0.5 · γ′
1γ1. Recognizing this as the kernel of a Gamma density,
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we find that

σ2
1 ∼ Inv-Gamma(a∗1, b

∗
1).

These full conditionals were used to construct an MCMC algorithm in the usual manner.

To validate the proposed model and MCMC algorithm, an in depth numerical study was conducted.

The study was designed to emulate the primary features of the opioid data under study. The

results (not shown) of this numerical study suggest that our proposed approach performs well and

is appropriate for analyzing the motivating data.

A.2 Efficacy and Safety Clinical Trials of Buprenorphine Maintenance

Treatment

We selected six efficacy and safety trials focused on buprenorphine maintenance treatment for analy-

sis from the Clinical Trials Network (CTN) at NIDA’s Data Share resource (datashare.nida.nih.

gov). Trial information is provided in Table 1.

Table 1: Studies with Individual Patient Data Analyzed

Division
(Study ID)

Title Investigators Release
Date

DTMC
(CSP-999)

A Multicenter Clinical Trial of
Buprenorphine in Treatment of Opi-
ate Dependence

Walter Ling, M.D.,
Donald R. Wesson,
M.D., C. James
Klett, Ph.D.

Sep
02,
2015

DTMC
(CSP-
1008A)

A Multicenter Efficacy/Safety Trial
of Buprenorphine/Naloxone for the
Treatment of Opiate Dependence

Peter Bridge, M.D.,
Paul J. Fudala,
Ph.D.

Dec
04,
2014

DTMC
(CSP-
1008B)

A Multicenter Safety Trial of
Buprenorphine/Naloxone for the
Treatment of Opiate Dependence

Peter Bridge, M.D. Dec
04,
2014

DTMC
(CSP-1018)

A Multicenter Safety Trial of
Buprenorphine/Naloxone for the
Treatment of Opiate Dependence

Walter Ling,
M.D., Paul J.
Fudala, Ph.D., Paul
Casadonte, M.D.

Sep
02,
2015

CTN
(CTN-0027)

Starting Treatment with Agonist
Replacement Therapies (START)

Walter Ling, M.D. Jul
30,
2009

CTN
(CTN-0030)

A Two-Phase Randomized Con-
trolled Clinical Trial of Buprenor-
phine/Naloxone Treatment Plus In-
dividual Drug Counseling for Opioid
Analgesic Dependence

Walter Ling, M.D.,
Roger Weiss, M.D.

Jun
22,
2011
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A.3 Model Analysis for CSP-999 Trial

A.3.1 Patient Characteristics

The data consists of 15,983 urinalysis results from 654 subjects who participated in the CSP-999

trial. The number of urinalyses per subject ranged from 1 to 59, while the mean number of urinalyses

per subject was 24.44 and the median was 17. Summaries of the demographic, sociodemographic,

and substance use variables are given in Table 5. Several of the variables summarized in Table 2.1

are no longer available when only examining CSP-999 trial In particular, CSP-999 trial patients are

either white, Hispanic, black, American Indian, or Asian and hence, the race categorized as ”Other”

was removed. None of the patients work for the military, so the work type category ”Military” was

removed. All of the patients have a stable living arrangement, so the ”No Stable” living arrangement

category was removed. All CSP-999 trial patients use heroine, so the ”Heroine Use” categorical

variable was removed. Finally, none of the patients’ chosen mode of opioid abuse was sublingual, so

the ”Sublingual” category for the mode of opiate abuse variable was removed. For ease of comparison,

the reference group is the same as the one used for the full analysis. The mean age, income, and

years of opioid use are 36.16 years, $19,454 per year and 11.56 years, respectively (presented in Table

5), while the mean dose is 7.49 mg/day (presented in Table 4).

A.3.2 Functional Generalized Linear Mixed Model

Through the model in (2.1), we relate the daily dose patterns leading up to the clinic visit with

urinalysis, while controlling for the 17 demographic, sociodemographic, and substance use variables

detailed in Table 5. Note that, because all of our data comes from the CSP-999 trial, the trial-specific

random effects γ1k(i) are removed from the model.

Figure 1 summarizes the estimated coefficient function β̂(t) (solid black line), which repre-

sents the buprenorphine daily dose effect for the 15 days leading up to a clinic visit with urinalysis.

For comparison purposes, the coefficient function estimated from the full (all trials) analysis is also

plotted (solid red line). The 95% credible intervals estimated from the full and reduced analyses are

also plotted (red and black dashed line, respectively). Table 6 reports the demographic and sub-

stance use variables that were found to be significant. Of the 49 variable fixed effects, 5 were deemed

to be important by the model (i.e., their estimated credible intervals did not contain zero). Table

6 summarizes these significant factors by reporting the estimated posterior mean (point estimate of
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the effect), estimated standard deviation of the posterior (measure of uncertainty), and 95% equal-

tailed credible interval for each parameter. The analogous results for the full set of demographic

and substance use variables are provided in Tables 2 and 3.
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Figure 1: Estimated buprenorphine dose effect for the 15 days leading up to a urinalysis test, with
95% equal-tailed credible interval limits.
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Table 2: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95).

All Trials CSP-999

Variable Est ESE CI95 Est ESE CI95

Intercept 2.05 0.27 (1.54, 2.61) 1.49 0.77 (-0.07, 2.96)

Age -0.02 0.01 (-0.03, -0.01) -0.02 0.02 (-0.05, 0.03)

Gender (Ref: Male)
Female 0.13 0.08 (-0.03, 0.30) 0.43 0.26 (-0.03, 0.94)

Race (Ref: White)
Black -0.16 0.14 (-0.43, 0.12) -1.27 0.32 (-1.89, -0.64)
American Indian 0.14 0.27 (-0.39, 0.68) -0.62 0.88 (-2.83, 0.83)
Asian -0.14 0.27 (-0.72, 0.35) -1.31 1.44 (-4.83, 0.67)
Hispanic -0.22 0.12 (-0.46, 0.02) 0.02 0.24 (-0.47, 0.52)
Other -0.32 0.67 (-1.79, 0.93)

Education (Ref: High School)
Graduate School -0.34 0.24 (-0.81, 0.11) -1.27 0.86 (-2.98, 0.21)
Standard College 0.05 0.16 (-0.25, 0.37) -0.11 0.34 (-0.79, 0.59)
Partial College -0.18 0.10 (-0.39, 0.02) -0.04 0.21 (-0.47, 0.37)
Partial High School -0.27 0.15 (-0.58, 0.01) -0.03 0.27 (-0.63, 0.44)
Junior High School -0.20 0.21 (-0.63, 0.18) -0.18 0.34 (-0.98, 0.44)
Less than 7th Grade -0.35 0.47 (-1.39, 0.47) -0.48 0.84 (-2.53, 0.88)

Emp. History (Ref: Skilled)
Never Gainfully 0.07 0.14 (-0.20, 0.34) 0.02 0.32 (-0.62, 0.70)
Unskilled -0.20 0.16 (-0.52, 0.09) -0.22 0.36 (-0.97, 0.44)
Machine Operator -0.01 0.13 (-0.26, 0.24) -0.18 0.28 (-0.76, 0.34)
Clerical/Sales 0.11 0.12 (-0.14, 0.35) 0.07 0.28 (-0.51, 0.64)
Administrative -0.04 0.15 (-0.35, 0.24) 0.04 0.32 (-0.55, 0.73)
Business Manager -0.24 0.24 (-0.72, 0.22) -0.93 0.93 (-3.03, 0.48)
Executive -0.18 0.26 (-0.71, 0.29) 0.05 1.04 (-2.03, 2.47)

Work Type (Ref: Fulltime)
Regular PT -0.10 0.15 (-0.39, 0.18) -0.42 0.34 (-1.13, 0.21)
Irregular PT 0.07 0.13 (-0.19, 0.35) 0.29 0.30 (-0.25, 0.91)
Student 0.06 0.26 (-0.44, 0.61) 0.17 0.72 (-1.38, 1.67)
Military -0.28 1.22 (-3.25, 2.02)
Retired 0.23 0.24 (-0.19, 0.71) 0.21 0.79 (-1.13, 2.08)
Unemployed 0.33 0.14 (0.05, 0.59) 0.35 0.34 (-0.27, 1.05)
Controlled 0.84 0.59 (-0.2, 2.11) 1.18 0.97 (-0.30, 3.30)

Income 0.00 0.00 (0.00, 0.00) 0.00 0.00 (0.00, 0.00)

Marital Status (Ref: Married)
Remarried -0.17 0.39 (-1.01, 0.59) 0.56 0.93 (-1.07, 2.67)
Widowed 0.19 0.25 (-0.25, 0.73) 0.30 0.52 (-0.61, 1.38)
Separated 0.19 0.17 (-0.10, 0.55) 0.15 0.33 (-0.46, 0.81)
Divorced 0.04 0.12 (-0.20, 0.28) 0.09 0.28 (-0.44, 0.66)
Never Married 0.19 0.12 (-0.05, 0.42) 0.35 0.26 (-0.08, 0.89)

Living Arr (Ref: Partner & Child)
Partner Only 0.24 0.13 (-0.02, 0.49) 0.79 0.30 (0.17, 1.38)
Child Only -0.03 0.16 (-0.36, 0.29) -0.19 0.31 (-0.82, 0.42)
Parents 0.21 0.17 (-0.10, 0.53) 0.28 0.29 (-0.23, 0.87)
Family 0.05 0.16 (-0.27, 0.36) -0.22 0.34 (-0.96, 0.38)
Friends -0.14 0.16 (-0.44, 0.17) -0.07 0.30 (-0.74, 0.50)
Alone -0.03 0.18 (-0.42, 0.31) 0.10 0.70 (-1.40, 1.60)
Controlled -0.01 0.37 (-0.77, 0.75) 0.98 1.02 (-0.63, 3.24)
No Stable -0.15 0.36 (-0.93, 0.52)
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Table 3: Analysis results: Summary includes the posterior mean estimates (Est), the estimated
posterior standard deviations (ESE), and the estimated 95% equal-tailed credible intervals (CI95).

All Trials CSP-999

Variable Est ESE CI95 Est ESE CI95

Heroine Use (Ref: YES)
NO -0.57 0.21 (-1.00, -0.16)

Years of Opiate Use 0.01 0.01 (-0.01, 0.02) 0.01 0.02 (-0.02, 0.04)

Mode of Opioid Abuse (Ref: IV)
Oral -1.32 0.23 (-1.78, -0.88) -1.21 0.48 (-2.11, -0.21)
Snorting -0.14 0.10 (-0.35, 0.06) -0.15 0.23 (-0.60, 0.29)
Smoking -0.40 0.28 (-0.94, 0.09) -0.57 0.78 (-2.37, 0.69)
Sublingual -1.34 0.97 (-3.42, 0.16)
Other 0.02 0.41 (-0.82, 0.89) -0.42 0.72 (-2.08, 0.74)

Cocaine Use (Ref: YES)
NO -0.04 0.09 (-0.22, 0.12) -0.17 0.28 (-0.69, 0.37)

Meth Use (Ref: NO)
YES 0.13 0.09 (-0.05, 0.31) 0.77 0.28 (0.24, 1.31)

Alcohol Use (Ref: YES)
NO -0.12 0.10 (-0.33, 0.07) -0.49 0.23 (-0.97, -0.04)

Tranquilizer Use (Ref: NO)
YES 0.07 0.10 (-0.14, 0.25) 0.38 0.24 (-0.06, 0.85)

Marijuana Use (Ref: YES)
NO 0.05 0.10 (-0.16, 0.25) 0.20 0.23 (-0.27, 0.64)

PCP Use (Ref: NO)
YES -0.01 0.11 (-0.22, 0.21) -0.07 0.28 (-0.60, 0.54)

Table 4: Treatment and outcome characteristics of individuals used in the trial CSP-999 analysis.

Mean Median Range
Daily Dose 7.49 4 0-64

Time in Trial 148.76 133 3-527
Urinalysis (Yes=1) 0.51 1 0-1
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Table 5: Sociodemographic characteristics and drug use history for the individuals used in the CSP-
999 trial analysis.

Demographics Sociodemographics
Age Mean SD Income Mean SD

36.16 7.78 19454 21365
Gender N % Employment History N %
Male 453 69 Skilled Manual 151 23
Female 201 31 Never Gainfully 168 26
Race N % Machine Operator 83 13
White 309 47 Clerical/Sales 124 19

Hispanic 184 28 Administrative 54 8
Black 152 23 Unskilled 64 10

American Indian 5 1 Business Manager 7 1
Asian 4 1 Executive 3 < 1
Other 0 0 Work Type N %

Fulltime 294 45
Drug Use History Unemployed 198 30

Years of Opiate Abuse Mean SD Irregular PT 81 12
11.56 8.70 Regular PT 58 9

Heroin Use N % Retired 7 1
YES 654 100 Student 7 1
NO 0 0 Controlled 9 1

Mode of Opiate Abuse N % Military 0 0
IV 406 62 Education N %

Snort 194 30 High School 213 33
Oral 37 6 Partial College 201 31

Smoking 9 1 Partial High School 119 18
Other 8 1 Standard College 48 7

Sublingual 0 0 Junior High School 56 8
Cocaine Use N % Complete Graduate School 11 2

YES 540 83 Less than 7th Grade 6 1
NO 114 17 Marital Status N %

Meth Use N % Married 170 26
NO 436 67 Never Married 256 39
YES 218 33 Divorced 142 22

Alcohol Use N % Separated 64 10
YES 446 68 Widowed 18 3
NO 208 32 Remarried 4 < 1

Tranquilizer Use N % Living Arr N %
NO 353 54 Partner & Child 163 25
YES 301 46 Partner Only 126 19

Marijuana Use N % Parents 116 18
YES 482 74 Family 55 8
NO 172 26 Friends 97 15

PCP Use N % Alone 8 1
NO 533 82 Child Only 82 13
YES 121 18 Controlled 7 1

No Stable 0 0
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Table 6: Sensitivity analysis results for CSP-999: Summary includes the posterior mean estimates
(Est), the estimated posterior standard deviations (ESE), and the estimated 95% equal-tailed cred-
ible intervals (CI95) for the significant fixed effects.

Variable Est ESE CI95
Race (Ref: White)
Black -1.27 0.32 (-1.89, -0.64)
Living Arr (Ref: Partner & Child)
Partner Only 0.79 0.30 (0.17, 1.38)
Mode of Opioid Abuse (Ref: IV)
Oral -1.21 0.48 (-2.11, -0.21)
Meth Use (Ref: NO)
YES 0.77 0.28 (0.24, 1.31)
Alcohol Use (Ref: YES)
NO -0.49 0.23 (-0.97, -0.04)
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Appendix B Supplementary Material for Chapter 3

B.1 Posterior Distributions

To begin, we introduce some notation. Let N =
∑m

i=1 ni be the total number of observations in

the data set. Aggregate ocScores, Yij , and stable flashback indicators, Sij , into the N -dimensional

vectors denoted by Y and S, respectively; and aggregate the subject-specific random effects, γi, into

the m-dimensional vector denoted by γ. Let X be the N × (P +1) covariate matrix aggregating the

covariate vectors xij used in the ocScore model; let C be the N × (L+1) input matrix derived from

the modified principal components with sparse loadings used in the stable flashback SPCA model,

as described in Section 3.2.1.1; and let U be the N ×m block diagonal, design matrix associated

with the random effects, γ.

For both ocScore Yij and stable flashback indicator Sij , we assume conditional independence

given their respective covariate effects, θ and β, and random effects, γi. Hence, the likelihood can

be expressed as

p(Y ,S | θ,β,γ) ∝ (2πσ2
ϵ )

−N/2 exp

{
− 1

2σ2
ϵ

(Y −Xβ −Uγ)′(Y −Xβ −Uγ)

}
×
∏
i,j

π
Sij

ij {1− πij}kij−Sij ,

where πij = P (Sij(k) = 1 | zij) = [1 + exp(−νij)]−1
, and νij = c′ijθ + ζγi under the SPCA model

(3.3).

We develop a two-stage data augmentation process to construct a posterior sampling algo-

rithm consisting only of Gibbs steps. In the first stage, we exploit a hierarchical representation of

the proposed data model by introducing Póyla - Gamma latent random variables ωij ; for further

details see Polson et al. [2013]. Under this specification, the joint density of the observed and latent

data is given by

p(Y ,S,ω | θ,β,γ) ∝ (2πσ2
ϵ )

−N/2 exp

{
− 1

2σ2
ϵ

(Y −Xβ −Uγ)′(Y −Xβ −Uγ)

}
× exp

{
−1

2
(h− ν)′Ω(h− ν)

}
×
∏
i,j

ξ(ωij),

where h is the N -dimensional vector aggregating the synthetic responses defined as hij = ηij/ωij ,

with ηij = Sij − kij/2; where ω is the N -dimensional vector aggregating the latent variables ωij
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and Ω = diag(ω); where ξ(ωij) = f(ωij | kij , 0) exp{η2ij/(2ωij)}, and f(ωij | a, b) denotes the Póyla-

Gamma density with parameters (a, b) (for further details, see Polson et al. [2013]); and where ν is

the N -dimensional vector aggregating the linear predictors νij ; that is, ν = Cθ +U(ζγ).

We now highlight the second stage of the data augmentation process and the construction

of the hierarchical representation of the joint posterior distribution. Recall from Section 3.2.2, we

specify a generalized double Pareto shrinkage prior for all of the regression coefficients with the

exception of the intercept; i.e., for the coefficients β, we specify

β0 ∼ N(0, σ2
ϵ τ0)

βp ∼ GDP (σϵbδ/aδ, aδ), for p = 1, . . . , P,

and, for the coefficients θ, we specify

θ0 ∼ N(0, ρ0)

θl ∼ GDP (bλ/aλ, aλ), for l = 1, . . . , L.

For computational simplifications, the generalized double Pareto shrinkage prior can be

represented as a scale mixture of normal distributions Armagan et al. [2013]. Thus, for the regression

coefficients β, the following hierarchical representation provides the same prior specifications as those

given above for β:

β ∼ N(0, σ2
ϵT ), where T = diag(τ ), τ = (τ0, τ1, . . . , τP )

′

τp
ind.∼ Exponential(δ2p/2), for p = 1, . . . , P

δp
ind.∼ Gamma(aδ, bδ), for p = 1, . . . , P .

Similarly, for the regression coefficients θ, the following hierarchical representation provides

the same prior specifications as those given above for θ:

θ ∼ N(0, R), where R = diag(ρ), ρ = (ρ0, ρ1, . . . , ρL)
′

ρl
ind.∼ Exponential(λ2l /2) , for l = 1, . . . , L

λl
ind.∼ Gamma(aλ, bλ), for l = 1, . . . , L.

Attention is now turned to deriving the full conditional distributions based on the two-stage
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data augmentation scheme outlined above. For notational convenience, a dot · is used as shorthand

for all the parameters one is conditioning on; e.g., we may write the posterior p(β | Y ,γ, σ2
ϵ , τ ) as

p(β | ·).

We begin with the derivation of the full conditional posterior distribution of β and the

associated hyperparameters. Define Σβ =
(
X ′X + T−1

)−1
and µβ = ΣβX

′ (Y −U(ζγ)) . Then,

β | · ∼ N(µβ, σ
2
ϵΣβ).

Defining µτp =
√
σ2
ϵ δ

2
p/β

2
p , we have that

τ−1
p | · ∼ Inv −Gaussian(µτp , δ

2
p), for p = 1, . . . , P .

Define a∗δp = aδ + 1 and b∗δp = bδ + |βp|/σϵ. Then,

δp | · ∼ Gamma(a∗δp , b
∗
δp), for p = 1, . . . , P .

Finally, let ãδ = 1/(1+ aδ) and b̃δ = 1/(1+ bδ) be transformations of aδ and bδ, respectively. Given

the generalized Pareto hyper-priors on aδ and bδ from Section 3.2.2, these transformations suggest

uniform priors on ãδ and b̃δ in (0, 1). As a result, the conditional posteriors for ãδ and b̃δ are

p (ãδ | β, bδ) ∝
(
1− ãδ
ãδ

)P P∏
p=1

(
1 +

|βp|
σϵbδ

)−1/ãδ

p
(
b̃δ | β, aδ

)
∝

(
b̃δ

1− b̃δ

)P
P∏

p=1

{
1 + b̃δ

|βp|
σϵ(1− b̃δ)

}−(aδ+1)

.

To continue, we turn our attention to the posterior distribution of θ and the associated

hyperparameters. Define Σθ =
(
C ′ΩC +R−1

)−1
and µθ = ΣθC

′Ω(h−Uγ). Then,

θ | · ∼ N(µθ, Σθ).

Defining µρl
=
√
λ2l /θ

2
l , we have that

ρ−1
l | · ∼ Inv −Gaussian(µρl

, λ2l ), for l = 1, . . . , L.
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Finally, define a∗λl
= aλ + 1 and b∗λl

= bλ + |θl|. Then,

λl | · ∼ Gamma(a∗λl
, b∗λl

), for l = 1, . . . , L.

Next, we turn our focus to the posterior distribution of γ and its variance component σ2
γ .

First, define

Σγ =
{
σ−2
ϵ U ′U + (Uζ)′Ω(Uζ) + σ−2

γ Im
}−1

,

where Im refers to the identity matrix of dimension m, and define

µγ = Σγ

{
σ−2
ϵ U ′(Y −Xβ) + (Uζ)′Ω(h−Cθ)

}
.

Then, the full conditional posterior distribution of γ is

γ | · ∼ N(µγ , Σγ).

Define a∗γ = aγ +m/2 and b∗γ = bγ + 0.5γ′γ. Then,

σ2
γ | · ∼ Inv −Gamma(a∗γ , b

∗
γ).

We now turn our attention to the posterior distribution of the random effects’ association

parameter, ζ. Define Σζ =
(
(Uγ)′Ω(Uγ) + σ−2

ζ

)−1

, and µζ = Σζ(Uγ)′Ω(h−Cθ). Then,

ζ | · ∼ N(µζ , Σζ).

We end our discuss by describing the posterior distribution of the variance component

for the random error in model (3.1); i.e., the posterior of σ2
ϵ . Define a∗ϵ = (N + P + 1)/2 and

b∗ϵ = 0.5(Y −Xβ −Uγ)′(Y −Xβ −Uγ). Then,

σ2
ϵ | · ∼ Inv −Gamma(a∗ϵ , b

∗
ϵ ).
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B.2 Additional Simulation Results

Here is an outline of the material in this section of the appenidx:

Pages 78 - 81: Tables 7 - 10. Simulation results for regression coefficients, β, in the ocScore

model (3.4).

Page 82: Table 11. Simulation results for regression coefficients, α, in the stable flashback model

(3.5).

77



Table 7: Simulation results for regression coefficients, β, corresponding to the intercept and the 80
truly significant covariates.

True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE)

0.45 -0.006 (0.932) 0.157 (0.148) 1.00 -0.059 (0.922) 0.159 (0.151)
1.00 -0.055 (0.922) 0.160 (0.151) -1.00 0.055 (0.926) 0.157 (0.151)
1.00 -0.053 (0.940) 0.154 (0.151) -1.00 0.044 (0.926) 0.165 (0.151)
1.00 -0.053 (0.938) 0.146 (0.151) -1.00 0.053 (0.924) 0.167 (0.151)
1.00 -0.054 (0.930) 0.156 (0.151) -1.00 0.044 (0.904) 0.162 (0.151)
1.00 -0.052 (0.920) 0.161 (0.151) -1.00 0.061 (0.942) 0.148 (0.151)
1.00 -0.063 (0.912) 0.157 (0.151) -1.00 0.059 (0.920) 0.163 (0.151)
1.00 -0.053 (0.904) 0.158 (0.151) -1.00 0.057 (0.928) 0.155 (0.151)
1.00 -0.063 (0.886) 0.167 (0.151) -1.00 0.053 (0.944) 0.149 (0.151)
1.00 -0.051 (0.962) 0.144 (0.151) -1.00 0.054 (0.918) 0.156 (0.151)
1.00 -0.061 (0.930) 0.151 (0.151) -1.00 0.054 (0.928) 0.161 (0.151)
1.00 -0.039 (0.946) 0.153 (0.151) -1.00 0.054 (0.924) 0.159 (0.151)
1.00 -0.044 (0.920) 0.163 (0.151) -1.00 0.060 (0.906) 0.168 (0.152)
1.00 -0.063 (0.922) 0.157 (0.151) -1.00 0.064 (0.916) 0.165 (0.151)
1.00 -0.052 (0.926) 0.158 (0.151) -1.00 0.054 (0.936) 0.156 (0.151)
1.00 -0.050 (0.930) 0.157 (0.151) -1.00 0.052 (0.930) 0.157 (0.151)
1.00 -0.055 (0.910) 0.162 (0.151) -1.00 0.053 (0.930) 0.153 (0.151)
1.00 -0.054 (0.910) 0.165 (0.151) -1.00 0.054 (0.934) 0.155 (0.151)
1.00 -0.061 (0.924) 0.157 (0.151) -1.00 0.044 (0.934) 0.149 (0.151)
1.00 -0.043 (0.934) 0.156 (0.151) -1.00 0.062 (0.926) 0.162 (0.151)
1.00 -0.051 (0.902) 0.167 (0.151) -1.00 0.048 (0.930) 0.162 (0.150)
1.00 -0.044 (0.922) 0.160 (0.151) -1.00 0.053 (0.936) 0.153 (0.151)
1.00 -0.055 (0.912) 0.165 (0.151) -1.00 0.057 (0.926) 0.154 (0.150)
1.00 -0.048 (0.926) 0.156 (0.151) -1.00 0.042 (0.926) 0.156 (0.151)
1.00 -0.062 (0.898) 0.164 (0.151) -1.00 0.062 (0.922) 0.159 (0.151)
1.00 -0.059 (0.910) 0.150 (0.151) -1.00 0.056 (0.928) 0.154 (0.151)
1.00 -0.054 (0.926) 0.148 (0.151) -1.00 0.045 (0.928) 0.157 (0.151)
1.00 -0.054 (0.924) 0.156 (0.151) -1.00 0.056 (0.922) 0.165 (0.151)
1.00 -0.059 (0.948) 0.147 (0.151) -1.00 0.051 (0.932) 0.156 (0.151)
1.00 -0.062 (0.912) 0.162 (0.151) -1.00 0.062 (0.930) 0.149 (0.151)
1.00 -0.066 (0.920) 0.158 (0.151) -1.00 0.051 (0.932) 0.154 (0.151)
1.00 -0.038 (0.932) 0.161 (0.150) -1.00 0.055 (0.918) 0.162 (0.151)
1.00 -0.056 (0.920) 0.154 (0.151) -1.00 0.058 (0.944) 0.149 (0.151)
1.00 -0.064 (0.918) 0.157 (0.151) -1.00 0.049 (0.934) 0.151 (0.151)
1.00 -0.049 (0.930) 0.149 (0.151) -1.00 0.051 (0.932) 0.157 (0.151)
1.00 -0.054 (0.932) 0.157 (0.151) -1.00 0.051 (0.928) 0.159 (0.151)
1.00 -0.061 (0.912) 0.160 (0.151) -1.00 0.052 (0.936) 0.156 (0.151)
1.00 -0.047 (0.936) 0.155 (0.151) -1.00 0.045 (0.918) 0.160 (0.151)
1.00 -0.054 (0.922) 0.164 (0.151) -1.00 0.048 (0.916) 0.158 (0.151)
1.00 -0.049 (0.920) 0.165 (0.151) -1.00 0.058 (0.940) 0.157 (0.151)
-1.00 -.053 (0.940) 0.152 (0.151)

78



Table 8: Simulation results for regression coefficients, β.

True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE)

0.00 -0.001 (0.996) 0.080 (0.110) 0.00 -0.001 (0.998) 0.081 (0.110) 0.00 -0.006 (0.980) 0.093 (0.111)
0.00 0.003 (0.984) 0.089 (0.111) 0.00 0.007 (0.990) 0.089 (0.111) 0.00 0.005 (0.986) 0.093 (0.112)
0.00 0.005 (0.984) 0.088 (0.110) 0.00 0.002 (0.986) 0.092 (0.112) 0.00 -0.009 (0.988) 0.088 (0.111)
0.00 0.004 (0.970) 0.098 (0.112) 0.00 0.003 (0.978) 0.093 (0.112) 0.00 0.002 (0.990) 0.083 (0.110)
0.00 0.003 (0.988) 0.087 (0.111) 0.00 0.006 (0.980) 0.095 (0.111) 0.00 0.002 (0.998) 0.074 (0.109)
0.00 0.001 (0.988) 0.089 (0.111) 0.00 -0.006 (0.984) 0.093 (0.111) 0.00 -0.001 (0.982) 0.096 (0.111)
0.00 -0.008 (0.988) 0.093 (0.112) 0.00 -0.004 (0.988) 0.090 (0.110) 0.00 0.002 (0.994) 0.084 (0.111)
0.00 -0.000 (0.986) 0.090 (0.111) 0.00 -0.001 (0.986) 0.091 (0.112) 0.00 -0.002 (0.984) 0.093 (0.112)
0.00 -0.001 (0.984) 0.089 (0.111) 0.00 -0.002 (0.978) 0.092 (0.111) 0.00 0.001 (0.992) 0.082 (0.110)
0.00 0.002 (0.986) 0.090 (0.112) 0.00 -0.004 (0.978) 0.095 (0.111) 0.00 0.000 (0.982) 0.088 (0.111)
0.00 -0.006 (0.992) 0.090 (0.112) 0.00 0.003 (0.998) 0.082 (0.111) 0.00 -0.004 (0.990) 0.086 (0.111)
0.00 -0.006 (0.988) 0.091 (0.112) 0.00 0.005 (0.978) 0.096 (0.111) 0.00 -0.004 (0.982) 0.096 (0.112)
0.00 -0.002 (0.996) 0.086 (0.111) 0.00 0.002 (0.988) 0.087 (0.111) 0.00 -0.004 (0.990) 0.083 (0.110)
0.00 0.001 (0.992) 0.093 (0.112) 0.00 0.003 (0.992) 0.090 (0.111) 0.00 -0.001 (0.984) 0.089 (0.111)
0.00 -0.003 (0.984) 0.093 (0.112) 0.00 -0.003 (0.986) 0.089 (0.111) 0.00 -0.002 (0.986) 0.088 (0.111)
0.00 0.002 (0.990) 0.088 (0.111) 0.00 -0.005 (0.984) 0.090 (0.111) 0.00 0.001 (0.988) 0.089 (0.111)
0.00 0.005 (0.994) 0.084 (0.111) 0.00 -0.006 (0.988) 0.092 (0.112) 0.00 0.001 (0.978) 0.094 (0.112)
0.00 0.004 (0.990) 0.090 (0.111) 0.00 0.001 (0.994) 0.083 (0.110) 0.00 0.002 (0.992) 0.088 (0.111)
0.00 -0.002 (0.976) 0.091 (0.111) 0.00 0.001 (0.992) 0.090 (0.111) 0.00 -0.007 (0.996) 0.087 (0.112)
0.00 0.003 (0.992) 0.088 (0.111) 0.00 -0.006 (0.984) 0.090 (0.112) 0.00 0.004 (0.986) 0.091 (0.111)
0.00 -0.002 (0.992) 0.090 (0.112) 0.00 0.002 (0.986) 0.091 (0.111) 0.00 -0.004 (0.990) 0.090 (0.111)
0.00 -0.006 (0.990) 0.088 (0.111) 0.00 0.005 (0.988) 0.092 (0.112) 0.00 -0.008 (0.986) 0.089 (0.111)
0.00 0.001 (0.986) 0.089 (0.111) 0.00 -0.006 (0.990) 0.087 (0.111) 0.00 0.003 (0.988) 0.086 (0.110)
0.00 0.000 (0.990) 0.090 (0.111) 0.00 -0.001 (0.994) 0.082 (0.110) 0.00 0.002 (0.984) 0.093 (0.112)
0.00 -0.003 (0.998) 0.082 (0.111) 0.00 -0.002 (0.992) 0.083 (0.110) 0.00 -0.002 (0.990) 0.087 (0.111)
0.00 0.004 (0.986) 0.094 (0.112) 0.00 -0.003 (0.992) 0.086 (0.111) 0.00 0.002 (0.986) 0.083 (0.110)
0.00 0.002 (0.986) 0.088 (0.111) 0.00 -0.004 (0.986) 0.090 (0.111) 0.00 0.000 (0.988) 0.091 (0.111)
0.00 0.002 (0.988) 0.088 (0.112) 0.00 -0.002 (0.982) 0.091 (0.111) 0.00 0.002 (0.990) 0.089 (0.111)
0.00 0.006 (0.996) 0.081 (0.110) 0.00 0.005 (0.988) 0.086 (0.111) 0.00 -0.001 (0.994) 0.090 (0.112)
0.00 -0.003 (0.986) 0.089 (0.111) 0.00 -0.001 (0.992) 0.084 (0.111) 0.00 0.007 (0.986) 0.090 (0.111)
0.00 0.001 (0.980) 0.095 (0.112) 0.00 0.001 (0.996) 0.081 (0.110) 0.00 -0.000 (0.996) 0.084 (0.111)
0.00 -0.004 (0.988) 0.090 (0.111) 0.00 0.000 (0.990) 0.087 (0.111) 0.00 0.006 (0.990) 0.090 (0.111)
0.00 -0.003 (0.990) 0.088 (0.111) 0.00 0.003 (0.994) 0.083 (0.110) 0.00 -0.002 (0.994) 0.077 (0.110)
0.00 -0.005 (0.988) 0.089 (0.111) 0.00 -0.004 (0.988) 0.086 (0.110) 0.00 0.001 (0.990) 0.092 (0.112)
0.00 -0.003 (0.984) 0.089 (0.111) 0.00 0.001 (0.990) 0.087 (0.111) 0.00 0.001 (0.990) 0.097 (0.113)
0.00 -0.001 (0.992) 0.088 (0.111) 0.00 -0.000 (0.984) 0.088 (0.111) 0.00 -0.002 (0.990) 0.090 (0.111)
0.00 0.007 (0.986) 0.094 (0.112) 0.00 0.003 (0.988) 0.089 (0.111) 0.00 0.002 (0.980) 0.092 (0.111)
0.00 0.007 (0.990) 0.090 (0.111) 0.00 -0.000 (0.996) 0.085 (0.111) 0.00 0.002 (0.992) 0.089 (0.111)
0.00 0.001 (0.990) 0.084 (0.110) 0.00 -0.003 (0.984) 0.096 (0.112) 0.00 0.003 (0.992) 0.084 (0.111)
0.00 0.002 (0.994) 0.085 (0.111) 0.00 0.003 (0.984) 0.089 (0.111) 0.00 0.002 (0.994) 0.082 (0.110)
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Table 9: Simulation results for regression coefficients, β.

True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE)

0.00 -0.005 (0.982) 0.093 (0.111) 0.00 0.007 (0.992) 0.084 (0.111) 0.00 -0.007 (0.992) 0.085 (0.111)
0.00 -0.004 (0.992) 0.089 (0.111) 0.00 0.002 (0.998) 0.084 (0.111) 0.00 0.000 (0.992) 0.084 (0.110)
0.00 0.001 (0.990) 0.088 (0.111) 0.00 -0.001 (0.984) 0.094 (0.112) 0.00 0.003 (0.990) 0.085 (0.111)
0.00 0.000 (0.996) 0.075 (0.109) 0.00 0.000 (0.992) 0.086 (0.110) 0.00 -0.003 (0.994) 0.082 (0.110)
0.00 -0.001 (0.990) 0.085 (0.111) 0.00 0.001 (0.984) 0.093 (0.111) 0.00 0.001 (0.988) 0.093 (0.111)
0.00 0.004 (0.988) 0.089 (0.111) 0.00 -0.003 (0.990) 0.090 (0.111) 0.00 -0.003 (0.986) 0.094 (0.112)
0.00 0.001 (0.982) 0.095 (0.112) 0.00 0.000 (0.976) 0.095 (0.111) 0.00 0.006 (0.982) 0.091 (0.111)
0.00 -0.001 (0.988) 0.089 (0.111) 0.00 0.004 (0.990) 0.084 (0.110) 0.00 -0.000 (0.980) 0.097 (0.112)
0.00 0.000 (0.980) 0.096 (0.112) 0.00 -0.001 (0.992) 0.086 (0.111) 0.00 -0.004 (0.986) 0.086 (0.111)
0.00 -0.004 (0.992) 0.081 (0.110) 0.00 -0.006 (0.988) 0.081 (0.110) 0.00 -0.002 (0.988) 0.095 (0.112)
0.00 0.004 (0.990) 0.088 (0.111) 0.00 -0.000 (0.990) 0.085 (0.111) 0.00 0.006 (0.988) 0.089 (0.111)
0.00 0.003 (0.992) 0.085 (0.110) 0.00 0.003 (0.982) 0.097 (0.112) 0.00 0.001 (0.988) 0.087 (0.111)
0.00 0.002 (0.994) 0.090 (0.111) 0.00 -0.005 (0.990) 0.089 (0.111) 0.00 0.003 (0.996) 0.082 (0.110)
0.00 0.001 (0.996) 0.081 (0.110) 0.00 -0.001 (0.990) 0.086 (0.111) 0.00 0.001 (0.984) 0.092 (0.111)
0.00 -0.001 (0.990) 0.082 (0.110) 0.00 -0.002 (0.992) 0.088 (0.111) 0.00 0.001 (0.996) 0.080 (0.110)
0.00 -0.008 (0.990) 0.077 (0.109) 0.00 0.007 (0.982) 0.092 (0.111) 0.00 0.003 (0.992) 0.093 (0.111)
0.00 -0.004 (0.996) 0.089 (0.112) 0.00 -0.002 (0.998) 0.080 (0.110) 0.00 0.006 (0.990) 0.086 (0.110)
0.00 -0.017 (0.990) 0.088 (0.111) 0.00 0.009 (0.986) 0.090 (0.112) 0.00 0.004 (0.984) 0.095 (0.112)
0.00 -0.001 (0.978) 0.092 (0.111) 0.00 -0.002 (0.988) 0.087 (0.111) 0.00 0.002 (0.994) 0.084 (0.111)
0.00 -0.001 (0.992) 0.089 (0.111) 0.00 0.001 (0.988) 0.085 (0.111) 0.00 0.000 (0.994) 0.083 (0.110)
0.00 -0.002 (0.990) 0.092 (0.111) 0.00 -0.005 (0.984) 0.093 (0.111) 0.00 -0.002 (0.986) 0.088 (0.111)
0.00 0.008 (0.986) 0.087 (0.110) 0.00 0.006 (0.988) 0.085 (0.110) 0.00 0.001 (0.994) 0.087 (0.111)
0.00 0.001 (0.996) 0.087 (0.111) 0.00 -0.002 (0.996) 0.083 (0.111) 0.00 0.002 (0.986) 0.086 (0.110)
0.00 0.001 (0.984) 0.090 (0.111) 0.00 0.006 (0.988) 0.089 (0.111) 0.00 -0.003 (0.988) 0.084 (0.110)
0.00 -0.001 (0.996) 0.085 (0.111) 0.00 0.000 (0.992) 0.091 (0.111) 0.00 0.005 (0.990) 0.083 (0.109)
0.00 -0.006 (0.978) 0.093 (0.111) 0.00 0.001 (0.988) 0.086 (0.110) 0.00 -0.003 (0.992) 0.089 (0.112)
0.00 -0.003 (0.988) 0.092 (0.111) 0.00 0.001 (0.984) 0.094 (0.112) 0.00 -0.001 (0.988) 0.086 (0.111)
0.00 -0.001 (0.988) 0.095 (0.112) 0.00 -0.007 (0.992) 0.092 (0.112) 0.00 -0.003 (0.992) 0.089 (0.112)
0.00 -0.003 (0.990) 0.087 (0.111) 0.00 -0.001 (0.992) 0.084 (0.111) 0.00 -0.004 (0.980) 0.092 (0.111)
0.00 -0.004 (0.990) 0.087 (0.111) 0.00 -0.004 (0.990) 0.088 (0.111) 0.00 -0.001 (0.994) 0.088 (0.111)
0.00 -0.004 (0.994) 0.090 (0.111) 0.00 -0.003 (0.988) 0.090 (0.111) 0.00 -0.000 (0.988) 0.090 (0.111)
0.00 0.009 (0.984) 0.088 (0.111) 0.00 -0.003 (0.988) 0.090 (0.111) 0.00 -0.001 (0.982) 0.090 (0.111)
0.00 0.006 (0.990) 0.087 (0.111) 0.00 0.003 (0.988) 0.089 (0.111) 0.00 0.004 (0.984) 0.086 (0.111)
0.00 -0.000 (0.992) 0.083 (0.111) 0.00 -0.001 (0.986) 0.083 (0.109) 0.00 0.006 (0.984) 0.087 (0.111)
0.00 -0.004 (0.984) 0.094 (0.112) 0.00 -0.002 (0.992) 0.085 (0.111) 0.00 0.004 (0.990) 0.089 (0.111)
0.00 -0.000 (0.988) 0.088 (0.111) 0.00 0.005 (0.994) 0.085 (0.111) 0.00 -0.004 (0.980) 0.091 (0.111)
0.00 0.003 (0.994) 0.083 (0.110) 0.00 0.001 (0.982) 0.094 (0.111) 0.00 -0.003 (0.988) 0.086 (0.110)
0.00 0.005 (0.996) 0.085 (0.111) 0.00 0.003 (0.976) 0.092 (0.111) 0.00 0.004 (0.984) 0.090 (0.111)
0.00 -0.001 (0.988) 0.093 (0.112) 0.00 0.004 (0.982) 0.089 (0.111) 0.00 -0.001 (0.990) 0.082 (0.110)
0.00 0.002 (0.990) 0.088 (0.111) 0.00 0.003 (0.986) 0.095 (0.112) 0.00 0.002 (0.982) 0.089 (0.111)
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Table 10: Simulation results for regression coefficients, β.

True Bias (CP95) SSD (ESE) True Bias (CP95) SSD (ESE)
0.00 -0.001 (0.992) 0.080 (0.110) 0.00 0.002 (0.990) 0.087 (0.111)
0.00 0.001 (0.992) 0.090 (0.111) 0.00 0.003 (0.988) 0.080 (0.110)
0.00 -0.004 (0.996) 0.079 (0.110) 0.00 -0.001 (0.994) 0.086 (0.111)
0.00 -0.004 (0.990) 0.086 (0.111) 0.00 -0.007 (0.990) 0.093 (0.112)
0.00 0.001 (0.988) 0.087 (0.111) 0.00 0.003 (0.992) 0.089 (0.111)
0.00 -0.001 (0.988) 0.091 (0.112) 0.00 0.002 (0.996) 0.082 (0.110)
0.00 0.006 (0.992) 0.087 (0.111) 0.00 0.003 (0.986) 0.089 (0.111)
0.00 0.002 (0.986) 0.095 (0.112) 0.00 0.000 (0.990) 0.093 (0.112)
0.00 -0.000 (0.990) 0.093 (0.112) 0.00 0.001 (0.990) 0.091 (0.111)
0.00 0.004 (0.994) 0.084 (0.111) 0.00 -0.001 (0.992) 0.090 (0.111)
0.00 0.005 (0.992) 0.082 (0.110) 0.00 -0.000 (0.988) 0.094 (0.112)
0.00 -0.003 (0.994) 0.084 (0.111) 0.00 0.000 (0.994) 0.083 (0.111)
0.00 -0.005 (0.984) 0.093 (0.112) 0.00 0.007 (0.988) 0.088 (0.111)
0.00 0.004 (0.986) 0.087 (0.111) 0.00 0.006 (0.984) 0.091 (0.111)
0.00 -0.007 (0.982) 0.095 (0.112) 0.00 -0.005 (0.992) 0.088 (0.111)
0.00 -0.001 (0.990) 0.087 (0.111) 0.00 -0.002 (0.996) 0.083 (0.111)
0.00 -0.007 (0.986) 0.087 (0.111) 0.00 -0.002 (0.990) 0.091 (0.112)
0.00 -0.002 (0.984) 0.090 (0.111) 0.00 -0.004 (0.978) 0.091 (0.111)
0.00 -0.001 (0.982) 0.093 (0.112) 0.00 -0.001 (0.992) 0.088 (0.111)
0.00 0.003 (0.994) 0.081 (0.110) 0.00 -0.000 (0.988) 0.087 (0.111)
0.00 0.008 (0.980) 0.099 (0.112) 0.00 -0.005 (0.990) 0.087 (0.111)
0.00 -0.000 (0.994) 0.083 (0.110) 0.00 -0.002 (0.988) 0.084 (0.110)
0.00 0.005 (0.980) 0.092 (0.111) 0.00 0.000 (0.992) 0.089 (0.111)
0.00 -0.001 (0.996) 0.083 (0.110) 0.00 -0.005 (0.992) 0.082 (0.110)
0.00 0.001 (0.982) 0.090 (0.111) 0.00 0.000 (0.992) 0.084 (0.111)
0.00 0.005 (0.984) 0.092 (0.111) 0.00 0.002 (0.984) 0.090 (0.111)
0.00 0.004 (0.982) 0.095 (0.112) 0.00 -0.001 (0.992) 0.089 (0.111)
0.00 -0.006 (0.990) 0.083 (0.110) 0.00 0.003 (0.992) 0.086 (0.111)
0.00 -0.001 (0.992) 0.084 (0.111) 0.00 0.009 (0.986) 0.091 (0.112)
0.00 0.000 (0.990) 0.092 (0.112) 0.00 -0.005 (0.986) 0.085 (0.110)
0.00 -0.002 (0.990) 0.090 (0.111) 0.00 0.006 (0.982) 0.097 (0.112)
0.00 0.002 (0.990) 0.092 (0.112) 0.00 0.004 (0.982) 0.089 (0.111)
0.00 0.002 (0.992) 0.086 (0.111) 0.00 0.000 (0.994) 0.084 (0.110)
0.00 0.004 (0.990) 0.087 (0.111) 0.00 0.003 (0.986) 0.091 (0.111)
0.00 -0.006 (0.992) 0.090 (0.111) 0.00 -0.002 (0.988) 0.083 (0.110)
0.00 -0.005 (0.990) 0.085 (0.110) 0.00 0.006 (0.994) 0.084 (0.111)
0.00 -0.004 (0.990) 0.088 (0.111) 0.00 0.004 (0.992) 0.088 (0.111)
0.00 -0.006 (0.988) 0.088 (0.111) 0.00 -0.006 (0.994) 0.084 (0.110)
0.00 0.001 (0.984) 0.098 (0.112) 0.00 -0.007 (0.988) 0.088 (0.111)
0.00 -0.005 (0.990) 0.086 (0.111) 0.00 0.001 (0.988) 0.086 (0.111)
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Table 11: Simulation results for regression coefficients α.

True Bias (CP95) SSD (ESE)
1.05 0.014 (0.952) 0.303 (0.301)
-1.00 -0.000 (0.956) 0.238 (0.243)
0.00 0.034 (0.962) 0.273 (0.293)
1.00 0.009 (0.946) 0.307 (0.309)
1.00 -0.041 (0.942) 0.291 (0.299)
0.00 0.038 (0.952) 0.230 (0.235)
0.00 0.004 (0.962) 0.100 (0.103)
0.00 0.005 (0.960) 0.096 (0.103)
0.00 0.007 (0.958) 0.101 (0.103)
0.00 -0.005 (0.956) 0.099 (0.103)
0.00 -0.005 (0.958) 0.102 (0.103)

B.3 Tables of Covariates from Section 3

Here is an outline of the material in this section of the appendix:

Page 83: Table 12. Frequency domain metrics included in the ocScore model as covariates.

Page 84: Table 13. A continuation of Table 12.

Page 85: Table 14. Economy of motion, force-based palpation, membership of insertion curve, force

roughness, needle location, and needle angle metrics included in the ocScore model as covariates.

Page 85: Table 15. Force-based palpation, economy of motion, needle location, and needle angle

metrics included in the stable flashback model as covariates.
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Table 12: Covariates included in the ocScore model.

Frequency Domain Metrics
xfftf1 yfftf1 zfftf1 Nxfftf1 Nyfftf1
xfftf2 yfftf2 zfftf2 Nxfftf2 Nyfftf2
xfftf3 yfftf3 zfftf3 Nxfftf3 Nyfftf3
xfftf4 yfftf4 zfftf4 Nxfftf4 Nyfftf4
xfftf5 yfftf5 zfftf5 Nxfftf5 Nyfftf5
xfftf6 yfftf6 zfftf6 Nxfftf6 Nyfftf6
xfftf7 yfftf7 zfftf7 Nxfftf7 Nyfftf7
xfftf8 yfftf8 zfftf8 Nxfftf8 Nyfftf8
xfftf9 yfftf9 zfftf9 Nxfftf9 Nyfftf9
xfftf10 yfftf10 zfftf10 Nxfftf10 Nyfftf10
xfftpow1 yfftpow1 zfftpow1 Nxfftpow1 Nyfftpow1
xfftpow2 yfftpow2 zfftpow2 Nxfftpow2 Nyfftpow2
xfftpow3 yfftpow3 zfftpow3 Nxfftpow3 Nyfftpow3
xfftpow4 yfftpow4 zfftpow4 Nxfftpow4 Nyfftpow4
xfftpow5 yfftpow5 zfftpow5 Nxfftpow5 Nyfftpow5
xfftpow6 yfftpow6 zfftpow6 Nxfftpow6 Nyfftpow6
xfftpow7 yfftpow7 zfftpow7 Nxfftpow7 Nyfftpow7
xfftpow8 yfftpow8 zfftpow8 Nxfftpow8 Nyfftpow8
xfftpow9 yfftpow9 zfftpow9 Nxfftpow9 Nyfftpow9
xfftpow10 yfftpow10 zfftpow10 Nxfftpow10 Nyfftpow10
xdctf1 ydctf1 zdctf1 Nxdctf1 Nydctf1
xdctf2 ydctf2 zdctf2 Nxdctf2 Nydctf2
xdctf3 ydctf3 zdctf3 Nxdctf3 Nydctf3
xdctf4 ydctf4 zdctf4 Nxdctf4 Nydctf4
xdctf5 ydctf5 zdctf5 Nxdctf5 Nydctf5
xdctf6 ydctf6 zdctf6 Nxdctf6 Nydctf6
xdctf7 ydctf7 zdctf7 Nxdctf7 Nydctf7
xdctf8 ydctf8 zdctf8 Nxdctf8 Nydctf8
xdctf9 ydctf9 zdctf9 Nxdctf9 Nydctf9
xdctf10 ydctf10 zdctf10 Nxdctf10 Nydctf10
xdctpow1 ydctpow1 zdctpow1 Nxdctpow1 Nydctpow1
xdctpow2 ydctpow2 zdctpow2 Nxdctpow2 Nydctpow2
xdctpow3 ydctpow3 zdctpow3 Nxdctpow3 Nydctpow3
xdctpow4 ydctpow4 zdctpow4 Nxdctpow4 Nydctpow4
xdctpow5 ydctpow5 zdctpow5 Nxdctpow5 Nydctpow5
xdctpow6 ydctpow6 zdctpow6 Nxdctpow6 Nydctpow6
xdctpow7 ydctpow7 zdctpow7 Nxdctpow7 Nydctpow7
xdctpow8 ydctpow8 zdctpow8 Nxdctpow8 Nydctpow8
xdctpow9 ydctpow9 zdctpow9 Nxdctpow9 Nydctpow9
xdctpow10 ydctpow10 zdctpow10 Nxdctpow10 Nydctpow10
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Table 13: Covariates included in the ocScore model.

Frequency Domain Metrics Cont’d
Nzfftf1 vfftf1 Alphafftf1 dAlphafftf1 total forcefftf1
Nzfftf2 vfftf2 Alphafftf2 dAlphafftf2 total forcefftf2
Nzfftf3 vfftf3 Alphafftf3 dAlphafftf3 total forcefftf3
Nzfftf4 vfftf4 Alphafftf4 dAlphafftf4 total forcefftf4
Nzfftf5 vfftf5 Alphafftf5 dAlphafftf5 total forcefftf5
Nzfftf6 vfftf6 Alphafftf6 dAlphafftf6 total forcefftf6
Nzfftf7 vfftf7 Alphafftf7 dAlphafftf7 total forcefftf7
Nzfftf8 vfftf8 Alphafftf8 dAlphafftf8 total forcefftf8
Nzfftf9 vfftf9 Alphafftf9 dAlphafftf9 total forcefftf9
Nzfftf10 vfftf10 Alphafftf10 dAlphafftf10 total forcefftf10
Nzfftpow1 vfftpow1 Alphafftpow1 dAlphafftpow1 total forcefftpow1
Nzfftpow2 vfftpow2 Alphafftpow2 dAlphafftpow2 total forcefftpow2
Nzfftpow3 vfftpow3 Alphafftpow3 dAlphafftpow3 total forcefftpow3
Nzfftpow4 vfftpow4 Alphafftpow4 dAlphafftpow4 total forcefftpow4
Nzfftpow5 vfftpow5 Alphafftpow5 dAlphafftpow5 total forcefftpow5
Nzfftpow6 vfftpow6 Alphafftpow6 dAlphafftpow6 total forcefftpow6
Nzfftpow7 vfftpow7 Alphafftpow7 dAlphafftpow7 total forcefftpow7
Nzfftpow8 vfftpow8 Alphafftpow8 dAlphafftpow8 total forcefftpow8
Nzfftpow9 vfftpow9 Alphafftpow9 dAlphafftpow9 total forcefftpow9
Nzfftpow10 vfftpow10 Alphafftpow10 dAlphafftpow10 total forcefftpow10
Nzdctf1 vdctf1 Alphadctf1 dAlphadctf1 total forcedctf1
Nzdctf2 vdctf2 Alphadctf2 dAlphadctf2 total forcedctf2
Nzdctf3 vdctf3 Alphadctf3 dAlphadctf3 total forcedctf3
Nzdctf4 vdctf4 Alphadctf4 dAlphadctf4 total forcedctf4
Nzdctf5 vdctf5 Alphadctf5 dAlphadctf5 total forcedctf5
Nzdctf6 vdctf6 Alphadctf6 dAlphadctf6 total forcedctf6
Nzdctf7 vdctf7 Alphadctf7 dAlphadctf7 total forcedctf7
Nzdctf8 vdctf8 Alphadctf8 dAlphadctf8 total forcedctf8
Nzdctf9 vdctf9 Alphadctf9 dAlphadctf9 total forcedctf9
Nzdctf10 vdctf10 Alphadctf10 dAlphadctf10 total forcedctf10
Nzdctpow1 vdctpow1 Alphadctpow1 dAlphadctpow1 total forcedctpow1
Nzdctpow2 vdctpow2 Alphadctpow2 dAlphadctpow2 total forcedctpow2
Nzdctpow3 vdctpow3 Alphadctpow3 dAlphadctpow3 total forcedctpow3
Nzdctpow4 vdctpow4 Alphadctpow4 dAlphadctpow4 total forcedctpow4
Nzdctpow5 vdctpow5 Alphadctpow5 dAlphadctpow5 total forcedctpow5
Nzdctpow6 vdctpow6 Alphadctpow6 dAlphadctpow6 total forcedctpow6
Nzdctpow7 vdctpow7 Alphadctpow7 dAlphadctpow7 total forcedctpow7
Nzdctpow8 vdctpow8 Alphadctpow8 dAlphadctpow8 total forcedctpow8
Nzdctpow9 vdctpow9 Alphadctpow9 dAlphadctpow9 total forcedctpow9
Nzdctpow10 vdctpow10 Alphadctpow10 dAlphadctpow10 total forcedctpow10
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Table 14: Covariates included in the ocScore model.

Economy of Motion Palpation Force-Based
avgV sparcV palp time
sdV ldljV touchpoints
aadV bf avgV tot dwell time
arsV bf sdV palp force range
ardV bf aadV norm tot palp force
avgF bf arsV Membership of Insertion Curve
sdF bf ardV clt0
aadF bf avgF clt1
arsF bf sdF clt2
ardF bf aadF Force Roughness
t underS bf arsF Frgh
PL underS bf ardF Needle Location
force underS bf sparcV a0
avgAngle underS bf ldljV a2

Needle Angle beta02
avg alpha S avg alphaDot S beta 0
LDLJ S beta 2

Table 15: Covariates included in the stable flashback model.

Palpation Force-Based Economy of Motion
palp time sparcV
touchpoints ldljV
tot dwell time Needle Angle
palp force range avg alpha S
norm tot palp force avg alphaDot S
Needle Location LDLJ S
a0
a2
beta02
beta 0
beta 2
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Appendix C Supplementary Material for Chapter 4

C.1 BART backfitting algorithm details

In this section, we describe the details of the Bayesian backfitting MCMC algorithm, outlined in

Chipman et al. [2010], to sample from the posterior distribution of the regression trees

(T1,M1), (T2,M2), . . . , (TK ,MK). In general, the algorithm is simply a Gibbs sampler and can be

thought of as a tailored version of Bayesian backfitting MCMC [Hastie and Tibshirani, 2000]. Our

algorithm repeatedly resamples the parameters of each learner in the ensemble. To estimate the

posterior distribution, we first obtain a draw of the latent random variables ωi that were introduced

in the second stage of our data augmentation procedure:

ωi ∼


TN [ηi, 1, (0,∞)] , if Ỹi = 1

TN [ηi, 1, (−∞, 0)] , if Ỹi = 0,

where TN
[
µ, σ2, (a, b)

]
denotes a truncated normal distribution with mean µ and variance σ2, and

support over the interval (a, b). Then, we can treat ωi as a continuous outcome and recast our BART

model as

ωi = η(xi) + ϵi, (1)

where ϵ
iid∼ N(0, 1) because we’ve employed a probit link.

For notational convenience, let T−k be the set of all tree structures excluding Tk, and define

M−k in a similar manner, such that T−k is a set of K-1 tree structures and M−k are the associated

terminal node parameters. An iteration of the backfitting algorithm entails K successive draws of

(Tk,Mk) conditioning on (T−k,M−k):

(Tk,Mk) | T−k,M−k,ω, (2)

for k = 1, . . . ,K. To obtain a draw from (2), note that the conditional distribution of Tk,Mk |

T−k,M−k,ω depends on (T−k, M−k, ω) through the kth vector set of partial residuals Rk =
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(R1k, . . . , RNk)
′, where the ith element of Rk is given by

Rik = ωi −
K∑

u ̸=k

g(xi;Tu,Mu),

for i = 1, . . . , N . Since the MCMC update for (Tk,Mk) conditions on all other remaining trees and

associated terminal node parameters, the model can be temporarily reparameterized in terms of

these partial residuals. Under model (1),

Rik ∼ N (g(xi;Tk,Mk), 1) .

So, to update (Tk,Mk), we can adopt any of the single-tree MCMC updates, treating the partial

residuals as the data. Thus, (2) is equivalent to the posterior draw from a single regression tree

Rik = g(xi;Tk,Mk) + ϵi, or

(Tk,Mk) | Rk, (3)

for k = 1, . . . ,K. We can obtain a draw from (3) in two successive steps. Since a conjugate normal

prior on µgk was employed, for g = 1, . . . , bk, we can first integrate out Mk to obtain Tk | Rk. Then,

we can obtain a draw from Mk | Tk,Rk.

We draw Tk | Rk using the Metropolis-Hastings (MH) algorithm of Chipman et al. [1998]

where we first generate a candidate tree T ∗
k with probability distribution q(Tk, T

∗
k ) and then we

accept T ∗
k with probability

α(Tk, T
∗
k ) = min

{
1,
q(T ∗

k , Tk)

q(Tk, T ∗
k )

p(Rk | T ∗
k ,Mk)

p(Rk | Tk,Mk)

π(T ∗
k )

π(Tk)

}
, (4)

where
q(T∗

k ,Tk)
q(Tk,T∗

k ) is the transition ratio,
p(Rk|T∗

k ,Mk)
p(Rk|Tk,Mk)

is the likelihood ratio, and
π(T∗

k )
π(Tk)

is the tree

structure ratio. A new tree T ∗
k can be proposed given the current tree Tk using one of four moves:

growing a terminal node; pruning a pair of terminal nodes; swapping the splitting criteria of two

non-terminal nodes; and changing the splitting criteria of a non-terminal node. We derive equation

(4) for the grow, prune, and change steps in Section C.2. For further details, see Chipman et al.

[1998, 2010].

Once we have the draw of Tk | Rk, the draw of Mk | Tk,Rk is a set of independent draws of
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the terminal node parameters µgk from a normal distribution. Refer to Section C.3 for the complete

expression and its derivation.

C.2 Metropolis-Hastings acceptance probabilities

Here we present the explicit formula for each ratio in the acceptance probability (4) under the grow,

prune, and change proposal. This section is modified from Appendix A of Kapelner and Bleich [2013]

and Appendix C of Tan and Roy [2019]. The parameter we are sampling is the kth tree structure,

Tk, and the data is the residual responses (from the other K-1 trees) that remain unfitted, R−k.

For notational convenience, let T := Tk, M :=Mk, R := R−k, and µg := µgk.

C.2.1 Grow proposal

Transition ratio

q(T ∗, T ) is the probability of moving from T to T ∗; i.e., selecting a terminal node from T to split

into two new child nodes. Hence,

P (T ∗ | T ) =P (grow)P (selecting terminal node to grow from)×

P (selecting covariate to split from)×

P (selecting value to split on)

=P (grow)
1

b

1

p

1

η
,

where b is the number of available terminal nodes to split on in T , p is the number of variables left

available to split on, and η is the number of unique values left in the chosen variable after adjusting

for the parent nodes’ splits. The default value for the ‘grow’ proposal probability P (grow) is 0.25.

On the other hand, q(T, T ∗) involves the probability of selecting the correct internal node

to prune on such that T ∗ becomes T , which indicates a pruning move. This is given as

P (T | T ∗) = P (prune)P (selecting the correct internal node to prune)

= P (prune)
1

w∗
2

,

where w∗
2 denotes the number of internal nodes which only have two children terminal nodes. The

default value for the ‘prune’ proposal probability P (prune) is also 0.25.
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With this, the transition ratio is given as

q(T ∗, T )

q(T, T ∗)
=
P (T ∗ | T )
P (T | T ∗)

=
P (prune)

P (grow)

bpη

w∗
2

.

If there are no variables with two or more unique values, this transition ratio will be set equal to 0,

and the grow proposal will be automatically rejected.

Likelihood ratio

To calculate the likelihood, note that the tree structure, T , determines which responses, Ri, fall into

which of the b terminal nodes. Hence,

P (R | T,M) =
b∏

ℓ=1

P
(
Rℓ1 , . . . , Rℓnℓ

)
=

b∏
ℓ=1

P (Rℓ) ,

where Rℓ = (Rℓ1 , . . . , Rℓnℓ
)′ are the data in the ℓth terminal node, and nℓ denotes how many

observations are in the ℓth terminal node, such that N =
∑b

ℓ=1 nℓ.

Recall that Rℓj | µℓ
iid∼ N(µℓ, 1), for j = 1, . . . , nℓ, and a normal prior with mean zero is

specified for µℓ; i.e., µℓ
iid∼ N(0, σ2

µ). Thus, is can be shown [Kapelner and Bleich, 2013] that

P (Rℓ) =

∫
R
P (Rℓ | µℓ)P (µℓ)dµℓ

=
1

(2π)nℓ/2

√
1

1 + nℓσ2
µ

×

exp

{
−1

2

(
nℓ∑
j=1

(Rℓj −Rℓ)
2 − R

2

ℓn
2
ℓ

nℓ +
1
σ2
µ

+ nℓR
2

ℓ

)}
. (5)

Let ℓ be the terminal node of T selected to be grown by the proposal tree. Then, the

proposal tree structure T ∗ is the same as T except for the terminal node ℓ where two children are

grown, which we denote by ℓL and ℓR. Note that the likelihoods are determined by the terminal

nodes. Using equation (5), the likelihood ratio becomes

P (R | T ∗,M)

P (R | T,M)
=
P (RℓL)P (RℓR)

P (Rℓ)

=

√
(1 + nℓσ2

µ)

(1 + nℓLσ
2
µ)(1 + nℓRσ

2
µ)
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× exp

{
σ2
µ

2

[
(
∑nℓL

j=1RℓLj
)2

1 + nℓLσ
2
µ

+
(
∑nℓR

j=1 RℓRj
)2

1 + nℓRσ
2
µ

−
(
∑nℓ

j=1Rℓj )
2

1 + nℓσ2
µ

]}
,

where nℓL and nℓR denote the number of data points in the newly grown left and right child nodes,

respectively.

Tree structure ratio

Recall from Section 4.2.1 that the tree structure T is made up of the following aspects: its depth,

and its decision rules. Let PSPLIT (θ) denote the probability that a selected node θ will split, and

let PRULE(θ) denote the probability that a variable and and value is selected as the splitting rule.

Then, for the entire tree,

P (T ) =
∏

θ∈Hterminals

(1− PSPLIT (θ))
∏

θ∈Hinternals

PSPLIT (θ)
∏

θ∈Hinternals

PRULE(θ),

where Hterminals and Hinternals denote the sets of terminal and interior nodes, respectively.

Again, recall from Section 4.2.1 that PSPLIT (θ) = α/(1 + dθ)
β where dθ is the depth of

node θ, and α and β are the hyperparameters that control the probability. Using the notation from

the transition ratio under the grow proposal, PRULE(θ) = (1/p)× (1/η).

Let θ denote the node on the original tree that was selected to be grown. Then, the proposal

tree structure T ∗ only differs from the current tree T with two child nodes denoted by θL and θR.

With this, we can now form the tree structure ratio:

P (T ∗)

P (T )
=

∏
θ∈H∗

terminals
(1− PSPLIT (θ))

∏
θ∈H∗

internals
PSPLIT (θ)

∏
θ∈H∗

internals
PRULE(θ)∏

θ∈Hterminals
(1− PSPLIT (θ))

∏
θ∈Hinternals

PSPLIT (θ)
∏

θ∈Hinternals
PRULE(θ)

=
(1− α

(1+dθL
)β
)(1− α

(1+dθR
)β
) α
(1+dθ)β

1
p
1
η

α
(1+dθ)β

= α
(1− α

(2+dθ)β
)2

[(1 + dθ)β − α]pη
,

where the last line uses the fact that the depth of the two grown child nodes, dθL and dθR , are simply

the depth of the parent node, dθ, incremented by one (dθL = dθR = dθ + 1).
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C.2.2 Prune proposal

A prune proposal is the opposite of a grow proposal; it selects an internal node whose children are

both terminal and removes both of its children. Thus, ratios will be approximately the inverse of

the ratios found in Section C.2.1 for the grow proposal.

Transition ratio

P (T ∗ | T ) = P (prune)P (selecting the correct internal node to prune)

= P (prune)
1

w2
,

where w2 is the number of internal parent nodes with two terminal children. On the other hand,

P (T | T ∗) = P (grow)
1

(b− 1)

1

p∗
1

η∗
,

which is similar to P (T ∗ | T ) for the growth proposal in Section C.2.1 except for the fact that the

number of available terminal nodes to split on in T ∗ is one less than the original tree due to the

pruning. Here, p∗ is the number of variables left available to split on, and η∗ is the number of unique

values left in the chosen variable after adjusting for the parent nodes’ splits.

Thus, the transition ratio is:

q(T ∗, T )

q(T, T ∗)
=
P (T ∗ | T )
P (T | T ∗)

=
P (grow)

P (prune)

w2

(b− 1)p∗η∗
.

Likelihood ratio

The likelihood ratio is simply the inverse of the likelihood ratio for the grow proposal:

P (R | T ∗,M)

P (R | T,M)
=

√
(1 + nℓLσ

2
µ)(1 + nℓRσ

2
µ)

1 + nℓσ2
µ

× exp

{
σ2
µ

2

(
(
∑nℓ

j=1Rℓj )
2

1 + nℓσ2
µ

−
(
∑nℓL

j=1RℓLj
)2

1 + nℓLσ
2
µ

−
(
∑nℓR

j=1 RℓRj
)2

1 + nℓRσ
2
µ

)}
.
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Tree structure ratio

This is also the inverse of the tree structure ratio for the grow proposal:

P (T ∗)

P (T )
=

[(1 + dθ)
β − α]p∗η∗

α(1− α
(2+dθ)

)2
.

C.2.3 Change proposal

A change proposal involves selecting an internal node and changing its decision rule by selected

a new available variable to split on and a new valid splitting value among available values of the

selected variable. For simplicity, we will limit the implementation of the change proposal to an

internal node that was two terminal child nodes.

Transition ratio

The transition to a proposal tree, q(T ∗, T ) under a change proposal is given as

q(T ∗, T ) = P (T ∗ | T ) =P (change)P (selecting node to change)×

P (selecting new variable to split on)×

P (selecting new value to split on) .

When calculating the transition ratio, the first three terms are shared in both the numerator

and denominator. The last term will differ as different splitting variables have different numbers of

unique values available. Thus, the transition ratio is given as

q(T ∗, T )

q(T, T ∗)
=
P (T ∗ | T )
P (T | T ∗)

=
η∗

η
,

where η∗ and η are the number of splitting values available under the proposal tree’s and the original

tree’s splitting rules, respectively.

Likelihood ratio

The proposal tree structure T ∗ differs from the original tree structure T only in the two child nodes

of the selected change node. These two terminal nodes have the data apportioned differently. Define

R1 = (R1,1, . . . , R1,n1)
′ as the residual response data in the first child node in the original tree

92



and R2 = (R2,1, . . . , R2,n2)
′ as the residual response data in the second child node in the original

tree. Define R∗
1 = (R1∗,1, . . . , R1∗,n∗

1
)′ and R∗

2 = (R2∗,1, . . . , R2∗,n∗
2
)′ similarly for the proposal tree.

Thus,

P (R | T ∗,M)

P (R | T,M)
=
P (R∗

1)P (R
∗
2)

P (R1)P (R2)
.

Using equation (5), the following expression is obtained for the likelihood ratio:

P (R | T ∗,M)

P (R | T,M)
=

√√√√√
(

1
σ2
µ
+ n1

)(
1
σ2
µ
+ n2

)
(

1
σ2
µ
+ n∗1

)(
1
σ2
µ
+ n∗2

)
× exp

1

2

 (
∑n∗

1
j=1R1∗j

)2

n∗1 +
1
σ2
µ

+
(
∑n∗

2
j=1R2∗j

)2

n∗2 +
1
σ2
µ

−
(
∑n1

j=1R1j )
2

n1 +
1
σ2
µ

−
(
∑n2

j=1R2j )
2

n2 +
1
σ2
µ

 .

Tree structure ratio

The proposal tree has the same structure as the original tree. Thus, we only need to take into

account the changed node’s children:

P (T ∗)

P (T )
=

(1− PSPLIT (θ
∗
1))(1− PSPLIT (θ

∗
2))PSPLIT (θ

∗)PRULE(θ
∗)

(1− PSPLIT (θ1))(1− PSPLIT (θ2))PSPLIT (θ)PRULE(θ)
.

The probability of splitting remains the same because the child nodes are at the same depths. Thus,

we only need to consider the ratio of the probability of the rules. As previously stated, the probability

of selecting the new splitting value will differ as different splitting variables have different numbers

of unique values available. Hence, we are left with

P (T ∗)

P (T )
=

η

η∗
,

which is the inverse of the transition ratio. Therefore, for the change proposal, only the likelihood

ratio needs to be computed to determine the acceptance probability α(T, T ∗).
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C.3 Posterior distribution for µgk

Let Rgk = (Rgk1, . . . , Rgkng
)′ be a subset of R−k, where ng is the number of Rgkh’s allocated to the

terminal node with parameter µgk and h indexes the subjects allocated to the terminal node with

parameter µgk. Note that Rgkh | Tk,Mk ∼ N(µgk, 1) and µgk | Tk ∼ N(0, σ2
µ). Then, the posterior

distribution of µgk is given by

P (µgk | Tk,R−k ∝ P (Rgk | Tk, µgk)P (µgk | Tk)

∝ exp

{
−
∑

h(Rgkh − µgk)
2

2

}
exp

{
−
µ2
gk

2σ2
µ

}

∝ exp

{
−
(ngσ

2
µ + 1)µ2

gk − 2(σ2
µ

∑
hRgkh)µgk

2σ2
µ

}

∝ exp

−

(
µgk − σ2

µ

∑
h Rgkh

ngσ2
µ+1

)2
2

σ2
µ

ngσ2
µ+1

 .

C.4 Posterior sampling algorithm

1. Initialize (T
(0)
1 ,M

(0)
1 ), . . . , (T

(0)
K ,M

(0)
K ) and Ỹ

(0)
i for i = 1, . . . , N . If estimating assay accuracy

probabilities, then also initialize S
(0)
e and S

(0)
p . Set s = 1.

If not estimating assay accuracy probabilities, set S
(s)
e = Se and S

(s)
p = Sp for all s.

2. For i = 1, . . . , N , sample

ω
(s)
i ∼


TN [ηi, 1, (0,∞)] , if Ỹ

(s−1)
i = 1

TN [ηi, 1, (−∞, 0)] , if Ỹ
(s−1)
i = 0,

where ηi = η(xi) =
∑K

k=1 g(xi;T
(s−1)
k ,M

(s−1)
k ). Aggregate ω(s) = (ω

(s)
1 , . . . , ω

(s)
N )′.

3. For k = 1, . . . ,K, sample (T
(s)
k ,M

(s)
k ) from π

(
(Tk,Mk) | (T (s)

−k,M
(s)
−k),ω

(s)
)
, where

(T
(s)
−k,M

(s)
−k) =

(
(T

(s)
1 ,M

(s)
1 ), . . . , (T

(s)
k−1,M

(s)
k−1), (T

(s−1)
k+1 ,M

(s−1)
k+1 ), . . . , (T

(s−1)
K ,M

(s−1)
K )

)′
,

to obtain ηi =
∑K

k=1 g(xi;T
(s)
k ,M

(s)
k ) for i = 1, . . . , N .

4. If estimating assay accuracy probabilities, then for l = 1, . . . , L, sample S
(s)
e(l) ∼ Beta(a∗e(l), b

∗
e(l))
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and S
(s)
p(l) ∼ Beta(a∗p(l), b

∗
p(l)), where a

∗
e(l), b

∗
e(l), a

∗
p(l), and b

∗
p(l) are evaluated at Ỹ (s−1). Aggre-

gate S
(s)
e =

(
S
(s)
e(1), . . . , S

(s)
e(L)

)′
and S

(s)
p =

(
S
(s)
p(1), . . . , S

(s)
p(L)

)′
.

5. For i = 1, . . . , N , sample

Ỹ
(s)
i ∼ Bernoulli

(
p∗i1

p∗i0 + p∗i1

)
,

where p∗i0 and p∗i1 are evaluated at Ỹ
(s)
−i =

(
Ỹ

(s)
1 , . . . , Ỹ

(s)
i−1, Ỹ

(s−1)
i+1 , . . . , Ỹ

(s−1)
N

)′
, S

(s)
e , S

(s)
p ,

and ηi =
∑K

k=1 g(xi;T
(s)
k ,M

(s)
k ).

6. Increment s = s+ 1 and return to Step 2.

C.5 Additional simulation results

Here is an outline of the material in this section of the appendix:

Page 96: Table 16. Simulation results for DT for models M1 and M2 when assay accuracy proba-

bilities are unknown.

Page 96: Table 16. Estimation results for unknown assay accuracy probabilities under DT for

models M1 and M2 when assay accuracy probabilities are unknown.

Page 96: Table 17. ROC analysis results for models M1 and M2 under DT when assay accu-

racy probabilities are unknown.

Page 97: Figure 2. Estimation results for unknown function f(·) for models M1 and M2 un-

der DT when assay accuracy probabilities are unknown.

Page 97: Figure 3. Estimation results for average variable use per splitting rule for models M1 and

M2 under DT when assay accuracy probabilities are unknown.
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Table 16: Simulation results for DT for models M1 and M2 when assay accuracy probabilities are unknown.
Average bias of 500 posterior mean estimates (Bias), sample standard deviation of 500 posterior mean
estimates (SSD), average of 500 estimated of the posterior standard deviation (ESE), and empirical coverage
probability (CP95) of nominal 95% equal-tail credible intervals are reported. Note that close agreement
between SSD and ESE is preferred.

Model Se(1) = 0.95 Sp(1) = 0.98 Se(2) = 0.98 Sp(2) = 0.99

M1/BART(K=20)
Bias (CP95) -0.021 (0.956) -0.000 (0.992) -0.005 (0.988) -0.002 (0.976)
SSD (ESE) 0.031 (0.037) 0.008 (0.010) 0.009 (0.013) 0.005 (0.006)

M1/BART(K=200)
Bias (CP95) -0.017 (0.970) -0.000 (0.996) -0.004 (0.992) 0.001 (1.000)
SSD (ESE) 0.028 (0.036) 0.007 (0.010) 0.009 (0.013) 0.004 (0.006)

M1/GLM
Bias (CP95) -0.026 (0.996) 0.000 (1.000) -0.007 (1.000) -0.003 (1.000)
SSD (ESE) 0.025 (0.047) 0.004 (0.012) 0.006 (0.016) 0.004 (0.008)

M2/BART(K=20)
Bias (CP95) -0.005 (0.928) -0.001 (0.946) -0.002 (0.928) -0.001 (0.948)
SSD (ESE) 0.014 (0.014) 0.006 (0.006) 0.007 (0.007) 0.003 (0.003)

M2/BART(K=200)
Bias (CP95) -0.011 (0.864) -0.001 (0.964) -0.005 (0.916) -0.001 (0.942)
SSD (ESE) 0.015 (0.014) 0.006 (0.006) 0.007 (0.008) 0.003 (0.003)

M2/GLM
Bias (CP95) -0.003 (0.950) -0.002 (0.968) -0.002 (0.954) -0.001 (0.952)
SSD (ESE) 0.013 (0.013) 0.006 (0.006) 0.007 (0.007) 0.003 (0.003)

Table 17: Average estimated AUC (and sample standard deviation in parentheses) for the three
model fits (BART with K=20 trees, BART with K=200 trees, and GLM) when the assay accuracy
probabilities are unknown.

Model BART(K=20) BART(K=200) GLM

M1
In-Sample 0.800 (0.008) 0.818 (0.007) 0.544 (0.010)

Out-of-Sample 0.773 (0.017) 0.779 (0.018) 0.527 (0.023)

M2
In-Sample 0.986 (0.001) 0.988 (0.001) 0.985 (0.001)

Out-of-Sample 0.977 (0.003) 0.977 (0.003) 0.979 (0.003)
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Figure 2: In-sample estimation results for DT when assay accuracy probabilities are unknown for
the three model fits BART K=20 (left), BART K=200 (middle), and GLM (right). The black solid
curve in each subfigure is the true function f(·) in model M1. In each subfigure the following are
displayed as red curves: the average of 500 posterior mean estimates (solid curves) and the .025 &
.975 posterior mean quantiles (dashed curves).
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Figure 3: Simulation results for DT for model M1 (left) and model M2 (right) when assay accuracy prob-
abilities are unknown. For each covariate, the average use proportion (averaged over the 500 simulations)
is plotted for the two BART fits with K=20 trees (red) and K=200 trees (blue).
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C.6 Aptima Combo 2 Assay (AC2A) accuracy

Here we summarize the AC2A accuracy based on data from a pilot study and describe how to

incorporate this information into our model used for the data application in Section 4.5, when

assay accuracy is unknown and to be estimated. This section is modified from Web Appendix D of

McMahan et al. [2017].

Table 18: AC2A pilot data.

Stratum TP FN TN FP Sensitivity Specificity
Female/Swab 195 12 1154 28 Se(1) = 0.942 Sp(1) = 0.976
Female/Urine 197 11 1170 13 Se(2) = 0.947 Sp(2) = 0.989
Male/Swab 260 11 774 20 Se(3) = 0.959 Sp(3) = 0.975
Male/Urine 276 6 801 12 Se(4) = 0.979 Sp(4) = 0.985

The notation used in Table 18 is defined below.

TP = number of true positive individual test results

FN = number of false negative individual test results

TN = number of true negative individual test results

FP = number of false positive individual test results

Recall from Section 4.2.1 that we place independent Beta priors on the assay accuracies,

chosen for computational convenience. We create informative priors by choosing Beta prior hyper-

parameter values that incorporate our prior belief about the assay sensitivity and specificity based

on the pilot data:

Se ∼ Beta(TP + 1,FN + 1)

Sp ∼ Beta(TN + 1,FP + 1).

With this, the prior distributions for Se and Sp are concentrated around TP/(TP + FN) and

TN/(TN + FP), respectively. In particular, for swab specimen we specify Se ∼ Beta(196, 123) and

Sp ∼ Beta(1156, 29); for urine specimen, we specify Se ∼ Beta(198, 12) and Sp ∼ Beta(1171, 13).
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