
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

12-2022

On Variants of Sliding and Frank-Wolfe Type Methods and Their On Variants of Sliding and Frank-Wolfe Type Methods and Their

Applications in Video Co-localization Applications in Video Co-localization

Seyed Hamid Nazari
Clemson University

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Operational Research Commons, and the Other Applied Mathematics Commons

Recommended Citation Recommended Citation
Nazari, Seyed Hamid, "On Variants of Sliding and Frank-Wolfe Type Methods and Their Applications in
Video Co-localization" (2022). All Dissertations. 3192.
https://tigerprints.clemson.edu/all_dissertations/3192

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/122?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3192?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3192&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

On Variants of Sliding and Frank-Wolfe Type Methods
and Their Applications in Video Co-localization

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mathematics

by

Hamid Nazari

December 2022

Accepted by:

Dr. Yuyuan Ouyang, Committee Chair

Dr. William Bridges Jr.

Dr. Kai Liu

Dr. Boshi Yang

Abstract

In this dissertation, our main focus is to design and analyze first-order methods for com-

puting approximate solutions to convex smooth optimization problems over certain feasible sets.

Specifically, our goal in this dissertation is to explore some variants of sliding and Frank-Wolfe

(FW) type algorithms, analyze their convergence complexity, and examine their performance in

numerical experiments.

We achieve three accomplishments in our research results throughout this dissertation. First,

we incorporate a linesearch technique to a well-known projection-free sliding algorithm, namely the

conditional gradient sliding (CGS) method. Our proposed algorithm, called the conditional gradient

sliding with linesearch (CGSls), does not require the knowledge of Lipschitz constant of the gradient

of objective function, which is critical in the numerical implementation of the CGS method. Second,

we explore the possibility of designing a bundle level type version of the CGS method, which to the

best of our knowledge has not yet appeared in the literature. Our proposed sliding APL (SAPL)

method achieves the same complexity to the CGS method. Third, we study numerical algorithms

for solving the image co-localization problem. For this problem, we propose new variants of the

Frank-Wolfe (FW) method and compare their empirical performance with other existing methods.

The dissertation is organized as follows. In the first chapter, we review some projection-based

and projection-free algorithms, their variants, and their respective advantages and disadvantages.

Several useful definitions, theorems, and lemmas are also introduced in this chapter that will be

utilized throughout the dissertation. For completeness, we prove most of the known results listed

in this chapter (proof deferred to the appendix). In the second chapter, we incorporate a linesearch

technique to the well-known CGS method and propose the CGSls method. We show that the

proposed CGSls method converges with similar complexity to the CGS method. We also examine the

performance of the proposed algorithm by comparing it to the CGS method and other projection-free

ii

algorithms. In the third chapter, we explore the possibility of designing a bundle level type variant

of the CGS method. The proposed SAPL method is inspired by previous literature on bundle level

type method. Such bundle level type method has not yet appeared in any literature on sliding

algorithms. We show that the proposed SAPL method converge with the same order of complexity

as the CGS and CGSls methods. In the fourth chapter, we apply the algorithms studied in previous

chapters to the well-known video co-localization problem. We also propose new variants of the FW

method and compare their empirical performance with other numerical methods.

iii

Acknowledgments

I would like to close this chapter of my academic life by expressing my profound appreciation

to the people I owe this happy ending, those who have made this journey and its book possible.

I want to give my warmest thanks to my adviser Dr. Yuyun ”Lance” Ouyang, who was not

only my supervisor but also my leader and my close friend. His dominance and the vast range of

knowledge in various areas provided the best possible guidance in my Ph.D. career. I want to thank

him for all his superior and kind support. I will never forget the favors he did for me, which were

beyond his responsibilities.

I also want to thank the support, help, and guidance of my committee members Dr. Billy

Bridges, Dr. Kai Liu, and especially Dr. Boshi Yang, for his availability and generosity in sharing

his knowledge. Dr. Yang is truly an asset to the school of math. Many thanks to the School of

Mathematical and Statistical Sciences for providing such high-quality faculty and staff group. To

Dr. Akshay Gupte, who taught me my first-ever optimization course and supported me as a research

adviser for more than two years. I also took advantage of outstanding professors in our department

Dr. Margaret Wiecek, Dr. Mathew Saltzman, Dr. Fei Xue, Dr. Brian Fralix, Dr. Leo Rebholz, Dr.

Shitao Liu, Dr. Kevin James, Dr. Keri Sather Wagstaff, Dr. Chriss McMahan, Dr. Brook Russel,

and other professors in school of math.

I have been pleased to have friends and colleagues in graduate school with whom I spent

most of my time on campus. Special thanks to my best friends, Amy Burton Gore, for all homework

problem-solving we did together and, more importantly, for inviting me to her wedding, Brandon

Lumsden and Yuan Yang, for the exceptional and memorable times I spent beside them. Many

thanks to Trevor Squires (for all his help in research), Pitter Westerban (for his loud laughter), Luke

Duncan (for being a very kind friend, and also for his Keurig coffee maker), James Gossel (for all

the hiking he managed), Cameron Arnold (for his intelligence and our problem-solving), Alan Hahn

iv

(for being the nicest guy in our department), and Andrew Panagia (for being the smartest person

I’ve ever met), and tens of other indelible friends.

Finally, I thank my family for their extraordinary support. To my brother Hadi Nazari

who is, in fact, the main reason I started graduate school. To my mother, who taught me to be

strong, patient, and to love. To my wife, Nafis Ebrahimi, for all her support and understanding

when undertaking my research. Without her, this could not start and end.

v

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Projection-Based Algorithms . 3
1.2 Projection-Free Algorithms . 6
1.3 Bundle-Level methods . 19

2 Conditional Gradient Sliding with Linesearch . 25
2.1 Introduction . 25
2.2 Algorithm . 26
2.3 Theoretical Analysis . 29
2.4 Numerical Results . 36

3 Sliding Accelerated Bundle-Level Method . 40
3.1 Proposed Algorithm . 41
3.2 Theoretical Analysis . 43

4 CGS Variants for Video Co-Localization Problem 51
4.1 Model Setup for Images . 52
4.2 Model Setup for Videos . 57
4.3 Optimization . 61
4.4 Proposed Algorithms . 62
4.5 Experimental Results . 67

Appendices . 73

A Supplementary Material . 74
A.1 Projected Gradient Descent Method . 75
A.2 Nesterov’s Accelerated Gradient Descent Method . 77
A.3 Frank-Wolfe Method . 80
A.4 Conditional Gradient Sliding Method . 85
A.5 Accelerated Bundle-Level method . 93
A.6 Accelerated Prox-Level Method . 94

vi

List of Tables

1.1 Comparing the complexity of algorithms PAGD, FW and CGS 18

2.1 Comparison of FW, CGS and CGS-ls on the first numerical experiment (minimization
over standard spectrahedron). 37

2.2 Comparison of FW, CGS and CGS-ls on the second numerical experiment (minimiza-
tion over the convex hull of Hamiltonian cycles). 38

2.3 Indices and their corresponding size of instances in Tables 2.1 and 2.2 38

vii

List of Figures

1.1 PGD algorithm project back the point from the gradient step onto the feasible region
X . 5

1.2 A typical iteration of PGD (on the left) and a NAGD iterate (on the right). Image is
from [47]. 6

1.3 A geometrical interpretation of FW [21]. Here D is the feasible region and the red
hyperplane is the tangent space of f at point x. The solution to the subproblem of
FW at current iteration is shown by s. 8

1.4 Left: Project gradient method iterations. Blue arrows describe update of approximate
solutions, red solid arrows describe gradient descent moves, and red dashed arrows
describe projections onto X . Right: Frank-Wolfe method iterations. Blue arrows
describe update of approximate solutions, red solid arrows describe the updates xk

(always extreme points), and red dashed arrows describe the convex combination
weighting process. 9

1.5 zig-zagging trajectory of FW towards the optimal solution. Here FW alternatively
iterates toward the vertices v1 and v2 where the optimal solution is located on the
face generated by these vertices. 11

1.6 Left: the classical FW zig-zagging trajectory. Middle: the AFW trajectory. Right:
the PFW trajectory. Image is from [24]. 14

4.1 Localizing the common objects of the same class simultaneously in a set of images or
videos using co-localization techniques (image from [23]). 51

4.2 The objectness measure should score the blue windows, partially covering the objects,
lower than the ground truth windows in green, and score even lower the red windows
containing only the background. Image is from [1]. 53

4.3 An example of saliency mappings for images from left to right. Image is from [41]. . 54
4.4 Nodes (blue circles) represent candidate boxes in each frame, and the directed edges

between nodes are weighted by a temporal similarity metric (e.g. 4.8) that measures
the similarity in size and position of boxes. To reduce the dimension of the graph,
edges with low similarity are removed to limit the number of possible paths through
the graph from the first to the last frame. The magneta edges represent the optimal
path in this example. Image is from [23]. 59

4.5 ”Ours” in the legend of these plots refers to the Algorithm 14. Note that for ϵ = 1e−3
Algorithm 14 performs 100 times faster than standard solvers for more than 20 videos.
Plots are from [23]. 69

4.6 Example co-localization results on PASCAL07. From left to right, every two images
belong to the same classes. Image is from [23]. 70

4.7 Example co-localization results on YouTube-Objects for the video model 4.12 with
optimal green boxes and the image model 4.7 with optimal red boxes. Each column
corresponds to a different class, and consists of frame samples from a single video.
Image is from [23]. 70

viii

4.8 On the left we observe the difference in gap reduction and on the right the objective
value improvement, both with iteration increments. Here ϵ = 1e−5 and max number
of iteration is 2000. 71

4.9 The difference in CPU time of the algorithms versus the iteration increments with
ϵ = 1e− 5 and max number of iteration is 2000. 72

ix

Chapter 1

Introduction

With the significant increase in the application of data science in real-world problems,

optimization, as one of the critical components of machine learning techniques, becomes increasingly

important. Mathematical modeling of any research problem, choosing the proper method to solve

the mathematical model, and comparing different models and their convergence plays an essential

role in optimization. Although various problems would have different objectives and constraints,

understanding the performance of possible methods to solve problems with specific objectives and

constraints and improving them in their convergence rate and ion practice is as vital as designing

new algorithms.

Among all of the existing methods to solve optimization problems, first-order methods,

because of their particular characteristics, have been of interest to many researchers. Generally,

first-order methods require relatively small amount of information to converge and have cheap it-

eration costs. Although higher-order methods, such as Newton’s method, converge in less number

of iterations to the optimal solution or an approximately optimal solution, the cost per iteration of

such algorithms could increase drastically as the dimension of the problem increases.

In this dissertation, our focus will be on some of the most well-known first-order methods to

find an approximate solution for special kinds of constraint optimization problems. More precisely,

our ultimate goal in this document is to find a solution x∗ for the convex optimization problem

1

f∗ := min
x∈X

f(x). (1.1)

Accepting that we may only numerically compute approximately optimal solutions, with accuracy

threshold ϵ we would like to compute an ϵ-approximate solution x̂ such that f(x̂)− f∗ ≤ ϵ. In this

setting the feasible region X ⊆ Rn is a convex compact set and f : Rn → R is a smooth convex

function. We assume that the gradient function ∇f(·) is Lipschitz continuous (with respect to the

norm ∥·∥) with Lipschitz constant L > 0, namely

∥∇f(x)−∇f(y)∥∗ ≤ L ∥x− y∥ , ∀x, y ∈ Rn, (1.2)

where ∥·∥ is any norm and ∥·∥∗ is its dual norm, defined by

∥y∥∗ := sup
∥x∥≤1

⟨x, y⟩

for y ∈ Rn. Also, we define the diameter of the set X as

DX ≡ DX ,∥·∥ := max
x,y∈X

∥x− y∥ . (1.3)

In this chapter, as an introduction, we will introduce and review some of the most well-

known methods to solve problem (1.1). These methods are the foundation of future chapters, and

reading through the algorithms and their properties would help grasping the ideas of the proposed

methods. This chapter consists of three major sections. In Section 1.1, we will briefly discuss

projection-based methods and their pros and cons to solve problem (1.1). In Section 1.2, we will

introduce and discuss some of the most famous projection-free methods and their properties that are

the basis of our proposed methods appearing later in Chapters 2 and 4. Finally, in Section 1.3, we

will introduce bundle-level type methods that are foundations for our proposed method appearing

later in Chapter 3. Note that the details about the convergence analysis of the algorithms discussed

in this chapter are provided in the Appendix A.

The rest of this dissertation is organized as follows. In chapter 2 of this dissertation, inspired

by a sliding type method introduced in [30], we will propose an algorithm that addresses an issue

2

with the existing method. We will also discuss in detail the convergence analysis of our proposed

algorithm. Moroever, we will run numerical experiments to compare the performance of the proposed

algorithm to some similar algorithms.

In Chapter 3, inspired by a bundle-level type method in [26], we will propose a bundle-

level variant of our proposed algorithm in Chapter 2. We will also provide detailed proof of the

convergence of our proposed algorithm. We will show that the convergence rate is maintained and

is the same as that of Chapter 2.

Finally, we will dedicate chapter 4 to a practical problem. In this chapter, we will introduce

the mathematical programming model of the problem and will discuss how the methods we have

learned in the first three chapters apply to this model. We will also propose two new algorithms

to solve this model inspired by the method we proposed in chapter 2. We will show in numerical

results the emperical advantage of the two proposed algorithms.

1.1 Projection-Based Algorithms

Suppose that we are trying to find an approximate solution for an instance of the problem

(1.1) using the gradient descent method. Recall that in each iteration of the gradient method the

current point moves toward the negative gradient with some step size. There will not be any issue

in the case where the feasible region X is Rn, i.e., when our problem is unconstrained. However,

if X is a subset of Rn but not equal to it, there is no guarantee that in each iteration the gradient

descent method maintains feasibility. To resolve this issue the natural concept is to apply a pro-

jection to X after each iteration to maintain feasibility and then continue with the new projected

point. Projection-based algorithms are of the type that need to solve a projection problem as their

subproblems. The projections that appear in these algorithms might be different depending on the

problem structure. Of most well-known projection based algorithms are projected gradient descent

(PGD) and Nesterov’s accelerated gradient descent (NAGD) [35] methods. Here we describe these

algorithms and their convergence complexity.

1.1.1 Projected Gradient Descent Method

Projected gradient descent (PGD) is one of the most straight forward projection-based

algorithms that follows exactly the above mentioned natural concept: In each of its iteration from

3

the current point, it moves toward the negative gradient direction of function f , and then projected

back to X to maintain feasibility. A graphical representation of this algorithm is given in Figure

1.1. The general scheme of the PGD method is described in Algorithm 1.

Algorithm 1 Projected gradient descent (PGD)

Choose x0 ∈ X .
for k = 1, . . . , N do

xk = ProjX (xk−1 − ηk∇f(xk−1)) (1.4)

end for

Output xN .

Here in Algorithm 1, the projection function might be defined in different ways. A common

definition of such projection is

xk = argmin
x∈X

⟨∇f(xk−1), x⟩+
1

2ηk
∥x− xk−1∥2 . (1.5)

To see that the above is equivalent to (1.4), note that it can be written as

xk = argmin
x∈X

⟨∇f(xk−1), x⟩+
1

2ηk
∥x− xk−1∥22

= argmin
x∈X

1

2ηk
∥x− (xk−1 − ηk∇f(xk−1))∥2

= ProjX (xk−1 − ηk∇f(xk−1)) .

There is a very interesting and subtle idea behind the definition (1.5). First-order or linear

approximation at the iterate in a typical iteration is the most straightforward approximation that we

might have for the objective function f . Although minimizing f might be complicated, minimizing

its linear approximation is a much simpler task. However, since minimizing the linear approximation

over X may be unbounded (e.g., when X = Rn), we add an additional term that prevent us from

moving too far away. This additional term is the quadratic term in (1.5) that penalizes new point

being too far away from current point. We may observe that when the step-size ηk is very small,

the multiplier of the quadratic term becomes very large.

We have the following convergence result concerning Algorithm 1: the average of iterates

x̄N := 1
N

∑N
k=1 xk is an approximate solution. In order to guarantee that f(x̄N)− f∗ ≤ ε, the total

4

Figure 1.1: PGD algorithm project back the point from the gradient step onto the feasible region
X .

number of required iterations is bounded by O
(
L∥x0−x∗∥2

/ϵ
)
. A detailed proof of the convergence

results of PGD method is provided in the Appendix A.1.

1.1.2 Nesterov’s accelerated gradient descent method

As described above, the PGD requires at most O (1/ϵ) number of iterations to compute

an approximate solution of problem (1.1). Is it possible to improve this upper bound with some

modification in Algorithm 1? Nesterov introduced such a modification in [37] (see also [35]) and

proposed an algorithm that we now call the Nesterov’s accelerated gradient descent (NAGD) method.

The general scheme of the PAGD algorithm is presented in Algorithm 2.

Algorithm 2 Nesterov’s Accelerated Gradient Descent (NAGD)

Choose x0 ∈ X and set y0 = x0.
for k = 1, · · · , N do

zk = (1− γk)yk−1 + γkxk−1

xk = argmin
x∈X

⟨∇f(zk), x⟩+
1

2βk
∥x− xk−1∥2

yk = (1− γk)yk−1 + γkxk

end for
Output yN .

The idea behind the NAGD method is that in each iteration, unlike PGD, instead of moving

directly toward the negative gradient of f at the current point, the algorithm includes a multiple

5

of the difference between the current point and the point from previous iteration, and then moves

toward the negative gradient and updates the point. See Figure 1.2 for a geometrical interpretation.

This idea of adding multiple values is sometimes called the momentum idea.

Figure 1.2: A typical iteration of PGD (on the left) and a NAGD iterate (on the right). Image is
from [47].

Similar to PGD, NAGD is a projection-based algorithm due to the projection subproblem

in (1.7). Note that if γk ≡ 1 then xk updates as an step in PGD. In other words, with γk ≡ 1,

NAGD is equivalent to PGD with step size 1
βk

.

Note that the iteration complexity upper bound for the NAGD is O(
√

1/ε), which is optimal

for solving smooth convex optimization with Lipschitz constant L [35]. Details on the analysis of

the convergence of Algorithm 2 is deferred to Appendix A.2.

1.2 Projection-Free Algorithms

While NAGD method has optimal complexity bound O(
√

1/ϵ), the projection subproblems

of such a projection-based algorithm might be problematic in many cases since they are not always

efficiently computable. For example, if X is a general polyhedron (i.e. polyhedron Ax ≤ b for

general matrix A and vector b), then the projection on to the polyhedron might have expensive

computational costs. A different class of algorithms, called projection-free algorithms, are useful in

such expensive cases.

1.2.1 Frank-Wolfe Algorithm

The Frank-Wolfe (FW) algorithm [15], also known as the conditional gradient method (due

to [31]), is one of the earliest projection-free first-order algorithms for solving convex programming

problems. It was initially developed by Frank and Wolfe in 1956 and is an alternative to PGD/NAGD

method.

Different from PGD and NAGD, the FW method does not require the projection as a

6

subproblem, but performs updates in each iteration in a way that they are always feasible. More

precisely, in each iteration, instead of solving the projection subproblem, FW solves a linear min-

imization subprolem over the feasible region X . The objective of such subproblem is the linear

approximation of function f at the point obtained in previous iteration. Recall from Section 1.1.1

that we might be concerned on the boundedness of minimizing linear approximation over X (e.g.,

when X = Rn). Therefore, to maintain the boundness of linear minimization subproblems, X is

required to be a convex and compact set in (1.1). The FW method is described in Algorithm 3.

Algorithm 3 Frank-Wolfe (FW)

Choose z0 ∈ X and set x0 = z0.
for k = 1, · · · , N do

zk = (1− γk)yk−1 + γkxk−1 (1.9)

xk ∈ Argmin
x∈X

⟨∇f(zk), x⟩ (1.10)

yk = yk−1 + γk(xk − yk−1) (1.11)

end for
Output xN .

A few remarks can be made regarding FW. First, (1.10) in Algorithm 3 is equivalent to

minimizing the linear approximation of function f at point zk, i.e.

xk ∈ Argmin
x∈X

f(zk) + ⟨∇f(zk), x− zk⟩

= Argmin
x∈X

⟨∇f(zk), x− zk⟩ (1.12)

= Argmin
x∈X

⟨∇f(zk), x⟩ .

Note that the solution to these subproblems is not necessarily unique. Second, the FW algorithm

has a nice feature that distinguishes it from PGD and NAGD: in each iteration FW admits a vary

natural duality gap from optimizing the linear approximation over the constraint set. More precisely,

the quantity ⟨∇f(zk), x− zk⟩ that appears in (1.12) and is computed in the k-th iteration k of FW

provides an upper bound on f(zk) − f∗. The reason is that, by the definition of the convexity of

function f , for all x ∈ X we have

f(x) ≥ f(zk) + ⟨∇f(zk), x− zk⟩ . (1.13)

7

Now if we minimize both sides of (1.13) over all x ∈ X we get

f∗ ≥ f(zk) + min
x∈X
⟨∇f(zk), x− zk⟩

= f(zk) + ⟨∇f(zk), xk − zk⟩ ,

which implies that

⟨∇f(zk), zk − xk⟩ ≥ f(zk)− f∗.

This gap is called the Wolfe-gap or the duality gap between the current iterate and the optimal

solution. In practice, Wolfe gap can be used as a stopping criterion of the FW for a desired pre-

defined accuracy threshold of ϵ; we conclude that zk is an ϵ-approximate solution whenever

f(zk)− f∗ ≤ ⟨∇f(zk), zk − xk⟩ ≤ ϵ.

Finally, a graphical description of the behavior of an iteration of FW algorithm is given in Figure

1.3. This image appeared in Jaggi’s publication [21] on FW methods.

Figure 1.3: A geometrical interpretation of FW [21]. Here D is the feasible region and the red
hyperplane is the tangent space of f at point x. The solution to the subproblem of FW at current
iteration is shown by s.

When designing numerical methods that uses first-order information, the structures of

the objective function and the compact feasible set X have significant impact on the theoretical

convergence theory and practical computing performance. As an example, consider the perfor-

8

mance of two classical iterative numerical methods on a simple instance of problem (2.1) in which

X := {(x(1), x(2)) ∈ R2|x(1) + x(2) = 1, x(1), x(2) ≥ 0} is a line segment in R2 and f(x) = ∥x∥2/2.

The first numerical method is the projected gradient method with iterates

xk = yk−1 − (1/βk)∇f(yk−1), yk = ProjX (xk).

In each iteration, the projected gradient method moves along the negative gradient direction with

a pre-specified stepsize (1/βk) to obtain an updated iterate xk. Such update xk may fall outside of

the feasible region, so we maintain feasibility by projecting xk onto the feasible set to obtain a new

approximate solution yk. The second numerical method is the Frank-Wolfe method [15]

xk = min
x∈X
⟨∇f(xk−1), x⟩, yk =

k∑
i=1

λi
kxi. (1.14)

Here we compute an update xk from a linear optimization over the line segment X . Note that xk will

always be selected from the two extreme points (1, 0)⊤ and (0, 1)⊤. To avoid oscillating between the

extreme points, we select the new approximate solution yk to a convex combination of all previous

updates xi’s. Both the aforementioned methods have been extensively studied in the literature. See,

e.g., the monograph [9] or the book [28] for the survey of both methods.

0.5 1

0.5

1

x(1)

x(2)

0.5 1

0.5

1

x(1)

x(2)

Figure 1.4: Left: Project gradient method iterations. Blue arrows describe update of approximate
solutions, red solid arrows describe gradient descent moves, and red dashed arrows describe projec-
tions onto X . Right: Frank-Wolfe method iterations. Blue arrows describe update of approximate
solutions, red solid arrows describe the updates xk (always extreme points), and red dashed arrows
describe the convex combination weighting process.

The performance of the projected gradient and Frank-Wolfe type methods are illustrated

in Figure 1.4. Both methods start at point (0, 1)⊤. In the projected gradient method we select the

9

constant stepsize 1/βk ≡ 0.5 and in the Frank-Wolfe method we select the weights λi = 2i/(k(k +

1)). From Figure 1.4 we can observe that approximate solutions of both methods are gradually

approaching the optimal solution. The ones produced by the projected gradient method converge

faster comparing to the “back and forth” behavior (see the blue arrows in the right plot) from the

Frank-Wolfe method; this is because the projected gradient method benefits from the structure of

the objective function (i.e., smoothness and strong convexity). However, in the Frank-Wolfe method

iterations we only need to solve a linear program, while the projected gradient method needs to

compute projections onto X . If we extend the aforementioned simple example to the general case in

where X is a high dimensional general convex polytope, then solving linear programs would likely

be more preferable than solving projections onto general convex polytopes.

The FW method computes an ϵ-solution to the problem (1.1) in at most O(1/ϵ) iterations.

These methods are still preferred in many practices due to its advantage of not requiring the projec-

tion computation, even though its requirement of O(L/ε) gradient computations is not as good as

the theoretical limit O(
√

L/ε). For problems with sophisticated feasible set X , the possibly expen-

sive computational time of projection operator can significantly outweigh the theoretical advantage

of the smaller O(
√
L/ε) gradient evaluation of any projection-based methods. Also, we will discuss

later in Section 1.2.4 how this drawback of FW is resolved by the conditional gradient sliding method

proposed in [30].

The convergence analysis of the FW algorithm is well studied in [10, 13, 18, 21]. For com-

pleteness, we provide the proof of the convergence of FW in detail in Appendix A.3. Note that,

under extra conditions, FW would converge faster than the sub-linear convergence rates mentioned

above. In the following section we will discuss a plausible explanation of the sublinear convergence

rate of FW and two variants that converge faster under stronger conditions.

1.2.2 The Zig-Zagging Phenomenon of the Frank-Wolfe Method

As we discussed in the previous section, when f in (1.1) is smooth and X is a convex compact

set, FW converges at a sub-linear rate of O(1/ϵ). However, under more assumptions, possibly more

than strongly convexity of f , FW can converge at faster rates. These assumptions rely on the

geometry of the feasible region X and the position of the optimal solution x∗. For example, authors

in [16] showed that when X is a polytope and none of the constraints are active at the solution x∗

to the (1.1) (i.e., x∗ is in the relative interior of X), the FW algorithm converges at a faster rate.

10

However, these conditions are very strong and not quite interesting in practice. In fact, it possible

that the sublinear convergence rate of the FW is due to the fact the x∗ is located on the boundary of

X . In such cases, the iterates of the FW algorithm start to zig-zag between the vertices defining the

face containing the x∗. The reason for this is that the current iterate of a typical iteration of FW

moves only towards vertices obtained by the linear minimzation subproblems. Figure 1.5 illustrates

this phenomenon.

Figure 1.5: zig-zagging trajectory of FW towards the optimal solution. Here FW alternatively
iterates toward the vertices v1 and v2 where the optimal solution is located on the face generated
by these vertices.

1.2.3 Variants of Frank-Wolfe

As discussed before, under stronger conditions on f and the geometry of X , there are

variants of FW that converge faster than than the classical FW Algorithm 3. More precisely, these

variants are guaranteed to converge linearly when in (1.1) the objective f is strongly convex and X

is the polytope obtained from the convex hull of a vertex set X (i.e., X is a finite set of vectors and

X = conv(X)).

11

1.2.3.1 Away-Steps Frank-Wolfe

The zig-zagging issue in FW was first studied by Wolfe [48]. In 1970 he proposed a variant

of FW which is recently called away-steps FW (AFW). The idea behind the AFW is that in each

iteration it either moves towards a vertex or moves away from a vertex depending on how the duality

gap changes. Note that the modification designed by Wolfe in [48] was not convergent. Guélet and

Marcotte in [16] corrected that version and proposed the modified Frank-Wolfe (MFW) in the case

when X can be represented by linear inequalities. Here we introduce the general scheme of the AFW

algorithm, as proposed in [24], in Algorithm 4.

Algorithm 4 Away-steps Frank-Wolfe (AFW)

Let x(0) ∈ X and S(0) := {x(0)}
for k = 1, · · · , N do

sk = argmin
s∈X

⟨∇f(xk), s⟩ (1.15)

dFW
k := sk − xk (1.16)

vk = argmax
v∈S

⟨∇f(xk), v⟩ (1.17)

dAk := xk − vk (1.18)

if
〈
−∇f(xk), d

FW
k

〉
≤ ϵ then return xk (1.19)

if
〈
−∇f(xk), d

FW
k

〉
≥
〈
−∇f(xk), d

A
k

〉
then (1.20)

dk := dFW
k

γmax := 1 (1.21)

else

dk := dAk

γmax := αvk/(1− αvk) (1.22)

end if

γk ∈ argmin
γ∈[0,γmax]

f(xk + γdk) (1.23)

xk+1 := xk + γkdk (1.24)

Sk+1 := {v ∈ X : αk+1
v > 0}

end for
Output xN .

A few remarks can be made regarding Algorithm 4. First, due to the origin of the modifica-

tion of FW, at each iteration, AFW requires two calls for the linear optimization oracle. In fact, at

step (1.15) of Algorithm 4, a linear minimization oracle returns a FW vertex, and at its step (1.17),

a linear maximization oracle returns an away vertex. Note that the maximization is over the set of

candidate vertices and so it is fundamentally easier than the linear optimization oracle in (1.15).

12

Second, steps (1.16) and (1.18) correspond to a potential FW or away direction. A FW

direction is the one taken in an iteration of classic FW, and an away direction is the one taken in

which AFW moves away from a vertex that and makes the best progress.

Third, step (1.20) checks on the Wolfe gaps corresponding to the calculated FW and away

directions. Among the two directions, we pick the direction that yields the higher gap value. Note

that the AFW algorithm incorporates the set S(k) that is called active set, where k corresponds to

the k-th iteration of the algorithm. This set stores the vertices that the algorithm has visited until

the current iteration and (if required) also the vertices that potentially will be used for the away

direction.

Fourth, the step-size γk in the k-iteration k at step (1.23) is achieved using a line-search

method. Also, the maximum step-size γmax computed at steps (1.21) and (1.22) ensures that the

new iterate update at (1.24) is feasible and stays in X = conv(X). In fact, the γmax given in (1.22)

guarantees that the convex representation remains feasible. For a general polytope X , it is not

possible to to compute the maximum feasible step-size, as it requires the ability to know when we

cross the boundary of X along a specific line. Hence, the maximum step-size given in (1.22) is a

conservative representation which ensures that we do not need this more powerful oracle. In fact,

this is the reason that Algorithm 4 requires to keep record of the set S(t). From memory usage point

of view, this is a drawback of the AFW algorithm as it requires to store their convex combinations

onto the vertices of X which can become very expensive in memory usage.

Fifth, the Wolfe gap
〈
−∇f(xk), d

FW
k

〉
in (1.19) is used as a stopping criterion of the algo-

rithm 4 and is an upper bound on the unknown suboptimality. This is since

f(xk)− f(x∗) ≤ ⟨−∇f(xk), x
∗ − xk⟩ ≤

〈
−∇f(xk), d

FW
k

〉
≤ ϵ.

Here we use the convexity of f , and ϵ is the threshold for the stopping criterion. Note that when

the optimal step-size at iteration t in (1.23) equals γmax, then vt is removed from the current active

set of vertices. Such an step is called a drop step.

Finally, the weights αk+1
v and the set S(k+1) are updated in the following form: If a FW

step is taken, then

S(k+1) =

 {xk} if γk = 1

S(k) ∪ {sk} otherwise.

13

Also, we have

α(k+1)
sk

:= (1− γk)α
(k)
sk

+ γk

α(k+1)
v := (1− γk)α

(k)
v for v ∈ S(k) \ {sk}

On the other hand, if an away step is taken, then we have

S(k+1) =

 S
(k) \ {vk} if γk = γmax (a drop step)

S(k) otherwise.

In such case, we have

α(k+1)
vt := (1 + γk)α

(k)
vt
− γk

α(k+1)
v := (1 + γk)α

(k)
v for v ∈ S(k) \ {vk}

1.2.3.2 Pairwise Frank-Wolfe

Another variant of the FW algorithm that we introduce here is studied by Lacoste and Jaggi

in [24]. As the authors mention in their paper, this method is inspired by an algorithm called MDM

algorithm that is studied by Mitchell et al. [33]. MDM algorithm was originally invented for the

polytope distance problem. The idea of the new variant of FW, that is called pairwise Frank-Wolfe

(PFW), is to only move weight mass between two vertices in each step. A graphical representation

to compare the behavior of the variants of FW is shown in Figure 1.6. The algorithm of PFW that

is described in Algorithm 5 is very similar to the previously introduced Algorithm 4 of AFW. The

geometric interpretations of FW, AFW, and PFW are illustrated in Figure 1.6 (figure is from [24]).

Figure 1.6: Left: the classical FW zig-zagging trajectory. Middle: the AFW trajectory. Right: the
PFW trajectory. Image is from [24].

14

Algorithm 5 Pairwise Frank-Wolfe (PFW)

In Algorithm 4, replace the descriptions of dk and γmax in step (1.20) to the following: dk =
dPFW
k := sk − vk and γmax := αvt .

Note that in the k-th iteration of the PFW method, the weights are moved from the away

vertex vk to the FW vertex sk, and all other α weights are kept unchanged. The weights are defined

as

α(k+1)
vk

= α(k)
vk
− γ and α(k+1)

sk
= α(k)

sk
+ γ,

for some γ ≤ γmax := α
(k)
vk .

Lacoste and Jaggi in [24] proved for the first time that the variants of FW converge with

linear rate when X is the convex hull of a finite set of vectors X, and f is strongly convex with

Lipschitz continuous gradient over X . For a detailed analysis of the convergence of the AFW and

PFW along with two more variants, namely, the fully-corrective FW and Wolfe’s minimum norm

point algorithm, see [24].

1.2.4 Conditional Gradient Sliding Algorithm

In Section 1.1.2, we discussed the NAGD method achieves the optimal complexity bound

O(
√
1/ϵ) for solving convex optimization problem (1.1). As mentioned, the drawback of this method

is that it requires to solve a projection subproblem in each iteration. In certain cases, solving this

subprolem could be as difficult as the orginal problem itself. In contrast, FW and its variants

are projection-free methods that require calling linear optimization (LO) oracles in their iterations.

However, as previously mentioned, they gradient evaluation complexity bound may not be as good

as that of NAGD.

The goal of the conditional gradient sliding (CGS) [30] method is to present a new LO based

convex programming method which can skip the computation for the gradient of f from time to time

when performing linear optimization over the feasible region X . The basic scheme of this method is

obtained by applying the FW method to approximately solve the projection subproblems existing

in the PAGD iterations. By properly specifying the accuracy for solving these subproblems, it can

be shown that the resulting CGS method can achieve the optimal bounds on the number of calls to

the first-order and linear optimization oracles for solving problem (1.1). The development of CGS

15

method, in spirit, is similar to the gradient sliding algorithm developed by Lan in [27] for solving a

class of composite optimization problems. However, the gradient sliding algorithm in [27] requires

us to perform projection over the feasible set X and targets to solve convex programming problems

with a general nonsmooth term in objective function. The CGS method is formally described in

Algorithm 6.

Algorithm 6 Conditional gradient sliding (CGS)

Initial point x0 ∈ X and iteration limit N .
Let βk ∈ Rn

++, γk ∈ [0, 1], and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.
for k = 1, . . . , N do

zk = (1− γk)yk−1 − γkxk−1 (1.25)

xk = FW(f ′(zk), xk−1, βk, ηk), (1.26)

yk = (1− γk)yk−1 + γkxk (1.27)

end for
procedure u+ = FW(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let vt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
⟨g + β(ut − u), ut − x⟩ (1.28)

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− αt)ut + αtvt, with

αt = min

{
1,
⟨β(u− ut)− g, vt − ut⟩

β ∥vt − ut∥2

}

5. Set t← t+ 1 and go to step 2.

end procedure

Recall that we defined the projection subproblem in the NAGD method as the minimization

of the following function:

ϕk(x) := ⟨∇f(zk), x⟩+
βk

2
∥x− xk−1∥2 . (1.29)

over the convex and compact set X . The CGS algorithm solves the minimization of the above

function, a projection subproblem, using the FW method. In fact, CGS applies the FW to (1.29)

but until the ηk accuracy threshold is achieved. This happens through the FW procedure at step

(1.26) in Algorithm 6. Note that within this application, a call of a LO oracle in FW method is

16

given by

Argmin
x∈X

⟨∇ϕk(x), x⟩ .

Using the above oracle and also the benefit of the Wolfe gap that can be obtained in each iteration

of FW (as fully discussed in Section 1.2.1), the FW procedure continues until the gap shrinks upto

a threshold. More precisely, xk in (1.26) is an approximate solution to the projection subproblem

minx∈Xϕk(x) in the FW procedure until the Wolfe gap V (·) in step 2

max
x∈X
⟨∇ϕk(xk), xk − x⟩ = max

x∈X
⟨∇f(zk) + βk(xk − xk−1), xk − x⟩

is smaller that ηk for some ηk ≥ 0. It should also be pointed out that the step-size in the FW

procedure at step 4 is in fact the closed form of a line-search calculation given by

argmin
α∈[0,1]

ϕ(ut + α(vt − ut)).

In Appendix A.4 we will discuss a detailed analysis of the convergence of CGS. We will show

that CGS method requires at most O (1/
√
ϵ) gradient evaluation and O (1/ϵ) LO oracle calls. We

will also discuss the appropriate settings for {γk}, {βk} and {ηk} that conclude such convergence

results.

As an special case of CGS, if we limit the number of inner iterations to one iteration in the

FW procedure of CGS we get Algorithm 7 below. Note that (1.31) in Algorithm 7 is equivalent to

xk ∈ Argmin
x∈X

⟨∇f(zk), x⟩ (1.30)

and (1.30) is exactly the subprobem of FW algorithm. Therefore, limiting the number of inner

iterations of CGS to one iteration leads to the FW algorithm.

At this step we are ready to summarize and compare the convergence result and also require-

ments of NAGD, FW and CGS. In order to compute an ϵ-solution NAGD requires O(
√
L(DX)2/ϵ)

gradient evaluations where L and DX are the true values of Lipschitz constant and the diameter of

X , respectively. This number of evaluations is significantly smaller than the O(LD2
X /ϵ) evaluations

of FW. However, NAGD requires the solution to the projection subproblem in each iteration of

17

Algorithm 7 The Conditional Gradient Sliding Algorithm with One Inner Iteration

Initial point x0 ∈ X and iteration limit N .
Let βk ∈ Rn

++, γk ∈ [0, 1], and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.
for k = 1, . . . , N do

zk = (1− γk)yk−1 − γkxk−1

xk ∈ Argmax
x∈X

⟨∇f(zk), xk−1 − x⟩, (1.31)

yk = (1− γk)yk−1 + γkxk

end for
Output yN .

its algorithm which is not always efficiently solvable. This can be a drawback for NAGD method.

CGS, on the other hand, resolves the requirement of projection calculation in NAGD and also the

complexity of total number of gradient evaluations in FW. This observation is summarized in Table

1.1. Note that ProjX (·) in Table 1.1 is the projection function where (1.7) and (1.4) the subproblem

of NAGD and GD, respectively, are examples of this function.

NAGD FW CGS
Subproblem ProjX (·) minx∈X ⟨·, x⟩ minx∈X ⟨·, x⟩

Number of subproblem computations
√
LD2

X /ε L(DX)2/ε L(DX)2/ε

Number of gradient evaluations
√

LD2
X /ε L(D∗

X)2/ε
√
L(DX)2/ε

Table 1.1: Comparing the complexity of algorithms PAGD, FW and CGS

However, CGS still requires L(DX)2/ε number of solutions to linear optimization problem

that cannot be improved according to [25, 36]. Another drawback of CGS is its requirement to the

parameter L. This drawback is resolved in a CGS with line search (CGS-ls) method that we will

propose it in next chapter.

In the original CGS method in [30], the knowledge of the Lipschitz constant L and the

number of gradient evaluations N are required for implementation1. Such requirements lead to two

disadvantages in practice. First, in order to make sure that a constant L satisfies the Lipschitz

condition (1.2), we will need to choose a constant L that satisfies the Lipschitz condition (1.2) for all

pairs x and y in X . Computing such L can be difficult; the computed L can also be too conservative

1Some parameter settings of the CGS method does not require N ; see, e.g., Corollary 2.3 in [30]. However, since
no termination criterion is proposed in [30], to terminate we still need to specify the total number of iterations N . It
should be noted that we can use some termination criterion for the CGS method, e.g., the Wolfe gap, which we will
use for CGS in the numerical experiments of this chapter; however, the theoretical convergence property in terms of
the number of iterations needed to achieve small Wolfe gap is different from the properties of the CGS method, and
may deteriorate its practical performance significantly.

18

and lead to worse practical performance. Second, in order to compute an ε-approximate solution, we

need to either tune the number of gradient evaluations N in practice or follow its theoretical property

and specify a possibly conservative N = O(L/
√
ε). While the CGS method reaches the theoretical

performance limits, such disadvantages may deteriorate its practical performance significantly.

1.3 Bundle-Level methods

In this section we will discuss some variants of the bundle-level (BL) type methods. Although

these methods belong to the category of the projection-based methods, we describe their variants

specifically in this section as they will be our inspiration for the algorithm we proposed in chapter

3.

We start this discussion with a short review on BL method. Consider the convex program-

ming

f∗ := min
x∈X

f(x) (1.32)

where X is a convex compact set and f : X → R is a closed convex function and satisfies

f(y)− f(x)− ⟨f ′(x), y − x⟩ ≤ M

1 + ν
∥y − x∥1+ν

, ∀x, y ∈ X, (1.33)

for some M > 0, ν ∈ [0, 1] and f ′ ∈ ∂f(x). This class of problems cover nonsmooth (ν = 0), smooth

(ν = 1), and weakly smooth (ν ∈ (0, 1)) CP problems. However, our focus in our proposed algorithm

is on the class of functions smooth f where ν = 1 in (1.33). In that case, we will use the notation

L instead of M as the Lipschitz constant of ∇f . Also, let

h(z, x) := f(z) + ⟨f ′(z), x− z⟩ , (1.34)

then at iteration k of BL method, for the given sequence of points x1, · · · , xk ∈ X, the algorithm

updates the new point xk+1 as

xk+1 ∈ Argmin
x∈X

mk(x) := max{h(xi, x) : 1 ≤ i ≤ k}. (1.35)

19

Indeed, the updated point in each iteration of BL is the minimizer of lower envelopes of f ,

that is the maximum of linear approximations of function f at previous bundle of points from the

first iteration.

While BL methods is slow in convergence both theoretically and practically, modifications

have been proposed to improve the algorithm. For example, Lemaréchal et al. introduced a prox-

term into the objective function of (1.35) and relaxed the linear approximations mk(x) into the

constraints by incorporating level sets. More specifically, the general scheme if of this modified BL

method is

a) Update f̄k to be the best objective value found so far and compute a lower bound on f∗ by

fk = minx∈X mk(x);

b) Set lk = λf̄k + (1− λ)fk for some λ ∈ (0, 1);

c) Set xk+1 = argminx∈X

{
∥x− xk∥2 : mk(x) ≤ lk

}
.

Note that in each iteration of the this modified BL method the feasible set of the subproblem

shrinks to the level set bounded by lk. This algorithm for a general nonsmooth convex function can

find an ϵ-solution in at most

O
(
C(λ)

M2D2
X

ϵ2

)

iterations, where C(λ) is a constant depending on λ and DX is the diameter of the set X.

1.3.1 Accelerated bundle-level algorithm

Inspired by Nesterov’s accelerated gradient descent method, G. Lan proposed a new bundle

level type method, called accelerated bundle-level (ABL) method. In this procedure, instead of using

a single sequence {xk}, three sequences {xℓ
k}, {xk} and {xu

k} are being used to update the linear

approximations mk(x) in each iteration. Also, iterations of ABL are grouped into phases and it

continues phases until a specific termination criterion holds. In each phase, the algorithm of ABL

goes through a procedure called gap reduction. Gap reduction procedure continues until the gap

between the lower nad upper bound of f∗ is reduced by a certain constant factor. The general

scheme of this method is presented in Algorithm 8.

20

Algorithm 8 Accelerate bundle-level algorithm (ABL)

Choose initial point p0 ∈ X, tolerance ϵ > 0 and parameters λ ∈ (0, 1)

0. Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1), ub1 = f(p1) and s = 1.

1. If ubs − lbs ≤ ϵ terminate the algorithm with output ps.

2. Set (ps+1, lbs+1) = GABL(ps, lbs, λ) and ubs+1 = f(ps+1).

3. s← s+ 1 and go to 1.

gap reduction procedure (p+, lb+) = GABL(p, lb, λ)

0. Set xu
0 = p, f̄0 = f(xu

0), f0 = lb, x0 = xu
0 , m0(x) = h(x0, x), k = 1

1. lower bound update:

xℓ
k = (1− αk)x

u
k−1 + αkxk−1,

mk(x) = max{mk−1(x), h(x
ℓ
k, x)} (1.36)

h∗
k := min

x∈X
mk(x), fk := max{fk−1, h

∗
k} (1.37)

2. prox-center update: Set ℓk = λfk + (1− λ)f̄k−1 and

xk = argmin{∥x− xk−1∥2 : mk(x) ≤ ℓk, x ∈ X} (1.38)

3. upper bound update:

f̄k = min{f̄k−1, f(αkxk + (1− αk)x
u
k−1)} (1.39)

choose xu
k ∈ X so that f(xu

k) = f̄k

4. If f̄k − fk ≤ λ(f̄0 − f0) terminate the procedure with p+ = xu
k , lb+ = fk

5. Set k ← k + 1 and go to step 1.

end procedure

A few remarks are in place for the ABL algorithm. First, the initial phase of the algorithm

uses an initial arbitrary point from the feasible set X and using the linear approximation of function

f at this point, defines initial lower and upper bounds for f∗ and also the initial gap between these

two bounds. Then through the gap reduction procedure in afterwards phases, the algorithm reduces

this gap until the threshold ϵ is satisfied. Second, at each iteration of the gap reduction procedure

for a value of αk, that is the major difference of ABL method from other bundle level type methods

when αk ̸= 1, the algorithm has three separate updates; lower and upper bounds, and prox-center

updates. More specifically, in its lower bound update steps 1 and for k ≥ 1, the GABL procedure

finds fk ≤ f∗ by solving a subproblem in (1.37) corresponding to the updated value of xℓ
k and the

updated set of linear constraints mk(x). The update of prox-center in step 2 of GABL procedure also

requires solving the subproblem (1.38) that is the same as the update in prox-center in iterations

21

of previously mentioned BL type method and the bound for the level set is updated in the same

manner. Also, note that when αk = 1 for k ≥ 1, the iterations of GABL will be exactly the same as

of BL method. Third, the GABL procedure ends when the gap between upper bound f̄k and lower

bound fk of f∗ is less than the gap from initial step 0 of this procedure with a fixed and prespecified

multiple λ ∈ (0, 1). Forth, from the definition of mk(x) in 1.35 and the convexity of f , it is easy to

check the for any x ∈ X the sequences {mk(x)}k≥1 and {fk}k≥1 are decreasing and {f̄k}k≥1 is an

increasing sequence. Also, for any k ≥ 1 we have fk ≤ f∗ ≤ f̄k that is an straight forward result

from (1.37) and (1.39). Therefore, if we denote

∆k := f̄k − fk, k ≥ 0,

then {∆k}k≥0 is a decreasing sequence of non-negative values.

1.3.2 Accelerate prox-level method

Despite the fact that ABL method performs better than other BL type algorithm, it still

has draw backs. With a deeper look at the ABL algorithm and specially in (1.36), it can be noted

that in each iteration of GABL a linear constraint is being added to the mk(x). This accumulation

of linear constraints makes the subproblems (1.37) and (1.38) more difficult after some iterations of

GABL. Motivated from this issue, the accelerated prox-level (APL) method incorporates a relaxation

with level sets in updates of lower bounds in ABL. Note that APL method is originally designed

regardless of the smoothness of objective function f in (1.32) and for any ν ∈ [0, 1]. However, we

concentrate only on the analysis and calculations for the specific case where f is smooth or ν = 1.

In this case we denote the parameter M in (1.33) by L, that is the Lipschitz constant of the ∇f .

Lemma 5 shows the computation of the lower bound on f∗ in APL method. In fact, this

method solves the issue by incorporating a convex compact set, namely X ′ as the localizer of Xℓ, to

compute a lower bound on f∗ where Xℓ := {x ∈ X : f(x) ≤ ℓ} and

Xℓ ⊆ X ′ ⊆ X. (1.40)

A few remarks are in place for the APL method. Clearly the main difference of APL method

from ABL is in its gap reduction procedure. First, unlike the ABL that updates the bound for level

22

Algorithm 9 Accelerate prox-level algorithm (APL)

Choose initial point p0 ∈ X, tolerance ϵ > 0 and parameters β, θ ∈ (0, 1)

0. Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1), ub1 = f(p1) and s = 1.

1. If ubs − lbs ≤ ϵ terminate the algorithm.

2. Set (ps+1, lbs+1) = GAPL(ps, lbs, β, θ) and ubs+1 = f(ps+1).

3. s← s+ 1 and go to 1.

gap reduction procedure (p+, lb+) = GAPL(p, lb, β, θ)

0. Set

xu
0 = p, f̄0 = f(xu

0), f0 = lb, ℓ = βf0 + (1− β)f̄0 (1.41)

x0 = p, X ′
0 = X, dω(x) =

1

2
∥x− x0∥22 , k = 1

1. lower bound update:

xℓ
k = (1− αk)x

u
k−1 + αkxk−1, (1.42)

hk := min
x∈X′

k−1

h(xℓ
k, x) (1.43)

fk := max{fk−1,min{ℓ, hk}}

If fk ≥ (1− θ)ℓ+ θf0 terminate the procedure with p+ = xu
k−1, lb+ = fk.

2. prox-center update: Set

xk = argmin
x∈X′

k−1

{
dω(x) : h(xℓ

k, x) ≤ ℓ
}

(1.44)

3. upper bound update:

f̄k = min{f̄k−1, f(αkxk + (1− αk)x
u
k−1)}

choose xu
k so that f(xu

k) = f̄k

If f̄k ≤ (1− θ)ℓ+ θf̄0 terminate the procedure with p+ = xu
k , lb+ = fk

4. localizer update: Choose X ′
k so that Xk ⊆ X ′

k ⊆ X̄k where

Xk := {x ∈ X ′
k−1 : h(xℓ

k, x) ≤ ℓ}, X̄k := {x ∈ X : ⟨∇dω(xk), x− xk⟩ ≥ 0}

end procedure

sets in prox-center update of each iteration of GABL, APL uses a universal bound for all iteration of

GAPL in (1.41) for each phase. This bound ℓ is updated at initial step 1.41 of the GAPL and by the

fixed and prespecified convex combination parameter β. Second, in updates of localizer in step 4 of

GAPL, X
′
k can be any set between the sets Xk and X̄k. Note that a linear constraint is still being

added to the Xk per each increase in k and so APL has the accumulation of the linear constraints

23

for this set, while X̄k is the set X with only one extra linear constraint for any k. Indeed, one

can control the number of linear constraint in localizer X ′ by choosing the appropriate set between

Xk and X ′
k where the simplest way to choose such localizer is to set X ′

k = Xk or X ′
k = X̄k. This

flexibility makes the subproblems (1.43) and (1.44) easier to solve in practice. Finally, the GAPL

procedure has two separate stopping criterion. One at its lower bound update step 1 and the other

at its upper bound update step 3.

In chapter three, we propose a modification of APL method for solving (1.1) with assump-

tions stated afterward. Although APL method does not require the input of any problem parameters

and still achieves the best possible iteration complexity bounds, but it requires projection as a sub-

problem in each iteration. Projection problems similar the ones appear in Projected Accelerated

Gradient Descent (PAGD) like algorithms are not always efficiently solvable and in many cases are

costly and expensive and sometimes as difficult as the problem itself. Our proposed method, Sliding

Accelerated Prox Level (SAPL) addresses this issue by applying Conditional Gradient (CG) method

(aka. Frank-Wolfe method) in each iteration to solve the projection subproblem approximately with

some threshold. Besides, SAPL is theoretically as efficient as APL. I am working on some numerical

experiments to show the efficiency of the SAPL in practice.

24

Chapter 2

Conditional Gradient Sliding with

Linesearch

2.1 Introduction

Recall that our problem of interest is the convex optimization problem

f∗ := min
x∈X

f(x) (2.1)

where X ∈ Rn is a convex compact set and f : Rn → R is a convex differentiable function such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ X . (2.2)

Here ∥ · ∥ is the Euclidean norm. Our goal is to compute an ε-approximate solution y such that

f(y)− f∗ ≤ ε using first-order information, namely, the function and gradient values f and ∇f .

In this chapter, we propose a modification of the CGS method that allows for its practical

implementation. Our proposed method, called the CGS with linesearch (CGS-ls), performs a back-

tracking linesearch strategy to gradually increase the initial guess of Lipschitz constant L0 to values

that satisfy the convergence condition. The initial guess L0 does not need to satisfy the Lipschitz

condition (2.2) and can be significantly smaller than the actual Lipschitz constant. We also maintains

the estimate of a lower bound of f∗ that certificates the achievement of an ε-approximate solution.

25

Consequently, our propose method does not require the knowledge of either L and N and is able to

stop before the theoretical O(
√

L/ε) bound of required gradient evaluations or the O(L/ε) bound

of linear objective optimization subproblems. It should be noted that our theoretical analysis of the

backtracking linesearch is non-trivial. In order to improve the practical implementation, add proper

termination criterion, and maintain the same theoretical convergence properties as the CGS method,

we need to modify some theoretical analysis in the original CGS results in [30]. We demonstrate

through numerical experiments the advantages of our proposed CGS-ls method in implementation.

2.2 Algorithm

In this section, we describe our proposed conditional gradient sliding method with linesearch

(CGS-ls) in Algorithm 10.

A few remarks are in place for the proposed CGS-ls algorithm. First, the CndG procedure is

exactly the same as the one described in the CGS method in [30]. Noting the termination criterion of

the CndG procedure, we can observe that the update xk computed by the CndG procedure satisfies

⟨∇f(zk) + βk(xk − xk−1), xk − x⟩ ≤ ηk, ∀x ∈ X , (2.11)

where ηk is an accuracy parameter and the βk is a stepsize parameter whose values will be described

in the sequel. Note that when the accuracy ηk ≡ 0 (this is only the ideal case; in practice the CndG

procedure will never terminate when ηk is set to 0), then xk is the exact optimal solution to the

problem

min
x∈X
⟨∇f(zk), x⟩+

βk

2
∥x− xk−1∥2. (2.12)

In such case, the iterates (2.6), (2.7), and (2.8) becomes the iterates for the accelerated gradient

method (see, e.g., [38]). Consequently, CGS-ls reduces to the accelerated gradient method with

backtracking linesearch.

Second, when Lk ≡ L where L satisfies condition (2.2), then CGS-ls reduces to a version

of CGS method in [30] with Γk = Lγ3
k. The concept behind the CGS method is to use a version

of conditional gradient method to solve the possibly sophisticated projection subproblem described

in (2.12). The theoretical performance limit is achieved through proper choice of the accuracy

26

Algorithm 10 A conditional gradient sliding algorithm with backtracking linesearch (CGS-ls)

Choose initial point y0 ∈ X and initial guess of Lipschitz constant L0 > 0. Set x0 = y0. Define
function ξ0(x) ≡ 0.
for k = 1, 2, . . . , N do

Find the smallest integer j ≥ 0 such that the estimated local Lipschitz constant Lk = Lk−1 ·2j
satisfies

f(yk) ≤f(zk) + ⟨∇f(zk), yk − zk⟩+
Lk

2
∥yk − zk∥2 +

ε

2
γk, where (2.3)

γk =

{
1 if k = 1
Positive solution to Lkγ

3
k = Γk−1(1− γk) if k ≥ 2

(2.4)

Γk =Lkγ
3
k (2.5)

zk =(1− γk)yk−1 + γkxk−1 (2.6)

xk =CndG(∇f(zk), xk−1, βk, ηk) (2.7)

yk =(1− γk)yk−1 + γkxk (2.8)

Terminate the loop if

f(yk)−min
x∈X

ξk(x) ≤ ε where function ξk(·) is defined by

ξk(x) := (1− γk)ξk−1(x) + γk(f(zk) + ⟨∇f(zk), x− zk⟩). (2.9)

end for
Output approximate solution yk at the termination of the above for-loop.

procedure u+ = CndG(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let vt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
⟨g + β(ut − u), ut − x⟩ (2.10)

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− αt)ut + αtvt where αt = min {1, ⟨β(u− ut)− g, vt − ut⟩} /(β ∥vt − ut∥2)
5. Set t← t+ 1 and go to step 2.

end procedure

parameter ηk. Note that the convergence analysis of the choice of Γk and γk in our proposed CGS-ls

method is not discussed in [30]. In the sequel, we will show that the choice Γk = Lkγ
3
k with a

backtracking strategy for Lk yields our desired convergence result.

Third, the termination criterion (2.9) of the CGS-ls method is based on the linear lower

bound function ξk(x). In the sequel, we will prove that ξk(x) ≤ f(x) for all x ∈ X . Consequently,

27

whenever the termination criterion is satisfied, we have

f(yk)− f∗ = f(yk)− f(x∗) ≤ f(yk)− ξk(x
∗) ≤ f(yk)−min

x∈X
ξk(x) ≤ ε (2.13)

where x∗ is an optimal solution to problem (2.1). The above relation certificates that yk is an

approximate solution to problem (2.1). Such certification strategy for approximate solutions is pre-

viously discussed in [34] for convex optimization problems and implemented in accelerated gradient

methods (see, e.g., [39]). In the sequel, we will prove that the termination criterion is satisfied with

at most O(
√
L/ε) gradient evaluations. One alternative termination criterion is the Wolfe gap

max
x∈X
⟨∇f(yk), yk − x⟩ ≤ ε

which is widely employed in the literature of conditional gradient methods. When the Wolfe gap

termination criterion is satisfied, we also have f(yk)− f∗ ≤ ε due to the convexity of f :

f(yk)− f∗ = f(yk)− f(x∗) ≤ −⟨∇f(yk), x∗ − yk⟩ ≤ max
x∈X
⟨∇f(yk), yk − x⟩ ≤ ε. (2.14)

However, one can only show that the termination criterion through Wolfe gap is satisfied with

significantly worse number O(L/ε) of gradient evaluations (see, e.g., [21]).

Fourth, it is necessary to point out the backtracking strategy we implement in the proposed

CGS-ls method. During implementation, we compute the estimated Lk in the following way: we

start with Lk = Lk−1 and compute γk, Γk, zk, xk, and yk in (2.4), (2.5), (2.6), (2.7), and (2.8).

After the computation, we verify whether condition (2.3) is satisfied. If not, we will multiply Lk by 2

and backtrack all the values again. Such backtracking procedure stops when the Lipschitz condition

(2.3) is satisfied. It should be noted that we can derive from the convexity of f and the Lipschitz

condition (2.2) that

f(y) ≤ f(z) + ⟨∇f(z), y − z⟩+ L

2
∥y − z∥2, ∀y, z ∈ X .

Therefore, if L0 ≥ Lmin, where Lmin is the smallest Lipschitz constant that satisfies the Lipschitz

condition (2.2), then we have Lk ≡ L0 ≥ Lmin, and CGS-ls reduces to CGS with Lipschitz constant

L0 and parameter Γk = L0γ
3
k. If L0 < Lmin, it is straightforward to observe that the number of

28

backtracking required throughout the entire iterates of the CGS-ls method is ⌈log(2Lmin/L0)⌉. This

is because that whenever Lk ≥ 2Lmin, then the condition (2.3) is always satisfied. Summarizing the

above description of Lk’s and accounting for both the cases L0 ≥ Lmin and L0 < Lmin, we have the

following relation:

L0 ≤ L1 ≤ · · · ≤ Lk ≤ max{2Lmin, L0}. (2.15)

Finally, in order to compute γk when k ≥ 2 it suffices to solve the positive root to a cubic

polynomial equation Lkγ
3
k = Γk−1(1− γk). It is easy to verify that

γk =
3

√
Γk−1

2Lk
+

Γk−1

Lk

√
1

4
+

Γk−1

27Lk
+

3

√
Γk−1

2Lk
− Γk−1

Lk

√
1

4
+

Γk−1

27Lk
∈ (0, 1), ∀k ≥ 2. (2.16)

is the unique positive real root we are looking for through the cubic formula. Here, to prove that

γk ∈ (0, 1) for all k ≥ 2, note that when Γk−1/Lk ∈ (0, 1), from the above cubic formula description

of γk we have γk > 0. Also, applying Γk−1/Lk ∈ (0, 1) to the relation Lkγ
3
k = Γk−1(1 − γk)

we have 1 − γk > γ3
k > 0. Therefore Γk−1/Lk ∈ (0, 1) leads to γk ∈ (0, 1). Moreover, noting

from the description of Lk in Algorithm 10 we have Lk ≥ Lk−1, hence γk ∈ (0, 1) implies that

Γk/Lk+1 ∈ (0, 1). Therefore, applying induction we can prove that γk ∈ (0, 1) for all k ≥ 2. Also,

note that γ1 = 1 in (2.4). Consequently, yk in (2.8) is the convex combination of yk−1 and xk; noting

that xk ∈ X and that y0 = x0 ∈ X we can have that the approximation solution yk ∈ X .

2.3 Theoretical Analysis

In this section we perform the convergence analysis of the proposed CGS-ls algorithm in

Algorithm 10. We begin with two technical results that will be used in the analysis.

Lemma 1. Suppose that {λi}i≥1 and {ai}i≥0 are two sequences of nonnegative real numbers, in

which the sequence {λi}i≥1 is non-decreasing. For any fixed k, we have

k∑
i=1

λi(ai−1 − ai) ≤ λk max
0≤t≤k

at.

29

Proof. Since λi ≥ λi−1 ≥ 0 for all i = 2, 3, . . ., we have immediately that

k∑
i=1

λi(ai−1 − ai) = λ1a0 +

k∑
i=2

(λi − λi−1)ai−1 − λkak

≤ λ1 max
0≤t≤k

at +

k∑
i=2

(λi − λi−1) max
0≤t≤k

at

= λk max
0≤t≤k

at.

Lemma 2. In Algorithm 10, suppose that γ1 = 1, γk ∈ (0, 1), k = 2, 3, . . ., and the value of Γk

satisfies

Γk :=

 1, k = 1,

Γk−1(1− γk), k ≥ 2.
(2.17)

If the sequence {δk}k≥1 satisfies

δk ≤ (1− γk)δk−1 +Bk, k = 1, 2, . . . , (2.18)

then for any k ≥ 1 we have

δk ≤ Γk

k∑
i=1

Bi

Γi
.

In particular, the above inequality becomes equality when the relations in (2.18) are all equality

relations.

Proof. The result follows from dividing both sides of (2.18) by Γk and then summing up the resulting

inequalities or equalities.

A few remarks are in place regarding the above lemma. First, by the descriptions of γk and

Γk in Algorithm 10, the condition (2.17) is clearly satisfied. Second, applying the above lemma with

30

δk ≡ 1 and Bk = γk we have the following equality:

Γk

k∑
i=1

γi
Γi

= 1. (2.19)

Similarly, applying the above lemma to the definition of the lower bound function ξk(·) in (2.9) (with

δk = ξk(x) and Bk = γk(f(zk) + ⟨∇f(zk), x− zk⟩)) we also have

ξk(x) = Γk

k∑
i=1

γi
Γi

(f(zi) + ⟨∇f(zi), x− zi⟩). (2.20)

We are now ready to analyze the convergence of the proposed CGS-ls algorithm. Theorem

1 below describes the main convergence property of Algorithm 10.

Theorem 1. Suppose that the parameters in Algorithm 10 satisfy βk ≥ Lkγk for all k. Then we

have

f(yk)− ξk(x) ≤
ε

2
+ Γk

k∑
i=1

γiβi

2Γi

(
∥x− xi−1∥2 − ∥x− xi∥2

)
+ Γk

k∑
i=1

γiηi
Γi

, ∀x ∈ X .

Proof. Let us fix any x ∈ X . In order to prove the result, we will estimate a lower bound of ξk(x).

From the description of yk in (2.8) we observe that γk(xk − zk) = (yk − zk) − (1 − γk)(yk−1 − zk).

Applying such observation to the description of ξk(x) in (2.20) we have

1

Γk
ξk(x) =

k∑
i=1

1

Γi
[γif(zi) + γi ⟨∇f(zi), x− xi⟩+ ⟨∇f(zi), γi(xi − zi)⟩] .

=

k∑
i=1

1

Γi
[f(zi) + ⟨∇f(zi), yi − zi⟩ − (1− γi) (f(zi) + ⟨∇f(zi), yi−1 − zi⟩)

+ γi ⟨∇f(zi), x− xi⟩].

We make three observations in the above equation. First, by (2.3) we have

f(zi) + ⟨∇f(zi), yi − zi⟩ ≥ f(yi)−
Li

2
∥yi − zi∥2 −

ε

2
γi = f(yi)−

Liγ
2
i

2
∥xi − xi−1∥2 −

ε

2
γi.

Here the last equality is from the descriptions of zk and yk in (2.6) and (2.8) respectively. Second,

31

by the convexity of f we have

− (f(zi) + ⟨∇f(zi), yi−1 − zi⟩) ≥ −f(yi−1).

Third, by the stopping criterion of the CndG procedure in (2.11) and our assumption that βk ≥ Lkγk

for all k, we have

γi ⟨∇f(zi), x− xi⟩ ≥ γiβi⟨xi − xi−1, xi − x⟩ − γiηi

= − γiβi

2

(
∥x− xi−1∥2 − ∥xi − xi−1∥2 − ∥x− xi∥2

)
− γiηi

≥− γiβi

2

(
∥x− xi−1∥2 − ∥x− xi∥2

)
− γiηi +

Liγ
2
i

2
∥xi − xi−1∥2.

Applying the above three observations and recalling that γ1 = 1 and γk ∈ (0, 1) for all k ≥ 2 in (2.4)

and (2.16) respectively, we obtain that

1

Γk
ξk(x) ≥

k∑
i=1

1

Γi

[
f(yi)− (1− γi)f(yi−1)−

γiβi

2

(
∥x− xi−1∥2 − ∥x− xi∥2

)
− ε

2
γi − γiηi

]
.

In the above result, noting from the relation (2.17) between γk and Γk and the fact that γ1 = 1, we

have

k∑
i=1

1

Γi
f(yi)−

1− γi
Γi

f(yi−1) =
f(yk)

Γk
.

We conclude the theorem immediately by combining the above two equations and using the relation

(2.19).

Corollary 1. Suppose that the parameters of Algorithm 10 are set to

βk = Lkγk and ηk =
LkγkD

2

k
, (2.21)

where D is any constant that estimates the diameter DX := maxx,y∈X ∥x−y∥ of X . Then Algorithm

10 terminates with an ε-approximate solution yk after k ≥ Ngrad gradient evaluations, in which

Ngrad := C

√
max{2Lmin, L0}D2

X
ε

, where C =

√
27

2
+

27D2

D2
X

6

√
max{2Lmin, L0}

L0
. (2.22)

32

At termination, the total number of linear objective optimization (the problem in (2.10)) is bounded

by

Nlin :=
6D2

X
D2

C2 max{2Lmin, L0}DX

ε
+ C

√
max{2Lmin, L0}D2

X
ε

. (2.23)

Here Lmin is the smallest Lipschitz constant that satisfies the Lipschitz condition (2.2) of the gradient

∇f .

Proof. Applying Theorem 1 with the parameters described in (2.21), and noting from the description

of γk and Γk in Algorithm 10 that Γk = Lkγ
3
k = (1− γk)Γk−1, we have

f(yk)− ξk(x) ≤
ε

2
+ Γk

k∑
i=1

1

2γi

(
∥x− xi−1∥2 − ∥x− xi∥2

)
+ Γk

k∑
i=1

D2

iγi
, ∀x ∈ X

Since γk ∈ (0, 1) for all k ≥ 2 (see (2.16)), we observe that Lkγ
3
k = Γk = (1 − γk)Γk−1 < Γk−1 =

Lk−1γ
3
k−1 for all k ≥ 2. using this observation and noting from (2.15) that Lk ≥ Lk−1, we have

γ3
k < γ3

k−1. Consequently, the sequence {1/γi}i≥1 at the right hand side of the above estimate of

f(yk)− ξk(x) is an increasing sequence. Applying Lemma 1 we have

f(yk)− ξk(x) ≤
ε

2
+

Γk

2γk
max
0≤i≤k

∥x− xi∥2 + Γk

k∑
i=1

D2

iγi
≤ ε

2
+

Γk

2γk
D2

X + Γk

k∑
i=1

D2

iγi
. (2.24)

Here in the last inequality we use the definition of diameter DX . We will estimate the right most

side of the above relation.

Using the relation Γk = Lkγ
3
k = (1− γk)Γk−1 again, we have

3

√
1

Γk
− 3

√
1

Γk−1
=

1
Γk
− 1

Γk−1

3

√
1
Γ2
k
+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

=

γk

Γk

3

√
1
Γ2
k
+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

.

Noting that γk ∈ (0, 1) (see (2.16)) and recalling that Γk = (1 − γk)Γk−1 we have Γk ≤ Γk−1.

Therefore, we have

3

√
1

Γ2
k

≤ 3

√
1

Γ2
k

+ 3

√
1

ΓkΓk−1
+ 3

√
1

Γ2
k−1

≤ 3 3

√
1

Γ2
k

33

Recalling that Γk = Lkγ
3
k, the above two relations imply that

1
3
√
Lk

≥ 3

√
1

Γk
− 3

√
1

Γk−1
≥ 1

3 3
√
Lk

.

Here, recalling the relations of Lk’s in (2.15), we have

1
3
√
L0

≥ 3

√
1

Γk
− 3

√
1

Γk−1
≥ 1

3 3
√

max{2Lmin, L0}
.

Summing the above relation from 1 to k we obtain that

k − 1
3
√
L0

≥ 1
3
√
Γk

− 1
3
√
Γ1

≥ k − 1

3 3
√

max{2Lmin, L0}
.

Recalling from (2.15) that L0 ≤ L1 ≤ max{2Lmin, L0} and noting from (2.4) and (2.5) that Γ1 = L1,

the above becomes

k
3
√
L0

≥ 1
3
√
Γk

≥ k − 1

3 3
√
max{2Lmin, L0}

+
1

3
√
max{2Lmin, L0}

>
k

3 3
√
max{2Lmin, L0}

,

i.e.,

L0

k3
≤ Γk ≤

27max{2Lmin, L0}
k3

.

Using the first inequality above and recalling the relations Γk = Lkγ
3
k and L0 ≤ Lk we have

γk ≥ 3

√
L0

Lkk3
≥ 1

k
3

√
L0

max{2Lmin, L0}
.

Applying the above two results to (2.24), we conclude that

f(yk)− ξk(x)

≤ε

2
+

27max{2Lmin, L0}D2
X

2k2
· 3

√
max{2Lmin, L0}

L0
+

27max{2Lmin, L0}D2

k3

k∑
i=1

3

√
max{2Lmin, L0}

L0

=
ε

2
+

max{2Lmin, L0}D2
X

k2

[
27

2
+

27D2

D2
X

]
3

√
max{2Lmin, L0}

L0
, ∀x ∈ X .

34

Noting the above result and (2.13), we conclude that the proposed CGS-ls algorithm will

terminate with an ε-approximate solution after k ≥ Ngrad iterations, where Ngrad is defined in

(2.22). Also, by Theorem 2.2(c) in [30] and our parameter setting (2.21), the total number of linear

objective optimization that is performed in the k-th call to the CndG procedure is bounded by

Tk :=

⌈
6βkD

2
X

ηk

⌉
=

⌈
6D2

X
D2

k

⌉

Therefore, at termination the total number of linear objective optimization that is performed by

Algorithm 10 is bounded by

Nlin :=

Ngrad∑
i=1

Ti ≤
Ngrad∑
i=1

Ti

(
6D2

X
D2

i+ 1

)
=

6D2
X

D2
N2

grad +Ngrad.

Substituting the value of Ngrad in (2.22) we obtain (2.23).

A few remarks are in place for the above corollary. First, from (2.22) and (2.23) we conclude

that the proposed CGS-ls method has the same theoretical convergence property as that of the CGS

method in [30]. Specifically, to compute an ε-approximate solution, the CGS-ls method reaches

the theoretical performance limit by requiring at most O(
√

L/ε) gradient evaluations and O(L/ε)

linear objective optimizations, where L := max{2Lmin, L0} is a Lipschitz constant that satisfies the

Lipschitz condition (2.2). Second, in our parameter setting (2.21) we need to choose an estimate D

for the exact diameter DX . However, as long as D is relatively close to DX (e.g., smaller or larger

than DX but within an order of O(1/
√
ε)), our convergence properties will not be affected. Finally,

when the initial guess of Lipschitz constant L0 is larger than Lmin, no backtracking linesearch will

be performed, and the proposed CGS-ls method becomes a version of the CGS method in [30] that

is equipped with a proper termination criterion. However, unlike the CGS method, when the initial

guess L0 is significantly smaller than Lmin, the convergence property of the CGS-ls method will

not be affected significantly. As an example, if we choose L0 = 0.001Lmin, then in the convergence

result of the above corollary we have 6
√
max{2Lmin, L0}/L0 = 6

√
2000 ≈ 3.5, namely, the number

of gradient evaluations will be enlarged by a constant of approximately 3.5. In terms of theoretical

convergence, such enlargement will not change the order of the gradient evaluations in terms of

its dependence on 1/ε. However, in terms of numerical implementation, we have the flexibility of

choosing much smaller choice of L0. Moreover, if the smaller choice of L0 is satisfied along the

35

iterates of the CGS-ls method, then we can expect that the practical performance of CGS-ls is much

faster than algorithms that use a conservative choice of global Lipschitz constant estimate.

2.4 Numerical Results

In this section we present the results from our numerical experiments. We will compare the

performance of the proposed CGS-ls method with that of the Frank-Wolfe (FW) method (described

in (1.14) with weights λi = 2i/(k(k+1))) and the CGS method in [30] (parameters follow Corollary

2.3 in the paper). We consider two quadratic optimization problems with different subsets; the first

is over the standard spectrahedron and the second is over the convex hull of all Hamiltonian cycles.

In all of the experiments, the coefficient matrix of decision variable in the objective is generated in

a way to that the objective function is not a strongly convex function. To this end, we generated

rectangular and sparse matrices so that half of the singular values are zero and the other half are

uniformly randomly selected values. To generate such a matrix we used the fact that for given

matrices Mm×n, Up×m, and Vn×q where p ≥ m and q ≥ n and U has orthonormal columns, then

the largest min{m,n} singular values of UMV are equal to the singular values of M . Also, all

numerical experiments are performed on a compute with Intel Core i5 2.7 GHz CPU.

In the first numerical experiment, we consider the optimization problem over the standard

spectrahedron:

min
X∈Spen

f(X) :=
1

2
∥AX −B∥2F where Spen := {X ∈ Rn×n : Tr(X) = 1, X ⪰ 0}.

Here A : Rn×n → Rm is a linear operator, ∥ · ∥F is the Frobenius norm, and the feasible set Spen is

a standard spectrahedron. Note that the linear objective optimization over the spectrahedron can

be solved by computing a maximum eigenvalue problem (see, e.g., [18]). For each random instance

in this numerical experiment, we generate A first by equivalently generating a m× n2 matrix with

20%, 60% or 80% nonzero entries. We then generate B = AUΣU⊤ where U is a random orthogonal

matrix and Σ is a diagonal matrix with uniformly random entries between 0 and 1 (normalized

afterwards so that they sum to 1). Therefore, the optimal value of all generated instances are 0.

In the second numerical experiment, we consider the optimization problem over the convex

36

hull of Hamiltonian cycles in [29]:

min
x∈H

f(x) :=
1

2
∥Ax− b∥22 where H = conv{x ∈ Rn(n−1)/2 : x is a Hamiltonian cycle}.

Here A : Rm×[n(n−1)/2], b ∈ Rm, and the feasible set H is the convex hull of all Hamiltonian

cycles in a complete graph with n nodes. We describe any Hamiltonian cycle through a vector of

dimension n(n−1)/2 (the lower triagular part of the adjacency matrix). Note that the linear objective

optimization overH can be solved by computing the solution to a traveling salesman problem (solved

through Gurobi [17]). For each random instance, A is randomly generated with 60% nonzero entries

that follow i.i.d. standard uniform distribution. We then generate b = A(0.8v1 + 0.2v2) where v1

and v2 are two Hamiltonian cycles that are generated from random permutations of all nodes. The

optimal value of all generated instances are 0.

Table 2.1: Comparison of FW, CGS and CGS-ls on the first numerical experiment (minimization
over standard spectrahedron).
Ins. info. FW CGS CGS-ls

i d iter. time obj. outer inner time obj. outer inner time obj.

1 .2 188453 1800 1e-2 194883 517477 1800 4e-2 43234 86585 418 1e-4
2 .2 62861 1800 1e-1 64972 146850 1800 1e-2 62899 126219 1800 2e-10
3 .2 141408 1800 4e-2 158672 327107 1800 4e-2 60033 120192 756 2e-8
4 .2 35458 1800 1e-1 43618 87893 1800 1e-1 43471 95072 1800 3e-10
5 .2 79828 1800 9e-2 95879 192622 1800 1e-1 75597 186038 1161 6e-10
6 .2 20883 1800 5e-1 25917 51953 1800 5e-1 29863 59817 1513 1e-8

7 .6 98389 1800 5e-2 108327 218164 1800 7e-2 31733 87003 1623 4e-9
8 .6 26998 1800 3e-1 33899 68454 1800 4e-1 39386 78888 1800 1e-7
9 .6 55859 1800 9e-2 68422 137002 1800 9e-2 41865 83839 865 4e-9
10 .6 15235 1800 3e-1 19328 38836 1800 3e-1 24512 49186 1800 5e-7
11 .6 29364 1800 6e-1 37746 75519 1800 9e-1 51114 124652 1800 1e-9
12 .6 7824 1800 1.74 10199 20440 1800 1.51 14314 28884 1800 3e-6

13 .8 79549 1800 3e-2 94297 189371 1800 7e-2 47435 94966 1800 1e-8
14 .8 21604 1800 5e-1 26884 54544 1800 5e-1 32702 65585 1800 1e-7
15 .8 42895 1800 1e-1 53966 108086 1800 1e-1 46977 94078 1196 2e-8
16 .8 11624 1800 1.08 15008 30131 1800 1.49 19661 39437 1800 4e-8
17 .8 22481 1800 8e-1 27159 54326 1800 1.27 35653 86930 1800 6e-9
18 .8 5930 1800 1.50 7805 15639 1800 2.50 11095 22415 1800 1e-6

We report the performance of FW, CGS, and CGS-ls in the above two numerical experiments

in Table 2.1 and Table 2.2 respectively. For FW and CGS, we terminate when the Wolfe gap

described in (2.14) is smaller than 0.01; for CGS-ls, we terminate when the gap describe in (2.9)

is smaller than 0.01. Consequently, all algorithms terminate either when an approximate solution

is certified with ε = 0.01 (or when the algorithm runs over the given time limit). Note that CGS

37

Table 2.2: Comparison of FW, CGS and CGS-ls on the second numerical experiment (minimization
over the convex hull of Hamiltonian cycles).
Ins. info. FW CGS CGS-ls

j d iter. time obj. outer inner time obj. outer inner time obj.

1 .6 119493 1800 1e-3 3572 73088 1800 4.97 14883 41018 697 1e-3
2 .6 66270 1800 1e-3 3045 50207 1800 2.64 16648 40847 960 1e-3

3 .6 137959 1800 4e-1 84146 169969 1800 2e-1 67407 170967 1800 2e-2
4 .6 65314 1800 7e-1 41322 86060 1800 3.61 33539 75476 1800 8e-2
5 .6 46395 1800 2.11 32210 66686 1800 0.35 22472 62433 1800 1e-1
6 .6 36408 1800 1.51 16152 46154 1800 33.8 21217 43854 1800 1e-1

7 .6 269203 3600 1e-1 187308 375625 3600 1e-1 126262 273593 3600 5e-2
8 .6 196834 3600 1e-2 118145 238476 3600 4e-1 122067 256582 3600 3e-2
9 .6 129473 3600 2e-1 90814 194371 3600 2e-1 66579 169998 3600 1e-2
10 .6 78726 3600 2e-1 40957 91986 3600 1.82 39437 101188 3600 3e-2

Table 2.3: Indices and their corresponding size of instances in Tables 2.1 and 2.2
.

i in Table 2.1 j in Table 2.2
i m x n i m x n j m x n(n-1)/2 j m x n(n-1)/2
1 500x10000 10 1000x20000 1 500x300 10 10000x595
2 500x20000 11 2000x10000 2 500x435
3 1000x10000 12 2000x20000 3 1000x190
4 1000x20000 13 500x10000 4 1000x435
5 2000x10000 14 500x20000 5 1000x595
6 2000x20000 15 1000x10000 6 1000x780
7 500x10000 16 1000x20000 7 10000x105
8 500x20000 17 2000x10000 8 10000x190
9 1000x10000 18 2000x20000 9 10000x300

requires the Lipschitz constant of the objective function; we compute them through the maximum

eigenvalue of the Hessian of the objective function and rescaling to get the desired large value (the

time for computing maximum eigenvalue is not counted towards CGS’ computation time). In the

first experiment A is generated so that L = 1.5e4 and in the second experiment A is generated

so that L = 1e3. For CGS-ls, we set L0 = .001L for all instances, and DSpen = 0.005
√
2 and

DH = 0.05
√
n(n− 1)/2 for the first and second numerical experiments, respectively. We report the

running time (in seconds) and the objective value of the approximate solution at termination for all

algorithms. For FW, we report its total number of iterations, which is the same as the number of

gradient evaluations and linear optimization subproblems. For CGS and CGS-ls, we report the total

number of gradient evaluations (denoted “outer”) and linear optimization subproblems (denoted as

“inner”). We also compared the performance of the three algorithms with PAGD and for a small

instance of size 100 × 45 the improvement in objective value is negligible after 60 minutes and

performing only 4 iteration due to expensive calculation of the projection onto the feasible set.

38

We make a few remarks from Tables 2.1 and 2.2. First, among the three algorithms, FW

is the simplest to implement but has the worst performance; in most of the instances it could not

obtain an approximate solution with Wolfe gap smaller than 0.01 within the required 30 or 60 minute

computation time limit. Such behavior is consistent with its theoretical complexity O(L/ε), which

is the worst among the three algorithms. Second, CGS-ls has better practical performance than

CGS in most instances, although both algorithms have the same theoretical convergence properties.

The better practical performance is most likely due to the adaptive estimate of Lipschitz constant,

which avoids the potentially conservative Lipschitz constant that CGS may suffer throughout the

computation. Finally, it is interesting to observe that most objective values of the approximate

solutions computed by all algorithm at termination are much better than the accuracy setup ε = 0.01.

To the best of our knowledge, it is still unclear in the literature whether there exists termination

criterion other than the ones we use in this paper ((2.9) and (2.14)) that could guarantee that the

approximate solution at termination is an ε-solution while achieving good practical performance.

We leave the study of better termination criterion as a future work.

39

Chapter 3

Sliding Accelerated Bundle-Level

Method

In the introduction chapter, we introduced ABL and APL as two bundle-level type methods.

Also, recall that we classified these methods as projection-based methods as they require solving

projection subproblems throughout their iterations. We also discussed in the same chapter that

CGS algorithm utilizes a FW-type method to solve the projection subproblem in each iteration of

the NAGD method approximately and iteratively. Knowing these, can we design a CGS counterpart

for the projection subproblem of the ABL/APL, namely, a bundle-level type CGS? Addressing this

question motivates us to propose the sliding APL (SAPL) method. In this chapter, we will introduce

the SAPL algorithm and will also discuss its convergence analysis. Note that using SAPL, we aim

to solve the convex programming (CP)

f∗ := min
x∈X

f(x) (3.1)

where X is a convex compact set and f : X → R is a closed convex function and satisfies

f(y)− f(x)− ⟨f ′(x), y − x⟩ ≤ M

1 + ν
∥y − x∥1+ν

, ∀x, y ∈ X, (3.2)

for some M > 0, ν ∈ [0, 1] and f ′ ∈ ∂f(x). This class of problems cover nonsmooth (ν = 0), smooth

(ν = 1), and weakly smooth (ν ∈ (0, 1)) CP problems. However, our focus in our proposed algorithm

40

is on the class of functions smooth f where ν = 1 in (3.2). In that case, we will use the notation L

instead of M as the Lipschitz constant of ∇f .

3.1 Proposed Algorithm

The basic scheme of this method is obtained by applying Frank-Wolfe (FW) method to

solve the projection subproblem existing in APL approximately. We will show that if this accuracy

is specified properly, SAPL can achieve the optimal bounds on the number of calls to the first-order

and linear optimization oracles for solving (3.1) when f is smooth. The general scheme of this

method is presented in Algorithm 11.

A few remarks are in place for SAPL method. First, similar to the APL method, the SAPL

method runs through phases in its outer layers of iterations and in each phase through the gap

reduction procedure it updates the desired bound ℓ at initial step of GSAPL and in (3.3) with a

fixed and prespecified convex combination parameter β. Second, unlike the APL method, the SAPL

method updates the prox-center in Step 3, differently. We can observe that the FW procedure in

the algorithm can be view as a specialized version of the the FW method that is applied to the

projection subproblem in (1.44) of the APL. In particular, if we let f := ⟨g, x⟩+ β ∥x− u∥2 /2 then

Vg,u,β(ut) in step 3 is equivalent to maxx∈X′
k−1
⟨∇f(ut), ut − x⟩ which is know is also the Wolfe

gap. The FW procedure terminates when Vg,u,β(ut) is smaller than the specified tolerance η. This

procedure is the simplified version of FW method in the way that it updates αt in Step 4 explicitly.

This was initially suggested by Frank and Wolfe to specify the stepsize for the FW method through

the minimization of an upper quadratic approximation of f(·) at xk [6,8,15]. Note that FW method

updates αt by solving

αt = argmin
α∈[0,1]

f((1− α)ut + αvt).

Third, the localizer in step 4 of GSAPL can be any set between Xk and X̄k. While constraints

accumulate in Xk, the set X̄k is just a half-space. This flexibility simplifies the subproblem (3.4)

both theoretically and practically. Finally, similar to the APL method, the gap reduction procedure

of SAPL algorithm terminates in either Step 1 or Step 3 of GSAPL.

41

Algorithm 11 Sliding accelerate prox-level algorithm (SAPL)

Choose initial point p0 ∈ X, tolerance ϵ > 0 and parameters β, θ, η ∈ (0, 1)

0. Set p1 ∈ Argminx∈X h(p0, x), lb1 = h(p0, p1), ub = f(p1) and s = 1.

1. If ubs − lbs ≤ ϵ terminate the algorithm with output ps.

2. Set (ps+1, lbs+1) = GSAPL(ps, lbs, β, θ) and ubs+1 = f(ps+1).

3. s← s+ 1 and go to 1.

gap reduction procedure (p+, lb+) = GAPL(p, lb, β, θ)

0. Set

xu
0 = p, f̄0 = f(xu

0), f0 = lb, ℓ = βf0 + (1− β)f̄0 (3.3)

x0 = p, X ′
0 = X, k = 1, dω(x) =

1

2
∥x− xk−1∥22

1. lower bound update:

xℓ
k = (1− αk)x

u
k−1 + αkxk−1,

hk := min
x∈X′

k−1

h(xℓ
k, x) (3.4)

fk := max{fk−1,min{ℓ, hk}}

If fk ≥ (1− θ)ℓ+ θf0 terminate the procedure with p+ = xu
k−1, lb+ = fk.

2. prox-center update: xk = FW(Xk−1, dω(·), xk−1, ηk)

3. upper bound update:

f̄k = min{f̄k−1, f(αkxk + (1− αk)x
u
k−1)}

choose xu
k so that f(xu

k) = f̄k

If f̄k ≤ (1− θ)ℓ+ θf̄0 terminate the procedure with p+ = xu
k , lb+ = fk

4. update localizer: Choose X ′
k so that Xk ⊆ X ′

k ⊆ X̄k where

Xk := {x ∈ X ′
k−1 : h(xℓ

k, x) ≤ ℓ}, X̄k := {x ∈ X : ⟨∇dω(xk), xk − x⟩ ≤ η} (3.5)

end GAPL procedure
FW procedure u+ = FW(X, dω, u, η)

1. Set u1 = u and t = 1.

2. Let vt be the optimal solution for the subproblem of

Vg,u(ut) := max
x∈X
⟨ut − u, ut − x⟩ (3.6)

3. If Vg,u(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− αt)ut + αtvt where αt = min
{
1, ⟨u− ut, vt − ut⟩ /∥vt − ut∥2

}
5. Set t← t+ 1 and go to step 2.

end FW procedure

42

3.2 Theoretical Analysis

In this section we discuss the convergence results of the SAPL method and it analysis.

Theorem 2 first finds a bound on f(xu
k)− ℓ that is critical for termination of GSAPL in Steps 1 and 3

of this procedure, and second it finds a conceptual bound on the number of iterations performed by

GSAPL in a typical phase of SAPL. And finally Theorem 2 find a bound on number of calls to the

linear optimization oracles in the most inner iteration of SAPL and in FW procedure in one typical

iteration GSAPL.

Theorem 2. Let γk ∈ (0, 1], and xℓ
k, xk, x

u
k ∈ X for k = 1, 2, · · · be given, where ℓ is the bound of

the level set in GSAPL. Then

a) For k ≥ 1 we have

f(xu
k)− ℓ ≤ (1− γ1)f(x

u
0 − ℓ) +

LD2
X

2
max
1≤i≤k

{γ2
i /Γi}

(
D2

X +

k−1∑
i=1

ηi

)
(3.7)

for k ≥ 1, where Γk is defined in (2.17).

b) If γk, k = 1, 2, · · · are chosen so that for some c > 0,

γ1 = 1, and Γk max
1≤i≤k

{γ2
i /Γi} ≤ ck−2 and

k−1∑
i=1

ηi ≤ D2
X , (3.8)

then the number of iterations performed by GSAPL can be bounded by

KSAPL(∆0) :=

√

cLD2
X

βθ∆0

 (3.9)

where ∆0 = f̄0 − f0.

c) Under assumptions in part a) and b) the number of iterations performed by FW procedure is

bounded by

KFW(k) =

⌈
6D2

X

ηk

⌉
(3.10)

43

Proof. First we show part a. Note that by definition of X̄ in (3.5)

⟨x− x0, xk − x⟩ ≤ ηk ∀x ∈ X ′ ⊆ X̄.

Therefore, since xk+1 ∈ X ′
k for k ≥ 1 we have

∥xk+1 − xk∥2 ≤ ⟨xk − x0, xk+1 − xk⟩

= ∥xk+1 − x0∥2 − ∥xk − x0∥2 − ⟨xk+1 − x0, xk+1 − xk⟩

≤ ∥xk+1 − x0∥2 − ∥xk − x0∥2 + ηk.

Summing up the above inequalities we obtain

k∑
i=1

∥xi − xi−1∥2 ≤ ∥xk − x0∥2 +
k−1∑
i=1

ηi (3.11)

Next, denoting x̃u
k = γkxk + (1− γk)x

u
k−1, then by Lemma 6 for all k ≥ 1 and definition of xu

k and

x̃u
k we have

f(xu
k) ≤ f(x̃u

k) ≤ (1− γk)f(x
u
k−1) + γkℓ+

L

2
∥γk(xk − xk−1)∥2 .

Subtracting both sides of above inequality we obtain

f(xu
k)− ℓ ≤ (1− γk)[f(x

u
k−1)− ℓ] +

L

2
∥γk(xk − xk−1)∥2 ∀k ≥ 1.

Using Lemma 2 for above inequality we obtain

f(xu
k)− ℓ ≤ (1− γ1)f(x

u
0 − ℓ) +

L

2

k∑
i=1

γ2
k

Γk
∥xk − xk−1∥2

≤ (1− γ1)f(x
u
0 − ℓ) +

L

2
max
1≤i≤k

{γ2
i /Γi}

k∑
i=1

∥xk − xk−1∥2

≤ (1− γ1)f(x
u
0 − ℓ) +

L

2
max
1≤i≤k

{γ2
i /Γi}

(
D2

X +

k−1∑
i=1

ηi

)
∀k ≥ 1

where the last inequality holds by (3.11).

To show part b, let K ≡ KAPL(ϵ) be the total number of iterations performed by GAPL and

44

suppose that conditions (3.8) hold. Then by (3.7) and (3.8) we have

f(xu
K)− ℓ ≤ cLD2

X

K2
≤ θβ∆0 = θ(f̄0 − ℓ),

where the last equality follows the fact that ℓ = βf0 + (1− β)f̄0 = f̄0 − β∆0. Therefore, procedure

GAPL must terminate in step 3 of the K-th iteration.

Note that the bound KFW(k) is conceptual as parameter {ηk} is still needed to be specified.

In Theorem 3 and in part a) we inf a bound on total number of phases performed by the SAPL

method, in part b) we find a bound on the total number of iterations performed by the SAPL

method, and finally in part c) after selecting the parameter η we fins a bound on the total number

of calls to the first order linear optimization oracle.

Theorem 3. Let γk ∈ (0, 1], k = 1, 2, · · · in GSAPL are chosen so that conditions (3.8) hold for

some c > 0. Then

a) The number of phases performed by SAPL method is bounded by

S̄(ϵ) =

⌈
max

{
0, log 1

q

LD2
X

2ϵ

}⌉

b) The total number of iterations performed by the SAPL method can be bounded by

S̄(ϵ) +
1

1−√q

(
cLD2

X

βθϵ

) 1
2

c) Let

η ≡ D2
X

KSAPL(∆0)

where KSAPL(∆0) is defined in (3.9) and ∆0 = f̄0 − f0. Then η satisfies conditions (3.8) and

the number of iterations performed by FW procedure is bounded by

O
(
LD2

X

ϵ

)
.

45

Proof. Let us denote δs ≡ ubs − lbs, s ≥ 1. Also, let us suppose that δ1 > ϵ because otherwise the

statement is clearly true. First, note that if GAPL terminated in step 1 of its k-th iteration we must

have fk ≥ ℓ− θ(ℓ− f0). Since f(p+) ≤ f̄0 and by (1.41) we have

f(p+)− lb+ = f(p+)− fk ≤ f̄0 − [ℓ− θ(ℓ− f0)]

= [1− (1− β)(1− θ)](f̄0 − f0). (3.12)

And if GAPL terminates in step 3 of its k-th iteration we must have f̄k ≤ ℓ+θ(f̄0−ℓ). Since lb+ ≥ f0

and also by definition of ℓ in (1.41) we have

f(p+)− lb+ = f̄k − lb+ ≤ ℓ+ θ(f̄0 − ℓ)− f0 = [1− (1− θ)β](f̄0 − f0). (3.13)

equations (3.12) and (3.13) together imply that at termination of GAPL we have

f(p+)− lb+ ≤ q[f(p)− lb], (3.14)

where

q ≡ q(β, θ) := 1− (1− θ)min{β, 1− β}. (3.15)

Therefore, from (3.14) and (3.15) and origin of ubs and lbs we have

δs+1 ≤ qδs, s ≥ 1. (3.16)

Also note that, from initial phase of SAPL and Lipschitz continuity of of f ′ we have

δ1 = f(p1)− h(p0, p1) = f(p1)− (f(p0) + ⟨f ′(p0), p1 − p0⟩) ≤
L

2
∥p1 − p0∥2 ≤

LD2
X

2
. (3.17)

From (3.16) and (3.17) we obtain

δs+1 ≤ qs−1δ1 ≤ qs
LD2

X

2
.

To obtain an ϵ-gap we must have qsLD2
X < 2ϵ which implies the desired result in part a.

46

Next, we prove part b. Let s̄ be the total number of calls for GAPL for some 1 ≤ s̄ ≤ S̄(ϵ).

Therefore, from (3.16) and the fact that δs̄ > ϵ we have δs > ϵqs−s̄, s = 1, · · · , s̄. Using this

observation we obtain

s̄∑
s=1

δ
− 1

2
s <

s̄∑
s=1

q
1
2 (s̄−s)

√
ϵ

=

s̄−1∑
t=0

q
t
2

√
ϵ
≤ 1

(1− q
1
2)
√
ϵ
. (3.18)

Using this observation and by Theorem 2, the number of iterations performed by SAPL method is

bounded by

s̄∑
s=1

KSAPL(δs) ≤ s̄+

s̄∑
s=1

(
cLD2

X

βθδs

) 1
2

≤ s̄+
1

(1− q
1
2)
·
(
cLD2

X

βθϵ

) 1
2

.

To show part c, note that η satisfies the condition (3.8) because if K ≡ KSAPL(ϵ) then

K−1∑
i=1

ηi ≤
K∑
i=1

D2
X

K
≤ D2

X .

Next, from (3.10) we have

KFW(k) =

⌈
6D2

X

ηk

⌉
= ⌈6KSALP (∆0)⌉ ≤ 7KSAPL(∆0).

This along with (3.18) imply that the total number of iterations performed by FW is bounded by

s̄∑
s=1

7K2
SAPL(δs) ≤ 7

s̄∑
s=1

cLD2
X

θβδs
=

cLD2
X

θβ

s̄∑
s=1

1

δs
≤ 7cLD2

X

(1− q)θβϵ
.

To prove part (c) let us denote ϕ ≡ ϕk := 1/2 ∥x− xk−1∥2. Then the FW procedure can

be view as specialized version of FW applied to minx∈X ϕ(x). We can see that Vg,u,β(ut) in (3.6)

is equivalent to maxx∈X ⟨ϕ′(ut), ut − x⟩ which is the Wolfe-gap. Indeed, xk obtained in step 2. of

GSAPL procedure is an approximate solution of for the projection subproblem minx∈X ϕ(x) such

that

⟨ϕ′(xk), xk − x⟩ = ⟨xk − xk−1, xk − x⟩ ≤ ηk, ∀x ∈ X

47

for some ηk ≥ 0. Now let ϕ∗ ≡ minx∈X ϕ(x). Also let us denote

λt :=
2

t
and Λt =

2

t(t− 1)
, (3.19)

which implies that

Λt+1 = Λt(1− λt+1) ∀t ≥ 2.

Let us define ūt+1 := (1 − λt+1)ut + λt+1vt. Clearly we have ūt+1 − ut + λt+1(vt − ut). Observe

that ut+1 = (1− αt)ut + αtvt and αt is an optimal solution to argminα∈[0,1] ϕ((1− α)ut + αvt) and

hence ϕ(ut+1) ≤ ϕ(ūt+1). Using this observation, (A.5), and the fact that ϕ has Lipschitz continuous

gradients, we have

ϕ(ut+1) ≤ ϕ(ūt+1)

≤ ϕ(ut) + ⟨ϕ′(ut), ūt+1 − ut⟩+
1

2
∥ūt+1 − ut∥2

= ϕ(ut) + λt+1 ⟨ϕ′(ut), vt − ut⟩+
λ2
t+1

2
∥vt − ut∥2

= ϕ(ut)− λt+1ϕ(ut) + λt+1 (ϕ(ut) + ⟨ϕ′(ut), vt − ut⟩) +
λ2
t+1

2
∥vt − ut∥2

≤ (1− λt+1)ϕ(ut) + λt+1 (ϕ(ut) + ⟨ϕ′(ut), x− ut⟩) +
λ2
t+1

2
∥vt − ut∥2

≤ (1− λt+1)ϕ(ut) + λt+1ϕ(x) +
λ2
t+1

2
∥vt − ut∥2 .

(3.20)

Subtracting ϕ(x) from both sides implies that

ϕ(ut+1)− ϕ(x) ≤ (1− λt+1)(ϕ(ut)− ϕ(x)) +
λ2
t+1

2
∥vt − ut∥2 ∀x ∈ X .

By Lemma 3, for any x ∈ X and t ≥ 1

ϕ(ut+1)− ϕ(x) ≤ Λt+1

(
1− λ2

Λ1
(ϕ(1)− ϕ(x))

)
+

t+1∑
i=2

λ2
i

2Λi
∥vi−1 − ui−1∥2

= Λt+1

t∑
i=1

i

i+ 1
∥vi − ui∥2

≤ 2D2
X

t+ 1

(3.21)

48

Now, let the gap function Vg,u be defined in (3.6). Also let us denote ∆j = ϕ(uj) − ϕ∗. It

then follow from (3.6), and (3.20) that for any j = 1, · · · , t,

ϕ(uj+1) ≤ ϕ(uj) + λj+1 ⟨ϕ′(uj), vj − uj⟩+
λ2
j+1

2
∥vj − uj∥2 .

Hence,

λj+1 ⟨ϕ′(uj), uj − vj⟩ ≤ ϕ(uj)− ϕ(uj+1) +
λ2
j+1

2
∥vj − uj∥2 ,

which implies that

λj+1Vg,u(uj) ≤ ϕ(uj)− ϕ(uj+1) +
λ2
j+1

2
∥vj − uj∥2

= ∆j −∆j+1 +
λ2
j+1

2
∥vj − uj∥2 .

Dividing both sides of above inequality by Λj+1 and summing up the resulting inequalities, we obtain

t∑
j=1

λj+1

Λj+1
Vg,u(uj) ≤

t∑
j=1

∆j −∆j+1

Λj+1
+

t∑
j=1

λ2
j+1

2Λj+1
∥vj − uj∥2

= − 1

Λt+1
∆t+1 +

t∑
j=2

(
1

Λj+1
− 1

Λj

)
∆j +∆1 +

t∑
j=1

λ2
j+1

2Λj+1
∥vj − uj∥2

≤
t∑

j=2

(
1

Λj+1
− 1

Λj

)
∆j +∆1 +

t∑
j=1

λ2
j+1

2Λj+1
∥vj − uj∥2

≤
t∑

j=1

j∆j +

t∑
j=1

j

j + 1
D2

X

≤
t∑

j=1

j∆j + tD2
X ,

where the last inequality follow from the definition of λt and Λt in (3.19). Using the above inequality

and the bound on ∆j given in (3.21), we conclude that

min
j=1,...,t

Vg,u(uj)

t∑
j=1

λj+1

Λj+1
≤

t∑
j=1

λj+1

Λj+1
Vg,u(uj) ≤

t∑
j=1

j
2D2

X
j

+ tD2
X = 3tD2

X .

49

Since
∑t

j=1 λj+1/Λj+1 = t(t+ 1)/2, then

min
j=1,...,t

Vg,u(uj)

(
t(t+ 1)

2

)
≤ 3tD2

X ,

Therefore,

min
j=1,...,t

Vg,u(uj) ≤
6D2

X
t+ 1

,

which implies part (c).

As we can observe from Theorem 3 the SAPL method achieves the optimal bound O(1/√ϵ)

for smooth programming problem and the optimal bound O(1/ϵ) for number of linear optimization

calls. Note that despite that fact that APL method requires solving a projection subproblem in each

phase of its iterations but it is a parameter free algorithm. On the other hand, while SAPL addresses

the issue of the projection in APL, it requires the knowledge of diameter DX of the feasible set X

and also the Lipschitz constant L of the gradient ∇f .

50

Chapter 4

CGS Variants for Video

Co-Localization Problem

In this chapter, we use the numerical methods introduced in the previous chapters to solve

video co-localization problems. Problems on recognizing and localizing a particular objects in images

and videos receive many attention in recent years, as the internet photo and video sharing becomes

more and more popular. Co-localization is the problem of localizing with bounding boxes in a set

of images, or videos as a sequence of images (frames). We will first have a quick review on the

formulations proposed in [23] for image and video co-localization problems. We will then propose

algorithms for solving such problems and demonstrate the efficiently of proposed algorithms through

numerical experiments.

Figure 4.1: Localizing the common objects of the same class simultaneously in a set of images or
videos using co-localization techniques (image from [23]).

51

4.1 Model Setup for Images

Our ultimate goal is to localize the common object in a set of images or in a series of frames

of a video. Here we first have a brief review of image and video models based on formulation in [23].

To this end we review the required back grounds in each step as much as the features and variables in

the mathematical programming model become understandable. Note that this formulation is based

on formulation introduced in [45] for image co-localization. Quadratic formulation that we review

in this section localizes any set of images and videos, simultaneously. In [7, 11, 12] also, we can find

similar discrete optimization approaches in various computer vision applications.

4.1.1 Objectness for Images

Suppose that we have a set I = {I1, I2, . . . , In} of n given images, and our goal is to localize

the common object in each image. One approach is to find candidate boxes in each image that

potentially contain an object using objectness [1].

While object detectors for images are usually specialized for one object class such as cars,

airplanes, cats, or dogs, objectness quantifies how likely it is for an image window to cover an object

of any class. In an image, objects have a well-defined boundary and center, cats, dogs, and chairs,

as opposed to indefinite background, such as walls, sky, grass, and road. Figure 4.2 illustrates

the desired behavior of an objectness measure. Green windows must score highest windows fitting

an object tight, blue windows should score lower windows covering partly an object and partly the

background, and red windows should score lowest windows containing only partial background. This

approach and the way we score the windows is designed in [1] and explicitly trained to distinguish

windows containing an object from background windows.

Using objectness, we generate m candidate boxes (e.g. green boxes in Figure 4.2) for each

image that could potentially contain an object. In other words, if j ∈ {1, 2, . . . , n} we define Bj to

be the set of all boxed in image Ij ∈ I. Then the goal is to select the box that contains the object,

from each image, jointly. Also. for simplicity let B = B1 ∪ B2 ∪ · · · ∪ Bn and nb = nm the total

number of boxes in all images.

52

Figure 4.2: The objectness measure should score the blue windows, partially covering the objects,
lower than the ground truth windows in green, and score even lower the red windows containing
only the background. Image is from [1].

4.1.2 Feature representation

Assume that we have determined m candidate boxes in each of two the different images

Ii and Ij for any i, j ∈ {1, 2, . . . ,m}. A common object in Ii and Ij might be in different shape,

scale, color, brightness, angle and many other features. Therefore, it is critical to extract distinctive

invariant features from images that can be used to perform reliable matching between different

views of an object. David G. Lowe in [32] introduces a method that finds features that are invariant

to image scaling and rotation, and partially invariant to change in illumination and 3D camera

view point. Using his method, large number of features can be extracted from typical images with

efficient algorithms, as well as the cost of extracting these features is minimized. The major stages

of computation used to generate the set of image features are as follows.

1. Scale-space extrema detection: The first stage of computation searches over all scales and

image locations. It is implemented efficiently by using a difference-of-Gaussian function to identify

potential interest points that are invariant to scale and orientation.

2. Keypoint localization: At each candidate location, a detailed model is fit to determine location

and scale. Keypoints are selected based on measures of their stability.

3. Orientation assignment: One or more orientations are assigned to each keypoint location

based on local image gradient directions. All future operations are performed on image data that

has been transformed relative to the assigned orientation, scale, and location for each feature,

thereby providing invariance to these transformations.

4. Keypoint descriptor: The local image gradients are measured at the selected scale in the region

53

around each keypoint. These are transformed into a representation that allows for significant

levels of local shape distortion and change in illumination.

This process is called Scale Invariant Feature Transform (SIFT). SIFT transforms image data into

scale-invariant coordinates relative to local features. Using SIFT we can generate large numbers of

features that densely cover the image over full range of scales and locations.

Let bk be a box in B. Then we denote the SIFT feature representation of bk as xk ∈ Rd

where d = 10, 000 is the dimensional feature descriptor for each box in B. Finally, we stack the

feature vectors to form a feature matrix X ∈ Rnb×d.

4.1.3 Prior, Similarity, and Discriminability of boxes

Let us denote the boxes that contain an instance of the common object as positive boxes,

and the ones that don’t as negative boxes. Then a prior is introduced for each box that represents a

score that the box is positive. This happens using a saliency map [41] for each box and the prior is

in fact the average saliency within the box, weighted by the size of the box. Finally we stack these

values into the nb dimensional vector m as the prior vector.

Figure 4.3: An example of saliency mappings for images from left to right. Image is from [41].

In addition, boxes that have the similar appearance should be labeled the same. This

happens through a matrix called similarity matrix denoted by S. Similarity matrix of boxes in B

is based on the box feature matrix X described above. Let bi and bj be any two boxes in B where

i, j ∈ {1, 2, . . . , nb}. Then similarity matrix S ∈ Rnb×nb is computed based on the χ2-distance as

Sij = exp

{
−γ

d∑
k=1

(xik − xjk)
2

xik + xjk

}
,

54

where γ = (10d)−1/2. For i and j where boxes bi and bj belong to the same image we set Sij = 0.

Then the normalized Laplacian matrix [44] is computed as

L = Inb
−D−1/2SD−1/2, (4.1)

where D is the diagonal matrix composed of row sums of S.

4.1.4 Model Formulation

Associated with each box bj,k ∈ Bj we define a binary variable zj,k where zj,k = 1 when bj,k

is a positive box (contains an instance of the common object) and 0 otherwise. Then we define the

integer vector variable

z = (z1,1, . . . , z1,m, . . . , zn,1, . . . , zn,m)T ∈ {0, 1}nb .

Making the assumption that in each image there exist at most 1 positive box, our set of constraints

are define by

m∑
k=1

zj,k = 1, ∀j ∈ {1, . . . , n}. (4.2)

As we introduced a prior for each box and defined the nb dimensional vector of average

saliency within the boxes, we obtain a linear term that penalizes less salient boxes as part of the

objective function:

fp(z) := −zT log(m). (4.3)

Similarly, our choice of normalized Laplacian matrix L defined in (4.1) results in a quadratic term

that handles the selection of similar boxes:

fL(z) := zTLz. (4.4)

This is motivated by the work of Shi and Malik [44] in which they have taken advantage of eigenvalues

of the Laplacian for clustering z by the similarity matrix. In fact, they have shown that with the

55

eigenvector corresponding to the second smallest eigenvalue of a normalized Laplacian matrix we

can cluster z along the graph defined by the similarity matrix, leading to normalized cuts when

used for image segmentation. Also, Belkin and Niyogi [4] showed that this problem is equivalent to

minimizing (4.4) under linear constraints. In fact, the similarity term works as a generative term

which selects boxes that cluster well together [45].

Although discriminative learning techniques such as support vector machines and ridge

regression has been widely used on many supervised problems in which there are know labels, they

can be used in this unsupervised case where the labels of boxes are unknown [3, 49]. Motivated

by [22], we consider the ridge regression objective function for boxes:

min
w∈Rd, c∈R

1

nb

n∑
j=1

m∑
k=1

∥zj,k − wxj,k − c∥22 −
κ

d
∥w∥22 ,

where w is the d dimensional weight vector of the classifier, and c is the bias. This cost function is

being used among discriminative cost functions because the ridge regression problem has a explicit

(closed form) solution for weights w and bias c which implies the quadratic function in the box

labels [3]:

fD(z) := zTAz, (4.5)

where

A =
1

nb
Πnb

(
Inb
−X(XTΠnb

X + nbκInb
)−1XT

)
Πnb

, (4.6)

is the discriminative clustering term and Πnb
= Inb − 1

nb
1nb

1T
nb

in (4.6) is the centering projection

matrix. Note that this quadratic term allows us to utilize a discriminative objective function to

penalize the selection of boxes whose features are not easily linearly separable from other boxes.

Summing up our results in (4.2), (4.3), (4.4), and (4.5), the optimization problem to select

56

the best box in each image is given by

min
z

zT (L+ µA)z− λ zT log(m)

s.t

m∑
k=1

zj,k = 1, j = 1, . . . , n

z = (z1,1, . . . , z1,m, . . . , zn,1, . . . , zn,m)T ∈ {0, 1}nb ,

(4.7)

where parameter µ regularizes the trade-off between the quadratic terms (4.4) and (4.5), and pa-

rameter λ handles the trade-off between the linear term (4.3) and the quadratic terms (4.4) and

(4.5). Recall that the linear constraints ensures that one box from each image is selected in the

optimal solution. Note that Hastie, Tibshirani, and Friedman in [20] showed that A is a positive

semi-definite matrix. Also, since matrix L is positive semi-definite as well, the objective function of

(4.7) is convex.

4.2 Model Setup for Videos

Co-localization in a video is very similar to the image case, as a video is a sequence of images

that are called frames. While an object might not have an extreme change in size, shape, color, etc

in two frames in row, co-localization in a video could be a simpler task at some point. In this section

we describe the localization of a common object in a set of videos. In fact, if V = {V1, V2, . . . , Vn}

is a set of n given videos, we explore an approach to localize a common object in each frame of

each video. More precisely, we consider Ii = {Ii1, Ii2, . . . , Iili} to be the temporally ordered set of

frames of video Vi. Here Iij is the i-th frame of the j-th video and li is the total number of frames,

or the length of Vi for i = 1, . . . , n and j = 1, . . . , li. Similar to what we did in image case, we set

Bi,j to be the set of m generated candidate boxes, using objectness [1], for j-th of i-th video. Then,

considering li frames in video i and m boxes in each frame, we set nv
b =

∑n
i=1 lim to be the total

number of boxes in V, the set of all videos.

Note that, if we set I = {I1, I2, . . . , In} to be the ordered set of all frames in V, model (4.7)

returns a single box in each frame (image) as an optimal solution. Although the objective function

of this model capture the box prior, similarity, and discriminability within different videos, as we

can define a more efficient similarity mapping withing boxes in the sequence of frames in a video.

57

4.2.1 Temporal Consistency In Frames of a Video

As discussed earlier in this section, objects in consecutive frames in video data are less likely

to change drastically in appearance, position, and size. This is a motivation to use a separate prior

for frames or images in video case. Temporal consistency [2, 5, 19, 40, 42, 46, 50] is a powerful prior

that is often leveraged in video tasks such as tracking [23]. In this approach, in consecutive frames,

boxes with great difference in size and position should be unlikely to be selected together. To this

end, a simple temporal similarity measure is defined between two boxes bi and bj from consecutive

frames with:

stemporal(bi, bj) := exp

{
−
∥∥bcenteri − bcenterj

∥∥
2
−

∥∥∥∥∥
∣∣bareai − bareaj

∣∣
max(bareai , bareaj)

∥∥∥∥∥
2

}
. (4.8)

A few comments comes in place about the prior defines in (4.8). First, bareai is the vector of

the pixel area of box bi and bcenteri are the vectors of the center coordinates of box bi, normalized

by the width and height of the frame. Second, the metric defined in (4.8) is a similarity metric

that is defined between all pairs of boxes in adjacent frames. From this metric we can define a

weighted graph Gi for video Vi for i = 1, 2, . . . , n with nodes being the boxes in each frame and

edges connecting boxes in consecutive frames and weights of edges defined as temporal similarity in

(4.8). Figure 4.4 is a graphical representation of graph Gi. For small values of similarity measure

with some threshold we disconnect the nodes and remove the edge. Finally, as long as we can create

a weighted graph with boxes, any similarity measure other than the temporal consistency in (4.8)

can be used to weight the edges between two boxes, which makes the temporal framework pretty

flexible.

Let us define

St(i, j) =

 stemporal(bi, bj) if frames i and j are adjacent

0 otherwise

to be the similarity matrix define by the temporal similarity measure, where bi and bj are any two

boxes in the set of all boxes in V. Similar to our approach to obtain (4.1), with St we can compute

58

the normalized Laplacian

U = Inv
b
−D−1/2StD

−1/2, (4.9)

where D is the diagonal matrix composed of the row sums of St. This matrix encourages us to select

boxes that are similar based on the temporal similarity metric (4.8).

Figure 4.4: Nodes (blue circles) represent candidate boxes in each frame, and the directed edges
between nodes are weighted by a temporal similarity metric (e.g. 4.8) that measures the similarity
in size and position of boxes. To reduce the dimension of the graph, edges with low similarity are
removed to limit the number of possible paths through the graph from the first to the last frame.
The magneta edges represent the optimal path in this example. Image is from [23].

4.2.2 Video Model Formulation

As we discussed above, temporal similarity suggests a weighted graph Gi for video Vi for

i = 1, 2, . . . , n. In fact, a valid path in Gi from the the first to the last frame in Vi corresponds to

feasible boxes chosen in each frame of Vi. This motivates us to define a binary variable to be on

when there is an edge between any two nodes in Gi and off otherwise. In better words, we define

the binary variable yi,j,k for video i and boxes bj and bk in Vi as

yi,j,k =

 1 if boxes bj and bk contain the common object

0 otherwise.

In fact, variable yi,j,k corresponds to the existence of edge between boxes bj and bk in Vi. Also,

we define the binary variable zi,j,k to be 1 if the box bk in frame j of video i contains the common

object, and 0 otherwise. A type of constraint that we need to consider here is the fact that there

might exist an edge between boxes bj and bk only if they are boxes in two consecutive frames. Then,

59

for a typical box bk in frame j of video Vi, we define index sets p(kj) and c(kj) to be the set of

indices of parents and children boxes in frames j + 1 and j − 1, respectively, that are connected to

bk in frame j in the graph Gi. Therefore, a required set of constraints for localization in video case

are defines by:

zi,j,k =
∑

l∈p(kj)

yi,l,kj =
∑

l∈c(kj)

yi,kj ,l, i = 1, . . . , n, j = 1, . . . , li, k = 1, . . . ,m. (4.10)

The other set of constraints, which are quite similar to the image co-localization case, are

the set of constraints restricting each frame of each video to has only one box that contains the

common object. These constraints are defined by:

m∑
k=1

zi,j,k = 1, i = 1, 2, . . . , n, j = 1, 2, . . . , li. (4.11)

Finally, we define the vectors of variables z = (z1,1,1, z1,1,2, . . . , zi,j,k, . . . , zn,ln,m)T ∈ {0, 1}nv
b

where nv
b = m

∑n
i=1 li. Then if we combine the temporal terms defined by (4.9) with the terms in

the objective function of the original image model (4.7), then with constraint defines in (4.10) and

(4.11), we obtain the following optimization formulation to select the box containing the common

object in each frame of video:

min
z, y

zT (L+ µA+ µtU)z− λ zT log(m)

s.t.

m∑
k=1

zi,j,k = 1, i = 1, 2, . . . , n, j = 1, 2, . . . , li,

zi,j,k =
∑

l∈p(kj)

yi,l,kj
=

∑
l∈c(kj)

yi,kj ,l

i = 1, . . . , n, j = 1, . . . , li, kj = 1, . . . ,m,

yi,s,t ∈ {0, 1}, i = 1, . . . , n, s, t = 1, . . . ,m

z = (z1,1,1, z1,1,2, . . . , zi,j,k, . . . , zn,ln,m)T ∈ {0, 1}n
v
b ,

(4.12)

where µt is the trade-off weight for the temporal Laplacian matrix. Note that with the new objective

function in problem (4.12) the extra constraint (4.10) in video case is necessary and without that

the temporal Laplacian matrix would lead the solution to an invalid path. This formulation allows

us to incorporate temporal consistency into the image model.

60

4.3 Optimization

The formulation (4.7) obtained to find the best box in each image of the set of the given

images is a standard binary constrained quadratic problem. The only issue that makes this problem

a non-convex problem are the binary constraints. Relaxing these constraints to the continuous linear

constraints lead the problem to the convex optimization problem and can be solved efficiently using

standard methods. In fact, first order methods such as like Frank-Wolfe method that we discussed in

previous chapters can handle the relaxed problem efficiently as they linearize the quadratic objective

function and use a linear optimization oracle in each iteration.

Denoting the feasible region of the problem (4.12) by P, we can follow a similar approach for

this problem as we did for (4.7). We can relax the discrete non-convex set P into the convex hull, or

the integer hull for this specific case, conv(P). Although standard algorithms such as interior point

methods can be applied to solve this problem, but as the number of videos increases to hundreds

and the dimension of the problem increases exponentially, such problems with complexity of O(N3)

with number of boxes, would perform very weakly. Similarly, for the relaxation of the video problem

we will show in our implementations section that suggested first order methods perform efficiently.

We will also propose a first order method later in this chapter and will show that it performs better

than other first order methods that have been applied to this problem.

Note that, the constraints defining the set P are separable in each video. In fact, for each

video, these constraints are equivalent to the constraints of the shortest-path problem. This implies

that the linear optimization step appears in each iteration of the first order methods are actually

shortest-path problems that can be solved efficiently using dynamic programming.

Recall that Frank-Wolfe algorithm is a first order method that in each of its iteration updates

the new point toward a direction by calling a linear optimization oracle. This objective function

of this linear optimization is in fact a linear approximation of the objective function of (4.7), and

(4.12). Frank-Wolfe algorithm specifically results in a simple linearizations with integer solution for

the image and video co-localization optimization problems. For the image model, the linearlized

cost function is separable for each image, and we can efficiently find the best integer solution with

some threshold for this problem. For the video model also, the cost function and the constraints are

separable for each video and optimizing the linearized function over the feasible region results in the

shortest-path problem for each video.

61

In the following section we will propose an algorithm that can be applied on image and

video co-localization optimization problems efficiently and we finally compare the performance of

the proposed algorithm to the algorithms that are applied to these problems.

4.4 Proposed Algorithms

Conditional Gradient Sliding (CGS) algorithm [30], as we discussed in chapter 1, is a first

order projection free method for solving convex optimization problems in which the feasible region

is a convex and compact set. The major advantage of the CGS algorithm is that it skips gradient

evaluation from time to time and uses the same information within some inner iterations. This

property of the CGS algorithm becomes helpful when the dimension of the problem as size of the

variable is relatively large and computations become more and more expensive.

As showed in previous chapters, CGS algorithm and its proposed variant, Conditional Gra-

dient Sliding with Linesearch (CGS-ls) perform very well in many practical instances. Although the

CGS and CGS-ls algorithms out-perform the Frank-Wolfe (FW) algorithm many cases, the variants

of FW, such as Away-steps FW 1 or Pairwise FW 1 converge faster to the optimal value than CGS

for the image and video co-localization problem as we will show this in numerical experiments later

in this chapter.

Motivated from the CGS algorithm and also Away-steps and pairwise FW methods, we

propose an algorithms called Away-Steps Conditional Gradient Sliding (ACGS) and Pairwise Condi-

tional Gradient Sliding (PCGS) that perform very well for image and video co-localization problems.

ACGS and PCGS methods have iterations of the CGS method but the direction to update the new

point in each iteration is motivated from the away steps and pairwise steps in the Away-steps and

Pairwise FW. We will also show that the ACGS and PCGS out-perform all of the variants of the

FW applied to the image and Video co-localization problem.

4.4.1 Away-Steps and Pairwise Conditional Gradient Sliding

The basic scheme of the ACGS and PCGS methods is obtained by performing a new search

direction in CGS method, if the new direction leads the algorithm to smaller Wolfe gap. Also, similar

to the CGS algorithm, the classical FW method (as FW procedure) is incorporated in this algorithm

to solve the projection subproblems in the accelerated gradient (AG) with some approximations. The

62

ACGS and PCGS algorithms are described as in 12 and 13.

Algorithm 12 The Away-Steps Conditional Gradient Sliding Algorithm

Initial point x0 ∈ A and iteration limit N .
Let βk ∈ Rn

++, γ1 = 1,S(0) := {x0}, and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.
for k = 1, . . . , N do

zk = yk−1 + γk(xk−1 − yk−1)

xk = FW(f ′(zk), xk−1, βk, ηk),

dCGS
k = xk − yk−1,

vk = argmax
v∈S(t)

⟨f ′(yk−1), v⟩ , (4.13)

daway
k = yk−1 − vk (4.14)

if
〈
−f ′(yk−1), d

CGS
k

〉
≤ ϵ then return yk−1 (4.15)

if
〈
−f ′(yk−1), d

CGS
k

〉
≥ ⟨−f ′(yk−1), d

away
k ⟩ , then (4.16)

dk := dCGS
k

γmax := 1 (4.17)

else

dk := daway
k

γmax = αvk/(1− αvk) (4.18)

end if (4.19)

γk+1 ∈ argmin
γ∈[0,γmax]

f(xk + γdk) (4.20)

yk = yk−1 + γk+1dk

S(k) := {v ∈ A; α(k)
v > 0}

end for
procedure u+ = FW(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let wt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
⟨g + β(ut − u), ut − x⟩

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− α̃t)ut + α̃twt, with

α̃t = min

{
1,
⟨β(u− ut)− g, wt − ut⟩

β ∥wt − ut∥2

}

5. Set t← t+ 1 and go to step 2.

end procedure

63

Note that the purpose of the proposed algorithm is to be applied to the image and video

co-localization problems (4.7) and (4.12). The objective function in both problems, as discussed

before, are convex functions, and the feasible region is a set of finite binary vectors called atoms in

Rd for some d. We denote this set by A and its convex hull conv(A) byM. As A is finite,M is a

polytope.

The first difference between the AGCS(PCGS) and the CGS method is that we incorporate

the set S(k) of active atoms in the ACGS(PCGS) algorithm. This set keeps record of atoms (integer

points) in A that are being used for the away direction daway
K at each iteration such that the point

yk at current iteration is the sum of corners in S(k) reweighted by α(k). This direction that is given

in (4.14), is defined by finding the atom vk in S(k) that maximized the potential of descent given

by ⟨−f ′(yk−1), yk−1 − vk⟩. Note that obtaining vk in (4.13) is fundamentally easier as the linear

optimization is over the S(k), the active set of possibly small finite set of points.

The second difference is in the way we update the step-size to update the new iteration point.

As we observe in (4.20) we incorporate a line-search method to obtain a step-size with maximum

reduction in the objective toward a prespecified direction from the point at current iteration. With

γmax defined in (4.17) and (4.18) as the maximum step-size for the line-search step the algorithm

guarantees that the new iterates yk = yk−1+γmaxd
away
k stays feasible in each iteration. Note that the

parameter γk in CGS algorithm is required to be set up in appropriate way to maintain the feasibility

in each iteration. Such set ups are represented in Theorem 8 and Corollary 5 as γk = 3/(k+2) and

γk = 2/(k+1) and in fact, we can us these set ups for CGS steps in step (4.17) as the upper bound

for γk instead of 1 in line-search step (4.20). Also, it is easy to check that for the special case of the

image and video co-localization problem in which the objective is a convex quadratic function γk in

step (4.20) has the closed form

γk = −dT∇f(x)
dTQd

,

if Q ⪰ 0 is the quadratic term in the objective. This value is projected to 0 or γmax if is outside of

the range [0, γmax] for (4.20) case.

Finally, we incorporate the Wolfe gap as an stopping criterion in the ACGS and PCGS

algorithms. In fact, at steps (4.15) and (4.21), the algorithms checks if they have reached the given

threshold to stop before the preset max number of iterations N . As in classical FW, the Wolfe gap

64

Algorithm 13 The Pairwise Conditional Gradient Sliding Algorithm

Initial point x0 ∈ A and iteration limit N .
Let βk ∈ Rn

++, γ1 = 1,S(0) := {x0}, and ηk ∈ R+, k = 1, 3 · · · , be given and set y0 = x0.
for k = 1, . . . , N do

zk = yk−1 + γk(xk−1 − yk−1)

xk = FW(f ′(zk), xk−1, βk, ηk),

dCGS
k = xk − yk−1,

vk = argmax
v∈S(t)

⟨f ′(yk−1), v⟩ ,

if
〈
−f ′(yk−1), d

CGS
k

〉
≤ ϵ then return yk−1 (4.21)

dPCGS
k = xk − vk, (4.22)

γmax = αvk , (4.23)

γk+1 ∈ argmin
γ∈[0,γmax]

f(xk + γdPCGS
k)

yk = yk−1 + γk+1dk

S(k) := {v ∈ A; α(k)
v > 0}

end for
procedure u+ = FW(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let wt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
⟨g + β(ut − u), ut − x⟩

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate the procedure.

4. Set ut+1 = (1− α̃t)ut + α̃twt, with

α̃t = min

{
1,
⟨β(u− ut)− g, wt − ut⟩

β ∥wt − ut∥2

}

5. Set t← t+ 1 and go to step 2.

end procedure

is an upper bound on the unknown suboptimality and from the convexity of the objective f we have

f(xk)− f(x⋆) ≤ ⟨−f ′(xk), x
⋆ − yk−1⟩ ≤ ⟨−f ′(xk), xk − yk−1⟩ ≤ ϵ.

Note that for the image and video co-localization problem with binary decision variables in

65

a CGS step we have

S(k+1) =

 {xk} if γk = 1

S(k) ∪ {xk} otherwise.

Also, for v ∈ S(k) \ {sk} we have

α(k+1)
st := (1− γk)α

(k)
st + γk and α(k+1)

v := (1− γk)α
(k)
v .

On the other hand, for an away step we have

S(k+1) =

 S
(k) \ {vk} if γk = γmax

S(k) otherwise.

This step is called a drop step. Also, for v ∈ S(k) \ {vk} we have

α(k+1)
vt := (1 + γk)α

(k)
vt + γk and α(k+1)

v := (1 + γk)α
(k)
v .

ACGS and PCGS algorithms are slightly different in the direction that they use to update

the new point at each iteration. More precisely, steps (4.16) to (4.19) in Algorithm 12 are replaced

with steps (4.22) and (4.23) in Algorithm 13. Similar to the Paiwise FW, the idea here is to only

move weight from the away atom vk to the CGS atom xk and keep all other α weight unchanged.

In other words

α(k+1)
vt := α(k)

vt − γ and α(k+1)
xk

:= α(k)
sk

+ γ,

for some γ ≤ γmax := α
(k)
vt .

An important property of the formulation (4.7) and (4.12) is that their constraints are

separable for each image and video. This helps computation to be more efficient if we use parallel

computing. This, however, is a property of any first-order method and practically it is very memory

efficient. In addition, as a solution to the convex relaxation is not necessarily an integer solution

optimal or feasible to the original problem, we need to come up with a solution as close as possible

to the obtained relaxation optimum. In image and video co-localization case, the most natural way

66

of finding such a solution is to solve

min
p∈P

∥p− y∥22 , (4.24)

where P is the feasible region of the original problem and y is the solution to the relaxed problem.

It is easy to check that the projection problem (4.24) is equivalent to

max
p∈P

⟨p, y⟩ ,

which for the video model is just a shortest path problem that can be solved efficiently using dynamic

programming.

4.5 Experimental Results

In this section we experiment the proposed Algorithm 12 to the problems introduced in

(4.7) and (4.12) for image and video co-localization task. Recall that these problems are quadratic

problems over the convex hull of paths in a network, the linear minimization oracle in first order

methods is equivalent to find a shortest path in the network. We compare the performance of the

proposed algorithm with the works in [23] and [24] on FW algorithm and its variants for the similar

problem. For this comparison we reuse the codes available and shared for [23,24,45] and the included

dataset of airplanes consist of 660 variables.

We begin this section by reviewing the performance of Away steps Frank-Wolfe (AFW) and

its comparison to the solvers such as Gurobi and Mosek. These results are derived and shown in [23]

and the goal in this section is to show how AFW outperforms other methods for our problem of

interest. In [24], however, Joulin A., Tang K., and Fei-Fei L. showed that their proposed Pairwise

Frank-Wolfe (PairFW) algorithm outperforms any other variants of FW in solving this problem. We

will end this section by showing that our proposed ACGS algorithm performs better any first order

methods that have been utilized to solve the video co-localization problem.

4.5.1 FW v.s. Mosek and Gurobi

Algorithm 14 is a variant of FW algorithm proposed in [23] in which the authors examined

it on two datasets, the PASCAL VOC 2007 dataset [14] and the Youtube-Objects dataset [43]. This

67

algorithm is in fact the AWF Algorithm 4 introduced in Chapter 1 with some slight changes and

some extra rounding steps. Also, the set D in this algorithm is conv(P) the convex hull of the feasible

region of problems (4.7) or (4.12). Their implementation of Algorithm 14 was coded in MATLAB

and they compare it to two standard Quadratic Programming (QP) solvers, Mosek and Gurobi on a

single-core 2.66GHz Intel CPU with 6GB of RAM. In addition, they set µ = 0.4 for the image model

and µ = 0.6 for the video model and µt = 1.8 and λ = 0.1, for both image and video models. They

extracted 20 objectness boxes from each image and sample each video every 10 frames as there is

little change frames in short amount time.

Algorithm 14 Frank-Wolfe Algorithm with Away Steps and Rounding [23]

Initialization y0 ∈ D, ϵ > 0, k = 0, z = y0,S0 = {y0}, α0 = {1}.
while duality-gap(z) ≥ ϵ do

k ← k + 1;

yk ← argmin
y∈D

⟨y,∇f(z)⟩ (FW direction);

xk ← argmax
y∈Sk−1

⟨y,∇f(z)⟩ (away direction);

if ⟨yk − z,∇f(z)⟩ ≤ ⟨z − xk,∇f(z)⟩ then

dk = yk − z;

γmax = 1;

else

dk = z − xk;

γmax = αk(xk);

end

γk = min
γ∈[0,γmax]

f(z + γdk);

Sk, αk ← update active set(dk, γk);

Update z ← z + γkdk;

if f(yk) < f(y⋆) then

y⋆ ← yk (rounding 1);

end

end while
yr ← argmaxy∈D ⟨y, z⟩;
if f(yr) < f(y⋆) then

y⋆ ← yr (combining rounding);
end

The stopping criterion of Algorithm 14 is based on the relative duality gap. This criterion,

that is given in function duality-gap(z) in the algorithm, is defined as d = (f − g)/g, where f is the

objective function and g is its dual. In the implementation of this algorithm, authors consider two

68

values 1e - 2 and 1e - 3 for the stopping threshold ϵ.

Figures 4.5 presents some comparisons of the Algorithm 14 as a variant of FW algorithm

with QP solvers Mosek and Gurobi in logarithmic scale. Indeed, this comparison is based on the CPU

time performance of the algorithms depending on the number of images and videos, or in better

words, the dimension of the decision variables. This time is the time that takes that algorithms

reach a duality gap less than the threshold ϵ. As we can observe from these plots, the variant of FW

algorithm with away steps outperforms the standard QP solvers Mosek and Gurobi.

The reason that we review and represent these comparisons directly from [23]local is that

in our implementations in next section we will only compare our proposed algorithms to some other

first order methods. These first order methods include the AWF algorithm that we already know

from this section that it outperforms standard QP solvers.

Figure 4.5: ”Ours” in the legend of these plots refers to the Algorithm 14. Note that for ϵ = 1e− 3
Algorithm 14 performs 100 times faster than standard solvers for more than 20 videos. Plots are
from [23].

A visualization of image co-localization by solving the problem (4.7) for images on PASCAL

Visual Object Classes 2007 dataset [14] is shown in Figure 4.6. This dataset provides standard-

ized image data of 20 objects for object classes recognition along with annotations for images and

bounding box and object class label for each object. Challenges and competitions have been used

to recognize objects from a number of visual object classes in realistic scenes.

The YouTube-Objects dataset [43] consists of YouTube videos collected for 10 classes from

PASCAL [14]: ”aeroplane”, ”bird”, ”boat”, ”car”, ”cat”, ”cow”, ”dog”, ”horse”, ”motorbike”, and

69

Figure 4.6: Example co-localization results on PASCAL07. From left to right, every two images
belong to the same classes. Image is from [23].

”train”. A visualization of video co-localization by solving the problem (4.12) for videos on this

dataset is also shown in Figure 4.7. Although authors in [23] did the study on multiple objects of

this dataset, in our implementations our focus will be on the ”aeroplane” object class.

Figure 4.7: Example co-localization results on YouTube-Objects for the video model 4.12 with
optimal green boxes and the image model 4.7 with optimal red boxes. Each column corresponds to
a different class, and consists of frame samples from a single video. Image is from [23].

70

4.5.2 Implementations

Knowing that AFW Algorithm 14 outperforms the standard QP solvers Mosek and Gurobi

from the works in [23], in this section we compare our proposed variants of the CGS algorithm,

the ACGS Algorithm 12 and the PCGS Algorithm 13 to some other first order methods, including

the AFW method. More precisely, we will compare the performance of our algorithms to all of

the variants of the FW namely, the FW Algorithm 3 itself, the FW Algorithm 14 with away steps

(AFW), and the pairwise FW Algorithm 5. We also compare our algorithms to the original CGS

Algorithm 6. These comparisons include the duality gap, CPU time, and objective function value

versus the iterations.

The implementations are over the YouTube Objects dataset [14] explained in previous sec-

tion, and specifically its ”aeroplane” class. We obtain the dataset for this class and also the codes for

AFW and Pairwise FW algorithms available in the repositories for [23,24,45]. We only consider the

task of video co-localization with the problem formulation defined in (4.12) for this implementation.

All algorithms are coded in MATLAB and run on a computer with Interl Core i5-6500 CPU 3.2

GHz processor with 16 GB of RAM.

In our implementations, we set all algorithms to stop either after the maximum number of

iterations or after reaching the Wolfe duality gap threshold. We set the threshold to ϵ = 1e− 5 and

the max number of iterations to 2000 iterations. All of the parameters exist in (4.12) are set the

same as in [24] for consistency in the comparison.

Figure 4.8: On the left we observe the difference in gap reduction and on the right the objective
value improvement, both with iteration increments. Here ϵ = 1e− 5 and max number of iteration is
2000.

Note that both original versions of FW and CGS algorithms do not reach the desired duality

71

gap before the preset 2000 max number of iterations. Also, the AFW algorithm takes 628 iterations,

the Pairwise FW takes 436 iterations, the ACGS takes 84 iterations, and PCGS takes 82 iterations

to reach the threshold for the duality gap.

As we observe in Figure 4.8 both proposed variants of CGS algorithm, the ACGS and PCGS

algorithms outperform the FW algorithms and its variants as well as the original CGS algorithm.

The performance of the algorithms in terms of the CPU time versus iterations increments also is

represented in Figure 4.9. As we observe in this figure the CPU time per iteration of AFW and

ACGS and PCGS are quite similar, although the ACGS and PCGS algorithms reach the gap much

earlier than the AFW algorithm.

Figure 4.9: The difference in CPU time of the algorithms versus the iteration increments with
ϵ = 1e− 5 and max number of iteration is 2000.

In addition, while FW algorithm requires one linear optimization oracle per iteration, its

CPU time per iteration is not significantly better than the other algorithms. Also, note that out of

84 iteration of the ACGS algorithm, it chooses the away direction in 34 iteration which improves

the performance of CGS (with more than 2000 iterations) for this problem significantly.

Finally, authors in [24] proved, for the first time, the global linear convergence of the variants

of FW algorithms, AFW and Pairwise FW, under strong convexity of the objective. One potential

research work related to the current chapter is figure out the convergence of the proposed algorithms

12 and 13.

72

Appendices

73

Appendix A

Supplementary Material

In this chapter we state the convergence analysis of algorithms introduced in introduction

chapter. For each algorithm we will state the mail convergence theorem and their parameter setting,

unless the algorithm is parameter free.

Definition 1. A function f : Rn → R is a convex function if for any x, y ∈ Rn and any λ ∈ [0, 1],

we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y. (A.1)

Theorem 4. A smooth function f : Rn → R is convex if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ Rn. (A.2)

Proof. Let us fix any x, y ∈ Rn, and denote xλ := λx + (1 − λ)y. Suppose that (A.2) holds. Then

for any λ ∈ [0, 1] we have

f(x) ≥ f(xλ) + ⟨∇f(xλ), x− xλ⟩ and f(y) ≥ f(xλ) + ⟨∇f(xλ), y − xλ⟩.

74

Noting that x− xλ = (1− λ)(x− y) and y − xλ = λ(y − x), using the above relations, we have

λf(x) + (1− λ)f(y) ≥ λ [f(xλ) + (1− λ)⟨∇f(xλ), x− y⟩] + (1− λ) [f(xλ) + λ⟨∇f(xλ), y − x⟩]

= f(xλ), ∀λ ∈ [0, 1].

Therefore (A.1) holds and f is convex. Let us consider the other direction and suppose that (A.1)

holds. Then for any λ ∈ [0, 1) we have

f(xλ) ≤ λf(x) + (1− λ)f(y),

or

f(y) ≥ f(xλ)− λf(x)

1− λ
= f(x) +

f(xλ)− f(x)

1− λ
. (A.3)

Letting λ→ 1, we have

lim
λ→1

f(xλ)− f(x)

1− λ
= − lim

λ→1

f(y + λ(x− y))− f(x)

λ− 1
= − d

dλ

∣∣∣
λ=1

f(y + λ(x− y)) = −⟨f(x), x− y⟩.(A.4)

Combining (A.4) and (A.3) we obtain (A.2) and conclude the theorem.

Corollary 2. Let f be a convex smooth function. We have,

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥y − x∥2, ∀x, y ∈ Rn. (A.5)

A.1 Projected Gradient Descent Method

In this section we present the analysis of the convergence of PGD Algorithm 1.

Theorem 5. Suppose that f : Rn → R is a smooth convex function. If the parameters ηk in

Algorithm 1 satisfy

ηk ≡ η ≥ L, (A.6)

75

then we have

f(x̄N)− f∗ ≤ η

N

1

2
∥x0 − x∗∥22 ,

where

x̄N :=
1

N

N∑
k=1

xk.

Proof. Since f is a smooth convex function, from the Corollary 2 and Theorem 4 we have

f(xk) ≤f(xk−1) + ⟨∇f(xk−1), xk − xk−1⟩+
L

2
∥xk − xk−1∥22

=f(xk−1) + ⟨∇f(xk−1), x− xk−1⟩+ ⟨∇f(xk−1), xk − x⟩+ L

2
∥xk − xk−1∥2 (A.7)

≤f(x) + ⟨∇f(xk−1), xk − x⟩+ η

2
∥xk − xk−1∥2 (A.8)

≤f(x) + η

2

(
∥xk−1 − x∥2 − ∥xk−1 − xk∥2 − ∥xk − x∥2

)
+

η

2
∥xk − xk−1∥2

=f(x) +
η

2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
,

where the equality (A.7) is from (A.6), inequality (A.8) is from convexity of f . Hence,

f(xk) ≤ f(x) +
η

2

(
∥xk−1 − x∥2 − ∥xk−, x∥2

)
.

Summing the above inequality up from k = 1 to N , we obtain

N∑
k=1

f(xk) ≤ Nf(x) +
η

2

(
∥xk−1, x∥2 − ∥xk − x∥2

)
≤ Nf(x) +

η

2
∥x0 − x∥2 .

Setting x = x∗ in above relation and using the convexity of f , we have

f(x̄N) ≤ 1

N

N∑
k=1

f(xk) ≤ f(x∗) +
η

2N
∥x0 − x∗∥2 .

76

Therefore,

f(x̄N)− f∗ ≤ η

2N
∥x0 − x∗∥2 .

From the above theorem, we observe that in order to compute an approximate solution x̄N

such that f(x̄N)− f∗ ≤ ε, the number of iterations that are required is bounded by O
(
L∥x0−x∗∥2

/ϵ
)
.

A.2 Nesterov’s Accelerated Gradient Descent Method

In this section we present the analysis of the convergence of NAGD Algorithm 2. Theorem

6 gives a general form of an upper bound on f(yk)− f∗ where yk is the the output of the Algorithm

2 at iteration k and f∗ is the optimal value.

Theorem 6. Suppose that yk and zk in Algorithm 2 satisfy

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
Lk

2
∥yk − zk∥2 (A.9)

for some Lk > 0, and that the parameters in Algorithm 2 satisfy

γ1 = 1, γk ∈ [0, 1), and ηk ≥ Lkγk, ∀k ≥ 1. (A.10)

Letting Γk be a parameter that satisfies Γ1 > 0 and

Γk = (1− γk)Γk−1, ∀k > 1, (A.11)

then we have

f(yk)− f∗ ≤ Γk

k∑
i=1

γiηi
2Γi

[
∥xi−1 − x∗∥2 − ∥xi − x∗∥2

]
,

where x∗ is a solution to (1.1).

77

Proof. Noting (1.6) and (1.8) we have yk − zk = γk(xk − xk−1), and also

yk − zk = yk − yk−1 + yk−1 − zk

(1.8)
= γk(xk − yk−1) + yk−1 − zk

= γk [(xk − x) + (x− zk) + (zk − yk−1)] + yk−1 − zk

= (1− γk)(yk−1 − zk) + γk ((x− zk) + (xk − x))

= (1− γk)(yk−1 − zk) + γk (xk − zk) .

Using above the inequality, (A.9) becomes

f(yk) ≤ f(zk) + (1− γk)⟨∇f(zk), yk−1 − zk⟩+ γk⟨∇f(zk), xk − zk⟩+
Lkγ

2
k

2
∥xk − xk−1∥2

= (1− γk)[f(zk) + ⟨∇f(zk), yk−1 − zk⟩] + γk[f(zk) + ⟨∇f(zk), x− zk⟩+ ⟨∇f(zk), xk − x⟩]

+
Lkγ

2
k

2
∥xk − xk−1∥2, ∀x ∈ X .

Let us make three observations. First, by (A.5), we have

f(zk) + ⟨∇f(zk), yk−1 − zk⟩ ≤ f(yk−1),

and

f(zk) + ⟨∇f(zk), x− zk⟩ ≤ f(x).

Second, we have

⟨∇f(zk), xk − x⟩ ≤ ηk
2

[
∥xk−1 − x∥2 − ∥xk−1 − xk∥2 − ∥xk − x∥2

]
, ∀x ∈ X .

78

Summarizing the two observations, we have

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) +
γkηk
2

[
∥xk−1 − x∥2 − ∥xk−1 − xk∥2 − ∥xk − x∥2

]
+

Lkγ
2
k

2
∥xk−1 − xk∥2

= (1− γk)f(yk−1) + γkf(x) +
γkηk
2

[
∥xk−1 − x∥2 − ∥xk − x∥2

]
− 1

2
γk(ηk − Lkγk) ∥xk−1 − xk∥2

≤ (1− γk)f(yk−1) + γkf(x) +
1

2
γkηk

[
∥xk−1 − x∥2 − ∥xk − x∥2

]
.

Here the last inequality is from (A.10). Summing up the above two inequalities, we have

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) +
1

2
γkηk

[
∥xk−1 − x∥2 − ∥xk − x∥2

]
.

In particular, letting x = x∗ where x∗ is a solution to (1.1), we can reformulate the above to

f(yk)− f∗ ≤ (1− γk)(f(yk−1)− f∗) +
1

2
γkηk

[
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

]2
.

Dividing both sides by Γk, and using (A.11) and (A.10), we have

1

Γk
(f(yk)− f∗) ≤ 1

Γk−1
(f(yk−1)− f∗) +

γkηk
2Γk

[
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

]
, ∀k > 1.

Also, when k = 1, noting that γ1 = 1 by (A.10), we have

1

Γ1
(f(yk)− f∗) ≤ γ1η1

2Γ1

[
∥x0 − x∗∥2 − ∥x1 − x∗∥2

]
.

Using induction on the two inequalities above, we conclude that

1

Γk
(f(yk)− f∗) ≤

k∑
i=1

γiηi
2Γi

[
∥xi−1 − x∗∥2 − ∥xi − x∗∥2

]
.

Having a general upper bound from Theorem 6 we can define a setting for the parameters

of Algorithm 2 in Corollary 3 to get the optimal convergence results.

79

Corollary 3. If we set

γk =
2

k + 1
, ηk =

2L

k

in Algorithm 2, then

f(yk)− f∗ ≤ 2L

k(k + 1)
∥x0 − x∗∥ .

Proof. Clearly (A.9) and (A.10) hold, and Γk = 2/k(k+1) satisfies (A.11) with Γ1 = 1. Therefore, by

Theorem 6, we have

f(yk)− f∗ ≤ 2

k(k + 1)

k∑
i=1

L
[
∥xi−1 − x∗∥2 − ∥xi − x∗∥2

]
=

2L

k(k + 1)

[
∥x0 − x∗∥2 − ∥xk − x∗∥2

]
.

Knowing that V (xk, x
∗) ≥ 0 we conclude

f(yk)− f∗ ≤ 2L

k(k + 1)
∥x0 − x∗∥2 .

From Corollary 3 we can see that in order to compute an approximate solution such that

f(yk)− f∗ ≤ ε, we need

k ≥

√
2L ∥x0 − x∗∥2

ε
.

Therefore, the iteration complexity upper bound is O(
√

1/ε). Note that the Nesterov’s accelerated

gradient method is optimal for solving smooth convex optimization with Lipschitz constant L [35].

A.3 Frank-Wolfe Method

In this section we present the analysis [15] of the convergence of FW Algorithm 3. We first

state a simple technical result that will be used in the analysis of the algorithm.

80

Lemma 3. Let wt ∈ (0, 1], t = 1, 2, · · · , be given. Also let us denote

Wt :=

 1, t = 1,

(1− wt)Wt−1, t ≥ 2.

Suppose that Wt > 0 for all t ≥ 2 and that the sequence {δt}t≥0 satisfies

δt ≤ (1− wt)δt−1 +Bt, t = 1, 2, · · · . (A.12)

Then for any 1 ≤ l ≤ k, we have

δk ≤Wk

(
1− wl

Wl
δl−1 +

k∑
i=l

Bi

Wi

)
.

Proof. Dividing both sides of (A.12) by Wt, we obtain

δ1
W1
≤ (1− w1)δ0

W1
+

B1

W1

and

δi
Wi
≤ (1− wi)δi−1

Wi
+

Bi

Wi
=

δi−1

Wi−1
+

Bi

Wi
∀i ≥ 2.

The result then immediately follows by summing up the above inequalities for i = 1 · · · , k and

rearranging the terms.

In the following theorem and corollary the notation below will be used:

Γk =

 1 if k = 1

(1− γk)Γk−1 if k ≥ 2.
(A.13)

Theorem 7. For parameters γk ∈ (0, 1) in Algorithm we have

f(yk)− f∗ ≤ LD2Γk

2

k∑
i=1

γ2
i

Γi
.

81

Proof. Fist, we can write (1.11) as yk = yk−1 + γk(xk − yk−1), so

yk − yk−1 = γk(xk − yk−1). (A.14)

Also, from (1.9) and (1.9) we observe that

yk − zk = yk − yk−1 + yk−1 − zk

(A.14)
= γk(xk − yk−1) + yk−1 − zk

= γk [(xk − x) + (x− zk) + (zk − yk−1)] + yk−1 − zk

= γk ((x− zk) + (xk − x)) + (1− γk)(yk−1 − zk).

(A.15)

Since f is a smooth convex function from Corollary (2) and also from (1.11) we have

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
L

2
∥yk − zk∥2 .

Now from (A.15), for any x ∈ X we have

f(yk) ≤ (1− γk) [f(zk) + ⟨∇f(zk), yk−1 − zk⟩]

+ γk [f(zk) + ⟨∇f(zk), x− zk⟩+ ⟨∇f(zk), xk − x⟩]

+
L

2
∥yk − zk∥2

= (1− γk)(f(zk) + ⟨∇f(zk), yk−1 − zk⟩)

+ γk(f(zk) + ⟨∇f(zk), x− zk⟩)

+ γk ⟨∇f(zk), xk − x⟩+ L

2
∥yk − zk∥2 .

Here we note that since xk is an optimal solution to the subproblem (1.10), then by optimality

condition we have

⟨∇f(zk), xk − x⟩ ≤ 0,

82

and also since f is a convex function we have

f(zk) + ⟨∇f(zk), yk−1 − zk⟩ ≤ f(yk−1)

and

f(zk) + ⟨∇f(zk), x− zk⟩ ≤ f(x).

In addition, from (1.9) and (1.11) we have yk − zk = γk(xk − xk−1). Summarizing all these

and using (1.3) we obtain

f(yk) ≤ (1− γk)f(yk−1) + γkf(x) +
Lγ2

k

2
D2,

or equivalently,

f(yk)− f(x) ≤ (1− γk)(f(yk−1)− f(x)) +
Lγ2

k

2
D2.

Dividing both sides of the above inequality by Γk for k ≥ 2 we obtain

f(yk)− f(x)

Γk
≤ (1− γk)

Γk
(f(yk−1)− f(x)) +

Lγ2
k

2Γk
D2.

Also, for k = 1 we have

f(y1)− f(x) ≤ LD2γ2
1

2
.

Summing up from 1 to k we conclude that

1

Γk
(f(yk)− f(x)) ≤ LD2

2

k∑
i=1

γ2
i

Γi
.

Note that the sequence of parameters γk in FW is conceptual and clearly there might be

many choices to set these parameters properly to get the best convergence result for this algo-

rithm. In Corollary 4 below we provide a setting for this parameter and prove the convergence rate

83

corresponding to our setting.

Corollary 4. In Algorithm 3, if we set the parameter γk = 2/(k+1), then

f(yk)− f∗ ≤ 2LD2

k + 1
. (A.16)

Proof. With γk defined in assumption we have

Γk =
2

k(k + 1)
. (A.17)

Using (A.17) we obtain

k∑
i=1

γ2
i

Γi
=

k∑
i=1

4

(i+ 1)2
× i(i+ 1)

2
=

k∑
i=1

2i

i+ 1
= 2(

k∑
i=1

1−
k∑

i=1

1

i+ 1
) ≤ 2k.

Therefore,

f(yk)− f∗ ≤ LD2

2
× 2

k(k + 1)
× 2k

=
2LD2

k + 1
.

Corollary 4 shows that the FW method computes an ϵ-solution to the problem (1.1) in

O(LD2
/ϵ) iterations. This means that in order to compute an ϵ solution, FW requires more evalua-

tions of∇f than NAGDmethod, which only requiresO(
√

1/ϵ) evaluations. This drawback is resolved

in conditional gradient sliding method [30]. In particular, conditional gradient sliding method re-

quires O(
√

1/ϵ) evaluations of ∇f(·) and O(1/ϵ) evaluations for linear optimization problems of form

(1.10). we will discuss the conditional gradient sliding method in later sections.

According to [25, 36] the number of evaluations of linear optimization problems of form

(1.10) can not be improved from the lower complexity bound O(1/ϵ). Also, it should be noted that

the FW does not require knowledge on the Lipschitz constant L, the norm ∥.∥, and diameter D.

In particular, if there exists a norm ∥.∥ that yields the smallest possible value of LD2, then the

convergence result (A.16) will follow such smallest value. In other words, the FW is a first-order

method that would automatically adapt to the best possible geometric properties of the problem.

84

A.4 Conditional Gradient Sliding Method

In this section we present the analysis [30] of the convergence of CGS Algorithm 6. We first

state a simple technical result that will be used in the analysis of the algorithm.

Lemma 4. Let {λi} and {ai} be sequences of nonnegative real numbers. Then for a fixed k,

1- If the sequence {λi} is a decreasing sequence, then

k∑
i=1

λi(ai−1 − ai) ≤ λ0a0.

2- If the sequence {λi} is an increasing sequence, then

k∑
i=1

λi(ai−1 − ai) ≤ λk max
0≤t≤k

at.

Proof. In order to prove part 1 we have

k∑
i=1

λi(ai−1 − ai) = −
k∑

i=1

λi(ai − ai−1)

= −
k∑

i=1

λiai +

k∑
i=1

(λi − λi−1)ai−1 +

k∑
i=1

λi−1ai−1

= −λkak −
k−1∑
i=1

λiai +

k∑
i=1

(λi − λi−1)ai−1 + λ0a0 +

k−1∑
i=1

λiai

= λ0a0 − λkak −
k∑

i=1

(λi−1 − λi)ai−1

≤ λ0a0.

Where the last inequality holds because {λi} is decreasing.

85

To prove the second part we have

k∑
i=1

λi(ai−1 − ai) = −λkal + λ0a0 +

k∑
i=1

(λi − λi−1)ai−1

≤ λ0a0 +

k∑
i=1

(λi − λi−1) max
0≤t≤k

at

= λ0a0 + (λk − λ0) max
0≤t≤k

at

≤ λk max
0≤t≤k

at.

Theorem 8 describes the main convergence properties of the above CGS method.

Theorem 8. Let Γk be defined in (A.13). Suppose that {βk} and {γk} in the CGS algorithm satisfy

γ1 = 1 and Lγk ≤ βk, k ≥ 1. (A.18)

(a) If

βkγk
Γk
≥ βk−1γk−1

Γk−1
, k ≥ 2, (A.19)

then for any x ∈ Xand k ≥ 1,

f(yk)− f(x∗) ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

,

where x∗ is an arbitrary optimal solution of (1.1) and DX is defined in (1.3).

(b) If

βkγk
Γk
≤ βk−1γk−1

Γk−1
, k ≥ 2,

then for any x ∈ Xand k ≥ 1,

f(yk)− f(x∗) ≤ β1Γk

2
∥x0 − x∗∥2 + Γk

k∑
i=1

ηiγi
Γi

,

86

(c) Under the assumptions either in part (a) or (b), the number of inner iterations performed at the

kth outer iteration can be bounded by

T :=

⌈
6βkD

2
X

ηk

⌉
∀k ≥ 1. (A.20)

Proof. To prove part (a) note that by (1.25) and (1.27) we have yk−zk = γk(xk−xk−1). Also, from

(1.27) we have

yk − zk = (1− γk)yk−1 + γkxk − zk

= (yk−1 − zk) + γk(xk − yk−1)

= (1− γk)(yk−1 − zk) + γk(xk − zk)

Using this and also (A.5) we have

f(yk) ≤ f(zk) + ⟨∇f(zk), yk − zk⟩+
L

2
∥yk − zk∥2

= (1− γk)(f(zk) + ⟨∇f(zk), yk−1 − zk⟩)

+ γk(f(zk) + ⟨∇f(zk), xk − zk⟩) +
Lγ2

k

2
∥xk − xk−1∥2

≤ (1− γk)f(yk−1) + γk(f(zk) + ⟨∇f(zk), xk − zk⟩) +
βkγk
2
∥xk − xk−1∥2

(A.21)

where the last inequality follows from convexity of f and (A.18). Also note that from the optimality

condition we have

⟨∇f(zk) + βk(xk − xk−1), xk − x⟩ ≤ ηk ∀x ∈ X ,

and so

⟨xk − xk−1, xk − x⟩ ≤ ηk
βk

+
1

βk
⟨f ′(zk), x− xk⟩ ∀x ∈ X . (A.22)

Also, note that

1

2
∥xk−1 − x∥2 =

1

2
∥(xk−1 − xk) + (xk − x)∥2

=
1

2
∥xk − xk−1∥2 + ⟨xk−1 − xk, xk − x⟩+ 1

2
∥xk − x∥2 ,

87

which implies that

1

2
∥xk − xk−1∥2 =

1

2
∥xk−1 − x∥2 − ⟨xk−1 − x, xk − x⟩ − 1

2
∥xk − x∥2

≤ 1

2
∥xk−1 − x∥2 + 1

βk
⟨f ′(zk), x− xk⟩ −

1

2
∥xk − x∥2 + ηk

βk
.

Hence,

βkγk
2
∥xk − xk−1∥2 ≤

βkγk
2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
+ γk ⟨∇f(zk), x− xk⟩+ ηkγk. (A.23)

Combining (A.21), (A.23) and (A.22) we obtain

f(yk) ≤ (1− γk)f(yk−1) + γk(f(zk) + ⟨∇f(zk), xk − zk⟩+ ⟨∇f(zk), x− xk⟩)

+
βkγk
2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
+ ηkγk

= (1− γk)f(yk−1) + γk(f(zk) + ⟨∇f(zk), x− zk⟩)

+
βkγk
2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
+ ηkγk

≤ (1− γk)f(yk−1) + γkf(x) +
βkγk
2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
+ ηkγk,

where the last inequality is from convexity of f . Subtracting f(x) from both sides of above inequality

gives

f(yk)− f(x) ≤ (1− γk)(f(yk−1)− f(x)) +
βkγk
2

(
∥xk−1 − x∥2 − ∥xk − x∥2

)
+ ηkγk ∀x ∈ X .

Now using Lemma 3,

f(yk)− f(x) ≤ Γk(1− γ1)

Γ1
[f(y0)− f(x)]

+ Γk

k∑
i=1

βiγi
2Γi

(
∥xi−1 − x∥2 − ∥xi − x∥2

)
+ Γk

k∑
i=1

ηiγi
Γi

.

(A.24)

Note that γ1 = 1 and since from the assumption {βkγk/Γk} is increasing; then from Lemma 4

k∑
i=1

βiγi
2Γi

(
∥xi−1 − x∥2 − ∥xi − x∥2

)
≤ βkγk

Γk
D2

X . (A.25)

88

Hence, we have

f(yk)− f(x) ≤ βkγk
2

D2
X + Γk

k∑
i=1

ηiγi
Γi

.

which completes the proof of part (a).

To prove part (b), from (A.25) and Lemma 4 the assumption we have

k∑
i=1

βiγi
2Γi

(
∥xi−1 − x∥2 − ∥xi − x∥2

)
≤ β1 ∥x0 − x∥2

Therefore, by (A.24) for any x ∈ X we have

f(yk)− f(x) ≤ Γk

2
β1 ∥x0 − x∥2 + Γk

k∑
i=1

ηiγi
Γi

,

Which is true for x = x∗, and this completes the proof of part (b).

To prove part (c) let us denote ϕ ≡ ϕk := ⟨f ′(zk), x⟩ + βk/2 ∥x− xk−1∥2 and ϕ∗ ≡

minx∈X ϕ(x). Also let us denote

λt :=
2

t
and Λt =

2

t(t− 1)
, (A.26)

which implies that

Λt+1 = Λt(1− λt+1) ∀t ≥ 2.

Let us define ūt+1 := (1 − λt+1)ut + λt+1vt. Clearly we have ūt+1 − ut + λt+1(vt − ut). Observe

that ut+1 = (1− αt)ut + αtvt and αt is an optimal solution to argminα∈[0,1] f((1− α)ut + αvt) and

hence ϕ(ut+1) ≤ ϕ(ūt+1). Using this observation, (A.5), and the fact that ϕ has Lipschitz continuous

89

gradients, we have

ϕ(ut+1) ≤ ϕ(ūt+1)

≤ ϕ(ut) + ⟨ϕ′(ut), ūt+1 − ut⟩+
β

2
∥ūt+1 − ut∥2

= ϕ(ut) + λt+1 ⟨ϕ′(ut), vt − ut⟩+
β

2
λ2
t+1 ∥vt − ut∥2

= ϕ(ut)− λt+1ϕ(ut) + λt+1 (ϕ(ut) + ⟨ϕ′(ut), vt − ut⟩) +
β

2
λ2
t+1 ∥vt − ut∥2

≤ (1− λt+1)ϕ(ut) + λt+1 (ϕ(ut) + ⟨ϕ′(ut), x− ut⟩) +
β

2
λ2
t+1 ∥vt − ut∥2

≤ (1− λt+1)ϕ(ut) + λt+1ϕ(x) +
β

2
λ2
t+1 ∥vt − ut∥2 .

(A.27)

Subtracting ϕ(x) from both sides implies that

ϕ(ut+1)− ϕ(x) ≤ (1− λt+1)(ϕ(ut)− ϕ(x)) +
β

2
λ2
t+1 ∥vt − ut∥2 ∀x ∈ X .

By Lemma 3, for any x ∈ X and t ≥ 1

ϕ(ut+1)− ϕ(x) ≤ Λt+1

(
1− λ2

Λ1
(ϕ(1)− ϕ(x))

)
+

t+1∑
i=2

βλ2
i

2Λi
∥vi−1 − ui−1∥2

= Λt+1β

t∑
i=1

i

i+ 1
∥vi − ui∥2

≤ 2βD2
X

t+ 1

(A.28)

Now, let the gap function Vg,u,β be defined in (1.28). Also let us denote ∆j = ϕ(uj) − ϕ∗.

It then follow from (1.28), and (A.27) that for any j = 1, · · · , t,

ϕ(uj+1) ≤ ϕ(uj) + λj+1 ⟨ϕ′(uj), vj − uj⟩+
βλ2

j+1

2
∥vj − uj∥2 .

Hence,

λj+1 ⟨ϕ′(uj), uj − vj⟩ ≤ ϕ(uj)− ϕ(uj+1) +
βλ2

j+1

2
∥vj − uj∥2 ,

90

which implies that

λj+1Vg,u,β(uj) ≤ ϕ(uj)− ϕ(uj+1) +
βλ2

j+1

2
∥vj − uj∥2

= ∆j −∆j+1 +
βλ2

j+1

2
∥vj − uj∥2 .

Dividing both sides of above inequality by Λj+1 and summing up the resulting inequalities, we obtain

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤

t∑
j=1

∆j −∆j+1

Λj+1
+

t∑
j=1

βλ2
j+1

2Λj+1
∥vj − uj∥2

= − 1

Λt+1
∆t+1 +

t∑
j=2

(
1

Λj+1
− 1

Λj

)
∆j +∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
∥vj − uj∥2

≤
t∑

j=2

(
1

Λj+1
− 1

Λj

)
∆j +∆1 +

t∑
j=1

βλ2
j+1

2Λj+1
∥vj − uj∥2

≤
t∑

j=1

j∆j + β

t∑
j=1

j

j + 1
D2

X

≤
t∑

j=1

j∆j + tβD2
X ,

where the last inequality follow from the definition of λt and Λt in (A.26). Using the above inequality

and the bound on ∆j given in (A.28), we conclude that

min
j=1,...,t

Vg,u,β(uj)

t∑
j=1

λj+1

Λj+1
≤

t∑
j=1

λj+1

Λj+1
Vg,u,β(uj) ≤

t∑
j=1

j
2βD2

X
j

+ tβD2
X = 3tβD2

X .

Since
∑t

j=1 λj+1/Λj+1 = t(t+ 1)/2, then

min
j=1,...,t

Vg,u,β(uj)

(
t(t+ 1)

2

)
≤ 3tβD2

X ,

Therefore,

min
j=1,...,t

Vg,u,β(uj) ≤
6βD2

X
t+ 1

,

which implies part (c).

Clearly, there exist various options to specify the parameters {βk}, {γk}, and {ηk} so as to

91

guarantee the convergence of the CGS method. In the following corollaries, we provide two different

parameter settings for {βk}, {γk}, and {ηk}, which lead to optimal complexity bounds on the total

number of calls to the first-order and linear optimization oracles for smooth convex optimization.

Corollary 5. If {βk}, {γk}, and {ηk} in the CGS method are set to

βk =
3L

k + 1
, γk =

3

k + 2
and ηk =

LD2
X

k(k + 1)
, ∀k ≥ 1, (A.29)

then for any k ≥ 1,

f(yk)− f(x∗) ≤ 15LD2
X

(k + 1)(k + 2)
.

As a consequence, the total number of calls to the first-order and linear optimization oracles per-

formed by the CGS method for finding an ϵ-solution of (1.1) can be bounded by O(
√

LD2
X/ϵ) and

O(LD2
X/ϵ), respectively.

Proof. It can be easily seen from (A.29) and (A.18) holds. Also note that by (A.29), we have

Γk =
6

k(k + 1)(k + 2)
(A.30)

and

βγk
Γk

=
9L

(k + 1)(k + 2)
· k(k + 1)(k + 2)

6
=

3Lk

2
,

which implies that (A.19) is satisfied. It then follows from Theorem 8(a), (A.29), and (A.30) that

f(yk)− f(x∗) ≤ 9LD2
X

2(k + 1)(k + 2)
+

6

k(k + 1)(k + 2)

k∑
i=1

ηiγi
Γi

=
15LD2

X
2(k + 1)(k + 2)

,

which implies that the total number of outer iterations performed by the CGS method for finding

an ϵ-solution can be bounded by N =
√

15LD2
X/2ϵ. Moreover, it follows from the bound in (A.20)

and (A.29) that the total number of inner iterations can be bounded by

N∑
k=1

Tk ≤
N∑

k=1

(
6βD2

X
ηk

+ 1

)
= 18

N∑
k=1

k +N = 9N2 + 10N,

92

which implies that the total number of inner iterations is bounded by O(LD2
X/ϵ).

Observe that in the above result, the number of calls to the linear optimization oracle is

not improvable in terms of their dependence on ϵ, L and DX for linear optimization-based convex

programming methods [25]. Similarly, the number of calls to the FO oracle is also optimal in terms

of its dependence on ϵ and L [35].

A.5 Accelerated Bundle-Level method

In this section we state the main convergence results of ABL. Specifically, Theorem 9 presents

a bound on the maximum number of gap reductions performed by ABL Algorithm 8 in a typical

phase. In Theorem 10 we can find the total number of phases and also total number of iterations

performed by ABL algorithm to get an ϵ solution x̄ ∈ X such that f(x)− f(x̄) < ϵ. While the proof

of the results follow a similar logic and trend as the results for APL method we leave the proofs and

the way that parameters are set for this algorithm to the reader that can be found in [26].

Theorem 9. Let λ ∈ (0, 1) and αk ∈ (0, 1], k = 1, 2, . . . , be given. Also, let ∆k = f̄k − fk denote

the optimality gap obtained at k-th iteration of procedure GABL before it terminates. Then for any

k = 1, 2, . . . we have

∆k ≤ γk(λ)

[
(1− λα1)∆0 +

MD1+ν
X

1 + ν
∥Γk(λ, ν)∥ 2

1−ν

]
,

where DX := maxx,y∈X ∥x− y∥ and

γk(λ) :=

1 k = 1

(1− λαk)γk−1(λ) k ≥ 2

Γk(λ, ν) :=
{
γ1(λ)

−1α1+ν
1 , γ2(λ)

−1α1+ν
2 , . . . , γk(λ)

−1α1+ν
k

}
.

In particular, if λ and αk ∈ (0, 1], k = 1, 2, . . . , are chosen such that for some c1, c2 > 0

γk(λ) ≤ c1k
−2 and γk ∥Γk(λ, ν)∥ 2

1−ν
≤ c2k

− 1+3ν
2 , (A.31)

93

then the number of iterations performed by procedure GABL can be bounded by

KABL(∆0) :=

⌈√
2c1(1− λα1)

λ
+

(
2c2MD1+ν

X

(1 + ν)∆0

) 2
1+3ν

⌉
.

Theorem 10. Suppose that λ ∈ (0, 1) and αk ∈ (0, 1], k = 1, 2, . . . , in procedure GABL are chosen

such that (A.31) holds for some c1, c2 > 0. Then

a) The number of phases performed by ABL method does not exceed

S(ϵ) =

⌈
max

{
0, log 1

q

MD1+ν
X

(a+ ν)ϵ

}⌉
.

b) The total number of iteration performed by ABL method can be bounded by

(
1 +

√
2c1
λ

)
S(ϵ) +

1

1− λ
2

1+3ν

(
2c2MD1+ν

X

(1 + ν)ϵ

) 2
1+3ν

.

Note that ABL method achieves the optimal complexity bounds for smooth, nonsmooth and

weakly smooth convex optimization. For example, when ν = 0 and function f is smooth the total

number of iterations performed by ABL is bounded by O(1/√ϵ). Also, this algorithm is independent

of the parameter M defined in (1.33).

A.6 Accelerated Prox-Level Method

In this section we perform the convergence analysis of the APL method. We begin with

some technical results that will be used in the analysis.

Lemma 5. Let X ′ be a localizer of the level set Xℓ for some ℓ ∈ R and h(z, x) be defined in (1.34).

Denoting

h′ := min{h(z, x) : x ∈ X ′} (A.32)

we have

min{ℓ, h′} ≤ f(x), ∀x ∈ X. (A.33)

94

Proof. If ℓ ≤ f(x) for all x ∈ X, then Xℓ = X ′ = ∅ and the subprblem (A.32) is infeasible and so

h′ =∞. In this case (A.33) clearly holds. Otherwise, let hℓ := min{h(z, x) : x ∈ Xℓ}. Then from

(1.40) we clearly have h′ ≤ hℓ ≤ f(x) ≤ ℓ for all x ∈ Xℓ. In this case (A.33) then follows from the

convexity of f .

Lemma 6. Let xk−1, xu
k−1 ∈ X be given from iterations of GAPL for k ≥ 1 and h(z, ·) be defined

in 1.34 and xk, x̃
u
k ∈ X are so that

h(xℓ
k, xk) ≤ ℓ for some ℓ

x̃u
k = γkxk + (1− γk)x

u
k−1 γ ∈ (0, 1) (A.34)

Then,

f(x̃u
k) ≤ (1− γk)f(x

u
k−1) + γkℓ+

L

2
∥γk(xk − xk−1)∥2

Proof. Note that from (1.42) and (A.34) we have

x̃u
k − xℓ

k = γk(xk − xk−1).

Also, from Lipschitz continuity of f ′ and convexity of f we have

f(x̃u
k) ≤ f(xℓ

k) +
〈
f ′(xℓ

k), x̃
u
k − xℓ

k

〉
+

L

2

∥∥x̃u
k − xℓ

k

∥∥2
= (1− γk)h(x

ℓ
k, x

u
k−1) + γkh(x

ℓ
k, xk) +

L

2

∥∥x̃u
k − xℓ

k

∥∥2
≤ (1− γk)f(x

u
k−1) + γkℓ+

L

2
∥γk(xk − xk−1)∥2

Lemma 7 presents some observations regarding the the execution of the gap reduction pro-

cedure GAPL.

Lemma 7. The following statements hold for GAPL in Algorithm 9.

a) {X ′
k}k≥0 is a sequence of localizers of the level set Xℓ;

b) f0 ≤ f1 ≤ · · · ≤ fk ≤ f∗ and f̄0 ≥ f̄1 ≥ · · · ≥ f̄k ≥ f∗ for any k ≥ 1;

95

c) Problem (1.44) is feasible for all iterations of procedure;

d) ∅ ≠ Xk ⊆ X̄k for any k ≥ 1 and hence Step 4 is feasible for all iterations of procedure.

Proof. We show part a) by induction. For base case note that Xℓ ⊆ X ′
0 = X. Now suppose that

X ′
k−1 is a localizer of the level set Xℓ. So if x ∈ Xℓ then x ∈ X ′

k−1. Also, by definition of h for any

x ∈ Xℓ we have h(xℓ
k, x) ≤ f(x) ≤ ℓ. Using these observations and the definition of X we conclude

that Xℓ ⊆ Xk ⊆ X ′
k which means that X ′

k is a localizer.

To show part b), note that the first relation follows from Lemma 5, (1.42), (1.43) and the

fact that X ′
k, k ≥ 0, are localizers of Xℓ by part a). The second relation follows from the definition

of f̄k, k ≥ 0.

We show part c) by contradiction. Suppose that problem (1.44) is infeasible. Then by (1.43)

we have hk > ℓ and so fk ≥ ℓ which implies that GAPL sould have terminated in Step 1 at iteration

k.

To show part d), note that by part c), the set Xk is nonempty. Also by optimality condition

of (1.44) and the definition of Xk we have ⟨xk, x− xk⟩ ≥ 0 for any x ∈ Xk which implies that

Xk ⊆ X̄k.

In Theorem 11 we present the conceptual bound on the number of iterations performed by

GAPL in a typical phase of APL algorithm and note that parameters {γk} are in conceptual and

possible selections of them will be given in later propositions.

Theorem 11. Let γk ∈ (0, 1], and xℓ
k, xk, x

u
k ∈ X for k = 1, 2, · · · be given, where ℓ is the bound of

the level set in GAPL. Then

f(xu
k)− ℓ ≤ (1− γ1)f(x

u
0 − ℓ) +

LD2
X

2
max
1≤i≤k

{γ2
i /Γi} (A.37)

for k ≥ 1, where Γk is defined in (2.17). In particular if γk ∈ (0, 1], k = 1, 2, · · · are chosen so that

for some c > 0,

γ1 = 1, and Γk max
1≤i≤k

{γ2
i /Γi} ≤ ck−2, (A.38)

96

then the number of iterations performed by GAPL can be bounded by

KAPL(∆0) :=

√

cLD2
X

βθ∆0

where ∆0 = f̄0 − f0.

Proof. First, note that by definition of X̄

⟨x− x0, xk − x⟩ ≤ 0 ∀x ∈ X ′ ⊆ X̄.

Therefore, since xk+1 ∈ X ′
k for k ≥ 0 we have

∥xk+1 − xk∥2 ≤ ⟨xk − x0, xk+1 − xk⟩

= ∥xk+1 − x0∥2 − ∥xk − x0∥2 − ⟨xk+1 − xk, xk+1 − x0⟩

≤ ∥xk+1 − x0∥2 − ∥xk − x0∥2.

Summing up the above inequalities we obtain

k∑
i=1

∥xi − xi−1∥2 ≤ ∥xk − x0∥2 (A.39)

Next, denoting x̃u
k = γk + (1− γk)x

u
k−1, then by Lemma 6 for all k ≥ 1 and definition of xu

k and x̃u
k

we have

f(xu
k) ≤ f(x̃u

k) ≤ (1− γk)f(x
u
k−1) + γkℓ+

L

2
∥γk(xk − xk−1)∥2 .

Subtracting bothsides of above inequality we obtain

f(xu
k)− ℓ ≤ (1− γk)[f(x

u
k−1)− ℓ] +

L

2
∥γk(xk − xk−1)∥2 ∀k ≥ 1.

97

Using Lemma 2 for above inequality we obtain

f(xu
k)− ℓ ≤ (1− γ1)f(x

u
0 − ℓ) + Γk

L

2

k∑
i=1

γ2
i

Γi
∥xi − xi−1∥2

≤ (1− γ1)f(x
u
0 − ℓ) +

L

2
Γk max

1≤i≤k
{γ2

i /Γi}
k∑

i=1

∥xi − xi−1∥2

≤ (1− γ1)f(x
u
0 − ℓ) +

LD2
X

2
Γk max

1≤i≤k
{γ2

i /Γi} ∀k ≥ 1

where the last inequality holds by (A.39).

Now, let K ≡ KAPL(ϵ) be the total number of iterations performed by GAPL and suppose

that conditions (A.38) hold. Then by (A.37) and (A.38) we have

f(xu
K)− ℓ ≤ cLD2

X

2K2
≤ θβ∆0 = θ(f̄0 − ℓ),

where the last equality follows the fact that ℓ = βf0 + (1− β)f̄0 = f̄0 − β∆0. Therefore, procedure

GAPL must terminate in step 3 of the K-th iteration.

In Proposition 1 we discuss a few selections of {γk}, which satisfies conditions (A.38) and

thus guarantee the termination of GAPL. Note that this setting is independent of any problem

parameters like L os DX .

Proposition 1. Let γk and Γk be defined in (2.17). Then

a) If γk = 2/(k + 1), k = 1, 2, · · · then γk ∈ (0, 1] and conditions (A.38) hold with c = 4.

b) If γk and Γk, k = 1, 2, · · · are recursively defined by

γ1 = Γ1 = 1, Γk = γ2
k = (1− gk)Γk−1, ∀k ≥ 2. (A.40)

Then we have γk ∈ (0, 1] for any k ≥ 1 and conditions (A.38) hold with c = 4

Proof. To show part a) note that if γk = 2/(k + 1) then Γk = 2/k(k + 1) and then knowing this we

obtain

γ2
k

Γk
=

(
2

k + 1

)2
k(k + 1)

2
=

2k

k + 1
≤ 2.

98

Using this and also the origin of Γk imply that Γk max1≤i≤k{γ2
i /Γi} ≤ 4k−2.

To show part b) first note that solving (A.40) for γk we obtain

γk =
1

2

(
−Γk−1 +

√
Γ2
k−1 + 4Γk−1

)
k ≥ 2, (A.41)

which implies that γk > 0, k ≥ 2. Now using induction we show that γk ≤ 1. So suppose that

Γk−1 ≤ 1. Then by (A.41) we have for any k ≥ 2,

γk ≤
1

2

(
−Γk−1 +

√
Γ2
k−1 + 4Γk−1 + 4

)
= 1.

Next, note that Γk = (1 − γk)Γk−1 ≤ Γk−1 meaning that Γk is decreasing in k. This also implies

that for k ≥ 2

1√
Γk

− 1√
Γk−1

=
γk/Γk√

1/Γk +
√

1/Γk−1

≥ γk

2
√
Γk

=
1

2

which with the fact that Γ1 = 1 we conclude

Γk ≤
4

(k + 1)2
≤ 4

k2
.

Using this and definition Γk we obtain

Γk max
1≤i≤k

{γ2
i /Γi} ≤

4

k2
.

Finally, in Theorem 12 we summarize the convergence properties of the APL method.

Theorem 12. Let γk ∈ (0, 1], k = 1, 2, · · · in GAPL are chosen so that conditions (A.38) hold for

some c > 0. Then

a) The number of phases performed by APL method is bounded by

S̄(ϵ) =

⌈
max

{
0, log 1

q

LD2
X

2ϵ

}⌉

99

b) The total number of iterations performed by the APL method can be bounded by

S̄(ϵ) +
1

1−√q

(
cLD2

X

2βθϵ

) 1
2

Proof. Let us denote δs ≡ ubs − lbs, s ≥ 1. Also, let us suppose that δ1 > ϵ because otherwise the

statement is clearly true. First, note that if GAPL terminated in step 1 of its k-th iteration we must

have fk ≥ ℓ− θ(ℓ− f0). Since f(p+) ≤ f̄0 and by (1.41) we have

f(p+)− lb+ = f(p+)− fk ≤ f̄0 − [ℓ− θ(ℓ− f0)]

= [1− (1− β)(1− θ)](f̄0 − f0). (A.42)

And if GAPL terminates in step 3 of its k-th iteration we must have f̄k ≤ ℓ+θ(f̄0−ℓ). Since lb+ ≥ f0

and also by definition of ℓ in (1.41) we have

f(p+)− lb+ = f̄k − lb+ ≤ ℓ+ θ(f̄0 − ℓ)− f0 = [1− (1− θ)β](f̄0 − f0). (A.43)

equations (A.42) and (A.43) together imply that at termination of GAPL we have

f(p+)− lb+ ≤ q[f(p)− lb], (A.44)

where

q ≡ q(β, θ) := 1− (1− θ)min{β, 1− β}. (A.45)

Therefore, from (A.44) and (A.45) and origin of ubs and lbs we have

δs+1 ≤ qδs, s ≥ 1. (A.46)

Also note that, from initial phase of APL and Lipschitz continuity of of f ′ we have

δ1 = f(p1)− h(p0, p1) = f(p1)− (f(p0) + ⟨f ′(p0), p1 − p0⟩) ≤
L

2
∥p1 − p0∥2 ≤

LD2
X

2
. (A.47)

100

From (A.46) and (A.47) we obtain

δs+1 ≤ qs−1δ1 ≤ qs
LD2

X

2
.

To obtain an ϵ-gap we must have qsLD2
X < 2ϵ which implies the desired result in part a.

Next, we prove part b. Let s̄ be the total number of calls for GAPL for some 1 ≤ s̄ ≤ S̄(ϵ).

Therefore, from (A.46) and the fact that δs̄ > ϵ we have δs > ϵqs−s̄, s = 1, · · · , s̄. Using this

observation we obtain

s̄∑
s=1

δ
− 1

2
s <

s̄∑
s=1

q
1
2 (s̄−s)

√
ϵ

=

s̄−1∑
t=0

q
t
2

√
ϵ
≤ 1

(1− q
1
2)
√
ϵ
.

Using this observation and by Theorem 11, the number of iterations performed by APL method is

bounded by

s̄∑
s=1

KAPL(δs) ≤ s̄+

s̄∑
s=1

(
cLD2

X

2βθδs

) 1
2

≤ s̄+
1

(1− q
1
2)
·
(
cLD2

X

2βθϵ

) 1
2

.

In view of Theorem 12 we can see that the APL method achieves the optimal complexity

bound O(1/√ϵ) for convex smooth programming problems. Lan [26] shows that the APL method

uniformly achieves the optimal complexity for solving smooth, weakly smooth and nonsmooth CP

problems.

101

Bibliography

[1] Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE trans-
actions on pattern analysis and machine intelligence 34(11), 2189–2202 (2012)

[2] Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple instance
learning. IEEE transactions on pattern analysis and machine intelligence 33(8), 1619–1632
(2010)

[3] Bach, F., Harchaoui, Z.: Diffrac: a discriminative and flexible framework for clustering. Ad-
vances in Neural Information Processing Systems 20 (2007)

[4] Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural computation 15(6), 1373–1396 (2003)

[5] Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths
optimization. IEEE transactions on pattern analysis and machine intelligence 33(9), 1806–1819
(2011)

[6] Bonesky, T., Bredies, K., Lorenz, D.A., Maass, P.: A generalized conditional gradient method
for nonlinear operator equations with sparsity constraints. Inverse Problems 23(5), 2041 (2007)

[7] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE
Transactions on pattern analysis and machine intelligence 23(11), 1222–1239 (2001)

[8] Bredies, K., Lorenz, D.A.: Iterated hard shrinkage for minimization problems with sparsity
constraints. SIAM Journal on Scientific Computing 30(2), 657–683 (2008)

[9] Bubeck, S., et al.: Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning 8(3-4), 231–357 (2015)

[10] Canon, M.D., Cullum, C.D.: A tight upper bound on the rate of convergence of frank-wolfe
algorithm. SIAM Journal on Control 6(4), 509–516 (1968)

[11] Delong, A., Gorelick, L., Veksler, O., Boykov, Y.: Minimizing energies with hierarchical costs.
International journal of computer vision 100(1), 38–58 (2012)

[12] Delong, A., Osokin, A., Isack, H.N., Boykov, Y.: Fast approximate energy minimization with
label costs. International journal of computer vision 96(1), 1–27 (2012)

[13] Dunn, J.C.: Rates of convergence for conditional gradient algorithms near singular and nonsin-
gular extremals. SIAM Journal on Control and Optimization 17(2), 187–211 (1979)

[14] Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual
object classes (voc) challenge. International journal of computer vision 88(2), 303–338 (2010)

102

[15] Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval research logistics quar-
terly 3(1-2), 95–110 (1956)

[16] Guélat, J., Marcotte, P.: Some comments on wolfe’s ‘away step’. Mathematical Programming
35(1), 110–119 (1986)

[17] Gurobi Optimization, L.: Gurobi optimizer reference manual (2020). URL http://www.

gurobi.com

[18] Harchaoui, Z., Juditsky, A., Nemirovski, A.: Conditional gradient algorithms for norm-
regularized smooth convex optimization. Mathematical Programming 152(1-2), 75–112 (2015)

[19] Hare, S., Saffari, A., Torr, P., Struck, S.: Structured output tracking with kernels. In: IEEE
International Conference on Computer Vision. IEEE, pp. 263–270

[20] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition. Springer Series in Statistics. Springer (2009)

[21] Jaggi, M.: Revisiting frank-wolfe: Projection-free sparse convex optimization. In: ICML (1),
pp. 427–435 (2013)

[22] Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1943–
1950. IEEE (2010)

[23] Joulin, A., Tang, K., Fei-Fei, L.: Efficient image and video co-localization with frank-wolfe
algorithm. In: European Conference on Computer Vision, pp. 253–268. Springer (2014)

[24] Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of frank-wolfe optimization
variants. Advances in neural information processing systems 28 (2015)

[25] Lan, G.: The complexity of large-scale convex programming under a linear optimization oracle.
arXiv preprint arXiv:1309.5550 (2013)

[26] Lan, G.: Bundle-level type methods uniformly optimal for smooth and nonsmooth convex
optimization. Mathematical Programming 149(1), 1–45 (2015)

[27] Lan, G.: Gradient sliding for composite optimization. Mathematical Programming 159(1-2),
201–235 (2016)

[28] Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer
(2020)

[29] Lan, G., Pokutta, S., Zhou, Y., Zink, D.: Conditional accelerated lazy stochastic gradient
descent. In: International Conference on Machine Learning, pp. 1965–1974 (2017)

[30] Lan, G., Zhou, Y.: Conditional gradient sliding for convex optimization. SIAM Journal on
Optimization 26(2), 1379–1409 (2016)

[31] Levitin, E.S., Polyak, B.T.: Constrained minimization methods. USSR Computational mathe-
matics and mathematical physics 6(5), 1–50 (1966)

[32] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International journal of
computer vision 60(2), 91–110 (2004)

[33] Mitchell, B., Dem’yanov, V.F., Malozemov, V.: Finding the point of a polyhedron closest to
the origin. SIAM Journal on Control 12(1), 19–26 (1974)

103

http://www.gurobi.com
http://www.gurobi.com

[34] Nemirovski, A., Onn, S., Rothblum, U.G.: Accuracy certificates for computational problems
with convex structure. Mathematics of Operations Research 35(1), 52–78 (2010)

[35] Nesterov, Y.: Introductory lectures on convex optimization: A basic course, vol. 87. Springer
Science & Business Media (2013)

[36] Nesterov, Y.: Complexity bounds for primal-dual methods minimizing the model of objective
function. Mathematical Programming 171(1-2), 311–330 (2018)

[37] Nesterov, Y.E.: A method for unconstrained convex minimization problem with the rate of
convergence O(1/k2). Doklady AN SSSR 269, 543–547 (1983). Translated as Soviet Math.
Docl.

[38] Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Massachusetts (2004)

[39] Nesterov, Y.E.: Universal gradient methods for convex optimization problems. Mathematical
Programming 152(1-2), 381–404 (2015)

[40] Pang, Y., Ling, H.: Finding the best from the second bests-inhibiting subjective bias in evalu-
ation of visual tracking algorithms. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2784–2791 (2013)

[41] Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast based filter-
ing for salient region detection. In: 2012 IEEE conference on computer vision and pattern
recognition, pp. 733–740. IEEE (2012)

[42] Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: European
Conference on Computer Vision, pp. 661–675. Springer (2002)

[43] Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from
weakly annotated video. In: 2012 IEEE Conference on computer vision and pattern recognition,
pp. 3282–3289. IEEE (2012)

[44] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on pattern
analysis and machine intelligence 22(8), 888–905 (2000)

[45] Tang, K., Joulin, A., Li, L.J., Fei-Fei, L.: Co-localization in real-world images. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1464–1471 (2014)

[46] Tang, K., Ramanathan, V., Fei-Fei, L., Koller, D.: Shifting weights: Adapting object detectors
from image to video. Advances in Neural Information Processing Systems 25 (2012)

[47] Wibisono, A.: Accelerated gradient descent. url=http://awibisono.github.io/2016/06/20/accelerated-
gradient-descent.html (2016)

[48] Wolfe, P.: Convergence theory in nonlinear programming. Integer and Nonlinear Programming
pp. 1–36 (1970)

[49] Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. Advances in
neural information processing systems 17 (2004)

[50] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR)
38(4), 13–es (2006)

104

	On Variants of Sliding and Frank-Wolfe Type Methods and Their Applications in Video Co-localization
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Projection-Based Algorithms
	Projection-Free Algorithms
	Bundle-Level methods

	Conditional Gradient Sliding with Linesearch
	Introduction
	Algorithm
	Theoretical Analysis
	Numerical Results

	Sliding Accelerated Bundle-Level Method
	Proposed Algorithm
	Theoretical Analysis

	CGS Variants for Video Co-Localization Problem
	Model Setup for Images
	Model Setup for Videos
	Optimization
	Proposed Algorithms
	Experimental Results

	Appendices
	Supplementary Material
	Projected Gradient Descent Method
	Nesterov's Accelerated Gradient Descent Method
	Frank-Wolfe Method
	Conditional Gradient Sliding Method
	Accelerated Bundle-Level method
	Accelerated Prox-Level Method

