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ABSTRACT 

 

 

Cancer is a lethal disease and complex at multiple levels of cell biology. Despite 

many advances in treatments, many patients do not respond to therapy. This is owing to 

the complexity of cancer-genetic variability due to mutations, the multi-variate 

biochemical networks within which drug targets reside and existence and plasticity of 

multiple cell states. It is generally understood that a combination of drugs is a way to 

address the multi-faceted drivers of cancer and drug resistance. However, the sheer number 

of testable combinations and challenges in matching patients to appropriate combination 

treatments are major issues.  

Here, we first present a general method of network inference which can be applied 

to infer biological networks. We apply this method to infer different kinds of networks in 

biological levels where cancer complexity resides-a biochemical network, gene expression 

and cell state transitions. Next, we focus our attention on glioblastoma and with 

pharmacological and biological considerations, obtain a ranked list of important drug 

targets in glioblastoms. We perform drug dose response experiments for 22 blood brain 

barrier penetrant drugs against 3 glioblastoma cell lines. These methods and experimental 

results inform a construction of a temporal cell state model to predict and experimentally 

validate combination treatments for certain drugs. We improve an experimental method to 

perform high throughput western blots and apply the method to discover biochemical 

interactions among some important proteins involved in temporal cell state transitions. 

Lastly, we illustrate a method to investigate potential resistance mechanisms in genome 

scale proteomic data.  
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We hope that methods and results presented here can be adapted and improved 

upon to help in the discovery of biochemical interactions, capturing cell state transitions 

and ultimately help predict effective combination therapies for cancer. 
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CHAPTER ONE 

 

INTRODUCTION 

Cancer and Glioblastoma 

Cancer is one of the most fatal and tragic maladies that affects human existence 

today. It is prevalent not only among humans but also most animal species. In recorded 

human history, symptoms of cancer have been mentioned as far back as 2600 BC in ancient 

Egypt1. Despite several advances in treatment, particularly in the previous century, it 

remains as one of the leading causes of death in the world2.  

Physiologically, cancer may be classified into several types based on tissue of 

origin but all of them generally manifest as cells which have obtained an autonomous will 

to divide. These uncontrolled cell division may invade and take over the body’s vital organs 

and ultimately lead to death. However, the mechanisms employed by these aberrant cells 

are not foreign at all- they are innate to the human body and its growth and survival3.  

Many advances have been made in the treatments of cancer have been in the past 

century, even before the role of genes and mutations in cancer were well established. As 

early as 1896, radiation therapy was used to treat cancers4. After the second world war, 

alkylating agents and antimetabolites were found to suppress growth of certain cancer cells 

and were established as some of the first chemotherapy regimens5. Many of these 

treatments are still in use today. Hodgkin’s lymphoma treated with a combination of such 

chemotherapy regimens has a five-year survival rate of around 90%6. Radiation therapy 

and temozolomide (an alkylating agent) are the standard for treatment of glioblastoma7.  
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A breakthrough in cancer research was to recognize certain genes and mutations as 

the drivers of cancer. This allowed for innovation of therapies to inhibit these “driver 

mutations”. A success story in such targeted therapy is the use of Imatinib in chronic 

myeloid leukemia, wherein it inhibits a fused protein BCR-ABL1 caused due to a 

chromosomal translocation8. With a ten-year survival rate of over 80%, average life 

expectancy of patients treated with Imatinib approaches that of the general population9. 

Following the success of Imatinib, other therapies targeting specific mutations for different 

cancers were also innovated. However, subsequent application of targeted therapies on 

many different cancers have not been as successful, even triggering some skepticism about 

their efficacy10. Evidence of “driver mutations” may not always translate to druggable 

targets and there is a lack of effective screening methods to match patients with treatment 

regimens.  

Glioblastoma, a cancer of the brain is one such cancer that has evaded effective 

therapies and a focus of study in this dissertation. It is marked by a low life expectancy 

after diagnosis. The standard treatment is surgical resection followed by radiotherapy and 

temozolomide, which provides a marginal improvement in life expectancy compared to 

radiotherapy alone11. Clinical trials with several other more precise chemotherapy drugs 

have been performed but have not resulted in significant survival benefits.  

The hindrances in the treatment of many cancers may be a testament to the fact that 

cancer is inherently complex. A brief exploration of the complexity involved in cancer and 

their implications on drug resistance are mentioned below.  

Cell State Heterogeneity in Cancer and Glioblastoma 
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Cancer cells display highly diverse phenotypic and molecular characteristics both 

at the inter-tumoral (among different patients) and intra-tumoral levels (within the same 

tumor). Besides genetic diversity, cancer cells may be divided at multiple omics levels as 

distinct cell states. Cell states are often defined by their transcriptomics (through for 

example single cell RNAseq experiments). Cells in different states may have different drug 

sensitivities12, and it is becoming appreciated that cells can transition between such states 

in development-like networks, sometimes called cell state networks13. Such plasticity 

between cell states can contribute to drug resistance12,14. 

In glioblastoma, using the available RNA seq data from The Cancer Genome Atlas 

(TCGA) 4 cell states were classified in 201015 which was later updated to 3 cell states to 

only include malignant cells16. More recently, single cell RNAseq on cells taken from 

glioblastoma patients has broadly classified glioblastoma into 4 cell states governed by 

their gene expression and microenvironment and demonstrated plasticity between the cell 

states (Figure 1.1)13. 
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Figure 1.1 Licensed from Neftel et. al 2019 (5411941324602). Model for the cellular states 

of glioblastoma and their genetic and micro-environmental determinants.  Lighter or darker 

tones indicate strength of each program. Intermediate states are shown in between the four 

states and indicate transitions. 

Cell state transition networks have been identified for multiple cancer types 

generally by combining single cell measurements (e.g. single cell RNAseq), with 

perturbation time courses, such as enriching for one cell state and then observing the 

fractional composition dynamics13. Because of their inherent plasticity, cell states in cancer 

have been difficult to pin down but better mapping of cell states should lead to more 

accurate therapies.  

Complexity of Biochemical Networks 

Drug targets reside within a multi-variate complex of biochemical networks by 

which chemotherapy drugs exert their action. These networks can differ between cell 



 5 

states, adapt to therapy, and also give rise to non-intuitive therapy results, such as feedback 

loops and compensatory pathways underlying the efficacy of combining Raf and MEK 

inhibitor combinations, which lie in the same genetic pathway17.  

It stands to reason that a complex disease as cancer would not always be reliant on 

a single protein or pathway and inhibition of a supposed “driver mutation” may be 

compensated elsewhere. Glioblastoma cells, where EGFR expression is often amplified, 

are often not responsive to EGFR inhibition, particularly in cells with loss of PTEN18. This 

is also evident in multiple different cancer cells in cancer cell line encyclopedia19. 

Genetic Variability 

Another standard for inter-tumoral and intra-tumoral heterogeneity are the myriad 

number of genetic mutations. The Cancer Genome Atlas (TCGA) has identified tens of 

mutations in primary tumors, just among some of the major signaling pathways including 

the MAPK and PI3K signaling pathways, DNA damage response pathways and cell cycle 

pathways 20(Figure 1.2). An illustrative summary of such mutations in glioblastoma 

samples is shown in the Figure 1.2.  
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Figure 1.2: Licensed from Brennan et. al 2013 (5412130306368). Alterations affecting 

canonical signal transduction and tumor suppressor pathways summarized for 251 

glioblastoma samples 

Besides such inter-patient variability there is also significant evidence for intra-

tumoral heterogeneity12,14. Such mutational heterogeneity within a tumor can bolster drug 

resistance as cells with more resistive mutations get selected through Darwinian selection, 

where the drug may act as a selective pressure.   

How do we map the effects of a new mutation? Methods which can map the causal 

effects of a network in which the mutation resides should help link the effects of the 

mutation with the rest of the network21. Ultimately, better mapping of these mutational 

profiles should enable appropriate association of patients with treatment regimens22.  

Prediction of Effective Combinations Therapies 
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  To account for the complexities of cancer, combinations of multiple therapies is 

essential. The idea of combination therapies to counter single drug resistance has been 

present since 196523 and this idea has continued to modern chemotherapy regimens which 

often include a combination of about 3-4 drugs. The reasons for efficacy of combinations 

can be diverse – offset pathway feedback effects17, effective localization of relevant drug 

to name a few24.  

However, the increased number of FDA approved therapies raises another problem-

the sheer space for combinations. For instance, for the 71 kinase inhibitors approved by 

FDA by May 2022- there can be 2485 two-way and 57115 three-way combinations. Given 

the manifold heterogeneity of cancer, testing of combinations therapies is infeasible to be 

performed experimentally and require intervention from faster and relatively inexpensive 

computational methods to select promising combinations.  

Dissertation Overview 

In the broadest sense, this dissertation explores methods of mapping biological 

networks and their experimental application which can help getting us closer to better 

treatments or combination of treatments for cancer. Although these methods are general, 

we tested them in glioblastoma cells.  

In Chapter 2, we begin by building upon existing methods to present an improved 

method to infer biological networks, which is more robust to noise and is capable of 

mapping external parameters to a network. We apply this method to infer a simulated 

biochemical network, 16 gene regulatory networks and cell state transition networks. 
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Insights gained from this work inform a subsequent temporal cell state network (Chapter 

5). The results from Chapter 2 are in press at npj Systems Biology and Applications.  

In Chapter 3, we begin by creating a list of drugs with high blood brain barrier 

(BBB) penetrance and create a ranked list of kinase targets-scored by two pharmacological 

and two biological criteria. This chapter is an illustrative exercise for the selection of 

relevant proteins in a cancer, in absence of drug dose response data.  

In Chapter 4, we obtain drug dose responses for a panel of 22 BBB penetrant drugs 

across three glioblastoma derived cell lines. We contrast these results with the list of ranked 

kinases in Chapter 3. This work also provides an experimental basis for the work in Chapter 

5. 

In Chapter 5, we conceive of a temporal cell state model and use it to predict certain 

drug combinations, which are then validated by experiments. The results from Chapter 5 

are available in biorxiv and we have submitted it to PLOS Computational Biology. 

In Chapter 6 we describe the various steps we took to validate a version of 

Mesowestern-a method to enable high throughput western blots which may be used in 

cancer research or in other biological work. This work has been published at ACS Omega. 

We further go on to describe the steps we took to come up with an improved design and 

buffer chemistry and finally used the method to test the time courses of two protein markers 

in two different glioblastoma cell lines.  

In Chapter 7, we describe a collaboration project where we analyzed proteomic data 

obtained from glioblastoma cell lines with certain overexpressed proto-oncogenes. We 

explore the use of enrichment analysis and the use of a dimension reduction method with 
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an intention to uncover signaling pathways involved in resistance mechanisms in these 

cells. Our collaborator could obtain an experimental validation for one of the results. The 

work is still ongoing in the Birtwistle Lab.  

In Chapter 8, we describe the broad conclusions and future directions of all the 

work included in this dissertation. 
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CHAPTER TWO 

 

NETWORKS INFERENCE FROM PERTURBATION TIME COURSE DATA 

 

 

Abstract 
Networks underlie much of biology from subcellular to ecological scales. Yet, 

understanding what experimental data are needed and how to use them for unambiguously 

identifying the structure of even small networks remains a broad challenge.  Here, we 

integrate a dynamic least squares framework into established modular response analysis 

(DL-MRA), that specifies sufficient experimental perturbation time course data to robustly 

infer arbitrary two and three node networks. DL-MRA considers important network 

properties that current methods often struggle to capture:  (i) edge sign and directionality; 

(ii) cycles with feedback or feedforward loops including self-regulation; (iii) dynamic 

network behavior; (iv) edges external to the network; and (v) robust performance with 

experimental noise. We evaluate the performance of and the extent to which the approach 

applies to cell state transition networks, intracellular signaling networks, and gene 

regulatory networks. Although signaling networks are often an application of network 

reconstruction methods, the results suggest that only under quite restricted conditions can 

they be robustly inferred. For gene regulatory networks, the results suggest that incomplete 

knockdown is often more informative than full knockout perturbation, which may change 

experimental strategies for gene regulatory network reconstruction. Overall, the results 

give a rational basis to experimental data requirements for network reconstruction and can 

be applied to any such problem where perturbation time course experiments are possible.  
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Introduction 
 

 Networks underlie much cellular and biological behavior, including transcriptional, 

protein-protein interaction, signaling, metabolic, cell-cell, endocrine, ecological, and social 

networks, among many others. As such, identifying and then representing their structure 

has been a focus of many for decades now. This is not just from experimental perspectives 

alone, but predominantly computational with a variety of statistical methodologies that 

integrate prior knowledge from interaction databases with new experimental data sets 1–24. 

Alternatively, a variety of methods have investigated general ways to infer detailed reaction 

mechanisms—often a foundation of networks—from experimental data 25–29. Such tasks 

may be considered a subset of network inference.  

 Network structure is usually represented as either an undirected or a directed graph, 

with edges between nodes specifying the system. There are five main areas where current 

approaches to reconstructing networks struggle to capture important features of biological 

networks. The first is directionality of edges 6,8,30,31. Commonly employed correlational 

methods predominantly generate undirected edges, which impedes causal and other 

mechanistic analyses. Second is cycles. Cycles such as feedback or feedforward loops are 

nearly ubiquitous in biological systems and central to their function 32,33. This also includes 

an important type of cycle: self-regulation of a node, that is, an edge onto itself, which is 

rarely considered 34. Third is that biological networks are often dynamic. Two notable 

examples are circadian and p53 oscillators 35,36, where dynamics are key to biological 

function. Directionality and edge signs (i.e. positive or negative) dictate dynamics. Fourth 

is pinpointing how external variables impinge on network nodes. For example, is the effect 



 14 

of a growth factor on a network node direct, or though other nodes in the network? Fifth, 

the design and method employed should be robust to typical experimental noise levels. The 

experimental design and data requirements to uniquely identify the dynamic, directed and 

signed edge structures in biological networks containing all types of cycles and external 

stimuli remains a largely open but significant problem. Any such design should ideally be 

feasible to implement with current experimental technologies. 

 Modular Response Analysis (MRA) approaches, first pioneered by Kholodenko 

and colleagues in 2002 37,38 inherently deal with cycles and directionality by prescribing 

systematic perturbation experiments followed by steady-state measurements. The premise 

for data requirements is to measure the entire system response to at least one perturbation 

for each node. Thus, an n node system requires n experiments, if the system response can 

be measured in a global fashion (i.e. all nodes measured at once). The original instantiations 

struggled with the impact of experimental noise, but total least squares MRA and Monte 

Carlo sampling helped to improve performance 39–41. Incomplete and prior knowledge can 

be handled as well using both maximum likelihood and Bayesian approaches 42–45. 

However, these approaches are based on steady-state data, or fixed time point data, limiting 

abilities to deal with dynamic systems. There is a formal requirement for small 

perturbations, which are experimentally problematic and introduce issues for estimation 

with noisy data. Subsequent approaches have recommended the use of large perturbations 

as a trade off in dealing with noisy data, but the theory still formally requires small 

perturbations 41. Lastly, there are two classes of biologically relevant edges that MRA does 

not comprehensively address. First is self-regulation of a node, which is often normalized 
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(to -1) causing it to not be uniquely identifiable. The other are the effects of stimuli external 

to the network (basally present or administered) on the modeled nodes.   

 In addition to perturbations, another experimental design feature that can inform 

directionality is a time-series, which have also been integrated into MRA. These work37,46 

use time-series perturbation data to uniquely infer a signed, directed network that can 

predict dynamic network behavior.  In an n node open system (e.g. protein levels are not 

constant), multiple nodes would either be distinctly perturbed more than once, such as both 

production and degradation of a transcript, or phosphorylation and dephosphorylation of a 

protein, or the system monitored before and after the perturbation (with one perturbation 

per node). This can be experimentally challenging both in terms of scale and finding 

suitable distinct perturbations for a node. Moreover, as is often the case, noise in the 

experimental data severely limits inference accuracy (due to required estimation of 2nd 

derivatives). Subsequent work 47, recommends smaller perturbations and difference in 

timepoints but also does not address noisy data. Further work has demonstrated that larger 

perturbations produce better results due to inevitable experimental noise 41. Thus, there 

remains a need for methods that can infer signed, directed networks from feasible 

perturbation time course experiments that capture dynamics, can uniquely estimate edge 

properties related to self-regulation and external stimuli, and finally that function in the 

presence of typical experimental noise levels.  

 Here we describe a novel, MRA-inspired approach called Dynamic Least-squares 

MRA (DL-MRA). For an n-node system, n perturbation time courses are required, and thus 

experimental requirements scale linearly as the network size increases. The approach uses 
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an underlying network model that captures dynamic, directional, and signed networks that 

include cycles, self-regulation, and external stimulus effects. We test DL-MRA using 

simulated time-series perturbation data with known network topology under increasing 

levels of simulated noise. The approach has good accuracy and precision for identifying 

network structure in randomly generated two and three node networks that contain a wide 

variety of cycles. For the investigated cases, we find between 7 to 11 evenly distributed 

time points yielded reasonable results, although we expect this will strongly depend on 

time point placement. We apply the approach to models describing a cell state switching 

network 48, a signal transduction network 49, and a gene regulatory network 32. Although 

signaling networks are often a focus in network biology, our analysis suggests they have 

unique properties that render them generally recalcitrant to reconstruction. Results from 

the gene regulatory network application suggest that incomplete perturbation (e.g. partial 

knockdown vs. knockout) is more informative than complete inhibition. While challenges 

remain for expanding to other and larger systems, the proposed algorithm robustly infers a 

wide range of networks with good specificity and sensitivity using feasible time course 

experiments, all while making progress on limitations of current inference approaches.  
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Results 

Formulation of Sufficient Experimental Data Requirements for Network 

Reconstruction 

Consider a 2-node network with four directed, weighted edges (Fig. 1a). An 

external stimulus may affect each of the two nodes differently and its effect is quantified 

by S1,ex and S2,ex, respectively (e.g. Methods, Eq. 15). We also allow for basal/constitutive 

production in each node (Si,b). Let xi(k) be the activity of node i at time point tk. The network 

dynamics can be cast as a system of ordinary differential equations (ODEs) as follows 

1 2
1 1 2 1, 1, 1 2 1 2 2, 2, 2( ( ) ( ), , ) ( ); ( ( ) ( ), , ) ( )ex b ex b

dx dx
f x k ,x k S S f k f x k ,x k S S f k

dt dt
    .  

(1) 

The network edges can be connected to the system dynamics through the Jacobian 

matrix J 37,38,46,  
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The network edge weights (Fij’s) describe how the activity of one node affects the 

dynamics of another node in a causal and direct sense, given the explicitly considered nodes 

(though not necessarily in a physical sense). In practice, however, causality can only be 

approached if every component of the system is included in the model, which is not typical 

(and even more so, there must be no model mismatch, which is almost impossible to 

guarantee)6,30,31,50,51. In MRA, these nodes may be individual species or “modules”. In 

order to simplify a complex network it may often be separated into “modules” comprising 

smaller networks of inter-connected species with the assumption that each module is 
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generally insulated from other modules except for information transfer through so-called 

communicating species 37. Cases where such modules may not be completely isolated are 

explored elsewhere 52.   

What experimental data are sufficient to uniquely estimate the signed directionality 

of the network edges and thus infer the causal relationships within the system? 

Fundamentally, we know that perturbations and/or dynamics are important for inferring 

causality 6,37,46,51,52.  Consider a simple setup of three time-course experiments that each 

measure x1 and x2 dynamics in response to a stimulus (Fig. 1b-g). One time course is in the 

presence of no perturbation (vehicle), one has a perturbation of Node 1, and one has a 

perturbation of Node 2. Consider further that the perturbations are reasonably specific, such 

that the perturbation of x1 has negligible direct effects on x2, and vice versa, and that these 

perturbations may be large. Experimentally, this could be an shRNA or gRNA that is 

specific to a particular node, or that a small molecule inhibitor is used at low enough dose 

to predominantly inhibit the targeted node. A well-posed estimation problem can be 

formulated (see Methods) that, in principle, allows for unique estimation of the Jacobian 

elements as a function of time with the following set of linear algebra relations:  
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Here, yi,j refers to a measured first-time derivative of node i in the presence of node 

j perturbation (if used), and  to a difference with respect to perturbation (subscript p) or 

time (subscript t) (see Methods). Since we do not use data from the perturbation of node i 
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for estimation of node i edges, we do not have to impose assumptions on how the 

perturbation functionally acts on the system dynamics (see Methods). Moreover, 

constraints on the perturbation strength can be relaxed, following recent recommendations 

41(although accuracy of the underlying Taylor series approximation can affect estimation—

see Methods). If these measurements with and without perturbations were each taken in 

their steady state as is done in MRA, the solution for Fij would be trivial. MRA gets around 

this by normalizing self-regulatory parameters Fii to -1. Using dynamic data allows unique 

estimation of self-regulatory parameters without such normalization. Estimation of the 

node-specific stimulus strengths or basal production rates (S’s) requires evaluation after 

specific functional assumptions, but in general these effects are knowable from the data to 

be generated (see Methods and below results).  

 Note that this formulation is generalizable to an n dimensional network. With n2 

unknown parameters in the Jacobian matrix, n equations originate from the vehicle 

perturbation and n-1 equations originate from each of the n perturbations (discarding 

equations from Node i with Perturbation i). This results in 
22)1(* nnnnnnn =−+=−+

independent equations. 
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Using Sufficient Simulated Data to Reconstruct a Network  

As an initial test of the above formulation, we used a simple 2 node, single activator 

network where Node 1 activates Node 2, one node has first-order degradation (-1 diagonal 

elements), and the other has negative self-regulation (-0.8 diagonal) (Fig. 1a—see Methods 

for equations). A stimulus at t=0 (time-invariant; S,ex = 1) increases the activity of each 
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node, which we sample with an evenly spaced 11-point time course. This simulation was 

done for no perturbation (i.e. vehicle) and for each perturbation (Node 1 and Node 2) to 

generate the necessary simulation data per the theoretical considerations above (Fig. 1c,e,g, 

left panel). Here, we modeled perturbations as complete inhibition; for example, a 

perturbation of Node 1 makes its value 0 at all times. Solving Eqs. 3-4 to infer the Jacobian 

elements at each time point yielded good agreement between the median estimates and the 

ground truth values (Fig. 1h, “Analytic Solution”, No Noise). Using the node activity data 

corresponding to the last time point in the time course and the median estimates of Jacobian 

elements, the external stimuli S1,ex and S2,ex were also determined (Eq.18-19) and 

reasonably agree with the ground truth values.  

 How does this approach fare when data are noisy? We performed the estimation 

with the same data but with a relatively small amount of simulated noise added (10:1 

signal-to-noise—Fig. 1c,e,g). The resulting estimates are neither accurate nor precise, 

varying on a scale more than ten times greater than each parameter’s magnitude with 

median predictions both positive and negative regardless of the ground truth value (Fig. 

1i). The stimulus strengths S1,ex and S2,ex are estimated to be negative, while the ground 

truth is positive.  

 Although the analytic equations suggest the sufficiency of the perturbation time 

course datasets to uniquely estimate the edge weights, in practice even small measurement 

noise corrupts estimates obtained from direct solution of these equations. Therefore, we 

considered an alternative representation by employing a least squares estimation approach 

rather than solving the linear equations directly. For a given set of guesses for edge weight 



 21 

and stimulus parameters, one can integrate to obtain a solution for the dynamic behavior 

of the resulting model, which can be directly compared to data in a least-squares sense. 

Least squares methods were shown to improve traditional MRA-based approaches39,40, but 

had never been formulated for such dynamic problems. Two hurdles were how to model 

the effect of a perturbation without (i) adding additional parameters to estimate or (ii) 

requiring strong functional assumptions regarding perturbation action. We solved these 

here by using the already-available experimental measurements within the context of the 

least-squares estimation (see Methods).  We applied this approach to the single activator 

model, 10:1 signal-noise ratio case above where the analytic approach failed. This new 

estimation approach was able to infer the network structure accurately and precisely (Fig. 

1j). We conclude that analytic formulations can be useful for suggesting experimental 

designs that should be sufficient for obtaining unique estimates for a network 

reconstruction exercise, but in practice directly applying those equations may not yield 

precise nor accurate estimates. Alternatively, using a least-squares formulation seems to 

work well for this application.  

Reconstruction of Random 2 and 3 Node Networks 

To investigate the robustness of the least-squares estimation approach, we applied 

it to increasingly complex networks with larger amounts of measurement noise and smaller 

numbers of time points (Fig. 2). We focused on 2 and 3 node networks. We generated 50 

randomized 2 and 3 node models, where each edge weight is randomly sampled from a 

uniform distribution over the interval [-2,2], and the basal and external strength from [0,2] 

(Fig. 2a, S1a, S2a). Each random network was screened for stability. Many networks 
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(29/50 for 2 node and 3 node) displayed potential for oscillatory behavior (non-zero 

imaginary parts of the eigenvalues of the Jacobian matrix). However, since the real parts 

of the eigenvalues are non-zero and negative, these oscillations should dampen over time, 

and no sustained oscillatory behavior was analyzed. For each random model, we generated 

a simulated dataset based on the prescribed experimental design, using complete inhibition 

as the perturbation. We considered evenly-spaced sampling within the time interval of 0-

10 AU (approximate time to reach steady-state—Fig. S1b, S2b) with different numbers of 

time points (3, 7, 11 and 21), and added 10:1 signal-to-noise, 5:1 signal-to-noise, and 2:1 

signal-to-noise to the data. Non-uniform time point spacing may change inference results 

but that was not explored at these first investigations.  

For each random network model, number of time points, and noise level, we 

evaluated the fidelity of the proposed reconstruction approach in terms of signed 

directionality (Fig. 2c-f). We overall found reasonable agreement between inferred and 

ground truth values, even at the higher noise levels and low number of timepoints. 

Expectedly, the overall classification accuracy increases with more time points and 

decreases with higher noise levels. But, surprisingly, even in the worst case investigated of 

3 timepoints and 2:1 signal-to-noise ratio, classification accuracy was above 85% for 2 

node models and 70% for 3 node models. Increasing the number of nodes decreases 

performance, with 3-node reconstruction being slightly worse than 2-node reconstruction, 

other factors held constant.  

We wondered whether the magnitude of an edge weight influenced its classification 

accuracy, since small edge weights may be more difficult to discriminate from noise. We 
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found that edge weights with greater absolute values, which are expected to have a greater 

influence on the networks, were more likely to be classified correctly (Fig. S1c-f, S2c-f). 

Also, for models with damped oscillatory behavior, the classification accuracy is very 

similar to that of all 50 random models (Fig. S3a-b).  

How does this method compare to similar network reconstruction methods? There 

are limited methods to compare to which also use dynamic data and sequential 

perturbations. MRA37, from which this method was inspired, uses steady- state data. 

However, we could use MRA methods requiring dynamic perturbation data as is used in 

our method 46,54.To compare, we further generated another set of perturbation data with 

50% perturbation (as opposed to 100%). We then used the two sets of perturbation data to 

estimate the network node edges with dynamic modular response analysis (Fig 2g). Even 

in absence of noise, for low to medium numbers of timepoints (3-11) the network is not 

always accurately inferred (Fig. 2g). In the presence of noise, DL-MRA performs better, 

although the difference between the two methods becomes lower at high number of 

timepoints. Thus, DL-MRA not only outperforms with half the data, but it also estimates 6 

additional parameters-basal production and external stimulus for each node. Although 

Cho’s approach 47 builds upon MRA methods by recommending smaller time point 

intervals and smaller perturbations, for our purposes, the time intervals and perturbations 

are fixed and this would not affect the results obtained here. Moreover, further work has 

actually recommended larger perturbations while dealing with noisy data 41. 

To explore a scenario where data from a node might be unavailable, we removed 

the data from one of the nodes in the 50 random 3 node models and used the remaining 
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data to reconstruct a 2-node system (Fig. S4). Comparing with corresponding model 

parameters in the 3 node system, we find a good but expectedly reduced classification 

accuracy (No Noise-94.75%, 10:1 Signal: Noise-93.75%, 5:1 Signal: Noise-91.25%, 2:1 

Signal: Noise-87).  

A part of the inference process is performing parameter estimation using multiple 

starting guesses (i.e. multi-start), and we wanted to determine how robust the estimated 

parameters were across the multi-start processes. We looked at the distribution of 

coefficient of variation (CV) among the parameters in the multi-start results in the 50 

random 3 node models where either the data generated from the estimated parameters had 

low sum of squared errors (SSE) compared to the original data  (<10-4) or with SSE less 

than twice the minimum SSE. We find that the CVs peak around zero and generally have 

a small spread, especially for low noise scenarios (Fig. S5). This implies a good 

convergence of the parameter sets obtained through multi-start. 

We conclude that the network parameters of 2 and 3 node systems can be robustly 

and uniquely estimated using DL-MRA. However, these were ideal conditions where there 

was no model mismatch that is expected in specific biological applications. How does DL-

MRA perform when applied to data reflective of different biological use cases?  

Application to Cell State Networks 

 Cell state transitions are central to multi-cellular organism biology. They are 

commonly transcriptomic in nature and underlie development and tissue homeostasis and 

can also play roles in disease, such as drug resistance in cancer 48,55–62. Could DL-MRA 

reconstruct cell state transition networks? As the application, we use previous data on 
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SUM159 cells that transition between luminal, basal and stem-like cells 48.  Pure 

populations of luminal, basal and stem-like cells eventually grow to a stable final ratio 

amongst the three. The authors used a discrete time Markov transition probability model 

to describe the data and estimate a cell state transition network (Fig. 3a). Thus, we seek to 

compare DL-MRA to such a Markov model in this case.  

We hypothesized that perturbations to the system in this case, in contrast to above, 

did not have to change node activity (i.e. edges). Rather, we thought that perturbing the 

equilibrium cell state distribution could serve an equivalent purpose. Thus, the data for 

reconstruction consisted of observing the cell state proportions evolve over time from 

“pure” populations (Fig. 3b), in addition to equal proportions. DL-MRA is capable of 

explaining the data (Fig. 3b). Interpretation of the estimated network parameters to DL-

MRA depends on the transformation of the original discrete time Markov probabilities to 

a continuous time formulation (see Methods—there are constraints on self-regulatory 

parameters), but DL-MRA correctly infers the cell state transition network as well (Fig 3c). 

Conveniently, DL-MRA is not constrained to 1-day time point spacing as is the original 

discrete time Markov model.   

How does noise and the number of timepoints affect the reconstruction? As above, 

we generated data for 50 random cell state transition models with 3, 7, 11 and 21 timepoints 

within 5 days, as the models generally seemed to reach close to equilibrium within 5 days. 

Noise levels of 10:1, 5:1 and 2:1 were used. All parameters were classified accurately (Fig. 

3d) (although additional constraints in the estimation—see Methods—facilitates this 

classification performance). With 3 timepoints, there was deviation from perfect fit even 
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with no noise in the data. At 7 and higher number of timepoints, the estimates matched 

ground truth well, and noise expectedly reduced the accuracy (Fig. 3d). We conclude that 

DL-MRA can robustly infer cell state networks given perturbation data in the form of non-

equilibrium proportions as initial conditions.  

Application to Intracellular Signaling Networks 

How does the method perform for intracellular signaling networks? The Huang-

Ferrell model 49 (Fig. 4a) is a well-known intracellular signaling pathway model and has 

been investigated by different reconstruction methods, including previous versions of 

MRA 37,39,41,46,63. It captures signal flux through a three-tiered MAPK cascade where the 

2nd and 3rd tier contain two phosphorylation sites. An important aspect of the Huang-Ferrell 

model is that although the reaction scheme is a cascade and without obvious feedbacks, 

there may be hidden feedbacks due to sequestration effects and depending on how the 

perturbations were performed.  

In order to reconstruct the Huang-Ferrell MAPK network through DL-MRA, we 

first simplified it to a three-node model with p-MAPKKK, pp-MAPKK and pp-MAPK as 

observable nodes, as is typical for reconstruction efforts (Fig. 4b) 37,39,41,46,52,63. Second, to 

model perturbations, we sequentially perturbed the activation parameters of each of the 

observable species (k3, k15 and k27 respectively). Such perturbations, although hard to 

achieve experimentally, are important because modules must be “insulated” from one 

another and perturbations must be specific to the observables 37,52. Even specific inhibitors 

do not have such kinetic specificity. Third, in the simplification of the reaction scheme, the 

observables are shown to influence each other but in the actual scheme, they conduct their 
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effects through the unphosphorylated and semi-phosphorylated species. We sought to keep 

the levels of these two species relatively constant between different perturbations, so that 

they wouldn’t add to non-linearities in the estimation. Therefore, we used a stimulus which 

only activated the observables to a maximum of about 5% of the total forms of the protein 

52 

Estimation with DL-MRA under the above conditions fits the data (Fig 4c) and 

predicts positive node edges down the reaction cascade (F21, F32), negligible direct relation 

between p-MAPKKK and pp-MAPK (F13, F31), negative self-regulation of each of the 

observables (F11, F22, F33) negative feedbacks from pp-MAPKK to p-MAPKKK (F12) and 

from pp-MAPK to pp-MAPKK (F23), and negligible external stimuli on pp-MAPK to pp-

MAPKK (F13, F31). All these effects are consistent with the reaction scheme. The negative 

feedback effects, although not immediately obvious, are consistent with ground truth 

sequestration effects. For instance, pp-MAPK has an overall negative effect on pp-

MAPKK as the existence of pp-MAPK lowers the amount of species MAPK and p-MAPK 

which sequester pp-MAPKK and makes it avoid deactivation by its phosphatase.  

How do the estimation results for the Huang Ferrell model in our method compare 

with those obtained from other methods? Previous work using MRA also reported negative 

feedbacks from successive modules to the preceding ones 37,46,52. Similarly, self-regulation 

parameters in most preceding MRA based methods are also estimated to be negative but 

are fixed at -137,39,52.  

Besides MRA inspired methods, SELDOM is another network reconstruction 

method which can also deal with dynamic data 63.  SELDOM is a data-driven method which 
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uses ensembles of logic based dynamic models followed by training and model reduction 

steps to predict state trajectories under untested conditions. However, when dealing with 

the Huang-Ferrell network, the true value model of SELDOM does not map the effects of 

self-regulation, nor feedback effects between nodes (Fig 4e). This may be explained by the 

fact that although SELDOM uses an extensive number of models to test the data obtained 

from multiple different stimuli, perturbation data was not included to test the Huang-Ferrell 

Model. This implies that systematic perturbation of each of the nodes, as prescribed by 

MRA-based methods, are necessary in order to unearth feedbacks and self-regulation 

effects.  

Although application of DL-MRA to the Huang-Ferrell model was able to unearth 

latent network structure, the simulation conditions were restrictive. First, the perturbation 

scheme chosen in this paper, although specifically targeted at the observable species, is 

hard to produce experimentally. In practice, knock-down/out, overexpression, or specific 

inhibitors could be used as suitable perturbations, but do not have the preciseness needed 

to be compatible with MRA-imposed constraints. The feedback effect observed could 

depend on the perturbation scheme chosen-for instance knockdown of an entire module as 

a perturbation would likely have manifested as positive feedback to the preceding module. 

That is because such a knockdown would have reduced the effect of sequestration of the 

module on the preceding observable and would have made it more available for 

dephosphorylation. Second, we assumed a low stimulus to avoid effects from the 

unphosphorylated version of the proteins. A higher activation may increase non-linearities 

adding to the complexity of the model, whereas a lower stimulus may not activate enough 
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proteins to be well detected in experiments. The degree of activation needed for an 

experiment may be hard to predict beforehand. Such specific perturbations and stimulus 

had to be done to reduce the effects arising from the non-observable species behavior. 

Hence application of DL-MRA to intracellular signaling networks with multiple physical 

interactions needs to be carefully considered before modeling or experiments. 

Application to Gene Regulatory Networks:  Partial Perturbations are More Informative 

than Full Perturbations  

 Here, we applied DL-MRA further to a series of well-studied non-linear feed 

forward loop (FFL) gene regulatory network models that have time-varying Jacobian 

elements (Fig. 5a, Table 1) 32,64. Such FFL motifs are strongly enriched in multiple 

organisms and are important for signaling functions such as integrative control, persistence 

detection, and fold-change responsiveness 65–67.  

The FFL network has three nodes (x1, x2, and x3), and the external stimulus acts on 

x1 (S1,ex). There is no external stimulus on x2 and x3; however, there may be basal production 

of x2 (S2,b) and x3 (S3,b),. Each node exhibits first-order decay (Fii=-1). The parameters F12, 

F13, and F23 represent connections that do not exist in the model; we call these null edges, 

but we allow them to be estimated. The relationship between x1 and x2 (F21), between x1 

and x3 (F31), or between x2 and x3 (F32) can be either activating or inhibitory. Furthermore, 

x1 and x2 can regulate x3 through an “AND” gate (both needed) or an “OR” gate (either 

sufficient) (Fig. 5a). These permutations give rise to 16 different FFL structures (Table 1).  

To generate simulated experimental data from these models, we first integrated the 

system of ODEs starting from a zero initial condition to find the steady state in the absence 
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of stimulus. We then introduced the external stimulus and integrated the system of ODEs 

(see Methods) to generate time series perturbation data consistent with the proposed 

reconstruction algorithm, using full inhibitory perturbations. We used 11 evenly spaced 

timepoints for all 16 non-linear models, based on the random 3-node model analysis above, 

and also added noise as above. 

We first noticed that even in the absence of added noise, a surprising number of 

inferences were incorrect (Fig. 5b, f). Model #1 (Table 1, Fig. 5b-c) is used as an example, 

where F21, F31 and F32 are activators with an AND gate, and F31 is incorrectly predicted as 

null (Fig. 5b—compare ground truth to 100% inhibition). To understand the reason for the 

incorrect estimation, we looked at the node activity dynamics across the perturbation time 

courses (Fig. 5d). All three nodes start from an initial steady state of zero, but Node 3 is 

zero for all three perturbation cases. This is because of the following. Since x1 is required 

for the activation of x2 and x3, complete inhibition of x1 completely blocks both x2 and x3 

activation. But, because both x1 and x2 are required for the activation of x3, completely 

inhibiting x2 activity also completely inhibits x3. Thus, given this experimental setup, it is 

impossible to discern if x1 directly influences x3 or if it acts solely through x2.  

We thus reasoned that full inhibitory perturbation may suppress the information 

necessary to correctly reconstruct the network, but that a partial perturbation experiment 

may contain enough information available to make a correct estimate. If this were true, 

then upon applying partial perturbations (we chose 50% here), Node 3 dynamics should 

show differences across the perturbation time courses. Simulations showed that this is the 

case (Fig. 5e). Subsequently, we found that for partial perturbation data, F31 is correctly 



 31 

identified as an activator. More broadly, we obtain perfect classification from noise-free 

data across all 16 FFL networks when partial perturbation data are used, as opposed to 5/16 

networks having discrepancy with full perturbation data (Fig. 5f). The fits to simulated data 

from the reconstructed model align very closely, despite model mismatch (Fig. S6). We 

conclude that in these cases of non-linear networks, a partial inhibition is necessary to 

estimate all the network parameters accurately. Thus, moving forward, we instead applied 

50% perturbation to all simulation data and proceeded with least squares estimation.  

Application to Gene Regulatory Networks:  Performance 

The above analysis prompted us to use a partial (50%) perturbation strategy, since 

it classified each edge for each model in the absence of noise correctly. What classification 

performance do we obtain in the presence of varying levels of experimental noise? We first 

devised the following strategy to assess classification performance. We generated 50 

bootstrapped datasets for each network structure/signal-to-noise pair, and thus obtained 50 

sets of network parameter estimates. To classify the network parameters, we used a 

symmetric cutoff of a percentile window around the median of these 50 estimates (Fig. 6a). 

We illustrate this approach with three different example edges and associated estimates, 

one being positive (Edge 1), one being negative (Edge 2), and one being null (Edge 3). 

Given the window of values defined by the percentile cutoff being chosen, if the estimates 

in this window are all positive, then the network parameter would be classified as positive. 

Similarly, if the estimates in this window are all negative, then the parameter would be 

classified as negative. Finally, if the estimates in the window cross zero (i.e. span both 

positive and negative terms), then it would be classified as null. First, consider the case that 
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the percentile window is just set at the median with no percentile span. Then, the 

classifications for true positives and negatives are likely to be accurate while the null 

parameters are likely to be incorrectly categorized as either positive or negative (Fig. 6a). 

If we increase the percentile window span slightly (e.g. between the 40th and 60th 

percentile, middle panel), we can categorize null edges better, while maintaining good 

classification accuracy of both true positive and negative edges. However, if we relax the 

percentile window too much, (e.g. between the 10th and 90th percentile, far right panel) we 

may categorize most parameters as null, including the true positive and negatives.  Thus, 

it is clear there will be an optimal percentile cutoff that maximizes true positives and 

minimizes false positives as the threshold is shifted from the median to the entire range.  

Now, we applied this classification strategy to the 16 FFL model estimates from 

data with different noise levels. We varied the percentile window from the median only 

(50) to the entire range of estimated values (100) and calculated the true and false positive 

rates for all edges across all 16 FFL models, which allowed generation of receiver operator 

characteristic (ROC) curves (Fig. 6b). For each noise level, we chose the percentile window 

that yielded a 5% false positive rate (13-87 percentile for 10:1 Signal:Noise, 19-81 

percentile for 5:1 Signal:Noise, and 21-79 percentile for 2:1 Signal:Noise). Using this 

simple cutoff classifier, we observed good classification performance across all noise 

levels according to traditional area under the ROC curve metrics (10:1 AUC=0.99, 5:1 

AUC=0.9, 2:1 AUC=0.92).  

How does classification accuracy break down by FFL model and edge type? To 

evaluate the performance for each of the 16 FFL cases, we calculated the fraction of the 12 
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links in each FFL model that was classified correctly as a function of signal-to-noise, given 

the percentile windows determined above (Fig. 6c). We also looked at the fraction of the 

16 models where each of the 12 links were correctly classified (Fig. 6d). Perfect 

classification is a value of one, which is the case for no noise, and for many cases with 10:1 

signal-to-noise.  

In general, as noise level increases, prediction accuracy decreases, as expected. 

Although for some models and parameters, performance at 2:1 signal-to-noise is poor, in 

some cases it is surprisingly good. This suggests that the proposed method can yield 

information even in high noise cases; this information is particularly impactful for null, 

self-regulatory, and stimulus edges. High noise has strong effects on inference of edges 

that are either distinct across models, time variant or reliant on other node activities (F21, 

F31, F32) (Fig. 6c-d, S7). F21, which is reliant on activity of x1, is inferred better than F31 

and F32. This may be caused by the fact that x3 dynamics depend on both x1 and x2, whereas 

x2 dynamics only depend on x1.  

Comparing across models, we find that Models 1-8 are reconstructed slightly better 

than Models 9-16 (Fig. 6c) when noise is high. This performance gap is predominantly 

caused by S3,b misclassification—basal production of Node 3 (Fig. S7). What is the reason 

for the possible misclassification of S3,b in Models 9-16? We know that S3,b depends on the 

initial values of x1, x2 and x3 and the estimated values of F31, F32 and F33 (See Methods, Eq. 

19). For Models 1-8, x1(t=0) and x2(t=0) are both zero and therefore S3,b is effectively only 

dependent on estimated value of F33 and x3(t=0) (Fig. S6 and Methods). But for Models 9-

16, x2(t=0) is non-zero and S3,b is dependent on the estimated values of both F32 and F33, in 
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addition to x2(t=0) and x3(t=0), which increases the variability of S3,b estimates. Therefore 

with high levels of noise, S3,b is more likely to be mis-classified in Models 9-16, whereas 

this does not happen in Models 1-8 (Fig.6c,d, S7). In the future, including stimulus and 

basal production parameters in the least squares estimations themselves, rather than further 

deriving algebraic relations to estimate them, will likely help improve reliability.  

We conclude that (i) when dealing with non-linear gene regulatory networks, 

complete perturbations such as genetic knockouts may fundamentally impede one’s ability 

to deduce network architecture and (ii) this class of non-linear networks can be 

reconstructed with reasonable performance using the proposed strategy employing partial 

perturbations.  
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Discussion 

Despite intensive research focus on network reconstruction, there is still room to 

improve discrimination between direct and indirect edges (towards causality), particularly 

when biologically-ubiquitous feedback and feedforward cycles are present that stymie 

many statistical or correlation-based methods, and given that experimental noise is 

inevitable. The presented DL-MRA method prescribes a realistic experimental design for 

inference of signed, directed edges when typical levels of noise are present. It allows 

estimation of self-regulation edges as well as those for basal production and external 

stimuli. For 2 and 3 node networks, the method can successfully handle random linear 

networks, cell state transition networks, and gene regulatory networks, and, under certain 

limiting conditions, signaling networks. Prediction accuracy improved with more 

timepoints, which in our case accounted for more relevant dynamic data. However, we 

would like to stress that here we did not explore time point placement, which likely 

underlies the performance increase rather than simply number of timepoints. Prediction 

accuracy was strong in many cases even with simulated noise that exceeds typical 

experimental variability (2:1 signal-to-noise). The method presented here is quite general 

and could be applied not only to cell and molecular biology, but also vastly different fields 

where perturbation time course experiments are possible, and where network structures are 

important to determine.  

One type of non-linear model that we did not investigate is one with sustained 

oscillations, such as those found in the cell cycle68, or sometimes even MAPK signaling 

pathways69–71. We found that in our application to general two and three node linear 
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models, DL-MRA could reconstruct multiple networks that have damped oscillatory 

behavior (Fig 1b). However, we expect time point measurement selection and frequency 

to be much more important for inferring networks that give rise to sustained oscillations, 

with time points comprehensively covering peaks and troughs, and the frequency high 

enough to do so. We do expect that the method could infer the structure of such networks 

given appropriate sampling, but this requires a much deeper investigation.   

MRA and its subsequent methods allow for inference of direct edges by prescribing 

systematic perturbation of each node 37,39,41,43,45 and the idea of directionality has been 

followed through in DL-MRA. Often, such edge directness is equated to causality, but this 

is not necessarily the case, especially when the entire system is not explicitly represented. 

In practice, the causality and strength of an edge may be dependent on how well the model 

represents the underlying phenomenon and might be affected by simplification of larger 

networks, non-linearities in the actual model and even by noise in the data. Secondly, in 

discussions about causal system inferences, consideration of the counterfactuals is 

important 30,31,50,51. For a network of nodes going through dynamics, the counterfactuals to 

intrinsic network edges causing the dynamics would be the environmental factors extrinsic 

to the network edges. In DL-MRA, by evaluating external stimuli and basal production as 

well as the network edges, we have mapped some counterfactuals to node dynamics, thus 

presenting a more complete map of the causal factors to the network dynamics compared 

to methods which only show network edges. This also allows for a concise mapping of the 

environmental contexts in which the network edges are reconstructed. 
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 Application of DL-MRA could reconstruct cell state transition networks based on 

discrete time Markov transition models, with the added benefit of not being constrained to 

specific time intervals. It can also successfully handle noisy data. The additional constraints 

in DL-MRA in the context of cell state transitions (summations of transition rates—see 

Methods) implies that the underlying network may be estimated even with less data 

requirements than in other cases. This method can be a useful tool to model cell state 

transitions and predict cell state. Perturbations were modeled as a difference in initial states, 

and that worked well in this case, suggesting that such modeling of perturbations may work 

in other cell state transition or biological networks.  

Although application of DL-MRA to an intracellular signaling network (Huang-

Ferrell MAPK) was able to explain its ground truth, including feedback due to 

sequestration, the method was constrained to specific, difficult-to-implement perturbations 

and a low stimulus which may not always be feasible experimentally. Specific inhibitors 

could be a source of perturbation, but even they influence more kinetic parameters than 

was required here for a clean solution. In MRA, a larger reaction scheme is often simplified 

into modules with one species in the module representing the activity of the module. But 

often, the activity of the other species in the module is implicit and becomes significant in 

dictating how perturbations and stimulus affect the network dynamics. Moreover, the type 

of perturbation chosen, such as specific inhibitors versus knock-down, also may yield 

different network inference results. Therefore, the use of MRA methods on simplified large 

intracellular signaling networks, especially while dealing with experiments, have 

significant caveats that should be carefully considered 41,72.  
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Although complete inhibition is often used for perturbation studies of gene 

regulatory networks (e.g. CRISPR-mediated gene knockout), we found that partial 

inhibition is important to fully reconstruct the considered non-linear gene regulatory 

networks. It is important to distinguish here, however, small perturbations vs. partial 

perturbations. Small perturbations are formally recommended for both MRA and other 

techniques 72 where the effects of noise are not extensively explored.  In practice however, 

there is a tradeoff between perturbation strength and feasibility, since the effects of small 

perturbations are masked by noise 41. Partial perturbations, as considered in this work 

(~50%) are much larger than what are typically considered small perturbations. The 

theoretical formulation of DL-MRA reduces the impact of not having small perturbations, 

because perturbation data from a particular node is not used for inference of edges 

connected to that node. Yet, DL-MRA still uses linearizations of the Jacobian which are 

are always subject to greater inaccuracy the further away from reference points such 

perturbations take the system. Since many biological networks share the same types of non-

linear features contained within the considered FFL models, this is not likely to be the only 

case when partial inhibition will be important. We are thus inclined to speculate that large 

partial perturbations may be a generally important experimental design criterion moving 

forward. Partial inhibition is often “built-in” to certain assay types, such as si/shRNA or 

pharmacological inhibition that are titratable to a certain extent.  

One major remaining challenge is scaling to larger networks. Here, we limited our 

analysis to 2 and 3 node networks. Conveniently, the number of necessary perturbation 

time courses needed grows linearly (as opposed to exponentially) with the number of 
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considered nodes. Furthermore, as long as system-wide or omics-scale assays are available, 

the experimental workload also grows linearly. This is routine for transcriptome analyses 

73, and is becoming even more commonplace for proteomic assays (e.g. mass cytometry 74, 

cyclic immunofluorescence 75, mass spectrometry 76, RPPA 77. Thus, the method is 

arguably experimentally scalable to larger networks.  

However, the computational scaling past 2 and 3 node models remains to be 

determined and is likely to require different approaches for parameter estimation.  

Increasing the network size will quadratically increase the number of unknown parameters, 

which will significantly increase the computational requirements for obtaining robust 

solutions. Yet, recent work has shown that large estimation problems in ODE models may 

be broken into several smaller problems78, which may be applicable here, and is likely to 

yield large computational speed up by allowing parallelization of much smaller tasks. 

However, theory on how to merge potentially discrepant results between independently 

estimated overlapping subnetworks would need to be derived. Importantly, we saw in the 

linear 2 and 3 node model examples that the impact of experimental noise was larger for 3 

node models, implying that increasing the number of nodes past 3 will further increase the 

impact of experimental noise. Another synergistic avenue could be imposing prior 

knowledge to improve initial parameter guesses and even reduce the parametric space, such 

as in Bayesian Modular Response Analysis 45, or with functional database information 79. 

Such prior knowledge could also help inform emergent network properties as network size 

grows, such as degree distributions for scale-free networks 2. Here, we only investigated 

dense subnetworks, so sparseness patterns and judicious allocation of non-zero Jacobian 
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elements could also have great impact on estimation for large networks. Overall, 

application to larger networks is of great interest but these non-trivial computational 

roadblocks must be solved first.   

In conclusion, the proposed approach to network reconstruction is systematic and 

feasible, robustly operating in the presence of experimental noise and accepting data from 

large perturbations. It addresses important features of biological networks that current 

methods struggle to account for: causality/directionality/sign, cycles (including self-

regulation), dynamic behavior and environmental stimuli. It does so while leveraging 

dynamic data of the network and only requires one perturbation per node for completeness. 

We expect this approach to be broadly useful not only for reconstruction of biological 

networks, but to enable using such networks to build more predictive models of disease 

and response to treatment, and more broadly, to other fields where such networks are 

important for system behavior. 
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Methods 

Deriving Sufficiency Conditions for Unique Estimation of Jacobian Elements 

The first-order partial derivatives comprising J (Eq. 2) can be approximated by a 

first-order Taylor series expansion of Eq. 1 about a time point k 

 ( ) ( ) ( ) ( )1 1 1 1 1 1 2 2

1 2

( 1) ( ) ( ) . ( 1) ( ) ( ) ( 1) ( )f k f k f k x k x k f k x k x k
x x

 
+  + + − +  + −

 
 (5)  

 ( ) ( ) ( ) ( )2 2 2 1 1 2 2 2

1 2

( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( )f k f k f k x k x k f k x k x k
x x

 
+  +  + − +  + −

 
 (6)  

Eq. 5-6 may be written more succinctly as  

 
1 11 1 12 2

2 21 1 22 2

( 1) ( ) ( 1) ( ) ( 1)

( 1) ( ) ( 1) ( ) ( 1)

t t

t t

y k F k x k F k x k

y k F k x k F k x k

+   + +  +

+   + +  +
  (7) 

where 

  ( 1) ( 1) ( ); ( 1) ( 1) ( )i i i t i i iy k f k f k x k x k x k+  + −  +  + − . (8) 

The approximation in Eq. 7 becomes more accurate as more time points are 

measured. Also, the edge weights are potentially time-dependent, although this is rarely 

considered when describing biological networks. 

How do we estimate the edge weights F in Eq. 7 and thus reconstruct the network? 

Time series data can inform xi’s and fi’s as a function of time, following application of a 

stimulus. Given such stimulus-response data, however, for each time point there are only 

two equations for four unknowns, an underdetermined system for which more data are 

needed.  

Consider now stimulus-response time course data in the presence of single 

perturbations. Let pi be a variable that reflects the strength and/or presence of different 

potential perturbations: p1 represents perturbation of x1 and p2 represents perturbation of 
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x2. If pj is not explicitly written, its value is zero and/or it has no effect. Now, the ODEs 

become a function of the perturbation variables 

 , 1 2( ) ( , ) ( ( ), ( ), )i j i j i jf k f k p f x k x k p =   (9) 

The 1st order Taylor series expansions for cases with perturbations become 
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2
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p


  +  + 


 (13) 

 where 

 , , ,( ) ( ) ( ); ( ) ( , ) ( )i j i j i p j i i j iy k f k f k x k x k p x k −   −  (14) 

Here, we have expanded with respect to the perturbation, rather than with respect 

to time as previously. However, since the reference point is the same, the Jacobian elements 

remain identical in these equations. It is also interesting to note that the Jacobian elements, 

or network, may be affected by the perturbation, but we do not necessarily have to know 

those effects mathematically, since the reference point is the same. Now we have six 

potential equations with which to estimate the four Jacobian elements. However, we must 

make some determination as to how the perturbations p1 and p2 directly affect Node 1 and 

Node 2 dynamics f1 and f2 to account for the perturbation variable partial derivatives.  
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 By design, the Node 1 perturbation has significant direct effects on Node 1 

dynamics, and similarly for the Node 2 perturbation on Node 2 dynamics. Using equations 

including 
1 1

f p   and 
2 2

f p  require precise definition of perturbation strength and their 

effects on dynamics, which could be difficult to determine experimentally and implement 

in simulations.  Therefore, we do not employ equations involving such terms. On the other 

hand, if the Node 1 perturbation has negligible direct effect on Node 2 dynamics, that is, 

the effects on Node 2 dynamics are through the network (i.e. p1) and not explicit in f2), and 

similarly the Node 2 perturbation has negligible direct effect on Node 1 dynamics, then 

2 1
f p  and 

1 2
f p   are approximately zero. This mild condition is often the case 

experimentally. The only determining factors for the suitability of the Taylor series 

truncation are the spacing of time points and the accuracy of the expansion about the 

perturbation difference. From this, the main set of linear equations presented in Eq. 3-4 are 

obtained.  

General Estimation Model Equations 

 We employ the following general model for a two-node network: - 

1
1 1 2 1 11 1 12 2

2
2 1 2 2 21 1 22 2

dx
f (x ,x ) S F x F x

dt

dx
f (x ,x ) S F x F x

dt

= = + +

= = + +

  (15) 

Here, S1 and S2 are the stimuli strengths on Node 1 and Node 2 respectively, and 

F11, F12, F21 and F22 are the network edge weights (Figure 1a). In many systems, there may 

be a basal or constitutive production driving the node activities, besides an external 

stimulus. For these cases, the Stimulus term (Si), may be considered as an addition of these 
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two effects- the basal production term (Si,b) and the external stimulus (Si,ex). Then the two-

node model can be represented by the following equations- 

1
1, 1, 11 1 12 2

2
2, 2, 21 1 22 2

b ex

b ex

dx
S S F x F x

dt

dx
S S F x F x

dt

= + + +

= + + +

 (16) 

Or more generally, 

, ,

1

n
i

i b i ex ij j

j

dx
S S F x

dt =

= + + , (17) 

where n is the total number of nodes.  

When a steady state exists, the dxi/dt terms become zero and it becomes easy to 

represent the stimulus terms as a function of the node activities (xi) and network edges (Fij).  

, , ,

1

( )
n

i b i ex ij i ss

j

S S F x
=

+ = −    (18) 

This is helpful to understand that the perturbation time course data also generally 

constrains not only the edge weights, but also the stimulus terms. For a system at a steady 

state without an external stimulus, for example at t=0: 

, ,

1

( )
n

i b ij i ss

j

S F x
=

= −    (19) 

The Two-node Single Activator model 

 The two-node single activator model (Fig. 1a, S1a) is described by 

1
1 1 2 1

2
2 1 2 1 2

1

1 1.5 0.8

dx
f (x ,x ) x

dt

dx
f (x ,x ) x x

dt

= = −

= = + −

  (20) 
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Here, S1,ex=1, F11=-1, F12=0, S2,ex=1, F21=1.5, F22=-0.8. The basal production 

terms are both zero, for simplicity, and the initial conditions for x1(t=0) and x2(t=0) are 

zero. The stimulus terms Si,ex are calculated through Eq. 18, using the median values of Fij 

and the xi(t=10), when the system reaches near steady state. 

Random Two-node and Three-node models 

The random 2 node network is described by 

1
1 1 2 1, 1, 11 1 12 2

2
2 1 2 2, 2, 21 1 22 2

b ex

b ex

dx
f (x ,x ) S S F x F x

dt

dx
f (x ,x ) S S F x F x

dt

= = + + +

= = + + +

  (21) 

Values for S1,b, S2,b, S1,ex and S2,ex are sampled from a uniform distribution over the 

range [0,2] and values for F11, F12, F21, and F22 are sampled from a uniform distribution 

over the range [-2,2] using the MATLAB function rand. To capture basal activity, we use 

a two-step approach. First, starting from node activity values of zero, without the external 

stimulus on Node 1 and Node 2 (S1,ex=S2,ex=0 in Eq 22) we simulate until the network 

reaches steady-state with just basal production driving the network behavior. Then, we 

introduce the external stimulus on Node 1 and Node 2, integrate the ODEs, and sample 

evenly spaced time-points using ode15s in MATLAB with default settings. We sample 

3,7, 11, and 21 evenly spaced time points across a time course, from 0 to 10 arbitrary time 

units in all the cases. 

The random 3 node networks use the same sampling rules as the 2 node networks 

with the following equations. 
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1
1 1 2 3 1, 1, 11 1 12 2 13 3

2
2 1 2 3 2, 2, 21 1 22 2 23 3

3
3 1 2 3 3, 3, 31 1 32 2 33 3

,

,

,

b ex

b ex

b ex

dx
f (x ,x x ) S S F x F x F x

dt

dx
f (x ,x x ) S S F x F x F x

dt

dx
f (x ,x x ) S S F x F x F x

dt

= = + + + +

= = + + + +

= = + + + +

 (22) 

Intracellular Signaling Networks 

 In the simplification of the Huang-Ferrell network to three nodes, p-MAPKKK, pp-

MAPKK and pp-MAPK were taken as nodes. Since, in absence of external stimuli, the 

basal values of the nodes are zero, the basal production was estimated as zero beforehand 

and not considered in the estimation of the rest of the network. Aside from the basal 

production edges, a full 3 node network (Fig 4b) was estimated from the simulation data 

of each of the observables. After estimation, parameters with values less than 1/100th of 

the largest parameter, were considered negligible.  

Cell State Transition Models 

 The cell transition model 48 is a discrete time Markov probability model. Here, we 

show how this form is related to the ODE model used in DL-MRA. Starting at any initial 

value, each next step representing a time difference of one day follows from the previous 

time point as follows- 

1, 1 11 1, 12 2, 13 3,

2, 1 21 1, 22 2, 23 3,

3, 1 31 1, 32 2, 33 3,

t t t t

t t t t

t t t t

x M x M x M x

x M x M x M x

x M x M x M x

+

+

+

= + +

= + +

= + +

   (23) 

Where Mij denotes the Markov transition probabilities of species j into species i. 

In matrix form it may be represented as follows- 
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1, 1 1,11 12 13

2, 1 21 22 23 2,

31 32 333, 1 3,

    

    

    

t t

t t

t t

x xM M M

x M M M x

M M Mx x

+

+

+

    
    

=    
        

   (24) 

Representing the Markov parameter matrix as M and the species relative 

concentration variables as vector X, the equation becomes 

1t tX MX+ =       (25) 

The Markov transition probabilities for a species must add up to 1. In 

experimental terms, a species can either transition to other species or stay the same and 

the sum of all those probabilities is 1.  

1:3

1ij

i

M
=

=      (26) 

As a first step in relating these equations to the ODE form underlying DL-MRA, 

we put the variables in terms in terms of ∆x (with respect to time),  

1t t t tX X MX X+ − = −    (27) 

1 ( )t tX M I X+ = −    (28) 

'

1t tX M X+ =     (29) 

Where M’ is M-I, and I is the identity matrix.  M’ is M, except that 1 is subtracted 

from all its diagonal elements. Hence Eq. 26 for M’ becomes 

'

1:3

0ij

i

M
=

=     (30) 

This also implies that the diagonal term for M’ is negative of the sum of the other 

two terms in the same column. In experimental terms, the amount of reduction of a 

species is equal to how much it got converted to other species.  
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The above equations apply for the cases where ∆t is 1. We can incorporate 

arbitrary time steps as 

'

t t t tX M X t+  =     (31) 

Where ∆t is the scalar value of time difference and M’∆t is the matrix of the set of 

parameters, specific to the time difference chosen. For a case where ∆t tends to 0, the 

equation becomes- 

'

0
lim( / )t t dt t

t
X t M X+

 →
  =   (32) 

'/ dt tdX dt M X=     (33) 

Where M’dt is the matrix of the set of parameters specific to the case where ∆t is 

infinitesimally small. Note that Eq. 33 is similar in form to Eq. 22, only without the extra 

stimulus terms and where M’dt is equivalent to the Jacobian matrix F with terms Fij. There 

would be an added constraint that the sum of the terms in the same column would add up 

to zero, or that the diagonal term is the negative of the sum of the other two terms in the 

same column. 

t

dX
FX

dt
=     (34) 

3

1,

ii ij

j j i

F F
= 

= −      (35) 

Non-Linear Models 

The non-linear feedforward loop models 32 are described by: 
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When an AND gate is present 

 ),(*),(),,,(
32313231 2121 xxxxxxxx KxfKxfKxKxG =  (37) 

When an OR gate is present 

 ),,,(),,,(),,,( 122121 313232313231
xKKxfcxKKxfcKxKxG xxxxxxxxxxxx +=   (38) 

For a given u, v ϵ {x1, x2, x3} and K, Ku, Kv ϵ {
21xxK , 

31xxK , 
32xxK }:  

If u activates its target, then:  
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If u represses its target, then:  
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Effectively, an external stimulus of ‘S1,ex=1’, acts on Node 1 at t=0 and is 

propagated through the network. There is no external stimulus acting on Node 2 and Node 

3. However, in many cases there is basal production in one or both of Node 2 and Node 3. 
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This leads to a non-zero steady-state of the network before the external stimulus is 

introduced.  

 To capture basal activity, we use a two-step approach. First, starting from node 

activity values of zero, without the external stimulus on Node 1 (S1,ex=0), we simulate until 

the network reaches steady-state. Then, we introduce the external stimulus on Node 1, 

integrate the ODEs, and sample 11 evenly spaced time-points using ode15s in MATLAB 

with default settings and steady-state node values without the external stimulus as the initial 

conditions. We chose 11 timepoints because it yields good classification accuracy for the 

above random 3 node model even in presence of noisy data. For each of the 16 non-linear 

models, the values of the parameters (K, Ku, Kv), were varied and chosen so that the 

resulting node activity data are responsive to the stimulus and perturbations (Fig. S6, See 

Supplementary Code for values). 

Modeling Perturbations 

 Precisely modeling perturbations can be a challenge, since experimentally, there 

may be several ways of causing a perturbation with different mechanisms such as siRNAs, 

competitive/non-competitive/uncompetitive inhibition, etc. It may be hard to quantify how 

much a perturbation is affecting a node, in terms of its dynamics (i.e. right-hand sides of 

the ODEs). Therefore, we employ the following approaches which circumvent the need to 

model how each perturbation mechanistically manifests in the ODEs during parameter 

estimation. There are two cases to consider:  (i) when we have a perturbation of node i and 

we need to simulate node i dynamics; (ii) when we have a perturbation of node i and we 
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need to simulate other node j dynamics. To illustrate the approach, we use the above-

described 2 node model with an example of a Node 1 perturbation. Recall that  

1
1, 1, 11 1 12 2

2
2, 1, 21 1 22 2

b ex

b ex

dx
S S F x F x

dt

dx
S S F x F x

dt

= + + +

= + + +

 (41) 

For case (i), we have to obtain values for x1 under perturbation of Node 1. We refer 

to the perturbed time-course as x1,1. In experimental situations, x1,1 would be measured 

directly. To obtain simulation data for x1,1 we use the following: 

 1,1 1 1( ) ( )x k p x k=  ,   (42) 

where x1 is obtained from the simulations without perturbations, and recall that k refers to 

time point k. For a 50% inhibition, p=0.5 and for a complete inhibition, p=0. 

For case (ii), we have to obtain the values for x2 under perturbation of Node 1, 

which we refer to as x2,1. To do this, we have to integrate the ODE for dx2/dt, but using x1,1 

values, as follows   

2,1

2, 2, 21 1,1 22 2,1b ex

dx
S S F x F x

dt
= + + +   (43) 

Here, x2 has been replaced with x2,1 to represent x2 under perturbation of Node 1, 

for clarity.  To solve this equation, we simply use the “measured” x1,1 time course directly 

in the ODE.  

When data are generated by simulations, there is little practical limit to temporal 

resolution, but with real data, to solve Eq. 43 one may need values for x1,1 at multiple time 

points where measurements are not available, depending on the solver being used. We 
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therefore fit x1,1 data to a polynomial using polyfit in MATLAB, and use the 

polynomial to interpolate given a required time point. In this work, we have used an order 

of 5 to fit the data as well as avoid overfitting, but the functional form is quite malleable 

so long as it captures the data trends.  

For modeling perturbations of the cell transition model, the initial value of the 

simulated data for the perturbed node was taken as zero during simulation. The estimation 

was performed in a similar way as a random 3 node network as described above.  

For modeling perturbations for the Huang Ferrell model, the parameters k3, k15 

and k27 were sequentially set as zero. The estimation was performed in a similar way as a 

random 3 node network as described above.  

Simulated Noise  

 Normally distributed white (zero mean) noise is added to simulated time courses 

point-wise with 

(0, )y x N d x= +   (44) 

where x is the simulation data point, y is the noisy data point, and d represents the noise 

level. Signal-to-noise ratio of 10:1, 5:1 and 2:1 are, respectively d = 0.1, 0.2, and 0.5. 

Normally distributed samples are obtained using randn in MATLAB. While there are 

many different distributional options for modeling noise, we chose this for simplicity and 

to capture the effects generically of noisier data. We do not intend to answer questions 

related to whether specific distributional assumptions about the form of the noise have 

significant impact of the methods performance.  

Parameter Estimation 
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 For the two-node model, the entire network, with and without perturbations, can be 

explained by the following system of equations 

1
1, 1, 11 1 12 2

2
2, 2, 21 1 22 2

2,1

2, 2, 21 1,1 22 2,1

1,2

1, 1, 11 1,2 12 2,2

b ex

b ex

b ex

b ex

dx
S S F x F x

dt

dx
S S F x F x

dt

dx
S S F x F x

dt

dx
S S F x F x

dt

= + + +

= + + +

= + + +

= + + +

  (45) 

where x1,1 and x2,2 are the perturbed node values, from either simulated or experimental 

data. Eight parameters (S1,b, S1,ex, F11, F12 , S2,b, S2,ex, F21, F22) need to be estimated to fully 

reconstruct this network. We seek a set of parameters that minimizes deviation between 

simulated and measured dynamics. 

For an initial guess, the node edge parameters (Fij) are randomly sampled from a 

uniform distribution over the interval [-2,2] and the stimulus parameters (Si,ex) are sampled 

from a uniform distribution over the interval [0,2]. Using data at t=0, which corresponds 

to a steady-state without Si,ex, the Si,b can be estimated during each iteration of the 

estimation as follows- 

1, 11 1 12 2

2, 21 1 22 2

ˆ ˆ ˆ( ( 0) ( 0))

ˆ ˆ ˆ( ( 0) ( 0))

b

b

S F x t F x t

S F x t F x t

= − = + =

= − = + =
 (46) 

 For an n-node model, this equation can be scaled accordingly to obtain each �̂�i,b. 

For these initial guesses we compute the activity data using Eq. 45. The perturbation 

data xk,k is used in the perturbation equations as detailed above (Eq. 43). Let �̂�i, and �̂�i,j 

denote the predicted node activity values for non-perturbed and perturbed cases 
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respectively. For a total of n nodes and Nt timepoints, the objective function is the sum of 

squared errors Φ 

( ) ( )
22

, ,

1 1 1

ˆ ˆ( ) ( ) ( ) ( )
tN n n

i i i j i j

k i i j i

x k x k x k x k
= = = 

  
 = − + −  

  
    (47) 

Note here that we do not use data from node j, when perturbation j was used (per 

the derivation). The MATLAB function fmincon is used to minimize Φ by changing 

edge weights and stimulus terms within the range [-10,10].  

 We employ “multi-start” by running the estimation 10 times, starting from different 

randomly generated initial starting points 80. The estimated parameters and their respective 

final sum of squared errors (Φ) are saved and the estimated parameter set corresponding to 

the minimum Φ is chosen as the final parameter set. Variability of parameter estimates 

across multi-start runs is explored in Supplementary Figure S5.  

Parameter Estimation for Non-Linear Models 

For estimating the Non-Linear models, we start with a prior knowledge that S1,b  is 

always zero and S2,ex and S3,ex are always zero as well, which is directly evident from x1 

initial conditions and x2, x3 stimulus response in the presence of a complete Node 1 

perturbation. The equations for the non-perturbation case become as follows  

1
1, 11 1 12 2 13 3

2
2, 21 1 22 2 23 3

3
3, 31 1 32 2 33 3

ex

b

b

dx
S F x F x F x

dt

dx
S F x F x F x

dt

dx
S F x F x F x

dt

= + + +

= + + +

= + + +

  (48) 
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Since the system is at steady-state before the external stimulus, the basal production 

parameter can be estimated during each iteration of the estimation as-  

2, 21 1 22 2 23 3

3, 31 1 32 2 33 3

ˆ ˆ ˆ ˆ( ( 0) ( 0) ( 0))

ˆ ˆ ˆ ˆ( ( 0) ( 0) ( 0))

b

b

S F x t F x t F x t

S F x t F x t F x t

= − = + = + =

= − = + = + =
 (49) 

where �̂�i,j are the current model parameter estimates and xi (t=0) are the x values 

at the initial system steady state before the induction of external stimulus.  

Bootstrapping Simulated Data for the FFL Model Cases 

To generate multiple parameter set estimates to classify edge weights for the FFL 

model cases, we employ a bootstrapping approach. In an experimental scenario, each data 

point will have a mean and a standard deviation, and upon a distributional assumption (e.g. 

normal), one can then resample datasets to obtain measures of estimation uncertainty. We 

use the simulated data as the mean, and then vary the standard deviation as described above 

to generate 50 bootstrapped datasets for each of the 16 considered models. Estimation is 

carried out for each of the 50 datasets using multi-start, which yields 50 best-fitting 

parameter sets for each model. Uncertainty analysis and classification error is based on 

these sets.  

Data Availability 

All relevant simulated data used in the paper are provided and can be accessed 

along with the code at https://doi.org/10.5281/zenodo.6516238. Any other relevant data 

can be obtained from the authors.  

Code Availability 

https://doi.org/10.5281/zenodo.6516238
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The code needed to reproduce the data and figures are included and can be accessed 

at https://doi.org/10.5281/zenodo.6516238 . Parallelization when necessary to generate 

data was run on Palmetto cluster (372 GB, 48 nodes) and MATLAB 2020a. The code also 

includes Jupyter notebooks that implement the estimation functions (in python) for a 2-

node system, a 3-node system, and a 3-node cell state system. These use simple csv input 

files where the experimental data are placed.  
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Figure Legends 
Figure 1. Overall DL-MRA Approach. (a) Two-node network with Jacobian elements 

labeled. Green arrows are stimuli and basal production terms. (b,d,f) Time course 

experimental design with perturbations:  vehicle (b), Node 1 (d), Node 2 (f). The vehicle 

may be the solvent like DMSO for inhibition with a drug, or a nontargeting si/shRNA for 

inhibition with si/shRNA. (c,e,g) Simulated time course data for Vehicle perturbation (c), 

Node 1 perturbation (e), Node 2 perturbation (g) from the network in (a). Left Column:  no 

added noise; Right Column 10:1 signal-to-noise added.  (h-j) Actual versus inferred model 

parameters (S1,b, S1,ex, F11, F12 , S2,b, S2,ex, F21, F22) for direct solution of Eq. 3-4 in the 

absence (h) or presence (i) of noise, or with noise and the least-squares approach (j). In h-

i, error bars are standard deviation across time points. 

Figure 2. Application to Linear Two and Three Node Models. (a) Connections around 

a Node i in an n-Node Model. Si,b and Si,ex are the basal production and external stimulus 

terms acting on Node i, respectively. Fii is the self-regulation term; Fij the effect of Node j 

on Node i and Fji the effect of Node i on Node j. (b) Example of different signal-to-noise 

ratio effects on time course data. (c,d) Ground truth versus estimated edge weights across 

all 50 random networks and noise levels for data from four different total timepoints 

(3,7,11,21) for 2 node (c) and 3 node (d) networks. Quadrant shading indicates edge 

classification. (e,f) Fraction of network parameters correctly classified in 50 randomly 

generated 2 node networks (e) and 3 node networks (f) with different noise levels and total 

timepoints. (g) Fraction of network parameters correctly classified in 50 randomly 

generated 3 node networks with  dynamic MRA using two sets of perturbation data.  

Figure 3. Application to Cell State Transition Networks. (a) Markov transition model 

of SUM159 cell states. (b) Cell proportions over time for SUM159 cells using Markov 

transition parameters (dots), starting at different initial proportions and respective DL-

MRA model fits (lines). (c) Parameters from DL-MRA estimates of SUM159 data are 

similarly classified as transformed Markov parameters (See Methods, Eq. 29-30). (d) 

Ground truth versus estimated edge weights across 50 random cell transition networks and 

noise levels for data from four different total timepoints (3,7,11,21).  

Figure 4. Application to a Signaling Network. (a) Full Reaction scheme for the Huang-

Ferrell (HF) Model, depicting the parameters k3, k15 and k27 which were perturbed 

sequentially to generate the perturbation data. (b) Model coarse-graining to a 3-node 

network. (c) Data generated for each node with a small E1 stimulus (2.5x10-6 uM) . (d) 

Model parameters estimated as significant (bold) and negligible (dotted lines). (e) 

SELDOM true graph values represented in the 3-node model with parameters considered 

(bold) and not considered (dotted lines). 

Figure 5. (a) Feedforward loop (FFL) network models. Across all 16 models (Table 1), 

F11, F22, and F33 values are fixed at -1 and F12, F13, and F23 values are fixed at 0. F21, F31, 

and F32 values can be positive or negative depending on the model. The combined effect 

of x1 and x2 on x3 is described by either an AND gate or an OR gate. There are 16 possible 
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model structures (Table 1). (b) 100% inhibitory perturbations may not provide accurate 

classification even without noise. In Model #1, F31 is positive (ground truth) but is 

estimated as null. (c) Specific structure of Model #1. (d) Node activity simulation data for 

100% inhibition in Model #1, implying that it is impossible to infer F31 from such data. (e) 

Node activity simulation data for 50% inhibition in Model #1, showing potential to infer 

F31. (f) Fraction of model parameters correctly classified in all the 16 non-linear models 

without noise, for 100% inhibition vs 50% inhibition. 

Figure 6. (a) Classification scheme for a distribution of parameter estimates. Going from 

left to right panels, the same parameter distribution with an actual (ground truth) value of 

positive (+), negative (-), or null (0), respectively, is estimated using different percentile 

windows centered on the median. The percentile “window” is the median value for the 

leftmost panel (rigorous classification), between 40th and 60th percentile in the second 

panel, and between 10th and 90th percentile in the third panel (conservative classification). 

Going from rigorous to conservative (left to right), an intermediate between the two gives 

a good classification performance. (b) ROC curves across all parameters for all 16 FFL 

models. Different color lines are different noise levels. (c) Fraction of correctly classified 

model parameters for different noise levels broken down by FFL model type. (d) Fraction 

of each model parameter correctly classified for different noise levels broken down by 

parameter type.  
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FIGURE 2.1 
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FIGURE 2.2 
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FIGURE 2.3 
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FIGURE 2.4 
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TABLE 2.1 
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FIGURE 2.5 
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FIGURE 2.6 
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CHAPTER THREE 

 

RANKING DRUG TARGETS FOR GLIOBLASTOMA 

 

Overview 

 

Targeting glioblastoma using small molecule kinase inhibitors requires these drugs 

to be able to cross the blood brain barrier. Hence, for subsequent studies in this chapter and 

experiments in the following two chapters, we chose to focus our attention to drugs which 

are known to have significant blood brain barrier penetrance. We made a list of 27 drugs 

(FDA approved or undergoing trials) which were reported to have blood brain barrier 

penetrance1. These are listed in Table 3.1 below. The blood brain barrier penetrance was 

either indicated by their free brain or cerebro-spinal-fluid (CSF) ratio to free plasma 

concentrations (>0.3)1 or reported elsewhere as high blood brain barrier penetrant for a 

minority of the drugs2–5.  

The number of kinases which are parts of signaling networks involved in cancer 

and glioblastoma is numerous. Often, for making meaningful predictions about drug 

effects, which is our eventual goal (Chapter 5) it is reasonable to trim the list of drug targets 

to the most relevant proteins in cancer6. We chose to follow this exercise for the kinases 

involved in glioblastoma, with an added objective to serve as a starting point for students 

in the future interested in ranking relevant proteins or genes with respect to cancer or other 

diseases.  

 First considering a pharmacological viewpoint, we reasoned that listing the top 

targets of the blood brain barrier penetrant drugs would help us begin to rank the most 

important kinases to target in glioblastoma. These can help rank the kinases in terms of 
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their average affinity with the drugs (Criteria-drug affinity) as well as help us map the 

recurring kinase targets for all the drugs (Criteria-drug recurrence). These two 

pharmacological criteria were considered by listing the kinase targets of the drugs (see 

Methods).  

However only considering the pharmacological targets does not give us a complete 

picture of whether the drugs will be effective in the biology of glioblastoma. Therefore, we 

considered two more categories focused on biological relevance. First, overexpression of 

a kinase can be an indicator of its role as a driver of cancer. Secondly, the number of 

scientific papers and clinical trials relating a protein to a certain disease can be an important 

indicator of its importance in treating the disease. Therefore, besides the previous two 

pharmacological criteria, we also considered these two biological criteria (Expression fold 

change and relevant studies, see Methods). We weighed these four criteria equally and the 

final ranking is based on the sum of all four criteria (see Methods). 

Results and Discussion 

The top 10 ranked kinases in each category are mentioned in Table 3.3 below.  

The top five ranked kinases for the criteria “Drug Affinity” (MET, DDR1, TRKA, 

ROS, EPHA3) were all strong targets of the drug cabozantinib and ROS additionally was 

the principal target of Lorlatinib, besides them being potent off targets of other drugs. In 

general, they may be considered as strongly inhibited by their relevant drugs.  

In the list of ranked kinases for the criteria “Drug Recurrence” two SRC family 

kinases-LCK and SRC were in the top five and three more- FYN, YES and HCK were 
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among the top ten. This indicates that SRC family kinases are highly likely to be off targets 

of multiple kinase inhibitors.  

The top five most studied kinases with relation to glioblastoma (see Methods) were 

EGFR, KDR, MET, ROS and SRC. EGFR and KDR (VEGFR) have been also subject to 

clinical trials for glioblastoma although unsuccessful so far7,8. In the top ten list of 

overexpressed kinases, nine (except EGFR) were absent from the list of top ten most 

studied kinases with relation to glioblastoma and most (except AURKA and IGFR) had 

fewer than 15 citations (see Methods). There might be potential for future studies relating 

these overexpressed kinases to glioblastoma, if overexpression is an indicator of a kinase 

being an important driver of cancer.  

The top five overall ranked kinases were EGFR, KDR, YES, ERBB2 and LCK. It 

is not known at this point if inhibiting these kinases would result in significant outcomes 

in glioblastoma cells, (although targeted trials on glioblastoma patients have been 

unsuccessful) and we explore the effects of the kinase inhibitors on glioblastoma cells in 

the next chapter. As mentioned before, an objective of this ranking exercise is to serve as 

a starting point for students in the future interested in ranking relevant proteins or genes 

with respect to cancer or other diseases. At the same time, it is worth noting that such lists 

can only indicate a ranked list of kinases-this may not always translate to these kinases 

being potent drug targets with respect to inhibition of cancer cell proliferation. Further data 

on the effect of drugs or other kinase inhibitors (for eg. siRNA, shRNA, CRISPR) on the 

growth of cancer cells may be needed before conclusively rating these kinases as relevant 

drug/therapy targets for cancer or other diseases.  
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Methods- 

Ranking Methodology 

The kinase targets for the mentioned drugs were obtained from kinomescan assay 

data at LINCS9, proteomicsdb10,11 and other papers focusing on kinome wide assays for 

specific drugs12–15. These kinase targets were listed by their disassociation constant (Kd) 

against the drugs.  In cases where Kd was not reported and a percentage inhibition at a 

specific dose of the drug was available instead, the Kd was be measured by fitting, under 

the assumption that the drug and the kinase targets follow Michaelis-Mentan kinetics. The 

kinases were then ranked in terms of their affinity with the drug, with the maximum Kd 

taken as 2000 nM (Table 3.2). The average of these values across all drugs, for a particular 

kinase was taken as its average “drug affinity” score and the number of drugs it showed up 

for is taken as its “drug recurrence” and was assigned a score accordingly (Table 3.2).  

In order to rank proteins by the expression fold change criteria, the we used the web 

application called Gene Expression Profiling Interactive Analysis (GEPIA)16. This enables 

us to compare the normalized (Transcripts per million) expression data of a gene in a 

particular cancer as found in TCGA (The Cancer Genome Atlas)17 to the expression data 

of the same gene in normal gene tissue as found in GTEx (The Genotype-Tissue 

Expression)18. In order to compare the expression our list of drug targets, we used the 

“Expression DIY” module followed by “Multiple Gene Comparison” module in GEPIA. 

The “Log Scale” was turned off, the “Dataset” chosen was GBM and “Matched Normal 

Data” was set to “Match TCGA normal and GTEx data”. The relevant drug targets were 

input in the “Gene List” box and the expression data of the gene in both TCGA and GTEx 
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was noted. These values were compiled their relative fold change is noted (log of 

(TCGA/GTEx) expression data with base 2). Ranking criteria (1-20) was set for all the 

expression fold change scores and the drug targets were assigned a score as described in 

Table 3.2.  

In order to rank the kinases by relevant studies, we listed the number of results on 

the search term "Glioblastoma xx" in Pubmed where xx is the name of the gene. Ranking 

criteria (1-20) was set for all the expression fold change scores and the drug targets were 

assigned a ranking score as described in Table 3.2. This gives us a list of potential kinase 

drug targets ranked.  
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TABLE 3.1 

LIST OF BLOOD BRAIN BARRIER PENETRANT DRUGS 

Abemiciclib Alectinib ARQ 087 

ASP3026 AZD3759 Bosutinib  

Brigatinib Brivanib Buparlisib 

Cabozantinib E6201 Entrectinib 

GDC0084 GNE-317 Ibrutinib 

Lorlatinib NT113 Palomid 

PBI-05204 PD0325901 Pimasertib 

PQR309 Saracatinib TAK-285 

Tak-960 Tucatinib URMC-099 
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TABLE 3.2  

SCORING CRITERIA FOR EACH CATEGORY 

Drug Affinity 

(Kd in nM) 

Score Drug 

Recurrence 

Score Expression 

Fold Change 

Score Relevant 

Studies 

Score 

<0.1 1 >8 1 >4 1 >2000 1 

0.1 to 0.3 2 8 3.4 3.5 to 4 2 1500 to 

2000 

2 

0.3 to 0.5 3 7 5.8 3 to 3.5 3 900 to 1500 3 

0.5 to 1 4 6 8.2 2.5 to 3 4 600 to 900 4 

1 to 3 5 5 10.5 2 to 2.5 5 300 to 600 5 

3 to 5 6 4 12.9 1.8 to 2 6 200 to 300 6 

5 to 10 7 3 15.3 1.6 to 1.8 7 150 to 200 7 

10 to 20 8 2 17.7 1.4 to 1.6 8 100 to 150 8 

20 to 40 9 1 20 1.2 to 1.4 9 80 to 100 9 

40 to 65 10   1 to 1.2 10 65 to 80 10 

65 to 100 11   0.8 to 1 11 50 to 65 11 

100 to 150 12   0.6 to 0.8 12 40 to 50 12 

150 to 250 13   0.45 to 6 13 30 to 40 13 

250 to 400 14   0.3 to 0.45 14 20 to 30 14 

400 to 600 15   0.15 to 0.3 15 15 to 20 15 

600 to 800 16   0 to 0.15 16 10 to 15 16 

800 to 1000 17   -0.1 to 0 17 5 to 10 17 

1000 to 1300 18   -0.25 to -0.1 18 3,4 18 

1300 to 1600 19   -0.5 to -0.25 19 1,2 19 

1600 to 2000 20   < -0.5 20 0 20 
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TABLE 3.3 

TOP 10 RANKED KINASES IN EACH CATEGORY  

Drug Affinity Drug Recurrence Expression Fold 

Change 

Relevant Studies Overall Rank 

MET LCK AURKB EGFR EGFR 

DDR1 SRC EGFR KDR KDR 

TRKA ALK HCK MET YES 

ROS ABL1 Syk ROS ERBB2 

EPHA3 FLT3 BLK SRC LCK 

SRMS EGFR AURKA KIT SRC 

TRKC YES EPHB4 ERBB2 ABL1 

ERBB3 HCK IGF1R PDGFRB IGF1R 

HIPK4 MAP2K1 DDR1 FAK HCK 

RIPK2 FYN LCK PDGFRA PDGFRA 
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CHAPTER FOUR 

 

DRUG DOSE RESPONSES FOR GLIOBLASTOMA CELL LINES 

 

Introduction 

 

 Although targeted inhibition of cancer biomarkers has been a cornerstone in cancer, 

patients often don’t respond to such treatment. Combination therapy is generally associated 

with better outcomes in cancer and or combination regimens of 3-4 drugs have become the 

standard in cancer treatment1. But given the large number of potential drugs (FDA 

approved or in phase trials), all possible combinations are hard to test experimentally 

because of the sheer number of such experiments.  Specific to glioblastoma, even if we 

only consider the 27 blood brain barrier penetrant drugs we discussed in chapter 3, the total 

number of 2 way combinations of these drugs is 351 and 3 way combinations is 2925. 

Considering that these combinations may have to be tested across multiple cell lines, an 

attempt to test all of them would be a Herculean task and there is a need for smarter 

interventions to predict combination therapies.  

 However, it is relatively easier to perform single drug dose responses. Single drug 

dose responses, along with information about biological networks (explored in chapter 2 

and further implemented in chapter 5) may potentially help us to predict biological 

outcomes for combination therapy which then may be verified with experiments. 

Moreover, single drug dose responses, by themselves can provide insight into which kinase 

targets, when inhibited have the most effect on cellular outcome -thus helping focus our 

attention on the most promising drug targets, which would effective in drug combinations.  
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Therefore, we sought to perform experiments to obtain single drug dose responses 

with blood brain barrier penetrant drugs. Out of 27 blood brain barrier penetrant drugs 

discussed in chapter 3, 22 drugs were bought, either from Selleckchem (most drugs) or 

Tocris (TAK-960). The 5 that were not bought were either unavailable (E6201, NT113, 

PBI-05204) at that time or cost prohibitive and redundant in their principal targets (ARQ 

087, PQR309). These were tested on three cell lines representing glioblastoma (U87, U251 

and LN229-EGFRvIII) between the doses 1 nM and 10 µM, which is a usual range of 

cancer drugs when used in the human body. LN229 was also procured but we were unable 

to thaw live cells from the frozen vials.  

Results 

The drug dose responses experiments were performed, and the data obtained were 

fit into a sigmoidal hill-type equation (see Methods). The compiled results for 20 drugs (2 

drugs were not able to be quantified due to reasons explained below) are shown in a single 

panel (Figure 4.1). The parameters of these fits for each drug and cell line and their 

respective IC50 doses (drug doses where the cell number was inhibited by 50% with respect 

to control) are further shown in Tables 4.1 and 4.2. By comparing the average IC50 of the 

drugs across the three cell lines, we can begin to analyze the potency of each drug and their 

respective targets. Principal targets and off targets (although not an exhaustive list) of the 

respective drugs are also tabulated in Table 4.3 for ease of further analysis.  

First, we observe that 8 out of the 20 drugs are have minimal inhibitive effect on 

cell numbers and the inhibition (Y, see methods) is less than 50% even at the maximal dose 
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of drugs. We can call these drugs non-responsive and they include the drugs AZD3759, 

Brivanib, GNE-317, Ibrutinib, Lorlatinib, Palomid, TAK-285, Tucatinib.  

Secondly, there were 6 drugs where the inhibition was effective at relatively high 

doses (1 µM-10 uM) but not at low doses. These may be called mildly responsive drugs 

and include Alectinib, ASP3026, Brigatinib, Buparlisib, Entrectinib, GDC0084. For these 

drugs, their Hill coefficient, maximal inhibition Ymax, and EC50 (halfway point of the 

curve) and calculated IC50 are shown in Table 4.4. 

Lastly, for 6 more drugs, the inhibition was effective even at lower doses (1 nM-1 

µM). These may be called highly responsive drugs and include Abemaciclib, Bosutinib, 

PD0325901, Pimasertib, TAK-960 and URMC-099. TAK-960 was the most potent drug 

with IC50 between 3-11 nM among the three cell lines. The Hill coefficient, maximal 

inhibition Ymax, and EC50 (halfway point of the curve) and calculated IC50 are shown in 

Table 4.3. 

 Based on the drug dose responses, the most potent responses were to the inhibition 

of the following kinases- PLK1, CDK4/6, MEK1/2 and ABL1. Intermediate responses 

were to the inhibition of ALK, TRKA and potentially the SRC family of kinases. Inhibition 

of EGFR, ERBB2 and KDR(VEGFR) the most important kinases according to the ranked 

list in Chapter 3 had no noticeable effects. 

For two more drugs for which the single dose response experiments were 

performed, we could not create any dose response curves. First, the drug cabozantinib was 

relatively insoluble at higher doses and the drug aggregates showed up in the final assay. 

Including the cell counts at these higher doses of cabozantinib would not have been prudent 
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(as incomplete dissolution implies incorrect final concentration) nor feasible (as the drug 

aggregates can have their own fluorescence and upset the actual cell counts). Secondly, for 

higher doses of saracatinib (1 µM-10µM), we were unable to use our cell counting software 

Cell Profiler (see Methods) to accurately count distinct cells as at these doses, cells tended 

to cluster closely together. This may have implications in cell migration but further 

investigations into the roles of saractinib in cell migration was out of scope for our current 

study which was limited to obtaining single drug dose responses.  

Discussion- 

What may cause cells to be more responsive to the increase of drugs dose? There 

are possible ways this may occur. First, targeted kinases which may have important roles 

in cell proliferation, are increasingly inhibited at higher doses. Secondly a larger number 

of off targets begin to be inhibited at higher doses of drugs which may include kinases with 

key roles in cell proliferation. These two causes are not exclusive to one another and both 

of them are likely to happen at the same time for most drugs, although the first factor is 

likely to be more important in highly selective drugs and the second factor in drugs with 

more promiscuity towards their targets. Three of the highly responsive drugs- TAK960, 

PD0325901 and Pimasertib are highly selective in their targets and three are more 

promiscuous-Abemaciclib, Bosutinib and URMC-099. Also given that many drugs are 

non-responsive even at the highest dose (10µM), which may inhibit many kinases for 

multiple drugs we can observe that cell proliferation may generally be unaffected by the 

inhibition of many kinases. This is assuming that drugs inhibit kinases within cells at a 
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similar rate as they do in kinome-wide assays (chapter 3), which may be a fair assumption 

in absence of more information.  

The case of cells being clustered at higher doses of saracatinib could indicate that 

the cells division may be ongoing, but their migration is limited by the drug. This role of 

saracatinib in inhibiting cell migration has been reported in prior literature3,4. This could 

be important in controlling cell migration in aggressive cancers in future research.  

 

Methods- 

Experiments- Cell Culture 

U87, U251 and LN229-EGFRvIII cells were cultured in full growth medium 

comprising DMEM (Gibco #10313039) supplemented with 10% FBS (Corning #35-011-

CV) and 2 mM L-Glutamine (Corning #25- 005-CI). The cells were cultured at 37oC in 5% 

CO2 in a humidified incubator and passaged every 2-3 days with 0.05% trypsin (Corning 

#25- 052-Cl) to maintain sub confluency.  

Experiments-Drug Dilutions 

Each drug was diluted in sterile filtered DMSO (except Brigatinib which was 

dissolved in sterile filtered 100% ethanol since it is insoluble in DMSO) as shown in Table 

4.4 and 4.5 to bring the final concentration to 10 mM for each drug. These dilutions were 

then aliquoted into 10 µL batches.  

Experiments-Drug Dose Assays 

Before adding to cells, 990µL of full growth media was added to a 10 µL drug aliquot, 

diluting it to 100 µM, or 10X times the highest desired dose. This concentration was further 
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serially diluted 8 more times in full growth media containing 1% DMSO (to maintain the 

same DMSO concentration in each dilution) and by a factor of 3.16 each time. This results 

in 9 dilutions with the drug concentrations between 10 nM-100 µM. In 9 wells with cells 

seeded overnight in 90 µL media, 10 µL of the serially diluted drugs are added. In the 10th 

well, 10 ul of full growth media containing 1% DMSO was added as the vehicle control 

dose.  

Staining and Imaging  

After 72 hours of treatment with the drugs, the cells were stained with Hoechst 

(BDBiosciences #BD 561908) and Propidium Iodide (Millipore Sigma #P4170) at a final 

concentration of 1 µg/ml and 2 µg/ml to stain all cells and dead cells respectively. After 30 

minutes, the wells were imaged using the TagBFP (Excitation- 390nm, Emission- 447nm) 

and RFP filters (Excitation- 531/40 nm, Emission- 593/40 nm) in Cytation 5 (Biotek). Each 

image was flatfield corrected and background subtracted using CellProfiler. The nuclei 

were then identified using the IdentifyPrimaryObjects feature, and a pseudo 

image was generated. The number of all counts of cell nuclei stained with Hoechst and 

Propidium Iodide were compiled by CellProfiler and exported as csv files. The Propidium 

Iodide stained nuclei counts were subtracted from the Hoechst stained nuclei counts for 

each well, and this was taken as the live cell counts.  

Drug Dose Response Fitting and IC50 

The drug dose responses were fitted in a sigmoidal hill-type equation5 as follows 
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Where Y is the inhibition, which in this case is 1 minus the relative cell number 

with respect to the control, Ymax is the maximal possible inhibition effect, EC50 is the half 

maximal drug dose for the sigmoid and n is the Hill coefficient and D is the dose of the 

drug in µM. We used curve_fit in Jupyter Notebook to obtain least-squares estimates 

for the three parameters for each of the drug dose responses. 

We define IC50 as the drug dose at which the inhibition caused by the drug is 50% 

relative to control. Therefore, in the above equation, we can replace Y with 0.5 and solve 

for D, which should give us the IC50 dose. Solving the equation in this manner gives us the 

form of IC50 dose as follows 
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In case the maximal inhibition Ymax equals 1, then the IC50 dose equals the EC50 

dose, since in this case, the dose for 50% inhibition of cell number also equals the half 

maximal dose of the sigmoid.  
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FIGURE 4.1: DOSE RESPONSE FITS FOR 20 DRUGS 
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Table 4.1 Fitting parameters for highly responsive drugs 

Drug n-U87 Ymax-
U87 

EC50-
U87 

IC50-
U87 

n-U251 Ymax-
U251 

EC50-
U251 

IC50-
U251 

n-
LN229

-

EGFR
VIII 

Ymax-
LN229

-

EGFR
VIII 

EC50-
LN229

-

EGFR
VIII 

IC50-
LN229

-

EGFR
VIII 

Abemiciclib 0.682±

0.084 

0.794±

0.031 

0.028±

0.006 

0.062 0.781±

0.104 

0.952±

0.045 

0.096±

0.021  

0.109 0.535±

0.057 

0.966±

0.037 

0.023±

0.005 

0.026 

Bosutinib  1.538±
0.494 

0.854±
0.079 

0.622±
0.163 

0.778 0.647±
0.158 

1.000±
0.168 

0.612±
0.432 

0.612 0.919±
0.15 

0.98±0.
061 

0.282±
0.067  

0.295 

PD0325901 0.584±

0.064 

0.879±

0.046 

0.112±

0.031 

0.18 0.551±

0.068 

1.000±

0.084 

0.34±0.

14 

0.34 1.046±

0.147 

0.82±0.

036 

0.217±

0.037  

0.332 

Pimasertib 0.871±
0.146 

0.784±
0.053 

0.279±
0.074 

0.533 0.818±
0.25 

1.000±
0.256 

1.909±
1.527 

1.909 0.736±
0.178 

0.218±
0.104  

0.895±
0.097 

0.3 

TAK-960 2.776±

0.831 

0.807±

0.018 

0.009±

0.001 

0.011 1.653±

0.343 

 

0.959±

0.025 

 

0.003±

0.0  

0.003 2.377±

0.302 

0.959±

0.012 

 

0.009±

0.0  

0.01 

URMC-099 0.968±

0.208 

1.0±0.0

78 

0.302±

0.089 

0.302 0.725±

0.233 

1.000±

0.166 

0.357±

0.247 

0.357 2.283±

1.023 

0.884±

0.079 

0.81±0.

169  

0.91 

 

Table 4.2 Fitting parameters for mildly responsive drugs 

Drug n-U87 Ymax-

U87 

EC50-

U87 

IC50-

U87 

n-U251 Ymax-

U251 

EC50-

U251 

IC50-

U251 

n-

LN229
-

EGFR

VIII 

Ymax-

LN229
-

EGFR

VIII 

EC50-

LN229
-

EGFR

VIII 

IC50-

LN229
-

EGFR

VIII 

Alectinib 1.530±

0.528 

1.000±

0.256 

4.329±

1.94 

4.329 0.582±

0.231 

2.465±

4.692 

1.000±

0.489 

2.465 3.025±

8.918 

1.000±

1.609 

5.355±

11.811  

5.355 

ASP3026 2.126±

1.794 

1.000±

0.744 

5.842±

5.787 

5.842 1.126±

0.752 

1.000±

0.845 

5.730±

9.806  

5.73 25.741

±10^6 

0.887±

10^5 

7.350±

10^8 

7.424 

Brigatinib 2.427±

0.876 

0.787±

0.089 

1.749±

0.414 

2.197 1.830±

0.804  

1.22±0.

347  

1.000±

0.125 

1.22 1.925±

0.345 

1.000±

0.045 

1.109±

0.113  

1.109 

Buparlisib 4.159±

6.081 

0.818±

0.089 

1.265±

0.486 

1.41 4.107±

25.147 

1.000±

1.082 

4.480±

11.031  

4.48 1.307±

0.953 

1.000±

1.32 

8.567±

18.088  

8.567 

Entrectinib 1.335±

0.411 

1.000±

0.204 

3.101±

1.303 

3.101 1.606±

0.485 

1.000±

0.116 

1.614±

0.42 

1.614 3.322±

6.83 

1.000±

0.427 

4.106±

2.995  

4.106 

GDC0084 1.398±

0.522 

0.715±

0.093 

0.944±

0.325 

1.727 0.866±

0.21 

0.969±

0.23 

2.882±

1.921 

3.1 0.726±

0.128 

1.000±

0.128 

1.013±

0.476  

1.013 
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Table 4.3 List of drugs and their targets 

 

S. No Drug Principal targets Off targets Specificity 

1 Abemiciclib CDK 4/6 GSK3A, GSK3B, CLK1 low 

2 Alectinib ALK EPHA1, AAK1 high 

3 ASP3026 TNK2 TNK1, HIPK, PLK4 low 

4 AZD3759 EGFR YES, EPHB4, LYN low 

5 Bosutinib  ABL1 LCK, ERBB3, FRK low 

6 Brigatinib ALK FLT3, ROS low 

7 Brivanib KDR 
PDGFRA, FLT1, KIT, 

STK35 
low 

8 Buparlisib PIK3CA mTOR, RSK4 low 

9 Cabozantinib 
KDR, DDR1, MET, FRK, 

HIPK4, EPHA6 
LYN, PDGFRA, BLK low 

10 Entrectinib TRKA TRKB, TRKC, ROS low 

11 GDC0084 SRC Syk, PI3KC2B, low 

12 GNE-317 PI3K unknown unknown 

13 Ibrutinib BTK, ERBB2, ERBB4  BLK, ERBB3 low 

14 Palomid mTOR unknown unknown 

15 Lorlatinib TNK2, ROS, ALK _ high 

16 PD0325901 MEK1/2 MAPK13 high 

17 Pimasertib MEK1/2 _ high 

18 Saracatinib LCK 
ABL1, GAK, YES, LYN, 

HCK 
low 

19 Tak-285 ERBB2 EGFR low 

20 Tak-960 PLK1 PLK2, PLK3 high 

21 Tucatinib ERBB2 unknown unknown 

22 URMC-099 ABL1 MLK2, TRKA low 
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Table 4.4 List of drugs and dilutions 

Drug Catalog Number Quantity (mg) Molar Mass(g) DMSO added 

Abemiciclib S5716 25 506.6 4.93 

Alectinib S2762 10 482.6 2.07 

ASP3026 S8054 50 580.7 8.61 

AZD3759 S7971 25 459.9 5.44 

Bosutinib  S1014 50 530.4 9.43 

Brigatinib S8229 25 584.1 4.28 

Brivanib S1084 50 370.4 13.50 

Buparlisib S2247 10 410.4 2.44 

Cabozantinib S1119 50 501.5 9.97 

Entrectinib S7998 25 560.6 4.46 

GDC0084 S8163 25 382.4 6.54 
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Table 4.5 List of drugs and dilutions (contd.) 

Drug Catalog Number Quantity (mg) Molar Mass(g) DMSO (ml) 

GNE-317 S7798 25 414.5 6.03 

Ibrutinib S2680 10 440.5 2.27 

Lorlatinib S7536 25 406.4 6.15 

Palomid S2238 50 406.4 12.30 

PD0325901 S1036 25 482.2 5.18 

Pimasertib S1475 50 431.2 11.60 

Saracatinib S1006 25 542 4.61 

TAK-285 S2784 10 548 1.82 

TAK-960 5403 10 598.06 1.67 

Tucatinib S8362 25 480.5 5.20 

URMC-099 S7343 25 421.5 5.93 
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CHAPTER FIVE 

 

PREDICTING ANTI-CANCER DRUG COMBINATION RESPONSES  

WITH A TEMPORAL CELL STATE NETWORK MODEL 

 

 

Abstract 

Cancer chemotherapy combines multiple drugs but predicting the effects of drug 

combinations on cancer cell proliferation remains challenging. We hypothesized that by 

combining knowledge of single drug dose responses and cell state transition network 

dynamics, we could predict how a population of cancer cells will respond to drug 

combinations. We tested this hypothesis here using three targeted inhibitors of different 

cell cycle states in two different cell lines. We formulated a Markov model to capture 

temporal cell state transitions between different cell cycle phases, with single drug data 

constraining how drug doses affect transition rates. This model was able to predict the 

landscape of all three different pairwise drug combinations across all dose ranges for both 

cell lines with no additional data. This work shows how currently available or attainable 

information could be combined to predict how cancer cell populations respond to drug 

combinations. 
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Introduction 

Matching chemotherapy regimens to cancer patients remains a grand challenge of 

oncology and personalized medicine. Targeted drugs often have genetic biomarkers, such 

as BRAFV600E for vemurafenib1,2, EGFR mutations and copy number amplification for 

gefitinib3,5,7, BCR-ABL fusion for imatinib9,11, and HER2 copy number amplification for 

trastuzumab13,14. However, such matched patients often do not respond to therapy and/or 

eventually develop resistance. Why? One major driver is tumor heterogeneity; cells in 

different “states” that have different drug sensitivities. Cell states are often either defined 

by their histology or transcriptomics (through for example single cell RNAseq 

experiments)15–21, and it is becoming appreciated that cells can transition between such 

states in development-like networks, sometimes called cell state networks17,22. Such 

plasticity between cell states can contribute to drug resistance23–25, and combinations of 

drugs targeting different pathways and factors involving phenotype transition have been 

proposed to prevent such resistance23. Another is the multi-variate complexity of 

biochemical networks within which drug targets reside and by which chemotherapy drugs 

exert their action26–31. These networks can differ between cell states, adapt to therapy, and 

also give rise to non-intuitive therapy results, such as feedback loops and compensatory 

pathways underlying the efficacy of combining Raf and MEK inhibitor combinations, 

which lie in the same genetic pathway32–35. 

Massive agnostic efforts have screened thousands of cancer cell lines for sensitivity 

to hundreds of anti-cancer drugs, with matched multi-omic data to mine for biomarkers 

predictive of drug response36–43. These efforts, while substantial, still have not solved the 
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problem of how to match patients to drugs. Moreover, many chemotherapy regimens 

comprise combinations of 3-4 drugs. Comprehensive experimental exploration of just 2-

way drug combinations for hundreds of anti-cancer drugs across a representative cohort is 

infeasible clinically, and currently unreachable even in cell culture systems.  

The inability to obtain an experimental solution to the problem of matching drug 

combinations to patients has motivated computational modeling approaches. In principle, 

more comprehensive exploration of drug combination space could be achieved in silico. 

Various computational methods including mechanistic models and machine learning 

approaches have shown promise in predicting drug combination responses, especially 

taking into consideration context specific pathology and omics data as well as identifying 

specific biomarkers and drug-targets 44–49. Regardless of the modeling methods being used, 

there is a widespread focus on using information about biochemical networks to facilitate 

drug combination response prediction 31,50–52.  Despite advanced methods being applied to 

integrate such information into models, building predictive drug combination response 

models remains an unsolved challenge. Any solution to this problem must invariably rely 

on experimental data that is already existing or is realistically attainable, such as single 

drug dose responses.  

In this paper, rather than focus on modeling biochemical networks, we test the 

hypothesis that by combining knowledge of single drug dose responses and cell state 

transition network dynamics, we could predict how a population of cancer cells will 

respond to drug combinations. Although this hypothesis runs contrary to the predominant 

biochemical network-centered view of this problem, cell state transitions are largely 
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governed by biochemical networks in which drug targets are embedded, so in a sense this 

idea is encompassing prior logic. We test this hypothesis by focusing on three drugs that 

target cell cycle transitions in two different cell lines. A Markov model is developed to 

capture population growth and single drug dose responses, and then this model is used to 

predict all two-way drug combination responses with no further adjustment. Comparison 

of these model predictions to experimental tests shows surprisingly good agreement. These 

results suggest a sufficient formulation for predicting how cell population growth dynamics 

respond to drug combinations that relies on currently available and attainable information, 

and as such could have widespread impact for precision oncology.   
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Results 

To test our hypothesis that knowledge of single drug dose responses combined with 

cell state transition network dynamics could enable prediction of drug combination 

responses (Fig. 1a), a model system is needed. There are a variety of choices for cell state 

transition networks and drugs which modulate them; here we focus on the cell cycle and 

three targeted kinase inhibitors (Fig. 1b). Specifically, we focus on a MEK1/2 inhibitor 

(PD0325901) that primarily blocks transition of G0/G1 cells 53, a CDK4/6 inhibitor 

(abemaciclib) that primarily blocks transition of (late)G1/S cells 54–57, and a PLK1 inhibitor 

(TAK-960) that primarily blocks transition of G2/M cells 58–61. Drug dose response 

experiments evaluating cell number after 3 days of treatment show that both U87 and U251 

cells are responsive to these drugs as single agents (Fig. 1c).  

Before accounting for drug effects, we first constructed and parameterized a 

temporal cell state network model based on Markov formalisms (see Methods) that 

describes cell population dynamics in the absence of drug for U87 and U251 cells. Cells in 

the G0/G1 state can transition to the (late)G1/S state, which can then transition to the G2/M 

state. Upon transition from G2/M to G0/G1, cell division occurs, increasing cell number by 

one. For this case without drug, we consider cell death transitions (which decrease cell 

number by one) to be negligible (we include them below to capture high dose features of 

some single drug responses). In each time step (chosen to be 1 hr), cells can either remain 

in their current state, or transition. We set the three unknown transition probabilities for 

each cell line by requiring agreement with population doubling time (30 hours-U8762–64 
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and 24 hours-U25165–67 and the steady-state cell state ratios (64:19:17 for U8768–72 and 

58:23:19 for U25173–75) (Fig. 1c). Simulations recapitulate these features.  

 Drug action was modeled by assuming the transition parameters are a sigmoidal 

function of drug dose (see Methods). Fitting to the single drug dose response data yielded 

excellent agreement between model and data (Fig. 1d). At high doses for some drugs / cell 

lines, small cell death transition terms were included to account for the fact that observed 

cell numbers were lower than the initial number of cells (see Methods). Overall, these 

results demonstrate that the Markov model of cell state transition dynamics can capture 

cell population growth and single drug responses for the investigated system.  

Now that we had a model that could take as input any of the three drugs at any dose 

and simulate cell population dynamics, we could predict how drug combinations would 

affect cell number for all pairwise combinations of the three drugs (Fig. 2a-b, left). These 

predictions demonstrate good agreement with independent experimental data for every 

drug combination for each cell line (Fig. 2a-b-right). Notably, no modifications were made 

to the model—only information about the cell state transition network dynamics and single 

drug dose responses were needed to perform this prediction.  

 Analysis of drug combination responses often includes assessment of drug synergy 

or antagonism, a more qualitative and categorical analysis. A common metric that we use 

here is excess over Bliss 76, which quantifies how much of the observed drug response is 

beyond statistically independent action by each drug. In particular, we used a variation of 

excess over Bliss that is more robust and reproducible because it uses sigmoidal fits to data 

to mitigate the impact of experimental noise in any single data point 77. Values close to 
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zero indicate non-interacting combinations, positive values indicate synergistic 

combinations and negative values indicate antagonistic combinations. We stratified the 

data and model predictions into four dose quadrants (high/high, low/high, high/low, and 

low/low) and evaluated agreement between the two (Fig. 2c-d; Fig. S1). Both model and 

experiment show drug combinations were predominantly mildly antagonistic or non-

interacting. Overall, these results provide support for the hypothesis that responses to anti-

cancer drug combinations can be predicted with a model of cell state transition dynamics 

and knowledge of single drug dose responses.  
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Discussion 

Predicting how varied drug combinations control cancer cell population growth is key to 

improving cancer precision medicine. Experimental solutions alone cannot cover the vast 

combinatoric space comprising drug combinations and different cancer cell types, 

necessitating computational approaches. Any computational approach should rely only on 

data that is available and/or feasibly attainable. Here, we explore the use of a computational 

approach that, rather than focus on biochemical networks in which drug targets reside, 

focuses on cell state networks where drugs influence transitions. By combining information 

about the cell state network dynamics with single cell drug dose responses, we were able 

to predict combination responses for three different targeted anti-cancer drugs in two 

different cell lines with no additional model modifications. We expect this finding to be 

impactful as it informs expansion to different drugs and cell types. 

While we do not explicitly consider the role of biochemical networks in drug 

combination response, in a sense, they are implicitly accounted for in the mapping of drug 

concentration to cell state transition rates. In the investigated case, there was an arguably 

clean mapping of drug concentration to single transition rates, which simplified the effort. 

In other cases, such mapping may not be known a priori and/or more complex, i.e., a single 

drug may influence multiple transition rates. Biochemical network models that capture 

such complexities or mapping may prove useful in such situations26–30,45,78. Assumptions 

regarding the additivity (or not) of multi-drug action on transition rates would have to be 

asserted. The current availability of drug combination response data sets 79–82could 

facilitate the testing of such methods. Such future work could explore drug combination 
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features we did not here, such as combining drugs that are not effective as single agents. 

They could also explore conditions that lead to drug combination synergy; the systems 

chosen here exhibited predominantly antagonistic behavior. Avoiding antagonism, 

however, is an important goal. It is thought that a small fraction of all drug combinations 

lead to synergistic behavior, but finding them, and how synergy is controlled by cell type, 

is of critical importance for precision oncology.  

Application of this approach to other systems requires identification of cell state 

network models. Again, in our case the cell cycle is well established in terms of structure, 

but other such networks may not be. Studies have also confirmed the factors behind certain 

other cell state transitions-for instance, the transcriptomic factors and signaling molecules 

in different epithelial to mesenchymal transitions30,83–85. Cell state transition networks have 

been identified for multiple cancer types15–19,21,22,86–88, generally by combining single cell 

measurements (e.g. single cell RNAseq), with perturbation time courses, such as enriching 

for one cell state and then observing the fractional composition dynamics. Recently, we 

proposed a general theory built upon modular response analysis89–92 that allows one to 

reconstruct cell state networks from such perturbation time course data78. This theory is 

compatible with the Markov formalisms used here. Such Markov formulation may have 

further applicability to other cell state systems22,87,88,93–95, but other approaches have been 

used96–99. Cell state transitions are subject to inherent stochasticity and describing the cell 

transitions as a Markov process is a common tool to capture this probabilistic aspect. 

However, this also relies on the assumption that the transition probabilities and the 

underlying variables are known and that the cell states are properly sampled and well 
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classified. There could be several knowledge gaps in these assumptions including that cells 

may be transcriptomically intermediate between canonically defined states100 and 

biological data may be sparse101. Inclusion of methods such as lineage tracing and methods 

able to handle sparse data98 may help address some of these gaps.  

Overall, we have tested a relatively simple hypothesis that knowledge of single 

drug dose responses combined with cell state network dynamics is sufficient for prediction 

of drug combination responses. This hypothesis seems to hold true at least for the three 

drugs and two cell lines studied here, providing a potentially powerful rationale for guiding 

drug combination response modeling efforts. Expansion to more cell lines, cell state 

systems, and drugs will of course be important for further testing. Our findings here provide 

an important step towards being able to predict how cancer cell populations will respond 

to combinations of anti-cancer drugs, a key capability for cancer precision medicine.  
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Methods 

Experimental Methods 

Cell Culture. U87 and U251 cells (both STR profiled internally) were cultured in full 

growth medium comprising DMEM (Gibco #10313039) supplemented with 10% FBS 

(Corning #35-011-CV) and 2 mM L-Glutamine (Corning #25- 005-CI). The cells were 

cultured at 37oC in 5% CO2 in a humidified incubator and passaged every 2-3 days with 

0.05% trypsin (Corning #25- 052-Cl) to maintain sub confluency.  

Drug Dose Response Experiments  

U87 and U251 cells were seeded in 96 well plates (Corning-Falcon #353072) with 

500 cells per well, counted with a hemocytometer. Cells were seeded in 90 µl full growth 

media and cultured overnight. The next day, 10 µl of media containing 10X the final drug 

concentration was added and the plates cultured for 72 hours.  

The three drugs were procured from the following sources - PD0325901 

(Selleckchem #S1036), Abemaciclib (Selleckchem #S5716) and TAK960 (Tocris #5403). 

The quantities of each drug-PD0325901 (25 mg, molar mass-482.19g), Abemaciclib (25 

mg, molar mass-506.59g) and TAK960 (10 mg, molar mass-598.06g) corresponded to 

0.0518 millimoles, 0.0493 millimoles and 0.0167 millimoles respectively and were diluted 

in 5.18 mls, 4.18 mls and 1.67 mls of sterile filtered DMSO to bring the final concentration 

to 10 mM for each drug. These dilutions were then aliquoted into 10 µL batches. Before 

adding to cells, 990µL of full growth media was added to a 10 µL drug aliquot, diluting it 

to 100 µM, or 10X times the highest desired dose. This concentration was further serially 

diluted 8 more times in full growth media containing 1% DMSO (to maintain the same 
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DMSO concentration in each dilution) and by a factor of 3.16 each time. This results in 9 

dilutions with the drug concentrations between 10 nM-100 µM. In 9 wells with cells seeded 

overnight in 90 µL media, 10 µL of the serially diluted drugs are added. In the 10th well, 

10 ul of full growth media containing 1% DMSO was added as the vehicle control dose.  

For combination dose responses, U87 and U251 cells were seeded in 96 well plates 

(Corning-Falcon #353072) with 500 cells in each well. Eight by eight wells were seeded 

in 150 µl full growth media and cultured overnight. The next day, 25 µl of media was added 

twice to each well, each containing 8x of the final drug concentration and cultured for 72 

hours. The final drug concentrations were chosen to reflect their responsive range for the 

cell lines (1.22 nM-5µM for PD0325901 and Abemaciclib, 0.0122nM-50nM for TAK960).  

Before adding to cells, full growth media was added to a 10 µL drug aliquot, diluting it to 

8X times the highest desired dose. This concentration was further serially diluted 6 more 

times in full growth media containing 1% DMSO (to maintain the same DMSO 

concentration in each dilution) and by a factor of 4 each time. This results in 7 dilutions 

with the desired drug concentrations.  

 Staining and Computational Image Analysis 

After 72 hours of treatment with the drugs, the cells were stained with Hoechst 

(BDBiosciences #BD 561908) and Propidium Iodide (Millipore Sigma #P4170) at a final 

concentration of 1 µg/ml and 2 µg/ml to stain all cells and dead cells respectively. After 30 

minutes, the wells were imaged using the TagBFP (Excitation- 390nm, Emission- 447nm) 

and RFP filters (Excitation- 531/40 nm, Emission- 593/40 nm) in Cytation 5 (Biotek).  

Each image was flatfield corrected and background subtracted using CellProfiler. The 
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nuclei were then identified using the IdentifyPrimaryObjects feature, and a 

pseudo image was generated. The number of all counts of cell nuclei stained with Hoechst 

and Propidium Iodide were compiled by CellProfiler and exported as csv files. The 

Propidium Iodide stained nuclei counts were subtracted from the Hoechst stained nuclei 

counts for each well, and this was taken as the live cell counts.  

Model and Computational Methods 

A Markov Model of Temporal Cell State Transitions  

Consider a Markov state model comprising three nodes, representing cell states 

G0/G1, late G1/S and G2/M, taken as 1, 2, and 3 in short. M1, M2 and M3 are the proportion 

of cells transitioning from states 1-2, 2-3 and 3-1 respectively, within a given timestep-one 

hour for our considerations. M11, M22 and M33 are the proportion of cells that did not 

transition from states 1, 2 and 3 respectively. A cell in state 3 undergoes cell division which 

gives rise to two cells in state 1. We formulate this scenario using a jump Markov process 

model as follows:   

1, 1 11 1, 3 3,

2, 1 22 2, 1 1,

3, 1 33 3, 2 2,

2t t t

t t t

t t t

x M x M x

x M x M x

x M x M x

+

+

+

= + 

= +

= +

   (1) 

where, xi,t , are the numbers of cells in state i at time point t. The sum of cell numbers in 

each state at a particular time gives the total number of cells at that time. We set the time 

interval between two Markov jumps at 1 hour and simulate the model for a total of 72 

hours.  

These equations are subject to the constraints that the proportion of cells within a state must 

add to 1. Therefore- 
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1ii iM M+ =     (2) 

Or 1ii iM M= −     (3) 

Incorporating this in the above equation enables us to represent the system in terms 

of M1, M2 and M3 

1, 1 1 1, 3 3,
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3, 1 3 3, 2 2,
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(1 )
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t t t

t t t
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In short this may be represented as follows- 

 

, 1 , ,(1 )

 1: 2, 3

 2,3: 1, 1

i t i i t j j tx M x f M x

if i f j

if i f j i

+ = − + 

= = =

= = = −

 (5) 

 

We estimated the unknown transition rate parameters based on experimental data 

for cell doubling times of 30 and 24 hours and cell state ratios of 64:19:17 and 58:23:19 

for U87 and U251 cells respectively (data references in Results). We used fmincon in 

MATLAB with a least squares formulation giving values of  M1, M2 and M3  as 0.05 hr-1, 

0.14 hr-1, 0.14 hr-1 for U87 cells and 0.075 hr-1, 0.16 hr-1, 0.16 hr-1 for U251 cells. We 

repeated this estimation 5 times with random initial guesses, each converging to the same 

values, demonstrating uniqueness of the estimates.   

Single Drug Dose Response Modeling 

Each of the drugs- PD0325901 (MEK1/2 inhibitor), Abemaciclib (CDK4/6 

inhibitor), TAK960 (PLK1 inhibitor) were modeled as having an inhibitory effect on the 
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respective Markov parameters M1, M2 and M3. We used a sigmoidal hill-type function to 

describe the effect of drug concentration on transition rates as follows 

50
,

50

( / )
(1 )

1 ( / )

n

pi d i n

D EC
M M

D EC
=  −

+   (6) 

Where, Mpi,d is the perturbed/inhibited Markov parameter Mi after inhibition with 

the respective drug of dose D. The remaining parameters in the equation- half maximal 

‘EC50’ and hill coefficient ‘n’ were initially taken as unknowns and were estimated by 

fitting the respective drug dose response for each drug. We used fmincon in MATLAB 

to obtain the set of parameters that minimized the sum of squares error relative to the data.  

This fit model could explain the drug dose responses reasonably well. However, in 

some cases, the model fits at higher doses of the drugs were higher than the experimentally 

obtained cell numbers. The experimentally observed cell numbers at some high doses were 

lower than the initial number of cells loaded, indicating some cell death. Therefore, an 

additional parameter Mφi,d was introduced for each drug, with a value of zero for no drug 

and a higher value at greater doses of the respective drug  
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where, Emax,φ is the maximum cell death possible by a high dose of the drug and 

EC50,φ is the half maximal drug dose related to cell death.  

Eq.5 then changes as follows. 
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The respective parameters obtained to fit the single dose response parameters for 

U87 and U251 cells are as follows- 

Table #1 

U87 cells PD0325901 Abemaciclib TAK-960  

M 0.05 0.14 0.14 

EC50 (µM) 0.0769 0.011 0.0074 

n 0.609 0.686 2.67 

Emax 0.086 0.0012 3.9×10-6 

EC50,Φ(µM) 1.514 0.0274 662.4 

 

Table #4 

U251 cells PD0325901 Abemaciclib TAK-960  

M 0.075 0.16 0.16 

EC50(µM) 0.268 0.121 0.0024 

n 0.565 0.655 1.663 

Emax 0.016 0.022 0.018 

EC50,Φ(µM) 5.7 0.098 0.009 

 

Combination Drug Dose Modeling and Synergy Score 
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To model combination drug effects for two drugs, drug effects at evaluated doses were 

simulated together using the above Markov models. In order to quantify combination 

response in both the model and experimental data, we used a robustexcess over 

Bliss77.Consider each row in the combination drug dose response matrix. One of the drug’s 

doses would be constant across the row (Drug#1, Fig S1a) but the dose of the other drug 

(Drug#2, Fig S1a) increases from left to right. This can be captured by a 4-parameter 

logistic model77,102- 

min max 50

50

( / )

1 ( / )

n

n

E E D EC
y

D EC

+
=

+
  (9) 

where,  y is the inhibition effect which in this case is 1 minus the relative cell 

number with respect to the control, Emin is the minimal possible inhibition effect , Emax is 

the maximal possible inhibition effect , EC50 is the half maximal drug dose and n is the Hill 

coefficient .  

We used lsqcurvefit in MATLAB to obtain least-squares estimates for the 

four-parameters for each of the 8 rows and 8 columns. For a particular drug combination 

point, the average of the two fitted inhibition values across it’s row and column was taken 

as the final fitted inhibition value (yAB).Consider the fitted inhibition values for particular 

doses of drug A alone (yA), drug B alone (yB) and their combination (yAB). The Bliss 

independence scores37,76,77 are calculated by  

,Bliss AB A B A By y y y y= + −  

and the excess over Bliss (EOB) scores are calculated by 

,AB AB Bliss ABEOB y y= −  
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These excess over Bliss scores are calculated for all the three drug combination 

model predictions for both U87 and U251 cell lines. This exercise is also performed for 

each of the individual triplicates of the corresponding experimental data.  

In order to compare the excess over Bliss scores in the model vs. experiments, the 

drug combinations are divided into four quadrants (Fig S1a) and the average EOB scores 

across each quadrant are plotted for experimental data vs model predictions (Fig 2c,d).  

Figure Legends 
Figure 1. Modeling temporal cell states and single drug dose responses (a) Graphical 

abstract. Schematic showing that integration of single drug dose response experiments with 

temporal cell state network can predict drug combination responses (b) Schematic of the 

temporal cell state network comprising G0/G1, late G1/S and G2/M states and the activity 

of the drugs PD0325901, Abemaciclib and TAK960 in each state (c) Time courses of cell 

number in the temporal cell state model for U87 and U251 cells starting with 100 cells for 

72 hours. Cell proportions at G0/G1, late G1/S and G2/M states are also mapped which 

remain constant. (d) Single drug dose responses for PD0325901, Abemaciclib and 

TAK960 in U87 and U251 cells at 72 hours. The temporal cell state model can capture the 

single drug dose responses reasonably well. 

Figure 2. Combination dose responses: Model prediction vs experiments (a,b) 

Predicted and measured combination drug dose responses for Abemaciclib/ PD0325901, 

Abemaciclib/TAK960 and PD0325901/ TAK960 for U87 cells(a) and U251 cells (b) (c,d) 

Experiment vs model excess over Bliss scores for Abemaciclib/ PD0325901, 

Abemaciclib/TAK960 and PD0325901/ TAK960 for U87 cells(c) and U251 cells (d). For 

a pair of drugs(say Drug A/Drug B), the combinations of the lowest 4 doses of both drugs 

(besides zero doses) are categorized as low/low, combinations of the highest 3 doses of 

Drug B with the lowest 4 doses of Drug A are categorized as high/low, combinations of 

the lowest 4 doses of Drug B with the highest 3 doses of Drug A are categorized as 

low/high, and combinations of the highest 3 doses of both the drugs are categorized as 

high/high.  
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FIGURE 5.1 
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FIGURE 5.2 
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CHAPTER 6 

MESOWESTERN: AN EXPERIMENTAL FRAMEWORK TO 

MAP BIOCHEMICAL NETWORKS 

Western blot is a widely used technique for separation and quantification of 

proteins based on their molecular weight. Higher throughput versions of western blot 

especially micro western are cost prohibitive requiring a piezo electric equipment. In 

concurrence with the other projects in this dissertation, the Birtwistle lab had been working 

on a relatively affordable approach- the Mesowestern apparatus requiring a 3D-printable 

gel casting mold. We refer to this system as Mesowestern (v1) in this chapter and it was 

developed by Cameron Zadeh and Jonah Huggins with contributions from other students. 

However, an important step for validation of the Mesowestern (v1) remained- to compare 

the results of Mesowestern (v1) to a regular western. We stepped in to complete this 

validation and the overall results on Mesowestern (v1) have been published at ACS 

Omega1. The sections containing the background and need for Mesowestern (v1) 

(Introduction to Mesowestern (v1)) and the comparison of Mesowestern (v1) with regular 

western in this chapter are adapted from this paper. These two sections were largely written 

by Dr. Marc Birtwistle with experiments for the second section performed by Deepraj 

Sarmah, Micah Jordan, Wesley Meredith and Nicholas Harold. In Methods- the sections 

describing Mesowestern(v1) processes were adapted from protocols written by Cameron 

Zadeh. Deepraj Sarmah wrote the remainder of the sections dealing with the improvements, 

methods and results from Mesowestern(v2). A more thorough description of the results and 

operating procedures for Mesowestern (v1) can be obtained in the ACS Omega paper1.  
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 However, there still was a need to improve Mesowestern (v1) to make it more 

conducive for technology transfer and ease of use. We made several improvements in this 

regard with a new design and the results from this version is referred subsequently in this 

chapter as Mesowestern (v2). We finally used Mesowestern (v2) to validate and test some 

protein time courses, following the results in chapters 2 and 5. 

Introduction to Mesowestern (v1) 

The Western blot has been a staple of molecular biology research for decades since 

its first description in 1979. 2 It uses vertical immersed tank-based polyacrylamide gel 

electrophoresis (PAGE) to separate proteins by molecular weight, followed by transfer to 

a nitrocellulose or poly(vinylidene fluoride) (PVDF) membrane, and finally the application 

of antibodies to sensitively detect levels of proteins, posttranslational modifications, and 

even protein complexes. 3–5 Detection modalities include the enzyme-mediated generation 

of colorimetric molecules or light, or direct conjugation of fluorescent molecules to 

antibodies, 6,7 which, when combined with carefully designed experiments, can be 

quantitative. 8–10 Western blotting is still widely ingrained in biomedical research as a 

protein analytic tool, even perhaps the most used technique in protein-related publications 

in the last 10 years. 11 In fact, the use of Western blotting, despite falling “out of fashion”, 

seems stable according to publication metrics. 11  

Although Western blot usage remains high, there are notable limitations. Reliance on 

antibodies for detection is increasingly criticized, 12,13 although the separation of proteins 

by molecular weight is a strong indicator of antibody validity not typically available to 

other antibody-based technologies, and Western blotting is often used as a confirmatory 
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assay to bolster the support generated by other protein assays. Multiplexing is limited to a 

handful of analytes per gel, which can be increased slightly by stripping antibodies from 

the membrane and reprobing with new antibodies, 6,14 cutting the membrane into targeted 

molecular weight range strips for incubation of each with different antibodies,15,16 or 

orthogonal detection methods.17,18 Lastly, traditional Westerns are limited by throughput 

and sample size; typical gels contain only ∼10 wells for the analysis of 10 samples 

simultaneously, and each sample usually requires ∼10 ug of total protein content from cell 

or tissue lysates. It is this latter limitation of throughput and sample size that we focus on 

in this paper with the Mesowestern blot. 

Before describing the Mesowestern blot, it is instructive to review the myriad of other 

related protein analytic technologies that address the shortcomings of the Western blot. 

Reverse-phase protein arrays (RPPAs) use lysates similar to Western blotting but greatly 

increase multiplexing by spotting lysates on chips so that hundreds of antibodies can be 

used simultaneously.19,20 However, lysates are not separated by molecular weight, which 

causes increased stringency for antibody quality; in fact, antibodies are often validated for 

use in RPPA by Western blot. Luminex xMAP technology,21 although technologically 

distinct from RPPA as it uses barcoded, antibody-conjugated beads, also offers increased 

multiplexing from cell lysates but does not separate proteins by molecular weight. Enzyme-

linked immunosorbent assay (ELISA) has been established even longer than the Western 

blot and uses two antibodies, one to capture the analyte from a lysate and the other to detect 

the captured analyte, with detection modalities similar to Western blots.22,23  Although 

ELISA does not separate analytes by molecular weight, the use of two different antibodies 
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for the same target can, in some cases, compensate for specificity issues with one, although 

obviously the need for two antibodies can be a drawback itself. ELISA enables high-

throughput implementation in multiwell plates for the simultaneous analysis of hundreds 

of samples. Mass spectrometry-based proteomics is antibody-free and can analyze virtually 

any protein present in a lysate so long as it is ionizable.24–28  However, specific 

posttranslational modifications are not always observable.6 Moreover, findings from mass 

spectrometry experiments often require orthogonal validation with antibody-based 

techniques such as a Western blot.29 Thus, there remains space for a more high-throughput 

Western blot for analytes that are not amenable to mass spectrometry or when increased 

specificity is needed for antibodies. Moreover, Western blotting is likely to remain broadly 

useful as a complementary and confirmatory assay. 

There have been advances in Western blotting itself that have improved on the limitations. 

Single-cell Western blotting using PAGE (Protein Simple) has been developed, greatly 

reducing sample size requirements.30,31 Other innovative Protein Simple apparati use 

capillary electrophoresis rather than a slab gel to allow analysis of up to 96 samples in a 

single loading (12 simultaneously) in a streamlined manner.32–34 Digiwest combines 

Luminex technology with Western blotting by completing electrophoresis and transfer but 

then cutting the membrane into molecular weight sections to be analyzed by separate 

spectrally distinct beads.35 This provides the multiplexing capabilities of Luminex with the 

molecular weight separation of Western. The Microwestern blot36–38 uses a piezoelectric 

pipetting apparatus to spot nL amounts of lysate onto a typical-sized slab gel, followed by 

semidry horizontal electrophoresis (as opposed to tank-based), and finally, a gasket system 
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for incubating different parts of the resultant membrane with up to 96 different antibodies. 

Thus, the Microwestern addresses both throughput and, to some extent, multiplexing 

limitations. However, the piezoelectric pipetting apparatus is not available to many 

labs.36,38 There is not yet a slab gel-based Western technology that addresses throughput 

and sample size limitations that is micropipette-loadable. 

Here, we present the Mesowestern blot that, similar to the Microwestern, allows for high-

throughput analysis of hundreds of small samples in a typical-sized slab gel but does not 

require piezoelectric pipetting because it is micropipette-loadable. To do this, we designed 

and 3D-printed a gel casting mold that produces a polyacrylamide gel with 336, ∼0.5 μL 

sample wells arranged with 8 rows by 42 columns in a microplate footprint. The main 

tradeoff is molecular weight resolution because samples have less distance to migrate. 

However, the format is flexible because the cast is 3D-printed and gel acrylamide % can 

be adjusted. Proof-of-concept experiments using both infrared-fluorescent molecular 

weight ladder and cell lysates demonstrate that proteins loaded in Mesowestern gels are 

amenable to the standard Western blotting steps of gel electrophoresis followed by the 

transfer to a membrane for imaging. These experiments also show another main tradeoff 

that sample-to-sample CV is high, making the technique more suited for qualitative 

screening applications. The main difference from Western blotting is horizontal 

electrophoresis as opposed to tank-based electrophoresis, and, as mentioned above, 

reduced molecular weight resolution. Because the gel mold is 3D-printable, users with 

access to institutional additive manufacturing cores (which are relatively commonplace) 

have significant design freedom for custom layouts. We expect that the technique could be 
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easily adopted by any typical cell and molecular biology laboratory already performing 

Western blots. (Adapted from ACS Omega paper) 

 

Figure 6.1. Gel casting mold for Mesowestern(v1). The mold consists of two pieces, which 

we refer to as “top” and “bottom”. The top contains the loading port for the unpolymerized 

gel solution, whereas the bottom contains the raised regions, which become wells in the 

Mesowestern gel. The gel dimensions are approximately 9 cm by 13 cm in width and length 

and is 1.2 mm thick. Each well is a rectangle that is 1 mm by 1.2 mm in width and length 

and is 0.5 mm deep. Wells are spaced 1.8 mm apart and have 8.7 mm to run in their lane 

before the next well is reached. 

Results- 

Comparing Mesowestern(v1) with Western  

We wanted to investigate sensitivity and linear range for Mesowestern(v1) in direct 

comparison to Western. While this will invariably be dependent on the epitope of interest, 

its abundance in the cell lysate, and the antibody being used, we started by investigating 

this for β-actin. Specifically, we performed a 6-point, 2-fold serial dilution of lysate from 

exponentially growing U87 cells and replicated this dilution curve 6 times on a portion of 

a Mesowestern(v1) gel (Figure 6.2A─we used a mold with 1 μL wells for this experiment; 

replicates in Figure 6.8). Simultaneously, 20 μL of the same lysates were loaded into a 
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regular Western, and the same blocking and antibody solutions were used to compare 

Western to Mesowestern(v1) side by side (Figure 6.1 B,C; replicates in Figure 6.2). Bands 

were observable from each technology in each sample. We had expected the lowest 

concentration lysate to be below the limit of detection for Mesowestern(v1), but to our 

surprise, this was not the case. In both cases, the linear range of detection was at least ∼33-

fold, with R2 ∼ 0.99 (Figure 6.1D). The lowest lysate concentration loaded in 

Mesowestern(v1) is at least equivalent to 29 ng of total protein, which is approximately 

100–300 cells (0.1–0.3 ng of protein yield/cell)39–41 Based on the estimates for absolute 

expression levels of β-actin in mammalian cells (∼106 copies/cell),42 this is at least ∼500 

attomol sensitivity, but as mentioned above, the serial dilution curve did not find the lower 

limit of detection. For regular Western, a 15 attomol limit of detection using the same 

infrared fluorescence modality has been reported for transferrin (no such data could be 

found for β-actin).43 More broadly, the manufacturers report limits of detection for various 

modalities ranging from 500 fg to 500 pg of protein, which is consistent with ∼10 attomol 

for proteins of typical molecular weight ranges.44(Adapted from ACS Omega paper). 



 136 

Figure 6.2. Comparison of Mesowestern and regular Western. A–C. Cell lysate from 

exponentially growing U87 cells was prepared at a range of protein concentrations (twofold 

serial dilution) and subjected to Mesowestern and Western analyses, as indicated. Full 

scans are shown in Figure 6.8. The PVDF membrane was incubated with anti-β-actin 

antibodies and a secondary antibody for detection. D, E. The signal derived from the image 

analysis of each band (N = 78 bands for Mesowestern from 2 blots and 14 dilution 

curves; N = 18 bands for Western from 3 blots/dilution curves) was plotted versus the 

known amount of total protein mass loaded. For Mesowestern (D), data were normalized 

such that 1 mg/mL lysate corresponds to a relative signal intensity of 1. For Western, data 

were normalized such that the maximum normalized signal was 1. Error bars are the 

standard error of the mean for each sample (N ≥ 3). 
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Shortcomings of Mesowestern (v1) 

Although Mesowestern (v1) could handle low amounts and dilutions of liquids, it 

had a few shortcomings. Broadly, it came down to two key factors, both related to ease of 

use- 

(i) Need for a more ordered approach- Mesowestern (v1) requires multiple steps 

where the gel is relocated- taken off the cast, placed on a thick blotting paper in 

a proper alignment with the flow of current, and into the transfer cassette after 

electrophoresis (see Methods). An alternate method which can minimize 

moving the gel would be more user friendly.  

Besides, Mesowestern (v1) also requires electrophoresis to be performed with 

the gel placed on a buffer-soaked blotter paper. This is a somewhat amateurish 

technique, with potential problems in technology transfer and most 

contemporary electrophoresis for either DNA or proteins are rightly performed 

in a buffer filled tank.  

(ii) Option for automated pipetting option- Since high throughput is one of the chief 

goals of Mesowestern, there needs to be an option, where the pipetting of 

hundreds of samples can be automated. It is difficult to achieve that with 

Mesowestern (v1), since the gel is not in a fixed cast suitable for loading in such 

an automated setup. The requirement for the gel to be moved multiple times can 

also change the location and dimensions of the wells, which need to be known 

more precisely in order to create automated loading protocols, or even manually 

loaded with a multichannel pipet.   
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In order to address these concerns, we attempted a vertical setup, which had some 

shortcomings of its own and finally came up with a horizontal tank setup- 

Mesowestern(v2). This addresses some of the above concerns. The steps we followed, and 

the results obtained are in the following sections.  

 

Attempt at a Vertical Mesowestern 

In order to address some of the issues with Mesowestern(v1), particularly related to having 

a more ordered and conventional procedure, we attempted a vertical design. This was in 

part inspired by the fact that most regular westerns have a vertical design and a 

Mesowestern setup with a similar electrophoresis procedure would be relatively easy to 

understand and use. It comprised of a gel cast and electrophoresis setup designed for that 

purpose (Figure 6.3). In brief, the procedure involved the gel to be cast between the two 

plastic casts (see Methods for casting gel),  the half of the cast with the well protrusions 

removed(with the gel still adhered to the other half of the cast), the samples loaded into the 

wells, the cast with the loaded gel vertically attached to a electrophoresis setup within a 

Mini Trans-Blot Cell (BIO-RAD, 1703930) and the electrophoresis run.  

However, our results with the vertical Mesowestern were largely unsuccessful for 

the following reasons- 

i. Buffer leakage into the gel area during electrophoresis- Unlike a regular 

western, where the gel, once cast, remains within the glass/plastic casts till the 

end of electrophoresis, in the vertical Mesowestern, the half of the cast with the 
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well protrusions, has to be removed and after the gel has been loaded with 

samples-reattached to the electrophoresis setup. This often causes an uneven 

seal and the buffer leaks through the Mesowestern gel space. It requires constant 

monitoring, and some buffer added every few minutes. If the buffer level gets 

too low, the current would no longer flows through the setup and 

electrophoresis would stop.  

ii. Sample retention issues- This was due to two reasons. First, when the gel gets 

loaded with samples and reattached to the electrophoresis setup, the contact 

with the new surface may pull samples out of the well due to surface tension 

effects. Secondly, the buffer leakage into the gel area also tends to wash some 

samples away from the wells.  

iii. Uneven electrophoresis across the gel- This may be caused by an uneven seal 

of the gel with the electrophoresis setup. Current may be uneven across the gel 

and can cause different run times for the same sample (shown in Figure 6.3b).  
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Figure 6.3 Vertical Mesowestern Setup and Results (A) Top and bottom gel casts for a 

vertical Mesowestern. (B) Top cast with loaded gel attached to the electrophoresis setup 

within a Mini Trans-Blot Cell (BIO-RAD, 1703930 (C) Results with a electrophoresis run 

with bromophenol blue. 

 

Hortizontal Tank Design-Mesowestern(v2) 

Since most of the shortcomings in vertical electrophoresis have to do with problems 

in adjusting the gel with sample filled wells to a new surface, we decided to do away with 
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designs that require an additional surface over the wells. This could be enabled by going 

back to a horizontal electrophoresis design, where the samples would remain in the wells, 

due to gravity. However, to make it more accessible to users compared to 

Mesowestern(v1), we tried a tank electrophoresis design. The bottom cast was also 

designed to be fit in an automated pipettor (Opentrons V2). This design, which we call 

Mesowestern(v2) in this chapter, has parallels to the design of a DNA agarose gel 

electrophoresis, although the wells in Mesowestern(v2) are relatively smaller and more 

numerous. The images of a cast and tank setup are shown in Figure 6.4 although the exact 

dimensions may be proprietary.  

We tried two kinds of gels with Mesowestern(v2)-A 9.5% Tris-Acetate gel and a 

10% Tris HCl gel. We noted that if the gel is fully immersed in the electrophoresis buffer 

after being loaded with samples, there some samples may be washed off by the buffer. This 

can be due to the wells not being sufficiently deep, as well as the sample density not being 

high enough to remain sunk in the wells. In our experiments with Mesowestern(v2), we 

tried a semi-submerged procedure, where the buffer is just in contact with the gel sides but 

does not go over the gel. This may be a fair design in a lab setting for a few experiments 

but not necessarily transferable. Therefore, we expect subsequent designs of the 

Mesowestern(v2) to have deeper wells and higher sample density by incorporating more 

glycerol in the sample buffer, so that it would be conducive to run in a fully immersed 

setting. Potentially, designs where the gel can be loaded while being submerged (as is done 

for a DNA agarose gel) either manually, with a single channel pipette, multichannel or 

through an automated device should also be contemplated.  
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We also noticed in initial experiments that if electrophoresis is run for too long in 

a Mesowestern(v2) setup (>45 minutes), the gel tends to come off the top cast during 

electrophoresis. This is more of a problem in the Tris-Acetate gel, where the gel tends to 

swell as well. For subsequent experiments with Mesowestern(v2) in this chapter, we used 

a Tris HCl gel-generally a 10% gel, and occasionally an 8% gel when resolution of higher 

molecular weights was required. Electrophoresis time was generally about 35 minutes and 

was stopped when the bromophenol blue dye in the sample buffer reached close to the next 

set of wells.  
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Figure 6.4 Mesowestern (v2) Setup and Results (A) Top, middle and bottom gel casts for 

a Mesowestern(v2). (B) Tank setup to run Mesowestern(v2) 

 

Arriving at a suitable buffer chemistry for Mesowestern(v2) 

When we used a Tris-Glycine buffer with a Tris HCl gel, as is done in the electrophoresis 

of many regular western blots, we noticed a gradually moving line in the gel, where 

electrophoresis speeds were different before and after the line. This can also be seen in the 

attempt with a vertical Mesowestern (Figure 6.3C). This is not desirable for uniformity of 
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electrophoresis across the gel. We reasoned that this is caused due to depletion of Cl- ions 

in the gel and glycine taking over as the dominant ion, as happens at the stacking line of a 

regular western45. In order to ensure ion uniformity throughout electrophoresis, we 

switched to a Tris HCl based electrophoresis buffer instead of Tris Glycine (see Methods). 

We no longer noticed the “stacking line”, but this change came with a minor drawback that 

higher concentrations, Cl- can be potentially corrosive to the anode (positive electrode) 

during electrophoresis. To ensure protection to the electrode, we switched to a relatively 

inert (platinized titanium) electrode for the anode (Figure 6.4). The Cl- concentration is 

also kept relatively low as the buffer consists of 0.1 M of Tris HCl pH 7.5. More than 50 

electrophoresis runs have been performed since these changes without any noticeable 

corrosion to the electrode.  

Increasing Pipetting Options 

Conventionally pipetting for western blot is done with hand, generally with a 

pipette with a maximum range ~20 ul P20. We can do the same for meso western(v2) with 

a P2 pipette with maximum range ~2 ul. This version of meso western is not totally 

compatible with multichannel pipetting although future versions might be (wells in 

alignment with 96 well plate design). However, the horizontal setup does allow us more 

options for pipetting. The cast was made to fit into the loading site of an Opentrons V2 

automated robot pipetting device. Since the gel is supposed to remain stuck to one side of 

the cast during loading and electrophoresis, the dimensional locations of the wells are 

known in advance. We can use this property to automate a pipetting robot to load a unique 

sample or multiple different samples. 
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Although this allowed us to pipette many samples, it was unsuccessful on occasion 

-the Opentrons pipette missed the wells and this needed manual intervention. This may be 

attributed to variability in the robot and well positions in the gel. Future designs should 

allow for more variability in the robot pipetter operation as well as gel position. A design 

with wider and longer wells should help reduce such loading errors. 

Ladder Results with Mesowestern (v2) 

The next logical step for Mesowestern(v2) was to test whether it could resolve different 

molecular weights and the range of the resolution. For a 10% Tris HCl gel we loaded the 

gel with ladder (Chameleon Duo, Licor #928-60000, diluted 1:10) and ran electrophoresis 

for all 8 rows and 14 adjacent columns for ~35 minutes (see Methods) and transferred to a 

nitrocellulose membrane. The results are shown in Figure 6.5. We could observe resolved 

bands from between 8 to 70 kDa (Figure 6.5). Qualitatively, the results looked quite 

uniform across the membrane. This was also later seen in ladder and protein runs (Figure 

6.6). We reasoned that a lower percentage gel and longer runs would enable us to see higher 

molecular weight resolutions. In a later experiment, (pRb/β-actin, Figure 6.6) we ran an 

8% gel for a longer time (~45 mins) and bands between 15-90 kDa were able to be resolved 

and protein bands of 110 kDa (pRb) were also observed.  
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Figure 6.5 Resolution of ladder bands in the 700 and 800 channel and comparison with 

reference molecular weight ladder  
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Protein validation with Mesowestern(v2) 

For the kinases involved in cell states (MEK1/2, CDK4/6 and PLK1), discussed in chapter 

5, we wanted to see if we could perform western blot experiments to obtain their network 

structure. For the high number of samples for this experiment, Mesowestern could be 

useful, because of its high throughput. Downstream markers, which can represent the 

activity of each protein are essential. And lastly, in order to uncover network edges (chapter 

2), one perturbation per node is essential. We wanted to test potential downstream markers 

for the respective proteins and if validated use them subsequently in time course 

data(chapter 2).  

For the perturbation of MEK1/2, CDK4/6 and PLK1, we decided to use a relatively high 

dose of their respective inhibitors PD0325901, Abemaciclib and TAK-960 corresponding 

to IC75 dose for U87 (2500 nM for PD0325901, Abemaciclib, 25 nM for TAK-960). 

Validation would be if we see a conspicuous band of the marker at the DMSO treatment 

and a significantly reduced band for the respective drug treatment.  

pMAPK (Cell Signaling, #4370S) has been known to be a marker for MEK1/2 and has 

been used in the Birtwistle lab in the past for this purpose38. We reasoned that a 

phosphorylated form of the protein retinoblastoma, Rb (Cell Signaling, #D59B7) would be 

a suitable marker for CDK4/6 and this is informed by literature46 as well as our 

understanding of canonical cell pathways. However, literature was sparse on downstream 
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targets of PLK. We considered TCTP47 (Cell Signaling, #5251) phosphorylated at Ser46 

as the most likely marker for PLK1 and included it for validation.  

We could observe the bands for pMAPK and pRb at DMSO treatment and inhibition at the 

respective dose of the drug (Figure 6.6). We could also see the bands albeit faint for pTCTP 

at DMSO treatment. However, there was no significant inhibition for treatment with TAK-

960. Therefore, we did not consider it a suitable marker for subsequent analysis 

We subsequently tested a few more possible downstream markers for PLK1-CDC25c(Cell 

Signaling, #5251, no noticeable bands), Cyclin E (Cell Signaling, #D7T3U, no 

inhibition)and MLF1 (Rockland #600-401-A92, no noticeable bands) but without success.  
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Figure 6.6 Protein Marker Validation Results for pRb, pMAPK and pTCTP. Results on 

the right are normalized by respective β-actin signals.  
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Protein quantification with Mesowestern (v2) 

We ran time course experiments (see Methods) at 0,0.5,2,9,24,48 and 72 hours for each of 

the treatments(PD0325901-Perturb MEK1/2, Abemaciclib-Perturb CDK4/6 and TAK-

960-Perturb PLK1) and against the two antibodies validated for MEK1/2 and CDK4/6. The 

results (normalized by β-actin and then by respective mean DMSO treatment signals) are 

shown in the Figure 6.7 and the full Mesowestern blots are shown in Figures 6.10 and 6.11.  

 Although we did not have enough data to construct a 3-node network, we can note 

that when MEK1/2 is inhibited, CDK4/6 levels go down as well-as expected by canonical 

pathways (chapter 5). When CDK4/6 is inhibited, MEK1/2 levels seem to rise in both U87 

and U251 cells indicating a negative feedback from CDK4/6 to MEK1/2. 



 151 

 
Figure 6.7 Normalized time courses of pMAPK and pRb with vehicle control, MEK1/2 

inhibition, CDK4/6 inhibition and PLK1 inhibition, for U87 and U251 cells respectively 

 

Methods- 

Printing the Mold 

Molds were printed in the Clemson Additive Manufacturing Lab with the Stratasys Connex 

350 and Veroclear as the material (Stratasys, OBJ-03271-RGD810). Following printing, a 

self-forming valve packing (Danco, #80794) was inlayed into the outer edge of the well 

perforation unit (bottom).  

Casting a Gel  

Gel casting was completed through a process of silanization of surfaces coming 

into contact with the gel, clamping to ensure a tight leak-proof fit, and serological pipetting 
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of unpolymerized solution into the mold. Briefly, a 2.5% v/v silane solution was prepared 

by combining 1.25 mL of dichlorodimethylsilane (Sigma-Aldrich, #40140) and 48.75 mL 

of 100% ethanol (Fisher, #04-355-22) in a 50 mL conical tube (Fisher, 14-432-22). We 

then applied 250 μL of the silane solution to the interior surfaces of both the top and bottom 

mold pieces, gently spread it across the surface by rocking, and wicked excess with a 

kimwipe. After assembling the top and bottom pieces together (and middle piece for 

Mesowestern(v2)), four C-clamps (Irwin #1901235) were tightened onto the assembly at 

the designated corner locations (indented circles). At this point, the assembly is ready for 

loading. 

Tris Acetate gel for Mesowestern (v1)-A 9.5% gel solution was prepared by combining 

47.5 mL of 30% bis/acrylamide solution 29:1 (BIO-RAD, #161-0156) with 41 mL of 

MilliQ water, 30 mL of glycerol (Sigma-Aldrich, #G5516-500 mL), 30 mL of 5× tris-

acetate buffer (recipe as follows), and 1.5 mL of 10% sodium dodecyl sulfate (SDS) 

(Fisher, #BP 2436) together. Preparation of the 5× tris-acetate buffer was completed by 

dissolving 145.4g of tris base (BIO-RAD, 161-0719) in 700 mL of MilliQ water (pH 

expected between 11.0 and 11.4). The pH was adjusted by adding 65 mL of glacial acetic 

acid (Sigma-Aldrich, #320099) and allowing the solution to sit overnight. Then, 0.5 mL of 

glacial acetic acid was pipetted into the solution and allowed to sit for an hour at room 

temperature. This was repeated until the solution reached pH 6.9. Finally, the volume of 

the solution was brought up to 1 L with MilliQ water and stored at 4 °C. Polymerizing gel 

solution was made by combining 15 mL of 9.5% gel solution with 133 μL of 10% 

ammonium persulfate solution (APS) and 13.3 μL of TEMED (BIO-RAD #161-0700) into 
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a beaker under a fume hood. The 10% APS solution was prepared by dissolving 0.2 g of 

ammonium persulfate (BIO-RAD #161-0800) into 2 mL of MilliQ water. Quickly after 

preparation, 15 mL of gel solution was dispensed by serological pipetting into the mold 

assembly via the loading port. The assembly was kept still under the fume hood for 30 min 

at room temperature to achieve full polymerization. 

To remove the gel from the mold, first the C-clamps were removed. Then, the top 

and bottom mold pieces were carefully separated using a gel releaser (BIO-RAD, #165330) 

on the lateral protrusions, followed by carefully moving the releaser around the internal 

face of the top. After splitting the top and bottom pieces, the gel was removed by inverting 

the mold so that the gel is facing thick blotter paper (BIO-RAD #1703958) that is presoaked 

in running buffer. The blotter paper was approximately 5 cm larger than the gel on the top 

and bottom and about 1 cm larger than the gel on each side. The gel is slowly peeled away 

from a corner using the gel releaser until gravity facilitates the remaining gel to gently fall 

onto the soaked blotter paper support. The gel can be used immediately or be stored in a 

sealed bag at 4 °C for several months (at least). 

Tris HCl gel For Mesowestern(v2)- A 10% gel solution was prepared by combining 50 

mL of 30% bis/acrylamide solution 29:1 (BIO-RAD, #161-0156) with 60.3 mL of MilliQ 

water, 37.5 mL of 1.5 M Tris HCl buffer (recipe as follows), and 1.5 mL of 10% sodium 

dodecyl sulfate (SDS) (Fisher, #BP 2436) together. . Preparation of the 1.5 M Tris HCl 

buffer was completed by dissolving 18.15 g of tris base (BIO-RAD, 161-0719) in 80 mL 

of MilliQ water (pH expected between 11.0 and 11.4). The pH was adjusted by a few drops 

of hydrochloric acid (Sigma-Aldrich, #258148) until the solution reached pH 8.8. Finally, 
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the volume of the solution was brought up to 100 mL with MilliQ water and stored at 4 °C. 

Polymerizing gel solution was made by combining 25 mL of 10% gel solution with 125 

μL of 10% ammonium persulfate solution (APS) and 125 μL of TEMED (BIO-RAD #161-

0700) into a beaker under a fume hood. The 10% APS solution was prepared by dissolving 

0.2 g of ammonium persulfate (BIO-RAD #161-0800) into 2 mL of MilliQ water. Quickly 

after preparation, 15 mL of gel solution was dispensed by serological pipetting into the 

mold assembly via the loading port. The assembly was kept still under the fume hood for 

about an hour at room temperature to achieve full polymerization. 

To remove the gel from the mold, first the C-clamps were removed. Then, the top 

piece with the well protrusions were carefully separated using a gel releaser (BIO-RAD, 

#165330) on the lateral protrusions, followed by carefully moving the releaser around the 

internal face of the top. The gel can be loaded with the samples either manually or in an 

automated system (Opentrons v2).  

Cell Culture 

MCF10A cells (from LINCS Consortium and STR verified internally) were 

cultured in DMEM/F12 (Gibco #11330032) medium containing 5% (v/v) of horse serum 

(Gibco #16050122), 20 ng/mL of EGF (PeproTech #AF-100-15), 0.5 mg/mL of 

hydrocortisone (Sigma-Aldrich #H-0888), 10 μg/mL of insulin (Sigma-Aldrich #I-1882), 

100 ng/mL of cholera toxin (Sigma-Aldrich #C-8052), and 2 mM of L-glutamine (Corning 

#25-005-CI). U87 and U251 cells (STR verified internally) were cultured in DMEM 

(Gibco#10313021) medium containing 10% (v/v) fetal bovine serum (Corning#35-011-

CV) and L-glutamine (2 mM) (Corning #25-005-CI). The cells are kept at 37 °C in 5% 
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CO2 in a humidified incubator. To maintain subconfluency, the cells are passaged every 2–

3 days, washing once with phosphate-buffered saline (PBS), lifting with 0.25% trypsin 

(Corning #25-053-CI), and reseeding in full growth media. 

Lysate and Sample Preparation 

Cells growing in full growth media were collected, counted, and seeded (150,000 

cells/well for MCF10a, 50000 for U87 and U251) in tissue culture-treated 6-well plates 

(Corning # 08-772-1B). MCF10a cells were kept at 37 °C in 5% CO2 in a humidified 

incubator for ∼48 h, while U87 and U251 were treated with respective drugs after seeding 

overnight  (Abemaciclib-2500 nM for U87, 500 nM for U251, PD0325901-2500 nM for 

both cell lines and TAK960-25 nM for both cell lines) and samples were collected at time 

points of 0,0.5,2,9,24,48 and 72 hours. The plates were removed from the incubator, and 

media in the wells was aspirated. The wells were washed with ice-cold PBS once and 

placed on ice. Freshly prepared, ice-cold RIPA buffer (110 μL, 50 mM tris, pH 7–8 (Acros 

Organics #14050-0010), 150 mM NaCl (Fluka #71383), 0.1% SDS (v/v from 10% stock, 

Fisher #46040CI), 0.5% sodium deoxycholate (g/mL Alfa Aesar, J62288), 1% Triton-X-

100 (v/v, Fisher, BP151) with protease and phosphatase inhibitors (1 μg/mL aprotinin (MP 

Biomedicals #0219115801), 1 μg/mL leupeptin (MP Biochemicals #0215155301), 1 

μg/mL pepstatin A (MP Biochemicals #0219536801), 10 mM β-glycerophosphate (Santa 

Cruz Biotechnology #sc203323), and 1 mM sodium orthovanadate (Sigma-Aldrich # 

S6508)) were added into each well. The plates were kept on a rocker (slow) in the cold 

room for 15 min. Then, the lysates were scraped off with a cell scraper (Stellar Scientific 

TC-CS-25), and 100 μL lysate from each well was transferred into labeled Eppendorf tubes 
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on ice. Each tube was vortexed three times for ∼30 s to homogenize cell debris. Next, the 

tubes were centrifuged at 4 °C for 15 min at ∼21,000g (max speed). Finally, 80 μL of the 

supernatant from each tube was transferred into a new Eppendorf tube, being careful not 

to disturb the debris pellet. Lysates were stored at −20 °C for short-term storage and 

transferred to −80 °C for long-term storage. 

Protein Quantification 

Total protein quantification of lysates was done using either the BCA-Pierce 660 

Assay (Thermo Scientific #23225) or Pierce Rapid Gold BCA (Thermo Scientific 

A53225), and BSA stock (Thermo Scientific #23209) was used as a reference according to 

the manufacturer’s protocol. In short, 10 μL of the lysate sample or BSA standards were 

loaded into 96-well plates (Corning #3370), in triplicate. Then, the BCA Protein Assay 

Reagent was loaded into each nonempty well. The plate was covered with the lid and 

incubated at room temperature for 5 min. The absorbance readings at 660 or 480 nm were 

obtained in a plate reader (BioTek #Epoch2). The average of blank wells was subtracted 

from each reading to calculate blank-corrected averages for each condition. The standard 

curve is fitted to a line using blank-corrected mean values of each standard condition versus 

its BSA concentration. The protein concentration in each sample was calculated using the 

standard curve formula. 

Sample Preparation 

Lysate stocks are thawed on ice (if applicable). Then, a 5× sample buffer was 

prepared (5 mL of glycerol (Sigma-Aldrich #G5516), 0.5 mL of 10% SDS (Fisher #BP 

2436), 0.01 g of bromophenol blue (Calbiochem #2830), 2.1 mL of 5× tris-acetate buffer 
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(for Mesowestern v1)/ 2.1 mL of 1.5 M Tris HCl buffer pH 8.8 (for Mesowestern (v2)), 

0.5 mL of β-mercaptoethanol (Sigma-Aldrich #M6250), then the total volume brought to 

10 mL with MilliQ water). This was mixed with lysates in a 1:4 (v/v) ratio. Next, the tubes 

were heated at 95 °C for 5 min in a dry heating block and then briefly spun in benchtop 

microcentrifuge before loading (below). 

Loading the Gel for Mesowestern(v1) 

Following the release of the gel onto the soaked blotter paper, the assembly was 

placed down on a flat surface with the wells facing up. If folds and stretching of the gel are 

evident, light rolling was used to flatten. A p2 micropipette with 10 μL tips was used to 

load the prepared lysates and/or molecular weight ladder (LI-COR, 928-60000) into wells 

as desired. We have found that wells less than 2 mm away from the gel boundaries may be 

subject to inconsistent electrophoresis and transfer and therefore avoid them when possible. 

Care was taken not to adjust the gel on the blotter paper after any loading and also to 

transport the gel with a spatula support underneath. 

Loading the Gel for Mesowestern (v2) 

We automated an Opentrons (OT-2) robot to run several experiments using diluted 

ladder across the gel or different protein samples. At first a code was written in Opentrons 

which specified the dimensions and locations of the wells (with the help of the REDDI 

Lab). Secondly, we specify within the Opentrons loading area, the locations of the gel, 

samples, pipettes, etc. We can then design a loading protocol as a json file 

(https://designer.opentrons.com/) which specifies the samples and the wells into which 

they are supposed to be added. There is another option in Opentrons which lets us create 
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the protocol as a python code, but we did not do so because we could design all our loading 

protocols as json files in the protocol designer. For more complex protocols, the protocol 

may be designed as a python code.  

Horizontal Electrophoresis in Mesowestern (v1) 

Horizontal electrophoresis was carried out using the Flatbed Professional (Gel 

Company Store, FC-EDCProf-2836). The apparatus was maintained at 10 °C during 

electrophoresis. First, ∼10 mL of cooled running buffer was poured onto the center of the 

apparatus, followed by transfer of the blotter paper/loaded gel by spatula onto this buffer. 

Running buffer was made by combining 20 mL of 5× tris-acetate buffer (see above) with 

29.5 mL of MilliQ water and 0.5 mL of 10% SDS. The gel should be oriented to have the 

red bar at the bottom, where the proteins will migrate toward. Additionally, the wells 

should be aligned with the apparatus gridlines, and excess running buffer should be wiped 

up with no buffer accumulated outside of the blotter paper. Then, the anode and cathode 

wires were placed over the blotter paper, about 3 cm from the gel. Finally, the glass plate 

was placed on top of the anode and cathode and the lid was closed. Electrophoresis was 

conducted at 100 V for ∼2 h, although each run should be individually monitored. Samples 

should be visible as blue dots in the gel after ∼30 min, and ideally, the run should be 

stopped when it reaches the top edge of the next well. After 30 min, we paused the run, 

lifted the blotter paper and gel with a spatula, and rehydrated by placing another 10 mL of 

cool running buffer as previously. 

Horizontal Tank Electrophoresis in Mesowestern(v2) 
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Running buffer was made by adding 12.1 g of tris to 900 mL of MilliQ water and 

10 mL of 10% SDS. pH was adjusted to 7.5 by adding concentrated HCl dropwise and final 

volume adjusted to 1000 mL. Ice packs were placed in the positive and negative buffer 

chambers in the electrophoresis tank to keep the system cool during electrophoresis (Figure 

6.4B). The gel with samples loaded into the wells and attached to the cast, was placed in 

the gel cast placement area and the buffer was gradually added in both the positive and 

negative chambers to make contact with the gel but not flow over the gel. The 

electrophoresis can be started and run for about 30-35 minutes till the bromophenol blue 

reaches close to the subsequent wells.  

Transfer to Membrane 

Transfer buffer was prepared by first making 10× tris-glycine buffer (600 mL of 

MilliQ water with 30.3 g of tris base (BIO-RAD #161-0719) and 144 g of glycine (VWR 

#0167), then MilliQ water was added to a final volume of 800 mL). Transfer buffer (∼2 L, 

1×) was made by taking 160 mL of 10× tris-glycine buffer, adding MilliQ water up to a 

final volume of 1600 mL, and finally, adding ∼400 mL of methanol (Fisher #A412-in a 

fume hood) to 2 L. Transfer buffer is stored at 4 °C. 

For quarter gels, we used a Mini Trans-Blot Cell (BIO-RAD, 1703930), and for full 

gels, we used a Criterion Blotter (BIO-RAD, 1704070). We have successfully used both 

nitrocellulose (Licor Odyssey #926-31092) and PVDF (BIO-RAD, 1620264) membranes 

for Mesowestern. For Mesowestern(v1) the reported results are from PVDF and for 

Mesowestern(v2) the reported results are with nitrocellulose.  
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To prepare the gel and membrane for transfer, cold transfer buffer was poured into 

a pyrex dish to a depth of ∼3 cm. Blotter paper, cut to the size of the transfer cassette but 

larger than the gel, was placed into the pyrex dish to soak. After soaking, the blotter paper 

was placed on a clean, flat benchtop. Then, the gel could soak in the same transfer buffer 

for ∼15 min, making sure to keep track of which side of the gel has the well indentations. 

The gel was then placed onto the soaked blotter paper, with the wells facing down on the 

paper. A spatula was always used to transport the gel. The gel was then gently rolled flat, 

and air pockets were removed using a roller (BIO-RAD, 1651279). The membrane was cut 

to the same size as the gel, being careful never to touch the membrane except with clean 

tools. After wetting with methanol (if PVDF is used), the membrane was then placed to 

soak in transfer buffer. Forceps were used to gently place the membrane onto the gel. If the 

membrane is not aligned, we did not move it, rather, we got a new membrane. Then, the 

membrane was rolled as previously. A second piece of transfer buffer-soaked blotter paper 

was then placed on top of the membrane in line with the first piece of blotter paper and 

rolled as previously. Finally, a spatula was used to lift the “sandwich” onto a fiber pad 

(BIO-RAD, 1703933), and another fiber pad was placed on top. This fiber pad-surrounded 

sandwich was moved to the transfer cassette, making sure that the side of the sandwich 

closest to the membrane was on the clear/positive side of the cassette (BIO-RAD, 

1703931). This also means that the side of the sandwich closest to the gel is on the 

black/negative side of the cassette. The cassette was then placed into the transfer apparatus 

(negative to negative/black to black, positive to positive/clear to red). If desired, a second 

sandwich was made and placed into the apparatus. 
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With the cassettes in the transfer apparatus, a cold transfer buffer was added until it reached 

the indicated volume line. The apparatus was moved to a 4 °C room, and then transfer was 

carried out at 30 V for 16 h (usually overnight). After the transfer, the membrane was 

removed with clean forceps and was placed in a clean incubation box (Li-Cor, 929-97201), 

with the side of the membrane that was in contact with the gel facing up. 

Antibody Incubation 

First, TBS and TBST buffers were prepared. Briefly, 10× TBS was made by 

dissolving a 24 g tris base (BIO-RAD #161-0719) and 88 g NaCl (CAS 7647-14-5) in 1 L 

of MilliQ water. The pH was monitored with continuous magnetic stirring while adding 

HCl dropwise to bring the pH to 7.6. To make 1× TBS, 50 mL of 10× TBS was added to 

450 mL of MilliQ water and stored at 4 °C (stable for several months). To make 1× TBST, 

2.5 mL of 10% Tween 20 (BIO-RAD #161-0781) was added to 500 mL of 1× TBS and 

similarly stored at 4 °C. 

All membrane incubations were done in the dark (sealed black box or covered in 

aluminum foil). The membrane was incubated first in ∼20 mL of blocking buffer (1 g BSA 

(Fisher, BP1600) in 20 mL of 1× TBS) for at least 30 min at room temperature with gentle 

rocking. After blocking, the blocking buffer was removed, and the membrane was directly 

incubated with a primary antibody solution (10 mL blocking buffer, 50 μL of 10% Tween 

20, v/v dilution of primary antibody to the desired working concentration) for at least 2 h 

at room temperature or overnight at 4 °C, all with gentle rocking. After primary antibody 

incubation, the membrane was washed with ∼10 mL of 1× TBST three times, 5 min for 

nitrocellulose, and four times, 15 min for PVDF. After washing, the secondary antibody 
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solution (10 mL 1× TBST with 1:20,000 v/v; see below) was added to the membrane and 

incubated with gentle rocking for 1 h at room temperature. After incubation, the secondary 

antibody solution was discarded, and the membrane was washed as previously with 1× 

TBST. After the last TBST wash, a final TBS wash was done. The membrane was then 

scanned with the side that was facing up (closest to gel during transfer) now facing down 

on the clean surface of a LI-COR Odyssey infrared fluorescence scanning instrument (LI-

COR model number 9140). 

Antibodies were obtained from and used with working concentrations as follows: 

p-MAPK (Cell Signaling, #4370S, 1:1000), α-tubulin (Novus, #NB100-690, 1:1000), β-

actin (Cell Signaling, #3700, 1:1000), pRb(Cell Signaling, #D59B7), pTCTP(Cell 

Signaling, #5251), antirabbit (800CW LI-COR #926-32211, 1:20,000), and antimouse 

(680LT LI-COR #925-68070, 1:20,000). 

Imaging and Quantification 

Placement of the membrane on the scanning surface was set in Image Studio. Both 

700 nm and 800 nm wavelength channels were set to be scanned. Resolution was set to 

generally 42 μm (some exceptions for speed at times), and the focus offset was set to 0.0 

mm. After the membrane finished scanning, the image and the associated zip file were 

exported from the Li-Cor Odyssey scanner and imported into Image Studio Lite for 

analysis. In Image Studio, boxes were drawn around protein bands and the “signal” metric 

generated by the software was used as the quantification.8,38 
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Discussion and Future Work 

 Mesowestern (v2) is a significant improvement over Mesowestern(v1) in its more 

streamlined approach and ease of use but requires more changes to be a more transferable 

technique, especially regarding the gel being immersed in the buffer. In order to minimize 

sample, wash off in a fully immersed setting, we expect subsequent designs of the 

Mesowestern(v2) to have deeper wells and increased sample density by incorporating more 

glycerol in the sample buffer. Designs where the gel can be loaded while being submerged 

(as is done for a DNA agarose gel) either manually, with a single channel pipette, 

multichannel or through an automated device should also be contemplated. In addition, a 

greater area for the wells should also be considered, to reduce errors in loading samples.  

 The Mesowestern(v2) results with pMAPK and pRb have a noticeable variability, 

especially at high signal values. We hope such variance should go down with designs which 

allow for a larger quantity of sample per well. 

 The results with pMAPK and pRb also indicate a negative feedback from CDK4/6 

to MEK1/2 in both U87 and U251 cells. This is an interesting result and may need to be 

validated by a more robust experiment. While negative feedback loops are ubiquitous in 

signaling pathways, potential feedbacks from CDK4/6 to MEK1/2 are relatively 

underreported and may have some implications in drug efficacy-if not in glioblastoma cells 

for other types of cancer as well. 
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Figure 6.8 Full scans of the results shown in Figure 6.2. Operating parameters and other 

details are contained in Figure 6.2 and associated text. A-B. Mesowestern. In A, MCF10A 

lysates were used and the maximum lysate concentration was ~2 mg/mL, giving an extra 

datapoint. C-E. Western blot replicates. 
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Figure 6.9 Replicates for validation of pMAPK, pRb and pTCTP antibodies. Quantification 

in Figure 6.6 
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Figure 6.10 Full time course and 3 replicates for pMAPK and pRb antibodies in U87 cells. 

Top to bottom are time courses and left to right are three sets of replicates. Blot on the left 

is β-actin and blot on the right is pRb (above) and pMAPK(below). 
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Figure 6.11 Full time course and 3 replicates for pMAPK and pRb antibodies in U251 cells. 

Top to bottom are time courses and left to right are three sets of replicates. Blot on the left 

is β-actin and blot on the right is pRb (above) and pMAPK(below). 
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CHAPTER SEVEN  

 

MAPPING DRUG RESISTANCE MECHANISMS DUE TO OVEREXPRESSION OF 

A KINASE 

 

Overview 

 Biological markers of cancers often include mutations resulting in overexpressed 

or hyperactive genes. Targeted therapy to these markers is thought to be a solution but are 

often accompanied by drug resistance. Drug resistance in cancer can be a daunting in its 

complexity but activation of alternate survival pathways is thought to be an important 

contributing factor to drug resistance in cases where a driver pathway is inhibited1. In such 

cases, combinations treatments, targeting the alternate pathways can be potentially more 

effective than single treatment alone, but the inherent resistance mechanisms need to be 

understood first.  

A start to understanding the different mechanisms of drug resistance can be through 

analysis of different omics data in cases of drug treatment vs control. Specifically, the 

differences in omics data in drug treated cells with an overexpressed oncogene vs drug 

treated cells may give us an idea about the different pathways being employed for drug 

resistance in the overexpressed cells.  

Over the years, various gene set enrichment approaches have been helpful in 

analyzing genome wide data- Gene Set Enrichment Analysis (GSEA)2, Enrichr3 and 

GeneTrail4, among others. These approaches can employ various databases of gene 

ontologies to match what we are looking for-for instance pathways, cellular component 

etc. Such gene enrichment may help bringing forward pathways potentially involved in 

resistance mechanisms. Statistical methods such as principal component analysis (PCA) 
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may also potentially help curate the omics data before being processed for gene set 

enrichments by aligning the data along some principal axes, representative of overall effect.  

Here we employed one gene set enrichment method-GSEA to understand resistance 

mechanisms in two cases in proteomics data generated through mass spectrometry by the 

Kriegsheim Lab at the University of Edinburgh. These were U87 cells with overexpression 

of two proto oncogenes- (i) mTOR and (ii) MEK2 and treated with their respective 

inhibitors. By scoring the genes through a method employing Euclidian distance in PCA, 

and using GSEA and one of the largest pathway databases (Reactome)5, we could begin to 

uncover some potential pathways involved in the resistance mechanisms, when these proto 

oncogenes were inhibited. Further work on this project, concerning incorporation of the 

proteomic data in mechanistic modeling is currently underway in the lab.  

Results- 

Data- 

Three stable U87 cell lines were generated in the Kriegheim lab with three 

different CRISPR gRNAs of the respective proto oncogene. It was found that the cell lines 

with mTOR overexpression were more resistant to the mTOR inhibitor eCF309 (Figure 

7.1).  

The proteomic dataset involved log2 normalized proteomics data generated 

through mass spectrometry four kinds of treatments for the respective proto oncogene.  

i. Protein Overexpression(-), Drug Treatment(-) 

ii. Protein Overexpression(-), Drug Treatment(+) 

iii. Protein Overexpression(+), Drug Treatment(-) 
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iv. Protein Overexpression(+), Drug Treatment(+) 

Each of the four treatments involved three replicates of drug treatment, and in case 

of overexpression, three different gRNAs. We took the median values of the replicates, for 

simplicity and to eliminate any large variations. 

We reasoned that the following difference between these treatment medians could 

allow us to uncover each of the following mechanisms- 

i. Mapping effects of drug without involvement of overexpression (Drug 

Effect) = Cells with drug treatment-Cells without drug treatment (Both 

without Overexpression) 

ii. Adaptation of cellular pathways to overexpression (Overexpression 

Adaptation) = Cells with overexpression-cells without overexpression 

(Both without drug treatment) 

iii. Mapping effects of drug when overexpression is present (Drug Effect with 

Overexpression) = Cells with drug treatment-Cells without drug treatment 

(Both with mTOR overexpression) 

iv. Mapping resistive pathways in overexpressed cells compared to cells 

without overexpression (Resistome)= Cells with overexpression-Cells 

without Overexpression (Both with drug treatment) 

These differences were first taken through a direct difference method (see Methods) 

and subsequently through a method involving Euclidean distance in PCA (Figure 7.2) 

GSEA-mTOR overexpressed cells 
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We first used a direct difference method (see Methods) to generate a scored list of 

proteins. This list is then processed through GSEA to obtained enriched pathways in 

Reactome- 2016 dataset (see Methods). The positively enriched pathways, with a nominal 

p value less than 0.01 are shown in Table 7.1. These enriched pathways, particularly in the 

“Resistome” did not indicate any evidence of enriched signaling pathways.  

We then decided to employ the Euclidean PCA distance method to generate a 

scored list of proteins. This list is again processed through GSEA to obtained enriched 

pathways in Reactome- 2016 dataset. The positively enriched pathways, with a nominal p 

value less than 0.01 are shown in Table 7.2. This time we saw enrichment of signaling 

pathways, particularly involving FGFR, SCF, KIT, and two death signaling pathways 

involving NRAGE and JNK. By using the mapping feature in GSEA (based on fraction of 

common genes between pathways), we observed mapping between FGFR and SCF/KIT 

pathways and similar mapping between the two death signaling pathways 

FGFR associated with resistance to mTOR inhibitor 

 Based on the above results, the Kriegheim lab decided to experimentally test 

whether FGFR pathways were involved in resistance to mTOR inhibition. Different 

concentrations of the mitogen FGF2 was added to U87 cells, also being treated with the 

mTOR inhibitor. Increasing FGF2 concentration seems to increase cell survival, even at 

high doses of the mTOR inhibitor (Figure 7.3).  

 GSEA results-MEK2 overexpressed cells 

 We employed the Euclidean PCA distance method to generate a scored list of 

proteins for the MEK2 overexpressed U87 cells. This list is processed through GSEA to 
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obtained enriched pathways in Reactome- 2016 dataset. However, the number of positively 

enriched pathways, with a nominal p value less than 0.01, were too many in each category 

and only the relevant list regarding drug resistance-“Resistome” is shown in Table 7.3. No 

special signaling pathways seem to stand out in GSEA data except those involving cell 

cycle and the WNT pathway. Further experimentation was not performed to verify the role 

of WNT in resistance in MEK2 signaling pathway. 

Methods 

Direct Difference Method 

 In this method, the list of median proteins is first normalized (z-scores across all 

rows) and then the difference taken as explained before (Results-Data).  

PCA method- 

In this method, the list of median proteins is first quantile normalized and further 

z-scored across all columns. A PCA is created with each of the treatments occupying a 

location in the PCA plane (PC1 and PC2). The Euclidean distance between each relevant 

treatment is measured. Then, each protein is sequentially dropped from all the treatments 

and the new Euclidean distance between each relevant treatment is measured again. This 

is followed for all proteins and the difference between the old and new Euclidean distance 

is reasoned to score the importance of a protein in the PCA plane. The method is illustrated 

in Figure 7.2. 

GSEA 

The scored lists of proteins have to be converted to a .rnk file (insert .rnk in the file 

name and save as txt file). Then they are put through GSEA software (v 4.0.3. Newer 
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versions are now available). We use the RunGSEAPreranked feature and upload the file 

with the protein scores. The Gene set database is selected to “Reactome-2016” (Reactome-

2022 should be now available). After a minute or so, the enrichment should be complete, 

and the enrichment data will be downloaded. 

Discussion 

We found GSEA to be the very conducive to pre-scored data because of its feature 

to be able to take in pre-scored gene names. There was no need to select a certain number 

of top gene and the whole dataset could be uploaded. Combining GSEA with the pre-scored 

lists Euclidean PCA method may have potential to bring out relevant pathways compared 

to the direct difference method.  

FGFR pathways may have a role in resistance to mTOR inhibitors. Previous studies 

had mentioned potential synergistic effects of targeting both FGFR and mTOR in different 

cancer models. It seems reasonable that this could be true for glioblastoma cells as well6–

8.  

The current status of this study is ongoing in the lab, particularly for incorporating 

the proteomic data for MEK2 inhibition and possibly gaining further insight into predicting 

better combination therapies.  
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Table 7.1 

DIRECT DIFFERENCE-GSEA RESULTS FOR MTOR OVEREXPRESSED CELLS  

Drug Effect 

REACTOME_MRNA_SPLICING 

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 

REACTOME_MRNA_PROCESSING 

REACTOME_INFLUENZA_LIFE_CYCLE 

REACTOME_MRNA_SPLICING_MINOR_PATHWAY 

REACTOME_OPIOID_SIGNALLING 

REACTOME_METABOLISM_OF_RNA 

REACTOME_METABOLISM_OF_CARBOHYDRATES 

REACTOME_SIGNAL_AMPLIFICATION 

REACTOME_NEUROTRANSMITTER_RECEPTOR_BINDING_AND_DOWNSTREAM_TRANSMISSION_IN_THE_POSTS

YNAPTIC_CELL 

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 

REACTOME_RNA_POL_II_TRANSCRIPTION 

REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1 

REACTOME_GLUCOSE_METABOLISM 

REACTOME_TRANSPORT_OF_RIBONUCLEOPROTEINS_INTO_THE_HOST_NUCLEUS 

REACTOME_G_ALPHA1213_SIGNALLING_EVENTS 

  

mTOR Overexpression Adaptation 

REACTOME_SIGNALING_BY_SCF_KIT 

REACTOME_ASPARAGINE_N_LINKED_GLYCOSYLATION 

REACTOME_MEIOTIC_SYNAPSIS 

REACTOME_COSTIMULATION_BY_THE_CD28_FAMILY 

REACTOME_INSULIN_RECEPTOR_SIGNALLING_CASCADE 

REACTOME_METABOLISM_OF_LIPIDS_AND_LIPOPROTEINS 

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 

  

Drug Effect with mTOR Overexpression 

REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM 

REACTOME_SIGNALING_BY_ILS 

REACTOME_AXON_GUIDANCE 

REACTOME_NCAM_SIGNALING_FOR_NEURITE_OUT_GROWTH 

REACTOME_DEVELOPMENTAL_BIOLOGY 

REACTOME_INTERFERON_GAMMA_SIGNALING 

  

Resistome 

REACTOME_MEIOTIC_RECOMBINATION 

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_

HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_ 

REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCHONDRIAL_TRANSCRIPTION 

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT 

REACTOME_RNA_POL_I_TRANSCRIPTION 

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT 

REACTOME_CITRIC_ACID_CYCLE_TCA_CYCLE 
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Figure 7.1 

MTOR OVEREXPRESSION CONFERS RESISTANCE TO MTOR INHIBITOR 
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Figure 7.2 

EUCLIDEAN DISTANCE PCA METHOD
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Table 7.2 

EUCLIDEAN PCA DISTANCE-GSEA RESULTS FOR MTOR OVEREXPRESSED 

CELLS  

Drug effect 

REACTOME_REGULATION_OF_INSULIN_SECRETION_BY_GLUCAGON_LIKE_PEPTIDE1 

REACTOME_OPIOID_SIGNALLING 

REACTOME_METABOLISM_OF_CARBOHYDRATES 

REACTOME_G_ALPHA_I_SIGNALLING_EVENTS 

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 

REACTOME_G_ALPHA1213_SIGNALLING_EVENTS 

REACTOME_G_ALPHA_Q_SIGNALLING_EVENTS 

REACTOME_SIGNAL_AMPLIFICATION 

REACTOME_REGULATION_OF_INSULIN_SECRETION 

REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 

REACTOME_HIV_LIFE_CYCLE 

REACTOME_PLATELET_HOMEOSTASIS 

REACTOME_MRNA_SPLICING_MINOR_PATHWAY 

REACTOME_GPCR_DOWNSTREAM_SIGNALING 

  

mTOR Overexpression Adaptation 

REACTOME_SIGNALING_BY_TGF_BETA_RECEPTOR_COMPLEX  

  

Drug Effect with mTOR Overexpression 

REACTOME_MEIOTIC_RECOMBINATION 

REACTOME_SIGNALING_BY_PDGF 

REACTOME_SIGNALLING_BY_NGF 

REACTOME_NGF_SIGNALLING_VIA_TRKA_FROM_THE_PLASMA_MEMBRANE 

REACTOME_SIGNALING_BY_GPCR 

REACTOME_SIGNALING_BY_FGFR_IN_DISEASE 

  

Resistome 

REACTOME_CELL_DEATH_SIGNALLING_VIA_NRAGE_NRIF_AND_NADE 

REACTOME_SIGNALING_BY_FGFR_IN_DISEASE 

REACTOME_SIGNALING_BY_SCF_KIT 

REACTOME_NRAGE_SIGNALS_DEATH_THROUGH_JNK 



 183 

 

 

 

Figure 7.3 

GSEA RESULTS FOR MTOR OVEREXPRESSED CELLS  
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Figure 7.3 

FGF2 CONFERS RESISTANCE TO MTOR INHIBITOR 
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Table 7.3 

PCA DIFFERENCE-GSEA RESULTS FOR MEK2 OVEREXPRESSED CELLS  

Resistome 

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 

REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS 

REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1 

REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 

REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE 

REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6 

REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21 

REACTOME_SIGNALING_BY_WNT 

REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT 

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C 

REACTOME_G1_S_TRANSITION 

REACTOME_MITOTIC_G1_G1_S_PHASES 

REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX 

REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_

APC_C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1 

REACTOME_CROSS_PRESENTATION_OF_SOLUBLE_EXOGENOUS_ANTIGENS_EN

DOSOMES 

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 

REACTOME_GOLGI_ASSOCIATED_VESICLE_BIOGENESIS 

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC 

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS 

REACTOME_G1_PHASE 

REACTOME_S_PHASE 

REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 

REACTOME_HIV_INFECTION 

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 

REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0 

REACTOME_REGULATION_OF_APOPTOSIS 

 

  



 186 

References 

1. Holohan, C., Van Schaeybroeck, S., Longley, D.B., and Johnston, P.G. (2013). Cancer 

drug resistance: an evolving paradigm. Nat Rev Cancer 13, 714–726. 

10.1038/nrc3599. 

2. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, 

M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set 

enrichment analysis: A knowledge-based approach for interpreting genome-wide 

expression profiles. Proceedings of the National Academy of Sciences 102, 15545–

15550. 10.1073/pnas.0506580102. 

3. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., 

and Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list 

enrichment analysis tool. BMC Bioinformatics 14, 128. 10.1186/1471-2105-14-128. 

4. GeneTrail—advanced gene set enrichment analysis | Nucleic Acids Research | Oxford 

Academic 

https://academic.oup.com/nar/article/35/suppl_2/W186/2923179?login=false. 

5. Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., 

Garapati, P., Gopinath, G., Jassal, B., et al. (2011). Reactome: a database of reactions, 

pathways and biological processes. Nucleic Acids Res 39, D691-697. 

10.1093/nar/gkq1018. 

6. Cai, W., Song, B., and Ai, H. (2019). Combined inhibition of FGFR and mTOR 

pathways is effective in suppressing ovarian cancer. Am J Transl Res 11, 1616–1625. 

7. Gozgit, J.M., Squillace, R.M., Wongchenko, M.J., Miller, D., Wardwell, S., 

Mohemmad, Q., Narasimhan, N.I., Wang, F., Clackson, T., and Rivera, V.M. (2013). 

Combined targeting of FGFR2 and mTOR by ponatinib and ridaforolimus results in 

synergistic antitumor activity in FGFR2 mutant endometrial cancer models. Cancer 

Chemother Pharmacol 71, 1315–1323. 10.1007/s00280-013-2131-z. 

8. Scheller, T., Hellerbrand, C., Moser, C., Schmidt, K., Kroemer, A., Brunner, S.M., 

Schlitt, H.J., Geissler, E.K., and Lang, S.A. (2015). mTOR inhibition improves 

fibroblast growth factor receptor targeting in hepatocellular carcinoma. Br J Cancer 

112, 841–850. 10.1038/bjc.2014.638. 

 

 

  



 187 

CHAPTER EIGHT  

 

CONCLUSION 

Conclusions 

This dissertation was broadly inspired by the need to map various the various levels 

of complexity in cancer in order to predict effective therapies. Due to the multi-faceted 

contexts of cancer and increasing number of possible combinations, we propose that proper 

computational models should guide effective combination therapies. An increasingly 

important facet of cancer is cell state networks and their role in drug resistance. This 

dissertation explores different methods to understand and map the inherent biology at 

different levels of cancer biology and use these techniques to predict drug combinations. 

Although a lot of work remains to be done in expanding the scope of these techniques, this 

dissertation lays a foundation for mapping relevant cancer biology for prediction of better 

therapies.  

In Chapter 2, we build upon existing methods to create Dynamic Least-Squares 

Modular Response Analysis (DL-MRA)- a method to help map different kinds of 

biological networks. We apply this method to infer a simulated biochemical network, 16 

gene regulatory networks and cell state transition networks and we found satisfactory 

mapping in all cases, albeit some concerns about experimental application to biochemical 

networks. Insights gained from this work informed a subsequent temporal cell state 

network in Chapter 5.  

In Chapter 3, we created a ranked list of kinase targets-scored by two 

pharmacological and two biological criteria. Begun as an illustrative exercise for the 
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selection of relevant proteins in a cancer, in absence of drug dose response data, it was later 

shown that such ranking may not necessarily match cancer cell’s response to drugs. 

In Chapter 4, we obtained drug dose responses for a panel of 22 BBB penetrant 

drugs across three glioblastoma derived cell lines. This work also provideed an 

experimental basis for the work in Chapter 5 and can provide useful information about 

cancer cell’s response to inhibition of drug targets.  

In Chapter 5, we conceive of a temporal cell state model and use it to predict certain 

drug combinations, which are then validated by experiments. We hope that such modeling 

and prediction becomes more prevalent and useful, especially in cases where the cell state 

transitions are not properly understood.  

In Chapter 6 we described the various steps we took to validate a version of 

Mesowestern-a method to enable high throughput western blots. Although we made 

significant improvements, there is more scope for improvement in the design as well as 

variability of results.  

In Chapter 7, we analyzed proteomic data obtained from glioblastoma cell lines 

with certain overexpressed proto-oncogenes. We explore the use of enrichment analysis 

and the use of a dimension reduction method with an intention to uncover signaling 

pathways involved in resistance mechanisms in these cells. We could obtain an 

experimental result hinting at validation for one of the results. 

Future Work 

There can be several improvements in the techniques and future avenues of the 

methods we explored in this dissertation. 
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In Chapter 2, an improvement for DL-MRA would be to be able to handle larger 

networks. Sparcer networks integrated with by canonical information may be a way to 

accomplish this. Another improvement would be to accommodate multiple perturbations. 

This may be approached in different ways and a simple way may be to frame perturbations 

as a positive or negative stimulus. This can be tested in the basic DL-MRA framework and 

also simulated biological networks. During mapping of cell state transitions, we observed 

that discrete Markov models are computationally faster than differential equation-based 

model. It is worth exploring whether a discrete version of DL-MRA can be used without 

significant loss in prediction accuracy. This can significantly improve the computation time 

required to test multiple random networks.  

The ideas explored in Chapter 5 have multiple potential avenues. First, instead of temporal 

cell states, could we map actual cell states and use it to predict better drug combinations? 

Another way to increase the scope of the model would be to integrate biochemical networks 

and perhaps even cancer cell states along with temporal cell state transitions. A potential 

test case to integrate biochemical networks with temporal cell state with might be the 

inclusion of Abl1 (or PI3K, mTOR) and its cross talk with MEK1/2 and test its effects on 

drug dose response predictions.  

We also expect future versions of the Mesowestern be more robust in design and 

results and more suitable for automated pipetting or through multi-channel pipette. 

 Although the methods explored in this dissertation were tested in glioblastoma 

cells, in theory they are general and can be tested across different types of cancer.  The 
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complexity of cancer can be daunting but is inevitable. I believe that through better 

mapping of cancer biology with the help of computational tools, we can get ever closer to 

very significantly improving the life outcomes of millions who are or will be diagnosed 

with this malady.  
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