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Abstract

Surrogate models are simplified approximations of functions that are described by complex

equations. Surrogate modeling of physical systems have been used in various fields such as biol-

ogy, fluid dynamics, climate modeling, and various other engineering disciplines. This data-driven

approach is used to decrease computational cost, decrease computation time, or when the output

of a system is difficult or impossible to measure, by using a “black-box” method to approximate

the output given inputs. In regards to circuit analysis, surrogate models can be used to decrease

computation time and computational load.

In this thesis, surrogate modeling is used to model various nonlinear components and circuits

in fREEDA, a multi-physics circuit simulator, for the purpose of speeding up transient analysis.

Neural networks are used in place of physics-based equations, resulting in a speedup of 5− 18x for

the evaluation of the components and 3x for the evaluation of entire circuits. The components and

circuits tested in this work include: BJT (Bipolar Junction Transistor), MOSFET (Metal-Oxide-

Semiconductor Field-Effect Transistor), common-emitter amplifier, and common-source amplifier.
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Chapter 1

Introduction

1.1 Motivation

Surrogate models are an approximate mapping between input and output of complex sys-

tems. Circuit analysis lends itself well to surrogate modeling as it is not so complex that the

approximations are not highly accurate, but there is an opportunity to speed up the process of

transient analysis. By creating a general, easy-to-use workflow, it would not be difficult for one to

replace a suite of commonly used transistors, for example, with surrogate models of those transistors

that could be used instead. An additional benefit to using surrogate models, in the case of modeling

a circuit specifically, is that it protects a circuit designer’s intellectual property while allowing others

to perform testing by presenting a ”black-box” circuit [13].

1.2 Contribution

This work presents a modular workflow for replacing nonlinear components and circuits in

fREEDA with high fidelity surrogate models to decrease the time to complete transient analysis. All

that is needed to model a component or circuit is training data. The data is fed into an AutoML

Application Programming Interface (API) to find an optimal neural network to replace the physics-

based equations that are traditionally used (see Figure 1.1). The resulting speedup for evaluating a

component is 5− 18x and for evaluating an entire circuit is 3x.
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Input Physics-Based Equations Output

Neural Network Surrogate Model Estimated Output

Figure 1.1: Overview of Contribution

1.3 Outline

The rest of this manuscript is organized as follows: Chapter 2 covers background information

regarding fREEDA, neural networks, surrogate modeling, and the transistors modeled, Chapter 3

overviews related work on surrogate modeling of circuits, Chapter 4 describes the surrogate modeling

workflow designed, Chapter 5 details the results from experiments completed, and Chapter 6 includes

the conclusion and possible future work.
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Chapter 2

Background

This chapter provides an overview of the components used for modeling, the circuit simula-

tion software used, as well as the relevant machine learning concepts.

2.1 Circuit Simulation Software

fREEDA is an open-source multi-physics circuit simulator that was first presented as an

alternative to SPICE or other SPICE-like circuit simulators. It is implemented almost entirely

in C++ with an object oriented design approach [14]. Each element has a class that is based

on the common base class element. See Listing 1 for an example of the “diode” element. It is

here where the reference name of the element, number of terminals, parameters of the specific

element (i.e. saturation current, breakdown voltage, etc. for the “diode” element) as well as the

init and eval routines resides. The physics-based equations relating the state variables to voltages

and current are located within the eval routine [14]. The input to the eval routine are of class

AD (automatic differentiation) [9]. Automatic differentiation provides an analytical derivative by

repeatedly applying the chain rule to a composition of simple operations to calculate the Jacobian.

This AD class, specific to elements, is initialized in the init routine, where the number of derivatives

to be calculated is declared. For example, the “diode” element has one state variable and the time

derivative of the state variable for a total of two inputs to the physics-based equations whereas the

“bjtnpn” element has three state variables with the first and second time derivatives of those state

variables for a total of nine inputs to the physics-based equations. Note that these derivatives are

3



Figure 2.1: Network Graph [14]

calculated automatically each time step outside of the eval routine [14].

Circuits in fREEDA are stored as a network graph in a netlist. The network graph treats

both elements and terminals as nodes (see Figure 2.1) and labels them as such in the netlist [14].

See Listing 2 for an example of a netlist for a half-wave rectifier. fREEDA supports the following

circuit analysis types: DC, AC, harmonic balance, transient (both fixed and variable time-stepping),

and wavelet analysis.

LTspice [2] was used for data collection and verifying the fidelity of the surrogate models.

LTspice is a SPICE circuit simulator from Analog Devices that provides a wide variety of different

components and models without any additional modifications, some of which were used in this

work including NPN BJTs and N-Channel MOSFETs. Additional useful features of LTspice include

schematic capture and a graphing tool, both of which are not currently available in fREEDA.

2.2 Neural Networks

The majority of machine learning problems can be categorized as one of the following:

supervised learning, unsupervised learning, or reinforcement learning. The problem in this work is

4



Input Layer Hidden Layer ¹ Output Layer

Figure 2.2: Fully Connected Neural Network

a supervised learning problem. The goal of supervised learning is to approximate some function

F : X → Y

where X ∈ Rm is the input and Y ∈ Rn, the output, is some known label given k samples. In this

work, it was found that relatively small (∼ 1000 parameters) fully connected neural networks were

able to model the nonlinear components and circuits tested with high accuracy. Figure 2.2 is an

example of a fully connected neural network, as each neuron in the previous layer is connected to

every neuron in the current layer. Using Figure 2.2 as an example (i.e. Input Layer ∈ R6, Hidden

Layer ∈ R10, Output Layer ∈ R4), the values of any neuron in the hidden layer can be calculated as

follows:

Neuronj = (
∑6

i=1 wi,j ∗ xi) + bj for j ∈ [1, 10]

5



Figure 2.3: ReLU Activation Function

where w and b are the corresponding weight and bias values. This same logic is used to find values of

neurons in other hidden layers (if they exist) as well as the output values. Following this calculation

at each layer, an activation function is applied to turn the previously linear mapping to a nonlinear

mapping. Specifically, this work only involves the activation function ReLU (Rectified Linear Unit),

which is defined as f(x) = max(0, x) as shown in Figure 2.3.

To find a sufficiently good mapping, F , the neural network must be tuned, including pa-

rameters such as the size of hidden layers, number of hidden layers, hyperparameter values, etc. To

provide a general, easy-to-use workflow, AutoML is used to perform this fine-tuning. AutoML is a

rather broad term and can refer to solely hyperparameter tuning or an optimal neural architecture

search. For this work, Auto-Keras was selected as it performs both. Auto-Keras uses a Bayesian

Optimization algorithm to search a neural architecture search space to minimize a user-defined cost

function (or loss function; Auto-Keras uses mean squared error by default) given training data [7].

The Auto-Keras workflow, see Figure 2.4, begins with the Bayesian Optimization search for a neural

architecture. Following this, the Graph module builds a neural network from the selected neural

architecture. Next, the neural network is trained on the training data provided by the user and

lastly the model is saved with results of its performance sent back to the Searcher as feedback. The

6



Figure 2.4: Overview of Auto-Keras [7]

model that best minimizes the cost function is then saved for future use.

2.3 Component and Circuits Models

For both BJTs and MOSFETs, there are multiple different models used in circuit simulators

that vary in complexity, including the number of parameters that are used to describe the transistor

as well as the physics-based equations that are solved at each time step. In general, as complexity

increases, so does the accuracy of the model compared to the actual hardware. For this work,

the Gummel-Poon model [6] was selected for the BJT and the Philips MOS9 Model [12] for the

MOSFET. Both of these are on the lower end in terms of complexity, but are readily available

in most popular circuit simulation software. The specific transistors modeled were the 2N2222

NPN BJT and the BSS123 N-Channel MOSFET. The circuits modeled were the common-emitter

amplifier and common-source amplifier. Both of these are single-stage amplifiers that are primarily

used for voltage amplification. The same BJT and MOSFET that were used for the component-level

surrogate models were used in the common-emitter and common-source amplifiers, respectively.

7



Chapter 3

Related Work

Surrogate models in circuit simulation are used to reduce the time to complete analysis and

computational load compared to physics-based equations, as well as protecting the intellectual prop-

erty of a circuit designer by presenting a high fidelity ”black-box” solution rather than a schematic

itself. This chapter gives an overview of a few differently types of surrogate models that have been

used to model nonlinear circuits, namely interpolation and various machine learning methods.

3.1 Interpolation

Interpolation is the process of making an estimate using information of prior samples.

Though a few different interpolation methods have been used for surrogate modeling, the most

popular is kriging [16], [8], [5]. Kriging uses known input/output pairs to estimate the output given

a new input by combining information of a regression model and the correlation between two sample

vectors. It can be thought of as the regression model being a global trend and the correlation being

the localized trend [8]. A pitfall of kriging is it requires one to have a relative strong understanding

of the data attempting to be interpolated as one must decide on the appropriate regression model

and correlation function. As the goal of this work is to make a simple, straightforward workflow to

create surrogate models, kriging was excluded.

8



3.2 Machine Learning

Different machine learning methods such as Support-Vector Machines (SVM) [16], [4] and

neural networks [13], [15], [3], [10] have been used to create surrogate models of circuits. The

authors in [4] use SVM as a surrogate model for industrial circuits including the Digital-to-Analog

Converter and DC-DC Converter. They performed sensitivity analysis to determine which of the

input parameters were most important and used those, decreasing the total number of inputs used

by over half. They also experimented with the amount of training samples needed to train the

surrogate model, ranging from 50 to 1, 000, and showed that even with a relatively small amount of

samples, a high fidelity model of complex circuits was achievable.

In [3], the author use a Recurrent Neural Network (RNN) to model an active rail clamp

circuit that contained 6 transistors and 2 passive elements. For their experimentation, they imple-

mented the trained RNN in Verilog-A and demonstrated a relatively high accuracy of under 2%

root mean squared error (RMSE). The authors in [15] again use a RNN to model circuits. They

discuss how though the training data is discrete, the resulting RNN must be a continuous time RNN

(CTRNN) as the majority of circuit simulators use an adaptive time step, which is not known prior

to simulating. In [13] the authors worked to simulate an aging circuit using a RNN. One of the

circuits used in experimentation contained over 1, 000 transistors in an “IP block” (i.e. internals

are not known, just the inputs and outputs to the block) and they saw a speedup of 50x while

maintaining a low normalized root mean squared error (NRMSE) of just 0.74%. Surrogate modeling

of circuits is of particular interest in scenarios such as simulating circuit aging where the incremental

damage to each transistor is calculated at every time step, which results in a longer time to complete

analysis. The majority of previous work done on this topic has focused on the modeling of a few

(1-3) various circuits; however, this work attempts to provide a clear and general path for creating

surrogate models for any components or circuits.

9



Chapter 4

Research Design and Methods

This chapter describes the process of training and implementing a surrogate model in place of

a component or circuit in fREEDA. See Figure 4.1 for a flowchart outlining this process. Firstly, the

data collection process in LTspice [2] as well as the pre-processing of the data is discussed. Next, the

selected transistor models are overviewed. Following this, the AutoML process and subsequent neural

network architecture is covered. Lastly, a description of how the surrogate model is implemented in

place of the physics-based equations in fREEDA.

4.1 Data Collection

For this work, components and circuits implemented in LTspice are being modeled in

fREEDA. The first step in this is collecting the data in LTspice. For components, this process

consists of creating circuits of interest in the LTspice GUI and performing transient analysis. For

both the BJT and MOSFET, a single circuit was selected for data collection. These circuits were the

common-emitter amplifier and the common-source amplifier, respectively. Resistance values were

varied for the training data, which affected the overall gain of the circuit. The inputs and outputs

were selected based on the implementation of the component in fREEDA and the relevant values

were selected in LTspice and exported to a .csv file. Similarly in data collection for the circuits, the

circuit to be model is created with the LTspice GUI, transient analysis was performed, and relevant

values were taken as training data. For the circuits modeled in this work, voltages and currents were

taken at the input to the circuit of interest and the input to the load, which was directly connected

10



Start

Select Component or
Circuit to Model

Collect Training Data in LTspice

Send Training Data to
Machine Learning Code

Train Surrogate Model

Export Neural Network
Parameters to fREEDA

Implement Surrogate Model in fREEDA

Stop

Figure 4.1: Overview of Workflow
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to the output of the circuit being modeled. For some of the component modeling, it was necessary to

obtain the time derivative of input values as they were used in the training of the surrogate models.

The derivatives were approximated in Python via

dx

dt
≈ xt+∆t − xt

∆t
,

where xt is the value of x at time t and ∆t is the time step. It should be noted that the transient

analysis in LTspice used a variable time step, so ∆t was not constant throughout a simulation.

Once the .csv contained all the training data needed, it was read into Python for preprocessing and

training of the surrogate model.

4.2 Transistor Models

For this work, two specific components and two circuits were selected. The componenets

include the 2N2222 NPN BJT and the BSS123 N-Channel MOSFET. The Gummel-Poon model was

used for the BJT and the Philips MOS9 MOSFET Model was used for the MOSFET. The circuits

modeled were the common-emitter amplifier and the common-source amplifier. The transistors used

in the amplifier circuits were the 2N2222 and BSS123, respectively.

The inputs to the physics-based equations for the Gummel-Poon model BJT element in

fREEDA are

Vbe, Vbc, Vcjs,
dVbe
dt

,
dVbc
dt

,
dVcjs
dt

,
d2Vbe
dt2

,
d2Vbc
dt2

,
d2Vcjs
dt2

with outputs

Vcjs, Vbjs, Vejs, Ic, Ib, Ie

where c = collector, b = base, e = emitter, and js = junction substrate. For the Philips MOS9

MOSFET model, the inputs to the physics-based equations include the voltages

Vds, Vgs, Vbs

with outputs

Vdb, Vgb, Vsb, Id, Ig, Is

where d = drain, g = gate, s = source, and b = bulk.

12
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Figure 4.2: Common-Emitter Amplifier

The junction substrate and bulk were both connected to the ground terminal for all sim-

ulations. Though used by the physics-based equations for the Gummel-Poon model for the BJT,

the second time derivatives were not used as inputs to the neural network as it negatively affected

the accuracy. However, using the first time derivatives of the inputs for the MOS9 MOSFET Model

helped the accuracy, and were used in the training of the surrogate model. Different transistor

models use different inputs to the physics-based equations. As the inputs used for the training of

the surrogate models are based on the inputs to the physics-based models, there will likely need to

be an effort made to determine which of the inputs to the physics-based model should be used in

training to create the highest fidelity surrogate model possible for new transistor models.

For the two circuits tested, the common-emitter amplifier (Figure 4.2) and the common-

source amplifier (Figure 4.3), the inputs were selected to be the input voltage and current to the

amplifier itself. The outputs were the voltage across the load and the current flowing through it,

see Figure 4.5. For all simulations and testing, a passive load of a resistor of varying resistance was

used.

13
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Figure 4.3: Common-Source Amplifier

4.3 Neural Network Training and Architecture

Following training data collection, the next step in building a surrogate model is training a

neural network using the Structured Data Regressor model in AutoKeras [7]. When initializing an

AutoKeras model, there are parameters that can be set such as maximum number of trials, or number

of Keras models tested, loss function, number of epochs, and maximum number of parameters. These

values were all left to the default values which were 100 trials, a loss function of mean squared error,

1000 epochs, and the maximum number of parameters was left blank. Training the AutoKeras model

consists of a neural architecture search that attempts to find the optimal architecture, or architecture

that most minimizes the loss function, given training data. After training, the best model found is

exported for future use. As this exhaustive search is time consuming, this process is only conducted

once for creating new surrogate models. In addition to of saving the parameters of the best neural

network found, AutoKeras also saves the number, type, and size of layers, activation function, the

optimizer used, learning rate, if dropout was used, etc. In the case of creating a new surrogate

model of a similar complexity to one that has already been trained, it was found that using the
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Layer (Type) Output Shape Parameters

Input (None, 32) 224
Dense (None, 32) 224
Dense (None, 32) 1056
Dense (None, 6) 198

Total Parameters 1478

Table 4.1: Component Neural Network Architecture

Layer (Type) Output Shape Parameters

Input (None, 2) 0
Dense (None, 64) 192
Dense (None, 2) 130

Total Parameters 322

Table 4.2: Circuit Neural Network Architecture

same architecture was successful. For example, if there was a need to create a surrogate model for

a different BJT or a common-emitter amplifier circuit with different passive element values, all that

would need to be done is train a network of the same size, activation function, optimizer, and learning

rate that was used in the best model found. This process was done for both the components and

circuits in this work. The architecture that best modeled the Gummel-Poon BJT was used to train

the surrogate model for the Philips MOS9 MOSFET and the architecture found to best model the

common-emitter amplifier was used to train the surrogate model for the common-source amplifier.

For this work, Tensorflow was used to train the surrogate models once the architecture was known [1].

The architecture used for the components and circuits can be seen in Tables 4.1 and 4.2, respectively.

Additionally, the Adam optimizer and a learning rate of 0.001 was used for the training of all neural

networks. Lastly, a simple script was written to extract the weights and biases from each layer and

save them to a .txt file for future implementation of the surrogate models in fREEDA.

4.4 Surrogate Model Implementation

4.4.1 Component Implementation

Once a sufficiently good neural network is found, it is ready to be implemented in fREEDA

in place of the physic-based equations. For components, the surrogate model was implemented

alongside the physics-based equations in the element’s eval routine with a user set flag deciding which

15
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Figure 4.4: Implementation Process

method to be used for calculations. The weights and biases of the neural network are flattened and

saved to an element specific .txt file. These weights and biases are then read in during the init routine,

which is only called once at the beginning analysis, and are saved to 1-D vectors corresponding to its

respective layer in the neural network architecture. Then at each time step, the input is normalized

based on the training data by (see Figure 4.4):

inputi,normalized = inputi
max(abs(inputi,training)) .

Note that these maximum values used to normalize the input, and eventually inversely

normalize the output of the neural network, were hardcoded in fREEDA. Though in practice, these

values may not normalize the inputs and outputs of the neural network exactly between [−1, 1],

it will only be slightly above or below this range. This is sufficient as it will keep the inputs and

predicted outputs of the implemented surrogate model on a common scale relative to the training

data. Following this normalization, the inputs go through the neural network and a prediction is

made. Listing 4.1 is an example of a dense layer and the subsequent ReLU operation implementation

that resides in the eval routine of the component in fREEDA. As described in the Neural Network

Training and Architecture section, the implemented surrogate model is a fully connected neural
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network so the rest of the layers and operations are as shown in Listing 4.1. Once the output has

been predicted, it must be reversely normalized by:

outputj = max(abs(outputj,training))× outputj,normalized.

Lastly, these outputs are set to the effort (voltage) and flow (current) for the element at time step

n.

Listing 4.1: Dense Layer and ReLU in Surrogate Model Implementation

1 // Dense1

2 for (int i = 0; i < 6; i++) {

3 for (int j = 0; j < 32; j++) {

4 xdense1[j+k] = dense1weights[j+k]* xnorm[i];

5 xrelu1[j] += xdense1[j+k];

6 }

7 k += 32;

8 }

9

10 for (int i = 0; i < 32; i++) {

11 xrelu1[i] += dense1biases[i];

12 }

13

14 //Relu1

15 for (int i = 0; i < 32; i++) {

16 if (xrelu1[i] < 0) {

17 xrelu1[i] = 0;

18 }

19 }

4.4.2 Circuit Implementation

A NPort element is used to house the surrogate model for circuits in fREEDA. A user can

define the number of input and output terminals of the NPort in the netlist of the circuit to be

simulated. In this work, the circuits tested were the common-emitter amplifier and the common-

source amplifier. For both, the NPort had two input terminals (connected to Vsource) and two output

terminals (connected to Rload) (see Figure 4.5).

So the netlist for the common-emitter amplifier and common-source amplifier contained
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Figure 4.5: Circuit Implementation

three total elements: the voltage source, the NPort element, and the load (in this work just a

single resistor). The neural network was implemented similarly to how it was done for individual

components. The weights and biases of the neural network were read in and saved during the init

routine of the NPort element and then the process shown in Figure 4.4 is completed at each time

step.
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Chapter 5

Results

The two measurements of interest for the surrogate models created are the accuracy and

speedup compared to physics-based equations. This chapter covers both the metrics used and the

results that gauged the validity of these models.

5.1 Surrogate Model Accuracy

5.1.1 Components

As discussed in the Research Design and Methods chapter, training data was collected

exclusively from LTspice simulations. Therefore, the fidelity of the surrogate models were compared

to the traditional physics-based equations in LTspice and not in fREEDA. The BJT and MOSFET

components modeled both had six outputs (three voltage and three current values). A plot of the

surrogate model’s estimate versus ground truth can be seen in Figures 5.1 and 5.2 for the BJT

and MOSFET, respectively. The greatest error in prediction tended to occur near the beginning

of simulation, during the transient response; however, once steady state was reached the surrogate

models were highly accurate. To quantify the accuracy of the models, the metric RMSE (root mean

squared error) was used. RMSE is defined as:

RMSE =
√

1
n

∑n
i=1(ŷi − yi)2

where n is the number of samples, ŷi is the neural network prediction at sample i, and yi is the

ground truth at sample i. The scikit-learn package was used for this calculation [11]. The resulting
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Output RMSE

Vcjs 3.1 [mV ]

Vbjs 2.0 [mV ]

Vejs 1.3 [mV ]

Ic 87.4 [µA]

Ib 170.1 [µA]

Ie 3.0 [µA]

Table 5.1: RMSE of BJT Output Variables

RMSE of the BJT and MOSFET components can be seen in Tables 5.1 and 5.2, respectively. For

all runs, the RMSE of the voltage values was always orders in magnitude larger than the RMSE for

the current values, which is in part explained by the actual value of the voltage and current; the

voltage values were on the order of volts whereas the current values were on the order of milliamps

or microamps. It can be observed in general, using information from both the plots and tables that

describe the surrogate model of components, that the models created were of high accuracy and

would be suitable as replacements to the traditional physics-based models in simulation.
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Figure 5.1: BJT Output Variables

Figure 5.2: MOSFET Output Variables
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Output RMSE

Vdb 4.1 [mV ]

Vgb 1.1 [mV ]

Vsb 12.5 [mV ]

Id 6.0 [µA]

Ig 4.1 [nA]

Is 4.9 [µA]

Table 5.2: RMSE of MOSFET Output Variables

5.1.2 Circuits

The two circuits in this work that were replaced with surrogate models and tested were the

common-emitter amplifier and the common-source amplifier. Similarly to testing the accuracy of

the components, the surrogate models of the circuits were compared to data from LTspice using

RMSE as the quantifying metric. The outputs for both circuits were vout and iout, where vout is the

voltage across the load and iout is the current flowing through the load. Using Figures 4.2 and 4.3

as reference, the specific parameters of the common-emitter and common-source amplifier circuits

used in the results section were as follows:

R1 = 24 kΩ, R2 = 2 kΩ, Rc = 9.4 kΩ, Re = 470 Ω, Rload = 20 kΩ,

C1, C2 = 0.1 µF (Coupling Capacitors), Cs = 0.1 µF (Bypass Capacitor),

Vin (AC) = 100mV at 10kHz, Vcc (DC) = 12 V

for the common-emitter amplifier and

R1 = 200 kΩ, R2 = 100 kΩ, Rd = 960 kΩ, Rs = 470 Ω, Rload = 50 kΩ,

C1, C2 = 0.1 µF (Coupling Capacitors), Cs = 6 µF (Bypass Capacitor),

Vin (AC) = 100mV at 1kHz, Vdd (DC) = 18 V
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Output RMSE

iout 10.9 [µA]

vout 0.2 [V ]

Table 5.3: RMSE of Common-Emitter Amplifier Outputs

Output RMSE

iout 647.3 [nA]

vout 25.9 [mV ]

Table 5.4: RMSE of Common-Source Amplifier Outputs

for the common-source amplifier.

Plots showing the input and output voltages of the amplifier circuits can be seen in Figures

5.3 and 5.4. Note that the plots of the input voltage is in millivolts whereas the output voltage plots

are in volts. It is clear from these plots that the surrogate model is able to accurately predict vout,

in particular once steady-state is reached. It is worth noting that the reason behind the predictions

not being at fixed time distances apart and more clumped together in certain regions (the peaks

and troughs) is the adaptive time step that the simulator in LTspice uses. RMSE was also used to

verify the accuracy of the surrogate models of the circuits, and was implemented as described in the

components section. Tables 5.3 and 5.4 show the resulting RMSE for the common-emitter amplifier

and common-source amplifier, respectively. Similarly to the component surrogate models, it should

be noted vout is of order volts and iout is of order microamps, which in part explains the multiple

orders of magnitude difference in RMSE values.

23



Figure 5.3: Common-Emitter Amplifier Input and Output Voltage

Figure 5.4: Common-Source Amplifier Input and Output Voltage
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5.2 Surrogate Model Speedup

5.2.1 Components

The relative speedup of the surrogate models was compared to the traditional methods of

circuit analysis in fREEDA. To measure the time difference between the physics-based equations and

the surrogate model, the C library time.h was used. This measurement took place in the eval routine

of the component, which is called at each time step of analysis. For the physics-based equations, the

timer started at the first equation and ended when the outputs were saved. For the surrogate model,

the timer started at the normalization of the inputs and ended with the outputs being saved. Note

that this time difference does not include the reading and saving of the parameters of the neural

network but this is only done once, during the init routine of the element. Further, the process of

reading and saving the parameters only occurs once, even if there are multiples of the element in the

circuit, i.e. if the circuit being analyzed had tens of transistors that were being simulated by surrogate

models. The Average Run Time was the average time to complete the physics-based equations and

surrogate model over a few different runs, rounded to the nearest microsecond. Speedup was simply

calculated as

Speedup =
TimePhysics

TimeNN
.

Results for the two components tested can be seen in Tables 5.5 and 5.6. As the same size

neural networks were used for both the surrogate model of the BJT and MOSFET, it follows that

the average run time for their respective eval routine are the same. The reasoning for the difference

in run time of the representative physics-based equations for the Gummel-Poon BJT and Philips

MOS9 MOSFET models is simply the complexity of the models. In the fREEDA implementation of

these models, the Gummel-Poon model has 50 parameters and the eval routine is 141 lines whereas

the Philips MOS9 model has 125 parameters and the eval routine is 550 lines. As there are multiple

transistor models that are more complex than either used here, one would see an even greater

speedup as the complexity of the physics-based equations used to model the component increased.
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Average Run Time Speedup

fREEDA Physics-Based Equations 40 [µs] -

NN Surrogate Model 8 [µs] Average: 5x, Max: 10x

Table 5.5: Gummel-Poon NPN BJT Timing

Average Run Time Speedup

fREEDA Physics-Based Equations 146 [µs] -

NN Surrogate Model 8 [µs] Average: 18x, Max: 30x

Table 5.6: Philips MOS9 N-Channel MOSFET Timing

5.2.2 Circuits

The time difference between circuits and their respective surrogate models was measured

in the code for analysis, in this case transient analysis. There is a main time loop in this transient

analysis code that runs number of time steps times. It is in this loop where the timer was placed,

starting at the top of the loop and ending at the bottom of the loop. Tables 5.7 and 5.8 show

the resulting speedup of the surrogate models of the common-emitter amplifier and common-source

amplifier, respectively.
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Average Run Time Speedup

fREEDA Physics-Based Equations 320 [µs] -

NN Surrogate Model 113 [µs] Average: 3x, Max: 5x

Table 5.7: Common-Emitter Amplifier Timing

Average Run Time Speedup

fREEDA Physics-Based Equations 388 [µs] -

NN Surrogate Model 113 [µs] Average: 3x, Max: 7x

Table 5.8: Common-Source Amplifier Timing

Average Run Time and Speedup were calculated as described in the components section.

The speedup measurement for the circuit surrogate models was not a direct time comparison between

the time it takes the neural network to make a prediction and the physics-based equations, as was

the case with the individual components. The run time measured included everything that had to

be done by fREEDA at each time step including updating the effort and flow values at each terminal,

the NOX solver [9], and saving any user-defined values. Because of this, the speedup shown in Tables

5.7 and 5.8 is not as large as the individual components.
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Chapter 6

Conclusions and Discussion

6.1 Conclusion

This work presents an easy-to-use workflow for creating high-fidelity surrogate models of

nonlinear components and circuits. It covers in detail the entire process of creating a surrogate

model of either a component or circuit in LTspice and how to implement the surrogate model in

fREEDA. The purpose is to decrease the amount of time it takes to complete transient analysis

compared to traditional physics-based equations. Also, by using a surrogate model of a circuit,

the model can be distributed for use in testing while preserving the intellectual property of the

underlying circuit. The components and circuits tested in this work include the NPN BJT, the N-

Channel MOSFET, the common-emitter amplifier, and the common-source amplifier. It was shown

that that the surrogate models for all the examples speedup the process of transient analysis while

maintaining a high accuracy.

6.2 Future Work

There are multiple avenues that could be investigated to further this work. The first step

would be to create a library of surrogate models of popular elements and circuits in fREEDA. For

example, as it currently stands, if a user wanted to test a different transistor in surrogate model of

a common-emitter amplifier, they would need to repeat the whole process to create an entirely new

surrogate model. If this varied library is constructed, surrogate models would be more likely used
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by fREEDA users.

Secondly, it would be of value to model more complex element models such as the HICUM

Level 2 BJT Model. Even if the surrogate model is highly accurate, it is still adding another

level of abstraction from the hardware itself. The more accurate the physics-based equations are

in modeling the hardware, the more accurate the surrogate models will be, with respect to true

hardware implementation. Additionally, as the complexity of the element models increase, so does

the time to evaluate the physics-based equations. It stands to reason that surrogate models of the

more complex element models could achieve an even greater speedup compared to this work, and

would be worthwhile investigating further.

Lastly, there are some parts of the current codebase that could be automated to simplify

the process for the user.
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Appendix A Code Listings

Listing 1: Diode Element in fREEDA

1 #include <freeda/elements/Nonlinear/Diode.h>

2 #include <freeda_core/constants.h>

3

4 // Static members

5 const unsigned Diode::n_par = 20;

6

7 // Element information

8 ItemInfo Diode :: einfo =

9 {

10 "diode",

11 "Microwave diode",

12 "Carlos E. Christoffersen",

13 DEFAULT_ADDRESS"category:diode",

14 "2000 _06_15"

15 };

16

17 // Parameter information

18 ParmInfo Diode :: pinfo[] =

19 {

20 {"js", "Saturation current (A)", TR_DOUBLE , false},

21 {"alfa", "Slope factor of conduction current (1/V)", TR_DOUBLE , false},

22 {"jb", "Breakdown saturation current (A)", TR_DOUBLE , false},

23 {"vb", "Breakdown voltage (V)", TR_DOUBLE , false},

24 {"e", "Power -law parameter of breakdown current", TR_DOUBLE , false},

25 {"ct0", "Zero -bias depletion capacitance (F)", TR_DOUBLE , false},

26 {"fi", "Built -in barrier potential (V)", TR_DOUBLE , false},

27 {"gama", "Capacitance power -law parameter", TR_DOUBLE , false},

28 {"cd0", "Zero -bias diffusion capacitance (F)", TR_DOUBLE , false},

29 {"afac", "Slope factor of diffusion capacitance (1/V)", TR_DOUBLE , false},

30 {"r0", "Bias -dependent part of series resistance in forward -bias (Ohms)",

TR_DOUBLE , false},

31 {"t", "Intrinsic time constant of depletion layer (s)", TR_DOUBLE , false},

32 {"area", "Area multiplier", TR_DOUBLE , false},

33 {"imax", "Maximum forward and reverse current (A)", TR_DOUBLE , false},

34 {"eg", "Barrier height at 0 K (eV)", TR_DOUBLE , false},

35 {"m", "Grading coefficient", TR_DOUBLE , false},

36 {"aro", "r0 linear temperature coefficient (1/K)", TR_DOUBLE , false},

37 {"bro", "r0 quadratic temperature coefficient (1/K^2)", TR_DOUBLE , false},

38 {"afag", "Temperature -related coefficient", TR_DOUBLE , false},

39 {"xti", "Js temperature exponent", TR_DOUBLE , false}

40 };

41

42

43 Diode::Diode(const string & iname) : ADInterface (&einfo , pinfo , n_par , iname)

44 {

45 // Set default parameter values

46 paramvalue [0] = &(js = 1e-16);

47 paramvalue [1] = &(alfa = 38.696);

48 paramvalue [2] = &(jb = 1e-5);

49 paramvalue [3] = &(vb = -1e20);

50 paramvalue [4] = &(e = 10.);

51 paramvalue [5] = &(ct0 = freeda :: Constants ::zero);

52 paramvalue [6] = &(fi = .8);

53 paramvalue [7] = &(gama = .5);

54 paramvalue [8] = &(cd0 = freeda :: Constants ::zero);

55 paramvalue [9] = &(afac = 38.696);

56 paramvalue [10] = &(r0 = freeda :: Constants ::zero);

57 paramvalue [11] = &(t = freeda :: Constants ::zero);

58 paramvalue [12] = &(area = freeda :: Constants ::one);

59 paramvalue [13] = &(imax = freeda :: Constants ::zero);
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60 paramvalue [14] = &(eg = .8);

61 paramvalue [15] = &(m = .5);

62 paramvalue [16] = &(aro = freeda :: Constants ::zero);

63 paramvalue [17] = &(bro = freeda :: Constants ::zero);

64 paramvalue [18] = &(afag = freeda :: Constants ::one);

65 paramvalue [19] = &(xti = 2.);

66

67 // Set the number of terminals

68 setNumTerms (2);

69

70 // Set flags

71 setFlags(NONLINEAR | ONE_REF | TR_TIME_DOMAIN);

72

73 // Set number of states

74 setNumberOfStates (1);

75 }

76

77 void Diode::init() throw(string &)

78 {

79 v1 = log(5e8 / alfa) / alfa; // normal is .5e9

80 k1 = ct0 / pow(.2, gama);

81 k2 = fi * .8;

82 k3 = exp(alfa * v1);

83 k4 = - ct0 * fi / (freeda :: Constants ::one - gama);

84 k5 = k4 * (.2 * k1 / ct0 - freeda :: Constants ::one);

85 k6 = cd0 / afac;

86

87 // initialize automatic differentiation

88 DenseIntVector var (1);

89 initializeAD(var , var);

90 }

91

92 void Diode::eval(AD * x, AD * effort , AD * flow)

93 {

94 // x[0]: state variable

95 // x[1]: time derivative of x[0]

96

97 AD vj , dvj_dx , cj , rs, itmp;

98

99 if (v1 > x[0])

100 {

101 vj = x[0] + freeda :: Constants ::zero;

102 dvj_dx = freeda :: Constants ::one;

103 }

104 else

105 {

106 vj = v1 + log(freeda :: Constants ::one + alfa * (x[0] - v1)) / alfa;

107 dvj_dx = freeda :: Constants ::one / (freeda :: Constants ::one + alfa * (x[0] - v1

));

108 }

109

110 // Calculate the junction capacitance (experimental)

111 // Use a modified function with continous first and second deriv.

112 cj = freeda :: Constants ::zero;

113 if (isSet (5)) // if parameter 5 "ct0" is set

114 {

115 AD exp1 = exp (10. * (vj - k2));

116 const double k14 = ct0 * gama / fi;

117 const double k15 = k4 * (gama - freeda :: Constants ::one) / fi;

118 if (vj < freeda :: Constants ::zero)

119 {

120 cj = ct0 / pow(freeda :: Constants ::one - vj / fi , gama);

121 }

122 else

34



123 cj = (ct0 + vj * (k14 + k15 * vj)) / (freeda :: Constants ::one + exp1) +

124 k1 * exp1 / (freeda :: Constants ::one + exp1);

125 }

126

127 // add depletion capacitance

128 if (isSet (8)) // is parameter 8 "cd0" is set

129 {

130 cj += cd0 * exp(afac * vj);

131 }

132

133 // Now calculate the current through the capacitor.

134 // Using the chain rule:

135 // dq/dt = cj(vj) * dvj/dx * dx/dt

136 // x[1] is dx/dt

137 flow [0] = cj * dvj_dx * x[1];

138

139 // Now use the state variable again to calculate the total

140 // current. This way , we save some exp() calls. The total

141 // current is the current through the capacitor plus the ideal

142 // diode current.

143 if (v1 > x[0])

144 {

145 itmp = js * (exp(alfa * x[0]) - freeda :: Constants ::one);

146 }

147 else

148 {

149 itmp = js * k3 * (freeda :: Constants ::one + alfa * (x[0] - v1)) - js;

150 }

151 flow [0] += itmp;

152

153 // subtract the breakdown current

154 if (vj - vb > freeda :: Constants ::one)

155 {

156 itmp = freeda :: Constants ::zero;

157 }

158 else

159 {

160 itmp = jb * pow(freeda :: Constants ::one + vb - vj , e);

161 }

162 flow [0] -= itmp;

163

164 // Calculate Rs

165 if (cj != freeda :: Constants ::zero)

166 {

167 if (t / cj > r0)

168 {

169 rs = freeda :: Constants ::zero;

170 }

171 else

172 {

173 rs = r0 - t / cj;

174 }

175 }

176 else

177 {

178 rs = r0;

179 }

180

181 effort [0] = vj + flow [0] * rs;

182

183 // scale the current according to area. All the calculations were made

184 // for a unit area diode.

185 flow [0] *= area;

186 }
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Listing 2: fREEDA Netlist for Half-Wave Rectifier

1 <netlist >

2

3 <!-- This is a comment -->

4

5 <element name="vsource">

6 <terminals > 1 0 </terminals >

7 <instance > v1 </instance >

8 <parameter name="vdc"> 1 </parameter >

9 <parameter name="vac"> 1 </parameter >

10 <parameter name="frequency"> 1e6 </parameter >

11 </element >

12

13 <element name="resistor">

14 <terminals > 2 0 </terminals >

15 <instance > r1 </instance >

16 <parameter name="res"> 2.2e3 </parameter >

17 </element >

18

19 <element name="diode">

20 <instance > d1 </instance >

21 <terminals > 1 2 </terminals >

22 <parameter name="charge"> 0 </parameter >

23 </element >

24

25 <analysis name="SVTran2">

26 <parameter name="tstep"> delta_t </parameter >

27 <parameter name="tstop"> 1e-5 </parameter >

28 <parameter name="deriv"> deriv_type </parameter >

29 </analysis >

30

31 <output >

32 <effort >

33 <label> v2 </label>

34 <terminal > 2 </terminal >

35 <domain > time </domain >

36 <filename > vdiode.dat </filename >

37 <stream > false </stream >

38 </effort >

39 <effort >

40 <label> v1 </label>

41 <terminal > 1 </terminal >

42 <domain > time </domain >

43 <filename > vinput.dat </filename >

44 <stream > false </stream >

45 </effort >

46 <flow>

47 <label> idiode </label>

48 <element > diode </element >

49 <instance > d1 </instance >

50 <terminal > 0 </terminal >

51 <domain > time </domain >

52 <filename > diode_current.dat </filename >

53 <stream > false </stream >

54 </flow>

55 <flow>

56 <label> ivsrc </label>

57 <element > vsource </element >

58 <instance > v1 </instance >

59 <terminal > 1 </terminal >

60 <domain > time </domain >

61 <filename > vsource_current.dat </filename >

62 <stream > false </stream >

63 </flow>
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64 </output >

65

66 <options >

67 <parameter name="delta_t"> 1e-8 </parameter >

68 <parameter name="deriv_type"> 1 </parameter >

69 </options >

70

71 </netlist >
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