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Abstract

This is a report on the Lovells Springs challenge that was brought
to the Mathematics in Industry Study Group at the University of
Newcastle, Australia, in January 2020. The design of a furnace that
heats steel rods to make them malleable and allow the reshaping of
the rods into coiled springs is the challenge. Mathematical modelling
of heat transport in the half-metre long furnace vestibule predicts the
effect of vestibule geometry on the temperature of rods entering the
furnace, and provides guidelines for deciding on the dimensions of the
vestibule for improved energy efficiency of heating. Models considered
include treating the rods as equivalent steel sheets, and as discrete steel
rods. The relative importance of radiative and convective heat transfer

doi:10.21914/anziamj.v62.16642, c© Austral. Mathematical Soc. 2023. Published 2023-
02-28, as part of the Proceedings of the 2020 Mathematics and Statistics in Industry Study
Group. issn 1445-8810. (Print two pages per sheet of paper.) Copies of this article must not
be made otherwise available on the internet; instead link directly to the doi for this article.

https://doi.org/10.21914/anziamj.v62.16642


Contents M113

mechanisms is considered. A longer vestibule, with length one or two
metres, is recommended for improved heating efficiency of rods thicker
than 25mm.
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1 Introduction

This is a report on the challenge brought to the 2020 Mathematics in Industry
Study Group by Simon Crane, Lovells Springs, at the University of Newcastle
in Australia.
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Lovells is a world leader and a world specialist in the manufacture of suspension
coils. During the manufacturing process steel rods of a circular cross section
must be heated to temperatures in excess of 800 ◦C so they become malleable
for machines to twist into coils. Currently the heating of these rods takes
place in a large furnace. The heat source is a fireball of burning natural
gas and compressed air injected into the furnace. Temperatures in the main
chamber exceed 1000 ◦C. Lovells is planning the construction of a new furnace
and require a mathematical model that demonstrates the key factors to
reduce heat loss and improve the overall furnace efficiency. In particular,
Lovells seek insight into possible ways of better utilising hot waste gases to
heat rods in the vestibule (the entry section of the furnace) prior to firing
in the main chamber.

The spacing between rods, and the length of the vestibule leading to the
furnace, are key parameters. While the original problem statement includes a
model of the whole system of furnace and vestibule, the industry representative
later asked the group to focus on the thermal processes in the vestibule.

The following describes the set-up for the furnaces presently used by Lovells,
which are used for the modelling as a basis for suggesting changes that should
improve energy efficiency. With reference to the sketch of a typical furnace in
Figure 1, ambient temperature steel bars enter the furnace from the right via
a 0.5m long vestibule. The existing furnaces are 2–8m long (in a direction
perpendicular to the page in the sketch), and are essentially a box with
insulating walls and a floor that is scalloped to hold the rods. Rods are
advanced through the furnace by a conveyor mechanism that periodically
shifts (walks) them, all together, through the vestibule and the furnace. The
total time that each rod spends in the furnace is set by the operator, and
varies from seven minutes to one hour, with the longer times chosen for thicker
rods with diameters up to 57mm, and the shorter times for thinner rods down
to 16mm diameter.

In the remainder of this report, we build a collection of models of increasing
sophistication describing the heating of the rods, with a particular focus on
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Figure 1: Schematic of furnace in section view with flames heating the larger
compartment to 1100◦C, steel rods entering via the vestibule from the right,
and exiting after heating on the left.
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what happens in the entry vestibule of a furnace. In Section 2 a simplified
geometry is adopted with rods approximated as sheets of steel, and with
heating driven by gas advection only. We then derive analytic solutions in
the case of constant material properties. Cases where material properties are
allowed to vary with temperature are solved numerically. Section 3 derives
and analyses expressions for radiative heat transfer based on the geometry
of the furnace system. The heating model is then extended in Section 4 to
include discrete rods of finite width. Quasi-steady numerical solutions account
for both radiative heat transfer and the stop-start motion of the rods. Lastly,
Section 5 extends to a model that also includes the heating effects and gas
loss at the base of the furnace.

2 Advective heat transport

In this model we adopt a simplified geometry where we have a vestibule of
height H and length L. The vertical direction is divided into a gas region of
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height `g, and a steel sheet of thickness `s that moves through the furnace
at the same speed as the rods, so that H = `g + `s. We assume here that
the velocity of gas advection vg is of sufficient magnitude that advection
dominates the transport of thermal energy, and other mechanisms (such as
radiation) are ignored in this simple first approach to modelling the vestibule.
The steel is conceptualised in this preliminary model as an equivalent steel
slab. Since the steel is not in reality a slab but a series of rods, we neglect the
effects of thermal energy transport in the steel due to diffusion within the steel.
The steel advances towards the furnace at an externally imposed velocity
of vs. The transport of thermal energy from the hotter gas to the cooler
steel is modelled with a Newton heating/cooling term where the coefficient
of heat transfer is denoted by h. The principal material properties of the
gas and the steel needed to account for the transport of thermal energy are
the densities ρ and specific heats c, to which we apply the subscript g or s
to denote gas or steel.

Heat, gas, and steel motion are considered to take place in one space and
one time dimension, so that Tg(x, t) and Ts(x, t). The origin is positioned at
the junction between furnace and vestibule, with x increasing towards the
cold end of the vestibule. Advection is assumed to be more important than
diffusion for heat transport in the x-direction, and the heat exchange between
gas and steel is taken to be such that

∂Tg

∂t
= −vg

∂Tg

∂x
−

h

ρgcg`g
(Tg − Ts), (1a)

∂Ts

∂t
= −vs

∂Ts

∂x
+

h

ρscs`s
(Tg − Ts), (1b)

together with the boundary values Tg|x=0 = Tfce and Ts|x=L = Tamb, where Tfce

and Tamb are the temperatures inside and outside of the furnace, respectively.
Tables 1 and 2 list nomenclature, units, and typical values for physical
constants.

Now considering the steady-state, Tg(x, t) = Tg(x) and Ts(x, t) = Ts(x),
equations (1a) and (1b) become the system of ordinary differential equations
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Table 1: Nomenclature where the subscript j ∈ {g, s, b} denotes gas, steel and
base (floor of vestibule) material, respectively

Symbol Name Units
cj Specific heat of j J kg−1K−1

h Heat transfer coefficient J s−1m−2.K−1

k Thermal conductivity Wm−1K−1

t Time dimension s
Tj Temperature of j K
vj Velocity of j ms−1
x, y, z Spatial dimensions m
ε Emissivity dimensionless
κ Thermal diffusivity m2/s
µ Dynamic viscosity Pa s
ρj Density of j kgm−3

Table 2: Table of constants used in models
Symbol Name Value Units
cg Specific heat of gas 0.6 kgm−3

cs Specific heat of steel 8000 kgm−3

H vestibule height 0.1 m
`j length scale for material j `s = 0.01 m
L vestibule length 0.5 m
Nu Nusselt number 64 dimensionless
Pg Pressure of gas 105 Pa
R Ideal gas constant 8.314 Jmol−1K−1

ρg Density of gas (water vapour) 0.6 kgm−3

ρs Density of steel 7854 kgm−3

σ Stefan–Boltzmann constant 5.670 · 10−8 Wm−2K−4
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(odes)

vgρgcg`gT
′
g + h(Tg − Ts) = 0 , (2a)

vsρscs`sT
′
s − h(Tg − Ts) = 0 , (2b)

where primes denote differentiation with respect to x. We denote αg =
vgρgcg`g, and αs = vsρscs`s, to give the odes

αgT
′
g + h(Tg − Ts) = 0 , (3a)

αsT
′
s − h(Tg − Ts) = 0 . (3b)

2.1 Analytic solutions

Adding equations (3a) and (3b) gives αgT
′
g +αsT

′
s = 0 , which (provided the αj

coefficients are constant) is immediately integrated to yield αgTg + αsTs =
(αg + αs)C1 , for some constant of integration C1. Solving this for the
temperature in the steel gives Ts = 1

αs
[(αg + αs)C1 − αgTg]. Substituting

this into equation (3a) leads to αgT
′
g +β

{
Tg −

1
αs

[(αg + αs)C1 − αgTg]
}
= 0 ,

which is now a single ode for Tg(x). Simplifying this ode we write it as
T ′g + γ(Tg − C1) = 0 , where γ = h(αg + αs)/(αgαs). This final ode is a
first-order variables separable equation with the general solution

Tg = C1 + C2e
−γx, and then Ts = C1 − C2

αg

αs
e−γx

is therefore the corresponding solution for the temperature in the steel. Now
consider the boundary conditions: Tg|x=0 = Tfce determines Tfce = C1 + C2 ;
and Ts|x=L = Tamb yields Tamb = C1 − C2

αg
αs
e−γL. This linear system of two

equations in two unknowns determines

C1 = Tfce −
Tfce − Tamb

1+
αg
αs
e−γL

, C2 =
Tfce − Tamb

1+
αg
αs
e−γL

.
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This provides an approximate analytic solution to the problem being modelled
under the further assumption that all the material properties remain constant
for the range of temperature under consideration. Figure 2 graphs these
solutions when vg = 0.25m/s. Also see Figures 3 and 4 for further illustrations
of the implications of the analytic solution for temperatures of the gas and
steel where they exit the vestibule, and how those temperatures are affected
by velocities and vestibule geometry.

The next subsection has further extensions to the model where the assumption
of constant material properties is not made. In particular we replace the heat
transfer coefficient h with a quadratic function of the gas temperature Tg

and we replace the specific heat of the steel cs with a linear function of the
steel temperature Ts. We then compute numerical solutions to equations (3a)
and (3b) with non-constant properties and heat transfer coefficient. With these
extensions, solutions are explored using numerical schemes. The analytical
solution presented above provides an initial ‘guess’ which is very useful for
numerical schemes that solve boundary value problems like this one.

2.2 Numerical simulations

We now extend the previous subsection by accounting for variable properties
of steel and gas. First we note a conservation result that applies for both
constant and non-constant material properties.

Conservation of mass in the steady state for the gas implies that if the
vestibule has constant cross-section area A, then the product ρg(Tg)vg(Tg) is
a constant. This follows because the steady-state assumption implies that
mass flux of exhaust gas per unit time along the vestibule is constant. Gas
mass is m = ρgV , where V denotes gas volume. Then conservation of mass
says that for an arbitrary region in the vestibule and over some arbitrary
time interval, the mass of gas flowing in must match the mass of gas flowing
out, since otherwise the amount of gas in that region would be changing with
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Figure 2: Solutions to the steady-state sheet steel vestibule model with no
radiative transport. Temperatures (versus distance from the furnace along the
vestibule) from analytic solutions for constant coefficients in Section 2.1 are
compared with temperatures from numerical solutions to the boundary-value
problem for non-constant coefficients in Section 2.2. Gas velocity is 0.25m/s.
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Figure 3: Numerical results for the steady-state model with no radiation,
showing the gas temperature at x = L where it exits the vestibule (solid
blue line), and steel temperature at x = 0 where it enters the furnace from
the vestibule (dashed red line), versus vestibule height H, steel thickness or
height `s, gas velocity at x = 0, and steel velocity.
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Figure 4: Numerical
results for the steady-
state model with no
radiation, showing
the gas temperature
at x = L where it
exits the vestibule
(solid blue line), and
steel temperature at
x = 0 where it enters
the furnace from the
vestibule (dashed red
line), versus vestibule
length L.
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time. It follows that

ρinvinA = ρoutvoutA , or ρinvin = ρoutvout ,

where v is gas velocity and ρ is gas density.

So the product ρgvg is constant for exhaust gases, along the vestibule, despite
the dramatic changes in gas temperature expected. The industry representa-
tive indicated that pressures in the exhaust region are close to atmospheric
pressure.

A similar result holds for the steel, although steel density changes are negligible
with temperature for heat transport purposes, unlike the exhaust gases. So
the result reduces to a constant steel velocity, which is a condition imposed
by the furnace setup.

The thermal conductivity of carbon dioxide is (Gupta and Saxena 1970)

kg(Tg) = 418.4 · 10−5
(
− 2.400+ 2.16 · 10−2Tg − 3.244 · 10−6T2g

)
.
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The thermal conductivity of steel is ks = mTs + c in Wm−1K−1 (Gupta and
Saxena 1970). This linear relationship is calibrated by two measurements
(Sweatman, Barry, and McGuinness 2012). We use m = −30/700 ≈ −0.043
and c = 60+ 30× (300/700) ≈ 73. Gas pressure is to a good approximation
always at atmospheric pressure, Pg = 105 Pa. The density of gas is taken
from that for carbon dioxide using the ideal gas law PV = nRT , giving
ρg = 44 × 10−3 × Pg/(RTg). The convective heat transfer coefficient is h,
and the Nusselt number definition provides h = Nukg/`g so h depends
on Tg through kg . The specific heat capacity of gas is here taken to be
cg = 1100 J kg−1K−1. The specific heat capacity of steel can be approximated
as cs = 500 J kg−1K−1, whereas a more accurate value depends on the
temperature of the steel, cs = 1.05Ts + 119. This was obtained by fitting to
values presented by Sweatman, Barry, and McGuinness (2012). For a gas
velocity of 1m s−1 at x = 0, we take the constant value for ρv to be 0.4071.
For steel, we take ρs(Ts)vs(Ts) = 78.54

The steady-state equations (2a) and (2b) are solved numerically for variable
coefficients with boundary conditions Tg = 1300K at x = 0, and Ts = 300K at
x = L. This can be done by using an initial-value differential equation solver
in Matlab like ode45, setting Tg = 1300K at x = 0, and shooting by hand
on the temperature in the steel at x = 0 until the desired value is obtained at
x = L. An alternative that is easier to code and that gives the same results is
to use a boundary value problem solver like bvp4c in Matlab. This solver
does the shooting automatically and successfully, provided a suitable guess
for the initial temperature profile is chosen.

We present results using the less accurate case that the coefficient of thermal
capacity for steel is assumed to be fixed at cs = 500 in Figure 2, for a gas
velocity of 0.25m/s. Figure 2 also plots results that use the more accurate
linear dependence of cs on temperature. We summarise the implications of
the results and figures in this section as follows.

• Whatever the gas velocity, a longer vestibule allows for more heat
transfer. Slower velocities require shorter vestibules to attain the same
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exit gas temperature. Hence, for faster gas velocity allow for a longer
vestibule.

• If trying to pre-heat the bars to a higher temperature in the vestibule,
then a faster-flowing gas in a long vestibule gives a better result. How-
ever, faster gas exits at higher temperatures than a slower gas.

• If trying to cool the gas by heat exchange, then a slow gas with a long
vestibule gives a better result. However, bars then enter the furnace at
cooler temperatures than for a faster gas.

• The more accurate model using cs(Ts) predicts lower steel tempera-
tures at the hot end of the vestibule, than does the model using the
approximate fixed value cs = 500 J kg−1K−1.

• Radiation from furnace to vestibule is not yet taken into account.

3 View aspect calculation

3.1 View factor for simplified geometries

This section derives an expression for the view factor for radiative heat
transfer to and from the steel in the thin slab model from Section 2.1. With
reference to Figure 5, we compute the view factor from Nusselt analogue,
where we centre an idealised sphere at a typical area element on the steel
surface ds, with a radius r = 1/(2

√
π), so that the total spherical area is one.

By assuming that the area element is located so that the furnace extends into
and out of the page to an extent that edge effects can be ignored, then the
integrals we need to compute are

θfce =
1

4π

∫φfce

0

∫π
−π

sin θ dθ dφ , θamb =
1

4π

∫φamb

0

∫π
−π

sin θ dθ dφ ,
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Figure 5: View factor for the simplified geometry based on the Nusselt
analogue. The area of the spherical shells are calculated from a idealised
sphere centred at ds with unit total area (i.e., radius r = 1/(2

√
π)).

H − ls

x L − x

ds

where φfce = tan−1 H−`s
x

, and φamb = tan−1 H−`s
L−x

. These integral expressions
are readily evaluated to give

θfce =
1

4

[
1−

x√
(H− `s)2 + x2

]
,

θamb =
1

4

[
1−

L− x√
(H− `s)2 + (L− x)2

]
.

In this geometrically simplified model we assume that the radiative term
affects the steel only which is made up of two components. Firstly there is
the positive heating term which accounts for the increase of thermal energy
resulting from interactions with the furnace, and secondly there is a loss of
thermal energy through interactions with the ambient environment outside
of the vestibule. The interactions with the vestibule roof and the ground is
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assumed to be in equilibrium and lead to no net change to the thermal energy
in the steel. Under these assumptions then we update the governing pde for
the temperature in the steel to read

∂Ts

∂t
= −vs

∂Ts

∂x
+

h

ρscs`s
(Tg − Ts)

+
εσ

ρscs`s

[
θfceT

4
fce + θambT

4
amb − (θfce + θamb)T

4
s

]
,

where ε is the emissivity of the steel and σ is the Stefan–Boltzmann constant.
For standard operation of the furnaces at Lovells, the term involving Tamb

can take values that are of the same order as the term involving Tfce near
the vestibule entrance, and so we include both terms in the numerical results
that follow.

3.2 View factor for more realistic geometries

In this section, we model radiative heat transfer between the rods in the
vestibule. To simplify the problem, we assume that the geometries involved
are two-dimensional and the rods are modelled as vertical slabs instead of
cylinders. The schematic is shown in Figure 6. Let n denote the index of the
position of the rod, with n = 0 corresponding to the rod at the boundary
between the furnace and the vestibule. Let w denote the width of the furnace,
and H denote the height of the vestibule. The rate at which radiative heat
energy is transferred from surface S1 to surface S2 is (Bird, Stewart, and
Lightfoot 2002, §16.4)

Q1→2 = σA1F1→2(T
4
1 − T42 ), (4)

where A1 is the area of surface 1, and F1→2 is the view factor (Bird, Stewart,
and Lightfoot 2002, §16.4), defined to be the fraction of radiation leaving
surface 1 that is directly intercepted by surface 2. It takes the value

F1→2 =
1

A1

∫
S1

∫
S2

cos θ1 cos θ2
πD2

dS1 dS2 .
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Figure 6: Schematic showing the dimensions of the rods and the furnace for
radiative heating. As a simplifying assumption, the rods are modelled as
slabs of length d, separated by a distance s.

z1

w

d
n = 0

s

z2
H

z ′
1

z ′′
1

:Φ1

:Φ2

Angles:

Here S1 denote the wall of the furnace, parametrized by the variable z1, and
S2 denotes the rod, parametrized by the variable z2. For an arbitrary point
in the rod, the angle θ1 represents the view angle made by the rod with the
wall. Since the rod and the wall are vertical, the view angle made by the wall
with the rod, θ2 = θ1. Then the cosine

cos θ1 =
w+ ns√

(w+ ns)2 + (z1 − d)2
≈ w+ ns√

(w+ ns)2 + z21
, (5)

where z1 is a point on the wall of the furnace. We assume that d� w+ ns
and hence the separation between the points on the furnace wall and the rod
is

D ≈
√

(w+ ns)2 + z21 . (6)
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Now to obtain the heat transfer rate (4), we need to specify the limits of
integration to calculate the integral. For a given point on the rod S2 at
height z2, we need to calculate the lowest and the highest points on the
wall S1 that are visible on the furnace, denoted by z′1 and z′′1, respectively.

From the geometry shown in Figure 6, the tangent tanΦ1 = d−z2
s

=
z′1−z2
w+ns

.
Rearranging the terms we obtain

z′1 =
w+ ns

s
(d− z2) + z2 . (7)

Similarly, we observe that tanΦ2 = H−z2
ns

=
z′′1−z2
w+ns

, and thus

z′′1 =
w+ ns

ns
(H− z2) + z2 . (8)

Since the area enclosed between the points z′1 and z′′1 is non-negative, we have
the condition z′′1 > z′1. Substituting the expressions derived in equations (7)
and (8) into this inequality condition, we obtain

z2 >
H− nd

1− n
= z2,min , n > 1 , (9)

which yields the domain of integration on the rod. Substituting the expres-
sions (5) and (6) and the limits of integration (7) to (9) onto the heat transfer
equation (4), we obtain

Q = σ(T41 − T42 )

∫d
max(z2,min, 0)

∫z′′1
z′1

(w+ ns)2

[(w+ ns)2 + z21]
2
dz1 dz2 . (10)

Figure 7 shows the rate of heat transfer and the temperature increase for
different dimensional parameters. Observe that the rate of radiative heat
transfer and the rate of temperature increase decreases with increasing distance
from the furnace. Second, observe that for s = 0.1m case, the heating rate
decreases faster than the s = 0.02m case and reaches a lower temperature
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than the former within the eighth rod, due to the increase in the separation
between the rods. Similar trends are observed in the temperature rate in
Figure 7(b). The thermal energy input (heating rate) shown in Figure 7(c)
shows heating rate as a function of the rod position for three different vestibule
heights. It is observed that the radiative heat transfer is proportional to the
vestibule height since more area of the vestibule is in contact with the furnace.
Moreover, the heating rate is significantly higher for the H = 0.3m case
than the H = 0.12m case near the furnace. This is due to more area being
available for radiative heat transfer for larger vestibule heights. However,
the rate quickly drops to a level comparable to the smaller values of H at
larger distances from the furnace and radiation becomes a significantly less
important mode of heat transfer.

4 Simulations for steel rods

This section discusses a more realistic model where the rods are modelled as
separate items, with finite width as illustrated in Figure 8. The top segments
carry gas, and every Kth bottom segment carries a rod (while the remaining
bottom segments do not affect the model). We assume that heat transfer
only occurs vertically, and that the segments are each the width of the rods
(i.e., we have N+ 1 segments in total, where N := L/ls).

Within a time window, we take the positions of the rods to be fixed, and so
the only processes are heat transfer into the rods and gas advection. Labelling
our segments as i = 0 at the furnace end of the vestibule and i = N at the
open end, we arrive at the following (dimensional) system of odes. For the
temperature of the gas in each segment, T0,g(t), . . . , Tg,N(t),

T0,g(t) = Tr, (11a)

ρgcg

(
dTi,g
dt

+ u
Ti,g − Ti−1,g

ls

)
=
h

lg
(Ti,s − Ti,g), i = 1, . . . ,N, (11b)
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Figure 7: (a) Heating rate (J/s)
and (b) the rate of temperature
increase (K/s) as a function of
rod position parameter n. The
red curves are for the parameters
H = 0.3, w = 3, d = 0.01, s =
0.02 and the blue curves are for
the parameters H = 0.3, w = 3,
d = 0.056, s = 0.1. (c) Heat-
ing rate (J/s) as a function of
rod position parameter n for for
vestibule heights 0.12 (squares),
0.2 (circles), and 0.3m (aster-
isks). The geometric parameters
are w = 3, d = 0.01, s = 0.02.
The temperature of the furnace is
T1 = 1000K and the bar temper-
ature is T2 = 300K in all cases.

(a) Heating rate

(b) Temperature rate

(c) Heating rate
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Figure 8: Diagram of discrete model with finite-width rods. The top segments
carry gas Tgi and the bottom segments carry solid Tsi , where here every third
segment has a rod.

i = 0 1 · · · N

Gas in Gas out

where we model advection using an upwinding finite difference approximation.
In the solid segments, temperatures T0,s(t), . . . , TN,s(t) governed by

ρscs
dTi,s
dt

=
h

ls
(Ti,g − Ti,s) +

σε

ls

[
θ(xi)T

4
fce − (Ti,s)

4
]
, (12a)

if i has a rod, and

Ti,s(t) = Ti,g(t), (12b)

otherwise. The view factor θ is evaluated at the location of the ith segment
xi := i∆x/N.

Incrementing time windows The system of odes (11)–(12) holds within
a given time window t ∈ [0, tw] during which the locations of the rods remain
fixed. When we move to a new time window, the initial gas temperature Ti,g(0)
is set as the final value Ti,g(tw) from the previous window, and the initial solid
temperature Ti,s(0) is set as the final value of Ti+1,s(tw) from the previous
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window (where the change in index i corresponds to the movement of the
rods), for i = 0, . . . ,N− 1. The last initial value for the next time window
is TN,s(0), which we take to be ambient temperature Tamb. In addition, we
relabel the rod indices i used to determine the case in (12) based on the new
positions of the rods (adding a new rod at i = N if necessary).

Quasi-steady state and example In the first time window, we use arbi-
trary initial conditions Ti,g(0) = Tfce and Ti,s(0) = Tamb for all i. As such, we
are not interested in its performance in the first windows, where we have rods
start part-way through the vestibule. We instead run the model for several
time windows until we reach a quasi-steady state.

The full behaviour of this model (over 60 time windows of length 30 seconds)
is shown in Figure 9, where we plot the gas and rod temperatures for every
fourth rod over time. We track the temperature of each rod, which is not the
same as Ti,s, as the rod locations i change between windows. We only plot
every fourth rod, thereby reducing temperature overlaps for clarity. Transient
effects from these arbitrary initial conditions are apparent during the first
10 minutes. After this time solutions are close to a quasi-steady state, in
which the rod temperatures increase gradually from atmospheric temperature
until they reach the end of the vestibule. The quasi-steady nature is visible
in the gas temperature, where we see periodic behaviour. This periodicity
corresponds to when each segment i has a rod (and so the gas transfers
heat to the rod) or is empty (so no heat transfer from the gas occurs). The
most important outputs from the model are not this full time evolution.
Since we are interested in the efficiency of the vestibule, the key quantities
of interest are the temperatures at which the gas leaves the vestibule (into
the atmosphere) and the rods enter the furnace. To see this behaviour, in
Figure 10 we plot the temperature of the gas (max/min/average over the
final five time windows) and rod temperature versus location in the vestibule.
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Figure 9: Evolution of gas and rod temperatures over time for the finite-width
rod discretised model. The furnace temperature is taken to be equal to 1000K.
We only plot every fourth value of i for clarity, removing plot overlaps. The
view factor θ(x) is such that the function θ(x)T4f = 0.4 e−5x.
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Figure 10: Gas and rod temperatures at each location in the vestibule for the
finite-width rod discretised model. The left-hand end (x = 0) is the furnace
and the right-hand end (x = 0.5) is the entrance to the vestibule.
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Numerical Results A nondimensional form of this model was solved
numerically for a variety of rod and vestibule parameters, to examine the
impact of vestibule design changes on heat efficiency of the furnace. Firstly,
Figure 11 plots the exit gas temperature for 20mm and 30mm rod diameters
(i.e. ls ∈ {0.02, 0.03}) as a function of vestibule length, L. We see that longer
vestibules tend to produce a lower gas exit temperature, and this relationship
is clearer for larger rod diameters. Figure 12 examines this relationship more
thoroughly. We see that longer vestibules are useful for lowering the exit gas
temperature, and that this improvement is most apparent with larger rods,
or when the rods are packed more tightly (e.g., every segment has a rod).
This is intuitive, as it maximises the opportunity for heat exchange in the
(limited) time it takes for the gas to advect to the exit of the vestibule. The
incremental benefit of increasing the length of the vestibule is lower as the
vestibule length increases. A vestibule length of 1–2m appears to provide a
suitable balance between efficiency and overall furnace length.

5 Heat transfer in the base

Previously, the models assumed some ideal conditions that may not be true
in practice. Specifically, they assumed:

• heat transfer to the refractory base of the vestibule can be ignored;

• all gas entering the vestibule from the furnace is transported through
the whole of the vestibule without any escape (leakage);

• gas enters the vestibule at the set temperature of the furnace (1050◦C).

Instead, it may be that the following applies.

• There is non-trivial heat transfer between the gas in the vestibule and
the refractory base material. This base provides the mechanism for
stepping forward the bars into the furnace, and it is not monolithic.
However, it is possible that heat can transfer to the base by



5 Heat transfer in the base M136

Figure 11: Gas exit temperature as a function of vestibule length for two
rod sizes (lower indicates greater furnace/vestibule efficiency). Rods were
positioned in every third segment.
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Figure 12: Gas exit temperature as a function of vestibule length in two
studies: varying the rod diameter (left) and the frequency of rods (right)
within segments (e.g., frequency 2 indicates every second segment i contains
a rod). In the second study, the diameter of the rods were fixed at 20mm.
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(a) convective heat transfer from the gas in the vestibule, via the
spaces between bars,

(b) radiative heat transfer from the flame in the furnace, and

(c) conductive and radiative heat transfer from contact with the (pre-
sumably very hot) base of the furnace itself.

Moreover, the bars are in contact with the base material, so there is
likely to be heat transfer between the base material and the rods.

• Because the vestibule base is not monolithic, there are likely to be
gaps between its different components through which gas can escape.
Also, there are definitely spaces at the (lateral) ends of the vestibule
in the existing furnaces, which would also allow gas flowing through
the vestibule to escape. These escape paths represent a loss of thermal
mass, restricting the amount of heat that can be used to pre-heat the
bars (and the base).

• There is some evidence, in the measured gas temperature data supplied
by Lovells, that the temperature in the furnace, in the vicinity of the
vestibule entrance, is less than the set temperature of the furnace. This
may not be surprising, considering that the combustion source may not
be uniform across the width of the furnace and that the vestibule is at
the lower part of the furnace.

Finally, the previous models appear to require high heat transfer coefficients
(≈ 100–1000Wm−2K−1) for heat transfer from gas to rods, while the expec-
tation from Nusselt number correlations is that the heat transfer coefficient
should be ≈ 1Wm−2K−1. The aim of this work is to develop a model that
incorporates heat transfer involving the base of the furnace/vestibule, gas
loss (leakage) in the vestibule, gas temperature variation in the furnace and
more realistic heat transfer coefficient (≈ 1–10Wm−2K−1) for heat transfer
from the gas.
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Figure 13: Schematic of the model geometry. The main difference from
previous models is the inclusion of heat transfer in the base, extension of heat
transfer into the furnace and gas leakage in the vestibule.
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5.1 Model formulation

The model considers heat transfer from gas to bars, from gas to the base,
radiation to bars and base, as well as heat transfer between base and bars.
Also, the model extends into the furnace, assuming that the base is monolithic
through both the vestibule and the furnace. Heat transfer is assumed to be
by conduction in the base. Overall, the geometry of this model now resembles
that in Figure 13.

The subsequent model has the following components. For the gas, conservation
of mass (continuity) equation, including a gas loss term proportional to the
mass flux of gas, gives

∂ (ρgu)

∂x
= −

qloss

`g
ρgu .
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This equation is time independent, based on an assumption that the transit
time for gas in the vestibule is a few seconds, compared to the transit time
for a bar (minutes) and the heat conduction time in the base (hours). Heat
conservation in the gas is

ρgcg

(
∂Tg

∂t
+ u

∂Tg

∂x

)
=
h

`g

[
απI(x)(Tks − Tg) + (1− I(x))(Tb(x, 0) − Tg)

]
,

where I(x) is an indicator function, having the value 1 if there is a bar at
location x, and value 0 otherwise, thus including heat transfer both to the
bars and the base of the vestibule. The steel rods are assumed to be circular
cylinders, with fraction α of their surface area in contact with the flowing
gas, which is the reason for the απ coefficient in the above equation. In the
results shown here α = 0.75. For a particular bar in the vestibule/furnace
with centre located at horizontal position x, denoted by index k, conservation
of heat gives

ρscs
dTs,k

dt
=

4

π`2s

∫x+`s/2
x−`s/2

π
{
α
[
h(Tg − Ts,k) + θ(x)εσ(T

4
fce − T

4
s,k)
]

+ (1− α)hb(Tb(x, 0) − Ts,k)} dx .

The right-hand side is an integral because, in this model, the variation in
gas flow and temperature, as well as the variation in the temperature of
the base, is resolved at a scale finer than the size of the rods. The top two
terms on the right-hand side represent convective heat transfer from the
gas and radiative heat transfer from the furnace interior, while the bottom
term represents heat transfer between the top surface of the base and the
bottom part of the rod. This latter effect is likely to be a combination of
conductive and radiative heat transfer, so a high heat transfer coefficient is
used, hb = 1000Wm−2K−1. The convective heat transfer coefficient h is
assumed to take the form h = h0(u/u0)

1/2, in the vestibule, where u0 is the
gas speed entering the vestibule (taken to be x = 1), a form that comes from
the Nusselt number correlation. The gas speed will vary because

(a) the gas cools down through the vestibule, increasing its density, and
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(b) gas leakage.

In the following examples, u0 = 1ms−1 and h0 = 10Wm−2K−1. In the
furnace itself we assume that there will be very vigorous gas activity, which
is modelled by setting h = 100Wm−2K−1 therein. The view factor is taken
to be 1 in the furnace, and to follow the form θ(x) = 1−

(
2
π
tan−1 x

)1/2 in
the vestibule. In the case that any part of the vestibule is beyond a radiation
shield, we assume that θ(x) = 0, that is, the radiation shield is 100% effective.
The form of the view factor is a simple heuristic and not necessarily accurate.

Heat transfer in the base is assumed to be by conduction, in two dimensions,
thus the model equation for the base is

ρbcb
∂Tb

∂t
= kb

(
∂2Tb

∂x2
+
∂2Tb

∂z2

)
,

with the boundary condition on the top surface being

−kb
∂Tb

∂z

∣∣∣∣
z=0

= [1− I(x)]h[Tg − Tb(x, 0)] + I(x)(1− α)hb[Ts,k − Tb(x, 0)].

Boundary conditions at the bottom and right-hand end of the base are
assumed to be convective heat transfer to ambient temperature (taken to be
35 ◦C) and a no flux heat transfer condition at the left hand end (to represent
the possibility that either the furnace extends further than the model or there
is an insulated surface at the left-hand end). Initial conditions are that the
base is at uniform temperature, being the ambient temperature, and that
no bars exist inside the furnace or vestibule. The thermal properties of the
refractory material comprising the base are taken to be ρb = 2500 kgm−3,
cb = 1000 J kg−1K−1 and kb = 1Wm−1K−1. The surface is taken to have
emissivity ε = 0.1.

5.2 Numerical solution

The heat equation in the base is discretised using a finite volume approach,
with volume elements being square, of size ∆x × ∆x. The gas equation is
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discretised to correspond to the centre of the volume elements in the x-direction
and backward first order differencing is used for the spatial derivatives. The
time stepping is backward Euler, with time step ∆t. Once the bars are
introduced to the vestibule, they remain at one position for M time steps,
where M = ∆x/(vs∆t), and vs is the average speed of the bars through the
vestibule. After M time steps, the bars, and the corresponding indicator
function, are moved one space to the left. This continues until bars exit the
left end of the furnace.

In the results shown here, ∆x = 5mm, ∆t = 0.002 s and v ≈ 13.3 cmmin−1

(which equates to moving 2m in 15 s). The small time steps are required for
stability of the explicit numerical scheme. For 25mm diameter bars, each bar
covers five spatial steps.

5.3 Results

Some sample results are shown here for the case of 25mm rods, each having
50mm spacing between them. Initially, the empty furnace and vestibule base
is assumed to be at ambient temperature, then the base and vestibule are
heated by radiation from the flame in the furnace at 1050 ◦C and convection
heat transfer. Within the furnace, the gas temperature is assumed to vary as
a quadratic, set to be 1050 ◦C at x = 0 and varying to closely fit two measured
temperature values, as shown in Figure 14. The furnace gas temperatures are
held at these values for the duration of each simulation. The temperature
variation in the gas and base evolve according to the numerical scheme
described above. After the initial two hour pre-heating, bars are introduced
from the left end and their temperature is calculated as they move towards
and into the furnace. Figure 14 shows a sample output from the model for
a 50 cm length vestibule. In these simulations the dimensionless qloss = 20.

The results show that the gas temperature drops rapidly from about 150mm
into the vestibule. According to the model, the main reason for the rapid
drop in gas temperature is the gas leakage. As a result, there is very little gas
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Figure 14: Model solution
for a 50 cm long vestibule,
with qloss = 20, after
six hours of simulation,
including comparison with
measured gas temperature
data (black circles). The
black line represents gas tem-
perature, the orange line rep-
resents temperature of the
top surface of the base and
the red dots indicate rod tem-
peratures. The temperature
profile in the base is super-
imposed on the graph. The
aspect ratio of the base has
been altered to expand the
vertical extent, in order to
more clearly show the tem-
perature variation.

exiting the vestibule. It is clear that there is reasonable agreement between
the measured and calculated gas temperatures. For the rods, the temperature
increases slowly initially, due to heat transfer from the gas and the base of the
vestibule. Once the rods pass the radiation shield, there is a rapid increase in
their temperature, closely matched by the surface temperature of the base.
Eventually the rods reach just over 430 ◦C as they enter the furnace proper,
where they more rapidly heat towards the target temperature. The effect
of heating of the base, both within the furnace and along the length of the
vestibule, is clear from Figure 14. Also, the effect of heat loss from the bottom
and end of the base is evident. In this example, after six hours of operation,
the maximum temperature in the base of the vestibule is around 500 ◦C, just
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near the entrance to the furnace. It is evident that, overall, there is not
much difference in temperature between the temperature of the rods and
the top surface of the base, due to the high heat transfer between the two.
Accordingly, about 55% of heat transferred from the gas by convection goes to
the rods, with the remainder going to the base, indicating that heat transfer
to the base is important in the overall heat transfer effects in the vestibule.

It is instructive to consider the same situation, but with no gas leakage,
that is, qloss = 0. The result of such a simulation is shown in Figure 15.
The main difference in this result is that the gas temperature only drops
to 715 ◦C by the end of the vestibule. Were gas to be exiting the vestibule at
such a temperature, with a speed near 1m s−1, it might be expected to be
a hazardous situation. Due to the higher gas temperature and speed, there
is more convective heat transfer to the rods, but the temperature of rods
entering the furnace is only higher by about 55 ◦C, indicating that radiative
effects appear to dominate.

Figures 16 to 19 show simulation results for four different vestibule lengths,
ranging from the current length of 50 cm, up to 200 cm. In each case, qloss = 20.
It is clear from the longer lengths that gas leakage means that there is virtually
no gas speed for lengths greater than about 50 cm, which means that there is
effectively no heat transfer to the rods and base, because of the form of the
heat transfer coefficient used in the model. In any case, this means that the
extra vestibule length is not useful in capturing heat from the gas, because
most of the gas has already leaked. Nevertheless, there is value in extending
the vestibule length because more heat transfers through the base from the
furnace, thus heating it up further and then transferring some of that heat
to the rods. There is also more length available for radiative heat transfer
to the rods and base from the flame in the furnace. In these simulations, a
radiation shield is located 200mm inwards from the outlet of the vestibule.
It seems sensible to use as much of the vestibule length as possible to capture
excess radiative heat, which can be transferred to the rods.

Figure 20 shows the calculated time variation of rod temperatures at the
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Figure 15: Model solu-
tion for a 50 cm long
vestibule, with qloss = 0,
after six hours of simula-
tion. The black line rep-
resents gas temperature,
the orange line represents
temperature of the top
surface of the base and
the red dots indicate rod
temperatures. The tem-
perature profile in the
base is superimposed on
the graph. The aspect ra-
tio of the base has been
altered to expand the ver-
tical extent, in order to
more clearly show the
temperature variation.

point of entering the furnace. This value is a measure of the heat content that
has been transferred to the rods during their transit through the vestibule. It
shows a large increase in rod entry temperature by increasing the vestibule
length to 100 cm, but smaller increases beyond that. The apparent sharp
jump, especially for the 50 cm vestibule length, is continuous and smooth if
viewed at a smaller scale near the time that rods begin to enter.
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Figure 16: Model solution for vestibule length 50 cm. The black line represents
gas temperature, the orange line represents temperature of the top surface of
the base and the red dots indicate rod temperatures. The temperature profile
in the base is superimposed on the graph. The aspect ratio of the base has
been altered to expand the vertical extent, in order to more clearly show the
temperature variation.
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Figure 17: Model solution for vestibule length 100 cm. The black line rep-
resents gas temperature, the orange line represents temperature of the top
surface of the base and the red dots indicate rod temperatures. The tempera-
ture profile in the base is superimposed on the graph. The aspect ratio of the
base has been altered to expand the vertical extent, in order to more clearly
show the temperature variation.
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Figure 18: Model solution for vestibule length 150 cm. The black line rep-
resents gas temperature, the orange line represents temperature of the top
surface of the base and the red dots indicate rod temperatures. The tempera-
ture profile in the base is superimposed on the graph. The aspect ratio of the
base has been altered to expand the vertical extent, in order to more clearly
show the temperature variation.
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Figure 19: Model solution for vestibule length 200 cm. The black line rep-
resents gas temperature, the orange line represents temperature of the top
surface of the base and the red dots indicate rod temperatures. The tempera-
ture profile in the base is superimposed on the graph. The aspect ratio of the
base has been altered to expand the vertical extent, in order to more clearly
show the temperature variation.
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Figure 20: Time variation of the temperature at which rods enter the furnace,
for different vestibule lengths (given in the legend). No rods enter the vestibule
during the first two hours, which is meant to represent the heating up period
in the morning. The rapid rises are not jumps, as temperatures are all
continuous and single-valued in time.
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5.4 Conclusions

The key outcome from this particular modelling approach is that it is worth
extending the vestibule from 50 cm to 100 cm, at least. There appear to be
diminishing returns from further extensions to vestibule length. The key
difference of this work to previous models is that the extension of the vestibule
is justified by allowing more distance for rods to be heated by radiation from
the furnace, combined with conduction/radiation from the vestibule base.
This is in contrast to previous approaches, which were focused on heat recovery
from the gas travelling through the vestibule. The results presented here
show that it is unlikely that this latter effect can contribute significantly to
pre-heating the rods because either

(a) gas leakage means that much of the sensible heat in the gas is lost, or

(b) the transit time of gas, combined with the low heat transfer coefficient
means that little heat can be extracted, if there is no gas leakage.

There are several reasons why this model may not be accurate:

• the various parameters (material properties, heat transfer coefficients,
etc) used in the model are only rough estimates, and may not be correct;

• there may not be good connection between the base of the vestibule and
that of the furnace, which may affect the heat transfer between them;

• the model for gas leakage is very approximate;

• the view factor function used may be a poor approximation to reality.

If desired, then each of these factors could be examined more carefully, in
order to improve the model. Moreover, by extending the model to include
heating in the furnace, it may be a useful tool for some simulation experiments
during the design process for new furnaces.
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Figure 21: Some of our group visited the Lovells factory. A heated rod is
being twisted into a coil at bottom left, and bottom right is a view inside the
furnace with several heated rods visible.

6 Conclusions

Several models of heat transport in the vestibule of a furnace that heats
steel rods to a malleable temperature, ranging from simple to more realistic,
have been proposed and solved. The purpose of the modelling was to guide
decisions about future design of the vestibule, especially its length, in order
to reduce energy usage by preheating rods as they enter the furnace. The
mechanisms of radiative and convective heat transfer were allowed for, and
the discrete nature of the rods and the way they are advanced through the
vestibule was allowed for in the most advanced of the models.
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The present length of a vestibule is of the order of half a metre. Model
results indicate that for rods with thicknesses less than 25mm there is little
improvement in heating economy to be gained by increasing vestibule length.
For thicker rods, increasing this length to one or two metres provides significant
extra preheating of rods by the hot gases that exit through the vestibule, and
by the radiation that escapes to the vestibule.
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