
Eastern Washington University Eastern Washington University

EWU Digital Commons EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

Fall 2022

Towards Cloud-Based cost-effective serverless information Towards Cloud-Based cost-effective serverless information

system system

Isaac C. Angle

Follow this and additional works at: https://dc.ewu.edu/theses

 Part of the Data Storage Systems Commons, Digital Communications and Networking Commons, E-

Commerce Commons, and the Entrepreneurial and Small Business Operations Commons

https://dc.ewu.edu/
https://dc.ewu.edu/theses
https://dc.ewu.edu/student_research
https://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/624?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/624?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/630?utm_source=dc.ewu.edu%2Ftheses%2F780&utm_medium=PDF&utm_campaign=PDFCoverPages

TOWARDS CLOUD-BASED COST-EFFECTIVE SERVERLESS INFORMATION

SYSTEM

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Master of Science in Computer Science

By

Isaac C. Angle

Fall 2022

Thesis of Isaac Angle Approved By

Date

Name of Chair, Graduate Study Committee

Date

Name of Member, Graduate Study Committee

Date

Name of Member, Graduate Study Committee

Yun Tony Tian 12/08/2022

Bojian Xu 12/08/2022

ii

Kurt Buchholz
Kurt Otto Buchholz

Kurt Buchholz
12/06/2022

Abstract

TOWARDS CLOUD-BASED COST-EFFECTIVE SERVERLESS INFORMATION

SYSTEM

By

Isaac C. Angle

Fall 2022

E-commerce information systems are becoming increasingly popular for businesses to adopt. In

this work, we propose a serverless information system that will reduce costs for small businesses

trying to create an e-commerce website. The proposed serverless system is built entirely in Amazon

Web Services (AWS). The proposed serverless system allows businesses to pay for the use of cloud

resources on a per-order granularity. This model reduces the cost of the information system when

compared to a traditional cloud-based system. As e-commerce websites become more vital for small

businesses, a cost effective serverless approach is promising.

iii

Acknowledgement
A special thank you to Yun Tian. His advice and knowledge of cloud systems and AWS were

instrumental to the foundation of this project.

iv

Contents

1 Introduction

1.1 Traditional 3-tiered Information System .

1.2 Introduction to Cloud Computing .

1.3 The Motivation for This Work . 2

1.4 The Problem We Addressed . 3

1.5 Organization of This Paper . 4

2 Related Work 4

3 Methodology 7

3.1 Overview of Services Used . 7

3.1.1 Cognito . 8

3.1.2 API Gateway . 8

3.1.3 Lambda . 8

3.1.4 DynamoDB . 9

3.1.5 CloudWatch . 9

3.1.6 Athena . 9

3.1.7 S3 . 10

3.1.8 CloudFront . 10

3.2 Our System Design . 10

3.2.1 Why We Used This Design . 12

3.2.2 The Advantages and Limitations of the Design 12

3.3 Implementation . 13

3.3.1 Login and Registration . 15

3.3.2 Retrieving and Displaying Product Information 16

3.3.3 Updating the Cart and Checkout . 19

4 Performance and Cost Analysis 20

4.1 Cost Comparison . 20

v

4.1.1 Cost of Serverless Design . 20

4.1.2 Cost of Traditional 3-Tiered Design with EC2 Servers 22

4.1.3 Cost Comparison Between the Serverless and 3-Tiered Architecture 23

4.2 Athena Data Analytics . 24

4.3 Performance Comparison . 26

4.3.1 Execution Time of Traditional 3-Tiered System 27

4.3.2 Execution Time of Serverless System . 27

5 Conclusion 29

6 Future Work 30

References 32

Vita 36

vi

1 Introduction
With the surge of users buying products from the internet, e-commerce websites have increased

in popularity. To keep up with this trend, most companies have developed a website to cater to

these online shoppers. E-commerce websites are not limited to a specific type of product and are

a necessary part of any growing business in today’s world [1]. These websites act as the portal

to a back-end information system. Normally, such information systems will provide the following

features: including sign-up of users, shopping cart, authenticating and authorizing users, processing

the customers’ orders, and generating sales reports.

1.1 Traditional 3-tiered Information System

Traditionally, the 3-tiered architecture is widely adopted when designing and implementing

an e-commerce back-end information system. The 3-tiered architecture in an information system

consists of a front-end web page, an application server, and a database in the back-end [2] [3]. The

web page is normally created using a mix of front-end languages such as HTML, JavaScript, and

CSS. The application server hosts the main logic for the design and can be stored on a physical server

or one located in the cloud. For smaller businesses, using a cloud-based server as the application

server can be the more cost-effective approach.

1.2 Introduction to Cloud Computing

The cloud provides on-demand services (IT resources) accessible to the companies. Cloud

resources are geographically located outside the company’s on-premise (on-site and local) data

center. The hardware and software contained within a cloud provider’s data center that enable the

provision of the cloud services, and the cloud services themselves, provided to the general public

over the Internet, is called the cloud [4].

Cloud services are available in a pay-as-you-go manner. Users are charged financially based

on the amount of resources used and the duration of time used by the service [5]. Cloud users

may request for IT resources any time when they are needed, and release the resources after they

completed their computation tasks [6].

The key advantage to using cloud services over on-premise IT resources is that the demand for

the service doesn’t need to be known in advance. For example, a server will need to be provisioned

to meet the highest demand during a month and will be underutilized during other times of the

month. Cloud services mitigate this issue by dynamically adding more servers for processing the

high workload and removing idle servers when fewer requests are received.

Other advantages of using the cloud include the following features. The IT administrators work-

load will be reduced as well. Physical servers need to be maintained and upgraded over time. Cloud-

based services are maintained by the cloud service, which alleviates the time and energy spent on

physical servers.

In this work, we chose to use Amazon Cloud Services (AWS) in designing and implementing

our system due to its high popularity [7]. AWS services in the cloud enables the design and imple-

mentation of the entire 3-tiered information system. The front-end web portal and the application

server can both be created and stored in an EC2 machine. EC2 machines are cloud-based servers

provided by AWS [8]. The database can be hosted in the cloud as well, using Amazon’s Relational

Database Services (RDS). The relational databases in AWS can be connected to the EC2 server.

The EC2 server has a public IP address that can be reached by the end customers. Then, Domain

Name Service (DNS) translates or associates the public IP into a readable website domain name [9].

AWS offers a DNS service called Route 53 which will allow customers to use the registered domain

name to reach/access the website. With these services, a basic functional e-commerce website can

be created [10] [11].

1.3 The Motivation for This Work

There exists at least one disadvantage in the traditional 3-tiered cloud-based information system.

In the 3-tiered information system, the EC2 web server that hosts the business logic will have to run

constantly, without stopping and without interruptions, when serving customer’s requests. But for

small businesses, their information system may only have a few hundred orders per day, such as

a restaurant, during two or three busy hours in the day. For the rest of the time, the EC2 server

will be idle. For every idle hour, the EC2 server costs the company money without generating any

financial gain. To mitigate this issue, we propose the adoption of a serverless architecture to create

the website instead of using the traditional 3-tiered architecture. The serverless design allows the

businesses to pay for the use of the cloud resources on a per-order granularity, which will greatly

reduce the cost on information technology (IT) for companies.

2

1.4 The Problem We Addressed

In this work, we designed and implemented a cost-effective information system, which is based

on the following AWS services: API Gateway, Lambda function, and DynamoDB [12] [13]. The

system is serverless and hosted entirely within the AWS cloud. The advantage of this design is that

it does not use a constantly running server. AWS Lambda is used in the place of a server. Lambda

is an event-driven service that can be used to run code for any application without the need for

provisioning a server [14]. An instance of Lambda is called a Lambda function. Lambda functions

can be triggered by other AWS services, the most common being API Gateway.

API Gateway is a service that makes it easy for developers to create and manage APIs. API

Gateway acts as the entry way to other AWS services [15]. For the serverless information system,

we used API Gateway as a door to the Lambda functions. The Lambda functions then access

DynamoDB, which is a cloud-based NoSQL database system. NoSQL databases follow a key-

value model where every column in the database corresponds to a unique primary key [16]. The

primary key is the only required column; any number of additional columns can correspond to the

primary key. Because of this model, DynamoDB can contain a large amount of data and is less

expensive than many other databases [16]

Our proposed serverless system is architectured in the following fashion. The front end website

is stored in an S3 bucket and made publicly available with CloudFront. S3 buckets are large cloud

storage devices and CloudFront is Amazon’s Content Delivery Network (CDN). The application

server is created using the API Gateway and Lambda function combo. Together they do what

an application server normally does; receive requests from the front end and access the database.

Using the serverless model can be more complicated than the traditional 3-tiered approach, but the

serverless model is more cost-effective. The entire design and implementation will be presented in

Section 3.

The advantage of using the serverless model is API Gateway and Lambda functions only cost

money when they are executed. The API gateway will only run when a request is made from the

front end. If there are no orders being made, then the API Gateway and Lambda functions don’t

cost anything. If a company only has a few hundred people shopping per month, then the company

will not lose any money during the idle hours. The S3 bucket, CloudFront, and DynamoDB have

3

a small monthly cost, but with our design the cost was usually less than one dollar per month for a

small business [17].

To discover how cost-effective the serverless design is in comparison with the traditional design,

several tests were conducted. The tests are recorded in section 3 of this paper. In our experiments,

the serverless architecture was found to be more cost-effective than the EC2 machine as long as the

Lambda functions didn’t receive more than 11 million requests per month. If the number of requests

is higher than 11 million, the EC2 machine will cost less and perform better in all metrics. The EC2

machine was also consistently faster than the serverless architecture. A database request will take 5

milliseconds on the server and up to 100 milliseconds for an already warm Lambda function. The

serverless architecture will provide acceptable loading times and be much less expensive than an

EC2 machine on average.

1.5 Organization of This Paper

The outline for this paper is as follows. In section 2 a review of previous works in the area of

serverless design will be presented. Section 3 will explain the services that were used to create the

information system. Once the services are explained, the architecture of the serverless information

system will be explained. In section 4 a comparison between an EC2 server and the serverless

website will be conducted. The comparison will include the cost of each service, how easy it is to

get reports from the NoSQL database, and a comparison on speed. Section 5 will give an overview

of the results from Section 4. Section 6 will discuss future work that can be completed as well as a

few closing observations.

2 Related Work
In this section we provide an overview of previous works in serverless computing. Cloud Com-

puting is the use of any cloud-based resources that use the pay-as-you-go model for pricing. It

is becoming increasingly popular, and is used in many use-cases. These include event-triggered

computing, live video broadcasting, Internet of Things (IoT) data processing, and shared delivery

systems. IoT is the network of physical objects that contain sensors and software [18]. The con-

tinued implementation of cloud computing will likely lead to simpler and more effective resource

management. It is to be noted that this analysis is based off a small sample size of cloud-based

4

applications [19].

Serverless computing allows users to create functions that follow a different pay structure. The

developers are only charged for the time that the function runs, the amount of memory used, and the

number of back-to-back executions of multiple functions. To help reduce this cost, fusing of func-

tions, splitting functions across more resources, and the memory for each function was reviewed.

Fusing functions was shown to reduce an image processing application cost by almost 40% of the

original cost. Placing the functions in different locations reduced cost by over 50% of the original

cost. Having the correct amount of memory can reduce cost and latency as well [20].

AWS cloud computing has the advantage of a pay-as-you-go payment model. However, the

serverless architecture can cause more latency. To test this latency, Lambda functions were triggered

by API Gateways and other Lambda functions. The latencies that were found were small on their

own but could add up when combined together as a part of a function call. If an application needs

short response times, then these latencies should be addressed. To test the latency in a production

environment, a React app was created and connected to an API Gateway, which was connected to a

Lambda function and DynamoDB. When many users were tested on the site at the same time, some

of them had unresponsive applications. Because of this, developers of applications in AWS should

know the underlying architecture that is needed to create their application in order to reduce latency

[21].

Serverless computing has potential to be used as a highly scalable and available architecture.

However, there are some flaws and gaps that need to be addressed when viewing this architecture.

Serverless computing has limited lifetimes because Lambda functions only run for a short period

of time. Lambda functions cannot talk to each other except through a slow intermediary service.

When training a neural network through this architecture, it was 21 times slower and 7 times more

expensive than running the same network on an EC2 machine [22].

Function-as-a-Service (FaaS) is useful for building highly available and scalable applications.

Most FaaS services abstract the underlining infrastructure to increase ease of use. Serverless Ap-

plication Analytics Framework (SAAF) was created to allow the developers of these apps to view

information regarding the underlying architecture of their applications. The service can be used

with many different programming languages as well as with multiple different cloud services. With

this tool in hand, analysts can quickly and easily create experiments and view the results [23].

5

Serverless computing for a single cloud platform is easy to deploy and allows the user to use

the services without worrying about the underlying architecture. Using this paradigm in a multi-

cloud environment is a much harder endeavor. To combat this issue, a model for deploying these

applications was made. The model is called Topology and Orchestration Specification for Cloud

Applications (TOSCA). The model was shown to work for multi-cloud-based applications. If the

application follows the TOSCA guidelines, it can automatically execute on multiple cloud services

[24].

Cloud computing architecture needs to be secured as much as traditional hardware. The respon-

sibility to secure AWS services is up to Amazon and the responsibility to secure applications created

in the cloud and how they connect to the cloud is up to the customers using AWS. There are six pro-

posed design patterns that can be used to secure a cloud application; periodic invocation pattern,

event-driven pattern, data transformation pattern, data streaming pattern, state machine pattern, and

bundled pattern. Using one of these patterns allows for easy creation of secure applications in the

cloud [25].

Serverless architecture is limited by execution time and total storage space. This can limit the

effectiveness of deploying certain kinds of applications in the cloud. Because of these restraints,

workflow scheduling has strict limitations when deployed in the cloud. To combat these issues a

new cloud-based scheduler was created. The scheduler is not constrained by the lack of stateful

Lambda functions and allows for easier debugging and testing. The application has not been added

to the benchmark of other systems yet, but it would be a good performance comparison for other

workflow schedulers that are created in the cloud [26].

Serverless architecture is an emerging technology which provides a solution for deep learning

models. The serverless model works well for deep learning due to its pay-as-you-go model. The

infrastructure can also be increased or decreased based on the needs of the algorithm. Deep Reader

is a deep learning algorithm that takes advantage of the serverless model by using Lambda functions

to perform the needed calculations. When compared to a virtual machine the Lambda functions had

both a lower cost and a higher performance when compared to the virtual machines [27].

Sequential and MapReduce models require an ”always on” infrastructure and many machines to

run the algorithms in parallel. Because the serverless architecture allows for infinite scaling, it is the

ideal solution for these models. In order to utilize the serverless model for a MapReduce problem,

6

the following AWS services were used: S3, SQS, Lambda, DynamoDB, and API Gateway. By

creating the application in this way, there were several benefits. The application was highly available

and reduced costs. The system could be scaled to as large as needed for any given problem [28].

DoubleML-Serverless is a proposed double machine learning application that can be created in

the AWS cloud. The double machine learning paradigm can be used on many models. Creating the

application in the cloud will allow for the architecture to grow and be deployed with ease. The cost

for the architecture can be increased or decreased based on the needs of the model [29].

An application was created and deployed in AWS for big data analytics. The system used

Amazon S3, Glue, Athena, QuickSight, Kinesis, SageMaker, and Step Functions. Included in the

application was a Data Lake where many different types of data can be stored. The Data Lake can

grow due to the AWS architecture and a pay-as-you-go pricing scheme, allowing for almost infinite

scaling. Analytics can be performed with the help of AWS Glue, allowing for a large amount of

data to be analyzed in many different ways [30].

OpenLambda is a proposed Lambda function-based service that is an open-source version of

AWS Lambda. Lambda is highly scalable and does not require complicated configuration. Lambda

uses interpreted languages, has package support, allows for a state-like configuration with cookies

and sessions, and connects with databases like DynamoDB for data access. OpenLambda follows

this same Lambda function format and will include LambdaBench which will allow the user to view

benchmarks of their infrastructure [31].

SIREN is a distributed machine learning application that was created in the AWS cloud using

Lambda functions. The Lambda functions are used to split the load for training the system. To

reduce costs and increase the quality of the training data, there is also a scheduler that balances the

number of Lambda functions being used. The training with this architecture has resulted in a 44.3%

speed increase, for the same price, when compared to using EC2 machines [32].

3 Methodology

3.1 Overview of Services Used

In this section, we present the AWS cloud services that we utilized to implement the proposed

serverless information system.

7

3.1.1 Cognito

Cognito is a secure, customer identity service that scales with a large number of users. users

can sign-up and sign-in with their credentials using Cognito. Cognito scales to millions of users and

integrates with the front end and back end development [33]. Cognito can integrate with many of

the other AWS services, including API Gateway.

3.1.2 API Gateway

The API Gateway acts as a mediator between the front end and the back end of an application.

API Gateway allows requests to be sent to other AWS services in the same way an API would. The

gateway can handle requests from other AWS services or any third-party software that can send

HTTP requests. These requests are usually sent from applications that are trying to access data

stored in the back end of the application.

The API Gateway can be created as an HTTP API, WebSocket API, or a REST API. The Web-

Socket API uses a persistent connection between the front end and the back end. This works well

for chat applications that need a continuous connection between the front end and the back end to

display messages quickly. The HTTP API is a REST API with fewer features than the traditional

REST API that AWS offers. HTTP is the more cost-effective service when compared to the REST

API, but it has fewer features [15]. The REST API can be connected to a Cognito user pool which

will restrict access to only authenticated users. The access token is retrieved from Cognito and must

be sent with the request to gain access to the restricted sections of the back end.

3.1.3 Lambda

AWS Lambda acts as the application server for serverless applications. Lambda functions are

stateless, event-driven, blocks of code. Lambda supports multiple major programming languages

like Python, Java, and JavaScript. Lambda functions are triggered by events from other AWS ser-

vices. API Gateway is a popular AWS service to use with Lambda functions. When a request is

sent to the API Gateway, the API triggers the Lambda function to initialize and sends it the request.

The Lambda function will receive the request, which can contain values in the body and the header.

These values can be parsed from the request with Lambda-specific functions. Once the function has

run, it will send a response back to the API Gateway [14].

8

Lambda Functions can filter through requests to ensure only valid requests are using the Lambda

function. The function can check to make sure that the requests that are received are in the correct

format. If the request is not in the correct format, then the function can reject it and return an error

message. Because of this, Lambda functions can keep malicious requests from affecting other AWS

services. Lambda Functions are also stateless, which means they don’t remember any past requests

that have been received. Previous invocations cannot be used to cause a vulnerability in the current

invocation of the function.

3.1.4 DynamoDB

DynamoDB is Amazon’s NoSQL database service. A NoSQL database differs from a relational

database in several ways. NoSQL databases follow a key-value model where every value in the

database corresponds to a key. Because of this, the database can store values with a varying number

of columns. The values must correspond to the primary key, but the number of columns that corre-

spond to the key may vary. With this design, the database can store data of different data types or

sizes in the same table. The advantages to this design are quick read and write speeds, easy to scale,

and lower cost than a relational database. The downside to using a NoSQL database is it doesn’t

use SQL, which is the standard choice for database languages. NoSQL databases don’t support

complicated joins between tables either; a single database table is commonly encouraged for most

applications [16].

3.1.5 CloudWatch

CloudWatch collects and visualizes logs and data from other AWS services. Alarms and auto-

mated responses can be created to activate when a threshold is met. CloudWatch can be used to

troubleshoot AWS services by providing insights within the logs for the service. The detailed logs

CloudWatch keeps for each service provide developers with useful insight into their information

systems [34].

3.1.6 Athena

Athena performs SQL queries on data stored in S3 Buckets. Athena can use data from other

AWS services, but it must first be transferred to an S3 bucket. Once the data is stored in the bucket,

Athena can then perform powerful SQL queries. An important use for Athena is performing com-

9

plicated queries on DynamoDB tables. Because DynamoDB is a NoSQL database, complicated

joins cannot be performed on the tables. If the data from the table is transferred to an S3 bucket,

Athena can then be used to mitigate this issue.

3.1.7 S3

S3 provides a service for storing large amounts of data in objects called buckets. These buckets

can store file structures and even full sized apps. S3 buckets are easily connected to other AWS

services, providing an exceptional amount of versatility. The buckets can be used with Athena to

provide insights into big data sources. The buckets can also be made public, allowing web pages to

be served to users through the link to the bucket. If the link to the bucket is connected to a domain

name, a website address can be created.

3.1.8 CloudFront

CloudFront is Amazon’s Content Delivery Network (CDN) service. The service delivers content

from other AWS services to the public. The AWS services that can be shared are S3 and API

Gateways. If the S3 bucket is made public, CloudFront can share the public link. The CDN can be

used to serve web pages to clients as long as it is set up with a registered domain. The domain can

be created through AWS Route 53 or with a third-party DNS software.

3.2 Our System Design

Figure 3.1 presents the design of the proposed system. The front end of the information system

is a website created entirely with React[35]. The website provides users the functionality to view the

available products and add them to their cart. Users can also login to their account or create a new

account. Users can add products to their cart as a guest, but only authenticated users can checkout.

All the products listed on the website are stored in a database in the back end. The front end retrieves

information from the back end by sending an HTTP request to one of the API Gateways.

HTTP stands for Hypertext Transfer Protocol and is used to access the API’s stored in the back

end [36]. There are three different types of HTTP requests that are commonly used for data retrieval

from a database. An HTTP request that only retrieves values from the database is called a GET

request. POST requests create new values in the database. PUT requests update products in the

database that have already been created. The POST and PUT requests have new values stored in the

10

Figure 3.1: Information System Architecture

request. The GET request only retrieves data from the database. Each of these requests are used to

access the API Gateways in the back end.

The back end of the system consists of three API Gateways. Each API has a unique function

that it fulfills. One of the APIs is used to access the Login and Register Lambda functions. The

Register function is used to create a new user and the Login function allows an existing user to login

to their account. Both of these functions use the same Cognito user pool to store and access the user

11

credentials.

The next API Gateway gives access to the Add to Cart, Update Cart, Get Cart, Migrate Cart,

and Checkout Lambda functions. The Add to Cart function updates the user’s cart by adding new

products to the database table. The Update Cart function updates the quantity of a product already

stored in the user’s cart. The Get Cart function returns all the products stored in the user’s cart.

The Migrate Cart function updates the cart’s guest id to an authorized user id when a client signs

in. This function is responsible for products in guest carts moving to the authenticated user’s cart.

The Checkout function retrieves the user’s cart from the Cart table, saves a copy, and then deletes it

from the Cart table. The function then stores the cart in the Order table as a completed order.

The final API Gateway is used to access the Products table using the Get Product and Get All

Products Lambda functions. The Get Product function returns a single product from the database.

The Get All Products function scans the entire Products table and returns all the products contained

inside the database. This function is used to populate the front end with pictures and information

for each product.

3.2.1 Why We Used This Design

We used this design for our information system because the serverless architecture provides a

scalable back end. DynamoDB is a serverless database capable of storing large amounts of data.

Lambda is a serverless service that scales automatically and can access a DynamoDB table. Instead

of using one Lambda function in the back end, multiple Lambda functions were used for simplicity.

In our design, each Lambda function completes only one task. The front end cannot send a request

to a Lambda function without an API Gateway. The API Gateway is responsible for receiving the

requests from the front end and discerning which Lambda function to send them to. There are three

API Gateways in the design to separate the design into different parts. The design is split into user

authentication, updating the cart, and retrieving products from the database.

3.2.2 The Advantages and Limitations of the Design

There are two advantages when using our design instead of the traditional 3-tiered architecture.

The first advantage is that the back end doesn’t use a server. Servers will run constantly, even during

hours of the day when no clients visit the website. When the server is running during these slower

hours of the day, the company is paying for the server without making any profit. With our serverless

12

design, the company will only be charged when clients use the website. The second advantage is our

design automatically scales with an increase in requests. Because every service used in our design

is serverless, the back end will scale automatically with an increase of user requests from the front

end. The design is more cost-effective and easier to scale than the traditional design.

DynamoDB does not create detailed reports because it cannot perform complex joins. A join is

used to combine the data from two different tables using a shared column. The Order table does not

store the product information in the database table. Instead, a product id is stored in the database

which can be linked to the Products table. A relational database can perform a join on these two

tables; however, DynamoDB is a NoSQL database. NoSQL databases do not support complex join

operations. When the two tables are joined, useful reports can be created. For example, a report

representing the popularity of a product or a report representing the biggest spenders. To mitigate

this limitation, we propose the use of AWS Athena in Section 4.2.

3.3 Implementation

Figure 3.2: API Gateway Resources

The proposed architecture uses HTTP requests to access the databases in the back end. Every

HTTP request consists of a routing URL, some header information, and a body. The routing URL

acts like a path that leads to an API Gateway. A routing URL for the API Gateway presented

13

in Figure 3.2 is ”https://3fyby70779.execute-api.us-west-2.amazonaws.com/Prod/cart”. From the

beginning of the URL until the first single forward slash is the path to the API Gateway. The next

section of the URL contains the version of the API Gateway. In this case Prod, which is short for

production. the version name can be set to any value, we used Prod because the version was used

for production. The final part identifies which resource the API Gateway should use, in this case

cart. The cart resource is shown in Figure 3.2.

Resources can contain GET, POST, and PUT requests. The resources are shown in the left side

panel of Figure 3.2. Each of the different types of HTTP requests will send the request to a different

Lambda function. In Figure 3.2 a GET request path within the cart resource is chosen. This resource

is integrated with a Lambda function and it is a proxy integration. When the proxy integration box

is checked, the API Gateway will send the request to the Lambda function without intervention. The

integrations act as triggers for the Lambda functions, causing the function to run when a request is

made to this integration.

The Checkout resource can be accessed with this routing URL: ”https://3fyby70779.execute-

api.us-west-2.amazonaws.com/Prod/cart/checkout”. The difference between this routing URL and

the cart URL is the extra checkout on the end. To access the Checkout Lambda function, a POST

request must be sent. Every resource in the API Gateway’s follows the same format, the only

exceptions are the resources that require a product id.

The routing URL for the product id resource requires a product id to be sent inside the routing

URL, for example, ”https://3fyby70779.execute-api.us-west-2.amazonaws.com/Prod/cart/productId”.

The real routing URL will include a valid product id in place of the ”productId” value. The product

id could also be sent in the body, but with this design the body can contain the same values as other

requests. The only part of the request that changes is the product id in the routing URL.

Figure 3.3: HTTP Request Front End Example

14

Figure 3.3 is an example of the format the front end uses to send an HTTP request to the Add

to Cart function. The HTTP requests have headers which contain information about which user

is trying to access the Lambda function and in what format the data should be sent back. The

”Content-Type” is the format used for the body of the request. The ”Authorization” header is the

access token sent with authorized users; if the user is a guest, this value will be blank. The method

is the type of HTTP request, in this case it is a POST request.

The body contains the new values that will be added to the database. The values being added

to the database in Figure 3.3 are the product id and the quantity. Both of these values are stored in

JSON format. JSON is a string with a specified data format [37]. the credentials are set to ”Include”,

this means that cookies are enabled for this HTTP request. Cookies are explained in more detail in

Section 3.3.1.

In our implementation of the information system, the body of a POST or PUT request consists

of a product id number and a quantity to be added or removed from the cart. The GET requests have

an empty body because they are only used to retrieve data from the database. Each HTTP request

sent by the front end uses Cross Origin Resource Sharing (CORS) to access the back end.

CORS permits access to restricted resources from outside to reach the back end [38]. API

Gateway can be integrated with CORS to limit the origin of outside traffic that can access the API.

If a request is sent to an API Gateway which has CORS enabled, it will be immediately rejected

unless the request was sent from the URL that was specified. To gain access to the back end of the

information system, an origin must be specified in the HTTP request. This origin must match the

origin that was specified when CORS was integrated with the API. With CORS enabled, the API

Gateway is more secure because HTTP requests that are sent from outside of the specified origin

will be rejected.

3.3.1 Login and Registration

Figure 3.4 presents the design for the login and registration used for the application. To create a

new user within the system, a customer must enter a username and password. The credentials will

be sent to the back end through an HTTP request. The API Gateway will route the request to the

Register function. The Lambda function will parse the username and password from the body of

the HTTP request and send them to the Cognito User Pool for validation. If the username is not

15

in use and the password is long enough, Cognito will return an access token. The access token is

a long string of characters used to identify the user when they access the restricted sections of the

back end. The Lambda function will return the access token in the response and the front end will

store it in local memory so it can be used to access the Migrate Cart, and Checkout function.

The access token is used to access the Migrate Cart and Checkout functions because they are

restricted. The access token is a unique string of random characters used to identify an authenticated

user. The access token is sent along with the requests and acts as a key that unlocks access to

restricted API Gateway resources. The API Gateway resources that are restricted are connected to

the Cognito user pool. These resources know when a valid user is accessing the Lambda function

because they compare the access token that was sent with the access token given by Cognito.

Every Lambda function can be accessed without creating an account except for the Migrate

Cart, and Checkout function. The customer must create an account before paying for the products

in their cart. With this design, guest users can access the website and add products to their cart.

Each of the guest users is identified by a unique cookie which represents them. A cookie is a piece

of information that is saved in the browser [39]. Web browsers are stateless, which means they don’t

remember any previous messages that are sent. Cookies are used to provide a way for the browser

to recognize the user across many different messages [39]. The unique cookie is sent with every

HTTP request to identify each individual guest user. An unfinished guest cart in the database will

only stay in the database for a week. Once a week has passed, the cart will be removed from the

database. Authenticated users have 30 days until their cart expires. This design allows the website

to reach a larger customer base while still retrieving the necessary information during checkout.

3.3.2 Retrieving and Displaying Product Information

The Get Product function is used to retrieve a product from the database. The Python code

for the Get Product Lambda Function is provided in Figure 3.5. The Python library ”Boto3” is

used to retrieve values from the database. With this library a query can be made to the database

to retrieve products. The Get Product function only retrieves a single product. The function is

primarily used by the Add to Cart and Update Cart functions. Each functions sends a request to the

Get Product function and retrieves the desired product id when adding a product to the cart. The

”os” library is used to retrieve environment variables that are stored within the Lambda function.

16

Figure 3.4: Login and Registration Model

The environment variables that we used for this function are the allowed origin and the name of the

database table. The allowed origin is the CORS path that must be included in any requests that are

sent to this Lambda function. The allowed origin is one of three different headers that are returned

in the response to the request.

The headers for the response are created as a dictionary with key-value pairs. The ”Access-

Control-Allow-Headers” limits the type of header that can be used in the request. For this function,

only the Content-Type header can be requested. The content type used in the response is in JSON

format. An example of a product from the database stored in JSON format is given in Figure 3.6.

The ”Access-Control-Allow-Methods” is the different types of HTTP requests that this function will

accept. GET requests are the only type of requests that are sent from the front end, the OPTION

request is only used for gathering information. After creating the response headers, the function

initializes the database. After initializing the database and identifying the correct table, the Lambda

function retrieves the product id from the path parameters. The parameters are stored in the routing

URL of the request. Once the product id is retrieved, a query is made to the database that includes

the id as the primary key. Once the product has been retrieved, the function sends back a positive

status code, in this case 200, along with the headers that were created earlier and the product in

JSON format.

17

Figure 3.5: Get Product Lambda Function

Figure 3.6: JSON Object

The Get All Products Lambda function follows the same format as the Get Products function.

The Lambda functions have the same headers, libraries and database table. The Get All Products

function performs a scan on the database instead of a single query. The scan returns all of the

products in the database. Because the function is not querying a single product, there are no path

parameters that need to be parsed from the routing URL. Once the products are retrieved from the

database, the response is created using the 200 status code, the headers, and a list of all products in

18

JSON format.

3.3.3 Updating the Cart and Checkout

A separate API Gateway is used to access the lambda functions that add, retrieve, and update

products in the database. When a user adds a product to the cart, on the front end web page, a

request is sent to the API Gateway and the API routes the request to the Add to Cart function. The

product id and a quantity of 1 are sent within the body of the request. The request will also include

a cookie if the user is a guest or a user id if they have created an account. The Lambda function will

parse the user id, product id, and quantity from the request. Once the relevant information has been

extracted from the request, the Lambda function will store the values in the database table.

If a user is viewing their cart and they decide to update the quantity of a product in their cart,

a request to the Update cart function is made. The Add to Cart function can perform the same

action as the Update Cart function, but updating the cart is more efficient. The Update Cart function

updates the values in the database table by increasing or decreasing the value of the quantity variable.

To achieve this, the function copies the product and adds the quantity value from the request to the

copied product. The new quantity value is then stored in the database along with the copied product.

The Update Cart and Add to Cart functions allow users to change the values in their cart and the

Get Cart function allows users to view the products in their cart.

Figure 3.7: Cookie Example

The Get Cart function is used to retrieve a user’s cart from the Cart table. This function is called

when the front end web page is refreshed, a user adds a product to their cart, or a user updates a

product in their cart. The requests sent to the Lambda function contain the user id or cookie to

identify which user is requesting access to their cart. An example cookie is shown in Figure 3.7.

Once the Lambda function has retrieved the user’s cart from the database, it returns the cart as a

19

list of products. The products in the list contain the information for each product as well as the

quantity and the user id. Once the user has viewed their products and wants to pay for their cart, the

Checkout Lambda function is used.

The Migrate Cart function migrates a guest cart to an authenticated user’s account when that

user signs in. When a guest user wants to checkout, they must first create an account or login to an

existing account. Once the user has logged into their account, any products in their guest cart will

also be in their user cart. The function transforms the guest cart to a user’s cart by replacing the

cookie with a user id. The user id is retrieved from Cognito when the user signs in, is stored in local

memory, and then sent with the request to migrate the cart.

The Checkout Lambda function has access to two database tables. The function retrieves the

cart from the Cart table and stores the finished order in the Order table. Once the cart is retrieved,

the function saves a copy of the cart and deletes it from the Cart table. The function then parses the

quantity and product id values from the cart as a list. This list is then stored inside the Order table

with the user id. The specific information for each product is not stored in the Order table to reduce

the size and cost of the database; instead product ids are stored in the Products database table.

4 Performance and Cost Analysis

4.1 Cost Comparison

First, we compared the cost of the serverless architecture with the traditional 3-tiered informa-

tion system. The cost of the Lambda functions, Cognito, API Gateway, DynamoDB and the S3

bucket will be investigated in the tests.

4.1.1 Cost of Serverless Design

We inserted 1,000 randomly generated orders into the Order DynamoDB database table for the

comparison. There are two other database tables that were used in the calculation: the Products

table, which contains the product information, and the Cart table, which is used to store carts. All

three of the databases will be included in the cost analysis.

AWS rounds up to the nearest gigabyte for storage costs and every database used for the calcu-

lation held less than one gigabyte of data. The cost for storage will be calculated as the cost for one

gigabyte of data stored [17]. Each gigabyte stored in DynamoDB costs 25 cents and three databases

20

will cost 75 cents per month. It is worth mentioning that the storage cost is only .75
11.29 = 6.6% of the

total monthly cost. Instead, the dominate portion of the cost was incurred by the Lambda function

execution with a percent of 38.7%, as shown in Figure 4.1. The number of read from, and writes

to the databases was set to one million per month to allow for growth within the same price range.

The 1 million writes per month costs $1.25 per database and the one million writes per month costs

13 cents per database. Which calculates to $4.89 per month for the database access cost [17].

Figure 4.1: Cost Calculation for the Serverless Architecture

The cost of Cognito was not shown in Figure 4.1, but we examined the cost. Cognito is free for

the first 50,000 users, so it was not included in the price comparison because we assume the number

of users will be under 50,000. The S3 buckets cost 2 cents per gigabyte and the current application

is much smaller than one gigabyte [17]. AWS rounds up to one gigabyte for the S3 buckets, so two

cents was used for the comparison.

The API Gateway costs $3.50 for every 1 million requests [17]. Using multiple API Gateways

for the back end does not increase the cost. The cost is calculated by the amount of requests made

each month between all of the API Gateways. In the cost comparison, the amount of requests made

will be increased in one million increments. The two services that will be increased in one million

increments are the API Gateway and Lambda.

The cost for Lambda functions is calculated by the number of requests received as well as the

time it takes for the Lambda function to process each request. The first request a Lambda function

receives requires more time to process than subsequent requests. This is called a cold start. A cold

start incurs larger latency because the service is initializing the cloud hardware and software. All

subsequent requests the Lambda function receives are called warm starts and will be processed in a

much smaller amount of time. Warm starts are much faster than cold starts because the underlying

hardware and software has been initialized and cache memory has been warmed up. The Lambda

function will shut down again after a short time frame and the next request after the Lambda function

21

has shut down will be a cold start. To average the runtime for the Lambda functions, we used one

cold start and two warm starts.

We used the average of one cold start and two warm start run times because it takes into account

users performing more than one action in quick succession. The average time used in the cost

comparison was (829 + 63 + 71)/3 = 321 milliseconds. We used the Add to Cart function to

retrieve the run time values because it is the function that requires the longest time to run. The cost

for each one million requests to the Lambda function is $2.88. Figure 4.1 contains total cost for one

million requests.

4.1.2 Cost of Traditional 3-Tiered Design with EC2 Servers

Figure 4.2: EC2 Total Cost Chart

We used the t3.medium EC2 server for the cost comparison because it is a server capable of

storing an application server and is less expensive than the other options [40]. The t3.medium server

has four gigabytes of memory and two virtual CPUs. The server is considered general purpose and

can be used for small web servers. The t3 EC2 servers also have burstable performance, allowing

the server to handle a larger amount of requests for a short period of time [40]. The t3.medium EC2

server is a low priced server in AWS.

For the on-demand pricing model, the t3.medium EC2 server costs $30.37. When the on-

demand model is used, the cost for the server must be payed monthly. The EC2 server can be

shut down at any time to remove this cost. AWS also offers EC2 Reserved Instances which reduce

the cost of an already running server. When this model is used for the EC2 server, the cost for a

year of using the service must be payed up front. If the EC2 server is removed from the account,

the cost for the year will still be charged [41]. If the reserved model is used, then a heavy discount

will be added to the EC2 server on-demand cost. Both of these models, with the cost of a database,

are shown in Figure 4.2.

The Relational Database Service (RDS) was used instead of a DynamoDB database table. RDS

22

can be connected with an EC2 server, a small RDS costs $50.17 per month [17]. The cost can be

reduced by using a Reserved Instance and paying for the cost of the service upfront. If the cost for

a year is payed upfront, the cost for the RDS per month is reduced to $42.35 [17]. When the RDS is

included, The total cost, per month, for the on-demand EC2 server is $80.14. If the reserved model

is used and the cost is payed in advance for both services, the total cost is $60.10.

4.1.3 Cost Comparison Between the Serverless and 3-Tiered Architecture

Figure 4.3: Cost Analysis of Lambda Function vs EC2 Machine

Figure 4.3 represents the cost comparison we performed with the two architectures. The chart

increases by one million request increments and it includes the base price for all services listed above

as well as an increase in the price for Lambda and the API Gateway. The Lambda and API Gateway

cost increase for one million request increments. Based on Figure 4.3, when the back end receives

between 11 and 12 million requests per month, the on-demand EC2 machine becomes the more cost-

effective approach. If the provisioned cost model is being used, the EC2 machine becomes more

cost-effective between 9 and 10 million requests. If a company has more than 9 million incoming

requests per month, then using a provisioned EC2 server is a cost-effective approach.

23

Figure 4.4: Athena Query Flow

4.2 Athena Data Analytics

Because DynamoDB cannot perform complex joins between tables, we used AWS Athena to

perform data analytics. The 1,000 orders stored in the Order table were used for the data analytics

in this section. Each order stored in the database table was created with three random products

and a random quantity between one and ten. The data was moved to Athena using Athena’s built

in DynamoDB connection option so more complicated queries could be run. We used Athena to

perform a join on the products database and the order database.

Athena provides several methods to retrieve data from a DynamoDB table. To use one of these

solutions, a data source must be created. Data sources are used as a connection between Athena and

the data source. When a data source is first created, the type of data source must be selected. For

the purposes of this test, we chose DynamoDB as the data source. Once the data source is chosen,

Athena must be connected to a Lambda function. The Lambda function will retrieve the data from

DynamoDB and store it in an S3 bucket. Athena will then perform queries on the data in the S3

bucket.

Figure 4.5 represents an example query that returns the revenue gained from each product on

the menu. The SQL query flattens the list of products in each order so they are in one column. This

is done with the cross join unnest command. Once completed, the sum of each price is computed

by multiplying the corresponding quantity with the price and summing up the result. The price

is retrieved from the products database by joining the two tables with the product id’s. The two

columns that are returned are the name of the product and it’s total revenue. The result is then

grouped by the name to create an easy to read format.

The query requires a little over seven seconds to run. Any subsequent runs for the same query

require five seconds to finish. The amount of data scanned for the query is 183 kilobytes. Athena

rounds up all queries to ten megabytes when calculating the cost for the month. Because the data

24

Figure 4.5: Athena Profit Query

scanned is much smaller than ten megabytes, there is room for many queries to be made without

increasing the cost for the service [17].

Once the query is finished, the columns are displayed below the editor and can be exported. We

exported the results to an Excel file to represent the analytical value that Athena can provide. Figure

4.6 represents the query results as a bar chart. The X-axis is the name of the product and the Y-axis

is the revenue in dollars. Each product was chosen at random so the chart does not represent any

relationship between the products and the revenue. We created this chart to represent the capabilities

of Athena.

A query which displays the total revenue gained from each client was also created to represent

the capabilities of Athena. The revenue was sorted in descending order to display the high spenders.

Figure 4.7 displays the code used for this query. The columns returned in the results are the user id

and the revenue. The values are grouped by user id, and the revenue is sorted in descending order.

The query requires nine seconds to run. Any subsequent queries require five seconds to complete.

The data returned is 222KB, which is lower than ten megabytes.

AWS Athena is a powerful tool that can perform useful queries. With a more specific business

model, Athena will be a useful tool to create queries and perform data analytics on the database

tables. For example, Athena can be used to show the profit made each month as well as get insights

into the popularity of each product. Athena or a third-party software is necessary to query the

database and perform data analytics when DynamoDB is used for data storage.

25

Figure 4.6: Sales Report for Each Product

Figure 4.7: Athena Users Revenue Query

4.3 Performance Comparison

In this section we compare the execution time cost of the serverless architecture and the 3-tiered

architecture. First, we will calculate the performance of the EC2 machine. The following section

will calculate the performance of the serverless architecture.

26

4.3.1 Execution Time of Traditional 3-Tiered System

We created an EC2 server with an Apache web server and an RDS to test the execution time.

The web server used PHP for the back end and HTML for the front end. The RDS was accessed

through MySQL commands. The latest version of PHP, Apache, HTML, and MySQL were used.

The specific versions are displayed in Figure 4.8. The front end and the back end of the system is

stored in the EC2 machine and the database is stored in the RDS.

The front end of the web server retrieves a user id and a description from the user. Once the

values are retrieved from the user, a call to the database stored in the RDS is made. The values

are stored in the database and then retrieved and displayed on the web page. The server was setup

to represent a product being added to a user’s cart. The database calls were much faster than the

serverless architecture.

Figure 4.8: Web Server Software Version Chart

After ten runs, the longest database call for the EC2 machine was ten milliseconds. The time

was calculated by retrieving the current time before the database call as well as the time after the

database call was completed. The time after the database call was then subtracted from the initial

time to calculate the total time needed to perform the call.

4.3.2 Execution Time of Serverless System

To calculate the efficiency of the serverless system, we tested the time it takes the Lambda

functions to run. The Lambda functions are the most time consuming service in the back end. We

tested the efficiency of the Lambda functions by separating them into cold start times and warm

start times. For the cold starts we ran each Lambda function five times and recorded the maximum

value.

Figure 4.9 represents each functions longest cold start time. The functions with the longest run-

time are the login, register and add to cart functions respectively. These functions require the most

27

Figure 4.9: Cold-Start Execution Time

time to run because they perform more computationally intense tasks than the other functions. The

cold start time for the login and register functions is longer than one second. These two functions

need to send a request to Cognito which requires more time. The Add to Cart function is the most

used function in the system and requires one second to run a cold start.

To reduce the time the Add to Cart function requires to run, we created a dummy request to

warm the function. The dummy request is sent whenever the page is reloaded. Having a dummy

request will increase the cost of the function by a small margin, but the decrease in runtime is

significant. The runtime for the Add to Cart function is less than 100 milliseconds for a warm start

as seen in Figure 4.10.

The increase in efficiency is significant for the other Lambda functions. Figure 4.10 represents

the function’s average runtime after a cold start. We ran each of the functions in Figure 4.10 ten

times after the initial cold start. The average of the ten runs was used for the graph. The Login,

Register, Migrate Cart, and Checkout functions were not included because most users will only run

them once.

The Add to Cart, Update Cart and Get Product Lambda functions have the largest increase in

28

efficiency once the function is warmed up. The Add to Cart function’s runtime decreases from over

one second to less than 100 milliseconds on average. The Update Cart and Get Product Lambda

functions runtime decreases from 250 milliseconds to less than 90 milliseconds. With the dummy

request reducing the runtime for the Add to Cart function, all of the functions that are used for the

cart require less than 400 milliseconds to run.

Figure 4.10: Average Warm Start Execution Time

5 Conclusion
Our serverless architecture is a good choice for smaller businesses trying to reduce financial cost

for their information system. The cost for the serverless architecture uses a pay-as-you-go model.

During the hours of the day when traffic is low, the infrastructure will cost less than when the traffic

is high. The benefit for smaller businesses is the website is available to customers without paying

for the idle time.

Our serverless design will cost less than the on-demand 3-tiered traditional design as long as

the number of requests is less than 11 million per month. If a reserved instance is used for both the

EC2 machine and the RDS, then our proposed system is more cost-effective while the number of

requests, per month, is below 8 million. A disadvantage of our design is that DynamoDB cannot

29

produce advanced reporting for the system.

DynamoDB does not allow for complicated joins, unlike the traditional relational database.

Because DynamoDB does not support joins, creating complex reports is not possible. To solve

this problem, we used AWS Athena to perform the complicated joins and create complex reports.

With Athena, multiple databases can be exported into S3 buckets and then complicated joins can

be performed. This mitigates the disadvantage of a NoSQL database, but will cost extra money for

each report generated. However, complex report generation is performed much less frequently in

practice.

Our serverless design is more cost-effective than the traditional 3-tiered design, but it is not more

efficient. The EC2 machines in the traditional design more efficient than the Lambda functions in

the serverless design. The Lambda functions need to be initialized, receive the request, process the

request, and then send a response back to the front end. Performing an initial dummy request to

remove the cold start time is feasible. Performing the dummy start will increase the Lambda func-

tion’s efficiency, but the Lambda function will still process requests slower than the EC2 machine.

For most information systems, a delay of 100 milliseconds will not greatly undermine the user ex-

perience. However, if the application must provide feedback to the user in under 100 milliseconds,

then an EC2 machine is the better choice.

6 Future Work
To increase the usability of the serverless application we built, we will share an easy to build

version of the product publicly on the internet. The application is currently stored in GitHub and

can be accessed by the public. However, the GitHub repository only contains the code for the

functions and the front end. If other developers want to use the code, they need to create their own

functions in AWS and import the code. To simplify this process, the code can be used in conjunction

with CloudFormation to allow anyone to build the entire project using a CloudFormation script. The

CloudFormation script contains instructions that will deploy the entire information system in a more

convenient way.

The other improvement that could be made on this project will be to increase the amount of

reporting tools. Athena has the capability generate reports which could be useful to an e-commerce

business. For example, reports on customer loyalty could be used to reward repeat customers with

30

discounts or promotions. Athena could be used to create a report showing what time of the day users

place their orders. In the future, we will add these functionalities into the proposed information

system.

31

References
[1] W. Hong, J. Y. Thong, and K. Y. Tam, “Designing product listing pages on e-commerce

websites: an examination of presentation mode and information format,” International

Journal of Human-Computer Studies, vol. 61, no. 4, pp. 481–503, 2004. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S107158190400014X

[2] K. Abhinav, M. Vishal, and N. Erich, “Controlling the performance of

3-tiered web sites: Modeling, design and implementation,” Jun 2004. [On-

line]. Available: https://dl.acm.org/doi/pdf/10.1145/1005686.1005744?casa token=

YchoGA1K4PMAAAAA:3f7iDd-bETKLiUPD0AkVFDlKlabFiRfX7PDTUtkbympEw

9eUXDFSP-ELGdW91WNV9l WCgAobBGMw

[3] X. Liu, J. Heo, and L. Sha, “Modeling 3-tiered web applications,” in 13th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-

tems, 2005, pp. 307–310.

[4] R. L. Grossman, “The case for cloud computing,” IT Professional, vol. 11, no. 2, pp. 23–27,

2009.

[5] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud computing,” in 2011 IEEE

International Conference on Services Computing, 2011, pp. 370–377.

[6] E. Brynjolfsson, P. Hofmann, S. L. i. P. Alto, and J. Jordan, “Cloud com-

puting and electricity: Beyond the utility model: Communications of the acm:

Vol 53, no 5,” May 2010. [Online]. Available: https://dl.acm.org/doi/fullHtml/

10.1145/1735223.1735234?casa token=VIX72dJv 5IAAAAA\%3Aw5k4DZ5L-rKTj

IsBSoi5ovzjUcY-QGMKRUNAhnYWrhR4D-yQDvHrRkz0YkFFlSyZQqYt9Nuq4bi

[7] I. Bermudez, S. Traverso, M. Mellia, and M. Munafò, “Exploring the cloud from passive

measurements: The amazon aws case,” in 2013 Proceedings IEEE INFOCOM, 2013, pp.

230–234.

[8] G. Wang and T. S. E. Ng, “The impact of virtualization on network performance of amazon

ec2 data center,” in 2010 Proceedings IEEE INFOCOM, 2010, pp. 1–9.

32

[9] [Online]. Available: https://aws.amazon.com/route53/what-is-dns/

[10] J. Nadon, Database Services in AWS. Berkeley, CA: Apress, 2017, pp. 127–151. [Online].

Available: https://doi.org/10.1007/978-1-4842-2589-9 10

[11] L. N. G., “Database migration on premises to aws rds,” EAI Endorsed Transactions on Cloud

Systems, vol. 3, no. e11, 4 2018.

[12] S. Eismann, J. Scheuner, E. Van Eyk, M. Schwinger, J. Grohmann, N. Herbst, C. Abad, and

A. Iosup, “The state of serverless applications: Collection, characterization, and community

consensus,” IEEE Transactions on Software Engineering, pp. 1–1, 2021.

[13] K. Kritikos and P. Skrzypek, “A review of serverless frameworks,” in 2018 IEEE/ACM Inter-

national Conference on Utility and Cloud Computing Companion (UCC Companion), 2018,

pp. 161–168.

[14] [Online]. Available: https://aws.amazon.com/lambda/

[15] [Online]. Available: https://aws.amazon.com/api-gateway/

[16] J. Han, H. E, G. Le, and J. Du, “Survey on nosql database,” in 2011 6th International Confer-

ence on Pervasive Computing and Applications, 2011, pp. 363–366.

[17] [Online]. Available: https://calculator.aws/#/

[18] [Online]. Available: https://www.oracle.com/internet-of-things/what-is-iot/

[19] R. A. P. Rajan, “Serverless architecture - a revolution in cloud computing,” in 2018 Tenth

International Conference on Advanced Computing (ICoAC), 2018, pp. 88–93.

[20] T. Elgamal, A. Sandur, K. Nahrstedt, and G. Agha, “Costless: Optimizing cost of serverless

computing through function fusion and placement,” in 2018 IEEE/ACM Symposium on Edge

Computing (SEC), 2018, pp. 300–312.

[21] D. Bardsley, L. Ryan, and J. Howard, “Serverless performance and optimization strategies,” in

2018 IEEE International Conference on Smart Cloud (SmartCloud), 2018, pp. 19–26.

33

[22] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V. Sreekanti, A. Tumanov, and

C. Wu, “Serverless computing: One step forward, two steps back,” 2018. [Online]. Available:

https://arxiv.org/abs/1812.03651

[23] R. Cordingly, H. Yu, V. Hoang, Z. Sadeghi, D. Foster, D. Perez, R. Hatchett, and W. Lloyd,

“The serverless application analytics framework: Enabling design trade-off evaluation for

serverless software,” in Proceedings of the 2020 Sixth International Workshop on Serverless

Computing, ser. WoSC’20. New York, NY, USA: Association for Computing Machinery,

2020, p. 67–72. [Online]. Available: https://doi.org/10.1145/3429880.3430103

[24] M. Wurster, U. Breitenbücher, K. Képes, F. Leymann, and V. Yussupov, “Modeling and auto-

mated deployment of serverless applications using tosca,” in 2018 IEEE 11th Conference on

Service-Oriented Computing and Applications (SOCA), 2018, pp. 73–80.

[25] S. Hong, A. Srivastava, W. Shambrook, and T. Dumitras, “Go serverless: Securing cloud via

serverless design patterns,” in 10th USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud 18). Boston, MA: USENIX Association, Jul. 2018. [Online]. Available:

https://www.usenix.org/conference/hotcloud18/presentation/hong

[26] A. Mujezinovix0107; and V. Ljubovix0107;, “Serverless architecture for workflow scheduling

with unconstrained execution environment,” in 2019 42nd International Convention on In-

formation and Communication Technology, Electronics and Microelectronics (MIPRO), 2019,

pp. 242–246.

[27] D. Chahal, R. Ojha, M. Ramesh, and R. Singhal, “Migrating large deep learning models to

serverless architecture,” in 2020 IEEE International Symposium on Software Reliability Engi-

neering Workshops (ISSREW), 2020, pp. 111–116.

[28] A. Parres-Peredo, I. Piza-Davila, and F. Cervantes, “Building and evaluating user network pro-

files for cybersecurity using serverless architecture,” in 2019 42nd International Conference

on Telecommunications and Signal Processing (TSP), 2019, pp. 164–167.

[29] M. S. Kurz, “Distributed double machine learning with a serverless architecture,” in

Companion of the ACM/SPEC International Conference on Performance Engineering, ser.

34

ICPE ’21. New York, NY, USA: Association for Computing Machinery, 2021, p. 27–33.

[Online]. Available: https://doi.org/10.1145/3447545.3451181

[30] M. M. Rahman and M. Hasibul Hasan, “Serverless architecture for big data analytics,” in 2019

Global Conference for Advancement in Technology (GCAT), 2019, pp. 1–5.

[31] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,

and R. H. Arpaci-Dusseau, “Serverless computation with OpenLambda,” in 8th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 16). Denver, CO: USENIX

Association, Jun. 2016. [Online]. Available: https://www.usenix.org/conference/hotcloud16/

workshop-program/presentation/hendrickson

[32] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a serverless architecture,” in

IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, 2019, pp. 1288–

1296.

[33] [Online]. Available: https://aws.amazon.com/cognito/

[34] [Online]. Available: https://aws.amazon.com/cloudwatch/

[35] [Online]. Available: https://reactjs.org/

[36] [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP

[37] [Online]. Available: https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/

JSON

[38] M. Contributers, “Cross-origin resource sharing (cors) - http: Mdn,” 2022. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

[39] M. Labs, “What are computer cookies?” Sep 2021. [Online]. Available: https:

//www.malwarebytes.com/blog/news/2021/09/what-are-computer-cookies

[40] [Online]. Available: https://aws.amazon.com/ec2/instance-types/t3/

[41] [Online]. Available: https://aws.amazon.com/ec2/pricing/reserved-instances/

35

Vita

Author: Isaac C. Angle

Place of Birth: Knoxville, Tennessee

Undergraduate Schools Attended: Spokane Community College,

Whitworth University

Degrees Awarded: Bachelor of Science, 2020, Whitworth University

Honors and Awards: Graduate Assistantship, Computer Science Department, 2020-2022, Eastern

Washington University

36

	Towards Cloud-Based cost-effective serverless information system
	signature_page

