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Abstract

In this thesis, a class of flow quantum Lotka-Volterra genetic algebras (FQLVG-

A) is investigated and its structure is studied. Moreover, the necessary and sufficient

conditions for the associativity and alternatively of FQGLV-A are derived. In addition,

idempotent elements in FQGLV-A are found. Also, derivations of a class of FQLVG-A

are described. Also, the automorphisms of a class of FQLVG-A and their positivity are

examined.

Keywords: Flow quantum Lotka-Volterra genetic algebras, Jordan algebra, associa-

tivity, idempotent, derivation, automorphism.
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Title and Abstract (in Arabic) 

 

 𝑴𝟐(ℂ) الكم المتدفق من الجبر الوراثي للوتكا فولتيرا على

 صالملخ

في هذه الأطروحة، تم البحث في مجموعة من الكم المتدفق من الجبر الوراثي للوتكا ا

فولتيرا ودراسة هيكلها. علاوة على ذلك، تم اشتقاق الشروط الضرورية والكافية لخواص التجميع 

 والتبديل الى مجموعات الكم المتدفق من الجبر الوراثي للوتكا فولتيرا. بالإضافة إلى ذلك، تم إيجاد

العناصر المثالية في لتك المجموعات. أيضا، تم وصف مشتقات مجموعات الكم المتدفق من الجبر 

الوراثي للوتكا فولتيرا. أيضاً، تم فحص الأشكال التلقائية الى مجموعات الكم المتدفق من الجبر 

 .الوراثي للوتكا فولتيرا ومتى تكون موجبة

الكم المتدفق من الجبر الوراثي للوتكا فولتيرا، جبر جوردن، التجمبع، : مفاهيم البحث الرئيسية

.عنصر مثالي، المشتقة، شكل تلقائي  
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Chapter 1: Introduction

1.1 Literature review

The history of the quadratic stochastic operators can be traced back to the

work of Bernshtein in 1924 [1]. Many physical systems were investigated by reducing

them to Markov processes which connected with these systems. Quadratic dynamical

systems have been proved to be a rich source of analysis for the investigation of dy-

namical properties and modeling in different domains, such as population dynamics

[1-3], physics [4, 5], economy [6], mathematics [7-9]. However, there are systems that

were not described by Markov processes. Many of these problems involve quadratic

stochastic operators. One of such systems is given by Quadratic Stochastic Operators

(QSO), which is related to population genetics [1]. The problem of studying the behav-

ior of trajectories of quadratic stochastic operators was stated in [9]. Let us describe

this model.

Consider a biological population, that is, a community of organisms closed

with respect to reproduction according to Bernstein [1]. Assume that every individ-

ual in this population belongs to precisely one of the species 1,2, ...,n. The scale of

species is such that the species of parents i and j unambiguously determine the proba-

bility of every species k for the first generation of direct descendants. The probability

(the heredity coefficient) is denoted by pi j,k. Then,

pi j,k ≥ 0
n

∑
i=1

pi j,k = 1,∀i, j,k.

Assume that the population is so large that frequency fluctuation can be ne-

glected. Then, the state of the population can be described by the tuple x=(x1,x2, ...,xn)

of species probabilities, that is, xi is the fraction of the species i in the population.

In the case of random interbreeding, the parents pairs i and j arise for a fixed state
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x = (x1,x2, ...,xn) with probability xix j. Hence,

x′k =
n

∑
i, j=1

pi j,kxix j (1.1)

is the total probability of the species k in the first generation of direct descendants.

The set:

Sn−1 =

{
x = (x1,x2, ...,xn)|xi ≥ 0,

n

∑
j=1

x j = 1

}

is an (n−1)-dimensional simplex. Since x′j ≥ 0 and ∑
n
j=1 x′j = 1, the quadratic stochas-

tic operator is defined by formula (1.1) maps Sn−1 into itself. The concept of quadratic

stochastic operator was introduced by Bernstein [1]. The problem of investigation the

trajectories of quadratic stochastic operator was posted in Ulam [9]. Complicated and

bulky recurrences made it impossible to develop analytical methods. The study of con-

crete quadratic operator involved a lot of calculations, which did not stimulate interest

in this problem.

Let V,W, and X be three vector spaces over the same field F . A bilinear map

is a function:

B : V ×W → X

such that for all w ∈W , the map Bw:

v→ B(v,w)

is a linear map from V to X , and for all v ∈V , the map Bv:

w→ B(v,w)

is a linear map from W to X .

For example, if a vector space V over the real numbers R carries an inner prod-

uct, then the inner product is a bilinear map V ×V → R.
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An algebra is a vector space equipped with a bilinear product. The multiplica-

tion in an algebra may or may not-associative, leading to the notations of associative

algebra or non-associative algebras. An algebra is unital or unitary if it has an identity

element with respect to the multiplication. For example, complex numbers is associa-

tive and commutative with the bilinear operator:

(a+ ib) · (c+ id),a,b,c,d ∈ R.

Another example is R3 with bilinear operator is the cross product of vectors.

Then, it is neither associative nor commutative. The third example is R4 with Hamilton

product as bilinear operator:

(a1 +b1
−→
i + c1

−→
j +d1

−→
k )(a2 +b2

−→
i + c2

−→
j +d2

−→
k )

= (a1a2−b1b2− c1c2−d1d2)

+(a1c2−b1d2 + c1a2 +d1b2)
−→
i

+(a1b2 +b1a2 + c1d2−d1c2)
−→
j

+(a1d2 +b1c2− c1b2 +d1a2)
−→
k

is associative but not commutative.

In mathematical genetics, genetic algebras are (possibly non-associative) used

to model inheritance in genetic. In application of genetic, this algebra often has a ba-

sis corresponding to genetically different gametes, and the structure constant of the

algebra encode the probabilities of producing offspring of various types. There exist

several classes of non-associative algebras (baric, evolution, Bernstein, train, stochas-

tic, etc.), whose investigations have provided a number of significant contributions to

theoretical population genetics. Such classes have been defined different times by sev-

eral authors, and all algebras belonging to these classes are generally called genetic.

In recent years many authors have tried to investigate the difficult problem of classi-

fication of these algebras. The most comprehensive references for the mathematical
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research done in this area are [8, 10-13].

Let A be an algebra over a field K. Assume that A admits a basis {e1, ...,en}

such that the multiplication constants pi j,k with respect to this basis, are given by

ei ◦ e j =
n

∑
k=1

pi j,kek.

We say that A is a genetic algebra if the multiplication constants Pi j,k satisfy

1. pi j,k ≥ 0,

2. ∑
n
k=1 pi j,k = 1.

General properties of genetic algebras were investigated in [8]. One of the im-

portant algebras is Lotka-Volterra genetic algebras which emerge in connection with

biological problems and Lotka Volterra systems for the interactions of neighboring in-

dividuals. Lotka-Volterra algebras over the real numbers were introduced in 1981 by

Y. Itoh [14]. These algebras are associated to quadratic differential equations [15, 16]

and they give descriptions of solutions and singularities. These algebras present many

connections with other mathematical fields including graph theory, Markov chains, dy-

namical systems and theory of population genetics, [17, 8]. P. Holgate showed how a

derivation of a genetic algebra can be interpreted in biological terms [18]. In [19-24], a

classification of the derivations of Lotka-Volterra algebras up to dimension 3 has been

given and also the paper [25] gives some examples of derivations of Lotka-Volterra

algebras with dimension 4. However, the classification in dimension 4 is not complete.

More details can be found in [26-28].

A system which has a rule that gives a description of the time dependence

of the state is called a dynamical system. In this thesis, we study a dynamical sys-

tem in which at a specific time it has a state that is a finite-dimensional algebra. A

Kolmogorov-Chapman equation that describes what the states follow for the present

algebra is called the evolution rule of this dynamical system. One can see that any

finite-dimensional algebra can generate a cubic matrix of structural constants. This
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matrix produces an evolution quadratic operator. For this reason, dynamical systems

produced by quadratic operators have significant attention and become one of the main

factors to make researchers study the dynamical properties and modeling in many do-

mains, such as population dynamics [1], physics [5], economy [6] or mathematics [29].

In recent work in [30, 31, 32, 33, 34], several chains of evolution algebras were

given and investigated. In each of these papers, the matrices of structural constants

(depending on pair of time (s, t)) are square or rectangular and satisfy the Kolmogorov

Chapman Equation. This means a chain of evolution algebras is a continuous-time dy-

namical system which in any fixed time is an evolution algebra. It is well-known that

any matrix satisfying the Kolmogorov–Chapman Equation is stochastic which gener-

ates a Markov process. Hanggi and Thomas [35] studied time evolution of non-Markov

processes as they occur in coarse-grained description of open and closed systems. Sev-

eral properties of the theory are given for the two-state process and Gauss process. In

[29], they generalized the notion of chain of evolution algebras to a notion of flow of

arbitrary finite-dimensional algebras and their matrices of structural constants are cu-

bic matrices. Due to the general form of the matrix of structural constants in each flow

of algebras, the non-Markov processes of [35] can be derived from structural constant

matrices in chains or flows of algebras. Therefore, they can be applied to biology and

physics.

The purpose of this thesis is to investigate a quantum analogues of genetic al-

gebras, and to discuss in detail many properties of a Flow Of Quantum Lotka-Volterra

Genetic Algebras (FQLVG-A). It is worth mentioning that such types of algebras are

first appeared in this thesis.

A flow of algebras is a particular case of a continuous-time dynamical system

whose states are algebras, the matrix of structural constant of which depending on time

and satisfy an analogue of the Kolmogorov-Chapman Equation (KCE), see [40]. Since

there are several kinds of multiplications between cubic matrices, the multiplication

in this thesis is fixed and then one can study the KCE for this fix multiplication. The

existence of the solution of KCE provides the existence of a flow algebra. The aim
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of this thesis is to construct the flow algebras with respect to the given multiplication.

Moreover, some time-dependant behavior properties of such flow algebras are given.

1.2 Objectives

The followings are main objective of this thesis.

1. To construct a class of Quantum Genetic Algebras (QGA) depending on param-

eter t.

2. To investigate structures of a class of FQLVGA.

3. To describe derivations of a class of FQLVGA.

4. To describe automorphisms of a class of FQLVGA.

1.3 Overview

This thesis consists of six chapters. Chapter 2 contains preliminary facts and

necessary definitions of positive maps. Moreover, positive, trace preserving and unital

operators on M2(C) are described. The quadratic stochastic operators are defined as

well at the end of this chapter, some properties of quantum quadratic stochastic op-

erators on M2(C) are presented. Chapter 3 is divided into three sections. In the first

section, symmetric commutative q.q.o.s on the commutative algebra DM2(C) are de-

scribed. In the second one, symmetric quasi q.q.o. on DM2(C) are studied. In the third

section, a quantum analogue of Lotka-Volterra operators on M2(C) is defined. Also,

some properties of these operators are presented. In chapter 4, a flow of quantum

genetic Lotka-Volterra algebras are defined. Moreover, the necessary and sufficient

conditions for the associativity and alternatively of FQGLV-A are derived. Also, the

idempotent elements in FQGLV-A are found. Chapter 5 is devoted to the derivations

of FQGLV-A. In Chapter 6, ten types of automorphisms are derived and necessary

conditions are obtained.
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Chapter 2: Preliminaries

2.1 Positive elements in Mn(C )

Let H be the n−dimensional Hilbert space Cn. The inner product between

two vectors x and y is written as 〈x,y〉, where

〈x,y〉=
n

∑
i=1

xiyi,

x = (x1,x2, ...,xn),y = (y1,y2, ...,yn). It is noted that inner product is linear in the first

variable and conjugate linear in the second. L (H ) is denoted to be the space of all

linear operators on H , and by Mn(C) or simply Mn to be the space of n×n matrices

with complex entries. Every element A of L (H ) can be identified with its matrix

with respect to the standard basis {e j} of Cn. The symbol A is used for this matrix as

well. In what fellows, 1 is denoted the identity operator in H (i.e., 1x = x,x ∈H ). A

matrix A is called positive if

〈x,Ax〉 ≥ 0 (2.1)

for all x in H . The notation A≥ 0 is used to mean that A is positive. There are several

conditions that characterize positivity of matrices. Some of them are listed below.

Theorem 2.1.1 A matrix A is positive if and only if one of the following conditions

holds

(i) A is Hermitian (A = A∗) and all its eigenvalues are nonnegative.

(ii) A is Hermitian and all its principal minors are nonnegative.

(iii) A = B∗B for some matrix B.

(iv) A = B2 for some positive matrix B. Such B is unique. In this case, B = A1/2 and
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call it the (positive) square root of A.

If A,B are Hermitian, it is said that A≥ B if A−B≥ 0. Some notations

will be fixed. The polar decomposition of A is written as A = UP. If the factor U

is unitary and P is positive, then P = (A∗A)1/2. This is called the positive part or the

absolute value of A and is written as |A|. This implies that A∗ = PU∗, and:

|A∗|= (AA∗)1/2 = (UP2U∗)1/2 =UPU∗.

A is said to be normal if AA∗ = A∗A. This condition is equivalent to UP = PU ;

and to the condition |A| = |A∗|. The singular value decomposition of A is written as

A = USV . Here U and V are unitary and S is diagonal with nonnegative diagonal

entries s1(A) ≥ ... ≥ sn(A). These are the singular values of A. The symbol ‖A‖ will

always denote the norm of A as a linear operator on the Hilbert space H , i.e.,

‖A‖= sup
‖x‖=1

‖Ax‖= sup
‖x‖≤1

‖Ax‖.

It is easy to see that ‖A‖= s1(A). Among the important properties of this norm

are the following:

‖AB‖ ≤ ‖A‖‖B‖,

‖A‖= ‖A∗‖,

‖A‖= ‖UAV‖, (2.2)

for all unitary U,V . This last property is called unitary invariance. Finally,

‖A∗A‖= ‖A‖2. (2.3)

There are several other norms on Mn(C) that share the three properties (2.2).

It is the condition (2.3) that makes the operator norm ‖ · ‖ very special. A matrix A is
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called contractive, or A is a contraction, if ‖A‖ ≤ 1. Next are some known results.

Proposition 1 [41] The operator A is contractive if and only if the operator

 1 A

A∗ 1


is positive.

Proposition 2 [41] Let A,B be positive. Then the matrix

 A X

X∗ B



is positive if and only if X = A1/2KB1/2 for some contraction K.

Theorem 2.1.2 [41] Let A,B be positive matrices. Then the block matrix

 A X

X∗ B



is positive if and only if A≥ XB−1X∗.

Lemma 2.1.3 [41] The matrix A is positive if and only if

 A A

A A


is positive.
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Proof. From  A A

A A

=

 A1/2 0

A1/2 0


 A1/2 A1/2

0 0

 ,

one gets the desired assertion.

Corollary 2.1.4 Let A be any matrix. Then the matrix:

 |A| A∗

A |A∗|


is positive.

Proof. Use the polar decomposition A =UP to write

 |A| A∗

A |A∗|

=

 P PU∗

UP UPU∗

=

 1 0

0 U


 P P

P P


 1 0

0 U∗

 ,

and then use the Lemma 2.1.2.

Corollary 2.1.5 If A is normal, then

 |A| A∗

A |A|


is positive.

2.2 Positive mappings

A mapping Φ : Mm(C)→Mk(C) is called linear if for any A,B ∈Mm(C) and

λ ∈ C one has

Φ(λA+B) = λΦ(A)+Φ(B).
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The symbol Φ is used for a linear map from Mm(C) into Mk(C). When k = 1

such a map is called a linear functional, and the lower-case symbol ϕ is used for it.

The norm of Φ is

‖Φ‖= sup
‖A‖=1

‖Φ(A)‖= sup
‖A‖≤1

‖Φ(A)‖.

Definition 2.2.1 A linear mapping Φ: Mm(C)→Mk(C) is called

(i) unital, if Φ(1Mm(C)) = 1Mk(C).

(ii) positive, if Φ(x)≥ 0, whenever x≥ 0.

Definition 2.2.2 Let A ∈Mm(C) be a matrix. Then, trace of A is denoted by tr(A) and

it is defined by the sum of diagonal elements of A.

Definition 2.2.3 Let ϕ : Mm(C)→ Mm(C) be a linear map. Then, ϕ is called trace

preserving if and only if tr(ϕ(A)) = tr(A) for all A ∈Mm(C).

Example 2.2.1 (i) ϕ : Mm(C)→R,ϕ(A)= trA is a positive linear functional; ϕ(A)=

1
mtrA is positive and unital.

(ii) Every linear functional ϕ : Mm(C)→ R on Mm(C) has the form Φ(A) = trAX

for some X ∈ Mm(C). It is easy to see that Φ is positive if and only if X is a

positive matrix; ϕ is unital if trX = 1.

(iii) The map Φ(A) = trA
m 1 is a positive map of Mm(C) into itself. (Its range consists

of scalar matrices.)

(iv) Let Atr denote the transpose of A. Then the map Φ(A) = Atr is positive.

(v) Let X be an m× k matrix. Then Φ(A) = X∗AX is a positive map from Mm(C)

into Mk(C).

Lemma 2.2.1 [41] Every positive linear map is adjoint-preserving; i.e., Φ(T ∗) =
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Φ(T )∗ for all T .

Proof. First, Φ(A) is Hermitian if A is Hermitian is needed to prove. Every Hermitian

matrix A has a Jordan decomposition:

A = A+−A−

where A± ≥ 0. So,

Φ(A) = Φ(A+)−Φ(A−)

is the difference of two positive matrices, and is therefore Hermitian. Every matrix T

has a Cartesian decomposition:

T = A+ iB

where A,B are Hermitian. So,

Φ(T )∗ = Φ(A)− iΦ(B) = Φ(A− iB) = Φ(T ∗).

Theorem 2.2.2 [41] Let Φ be positive and unital. Then for every Hermitian A,

Φ(A)2 ≤Φ(A2). (2.4)

Remark The inequality (2.4) may not be true if Φ is not unital [37].

Theorem 2.2.3 [41] If Φ is positive and unital, then ‖Φ‖= 1.

Corollary 2.2.4 [41] Let Φ be a positive linear map. Then ‖Φ‖= ‖Φ(1)‖.
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2.3 Pauli matrices and their properties

In this section, the algebra M2(C) is considered. In the sequel, 1 is meant an

identity matrix:

1=

 1 0

0 1


and τ is denoted to be a normalized trace, i.e.

τ

 x11 x12

x21 x22

=
x11 + x22

2
.

It is known that the positivity of a matrix:

 a11 a12

a21 a22



is equivalent to the conditions: a11 ≥ 0 and a11a22−|a12|2 ≥ 0. The Pauli matrices are

denoted by σ1,σ2,σ3 which are defined as follows:

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 . (2.5)

It is noted that the identity and Pauli matrices, i.e. {1,σ1,σ2,σ3} form a basis

for M2(C). Namely, every matrix A ∈ M2(C) can be written in this basis as A =

w01+w ·σ with w0 ∈C,w = (w1,w2,w3) ∈C3, here by w ·σ is meant the following:

w ·σ = w1σ1 +w2σ2 +w3σ3.
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For the sake of completeness, let us demonstrate how the coefficients w0,w1,w2,w3

are represented by the matrix entries. Assume that:

A = w01+w1σ1 +w2σ2 +w3σ3, (2.6)

where

A =

 a11 a12

a21 a22

 .

Thus, equations (2.5) and (2.6) imply that:

 a11 a12

a21 a22

=

 w0 +w3 w1− iw2

w1 + iw2 w0−w3


which means



w0 +w3 = a11,

w1− iw2 = a12,

w1 + iw2 = a21,

w0−w3 = a22.

(2.7)

Solving System (2.7) one finds:

w0 =
a11 +a22

2
, w1 =

a12 +a21

2
, (2.8)

w2 =
a21−a12

2i
, w3 =

a11−a22

2
. (2.9)

Lemma 2.3.1 The following assertions hold true:

(i) A is self-adjoint if and only if w0,w are reals;
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(ii) A≥ 0 if and only if w0,w are reals and ‖w‖ ≤ w0, where

‖w‖=
√
|w1|2 + |w2|2 + |w3|2. (2.10)

Proof. (i). Assume A ∈ M2(C) is self adjoint, then A is represented as follows

A = w01+w1σ1 +w2σ2 +w3σ3 (2.11)

so,

A∗ = w01+w1σ1 +w2σ2 +w3σ3.

Self adjointness of A implies that:

w01+w1σ1 +w2σ2 +w3σ3 = w01+w1σ1 +w2σ2 +w3σ3

hence,

(w0−w0)1+(w1−w1)σ1 +(w2−w2)σ2 +(w3−w3)σ3 = 0.

Linearly independence of 1,σ1,σ2,σ3 yields:

w0 = w0, w1 = w1, w2 = w2, w3 = w3.

Thus, w0 and w are real. Conversely, if w0,w1,w2,w3 are real numbers, then:

A∗ = w01+w1σ1 +w2σ2 +w3σ3

= w01+w1σ1 +w2σ2 +w3σ3 = A.



16

Thus, A is self adjoint.

(ii) Assume that a matrix A ∈M2(C) is positive. This means that:

a11 ≥ 0, a11a22 ≥ |a12|2. (2.12)

According to Equations (2.8), (2.9), one gets:

w =

(
a12 +a21

2
,
a21−a12

2i
,
a11−a22

2

)
.

Then,

‖w‖=

√∣∣∣∣a12 +a21

2

∣∣∣∣2 + ∣∣∣∣a21−a12

2i

∣∣∣∣2 + ∣∣∣∣a11−a22

2

∣∣∣∣2
=

√
(a12 +a21)(a12 +a21)

4
+

(a21−a12)(a21−a12)

4
+

(a11−a22)(a11−a22)

4

=

√
(a12 +a21)(a21 +a12)

4
+

(a21−a12)(a12−a21)

4
+

(a11−a22)(a11−a22)

4

=
1
2

√
a2

12 +2a12a21 +a2
21− (a2

21−2a12a21 +a2
12)+a2

11−2a11a22 +a2
22

=
1
2

√
(a11 +a22)2−4(a11a22−|a12|2)

≤ 1
2

√
(a11 +a22)2 =

a11 +a22

2
= w0.

Conversely, assume ‖w‖ ≤ w0 holds. Since w0,w are real numbers, A is self

adjoint. This means w0 ≥ 0, which with (2.8) yields:

a11 +a22

2
≥ 0. (2.13)
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Above calculations imply that:

√
(a11 +a22)2

4
− (a11a22−|a12|2)≤

a11 +a22

2
.

Taking square for both sides of last inequality, one has:

(
a11 +a22

2

)2

− (a11a22−|a12|2)≤
(

a11 +a22

2

)2

hence,

a11a22−|a12|2 ≥ 0

which implies:

a11a22 ≥ |a12|2.

This means a11,a22 have the same sign. Due to Equation (2.13), one concludes

a11 ≥ 0. The proof is completed.

Recall that a functional f : M2(C)→ C is called a linear functional if

for any A,B ∈M2(C) and λ ∈ C, one has:

f (A+λB) = f (A)+λ f (B). (2.14)

A linear functional f is called positive if f (A)≥ 0 whenever A≥ 0. A positive

linear functional f is called a state if f (1) = 1. S(M2(C)) denotes the set of all states
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defined on M2(C). Let ϕ be a linear functional. Then,

ϕ(x) = ϕ(w01+w1σ1 +w2σ2 +w3σ3)

= w0ϕ(1)+w1ϕ(σ1)+w2ϕ(σ2)+w3ϕ(σ3)

= w0 f0 +w1 f1 +w2 f2 +w3 f3,

where fi = ϕ(σi), i = 1,2,3. Hence, any linear functional ϕ on M2(C) can be repre-

sented by

ϕ(w01+wσ) = w0 f0 + 〈w, f̄〉 (2.15)

where 〈·, ·〉 stands for the standard scalar product in C3, i.e. if p = (p1, p2, p3),q =

(q1,q2,q3) ∈ C3,

〈p,q〉= p1q1 + p2q2 + p3q3.

Let x ∈M2(C), then

x =
x+ x∗

2
+ i

x− x∗

2i
.

Denote

x1 =
x+ x∗

2
, x2 =

x− x∗

2i
.

Note that x1,x2 are self adjoint. Indeed,

x∗1 =
(

x+ x∗

2

)∗
=

x∗+ x
2

=
x+ x∗

2
= x1,

x∗2 =
(

x− x∗

2i

)∗
=

x∗− x
−2i

=
x− x∗

2i
= x2.

It is known that any self adjoint matrix x ∈ M2(C) can be represented as fol-

lows:

x = x+− x−, (2.16)
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where x+,x− are positive elements of M2(C). Hence, arbitrary x ∈ M2(C) has the

following form:

x = x1,+− x1,−+ i(x2,+− x2,−)

where x1,+,x1,−,x2,+,x2,− are positive elements of M2(C).

Lemma 2.3.2 A linear function ϕ is a state on M2(C) if and only if

ϕ(w01+wσ) = w0 + 〈w, f〉, (2.17)

where f = ( f1, f2, f3), f ∈ R3,‖f‖ ≤ 1.

Proof. ’only if’ part. Assume x ∈ M2(C) is self adjoint, then from Equation (2.16),

one finds

ϕ(x) = ϕ(x+− x−) = ϕ(x+)−ϕ(x−).

It is known that ϕ is a positive functional. Therefore, ϕ(x+),ϕ(x−) are positive

numbers. Hence, ϕ(x) is a real number. So, fi = ϕ(σi) are real numbers, i.e. f ∈ R3.

Since ϕ is a state then f0 = 1(= ϕ(1)) in Equation (2.12). Thus, Equation (2.17) is

derived. Let x ∈ M2(C) be a positive i.e. x = w01+wσ ,‖w‖ ≤ w0,w0 ≥ 0. Putting

v = 1
w0

w, one finds

‖v‖= 1
w0
‖w‖ ≤ w0

w0
= 1.

So, x = w0(1+vσ), with ‖v‖ ≤ 1. Positivity of ϕ implies that ϕ(x)≥ 0. This

means ϕ(w0(1+vσ)) = w0ϕ(1+vσ)≥ 0. From w0 ≥ 0, it follows that:

ϕ(1+vσ)≥ 0 (2.18)
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for every v ∈ R3 with ‖v‖ ≤ 1. Therefore, from Equations (2.17), (2.18), one gets

1+ v1 f1 + v2 f2 + v3 f3 ≥ 0, v = (v1,v2,v3).

So,

−
3

∑
i=1

vi fi ≤ 1

Now changing vi to −vi, implies that:

3

∑
i=1

vi fi ≤ 1.

Hence, ∣∣∣∣ 3

∑
i=1

vi fi

∣∣∣∣≤ 1 for any ‖v‖ ≤ 1. (2.19)

Put:

ṽ =

(
ν̃1, ν̃2, ν̃3

)
, ν̃i =

fi

‖f‖
.

Therefore, Equation (2.19) implies that

∣∣∣∣ 3

∑
i=1

ṽi fi

∣∣∣∣≤ 1.

This means

1
‖f‖

3

∑
i=1

f 2
i ≤ 1.

So,

1
‖f‖
‖f‖2 ≤ 1⇒‖f‖ ≤ 1.

’if’ part. Assume that Equation (2.17) is valid. The task now is to show that ϕ
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is a state on M2(C). It is clear that ϕ is a linear functional and ϕ(1) = 1. To show ϕ

is positive, let x be positive. If x = w01+wσ , then ‖w‖ ≤ w0. The Cauchy-Schwarz

inequality implies that:

|〈w, f〉| ≤ ‖w‖‖f‖ ≤ w0.

Hence,

w0 + |〈w, f〉| ≥ 0 ⇒ ϕ(x) = w0 + |〈w, f〉| ≥ 0.

By M2(C)⊗M2(C) is denoted to be the tensor product M2(C) to itself. Namely,

M2(C)⊗M2(C) =
{ n

∑
k=1

ak⊗bk

∣∣∣∣ak,bk ∈M2(C)
}‖·‖

,

where for A = (ai j),B = (bi j) one has:

A⊗B =

 b11A b12A

b21A b22A

=



b11a11 b11a12 b12a11 b12a12

b11a21 b11a22 b12a21 b12a22

b21a11 b21a12 b22a11 b22a12

b21a21 b21a22 b22a21 b22a22


.

For a given state ϕ , the following linear operators are denoted by Eϕ : M2(C)⊗

M2(C)→M2(C) and Ẽϕ : M2(C)⊗M2(C)→M2(C) by

Eϕ(x⊗ y) = ϕ(x)y, Ẽϕ(x⊗ y) = ϕ(y)x,

where x,y ∈M2(C). It is known that the defined mappings are positive, see [23].
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2.4 Bistochastic mappings on M2(C)

In this section, the positive, trace preserving and unital operators on M2(C)

will be described. Let Φ : M2(C)→M2(C) be a linear mapping. Let us find a matrix

form of Φ in {1,σ1,σ2,σ3} basis, where as before, σ1,σ2,σ3 denote Pauli matrices.

Thus,

Φ(1) = λ11+ t1σ1 + t2σ2 + t3σ3

Φ(σ1) = λ21+a11σ1 +a21σ2 +a31σ3

Φ(σ2) = λ31+a12σ1 +a22σ2 +a32σ3

Φ(σ3) = λ41+a13σ1 +a23σ2 +a33σ3. (2.20)

Therefore, the corresponding matrix of Φ is denoted by F, i.e.,

F =



λ1 λ2 λ3 λ4

t1 a11 a12 a13

t2 a21 a22 a23

t3 a31 a32 a33


.

Lemma 2.4.1 [41] Let Φ : M2(C)→M2(C) be a linear mapping. Then Φ trace pre-

serving (τ(Φ(x)) = τ(x) for all x ∈M2(C)) if and only if

F =

 1 0

t T

 , (2.21)

where t = (t1, t2, t3)T ,T = (ai j)
3
i j,0 = (0,0,0).
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Proof. ’only if’ part. Using τ(Φ(x)) = τ(x) and Equation (2.20), one finds:

τ(Φ(1)) = λ1τ(1)+ t1τ(σ1)+ t2τ(σ2)+ t3τ(σ3) = λ1 = τ(1) = 1, (2.22)

τ(Φ(σ1)) = λ2τ(1)+a11τ(σ1)+a21τ(σ2)+a31τ(σ3) = λ2 = τ(σ1) = 0,(2.23)

τ(Φ(σ2)) = λ3τ(1)+a12τ(σ1)+a22τ(σ2)+a32τ(σ3) = λ3 = τ(σ2) = 0,(2.24)

τ(Φ(σ3)) = λ4τ(1)+a13τ(σ1)+a23τ(σ2)+a33τ(σ3) = λ4 = τ(σ3) = 0.(2.25)

The reverse implication immediately comes from Equation (2.21)

Lemma 2.4.2 [41] Let Φ : M2(C)→ M2(C) be a trace preserving linear mapping.

Then one has:

Φ(w01+wσ) = w01+(w0t+Tw)σ . (2.26)

Proof. According to the matrix representation of Φ, F will be used instead of

Φ. Therefore, one gets:

Φ(wσ) = F(wσ) = F(w1σ1 +w2σ2 +w3σ3) = w1Fσ1 +w2Fσ2 +w3Fσ3. (2.27)

Note, the matrices 1,σ1,σ2,σ3 can be represented in a vector form as follows

(in 1,σ1,σ2,σ3 bases):

1= (1,0,0,0), σ1 = (0,1,0,0), σ2 = (0,0,1,0), σ3 = (0,0,0,1).



24

Hence,

w0Φ(1) = w0F(1) = w0



1 0 0 0

t1 a11 a12 a13

t2 a21 a22 a23

t3 a31 a32 a33





1

0

0

0


=



w0

w0t1

w0t2

w0t3



w1Φ(σ1) = w1F(σ1) = w1



1 0 0 0

t1 a11 a12 a13

t2 a21 a22 a23

t3 a31 a32 a33





0

1

0

0


=



0

w1a11

w1a21

w1a31



w2Φ(σ2) = w2F(σ2) = w2



1 0 0 0

t1 a11 a12 a13

t2 a21 a22 a23

t3 a31 a32 a33





0

0

1

0


=



0

w2a12

w2a22

w2a32



w3Φ(σ3) = w3F(σ3) = w3



1 0 0 0

t1 a11 a12 a13

t2 a21 a22 a23

t3 a31 a32 a33





0

0

0

1


=



0

w3a13

w3a23

w3a33
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Consequently, one finds:

Φ(wσ) =



0

w1a11

w1a21

w1a31


+



0

w2a12

w2a22

w2a32


+



0

w3a13

w3a23

w3a33


=



0

w1a11 +w2a12 +w3a13

w1a21 +w2a22 +w3a23

w1a31 +w2a32 +w3a33



=


0

Tw

 .

The last one implies:

Φ(w01+wσ) = w0Φ(1)+Φ(wσ) =

 w0

w0T

+

 0

Tw

=

 w0

w0t+TW


= w01+(w0t+Tw)σ .

The proof is complete.

Lemma 2.4.3 [41] Let Φ : M2(C)→ M2(C) be a trace preserving linear mapping.

Then, Φ is adjoint preserving if and only if t,T are real.

Proof. ’only if’ part. Let x = w01+wσ then x∗ = w01+wσ . According to Lemma

2.4.2 one has:

Φ(x) = w01+(w0t+Tw)σ (2.28)

Φ(x∗) = w01+(w0t+Tw)σ . (2.29)
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Hence,

Φ(x)∗ = w01+(w0t+Tw)σ = w0Φ(1)+(w0t+Tw)σ (2.30)

From the condition, one has Φ(x∗) = Φ(x)∗. Therefore,

w0Φ(1)+(w0t+Tw)σ = w0Φ(1)+(w0t+Tw)σ . (2.31)

So,

(w0(t− t))+(T−T)w)σ = 0 (2.32)

where w0 ∈ R and w ∈ R3 and 0 = (0,0,0). Due to the linear independence of

σ1,σ2,σ3 one gets:

w0(t− t)+(T−T)w = 0. (2.33)

Now arbitrariness of w0 and w implies:

t− t = 0, T−T = 0.

This means that t and T are real.

’if’ part. Let t and T are real, one can easily see that Φ(x∗) = Φ(x)∗.

Corollary 2.4.4 Let Φ : M2(C)→M2(C) be trace preserving linear mapping. Then Φ

is unital if and only if t = 0 and one has:

Φ(w01+wσ) = w01+(Tw)σ . (2.34)
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Proof. ’only if’ part. From Lemma 2.4.1, one finds:

Φ(1) = 1+(t)σ .

Now taking into account unitality (Φ(1) = 1) of Φ, one gets t = 0. The reverse

implication is obvious.

Proposition 2.4.5 [41] Let Φ : M2(C)→ M2(C) be a unital trace preserving linear

mapping. Then, Φ is positive if and only if T is real and ‖T‖ ≤ 1.

Proof. ’only if’ part. Since Φ is positive, then according to Lemma (2.4.3), then T

is real. Take x = w01+wσ . Without loss of generality, take w0 = 1. From equation

(2.34), one gets:

Φ(1+wσ) = 1+(Tw)σ . (2.35)

If x = 1+wσ ≥ 0, then

Φ(x) = 1+(Tw)σ ≥ 0. (2.36)

It means that ‖Tw‖ ≤ 1 for any ‖w‖ ≤ 1. Therefore, ‖T‖ ≤ 1.

’if’ part. Let T be real and ‖T‖ ≤ 1. Assume x = w01+wσ ≥ 0, that is

‖w‖ ≤ |w0|. It enough to show that:

Φ(x) = w01+(Tw)σ ≥ 0. (2.37)

Since T is real, so Φ(x) = w01+(Tw)σ is self-adjoint element. From ‖T‖ ≤ 1, one

has ‖Tw‖ ≤ ‖w‖ ≤ |w0|, which yields that Φ(x) is positive.

Remark It is noted that all positive linear mappings of M2(C) where described in [38].
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2.5 Quadratic stochastic operators

Let I = {1, . . . ,m}. {ei}i∈I is denoted to be the standard basis in Rm, i.e.

ei = (δi1, . . . ,δim), where δ is the Kronecker’s Delta. Throughout this thesis, consider

the simplex:

Sm−1 = {x = (xi) ∈ Rm : xi ≥ 0,∀i ∈ I,
m

∑
i=1

xi = 1} (2.38)

A quadratic stochastic operator (QSO) is a mapping of the simplex Sm−1 into itself of

the form

V : x′k =
m

∑
i, j=1

pi j,kxix j, k = 1,2, . . . ,m (2.39)

where pi j,k are heredity coefficients, which satisfy the following conditions:

pi j,k ≥ 0, pi j,k = p ji,k,
m

∑
k=1

pi j,k = 1, i, j,k ∈ {1,2, . . . ,m}. (2.40)

A QSO V defined by Equation (2.39) is called Lotka-Volterra operator [39] if

pi j,k = 0 if k 6∈ {i, j}, for all i, j,k ∈ I. (2.41)

Equations (2.40) and (2.41) imply that:

pii,i = 1 and pi j,i + pi j, j = 1, for all i, j ∈ I, (i 6= j). (2.42)

Remark Note that it is obvious that the biological behavior of Condition (2.41) is that

the offspring repeats one of its parents’ genotype (see [26,39]).

Let V be a QSO and suppose that x,y ∈ Rm are arbitrary vectors, a

multiplication rule (see [31]) on Rm is introduced by

(x◦y)k =
m

∑
i, j=1

pi j,kxiy j (2.43)
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where x = (x1, . . . ,xm),y = (y1, . . . ,ym) ∈ Rm. The pair (Rm,◦) is called genetic alge-

bra. It worth to mention that this algebra is commutative, i.e. x ◦ y = y ◦ x. Certain

algebraic properties of such kind of algebras were investigated in [8, 14, 20]. In gen-

eral, the genetic algebra is not necessarily to be associative. In [19], associativity of

low dimensional genetic algebras have been studied. If V is a Lotka-Volterra QSO,

then the associated genetic algebra is called genetic Lotka-Volterra algebra.

Remark Let A be a Lotka-Volterra algebra generated by heredity coefficients {pi j,k}.

Then, Equations (2.42) and (2.11) imply that

(a) for every i, j ∈ I (i 6= j), one has

ei ◦ e j = pi j,iei + pi j, je j. (2.44)

(b) e2
i = ei for every i ∈ I.

Theorem 2.5.1 [30] Let A be an algebra over R. If it has a genetic realization with

respect to the natural basis ei, ...,em, then A is a (non-associative) Banach algebra with

respect to the norm ‖x‖=
m
∑

i=1
|xi| for x =

m
∑

i=1
xiei ∈ A.

Recall that a derivation on algebra (A,◦) is a linear mapping D : A→ A

such that D(u◦ v) = D(u)◦ v+u◦D(v) for all u,v ∈ A. It is clear that D ≡ 0 is also a

derivation, and such derivation is called trivial one.
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2.6 Quantum quadratic stochastic operators on M2(C )

In this section, some properties of quantum quadratic stochastic operators are

recalled. One can see that a basis of M2(C)⊗M2(C) can be formed by the system:

1⊗1, 1⊗σ1, 1⊗σ2, 1⊗σ3,

σ1⊗1, σ1⊗σ1, σ1⊗σ2, σ1⊗σ3,

σ2⊗1, σ2⊗σ1, σ2⊗σ2, σ2⊗σ3,

σ3⊗1, σ3⊗σ1, σ3⊗σ2, σ3⊗σ3.

Therefore, any unital linear operator ∆ : M2(C)→M2(C)⊗M2(C) can be rep-

resented as follows:

∆1= 1⊗1;

∆(σi) = bi(1⊗1)+
3

∑
j=1

b(1)ji (1⊗σ j)

+
3

∑
j=1

b(2)ji (σ j⊗1)+
3

∑
m,l=1

bml,i(σm⊗σl), (2.45)

where i = 1,2,3. Due to Equation (2.45), the operator ∆ has the following form:

∆(x) = (w0 + 〈x,w〉)1⊗1

+1⊗B(1)w ·σ +B(2)w ·σ ⊗1+
3

∑
m,l=1
〈bml,w〉σm⊗σl, (2.46)

where b = (b1,b2,b3), bml = (bml,1,bml,2,bml,3), and B(k) = (b(k)i j )
3
i, j=1, k = 1,2 are

reals for every i, j,k ∈ {1,2,3}. Here as before 〈·, ·〉 stands for the standard dot product

in C3.

Definition 2.6.1 [26] A linear operator ∆ : M2(C)→ M2(C)⊗M2(C) is said to be a

quantum quadratic operator (q.q.o.) if it is unital and positive.
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Definition 2.6.2 [26] A linear operator ∆ : M2(C)→ M2(C)⊗M2(C) is called sym-

metric if U∆ = ∆, where U(x⊗ y) = y⊗ x, x,y ∈M2(C),

From now on, symmetric q.q.o. will be used.

Let ∆ : M2(C)→M2(C)⊗ M2(C) be a linear symmetric operator. Then its dual defines

an operator V∆ given by

V∆(ϕ) = ∆
∗(ϕ⊗ϕ), ϕ ∈M2(C)∗. (2.47)

This mapping is called quadratic operator. Note that this kind of operators have

been introduced in [24]. Then, due to Equation (2.46), for every state ϕ ∈ S(M2(C)),

the functional ∆∗(ϕ⊗ϕ) is a state if and only if the corresponding vector:

f∆∗(ϕ,ϕ) =

(
b1 +2

3

∑
j=1

b j1 f j +
3

∑
i, j=1

bi j,1 fi f j,b2

+2
3

∑
j=1

b j2 f j +
3

∑
i, j=1

bi j,2 fi f j,b3 +2
3

∑
j=1

b j3 f j +
3

∑
i, j=1

bi j,3 fi f j

)
(2.48)

satisfies ‖f∆∗(ϕ,ϕ)‖≤ 1, here the vector f = ( f1, f2, f3) corresponds to the state ϕ . From

the last expression, one can see that:

V∆(ϕ)(σk) = bk +2
3

∑
j=1

b jk f j +
3

∑
i, j=1

bi j,k fi f j, f ∈ B, (2.49)

where B = {p ∈ R3 : ‖p‖ ≤ 1}. This suggests to consider a nonlinear operator V :

B→ R3 defined by

V (f)k = bk +2
3

∑
j=1

b jk f j +
3

∑
i, j=1

bi j,k fi f j, k = 1,2,3 (2.50)

where f = ( f1, f2, f3) ∈ B. Hence, any unital linear operator ∆ : M2(C)→ M2(C)⊗

M2(C) is a quasi q.q.o. if and only if the corresponding operator V satisfies V (B)⊂ B.

It is noticed that dynamical behavior of quadratic operators has been investigated in
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[26]. In [28], an example has been given of a quasi quadratic operator for which V∆

has chaotic behavior. If ∆ is a q.q.o. then its positivity implies that it is ∗-preserving,

therefore ∆ is a quasi q.q.o., but the reverse is not true. Consider the following example.

Example 2.6.1 [40] Define a mapping by

∆ε(x) = w01⊗1+ εw1σ1⊗σ1 + εw3σ1⊗σ2 + εw2σ1⊗σ3

+εw3σ2⊗σ1 + εw2σ2⊗σ2 + εw1σ2⊗σ3

+εw2σ3⊗σ1 + εw1σ3⊗σ2 + εw3σ3⊗σ3, (2.51)

where as before x = w01+ wσ , and ε ∈ R. One can find that the corresponding

quadratic operator (see equation (2.50)) is given by


Vε( f )1 = ε( f 2

1 +2 f2 f3)

Vε( f )2 = ε( f 2
2 +2 f1 f3)

Vε( f )3 = ε( f 2
3 +2 f1 f2)

(2.52)

In [40] it was shown that if 1/3 < |ε| ≤ 1/
√

3, then the operator (2.52) is a quasi q.q.o.,

while the operator ∆ε is not positive. Namely, ∆ε is not q.q.o.

It is interesting to know for which class of operators ∆, its quasiness implies

its positivity. Namely, when a quasi q.q.o. is a q.q.o. In the next chapter, the raised

question will be discussed.
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Chapter 3: Quantum Lotka-Volterra Operators

3.1 Quantum quadratic operators on DM2(C)

In this section, symmetric commutative q.q.o.s on the commutative algebra

DM2(C) will be described. Here DM2(C) is a commutative subalgebra of M2(C)

generated by {1,σ3}. In this setting, every element x ∈ DM2(C) can be written as

follows: x = w01+w3σ3, where w0,w3 ∈ C. Let ∆ : DM2(C)→ DM2(C)⊗DM2(C)

be a unital symmetric linear operator. Then, the operator ∆ in terms of the basis of

DM2(C)⊗DM2(C) can be written as follows:

∆(w01+w3σ3) = w01⊗1+w3∆(σ3). (3.1)

where

∆(σ3) = b11⊗1+b2(1⊗σ3 +σ3⊗1)+b3(σ3⊗σ3).

Therefore, from (3.1) one gets

∆(x) = (w0 +w3b1)1⊗1+w3b2(1⊗σ3 +σ3⊗1)+w3b3σ3⊗σ3. (3.2)

Theorem 3.1.1 Let ∆ : DM2(C)→ DM2(C)⊗DM2(C) be a unital, symmetric linear

mapping. Then ∆ is a q.q.o. if and only if

|b1±2b2 +b3| ≤ 1, (3.3)

|b1−b3| ≤ 1. (3.4)

Proof. Let x = w01+w3σ3 be positive, i.e. w0 > 0, |w3| ≤ w0. Without loss of gener-
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ality, assume w0 = 1. Let us rewrite ∆ as follows (in the standard basis):

∆(x) = 1⊗1+w3∆̃

where

∆̃ =



b1 +2b2 +b3 0 0 0

0 b1−b3 0 0

0 0 b1−b3 0

0 0 0 b1−2b2 +b3


.

It is known that the positivity of the matrix ∆(x) is equivalent to the positivity

of its eigenvalues. Its eigenvalues are given by

λ1 = 1+w3(b1 +2b2 +b3),

λ2 = 1+w3(b1−b3),

λ3 = 1+w3(b1−2b2 +b3).

Using |w3| ≤ 1, one concludes that λ1,λ2,λ3 are positive if and only if

|b1±2b2 +b3| ≤ 1

|b1−b3| ≤ 1.

This completes the proof.

Note that any state ϕ on DM2(C) has a form:

ϕ(w01+w3σ3) = w0 + f3w3, | f3| ≤ 1. (3.5)
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By denoting x= (1+ f3)/2, one can rewrite the functional in Equation (3.5) as follows:

ϕ(w01+w3σ3) = w0 +(2x−1)w3, x ∈ [0,1]. (3.6)

Hence, there is a one-to-one correspondence between the states of DM2(C)) and [0,1].

Then, from (3.2), one finds:

ϕ⊗ϕ(∆(x)) = ϕ⊗ϕ(∆(w01+w3σ3))

= w01+w3ϕ⊗ϕ(∆(σ3))

= w0 +w3(b1 +b3 f 2
3 +2b2 f3). (3.7)

On the other hand, due to the correspondence (see (3.6)), one has:

ϕ⊗ϕ(∆(x)) = w0 +(2x′−1)w3.

The last one together with (3.7) implies

2x′−1 = b1 +b3 f 2
3 +2b2 f3. (3.8)

Keeping in mind f3 = 2x−1, from (3.8) one finds:

x′ = 2b3x2 +2(b2−b3)x+
1+b1 +b3−2b2

2
. (3.9)

Now, the goal is to reduce the mapping (3.9) to some quadratic stochastic op-

erator (QSO) on the simplex S1 = {(x,y) : x,y ≥ 0, x+ y = 1}. First, recall that any

QSO on S1, is given by

x′ = P11,1x2 +2P12,1xy+P22,1y2, (3.10)

y′ = P11,2x2 +2P12,2xy+P22,2y2. (3.11)
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where

Pi j,k ≥ 0, Pi j,k = Pji,k, Pi j,1 +Pi j,2 = 1

for all i, j,k ∈ {1,2}. Due to x+ y = 1, it is enough to consider (3.10). So,

x′ = P11,1x2 +2P12,1x(1− x)+P22,1(1− x)2.

Then

x′ = x2(P11,1−2P12,1 +P22,1)+2x(P12,1−P22,1)+P22,1. (3.12)

Now comparing Equations (3.12) and (3.9), one gets the following result.

Theorem 3.1.2 Let ∆ : DM2(C)→ DM2(C)⊗DM2(C) be a unital, symmetric linear

operator. Then the following conditions are equivalent:

(i) ∆ is a q.q.o.;

(ii) the transformation (3.9) is a QSO, where the corresponding coefficients are de-

fined by

P11,1 =
b1 +2b2 +b3 +1

2
,

P22,1 =
b1−2b2 +b3 +1

2
,

P12,1 =
b1−b3 +1

2
.

Moreover, a reverse formula is given by

b1 =
P22,1 +P11,1 +2P12,1−2

2
,

b2 =
P11,1−P22,1

2
,

b3 =
P11,1−2P12,1 +P22,1

2
.
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Proof. (i) ⇒ (ii) Equalizing the corresponding coefficients of (3.12) and (3.9), one

finds 
2b3 = P11,1−2P12,1 +P22,1

b2−b3 = P12,1−P22,1

b1−2b2+b3+1
2 = P22,1

After a little calculation, one gets:

P11,1 =
b1+2b2+b3+1

2 ,

P22,1 =
b1−2b2+b3+1

2 ,

P12,1 =
b1−b3+1

2 .

The positivity of ∆ due to Theorem 3.1.1 yields:

| 2P11,1−1 |≤ 1,

| 2P22,1−1 |≤ 1,

| 2P12,1−1 |≤ 1.

(3.13)

The last inequalities imply that P11,1,P22,1,P12,1 ∈ [0,1], this means that (3.9) is a QSO.

(ii)⇒ (i) Assume that we have a QSO is given by {Pi, j,k}. Let us define

b1 =
P22,1+P11,1+2P12,1−2

2 ,

b2 =
P11,1−P22,1

2 ,

b3 =
P11,1−2P12,1+P22,1

2 .

To show that ∆ is a q.q.o. we need to check the conditions of Theorem 3.1.1.



38

One can see that:

b1−b3 = 2P12,1−1,

b1 +2b2 +b3 = 2P11,1−1,

b1−2b2 +b3 = 2P22,1−1.

Therefore, due to Pi j,1 ∈ [0,1], we obtain the required assertion.

From this Theorem, we infer that any QSO (see (3.12)) defines a q.q.o. by the

following formula:

∆(x) =

(
w0 +

P11,1 +2P12,1 +P22,1−2
2

·w3

)
1⊗1

+
(P11,1−P22,1)w3

2

(
1⊗σ3 +σ3⊗1

)
+
(P11,1−2P12,1 +P22,1)w3

2
σ3⊗σ3. (3.14)

3.2 Quasi quantum quadratic operators on DM2(C)

In the pervious section, the conditions on the parameters (b1,b2,b3) so that ∆

becomes a q.q.o are found. In this section, we are going to describe symmetric quasi

q.q.o. on DM2(C). To formulate the result, the following well-known auxiliary fact.

Lemma 3.2.1 Let f (x) = ax2 +bx+ c. Then the following conditions are equivalent:

(i) f (x)≥ 0 for all x ∈ [0,1];

(ii) c≥ 0, a+b+ c≥ 0 and one of the following conditions is satisfied:

I. a > 0,

(1) b > 0;
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(2) −b > 2a;

(3) b2−4ac≤ 0;

II. a < 0.

Proof. From f (x) ≥ 0,x ∈ [0,1], we get f (0) ≥ 0, f (1) ≥ 0, which yield c ≥ 0,a+

b+ c≥ 0, respectively. Now, two sperate cases are considered.

I) Assume that a > 0, then to have f (x) ≥ 0, for all x ∈ [0,1], there are only three

possibilities:

(1) − b
2a < 0;

(2) − b
2a > 1;

(3) b2−4ac≤ 0.

The last conditions imply the assertion .

II. Now, let a < 0 . Then there is only possible case, which is b2− 4ac ≥ 0. Due to

a < 0, c ≥ 0, the last condition, i.e. b2− 4ac ≥ 0 holds. Therefore f (x) ≥ 0 , for all

x ∈ [0,1] , a < 0. This completes the proof .

Now, the main result of this section will be stated.

Theorem 3.2.2 Let ∆ : DM2(C)→ DM2(C)⊗DM2(C) be a linear mapping given by

(3.2). Then ∆ is quasi q.q.o. if and only if | b1±2b2+b3 |≤ 1 and one of the following

conditions is satisfied:

(i) b3(b3 +b2)≤ 0 ;

(ii) b3(b3−b2)≤ 0;

(iii) b2
2−b1b3−|b3| ≤ 0.
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Proof. To establish that ∆ is a quasi q.q.o. it is enough to show ϕ⊗ϕ ◦∆ is a state for

all states ϕ . Thus, due to (3.9), is equivalent to

0≤ 2b3x2 +2(b2−b3)x+
b1−2b2 +b3 +1

2
≤ 1, for all x ∈ [0,1]

The last inequality is equivalent to


2b3x2 +2(b2−b3)x+

b1−2b2+b3+1
2 ≥ 0,

−2b3x2−2(b2−b3)x− b1−2b2+b3+1
2 +1≥ 0,

(3.15)

for all x ∈ [0,1]. Hence, the assertion of the Theorem immediately follows by applying

Lemma 3.2.1.

Now, an example of ∆ which is a quasi q.q.o., but not a q.q.o will be

provided. Let us take b1 = 0.75, b2 = 0, and b3 =−0.45. One can see that | b1−b3 |=

1.2 which means that the last condition of Theorem 3.1.1 is not satisfied, hence ∆ is

not a q.q.o. Now, the condition of Theorem 3.2.2 will be checked. It is easy to see

that | b1± 2b2 + b3 |= 0.3 and b2
2− |b3| − b1b2 = −0.1125. Hence, Theorem 3.2.2

(iii) implies that ∆ is a quasi q.q.o. Now, the following question is interested: does a

commutative quasi q.q.o ∆ coincide with a q.q.o.?

First, recall that a QSO (3.12) is called a Lotka-Volterra operator (see [39] for details)

if Pi j,k = 0 if k /∈ {i, j}. This condition implies:

P11,1 = 1,P22,1 = 0, and 0≤ P12,1 ≤ 1.

Therefore, according to (3.14) we obtain,

∆V (x) = w01⊗1+
1
2

w3(1⊗σ3 +σ3⊗1)+
2P12,1−1

2
w3(1⊗1−σ3⊗σ3). (3.16)
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Denoting a = 2P12,1−1, we have |a| ≤ 1 and the corresponding quadratic operator has

the following form:

ϕ⊗ϕ(∆(x)) = w0 +
(

f3 +
a
2
(1− f 2

3 )
)
w3

where ϕ is a state.

Theorem 3.2.3 Let ∆ : DM2(C)→ DM2(C)DM2(C) be a linear operator given by

(3.16). Then, the following statements are equivalent:

(i) |a| ≤ 1;

(ii) ∆ is a q.q.o.;

(iii) ∆ is a quasi q.q.o.

Proof. The implication (i)⇔(ii) follows from Theorem 3.1.2. The implication (ii)⇒(iii)

is obvious. It remains to establish (iii)⇒(i). For ∆ given by (3.16) one finds:

b1 =
a
2
,b2 =

1
2
,b3 =−

a
2
, (3.17)

where a = 2P12,1− 1. Assume that ∆ is a quasi q.q.o. Then the triple {b1,b2,b3}

satisfies the conditions of Theorem 3.2.2. If b3 ≥ 0, then a ≤ 0. Hence, from (ii) of

Theorem 3.2.2 implies a≥−1. If b3 < 0, then a > 0. From (i) of Theorem 3.2.2, one

gets find a≥ 1. This completes the proof.
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3.3 Quantum Lotka-Volterra operators on M2(C)

In this section, a quantum analogue of Lotka-Volterra operators on M2(C) is

defined. A Lotka-Volterra operator on M2(C) is defined as follows [23]:

∆a(w01+wσ) = w01⊗1+
1
2

w3(1⊗σ3 +σ3⊗1)+
a
2

w3(1⊗1−σ3⊗σ3), (3.18)

where |a| ≤ 1. Let Ẽ : M2(C)→ DM2(C) denote the standard projection defined by

Ẽ (w01+wσ) = w01+w3σ3. (3.19)

Denote E = Ẽ ⊗ Ẽ .

Definition 3.3.1 A symmetric q.q.o. ∆ : M2(C)→M2(C)⊗M2(C) is called Quantum

Lotka-Volterra operator, if one has

E ◦∆ = ∆a (3.20)

for some a ∈ [−1,1].

Then, using (2.46), the following proposition is obtained.

Proposition 3.3.1 Let ∆ : M2(C)→M2(C)⊗M2(C) be a quantum Lotka-Volterra op-

erator. Then, it has the following form:

∆(w01+wσ) = (w0 +
a
2

w3)1⊗1

+1⊗Bw ·σ +Bw ·σ ⊗1+
3

∑
m,i=1
〈bml,w〉σm⊗σl (3.21)
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where bml = (bml,1,bml,2,bml,3), b33 = (0,0,−a/2) and

B =


b11 b12 b13

b21 b22 b23

0 0 1/2

 .

The following particular case will be studied.

Theorem 3.3.2 Let ∆λ ,µ,a : M2(C)→M2(C)⊗M2(C) be given as follows:

∆λ ,µ,a(w01+wσ) = (w0 +
a
2

w3)1⊗1+λw1(σ1⊗1+1⊗σ1)

+µw2(σ2⊗1+1⊗σ2)

+
w3

2
(σ3⊗1+1⊗σ3)−

a
2

w3(σ3⊗σ3), (3.22)

where λ ,µ ∈ R and a ∈ [−1,1]. Then the following conditions are equivalent:

(i) one has

max{|λ |, |µ|} ≤
√

1−|a|
2

. (3.23)

(ii) ∆λ ,µ,a is a quantum Lotka-Volterra operator.

Proof. (i)⇒(ii) Take any x∈M2(C) with x≥ 0, i.e. x=w01+wσ , ‖w‖≤w0. Without
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lost of generality, assume that w0 = 1. Then, from (3.22), one finds:

∆λ ,µ,a(x) =



1+U V V 0

V̄ 1+aU 0 V

V̄ 0 1+aU V

0 V̄ V̄ 1−U


(3.24)

where

U = w3, V = λw1− iµw2. (3.25)

Now, to verify the positivity of the matrix (3.24), the Silvester criterion will be

used. It is clear that 1+U ≥ 0 and 1+aU ≥ 0, since |w3| ≤ 1. One can calculate that:

M2 =

∣∣∣∣∣∣∣∣
1+U V

V̄ 1+aU

∣∣∣∣∣∣∣∣= (1+U)(1+aU)−|V |2,

M3 =

∣∣∣∣∣∣∣∣∣∣∣∣

1+U V V

V̄ 1+aU 0

V̄ 0 1+aU

∣∣∣∣∣∣∣∣∣∣∣∣
= (1+aU)

(
(1+U)(1+aU)−2|V |2

)
,

M4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1+U V V 0

V̄ 1+aU 0 V

V̄ 0 1+aU V

0 V̄ V̄ 1−U

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1+aU)

(
(1−U2)(1+aU)−4|V |2

)
.

It is sufficient to show the positivity of M4, since it yields the positivity of M3.
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Indeed, keeping in mind the positivity of M4 and 0≤ 1−U ≤ 2, one gets:

0≤ (1−U2)(1+aU)−4|V |2 = (1−U)(1+U)(1+aU)−2 ·2|V |2

≤ (1−U)(1+U)(1+aU)−2(1−U)|V |2

= (1−U)
(
(1+U)(1+aU)−2|V |2

)
.

To verify the positivity of M3, it is enough to establish (1−U2)(1+ aU)−

4|V |2 ≥ 0 which according to (3.25) is equivalent to:

4(λ 2w2
1 +µ

2w2
2)≤ (1−w2

3)(1+aw3). (3.26)

By w2
1 +w2

2 +w3 ≤ 1, to verify (3.26) it is sufficient to show

4γ(1−w2
3)≤ (1−w2

3)(1+aw3), (3.27)

where γ = max{λ 2,µ2}. From (3.27), it follows that

(1−w2
3)
(
4γ−1−aw3

)
≤ 0, while |w3| ≤ 1.

Clearly, it is true if

4γ ≤ 1±a ⇔ max{λ 2,µ2} ≤ 1−|a|
4

which implies the assertion. (ii)⇒(i) from (3.22), for every state ϕ (which corresponds
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to the vector f = ( f1, f2, f3) ∈ R3), one finds:

(V∆λ ,µ,a(ϕ))(x) = w0 +2λ f1w1 +2µ f2w2 +
(

f3 +
a
2
(1− f 2

3 )
)
w3.

Hence, the quasiness condition for ∆λ ,µ,a is equivalent to:

(2λ f1)
2 +(2µ f2)

2 +
(

f3 +
a
2
(1− f 2

3 )
)2 ≤ 1, for all ‖f‖ ≤ 1.

It is clear that the last one is satisfied if

4γ( f 2
1 + f 2

2 )+
a2

4
(1− f 2

3 )+ |a|| f3|(1− f 2
3 )+ f 2

3 ≤ 1, for all ‖f‖ ≤ 1. (3.28)

Now, due to f 2
1 + f 3

2 ≤ 1− f 2
3 , from (3.28), one obtains

(1− f 2
3 )

(
4γ +

a2

4
(1− f 2

3 )
2 + |a|| f3|−1

)
≤ 0, for all | f3| ≤ 1

which is equivalent to

a2

4
f 2
3 −|a|| f3|+1−4γ− a2

4
≥ 0, for all | f3| ≤ 1. (3.29)

Hence, Lemma 3.2.1 implies that (3.29) is satisfied if and only if

4γ ≤ 1−|a|, 4γ ≤ 1− a2

4
.

This, due to |a| ≤ 1, yields:

γ ≤ 1−|a|
4

,
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which together with γ = max{λ 2,µ2} implies (3.23). The proof is completed.

By E : M2(C)⊗M2(C)→ M2(C), a conditional expectation is denoted and

defined by

E(x⊗ y) = τ(y)x, x,y ∈M2(C), (3.30)

where τ is a normalized trace, i.e. τ = tr/2. It is well-known that E is positive [27].

By means of ∆λ ,µ,a, let us define a mapping Φλ ,µ,a : M2(C)→M2(C) by

Φλ ,µ,a := E ◦∆λ ,µ,a. (3.31)

It is evident that Φλ ,µ,a is unital, but not trace preserving. Its positivity is given in the

next result.

Theorem 3.3.3 Let ∆λ ,µ,a and Φλ ,µ,a be given by (3.22),(3.31), respectively. Then the

following statements hold:

(i) if λ ,µ, and a satisfy (3.23), then both maps ∆λ ,µ,a and Φλ ,µ,a are positive;

(ii) if

√
1−|a|

2
< max{|λ |, |µ|} ≤

√
5−a2 +

√
a4−10a2 +9

2
√

2
(3.32)

then ∆λ ,µ,a is not positive, but Φλ ,µ,a is positive.

Proof. The statement (i) is immediate consequence of Theorem 3.3.2. Therefore, only

(ii) will be established. Again Theorem 3.3.2 implies under (3.32) the mapping ∆λ ,µ,a

is not positive. Now, the mapping Φλ ,µ,a will be examined. From (3.22) and (3.31)
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one gets:

Φλ ,µ,a(x) =
(
w0 +

a
2

w3
)
1+λw1σ1 +µw2σ2 +

w3

2
σ3

To establish the positivity of Φλ ,µ,a it is enough to prove the positivity φ ◦Φλ ,µ,a for

all states φ . Therefore, one have:

φ(Φλ ,µ,a(x)) = w0 +
a
2

w3 +λw1 f1 +µw2 f2 +
f3

2
w3

= w0 +λw1 f1 +µw2 f2 +
a+ f3

2
w3

here the vector f = ( f1, f2, f3) corresponds to φ .

The positivity of φ ◦Φλ ,µ,a is equivalent to

(λ f1)
2 +(µ f2)

2 +

(
a+ f3

2

)2

≤ 1, for all ‖f‖ ≤ 1.

The last one is satisfied if

γ( f 2
1 + f 2

2 )+
1
4
(a2 +2|a|| f3|+ f 2

3 )≤ 1, for all ‖f‖ ≤ 1, (3.33)

where, as before, γ = max{λ 2,µ2}. Now, due to f 2
1 + f 3

2 ≤ 1− f 2
3 , from (3.33), one

finds:

4γ(1− f 2
3 )+a2 +2|a|| f3|+ f 2

3 ≤ 4, for all | f3| ≤ 1
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which is equivalent to

(4γ−1)u2−2|a|u+4−a2−4γ ≥ 0, for all 0≤ u≤ 1. (3.34)

Now, applying Lemma 3.2.1 to (3.34). Necessary conditions of the lemma implies:

γ ≤ 1− a2

4
, a2 +2|a|−3≤ 0.

Due to |a| ≤ 1, the second one is satisfied. Hence,

γ ≤ 1− a2

4
. (3.35)

Now, two cases (i.e. 4γ−1 > 0 and 4γ−1 < 0) are considered separately.

Case (I). Let 4γ−1 > 0, i.e. γ > 1/4. Since −2|a| ≤ 0, then, due to Lemma 3.2.1, we

need to analyze two possibilities:

(a) 2|a| ≥ 2(4γ−1);

(b) 4a2−4(4γ−1)(4−a2−4γ)≤ 0.

The case (a) yields that

γ ≤ |a|+1
4

. (3.36)

From (b), it follows that

a2− (4γ−1)(4−a2−4γ)≤ 0
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which implies

4γ
2 + γ(a2−5)+1≤ 0.

This yields

5−a2−
√

a4−10a2 +9
8

≤ γ ≤ 5−a2 +
√

a4−10a2 +9
8

. (3.37)

Since

5−a2−
√

a4−10a2 +9
8

≤ |a|+1
4

and combining both cases (3.36) and (3.37), one obtains

1
4
< γ ≤ 5−a2 +

√
a4−10a2 +9
8

. (3.38)

Case (II). Let 4γ − 1 < 0, i.e. γ < 1/4, then Lemma 3.2.1 implies that (3.34) is true.

Hence, combining both (I) and (II) cases and

5−a2 +
√

a4−10a2 +9
8

≤ 1− a2

4

then infer that if

γ ≤ 5−a2 +
√

a4−10a2 +9
8

. (3.39)

then Φλ ,µ,a is positive. The following inequality is pointed

1−|a|
4

<
5−a2 +

√
a4−10a2 +9
8

is true. Therefore, under (3.32) the assertion is obtained. This completes the proof.
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Chapter 4: Flow of Quantum Genetic Lotka-Volterra Algebras

4.1 Definition of quantum genetic Lotka-Volterra algebras

In this section, a flow of quantum genetic Lotka-Volterra algebras will be

defined. Before that, some axillary preparations are needed. Recall that:

∆λ ,µ,a(w01+wσ) = (w0 +
a
2

w3)1⊗1+λw1(σ1⊗1)+1⊗σ1)

+µw2(σ2⊗1+1⊗σ2)+
w3

2
(σ3⊗1+1⊗σ3)−

a
2

w3(σ3⊗σ3)

where λ ,µ ∈ R and a ∈ [−1,1]. Let

Φλ ,µ,a(x) = (w0 +
a
2

w3)1+λw1σ1 +µw2σ2 +
w3

2
σ3.

For the sake of simplicity, in what follows, ∆λ ,µ,a and φλ ,µ,,a are de-

noted by ∆ and φ , respectively. The calculation of φ n is given in the following lemma.

Lemma 4.1.1 For every n≥ 1, one has:

Φ
n(w01+w.σ) = [w0 +a(1− 1

2n )w3]1+λ
nw1σ1 +µ

nw2σ2 +
w3

2n σ3. (4.1)

Proof. Let x = w01+w.σ . For n = 1, the statement is obvious. Assume that it is true

for n = k, i.e.

Φ
k(x) = [w0 +a(1− 1

2k )w3]1+λ
kw1σ1 +µ

kw2σ2 +
w3

2k σ3.

Then, for n = k+1, one gets:
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Φ
k+1(x) = Φ(Φk(w01+w.σ))

= Φ([w0 +a(1− 1
2k )w3]1+λ

kw1σ1 +µ
kw2σ2 +

w3

2k σ3)

= [w0 +a(1− 1
2k )w3 +

a
2

w3

2k ]1+λλ
kw1σ1 +µµ

kw2σ2 +
w3

22k σ3

= [w0 +a(1− 1
2k+1 )w3]1+λ

k+1w1σ1 +µ
k+1w2σ2 +

w3

2k+1 σ3.

By mathematical induction, the result is true for any n≥ 1. This completes the proof.

Using Φn, one may define

Φ
t(x) = [w0 +a(1− 1

2t )w3]1+λ
tw1σ1 +µ

tw2σ2 +
w3

2t σ3, t ≥ 0 (4.2)

The positivity of Φ implies the positivity of Φn, correspondingly one can infer that Φt

is also positive mapping for every t ≥ 0 under the condition (3.23) (see (3.32)).

Theorem 4.1.2 The family {Φt} satisfies Φt+s = Φt ◦Φs, ∀t,s≥ 0.

Proof. Let

Φ
t+s(x) = [w0 +a(1− 1

2t+s )w3]1+λ
t+sw1σ1 +µ

t+sw2σ2 +
w3

2t+s σ3.
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Now, simple calculations imply that:

(Φt ◦Φ
s)(x) = Φ

t(ν01+ν1σ1 +ν2σ2 +ν3σ3)

= [ν0 +a(1− 1
2t )ν3]1+λ

t
ν1σ1 +µ

t
ν2σ2 +

ν3

2t σ3

= [w0 +a(1− 1
2s )w3 +a(1− 1

2t )
w3

2s ]1+λ
t
λ

sw1σ1 +µ
t
µ

sw2σ2 +
w3

2t+s σ3

= [w0 +aw3(1−
1
2s +

1
2s −

1
2t+s )]1+λ

t+sw1σ1 +µ
t+sw2σ2 +

w3

2t+s σ3

= [w0 +a(1− 1
2t+s )w3]1+λ

t+sw1σ1 +µ
t+sw2σ2 +

w3

2t+s σ3

which yields Φt+s(x) = (Φt ◦Φs)(x). Here it was used ν0 = w0 + a(1− 1
2s )w3,ν1 =

λ sw1,ν2 = µsw2 and ν3 =
w3
2s .

Let us define ∆t = ∆◦Φt , i.e.

∆t(w01+w ·σ) = [w0 +a(1− 1
2t )w3 +

a
2t+1 w3]1⊗1+λ

t+1w1(σ1⊗1+1⊗σ1)

+µ
t+1w2(σ2⊗1+1⊗σ2)+

w3

2t+1 (σ3⊗1+1⊗σ3)−
a

2t+1 w3(σ3⊗σ3). (4.3)

Let ∆t be given by (4.3). By means of ∆t , one may introduce the following binary

operation on M2(C) as follows:

(f◦t p)(x) = (f⊗p)(∆t(x)), f,p ∈M2(C)∗,x ∈M2(C)∗ (4.4)

where, as before M2(C)∗ is the dual of M2(C).

The triple (M2(C)∗,◦t ,∆t) is called a flow of quantum genetic Lotka-Volterra algebras

(FQGLV-A). This flow is denoted by At , i.e. At = (M2(C)∗,◦t ,∆t).
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From (4.4) and (4.3), one immediately finds:

f◦t p = ( f0 p0,λ
t+1( f1 p0 + f0 p1),µ

t+1( f2 p0 + f0 p2),

f0 p0(a−
a
2t +

a
2t+1 )+

1
2t+1 ( f3 p0 + f0 p3)−

a
2t+1 ( f3 p3)) (4.5)

where f = ( f0, f1, f2, f3) and p = (p0, p1, p2, p3).

Recall that At = (M2(C)∗,◦t ,∆t) is associative if

(f◦t p)◦t h = f◦t (p◦t h)

for all f,p,h ∈M2(C)∗.

For the sake of simplicity, FQGLV-A is denoted by (At ,◦t).
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Theorem 4.1.3 A FQGLV-A (At ,◦t) is associative if and only if t ≥ 0, |a| = 1, and

λ = µ = 0.

Proof. Due to the conditions of the associativity of (At ,◦t) one has to compute (f ◦t

p)◦t h and f◦t (p◦t h) and compare the corresponding coordinates. Hence, one gets:

((f◦t p)◦t h)1 = f0 p0h0,

(f◦t (p◦t h))1 = f0 p0h0.

Thus, the first component does not produce any condition. The second component

implies that:

((f◦t p)◦t h)2 = λ
t+1[(λ t+1( f1 p0 + f0 p1))h0 + f0 p0h1]

= λ
2t+2 f1 p0h0 +λ

2t+2 f0 p1h0 +λ
t+1 f0 p0h1

(f◦t (p◦t h))2 = λ
t+1[( f1 p0h0)+ f0(λ

t+1(p1h0 + p0h1))]

= λ
t+1 f1 p0h0 +λ

2t+2 f0 p1h0 +λ
2t+2 f0 p0h1.

Hence,

λ
2t+2 = λ

t+1.
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The third components yield:

((f◦t p)◦t h)3 = µ
t+1[(µ t+1( f2 p0 + f0 p2))h0 + f0 p0h2]

= µ
2t+2 f2 p0h0 +µ

2t+2 f0 p2h0 +µ
t+1 f0 p0h2

(f◦t (p◦t h))3 = µ
t+1[( f2 p0h0)+ f0(µ

t+1(p2h0 + p0h2))]

= µ
t+1 f2 p0h0 +µ

2t+2 f0 p2h0 +µ
2t+2 f0 p0h2.

So,

µ
2t+2 = µ

t+1.

The fourth components imply:

((f◦t p)◦t h)4 = f0 p0h0(a−
a
2t +

a
2t+1 )

+
1

2t+1 [( f0 p0(a−
a
2t +

a
2t+1 )+

1
2t+1 ( f3 p0 + f0 p3)

− a
2t+1 f3 p3)h0]+

1
2t+1 ( f0 p0h3)

− a
2t+1 h3[ f0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 ( f3 p0 + f0 p3)−

a
2t +1

f3 p3]

= f0 p0h0(a−
a
2t +

a
2t+1 )+ f0 p0h0(

a
2t+1 −

a
22t+1 +

a
22t+2 )

+
1

22t+2 f3 p0h0 +
1

22t+2 ( f0 p3h0)−
a

22t+2 ( f3 p3h0)

+
1

2t+1 h3 f0 p0−
a2

2t+1 f0 p0h3 +
a2

22t+1 f0 p0h3−
a2

22t+2 f0 p0h3

− f3 p0h3
a

22t+2 −
a

22t+2 f0 p3h3 +
a2

22t+2 f3 p3h3,
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and

(f◦t (p◦t h))4 = f0 p0h0(a−
a
2t +

a
2t+1 )

+
1

2t+1 [ f3 p0h0 + f0(p0h0(a−
a
2t +

a
2t+1 ))+

1
2t+1 (p3h0 + p0h3)

− a
2t+1 (p3h3)]−

a
2t+1 [ f3(p0h0(a−

a
2t +

a
2t+1 )

+
1

2t+1 (p3h0 + p0h3)−
a

2t+1 (p3h3)]

= (a− a
2t +

a
2t+1 ) f0 p0h0 +

1
2t+1 f3 p0h0

+ f0 p0h0(
a

2t+1 −
a

22t+1 +
a

22t+2 )+ f0 p3h0
1

22t+2

+
1

22t+2 p0h3 f0−
a

22t+2 p3h3 f0−
a2

2t+1 f3 p0h0 +
a2

22t+1 f3 p0h0

− a2

22t+2 f3 p0h0−
a

22t+2 h0 f3 p3−
a

22t+2 f3 p0h3 +
a2

22t+2 f3 p3h3

which yields:

1
22t+2 =

1
2t+1 +

a2

22t+1 −
a2

22t+2 −
a2

2t+1 .

Finally, one gets the following system of equations:

λ
2t+2 = λ

t+1,

µ
2t+2 = µ

t+1,

1 = 2t+1(1−a2)+a2.

Hence,

1 = (1+a2)(1−a2)+a2,
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which yield |a|= 1 and t ≥ 0. The first two conditions imply that µ2 = µ or µ = 0,1

and λ 2 = λ or λ = 0,1. By using the fact that:

max{|λ |, |µ|} ≤
√

1−|a|
2

.

This completes the proof.

A commutative algebra (A,◦) is called alternative if (x◦x)◦y = x◦ (x◦y), for

all x,y ∈ A.

Theorem 4.1.4 A FQGLV-A (At ,◦t) is alternative if and only if t ≥ 0, |a| = 1, and

λ = µ = 0.

Proof. One can find

f◦t f = ( f 2
0 ,2 f0 f1λ

t+1,2 f0 f2µ
t+1,(a+

a
2t+1 −

a
2t ) f 2

0 +
1
2t f0 f3−

1
2t+1 a f 2

3 ). (4.6)

Now, it is need it to find all coordinates of (f◦t f)◦t p and f◦t (f◦t p) The first

components are:

((f◦t f)◦t p)1 = f 2
0 p0

(f◦t (f◦t p))1 = f 2
0 p0
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which do not produce any condition. The second components are:

((f◦t f)◦t p)2 = λ
t+1[(2 f0 f1λ

t+1 p0)+ f 2
0 p1] = 2λ

2t+2 f0 f1 p0 +λ
t+1 f 2

0 p1

(f◦t (f◦t p))2 = λ
t+1[ f0 f1 p0 + f0λ

t+1( f1 p0 + f0 p1)]

= λ
t+1 f1 f0 p0 +λ

2t+2 f0 f1 p0 +λ
2t+2 f 2

0 p1

which yield that:

λ
t+1 = λ

2t+2.

Similarly, the third components are given by

((f◦t f)◦t p)3 = µ
t+1[(2 f0 f2µ

t+1 p0)+ f 2
0 p2] = 2µ

2t+2 f0 f2 p0 +µ
t+1 f 2

0 p2

(f◦t (f◦t p))3 = µ
t+1[ f0 f2 p0 + f0µ

t+1( f2 p0 + f0 p2)]

= µ
t+1 f2 f0 p0 +µ

2t+2 f0 f2 p0 +µ
2t+2 f 2

0 p2

which give the following ones:

µ
t+1 = µ

2t+2.

The fourth components are calculated as follows:

((f◦t f)◦t p)4 = f 2
0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 ((a+

a
2t+1 −

a
2t ) f 2

0 p0

+
1
2t f0 f3 p0−

1
2t+1 a f 2

3 p0 + f 2
0 p3)−

a
2t+1 ((a+

a
2t+1 −

a
2t ) f 2

0 p3

+
1
2t f0 f3 p3−

1
2t+1 a f 2

3 p3)
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and

(f◦t (f◦t p))4 = f 2
0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 [ f3 f0 p0 + f0( f0 p0(a−

a
2t +

a
2t+1 )

+
1

2t+1 ( f3 p0 + f0 p3)−
a

2t+1 f3 p3)]−
a

2t+1 f3[ f0 p0(a−
a
2t +

a
2t+1 )

+
1

2t+1 ( f3 p0 + f0 p3)−
a

2t+1 ( f3 p3)]

which imply that:

−1
22t+2 (−1+2t+1)(−1+a2) = 0.

Finally, under the assumption t ≥ 0, one finds:

• The condition on second components implies that λ = 0 or λ = 1.

• The condition on third components implies that µ = 0 or µ = 1.

• The condition on fourth components implies that a =−1 or a = 1.

The condition max{|λ |, |µ|} ≤
√

1−|a|
2 , yields |a|= 1 and λ = µ = 0.

An algebra (A,◦) is called Jordan algebra if (x ◦ y) ◦ x2 = x ◦ (y ◦ x2), for all

x,y ∈ A.

Theorem 4.1.5 A FQGLV-A (At ,◦t) is Jordan algebra if and only if either one of the

followings hold:

• |a|= 1,λ = µ = 0, t ≥ 0,

• a = 0,λ ,µ ∈ {0, 1
2}, t = 0,
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Proof. One can find:

p◦t f2 = ( f 2
0 p0,λ

t+1( f 2
0 p1 +2 f0 f1 p0λ

t+1),

µ
t+1( f 2

0 p2 +2 f0 f2 p0µ
t+1),(a− a

2t +
a

2t+1 ) f 2
0 p0

− a
2t+1 ((a−

a
2t +

a
2t+1 ) f 2

0 +
1
2t f0 f3−

a
2t+1 f 2

3 )p3

+
1

2t+1 (((a−
a
2t +

a
2t+1 ) f 2

0 +
1
2t f0 f3−

a
2t+1 f 2

3 )p0 + f 2
0 p3)).

Now, it is need it to find all coordinates of (f◦t p)◦t f2 and f◦t (p◦t f2).

The first components are:

((f◦t p)◦t f2)1 = f 3
0 p0,

(f◦t (p◦t f2))1 = f 3
0 p0,

which do not produce any condition. The second components imply that:

((f◦t p)◦t f2)2 = λ
t+1[λ t+1( f1 p0 + f0 p1) f 2

0 + f0 p0(2 f0 f1λ
t+1)]

= λ
2t+2 f1 p0 f 2

0 +λ
2t+2 f 3

0 p1 +2λ
2t+2 f 2

0 p0 f1

= 3λ
2t+2 f1 p0 f 2

0 +λ
2t+2 f 3

0 p1,

(f◦t (p◦t f2))2 = λ
t+1[ f1 f 2

0 p0 + f0(λ
t+1( f 2

0 p1 +2 f0 f1 p0λ
t+1))]

= λ
t+1 f1 p0 f 2

0 +λ
2t+2 f 3

0 p1 +2λ
3t+3 f 2

0 p0 f1,

which yield that:

3λ
2t+2 = λ

t+1 +2λ
3t+3.
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Similarly, the third components are give by

((f◦t p)◦t f2)3 = µ
t+1[µ t+1( f2 p0 + f0 p2) f 2

0 + f0 p0(2 f0 f2µ
t+1)]

= µ
2t+2 f2 p0 f 2

0 +µ
2t+2 f 3

0 p2 +2µ
2t+2 f 2

0 p0 f2

= 3µ
2t+2 f2 p0 f 2

0 +µ
2t+2 f 3

0 p2,

(f◦t (p◦t f2))3 = µ
t+1[ f2 f 2

0 p0 + f0(µ
t+1( f 2

0 p2 +2 f0 f2 p0µ
t+1))]

= µ
t+1 f2 p0 f 2

0 +µ
2t+2 f 3

0 p2 +2µ
3t+3 f 2

0 p0 f2,

which give the following one:

3µ
2t+2 = µ

t+1 +2µ
3t+3.

The fourth components are calculated as follows:

((f◦t p)◦t f2)4 = f 3
0 p0(a−

a
2t +

a
2t+1 )

+
1

2t+1 f 2
0 [ f0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 ( f3 p0 + f0 p3)−

a f3 p3

2t+1 ]

+
1

2t+1 f0 p0( f 2
0 (a−

a
2t +

a
2t+1 )+

1
2t −

a f 2
3

2t+1 )

− a
2t+1 [( f0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 ( f3 p0 + f0 p3)−

a f3 p3

2t+1 ]

.[ f 2
0 (a−

a
2t +

a
2t+1 )+

1
2t −

a f 2
3

2t+1 ]
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and

(f◦t (p◦t f2))4 = f 3
0 p0(a−

a
2t +

a
2t+1 )+

1
2t+1 [ f3 f 2

0 p0 + f0(a−
a
2t +

a
2t+1 ) f 2

0 p0

− a
2t+1 ((a−

a
2t +

a
2t+1 ) f 2

0 +
f0 f3

2t −
a f 2

3
2t+1 )p3 +

1
2t+1 (((a−

a
2t +

a
2t+1 ) f 2

0

+
f0 f3

2t −
a f 2

3
2t+1 )p0 + f 2

0 p3))]−
a

2t+1 f3[(a−
a
2t +

a
2t+1 ) f 2

0 p0

− a
2t+1 ((a−

a
2t +

a
2t+1 ) f 2

0 +
f0 f3

2t −
a f 2

3
2t+1 )p3 +

1
2t+1 (((a−

a
2t +

a
2t+1 ) f 2

0

+
f0 f3

2t −
a f 2

3
2t+1 )p0 + f 2

0 p3)),

which imply that:

−a
22t+1 +

a
2t+1 +

a
23t+3 +

a3

22t+1 −
a3

2t+1 −
a3

23t+3 = 0,

3
22t+2 −

1
23t+2 −

1
2t+1 +

a2

23t+2 −
3a2

22t+2 +
a2

2t+1 = 0

−a
22t+2 +

a
23t+3 +

a3

22t+2 −
a3

23t+3 = 0.

Now, one has the following conditions:

• The first condition −λ t+1 +3λ 2t+2−2λ 3t+3 = 0 yields:

λ
t+1(1−2λ

t+1)(1−λ
t+1) = 0.

• The second condition can simplify as:

µ
t+1(1−2µ

t+1)(1−µ
t+1) = 0.
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• The third condition yields:

−a
22t+1 +

a
2t+1 +

a
23t+3 +

a3

22t+1 −
a3

2t+1 −
a3

23t+3 = 0

which implies:

22+t(a−a3)−22t+2(a−a3)− (a−a3) = 0.

So,

(22+t−1)2a(a−1)(a+1) = 0.

• From the fourth condition, one gets:

3
22t+2 −

1
23t+2 −

1
2t+1 +

a2

23t+2 −
3a2

22t+2 +
a2

2t+1 = 0

which gives that:

(21+t−1)(2t−1)(1−a)(a+1) = 0.

• The fifth condition yields:

−a
22t+2 +

a
23t+3 +

a3

22t+2 −
a3

23t+3 = 0.

So,

(2t+1−1)a(a−1)(a+1) = 0.
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One can summarize the obtained conditions as follows:

λ
t+1(1−2λ

t+1)(1−λ
t+1) = 0,

µ
t+1(1−2µ

t+1)(1−µ
t+1) = 0,

(21+t−1)(2t−1)(1−a)(a+1) = 0,

(2t+1−1)a(a−1)(a+1) = 0.

These conditions can simplified by considering the following cases:

Case 1 Let a = 0. Then, (2t+1− 1)(2t − 1) = 0 which gives t = 0. Then, λ = 0,

or 1− 2λ = 0, or 1− λ = 0. Since max{|λ |, |µ|} ≤
√

1−|a|
2 , then λ ∈ {0, 1

2}.

Similarly, µ ∈ {0, 1
2}.

Case 2 Let a = ±1 and t ≥ 0. Then, λ t+1 = 0, or 1− 2λ t+1 = 0, or 1− λ t+1 = 0.

Since max{|λ |, |µ|} ≤
√

1−|a|
2 , then λ = 0. Similarly, µ = 0.

This completes the proof.

Remark If a = 0 and λ = µ = 0, t = 0, the algebra is Jordan, but not alternative. More

information about Jordan and alternative algebra can be found in [42].

4.2 Idempotents

This section is devoted to the description of idempotents of the flow quantum

genetic Lotka-Volterra algebras. Recall that an element q ∈ A is called idempotent if

q◦q = q.

Theorem 4.2.1 Let (At ,◦t) be a FQGLV-A. Then, q ∈ At is an idempotent if and only

if one of the followings hold:

1. q = (0,0,0,0),
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2. q = (0,0,0, −2t+1

a ), if a 6= 0,

3. q = (1,0,0, 2−2t+1±
√

2t+2−2t+3+4−4a2+4a22t+1

2a ), if a 6= 0, |λ |, |µ|< 1
2 .

4. q = (1,0,0,0) if a = 0, |λ |, |µ|< 1
2 .

5. q = (1,q1,0,q3) if a = 0, t = 0, |λ |= 1
2 , |µ|<

1
2 .

6. q = (1,0,q2,q3) if a = 0, t = 0, |λ |< 1
2 , |µ|=

1
2 .

7. q = (1,q1,q2,q3) if a = 0, t = 0, |λ |= |µ|= 1
2 .

Proof. Let q = (q0,q1,q2,q3) be an idempotent vector in At . Then, q ◦t q = q which

implies that:

(
q2

0,2q0q1λ
t+1,2q0q2µ

t+1,(a− a
2t +

a
2t+1 )q

2
0 +

q0q3

2t −
aq2

3
2t+1

)
= (q0,q1,q2,q3).

By comparing the components, one finds the following system of equations:

q2
0 = q0, (4.7)

q1(2q0λ
t+1−1) = 0, (4.8)

q2(2q0µ
t+1−1) = 0, (4.9)

aq2
0 +

aq2
0

2t+1 −
aq2

0
2t +

q0q3

2t −
aq2

3
2t+1 = q3. (4.10)

Equation (4.7) yields that q0 = 0 or q0 = 1. Thus, two cases should be considered,

separately.

Case 1. Let q0 = 0. Then, Equation (4.8) implies that q1 = 0. Also, Equation (4.9)

yields q2 = 0. Finally, Equation (4.10) gives that −aq2
3

2t+1 = q3. Hence, q3 = 0 or

q3 = −2t+1

a provided that a 6= 0. Thus, q can be either q = (0,0,0,0) or q =
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(0,0,0, −2t+1

a ). Note that if a = 0, then q = (0,0,0,0).

Case 2. Let q0 = 1. Assume that a 6= 0, and t > 0. Thus, q1 = 0 provided that 2λ t+1 6=

1 by Equation (4.8) (since |λ | < 1
2 , see (3.23)). Also, Equation (4.9) gives that

q2 = 0 provided that 2µ t+1 6= 1 (since |µ|< 1
2 , see (3.23)). Then, Equation (4.10)

yields −aq2
3

2t+1 +( 1
2t −1)q3+a(1− 1

2t+1 ) = 0. Hence, q2
3+(2t+1−2

a )q3+(1−2t+1) =

0. Thus,

q3 =
2−2t+1±

√
22t+2−2t+3 +4−4a2 +4a22t+1

2a
.

Hence,

q = (1,0,0,
2−2t+1±

√
22t+2−2t+3 +4−4a2 +4a22t+1

2a
).

Assume that t = 0. If |λ |, |µ| < 1
2 . This case is similar to the one

considered above. Now, suppose that a = 0 and t > 0. Then, due to |λ | 6=

1
2 , |µ| 6=

1
2 , one has if q1 = 0,q2 = 0, then by the same argument as above, one

finds q = (1,0,0,0). Let t = 0. If |λ | < 1
2 , |µ| <

1
2 , then q = (1,0,0,0). Let

|λ | = 1
2 , |µ| <

1
2 , then q1 6= 0,q2 = 0, and q3 = q0q3

20 which imply q3 is arbi-

trary. So, q = (1,q1,0,q3). Let |λ | < 1
2 , |µ| =

1
2 . Then, one similarly finds

q = (1,0,q2,q3). Let |λ |= |µ|= 1
2 , then q = (1,q1,q2,q3).

Remark If ∆t is not positive, then one can find, in addition to the seven idempotents

in Theorem 4.2.1, three more idempotents which are given by

1. q = (1,q1,0,±1) if a 6= 0, t = 0, |λ |= 1
2 , |µ|<

1
2 .
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2. q = (1,0,q2,±1) if a 6= 0, t = 0, |λ |< 1
2 , |µ|=

1
2 .

3. q = (1,q1,q2,±1) if a 6= 0, t = 0, |λ |= |µ|= 1
2 .

Let x ∈ At . Denote Px = {λx|λ ∈ C}. Now, it is natural to know when Px is a

subalgebra, which means there exists τ ∈ C such that x◦t x = τx.

Theorem 4.2.2 Let (At ,◦t) be a FQGLV-A and let x∈ At ,x 6= 0. Assume that t > 0 and

a 6= 0. Then, Px is a 1-dimensional subalgebra of At if and only if one of the followings

hold:

(i) x = (0,0,0, −2t+1τ

a ),τ ∈ C

(ii) x = (τ,0,0, 2τ−2t+1τ±
√

22t+2τ2−2t+3τ2+4τ2−4a2τ2+4a22t+1τ2

2a ),τ ∈ C.

Proof. To show that the set Px = {αx|α ∈C} ⊂ At is subalgebra, it is enough to prove

x◦t x ∈ Px . If x◦t x = τx where τ ∈ C,τ 6= 1, then

(x2
0,2x0x1λ

t+1,2x0x2µ
t+1,(a− a

2t +
a

2t+1 )x
2
0 +

x0x3

2t −
ax2

3
2t+1 ) = τ(x0,x1,x2,x3).

Now, comparing the coordinates, one gets:

x2
0 = τx0, (4.11)

2x0x1λ
t+1 = τx1, (4.12)

2x0x2µ
t+1 = τx2, (4.13)

ax2
0−

ax2
0

2t+1 −
ax2

0
2t +

x0x3

2t −
ax2

3
2t+1 = τx3. (4.14)

Equation (4.11) yields that x0 = 0 or x0 = τ . Thus, two cases should be considered.
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1. Let x0 = 0. Then, x1 = 0 provided that τ 6= 0 by Equation (4.12). Also, Equation

(4.13) gives that x2 = 0 provided that τ 6= 0. Finally, Equation (4.14) implies

that −ax2
3

2t+1 = τx3. Thus, x3 = 0 or x3 =
−2t+1τ

a where a 6= 0. Hence, x = (0,0,0,0)

which will be rejected since x 6= 0 or x = (0,0,0, −2t+1τ

a ).

2. Let x0 = τ . Then, x1 = 0 provided that 2λ t+1 6= 1 by Equation (4.12). Equations

(4.13) gives that x2 = 0 provided that 2µ t+1 6= 1. Finally, Equation (4.14) yields

that:

aτ
2 +

aτ2

2t+1 −
aτ2

2t +
τx3

2t −
ax2

3
2t+1 = τx3

or

x2
3−

2t+1

a
(

τ

2t − τ)x3−
2t+1

a
a(τ2− τ2

2t+1 ) = 0,

x2
3 +(

2t+1τ−2τ

a
)x3 +(τ2−2t+1

τ
2) = 0.

Hence,

x3 =
2τ−2t+1τ±

√
22t+2τ2−2t+3τ2 +4τ2−4a2τ2 +4a22t+1τ2

2a
.

Thus, the vector x is given by

x = (τ,0,0,
2τ−2t+1τ±

√
22t+2τ2−2t+3τ2 +4τ2−4a2τ2 +4a22t+1τ2

2a
).

Remark From the proved theorem with Theorem 4.2.1, one infers that 1-dimensional

subalgebras are generated only by idempotents.
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4.3 An algebra generated by the idempotents

In this section, it is investigated an algebra generated by the idempotents given

by Theorem (4.2.1). Throughout this section, it is assumed that t > 0 and a 6= 0. Then,

by Theorem (4.2.1), one concludes that the idempotents of FQGLV-A are given by

q1 = (0,0,0, −2t+1

a ), q2 = (1,0,0, 2−2t+1+αt
2a ), q3 = (1,0,0, 2−2t+1−αt

2a ) where

αt =
√

22t+2−2t+3 +4−4a2 +4a22t+1,a 6= 0.

Proposition 4.3.1 Let t > 0 and a 6= 0, and q1,q2,q3 be idempotents of At , then the

following statements hold:

(i) The vectors {q1,q2,q3} are linearly dependent,

(ii) Each two idempotents are linearly independent.

Proof. (i) Let λ1q1 +λ2q2 +λ3q3 = 0. Then,

(λ2 +λ3,0,0,
−λ12t+1

a
+λ2

2−2t+1 +αt

2a
+λ3

2−2t+1−αt

2a
) = 0.

Thus, λ2 +λ3 = 0 which yields that λ3 =−λ2. Also,

0 =
−λ12t+1

a
+λ2

2−2t+1 +αt

2a
+λ3

2−2t+1−αt

2a

=
−λ12t+1

a
+λ2(

2−2t+1 +αt

2a
− 2−2t+1−αt

2a
)

=
−λ12t+1 +αtλ2

a
.

Then,−λ12t+1+αtλ2 = 0 which gives that λ1 =
αtλ2
2t+1 , where λ2 ∈C. Thus, {q1,q2,q3}

are linearly dependant.
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(ii) Now, the remaining of the proof is to check that each two idempotents are linearly

independent. Let λ1q1 +λ2q2 = 0. Then,

(λ2,0,0,
−λ12t+1

a
+λ2

2−2t+1 +αt

2a
) = 0.

Thus, λ2 = 0. Also,−λ12t+1

a = 0 which implies that λ1 = λ2 = 0. Thus, {q1,q2} are

linearly independent. Using similar argument, one can show that {q1,q3} are linearly

independent. Let λ2q2 +λ3q3 = 0. Then,

(λ2 +λ3,0,0,λ2
2−2t+1 +αt

2a
+λ3

2−2t+1−αt

2a
) = 0.

Thus, λ2 +λ3 = 0 which gives that λ3 =−λ2. Also,

0 = λ2
2−2t+1 +αt

2a
+λ3

2−2t+1−αt

2a
= λ2(

2−2t+1 +αt

2a
− 2−2t+1−αt

2a
) = λ2

αt

a
.

Then, λ2 = 0 which implies that λ2 = λ3 = 0. Thus, {q2,q3} are linearly independent.

Let F = {λq1 + µq2|λ ,µ ∈ C} be an algebra generated by the following two

idempotents, where

q1 =

(
0,0,0,

−2t+1

a

)
,q2 =

(
1,0,0,

2−2t+1 +αt

2a

)
.
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Now, let us calculate q1 ◦t q2. Using (4.5), one gets:

q1 ◦t q2 =

(
0,0,0,

1
2t+1

(
−2t+1

a

)
− a

2t+1

(
−2t+1

a
.
2−2t+1 +αt

2a

))
(4.15)

=

(
0,0,0,

−2
2a

+
2−2t+1 +αt

2a

)
=

(
0,0,0,

αt−2t+1

2a

)
.

Now, the task is to study some properties of the subalgebra F. Let x = λ1q1 +

µ1q2 and y = λ2q1 +µ2q2, where x,y ∈ F. Then, using (4.15), one finds:

x◦t y = λ 1λ2 q1 ◦t q1 + λ 1µ2 q1 ◦t q2 +µ1 λ 2 q2 ◦t q1 +µ1µ2 q2 ◦t q2

= λ1 λ2 q1 +( λ1µ2 +µ1 λ 2) q1 ◦t q2 +µ1µ2 q2

= λ1 λ2 q1− ( λ1µ2 +µ1 λ 2) (γt βt q1)+µ1µ2 q2

where βt =
22t+2−2t+1αt

2a2 and γt =− a
2t+1 Then , F is subalgebra of A.

Remark It is noted that the subalgebra F is not ideal. Indeed, let x=(x0,x1,x2,x3)∈A.

Then,

x◦t q1 = (0,0,0,ax0 + x3),

x◦t q2 =

(
x0,λ

t+1x1,µ
t+1x2,x3

(
2t+1±αt

2t+1

)
+ x0

(
a2t+1−1

2t+1 +
2−2t+1±αt

a2t+1

))
.

As a special case, let x̃ = (0,1,1,0). Then,

x̃◦t q2 = (0,λ t+1,µ t+1,0)

which does not belong to F since the second and third components of all elements in

F are zeros. Thus, F is not ideal.
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Theorem 4.3.2 An algebra F = {λq1 + µq2|λ ,µ ∈ C} is associative if and only if

|a|= 1 or a ∈
(

1
2 ,
−1+

√
5

2

)
.

Proof. Let x = λ1q1 + µ1q2,y = λ2q1 + µ2q2,z = λ3q1 + µ3q2. Then, by equation

(4.5)

x◦t y = (λ1λ2− (λ1µ2 +µ1λ2)βtγt)q1 +µ1µ2q2,

and

(x◦t y)◦t z = [(λ1λ2− (λ1µ2 +µ1λ2)βtγt)λ3 (4.16)

−((λ1λ2− (λ1µ2 +µ1λ2)βtγt)µ3 +λ3µ1µ2)βtγt ]q1 +µ1µ2µ3q2.

Now,

y◦t z = (λ2λ3− (λ2µ3 +µ2λ3)βtγt)q1 +µ2µ3q2,

and

x◦t (y◦t z) = [(λ1(λ2λ3− (λ2µ3 +µ2λ3)βtγt)

−(λ1µ2µ3 +µ1(λ2λ3− (λ2µ3 +µ2λ3)βtγt))βtγt ]q1 +µ1µ2µ3q2. (4.17)

Comparing the coefficients in equations (4.16) and (4.17), one gets:

λ1λ2λ3−λ1µ2λ3βtγt−λ2λ3µ1βtγt−λ1λ2µ3βtγt

+λ1µ2µ3β
2
t γ

2
t +µ1λ2µ3β

2
t γ

2
t −λ3µ1µ2βtγt = λ1λ2λ3−λ1λ2µ3βtγt

−λ1µ2λ3βtγt−λ1µ2µ3βtγt−µ1λ2λ3βtγt +µ1λ2µ3β
2
t γ

2
t +µ1µ2λ3β

2
t γ

2
t .
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Simplify the last equation, one find:

λ1µ2µ3(β
2
t γ

2
t +βtγt)−λ3µ1µ2(β

2
t γ

2
t +βtγt) = 0

or

(β 2
t γ

2
t +βtγt)(λ1µ2µ3−λ3µ1µ2) = 0.

Hence, βtγt = 0 or βtγt =−1. Let βtγt = 0, then

βtγt =

(
22t+2−2t+1αt

2a2

)(
−a
2t+1

)
=

αt−2t+1

2a
= 0.

Thus,

2t+2−2t+3 +4−4a2 +4a22t+1 = 22t+2

4a2(2t+1−1)+4(1−2t+1) = 0

4(2t+1−1)(a2−1) = 0.

Hence, a2 = 1 since 2t+1−1 6= 0.

Let βtγt +1= 0, by substituting the values of βt and γt and simplifying the last equation

one has

2t+1−αt

2a
= 1,

or

αt = 2t+1−2a.
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Square both sides and simplify the result to get

2t(2a2 +2a−2)+(1−2a2) = 0,

or

2t =
2a2−1

2a2 +2a−2
.

Taking logarithm base two for both sides yields:

t = log2

(
2a2−1

2a2 +2a−2

)
> 0

which implies that

2a2−1
2a2 +2a−2

> 1.

Solving the last inequality gives a ∈
(

1
2 ,
−1+

√
5

2

)
. One can see that the range of the

function:

log2

(
2a2−1

2a2 +2a−2

)
> 0

on a ∈
(

1
2 ,
−1+

√
5

2

)
is (0,∞). This completes the proof.

Remark Comparing Theorems (4.1.3) and (4.3.2), one can see that if the algebra

which is generated by the idempotents of the FQGLV-A is associative if |a| = 1 or

a ∈
(

1
2 ,
−1+

√
5

2

)
while the FQGLV-A itself is associative if |a| = 1. This shows the

influence of the idempotents on the associativity property.
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Chapter 5: Derivations of Flow Quantum Genetic Lotka-Volterra
Algebras

5.1 Derivations in M4(C )

Let (At ,◦t) be a flow quantum genetic Lotka-Volterra algebra. Then, recall

that for f = ( f0, f1, f2, f3) and p = (p0, p1, p2, p3), one has:

f◦t p = ( f0 p0,λ
t+1( f1 p0 + f0 p1),µ

t+1( f2 p0 + f0 p2),

f0 p0ξ +
1

2t+1 ( f3 p0 + f0 p3)−
a

2t+1 ( f3 p3)) (5.1)

where ξ = a− a
2t +

a
2t+1 = a

(
2t+1−1

2t+1

)
.

Definition 5.1.1 A linear mapping d : A→ A is called derivation if

d(x◦t y) = d(x)◦t y+ x◦t d(y),∀x,y ∈ A (5.2)

Proposition 5.1.1 Let e0 =(1,0,0,0),e1 =(0,1,0,0),e2 =(0,0,1,0), and e3 =(0,0,0,1).

Then, d is derivation if and only if

d(ei ◦t ej) = d(ei)◦ ej + ei ◦t d(ej) (5.3)
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Proof. (⇐) Let x = ∑
3
i=0 xiei and y = ∑

3
j=0 y jej. Then,

d(x◦t y) = d

((
3

∑
i=0

xiei

)
◦t

(
3

∑
j=0

y jej

))

= d

(
3

∑
i=0

3

∑
j=0

xiy j(ei ◦t ej)

)

=
3

∑
i=0

3

∑
j=0

xiy jd(ei ◦t ej).

From (5.3), one gets:

d(x◦t y) =
3

∑
i=0

3

∑
j=0

xiy j(d(ei)◦ ej + ei ◦t d(ej))

=
3

∑
i=0

3

∑
j=0

xiy j(d(ei)◦ ej)+
3

∑
i=0

3

∑
j=0

xiy j(ei ◦t d(ej))

= d(
3

∑
i=0

xiei)◦t (
3

∑
j=0

y jej)+(
3

∑
i=0

xiei)◦t d(
3

∑
j=0

y jej)

= d(x)◦t y+ x◦t d(y).

Thus, d is derivation.

(⇒) Follows directly from the definition.

From (5.1), one gets:

e0 ◦t e0 = (1,0,0,ξ ) = e0 +ξ e3,

e0 ◦t e1 = (0,λ t+1,0,0) = λ
t+1e1,

e0 ◦t e2 = (0,0,µ t+1,0) = µ
t+1e2,

e0 ◦t e3 = (0,0,0,
1

2t+1 ) =
1

2t+1 e3.

Similarly, other terms can be computed and they summarized in the following Table.
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Table 5.1: ei ◦t ej for i, j ∈ {0,1,2,3}

◦t e0 e1 e2 e3

e0 e0 +ξ e3 λ t+1e1 µ t+1e2
1

2t+1 e3

e1 λ t+1e1 0 0 0
e2 µ t+1e2 0 0 0
e3

1
2t+1 e3 0 0 −a

2t+1 e3

Let d : A→ A be a derivation. Then, one has

d(ei) =
3

∑
j=0

di, jej.

The goal now is to find the conditions on di, j such that

d(ei ◦t ej) = d(ei)◦t ej + ei ◦t d(ej)

for i, j ∈ {0,1,2,3} and i≤ j. To explain the procedure, let us assume that

d(e0 ◦t e0) = d(e0)◦t e0 + e0 ◦t d(e0).

Then, from Table (5.1) and since e0 ◦t e0 = e0 +ξ e3, one gets

d(e0)+ξ d(e3) = d(e0)◦t e0 + e0 ◦t d(e0).

By comparing the components, one finds:

d00 +ξ d30 = 2d00,d01 +ξ d31 = 2λ
t+1d01

d02 +ξ d32 = 2µ
t+1d02,d03 +ξ d33 = 2

(
1

2t+1 d03 +ξ d00

)
.
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These equations can be simplified as follows:

−d00 +ξ d30 = 0, (5.4)

d01−2λ
t+1d01 +ξ d31 = 0, (5.5)

d02−2µ
t+1d02 +ξ d32 = 0, (5.6)

d03−
1
2t d03−2ξ d00 +ξ d33 = 0. (5.7)

Using similar argument, one can generate the following system of equations for the

cases d(ei ◦t ej) = d(ei)◦t ej + ei ◦t d(ej) for i, j ∈ {1,2,3} with i≤ j.

−d01 +λ
t+1d10 = 0, (5.8)

d00λ
t+1 = 0, (5.9)

d12λ
t+1−d12µ

t+1 = 0, (5.10)

− d13

2t+1 +d13λ
t+1−d10ξ = 0, (5.11)

2d10λ
t+1 = 0, (5.12)

−d20 +d20µ
t+1 = 0, (5.13)

−d20 +d20µ
t+1 = 0, (5.14)

−d21λ
t+1 +d21µ

t+1 = 0, (5.15)

d00µ
t+1 = 0, (5.16)

− d23

2t+1 +d23µ
t+1−d20ξ = 0, (5.17)
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d20λ
t+1 = 0, (5.18)

d10µ
t+1 = 0, (5.19)

d20µ
t+1 = 0, (5.20)

d30

2t+1 −d30 = 0, (5.21)

d31

2t+1 −d31λ
t+1 = 0, (5.22)

1
2t+1 d32−d32µ

t+1 = 0, (5.23)

−d00 +ad03

2t+1 −d30ξ = 0, (5.24)

d30λ
t+1 = 0, (5.25)

−d10 +ad13 = 0, (5.26)

d30µ
t+1 = 0, (5.27)

−d20 +ad23 = 0, (5.28)

ad30 = 0, (5.29)

ad32 = 0, (5.30)

−2d30 +ad33 = 0. (5.31)

Equations (5.13) and (5.20) give:

−d20 +d20µ
t+1 = 0,d20µ

t+1 = 0

which imply that d20 = 0. Hence, Equation (5.21) yields that:

−d30 +
d30

2t+1 = d30

(
1

2t+1 −1
)
= 0.

Since t ≥ 0 and 1
2t+1 − 1 6= 0, one finds d30 = 0. Equation (5.4) gives d00 = 0, since

d30 = 0. Moreover, Equations (5.8) and (5.12) yield−d01+λ t+1d10 = 0 and 2d10λ t+1 =
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0. Hence, d01 = 0. Thus, Equations (5.4-5.31) are reduced to the following ones:

ξ d31 = 0, (5.32)

d02(1−2µ
t+1)+ξ d32 = 0, (5.33)

d03(1−
1
2t )+ξ d33 = 0, (5.34)

d12(λ
t+1−µ

t+1) = 0, (5.35)

d13(λ
t+1− 1

2t+1 )−d10ξ = 0, (5.36)

d10λ
t+1 = 0, (5.37)

−d21(λ
t+1−µ

t+1) = 0, (5.38)

d23(µ
t+1− 1

2t+1 ) = 0, (5.39)

d10µ
t+1 = 0, (5.40)

d31(
1

2t+1 −λ
t+1) = 0, (5.41)

d32(
1

2t+1 −µ
t+1) = 0, (5.42)

ad03 = 0, (5.43)

−d10 +ad13 = 0, (5.44)

ad23 = 0, (5.45)

ad32 = 0, (5.46)

ad33 = 0. (5.47)

(I) Let a 6= 0. Then, ξ = a
(

2t+1−1
2t+1

)
6= 0. Thus, Equations (5.43) and (5.45-5.47) give

that d03 = d23 = d32 = d33 = 0. Moreover, due to d32 = 0 and 1− 2µ t+1 6= 0,

Equation (5.33) implies that d02 = 0. Since ξ 6= 0 Equation (5.32) yields that
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d31 = 0. Hence, Equations (5.32-5.47) can be reduced to the following system.

d12(λ
t+1−µ

t+1) = 0, (5.48)

d13(λ
t+1− 1

2t+1 )−d10ξ = 0, (5.49)

d10λ
t+1 = 0, (5.50)

−d21(λ
t+1−µ

t+1) = 0, (5.51)

d10µ
t+1 = 0, (5.52)

−d10 +ad13 = 0. (5.53)

Thus, four cases should be considered separately.

Case 1.1 Let λ 6= 0 and λ 6= µ . Then, Equations (5.48) and (5.51) imply that

d12 = d21 = 0. Also, Equation (5.50) gives d10 = 0. Since d10 = 0 and

a 6= 0, Equation (5.53) yields d13 = 0. Therefore,

d =



0 0 0 0

0 d11 0 0

0 0 d22 0

0 0 0 0


.

Case 1.2 Let λ 6= 0 and λ = µ . Then, Equations (5.50) implies that d10 = 0.

Since d10 = 0 and a 6= 0, Equation (5.53) yields d13 = 0. Therefore,

d =



0 0 0 0

0 d11 d12 0

0 d21 d22 0

0 0 0 0


.

Case 1.3 Let λ = 0 and µ 6= 0. Then, Equations (5.48) and (5.51-5.52) imply

that d12 = d21 = d10 = 0. Since d10 = 0 and a 6= 0, Equation (5.53) yields
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d13 = 0. Therefore,

d =



0 0 0 0

0 d11 0 0

0 0 d22 0

0 0 0 0


.

Case 1.4 Let λ = µ = 0. Then, Equations (5.53) gives that −d10 + ad13 =

0 which implies that d10 = ad13. Equation (5.49) yields −d13
2t+1 − d10ξ =

d13

(
1

2t+1 +aξ

)
= 0 which implies that d13

(
1

2t+1 +a2
(

2t+1−1
2t+1

))
. Thus,

d13(a2(2t+1− 1)+ 1) = 0. Since t ≥ 0 and a 6= 0, a2(2t+1− 1)+ 1 > 0.

Thus, d13 = 0 which gives d10 = 0 since d10 = ad13. Therefore,

d =



0 0 0 0

0 d11 d12 0

0 d21 d22 0

0 0 0 0


.

(II) Now, let a = 0. Then, ξ = a
(

2t+1−1
2t+1

)
= 0. Thus, Equations (5.4) and (5.26)

yield that: d00 = d10 = 0. Equations (5.13) and (5.20) give that d20 = 0. Since

1
2t+1 − 1 6= 0, Equation (5.21) implies that d30 = 0. Equations (5.8) and (5.12)

yield that d01 = 0. Thus, Equations (5.4)-(5.31) can be reduced to the following
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system:

d03

(
1− 1

2t

)
= 0, (5.54)

d12
(
λ

t+1−µ
t+1)= 0, (5.55)

d13

(
λ

t+1− 1
2t+1

)
= 0, (5.56)

d21
(
µ

t+1−λ
t+1)= 0, (5.57)

d23

(
µ

t+1− 1
2t+1

)
= 0, (5.58)

d31

(
1

2t+1 −λ
t+1
)
= 0, (5.59)

d32

(
1

2t+1 −µ
t+1
)
= 0. (5.60)

Hence, ten cases should be considered, separately.

Case 2.1 Let λ = µ = 1
2 , t = 0. Then,

d =



0 0 0 d03

0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33


.

Case 2.2 Let λ = µ 6= 1
2 , t = 0. Then, Equations (5.56) and (5.58-5.60) give that

d13 = d23 = d31 = d32 = 0. Hence,

d =



0 0 0 d03

0 d11 d12 0

0 d21 d22 0

0 0 0 d33


.

Case 2.3 Let λ = 1
2 ,µ 6=

1
2 , t = 0. Then, Equations (5.55), (5.57)-(5.58), and



85

(5.60) imply that: d12 = d21 = d32 = d23 = 0. Hence,

d =



0 0 0 d03

0 d11 0 d13

0 0 d22 0

0 d31 0 d33


.

Case 2.4 Let λ 6= 1
2 ,µ = 1

2 , t = 0. Then, Equations (5.55-5.57) and (5.59) yield

that d12 = d21 = d31 = 0. Hence,

d =



0 0 0 d03

0 d11 0 0

0 0 d22 d23

0 0 d32 d33


.

Case 2.5 Let λ 6= 1
2 ,µ 6=

1
2 ,λ 6= µ, t = 0. Then, Equations (5.55-5.60) give that

d12 = d13 = d21 = d23 = d31 = d32 = 0. Hence,

d =



0 0 0 d03

0 d11 0 0

0 0 d22 0

0 0 0 d33


.

Case 2.6 Let λ = µ = 1
2 , t 6= 0. Then, Equations (5.54) implies that: d03 = 0.

Hence,

d =



0 0 0 0

0 d11 d12 d13

0 d21 d22 d23

0 d31 d32 d33


.
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Case 2.7 Let λ = µ 6= 1
2 , t 6= 0. Then, Equations (5.56) and (5.58-5.60) yield

that d13 = d23 = d31d32 = 0. Hence,

d =



0 0 0 0

0 d11 d12 0

0 d21 d22 0

0 0 0 d33


.

Case 2.8 Let λ = 1
2 ,µ 6=

1
2 , t 6= 0. Then, Equations (5.54-5.55), (5.57-5.59) give

that d03 = d12 = d21 = d32 = d23 = 0. So,

d =



0 0 0 0

0 d11 0 d13

0 0 d22 0

0 d31 0 d33


.

Case 2.9 Let λ 6= 1
2 ,µ = 1

2 , t 6= 0. Then, Equations (5.54-5.57) and (5.59) imply

that d03 = d12 = d13 = d21 = d31 = 0. Hence,

d =



0 0 0 0

0 d11 0 0

0 0 d22 d23

0 0 d32 d33


.

Case 2.10 Let λ 6= 1
2 ,µ 6=

1
2 ,λ 6= µ, t 6= 0. Then, Equations (5.54-5.60) yield
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that d03 = d12 = d13 = d21 = d23 = d31 = d32 = 0. Hence,

d =



0 0 0 0

0 d11 0 0

0 0 d22 0

0 0 0 d33


.

The obtained results are summarized in the following theorem.

Theorem 5.1.2 Let (A,◦t) be a FQGLV-A. Then, its derivations are given in the fol-

lowing Tables (5.2-5.4).

Table 5.2: The first five derivations of the given flow

Conditions derivation

a 6= 0,λ 6= 0,λ 6= µ


0 0 0 0
0 d11 0 0
0 0 d22 0
0 0 0 0


a 6= 0,λ 6= 0,λ = µ


0 0 0 0
0 d11 d12 0
0 d21 d22 0
0 0 0 0


a 6= 0,λ = 0,µ 6= 0


0 0 0 0
0 d11 0 0
0 0 d22 0
0 0 0 0


a 6= 0,λ = µ = 0


0 0 0 0
0 d11 d12 0
0 d21 d22 0
0 0 0 0


a = 0,λ = µ = 1

2 , t = 0


0 0 0 d03
0 d11 d12 d13
0 d21 d22 d23
0 d31 d32 d33
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Table 5.3: The second five derivations of the given flow

Conditions derivation

a = 0,λ = µ 6= 1
2 , t = 0


0 0 0 d03
0 d11 d12 0
0 d21 d22 0
0 0 0 d33


a = 0,λ = 1

2 ,µ 6=
1
2 , t = 0


0 0 0 d03
0 d11 0 d13
0 0 d22 0
0 d31 0 d33


a = 0,λ 6= 1

2 ,µ = 1
2 , t = 0


0 0 0 d03
0 d11 0 0
0 0 d22 d23
0 0 d32 d33


a = 0,λ 6= µ,λ 6= 1

2 ,µ 6=
1
2 , t = 0


0 0 0 d03
0 d11 0 0
0 0 d22 0
0 0 0 d33


a = 0,λ = µ = 1

2 , t 6= 0


0 0 0 0
0 d11 d12 d13
0 d21 d22 d23
0 d31 d32 d33



Remark It is notice that subalgebra F (see Section 4.3) has the following form (a 6=

0, t > 0):

F= {(λ ,0,0,µ) : λ ,µ ∈ C}.

It is interesting to know about d(F) for derivation d. Taking into account the formula:

d(x) = xT (di j).

Using Table (5.2), one immediately finds that d(F) = {0}. Indeed, let g ∈ F, i.e.,
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g = (λ ,0,0,µ). Then, by Table (5.2) (case a 6= 0,λ 6= 0,λ 6= µ), one gets:

d(g) = (λ ,0,0,µ)



0 0 0 0

0 d11 0 0

0 0 d22 0

0 0 0 0


= (0,0,0,0).

Using the same argument, one arrives at the required equality.

Table 5.4: The last four derivations of the given flow

Conditions derivation

a = 0,λ = µ 6= 1
2 , t 6= 0


0 0 0 0
0 d11 d12 0
0 d21 d22 0
0 0 0 d33


a = 0,λ = 1

2 ,µ 6=
1
2 , t 6= 0


0 0 0 0
0 d11 0 d13
0 0 d22 0
0 d31 0 d33


a = 0,λ 6= 1

2 ,µ = 1
2 , t 6= 0


0 0 0 0
0 d11 0 0
0 0 d22 d23
0 0 d32 d33


a = 0,λ 6= µ,λ 6= 1

2 ,µ 6=
1
2 , t 6= 0


0 0 0 0
0 d11 0 0
0 0 d22 0
0 0 0 d33
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Chapter 6: Automorphisms of FQGLVA

6.1 Preliminaries facts on unital maps

Recall that {1,σ1,σ2,σ3} is a basis for M2(C). For any x ∈M2(C) one has,

x = ω01+ω ·σ (6.1)

where ω ·σ = ω1σ1 +ω2σ2 +ω3σ3. Correspondingly, for any linear functional ϕ :

M2(C)→ C, one has ϕ(x) = ∑
3
i=0 fi ·ωi where fi = ϕ(σi), f0 = ϕ(1). Then, ϕ can be

written in terms of its coordinate vector ( f0, f1, f2, f3) ∈ C4. Recall that

1. ϕ is a state if ϕ(1) = 1.

2. ϕ ≥ 0 (positive) if ‖ϕ‖2 = |ϕ1|2 + |ϕ2|2 + |ϕ3|2 ≤ 1 and ϕ1,ϕ2,ϕ3 are real.

Thus, there is one-to-one correspondence between all functionals on M∗2(C) and C4.

Let A=M∗2(C). By S, it was denoted the set of all states on M2(C). Now, it is interested

to describe a mapping α : A→ A such that α(S) ⊂ S. Since A has a dimension four,

then the mapping α in the standard basis is represented as follows:

α =



a00 a10 a20 a30

a01 a11 a21 a31

a01 a12 a22 a32

a03 a13 a23 a33


.

Therefore, α acts on ϕ as follows:

α(ϕ) =

(
3

∑
j=0

a0 jϕ j,
3

∑
j=0

a1 jϕ j,
3

∑
j=0

a2 jϕ j,
3

∑
j=0

a3 jϕ j

)

= (α(ϕ)0,α(ϕ)1,α(ϕ)2,α(ϕ)3) .
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Now, using duality representation, one gets:

α(ϕ)(x) = 〈α(ϕ),x〉= 〈ϕ,α∗(x)〉.

Using (6.1), one finds

α
∗(x) = (α∗(x)0,α

∗(x)1,α
∗(x)2,α

∗(x)3) = α
T (ω)

where ω = (ω0,ω1,ω2,ω3) and

α
T =



a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

Remark If α preserve all states, i.e; α(S)⊂ S, then



a00 a10 a20 a30

a01 a11 a21 a31

a01 a12 a22 a32

a03 a13 a23 a33





1

0

0

0


=



1

0

0

0


which implies that: 

a00

a01

a02

a03


=



1

0

0

0


.
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Thus, a00 = 1,a01 = a02 = a03 = 0. Therefore,

α =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

Now, automorphisms of flow of quantum genetic Lotka-Volterra algebras are going to

be considered.

Definition 6.1.1 An automorphism of (At ,◦t) is a map α : At → At such that

• α is homomorphism, α(a◦t b) = α(a)◦t α(b) for all a,b ∈ At .

• α is one-to-one map.

Using the argument of Proposition (5.1.1), one can prove the following fact.

Theorem 6.1.1 α is an automorphism of (At ,◦t) if and only if α(ei ◦t e j) = α(ei) ◦t

α(e j) for all i, j ∈ {0,1,2,3} where {e j}3
j=0 is the standard basis.

6.2 Automorphisms of FQGLVA

From the previous section, α can be written as follows:

α =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

In this section, the necessary conditions on the matrix α and on λ ,µ,a are investigated,

when

α(ei ◦ e j) = α(ei)◦α(e j)
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for i, j ∈ {1,2,3}. Now, α(ei) for i = 0,1,2,3 are going to be computed. Then,

α(e0) =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





1

0

0

0


=



1

a10

a20

a30


= e0+a10e1+a20e2+a30e3,

α(e1) =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





0

1

0

0


=



0

a11

a21

a31


= a11e1 +a21e2 +a31e3,

α(e2) =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





0

0

1

0


=



0

a12

a22

a32


= a12e1 +a22e2 +a32e3,

α(e3) =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





0

0

0

1


=



0

a13

a23

a33


= a13e1 +a23e2 +a33e3.

The next step is to compute α(ei)◦t α(e j) for i, j ∈ {0,1,2,3}.

α(e0)◦t α(e0) =

(
1,2a10λ

t+1,2a20µ
t+1,a+

a−aa2
30

2t+1 +
a30−a

2t

)
= e0 +2a10λ

t+1e1 +2a20µ
t+1e2 +

(
a+

a−aa2
30

2t+1 +
a30−a

2t

)
e3,

α(e0)◦t α(e1) =

(
0,a11λ

t+1,a21µ
t+1,

a31−aa30a31

2t+1

)
= a11λ

t+1e1 +a21µ
t+1e2 +

a31−aa30a31

2t+1 e3,
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α(e0)◦t α(e2) =

(
0,a12λ

t+1,a22µ
t+1,

a32−aa30a32

2t+1

)
= a12λ

t+1e1 +a22µ
t+1e2 +

a32−aa30a32

2t+1 e3,

α(e0)◦t α(e3) =

(
0,a13λ

t+1,a23µ
t+1,

a33−aa30a33

2t+1

)
= a13λ

t+1e1 +a23µ
t+1e2 +

a33−aa30a33

2t+1 e3,

α(e1)◦t α(e0) =

(
0,a11λ

t+1,a21µ
t+1,

a31−aa30a31

2t+1

)
= a11λ

t+1e1 +a21µ
t+1e2 +

a31−aa30a31

2t+1 e3,

α(e1)◦t α(e1) =

(
0,0,0,

−aa2
31

2t+1

)
=
−aa2

31
2t+1 e3,

α(e1)◦t α(e2) =

(
0,0,0,

−aa31a32

2t+1

)
=
−aa31a32

2t+1 e3,

α(e1)◦t α(e3) =

(
0,0,0,

−aa31a33

2t+1

)
=
−aa31a33

2t+1 e3,

α(e2)◦t α(e0) =

(
0,a12λ

t+1,a22µ
t+1,

a32−aa30a32

2t+1

)
= a12λ

t+1e1 +a22µ
t+1e2 +

a32−aa30a32

2t+1 e3,

α(e2)◦t α(e1) =

(
0,0,0,

−aa31a32

2t+1

)
=
−aa31a32

2t+1 e3,

α(e2)◦t α(e2) =

(
0,0,0,

−aa2
32

2t+1

)
=
−aa2

32
2t+1 e3,

α(e2)◦t α(e3) =

(
0,0,0,

−aa32a33

2t+1

)
=
−aa32a33

2t+1 e3,
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α(e3)◦t α(e0) =

(
0,a13λ

t+1,a23µ
t+1,

a33−aa30a33

2t+1

)
= a13λ

t+1e1 +a23µ
t+1e2 +

a33−aa30a33

2t+1 e3,

α(e3)◦t α(e1) =

(
0,0,0,

−aa31a33

2t+1

)
=
−aa31a33

2t+1 e3,

α(e3)◦t α(e2) =

(
0,0,0,

−aa32a33

2t+1

)
=
−aa32a33

2t+1 e3,

α(e3)◦t α(e3) =

(
0,0,0,

−aa2
33

2t+1

)
=
−aa2

33
2t+1 e3.

Hence, the multiplications of α of basis vectors are reported in Tables (6.1)

and (6.2). Finally, one can compute α(ei ◦t e j) for i, j ∈ {0,1,2,3}. The results are

presented in Table (6.3).

Table 6.1: Multiplication of α of the basis vectors - part (a)

◦t α(e0) α(e1)

α(e0) e0 +2a10λ t+1e1 +2a20µ t+1e2 +
(

a+ a−aa2
30

2t+1 + a30−a
2t

)
e3 a11λ t+1e1 +a21µ t+1e2 +

a31−aa30a31
2t+1 e3

α(e1) a11λ t+1e1 +a21µ t+1e2 +
a31−aa30a31

2t+1 e3
−aa2

31
2t+1 e3

α(e2) a12λ t+1e1 +a22µ t+1e2 +
a32−aa30a32

2t+1 e3
−aa31a32

2t+1 e3

α(e3) a13λ t+1e1 +a23µ t+1e2 +
a33−aa30a33

2t+1 e3
−aa31a33

2t+1 e3

Table 6.2: Multiplication of α of the basis vectors - part (b)

◦t α(e2) α(e3)

α(e0) a12λ t+1e1 +a22µ t+1e2 +
a32−aa30a32

2t+1 e3 a13λ t+1e1 +a23µ t+1e2 +
a33−aa30a33

2t+1 e3

α(e1)
−aa31a32

2t+1 e3
−aa31a33

2t+1 e3

α(e2)
−aa2

32
2t+1 e3 0

α(e3)
−aa32a33

2t+1 e3
−aa32a33

2t+1 e3

Table 6.3: α(ei ◦t e j) for i, j ∈ {0,1,2,3}

i/ j 0 1 2 3
0 e0 +∑

3
i=1(ai0 +aai3ξ0)ei λ t+1

∑
3
i=1 ai1ei µ t+1

∑
3
i=1 ai2ei

1
2t+1 ∑

3
i=1 ai3ei

1 λ t+1
∑

3
i=1 ai1ei 0 0 0

2 µ t+1
∑

3
i=1 ai2ei 0 0 0

3 1
2t+1 ∑

3
i=1 ai3ei 0 0 −a

2t+1 ∑
3
i=1 ai3ei
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Now, two main cases will be considered, namely, a = 0 and a 6= 0.

(I) Let a = 0. Comparing Tables (6.1) and (6.2) one yields the following set of equa-

tions:

a10
(
−1+2λ

t+1)= 0,a20
(
−1+2µ

t+1)= 0,

a30

(
−1+

1
2t

)
= 0,a21

(
−λ

1+t +µ
1+t)= 0,

a31

(
1

2t+1 −λ
t+1
)
= 0,a12

(
−λ

1+t +µ
1+t)= 0,

a32

(
1

2t+1 −µ
t+1
)
= 0,a13

(
−1
2t+1 +λ

1+t
)
= 0,

a23

(
−1
2t+1 +µ

1+t
)
= 0.

In addition, note that det(α) 6= 0. Hence, one has the following cases.

Case 1.1 Let a = 0,λ = µ = 1
2 , t = 0. Then, α =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

Case 1.2 Let a = 0,µ = 1
2 , t 6= 0, |λ |< 1

2 . Then,

a10 = a30 = a31 = a13 = a20 = a21 = a12 = 0,

α =



1 0 0 0

0 a11 0 0

0 0 a22 a23

0 0 a32 a33


.

Case 1.3 Let a = 0,λ = 1
2 , t 6= 0, |µ|< 1

2 . Then,

a10 = a20 = a30 = a21 = a12 = a32 = a23 = 0,
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α =



1 0 0 0

0 a11 0 a13

0 0 a22 0

0 a31 0 a33


.

Case 1.4 Let a = 0,λ 6= 1
2 , t 6= 0,µ 6= 1

2 ,λ 6= µ, |λ |< 1
2 , |µ|<

1
2 . Then,

a10 = a20 = a30 = a21 = a31 = a12 = a32 = a13 = a23 = 0,

α =



1 0 0 0

0 a11 0 0

0 0 a22 0

0 0 0 a33


,det(α) 6= 0.

Case 1.5 Let a = 0, t 6= 0,λ = µ, |λ |< 1
2 , |µ|<

1
2 . Then,

a10 = a20 = a30 = a31 = a32 = a13 = a23 = 0,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


.

Case 1.6 Let a = 0, t 6= 0,λ = µ = 1
2 . Then,

a10 = a20 = a30 = a31 = a32 = a13 = a23 = 0,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


.
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Case 1.7 Let a = 0, t = 0,µ = 1
2 , |λ |<

1
2 . Then,

a10 = a21 = a31 = a12 = a13 = 0,

α =



1 0 0 0

0 a11 0 0

a20 0 a22 a23

a30 0 a32 a33


.

Case 1.8 Let a = 0, t = 0,λ = 1
2 , |µ|<

1
2 . Then,

a20 = a21 = a12 = a32 = a23 = 0,

α =



1 0 0 0

a10 a11 0 a13

0 0 a22 0

a30 a31 0 a33


.

Case 1.9 Let a = 0, t = 0,λ 6= µ, |λ |< 1
2 , |µ|<

1
2 . Then,

a10 = a20 = a21 = a31 = a12 = a32 = a13 = a23 = 0,

α =



1 0 0 0

0 a11 0 0

0 0 a22 0

a30 0 0 a33


.

Case 1.10 Let a = 0, t = 0,λ = µ, |λ |< 1
2 , |µ|<

1
2 . Then,

a10 = a20 = a31 = a32 = a13 = a23 = 0,
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α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

a30 0 0 a33


.

It is wroth mention that the following condition is used in the previous cases.

0≤max{|λ |, |µ|} ≤
√

1−|a|
2

=
1
2
.

(II) Let a 6= 0. Then, the following equations can be generated.

−aa13ξ0 +a10(−1+2λ
t+1) = 0,−aa23ξ0 +a20(−1+2µ

t+1) = 0,

−a30 +
a30

2t+1 (2−aa30)+aξ0−aa33ξ0 = 0,a21(−λ
1+t +µ

t+1) = 0,

1
21+t (a31−aa30a31)−a31λ

1+t = 0,
−1
21+t aa2

31 = 0,

−1
21+t aa31a32 = 0,

−1
21+t aa2

32 = 0,

−1
21+t aa13 = 0,a12(−λ

1+t +µ
t+1) = 0,

1
2t+1 (a32−aa30a32)−a32µ

1+t = 0,a13

(
−1
2t+1 +λ

1+t
)
= 0,

a23

(
−1
2t+1 +µ

1+t
)
= 0,

1
2t+1 aa30a33 = 0,

−1
2t+1 aa31a33 = 0,

−1
2t+1 aa32a33 = 0,

−1
2t+1 aa23 = 0,

−1
2t+1 a33(1+a33) = 0,

where ξ0 = 1+ 1
2t+1 − 1

2t . Thus, a13 = a23 = a32 = a31 = 0. Hence, the previous
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system of equations can be reduce to the following seven equations.

a10(−1+2λ
1+t) = 0,

−1
2t+1 aa30a33 = 0,

−a30 +
a30

2t+1 (2−aa30)+aξ0−aa33ξ0 = 0,

−1
2t+1 aa33(1+a33) = 0,a20(−1+2µ

1+t) = 0,

a21(−λ
1+t +µ

1+t) = 0,a12(−λ
1+t +µ

1+t) = 0.

Thus, the following five cases can be reported.

Case 2.1 Let a33 = 0,λ = µ, t 6= 0. Then,

a10 = a20 = 0,a30 =
2−21+t±

√
(−2+21+t)2 +23+ta2ξ0

2a
,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

a30 0 0 0


. Due to the fact that det(α) 6= 0 and since

det(α) = 0, this case can not be considered.

Case 2.2 Let a33 = 0,λ 6= µ,λ = 1
2 , t 6= 0. Then,

a20 = a21 = a12 = 0,a30 =
2−21+t±

√
(−2+21+t)2 +23+ta2ξ0

2a
,

α =



1 0 0 0

a10 a11 0 0

0 0 a22 0

a30 0 0 0


.

Due to the fact that det(α) 6= 0 and since det(α) = 0, this case can not be

considered.
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Case 2.3 Let a33 = 0,λ 6= µ,µ = 1
2 , t = 0. Then,

a10 = a21 = a12 = 0,a30 =
2−21+t±

√
(−2+21+t)2 +23+ta2ξ0

2a
,

α =



1 0 0 0

0 a11 0 0

a20 0 a22 0

a30 0 0 0


.

Due to the fact that det(α) 6= 0 and since det(α) = 0, this case can not be

considered.

Case 2.4 Let a33 = 0,λ 6= µ,λ 6= 1
2 ,µ 6=

1
2 , t = 0. Then,

a10 = a20 = a21 = a12 = 0,a30 =
2−21+t±

√
(−2+21+t)2 +23+ta2ξ0

2a
,

α =



1 0 0 0

0 a11 0 0

0 0 a22 0

a30 0 0 0


.

Due to the fact that det(α) 6= 0 and since det(α) = 0, this case can

not be considered.

Case 2.5 Let a33 6= 0. Then,

a13 = a23 = a32 = a31 = 0 = a30.



102

Thus, the following system of equations can be generated.

a10(−1+2λ
1+t) = 0,aξ0−aa33ξ0 = 0,

−1
2t+1 aa33(1+a33) = 0,

a20(−1+2µ
1+t) = 0,a21(−λ

1+t +µ
1+t) = 0,a12(−λ

1+t +µ
1+t) = 0.

Since t ≥ 0 and ξ0 = 1− 1
2t+1 6= 0, aξ0−aa33ξ0 = 0 yields that a33 =

1. Thus, −1
2t+1 aa33(1+a33) = 0 implies that a = 0 which is a contradiction.

Thus, this case is impossible.

Finally, the following possibilities for α can be obtained.

1. Let a = 0,λ = µ = 1
2 , t = 0. Then,

α =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

2. Let a = 0,µ = 1
2 , t 6= 0, |λ |< 1

2 . Then,

α =



1 0 0 0

0 a11 0 0

0 0 a22 a23

0 0 a32 a33


.

3. Let a = 0,λ = 1
2 , t 6= 0, |µ|< 1

2 . Then,

α =



1 0 0 0

0 a11 0 a13

0 0 a22 0

0 a31 0 a33


.

4. Let a = 0,λ 6= 1
2 , t 6= 0,µ 6= 1

2 ,λ 6= µ, |λ |< 1
2 , |µ|<

1
2 . Then,
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α =



1 0 0 0

0 a11 0 0

0 0 a22 0

0 0 0 a33


.

5. Let a = 0, t 6= 0,λ = µ, |λ |< 1
2 , |µ|<

1
2 . Then,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


.

6. Let a = 0, t 6= 0,λ = µ = 1
2 . Then,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


.

7. Let a = 0, t = 0,µ = 1
2 , |λ |<

1
2 . Then,

α =



1 0 0 0

0 a11 0 0

a20 0 a22 a23

a30 0 a32 a33


.

8. Let a = 0, t = 0,λ = 1
2 , |µ|<

1
2 . Then,

α =



1 0 0 0

a10 a11 0 a13

0 0 a22 0

a30 a31 0 a33


.

9. Let a = 0, t = 0,λ 6= µ, |λ |< 1
2 , |µ|<

1
2 . Then,

α =



1 0 0 0

0 a11 0 0

0 0 a22 0

a30 0 0 a33


.
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10. Let a = 0, t = 0,λ = µ, |λ |< 1
2 , |µ|<

1
2 . Then,

α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

a30 0 0 a33


.

6.3 Positivity of automorphisms of (At ,◦t)

Assume that

T=


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , f =


f1

f2

f3

 ,a =


a10

a20

a30

 ,

and T̃= a+T(f). Let

α =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33


.

It is noted that α is positive if and only if α(S) ⊂ S. Take ϕ ∈ S, then f =

(1, f1, f2, f3) and

α(ϕ) =



1 0 0 0

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33





1

f1

f2

f3


= (1,a10 +Σ

3
j=1a1 j f j,a20 +Σ

3
j=1a2 j f j,a30 +Σ

3
j=1a3 j f j

= (1,a+T(f)).
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The positivity condition for α is equivalent to

‖a+T(f)‖ ≤ 1,∀‖f‖ ≤ 1. (6.2)

Now, some sufficient conditions to satisfy Equation (6.2) will be provided.

Theorem 6.3.1 If ‖a+T(f)‖ ≤ 1, then

‖T‖2 +‖a‖2 ≤ 1. (6.3)

Proof. Due to the parallelogram equality and ‖a+T(f)‖≤ 1,‖a−T(f)‖≤ 1,∀f,‖f‖≤

1, then 2(‖a‖2 + ‖Tf‖2) ≤ 2 which implies that ‖Tf‖2 + ‖a‖2 ≤ 1. Hence, ‖Tf‖2 ≤

1−‖a‖2,∀f,‖f‖ ≤ 1. Thus, ‖T‖2 ≤ 1−‖a‖2 which gives ‖T‖2 +‖a‖2 ≤ 1.

Remark We stress that condition (6.3) is necessary condition but not sufficient. In-

deed, consider the following example. Let

T=


1
2 0 0

0 1
2 0

0 0 1
2

 , f =


1

0

0

 ,a =


1
2

1
2

1
2

 .

Then,

‖T‖2 +‖a‖2 =

(
max

{
1
2
,
1
2
,
1
2

})2

+

(√
1
4
+

1
4
+

1
4

)2

= 1≤ 1
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but

‖a+Tf‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥


1
2

1
2

1
2

+


1
2

0

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥


1

1
2

1
2



∥∥∥∥∥∥∥∥∥∥∥∥

2

=
3
2
> 1.

Corollary 6.3.2 If a = 0, then, ‖a+Tf‖ ≤ 1 if and only if ‖Tf‖ ≤ 1,∀‖f‖ ≤ 1 which

is equivalent to ‖T‖ ≤ 1. Hence, Theorem (6.3.1) will be necessary and sufficient

statement.

Theorem 6.3.3 Let A =

 a b

c d

 with a,b,c,d ∈ R. Then,

‖A‖= 1√
2

√
a2 +b2 + c2 +d2 +

√
(a2 +b2 + c2 +d2)2 +4(ad−bc)2.

Proof. It is clear that:

AT A =

 a2 + c2 ab+ cd

ab+ cd b2 +d2


is symmetric matrix and its eigenvalues are nonnegative real numbers. Thus,

0 = det(AT A−λ I2) = det

 a2 + c2−λ ab+ cd

ab+ cd b2 +d2−λ


= λ

2− (a2 +b2 + c2 +d2)λ +(a2 + c2)(b2 +d2)− (ab+ cd)2.

Hence,

λ1,λ2 =
a2 +b2 + c2 +d2±

√
(a2 +b2 + c2 +d2)2 +4(ad−bc)2

2
,λ1 ≥ λ2.
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Thus,

‖A‖= 1√
2

√
a2 +b2 + c2 +d2 +

√
(a2 +b2 + c2 +d2)2 +4(ad−bc)2.

Theorem 6.3.4 Let f : Ω→ R be a function that is defined by

f (u,v) = Au+Bv+C

where C ≥ 0 and Ω = {(u,v) ∈ R : u≥ 0,v≥ 0,u+ v≤ 1}. Then, the maximum value

of f on Ω is

max
(u,v)∈Ω

f (u,v) = max{A+C,B+C,C}.

Proof. Since ∂ f
∂u = A and ∂ f

∂v = B, then the critical numbers of f is all (u,v) ∈ Ω if

A = B = 0. If |A|+ |B| 6= 0, then f does not have critical point in the interior of Ω.

Hence, the maximum of f is on the boundary. Three cases should be considered.

Case 1 Let v = 0. Then, f (u,v) = Au+C,0≤ u≤ 1 which yields that

max
(u,v)∈Ω

v=0

f (u,v) = max{A+C,C}.

Case 2 Let u = 0. Then, f (u,v) = Bv+C,0≤ v≤ 1 which gives that

max
(u,v)∈Ω

u=0

f (u,v) = max{B+C,C}.

Case 3 Let u+ v = 1. Then, f (u,v) = g(u) = Au+(1− u)B+C,0 ≤ u ≤ 1. Hence,
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g′(u) = A−B. Thus,

max
(u,v)∈Ω

u+v=1

f (u,v) =


max{g(0),g(1)} A 6= B,

max{g(0),g(1),A+C} A = B,

or

max
(u,v)∈Ω

u+v=1

f (u,v) =


max{B+C,A+C} A 6= B,

max{B+C,A+C} A = B.

Combining all cases, one can get:

max
(u,v)∈Ω

f (u,v) = max{A+C,B+C,C}.

Now, the positivity of the ten matrices in the previous section will be

investigated. Now, using Theorem 6.3.1 with a = 0, one provides necessary and suffi-

cient conditions for the positivity of C.

Case 1.2 Let α =



1 0 0 0

0 a11 0 0

0 0 a22 a23

0 0 a32 a33


. Then, it follows from Theorem (6.3.1) that

α is positive if ∥∥∥∥∥∥∥
 a22 a23

a32 a33


∥∥∥∥∥∥∥

2

+ |a11|2 ≤ 1

which yields by Theorem (6.3.3),

a2
22 +a2

23 +a2
32 +a2

33 +
√
(a2

22 +a2
23 +a2

32 +a2
33)

2 +4(a22a33−a23a32)2

2
+|a11|2≤ 1.
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Case1.3 Let α =



1 0 0 0

0 a11 0 a13

0 0 a22 0

0 a31 0 a33


. Then, it follows from Theorem (6.3.1) that

α is positive if ∥∥∥∥∥∥∥
 a11 a13

a31 a33


∥∥∥∥∥∥∥

2

+ |a22|2 ≤ 1

which yields by Theorem (6.3.3),

a2
11 +a2

13 +a2
31 +a2

33 +
√
(a2

11 +a2
13 +a2

31 +a2
33)

2 +4(a11a33−a13a32)2

2
+|a22|2≤ 1.

Case 1.4 Let α =



1 0 0 0

0 a11 0 0

0 0 a22 0

0 0 0 a33


. Then, α is positive if

max{|a11|, |a22|, |a33|} ≤ 1.

Case 1.5 Let α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


. Then, it follows from Theorem (6.3.1) that

α is positive if ∥∥∥∥∥∥∥
 a11 a12

a21 a22


∥∥∥∥∥∥∥

2

+ |a33|2 ≤ 1

which yields by Theorem (6.3.3),

a2
11 +a2

12 +a2
21 +a2

22 +
√
(a2

11 +a2
12 +a2

21 +a2
22)

2 +4(a11a22−a12a21)2

2
+|a33|2≤ 1.
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Case 1.6 Let α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

0 0 0 a33


. Then, it follows from Theorem (6.3.1) that

α is positive if

∥∥∥∥∥∥∥
 a11 a12

a21 a22


∥∥∥∥∥∥∥

2

+ |a33|2 ≤ 1 which yields by Theorem (6.3.3),

a2
11 +a2

12 +a2
21 +a2

22 +
√

(a2
11 +a2

12 +a2
21 +a2

22)
2 +4(a11a22−a12a21)2

2
+|a33|2≤ 1.

In the next cases, by using (6.2), the positivity of α will be investigated.

Case 1.7 Let α =



1 0 0 0

0 a11 0 0

a20 0 a22 a23

a30 0 a32 a33


. Then, α is positive if

‖a+Tf‖2 ≤ 1, where T=


a11 0 0

0 a22 a23

0 a32 a33

 and a =


0

a20

a30

.

To find sufficient conditions for the positivity of α , one should examine ‖a+

Tf‖2. Thus,

‖a+Tf‖2 = a2
11 f 2

1 +(|a20|+ |a22| f2 + |a23| f3)
2 +(|a30|+ |a32| f2 + |a33| f3)

2

= a2
11 f 2

1 +a2
20 +a2

22 f 2
2 +a2

23 f 2
3 +2|a20||a22| f2 +2|a20||a23| f3 +2|a22||a23| f2 f3

+a2
30 +2|a30||a32| f2 +2|a30||a33| f3 +a2

32 f 2
2 +2|a32||a33| f2 f3 +a2

33 f 2
3

≤ a2
11 f 2

1 +a2
22 f 2

2 +2(|a20||a22|+ |a30||a32|)| f2|+2(|a30||a33|)| f3|

+2(|a22||a23|+ |a32||a33|)| f2|| f3|+(a2
23 +a2

33) f 2
3 +(a2

20 +a2
30)

+a2
32 f 2

2 .
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Since 2| f2|| f3| ≤ f 2
2 + f 2

3 and 2| f2| ≤ 1+ f 2
2 ,

‖a+Tf‖2 ≤ a2
11 f 2

1 +(a2
22 +a2

32 + |a22||a23|+ |a32||a33|) f 2
2

+(|a20||a22|+ |a30||a32|)(1+ f 2
2 )+(a2

23 +a2
33 + |a22||a23|+ |a32||a33|) f 2

3

+2|a30||a33|| f3|+(a2
22 +a2

30)

= a2
11 f 2

1 +(a2
22 +a2

32 + |a22||a23|+ |a32||a33|+(|a20||a22|+ |a30||a32|) f 2
2

+(a2
23 +a2

33 + |a22||a23|+ |a32||a33|) f 2
3

+2|a30||a33|| f3|+(a2
22 +a2

30 + |a20||a22|+ |a30||a32|).

Let

β = max{a2
11,a

2
22 +a2

32 + |a22||a23|+ |a32||a33|+ |a20||a22|+ |a30||a32|}.

Then,

‖a+Tf‖2 ≤ β ( f 2
1 + f 2

2 )+(a2
23 +a2

33 + |a22||a23|+ |a32||a33|) f 2
3

+2|a30||a33|| f3|+(a2
22 +a2

30 + |a20||a22|+ |a30||a32|)

≤ β (1− f 2
3 )+(a2

23 +a2
33 + |a22||a23|+ |a32||a33|) f 2

3

+2|a30||a33|| f3|+(a2
22 +a2

30 + |a20||a22|+ |a30||a32|)

= Au2 +Bu+C ≤ 1,

where

A = a2
23 +a2

33 + |a22||a23|+ |a32||a33|−β ,

B = 2|a30||a33|,u = | f3|,

C = β +a2
22 +a2

30 + |a20||a22|+ |a30||a32|.
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Hence,

(1−C)−Bu−Au2 ≥ 0.

Let a = −A,b = −B, and c = 1−C. Then, f (u) = au2 + bu+ c ≥ 0 for all

u ∈ [0,1]. By Lemma 3.2.1, α is positive if

1−β −a2
22−a2

30−|a20||a22|− |a30||a32| ≥ 0, (6.4)

and

−a2
23−a2

33−|a22||a23|− |a32||a33|+β −2|a30||a33|

+1−β −a2
22−a2

30−|a20||a22|− |a30||a32| ≥ 0

which gives that

1−a2
23−a2

33−a2
22−a2

30−|a22||a23|− |a32||a33|−2|a30||a33| (6.5)

−|a20||a22|− |a30||a32| ≥ 0.

In addition, either conditions (6.6)-(6.9) or (6.10) hold.

β −a2
23−2

33−|a22||a23|− |a32||a33|> 0 (6.6)

2a30a33 < 0 (6.7)

|a30||a33|+a2
23 +a2

33 + |a22||a23|+ |a32||a33|−β > 0 (6.8)

4a2
30 +a2

33 +4(a2
23 +a2

33 + |a22||a23|+ |a32||a33|−β )(1−β (6.9)

−a2
22−a2

30 +a20a22 +a30a32)≤ 0

or

a2
23 +a2

33 + |a22||a23|+ |a32||a33|−β > 0. (6.10)
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and one of the following conditions is satisfied. Finally, the following conditions

are founded.

1. 1−β −a2
22−a2

30−|a20||a22|− |a30||a32| ≥ 0,

2.

1−a2
23−a2

33−a2
22−a2

30−|a22||a23|− |a32||a33|−2|a30||a33|

−|a20||a22|− |a30||a32| ≥ 0.

and one of the following conditions is satisfied.

I. β > a2
23 +a2

33 + |a22||a23|+ |a32||a33|.

a. a30a33 < 0

b. |a30||a33|+a2
23 +a2

33 + |a22||a23|+ |a32||a33|> β

c.

4a2
30a2

33 +4(a2
23 +a2

33 + |a22||a23|+ |a32||a33|−β )(1−β

−a2
22−a2

30−a20a22−a30a32)≤ 0.

II. β < a2
23 +a2

33 + |a22||a23|+ |a32||a33|.

Case 1.8 Let α =



1 0 0 0

a10 a11 0 a13

0 0 a22 0

a30 a31 0 a33


. Then, a =


a10

0

a30

 and

T=


a11 0 a13

0 a22 0

a30 0 a33

 .
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Now, the goal is to reduce this case to case (1.7). Define the matrix U by

U =


0 1 0

1 0 0

0 0 1

 .

Then, U−1 =U , f̃ =U


f1

f2

f3

=


f2

f1

f3

 , and

T̃7 =UTU−1 =


0 1 0

1 0 0

0 0 1




a11 0 a13

0 a22 0

a30 0 a33




0 1 0

1 0 0

0 0 1



=


a22 0 0

0 a11 a13

0 a31 a33

 .

Thus, T=U−1T̃7U . Then,

‖a+Tf‖= ‖U−1Ua+U−1T̃7Uf‖= ‖U−1(Ua+ T̃7Uf)‖= ‖ã+ T̃7̃f‖

where ã =Ua =


0

a10

a30

 . Therefore, from Case (1.7), one obtains the follow-

ing conditions.

1. 1−β −a2
11−a2

30−|a10||a11|− |a30||a31| ≥ 0,

2.

1−a2
13−a2

33−a2
11−a2

30−|a11||a13|− |a31||a33|−2|a30||a33|

−|a10||a11|− |a30||a31| ≥ 0.
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and one of the following conditions is satisfied.

I. β > a2
13 +a2

33 + |a11||a13|+ |a31||a33|.

a. a30a33 < 0.

b. |a30||a33|+a2
13 +a2

33 + |a11||a13|+ |a31||a33|> β .

c.

4a2
30a2

33 +4(a2
13 +a2

33 + |a11||a13|+ |a31||a33|−β )(1−β

−a2
11−a2

30−a10a11−a30a31)≤ 0.

II. β < a2
13 +a2

33 + |a11||a13|+ |a31||a33|.

Case 1.9 Let α =



1 0 0 0

0 a11 0 0

0 0 a22 0

a30 0 0 a33


. Then, α is positive if and only if

max{|a30|2 + |a11|2 + |a22|2 + |a33|2} ≤ 1.

Let us check conditions of case (1.7). Then,



1 0 0 0

0 a11 0 0

0 0 a22 0

a30 0 0 a33





1

f1

f2

f3


=



1

a11 f1

a22 f2

a30 +a33 f3


.

Then,

I = a2
11 f 2

1 +a2
22 f 2

2 +(|a30|+ |a33| f3)
2

≤ a2
11 f 2

1 +a2
22 f 2

2 +a2
30 +a2

33 f 2
3 +2|a30||a33|| f3|.
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Let β = max{a2
11,a

2
22}. Then,

I ≤ β ( f 2
1 + f 2

2 )+a2
33 f 2

3 +2|a30||a33|| f3|+a2
30

≤ β (1− f 2
3 )+a2

33 f 2
3 +2|a30||a33|| f3|+a2

30

= (a2
33−β ) f 2

3 +2|a30||a33|| f3|+β +a2
30 ≤ 1.

Then, f (u)= au2+bu+c,u∈ [0,1], where u= | f3|,a= β−a2
33,b=−2|a30||a33|,

and c = 1−β −a2
30. By Lemma (3.2.1), α is positive if

1−β −a2
30 ≥ 0 (6.11)

1−a2
33−2|a30||a33|−a2

30 ≥ 0 (6.12)

and either conditions (6.13-6.16) or (6.17) hold.

β −a2
33 > 0 (6.13)

|a30||a33|< 0 (6.14)

2|a30||a33|+2(a2
33−β )> 0 (6.15)

4a2
30a2

33 +4(a2
33−β )(1−β −a2

30)≤ 0 (6.16)

or

a2
33−β > 0. (6.17)

Since condition (6.13) can be satisfied, so the conditions become

1−β −a2
30 ≥ 0 (6.18)

1−a2
33−2|a30||a33|−a2

30 ≥ 0 (6.19)

a2
33−β > 0. (6.20)
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Case 1.10 Let α =



1 0 0 0

0 a11 a12 0

0 a21 a22 0

a30 0 0 a33


. Then, a =


0

0

a30

 and

T=


a11 a12 0

a21 a22 0

0 0 a33

 .

Now, the goal is to reduce this case to case (1.7). Define the matrix U by

U =


0 0 1

0 1 0

1 0 0

 .

Then, U−1 =U , ˜̃f =U


f1

f2

f3

=


f3

f2

f1

 , and

˜̃T7 =UTU−1 =


0 0 1

0 1 0

1 0




a11 a12 0

a21 a22 0

0 0 a33




0 0 1

0 1 0

1 0 0



=


a33 0 0

0 a22 a21

0 a12 a11

 .

Thus, T=U−1T̃7U . Then,

‖a+Tf‖= ‖U−1Ua+U−1 ˜̃T7Uf‖= ‖U−1(Ua+ ˜̃T7Uf)‖= ‖˜̃a+ ˜̃T7̃̃f‖
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where ˜̃a =Ua =


a30

0

0

 . Therefore, from Case (1.7), one obtains the follow-

ing conditions.

1. 1−β −a2
22 ≥ 0,

2.

1−a2
21−a2

11−a2
22−|a22||a21|− |a12||a11| ≥ 0.

and one of the following conditions is satisfied.

I. β > a2
21 +a2

11 + |a22||a21|+ |a12||a11|.

a. a2
21 +a2

11 + |a22||a21|+ |a12||a11|> β .

b.

4(a2
21 +a2

11 + |a22||a21|+ |a12||a11|−β )(1−β −a2
22)≤ 0.

II. β < a2
21 +a2

11 + |a22||a21|+ |a12||a11|.

Let us check conditions of case (1.7). Then,



1 0 0 0

0 a11 a12 0

0 a21 a22 0

a30 0 0 a33





1

f1

f2

f3


=



1

a11 f1 +a12 f2

a21 f1 +a22 f2

a30 +a33 f3


.
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Then,

I = (|a11| f1 + |a12| f2)
2 +(|a21| f1 + |a22| f2)

2 +(|a30|+ |a33| f3)
2

≤ a2
11 f 2

1 +a2
12 f 2

2 +2|a11||a12|| f1|| f2|+a2
21 f 2

1 +a2
22 f 2

2

+2|a21||a22| f1 f2 +a2
30 +a2

33 f 2
3 +2|a30||a33|| f3|

≤ a2
11 f 2

1 +a2
12 f 2

2 + |a11||a12|( f 2
1 + f 2

2 )+a2
21 f 2

1 +a2
22 f 2

2

+|a21||a22|( f 2
1 + f 2

2 )+a2
30 +a2

33 f 2
3 +2|a30||a33|| f3|

= (a2
11 + |a11||a12|+a2

21 + |a21||a22|) f 2
1 +(a2

12 + |a11||a12|+a2
22 + |a21||a22|) f 2

2

+a2
33 f 2

3 +2|a30||a33| f3 +a2
30.

Let β =max{a2
11+|a11||a12|+a2

21+|a21||a22|,a2
12+|a11||a12|+a2

22+|a21||a22|}.

Then,

I ≤ β ( f 2
1 + f 2

2 )+a2
33 f 2

3 +2|a30||a33|| f3|+a2
30

≤ β (1− f 2
3 )+a2

33 f 2
3 +2|a30||a33|| f3|+a2

30 ≤ 1.

Then, f (u)= au2+bu+c,u∈ [0,1], where u= | f3|,a= β−a2
33,b=−2|a30||a33|,

and c = 1−β −a2
30. By Lemma (3.2.1), α is positive if

1−β −a2
30 ≥ 0 (6.21)

1−a2
33−2|a30||a33|−a2

30 ≥ 0 (6.22)

and either conditions (6.23)-(6.26) or (6.27) hold.

β −a2
33 > 0 (6.23)

|a30||a33|< 0 (6.24)

2|a30||a33|+2(a2
33−β )> 0 (6.25)

4a2
30a2

33 +4(a2
33−β )(1−β −a2

30)≤ 0 (6.26)
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or

a2
33−β > 0. (6.27)

Since condition (6.27) can be satisfied, so the conditions become:

1−β −a2
30 ≥ 0 (6.28)

1−a2
33−2|a30||a33|−a2

30 ≥ 0 (6.29)

a2
33−β > 0. (6.30)

From these calculations, one can summarize the previous work in the following table.
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Table 6.4: Conditions for the positivity of α - part (a)

Cases α Conditions for positivity

1.1 α =


1 0 0 0

a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 ‖a+T(f)‖ ≤ 1,∀‖f‖ ≤ 1

1.2 α =


1 0 0 0
0 a11 0 0
0 0 a22 a23
0 0 a32 a33


1
2

(
a2

22 +a2
23 +a2

32 +a2
33

+
√

(a2
22 +a2

23 +a2
32 +a2

33)
2 +4(a22a33−a23a32)2

)
+|a11|2 ≤ 1

1.3 α =


1 0 0 0
0 a11 0 a13
0 0 a22 0
0 a31 0 a33


1
2

(
a2

11 +a2
13 +a2

31 +a2
33

+
√

(a2
11 +a2

13 +a2
31 +a2

33)
2 +4(a11a33−a13a32)2

)
+|a22|2 ≤ 1

1.4 α =


1 0 0 0
0 a11 0 0
0 0 a22 0
0 0 0 a33

 max{|a11|, |a22|, |a33|} ≤ 1

1.5 α =


1 0 0 0
0 a11 a12 0
0 a21 a22 0
0 0 0 a33


1
2

(
a2

11 +a2
12 +a2

21 +a2
22

+
√

(a2
11 +a2

12 +a2
21 +a2

22)
2 +4(a11a22−a12a21)2

)
+|a33|2 ≤ 1

1.6 α =


1 0 0 0
0 a11 a12 0
0 a21 a22 0
0 0 0 a33


1
2

(
a2

11 +a2
12 +a2

21 +a2
22

+
√

(a2
11 +a2

12 +a2
21 +a2

22)
2 +4(a11a22−a12a21)2

)
+|a33|2 ≤ 1

1.7 α =


1 0 0 0
0 a11 0 0

a20 0 a22 a23
a30 0 a32 a33



1. 1−β −a2
22−a2

30−|a20||a22|− |a30||a32| ≥ 0,
2. 1−a2

23−a2
33−a2

22−a2
30−|a22||a23|− |a32||a33|

−2|a30||a33|− |a20||a22|− |a30||a32| ≥ 0
and one of the following conditions is satisfied.
I. β > a2

23 +a2
33 + |a22||a23|+ |a32||a33|.

a) a30a33 < 0
b) |a30||a33|+a2

23 +a2
33 + |a22||a23|+ |a32||a33|> β

c) 4a2
30a2

33 +4(a2
23 +a2

33 + |a22||a23|
+|a32||a33|−β )(1−β −a2

22−a2
30

−a20a22−a30a32)≤ 0
II. β < a2

23 +a2
33 + |a22||a23|+ |a32||a33|.

1.8 α =


1 0 0 0

a10 a11 0 a13
0 0 a22 0

a30 a31 0 a33



1. 1−β −a2
11−a2

30−|a10||a11|− |a30||a31| ≥ 0,
2. 1−a2

13−a2
33−a2

11−a2
30−|a11||a13|− |a31||a33|

−2|a30||a33|− |a10||a11|− |a30||a31| ≥ 0
and one of the following conditions is satisfied.
I. β > a2

13 +a2
33 + |a11||a13|+ |a31||a33|.

a) a30a33 < 0
b) |a30||a33|+a2

13 +a2
33 + |a11||a13|+ |a31||a33|> β

c) 4a2
30a2

33 +4(a2
13 +a2

33 + |a11||a13|
+|a31||a33|−β )(1−β −a2

11−a2
30

−a10a11−a30a31)≤ 0
II. β < a2

13 +a2
33 + |a11||a13|+ |a31||a33|.
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Table 6.5: Conditions for the positivity of α - part (b)

Cases α Conditions for positivity

1.9 α =


1 0 0 0
0 a11 0 0
0 0 a22 0

a30 0 0 a33

 1−β −a2
30 ≥ 0

1−a2
33−2|a30||a33|−a2

30 ≥ 0
a2

33−β > 0

1.10 α =


1 0 0 0
0 a11 a12 0
0 a21 a22 0

a30 0 0 a33

 1−β −a2
30 ≥ 0

1−a2
33−2|a30||a33|−a2

30 ≥ 0
a2

33−β > 0
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Chapter 7: Conclusions

In this thesis, a class of flow quantum Lotka-Volterra genetic algebras (FQLVG-

A) is investigated. The structures of this class of FQLVG-A are presented. Also, the

derivation of a class of FQLVG-A are described. In addition to the automorphisms of

a class of FQLVG-A and their positivity are presented and proven.

In chapter two, the basic preliminaries which are used in this thesis are given.

The space of all linear operators on n-dimensional Hilbert space Cn is defined. Then,

every linear operator is represent as n×n matrix. Several conditions that characteristic

the positive matrices are given. In addition, special types of maps are presented such

as linear, positive, unital, and completely positive and their properties are given. Pauli

matrices and their properties are investigated. Then, positive, trace preserving and uni-

tal operators on M2(C) are described. The quadratic stochastic operators are defined.

At the end of this chapter, some properties of quantum quadratic stochastic operators

on M2(C) are recalled.

In Chapter 3, symmetric commutative q.q.o.s on the commutative algebra DM2(C)

are described and formulated. Interesting results that are equivalent to the symmetric

quasi q.q.o. are proven. Moreover, a quantum analogue of Lotka-Volterra operators on

M2(C) are defined and some properties of these operators are presented.

In chapter 4, a flow of quantum genetic Lotka-Volterra algebras are defined.

Moreover, the necessary and sufficient conditions for the associativity and alterna-

tively of FQGLV-A are derived. In addition, the idempotent elements in FQGLV-A are

found.

In Chapter 5, the derivation of FQGLV-A are investigated in details . First, the

definition of the derivation and its properties in M4(C) are discussed. Then, fourteen

derivations on M4(C) are derived and the necessary conditions to guarantee that these

are derivations are given and proven.

In Chapter 6, automorphisms of FQGLV-A are studied. Ten types of automor-

phisms are derived and necessary conditions are obtained. Their positivity are dis-
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cussed in details. Necessary and sufficient conditions for their positivity are presented

and proven.
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