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Abstract

In this thesis, numerical solution of the fuzzy initial value problem will be investi-
gated based on the reproducing kernel method. Problems of this type are either difficult
to solve or impossible, in some cases, since they will produce a complicated optimized
problem. To overcome this challenge, reproducing kernel method will be modified to
solve this type of problems. Theoretical and numerical results will be presented to show
the efficiency of the proposed method.
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Chapter 1: Fuzzy Logic

1.1 Introduction

The term fuzzy means things that are not very clear or vague. In real life, a situation

might come across us, and it cannot be decided whether this statement is true or false.

At that time, fuzzy logic offers valuable flexibility for reasoning. Also, it considers the

uncertainties of any situation. There are many applications for deal with fuzzy logic

in Mathematics. The fuzzy logic algorithm helps to solve a problem after considering

all available data. Then, it takes the best possible decision for the given input. This

fuzzy logic imitates the human decision-making process, which considers the possibilities

between true and false digital values. Although the notion of fuzzy logic has been studied

since the 1920s, the term fuzzy logic was first used by Dr. Lotfi Zadeh, a professor

at UC Berkeley, in 1965. He noted that conventional computer logic was not capable

of manipulating data representative of subjective or unclear human ideas. In the 19th

century, George Boole created a system of algebra and set theory, known as fuzzy set,

which could mathematically calculate two-valued logic, mapping true and false as 1 and

0, respectively. Then, in the early 20th century, Jan Lukasiewicz proposed a three-valued

logic: true, possible, false. However, this idea did not gain widespread acceptance. In

recent years, fuzzy logic has become attractive to many researchers due to its potential

application in various fields. Fuzzy logic has been applied to various fields, such as in

computer science, information science, mathematics, engineering, economic, business,

and finance. Fuzzy logic and fuzzy set are powerful mathematical tools in modeling

entropic systems, for example in industry, nature, and the humanities.

Several researchers have studied the fuzzy boundary value problems. For exam-

ple, Sanchez et al. [1] discussed the fuzzy solution for nonlinear fuzzy boundary value

problem with Gaussian fuzzy numbers as boundary values. Gong [2] illustrated discontin-

uous fuzzy initial value problems and two kinds of fuzzy Volterra integral equations with

use of the fuzzy Laplace transform. Zhou et al. [3] illustrated numerous duality outcomes
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for fuzzy number quadratic programming problems with fuzzy coefficients. Tapaswini

et al. [4] explained a new technique based on the Galerkin method for solving nth order

fuzzy boundary value problem. Gumah et al [5] studied a numerical method for certain

hybrid fuzzy differential equations with an application of a reproducing kernel technique

for fuzzy differential equations. Patel and Desai [6] illustrated a fuzzy Laplace transform

to solve fuzzy initial value problem under a strongly generalized differentiability concept.

Diniz et al. [7] investigated conditions to solve a fuzzy variational problem using Zadeh’s

extension. Wu and Feng [8] used a mixed fuzzy boundary control problem within a class

of nonlinear coupled systems explained by an Ordinary Differential Equation (ODE) and

boundary-disturbed uncertain beam equation. Suhhiem [9] introduced a modified method

for solving second order fuzzy differential equations. Niu et al. [10] proposed Simpli-

fied Reproducing Kernel Method (SRKM) and Least Squares Method (LSM) for solving

nonlinear singular boundary value problems. Shah and Wang [11] developed a powerful

method for the numerical solution of Boundary Value Problems (BVPs) of Fractional Or-

der Differential Equations (FDEs). Pradip [12] implemented a computational technique

for the efficient solution of a class of singular boundary value problems. Wasques et

al. [13] illustrated a numerical solution for an n-dimensional initial-value problem where

the initial conditions are given by interactive fuzzy numbers. Wasques et al. [14] ex-

plained numerical solutions for fuzzy initial value problems, where the initial conditions

are given by interactive fuzzy numbers. Jeyaraj and Rajan [15] used the explicit Runge-

Kutta method of order four with Butcher table to solve the fuzzy initial value problems.

Al-Refai et al. [16] used the implicit hybrid block method to solve fuzzy initial value

problems.

The reproducing kernel method was first presented in the 1907 work of Stanisław

Zaremba doubting boundary value problems for harmonic and biharmonic functions.

James Mercer simultaneously tested functions which satisfy the reproducing property in

the theory of integral equations. The concept of the reproducing kernel remained not

used for nearly twenty years until it came up in the dissertations of Gabor Szego, Stefan

Bergman, and Salomon Bochner. The subject was eventually systematically improved in
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the early 1950s by Nachman Aronszajn and Stefan Bergman. These spaces have wide

applications, including complex analysis, harmonic analysis, and quantum mechanics.

RKM are particularly essential in the field of statistical learning theory because of the cel-

ebrated explained theorem which states that every function in reproducing kernel methods

that minimize an empirical risk functional can be written as a linear combination of the

kernel function studied at the training points. This is a practically useful result as it effec-

tively simplifies the empirical risk minimization problem from an infinite dimensional to

a finite dimensional optimization problem.

Several researchers study the reproducing kernel method such that, Kashkari and

Syam [17] used the RKM for solving Fredholm Integrodifferential equation. Du et al.

[18] developed a reproducing kernel method for solving Fredholm integro-differential

equations with weakly singular kernels in reproducing kernel Hilbert space. Arqub [10]

applied reproducing kernel Hilbert space for the solutions of systems of first-order, two-

point boundary value problems for ordinary differential equations. Akgül [20] applied

the reproducing kernel method to fractional differential equations with non-local and non-

singular kernel. Akgül [21] investigated the boundary layer flow of a Powell-Eyring non-

Newtonian fluid over a stretching sheet by a reproducing kernel method. The meshfree in-

terpolation functions are derived from the RKM. A singular kernel is introduced to impose

the essential boundary conditions by Sadamoto et al. [22] Gholami et al. [23] discussed

the fuzzy inner product space and the fuzzy Hilbert space. Mei and Lin [24] simpli-

fied RKM to solve the linear Volterra integral equations with variable coefficients. Geng

and Qian [25] devoted to the numerical treatment of a class of singularly perturbed delay

boundary value problems with a left layer using Kernel RKM. Li and Wu [26] constructed

and applied reproducing kernels with polynomial to solve variable order fractional func-

tional boundary value problems. Moradi and Javadi [27] introduced a semi-analytical

technique for the numerical solution of nonlinear oscillators under the damping effect by

using the reproducing kernel Hilbert space method. Alvandi and Paripour [28] applied the

reproducing kernel method to Volterra nonlinear integro-differential equations. Arqub et

al. [29] discussed the numerical solution of Fredholm integro–differential equation in re-
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producing RKM. Saadeh et al. [30] implemented a relatively recent analytical technique,

called Iterative Reproducing Kernel Method (IRKM), to obtain a computational solution

for fuzzy two-point boundary value problem based on a generalized differentiability con-

cept. Qi et al. [31] introduced a RKM for solving nonlocal fractional boundary value

problems with uncertainty.

The purpose of this thesis is to find numerical solution of the fuzzy initial value

problems of first and second order. Suggested methods which are given a high order of

precision to the exact solutions will be implemented even when it is impossible to find

the solution. To reach this target, the reproducing kernel method will be applied in initial

value problems. Then, the suggested methods will be elaborated to solve the fuzzy type

of these problems using some properties of fuzzy operations. Moreover, convergence of

the suggested method will be examined. As well, various examples to represent the logic

and precision of the suggested methods are demonstrated and the numerical results are

compared with the existing ones in the literature.
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Chapter 2: Preliminaries

2.1 Fuzzy Numbers

In this section, the definition of fuzzy number and fuzzy will be illustrated.

Definition 2.1.1. Let M = [m1,m2] and N = [n1,n2] be two intervals, then the addition

and subtraction are defined as

M+N = [m1 +n1,m2 +n2],

and

M−N = [m1−n2,m2−n1].

Definition 2.1.2. A fuzzy number is a function u : ℜ→ [0,1] satisfying the following

properties:

1. u is normal, i.e; there exists x0 ∈ℜ with u(x0) = 1,

2. u is a convex fuzzy set, i.e; u(λx+(1−λy))≥min{u(x),u(y)}, ∀x,y ∈ℜ,λ ∈

[0,1],

3. u is upper semi-continuous on ℜ,

4. {x ∈ℜ : u(x)> 0} is compact, where A denotes the closure of A.

The set of all fuzzy numbers is denoted by Fℜ.

Next, the definition of the α− cut of a fuzzy number will be illustrated.
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Definition 2.1.3. Let β ∈ Fℜ. Then the α−cut set βα for α ∈ (0,1] is

βα = {x ∈ℜ : β (x)≥ α},

and the 0−cut set is given by

β0 = {x ∈ℜ : β (x)> 0}.

Example 2.1.1. let u : ℜ→ [0,1] be defined by

u(x) =


1− x, 0≤ x≤ 1

x+1, −1≤ x≤ 0

0, otherwise

Figure 2.1: Symmetric triangle fuzzy number

For any w,v ∈ℜ,λ ∈ [0,1],λw+(1−λ )v is between w and v.
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Then, u(λw+(1−λ )v) is between u(w) and u(v). Thus,

u(λw+(1−λ )v)≥min{u(w),u(v)}.

Hence, u is fuzzy convex. For any α ∈ (0,1], {x ∈ ℜ : u(x) ≥ α} = [α−1,1−α] is

subset of ℜ. Thus, u is upper semi-continuous on ℜ. Finally, the closure of

{x ∈ℜ : u(x)> 0}

is [−1,1] which is compact. Thus, u is a fuzzy number.

Definition 2.1.4. Let u,v ∈ Fℜ with uα = [uα ,uα ] and vα = [vα ,vα ]. Then, for λ ∈ℜ and

α ∈ [0,1], the arithmetic operations in fuzzy numbers are defined by α− cut as

1- Addition

(u⊕ v)α = [uα + vα ,uα + vα ].

2- Subtraction

(u	 v)α = [uα − vα ,uα − vα ].

3- Scalar multiplication

(λ �u)α =


[λuα ,λuα ], λ ≥ 0

[λuα ,λuα ], λ < 0
.

4- Multiplication

(u⊗ v)α = [min{uαvα ,uαvα ,uαvα ,uαvα},max{uαvα ,uαvα ,uαvα ,uαvα}].
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Example 2.1.2. Let u = (0,1,2) and v = (1,2,3). Then, uα = [α,2−α] and vα = [α +

1,3−α],

Figure 2.2: The graph of u = (0,1,2)

Figure 2.3: The graph of v = (1,2,3)

(u⊕ v)α = [1+2α,5−2α], (u	 v)α = [−1,−1] =−1,

(2�u)α = [2α,4−2α],(−2�u)α = [−4+2α,−2α].
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Definition 2.1.5. Triangular fuzzy number is a fuzzy number represented with three

points as follow

A = (a1,a2,a3) .

This representation is interpreted as membership function

µ(A)(x) =



0, x < a1

x−a1
a2−a1

, a1 ≤ x≤ a2

a3−x
a3−a2

, a2 ≤ x≤ a3

0, x > a3

.

Definition 2.1.6. Trapezoidal fuzzy number is a fuzzy number represented with four

points as follow

A = (a1,a2,a3,a4) .

This representation is interpreted as membership function

µA(x) =



0, x < a1

x−a1
a2−a1

, a1 ≤ x≤ a2

1, a2 ≤ x≤ a3

a4−x
a4−a3

, a3 ≤ x≤ a4

0, x > a4

.
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Example 2.1.3. The triangle fuzzy number A = [1,2,4] is given by Figure 2.4.

Figure 2.4: Triangle fuzzy number

Example 2.1.4. The trapezoidal fuzzy number A = [2,3,5,8] is given by Figure 2.5.

Figure 2.5: Trapezoidal fuzzy number

Definition 2.1.7. Let A and B be two subsets of ℜ. Then, the Hausdorff metric dH is

defined by

dH(A,B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖ ,sup

y∈B
inf
x∈A
‖x− y‖

}
.
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Then, the metric dF on Fℜ is defined by

dF(u,v) = sup
α∈[0,1]

{dH(uα ,vα), uα ,vα ∈ Fℜ}

= sup
α∈[0,1]

max{ |uα − vα | , |uα − vα | }.

Example 2.1.5. Let A = [−1,2] and B = [0,4]. Then,

dH(A,B) = max

{
sup
x∈A

inf
y∈B
‖x− y‖ ,sup

y∈B
inf
x∈A
‖x− y‖

}
= 2.

Let u = (0,1,2) and v = (1,2,3). Then, uα = [α,2−α] and vα = [1+α,3−α]. Then,

dF(u,v) = sup
α∈[0,1]

max{ |α− (1+α)| , |2−α− (3−α)| }

= sup
α∈[0,1]

max{1,1 } = 1.

Theorem 2.1.1. (Fℜ,dF) is a complete metric space with the following properties for all

u,v,w,z ∈ Fℜ,λ ∈ℜ

1−dF(u⊕w,v⊕w) = dF(u⊕ v),

2−dF(λ �u,λ �w) = |λ |dF(u,w),

3−dF(u⊕ v,w⊕ z)≤ dF(u⊕w)+dF(v⊕ z).
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Proof. Simple calculation implies that

dF(u⊕w,v⊕w) = sup
0≤α≤1

max{| (uα +wα)− (vα +wα) |, |(uα +wα)− (vα +wα) |}

= sup
0≤α≤1

max{|uα − vα | , |uα − vα |}

= dF(u⊕ v).

which proves the first part.

Next,

{|λuα −λwα | , |λuα −λwα |}= |λ |0≤α≤1 sup
0≤α≤1

max{|uα −wα | , |uα −wα |}

= |λ |dF(u,w)

which completes the proof of the second part. Using the triangle inequality, we have

∣∣(uα + vα)− (wα + z
α
)
∣∣≤ |uα −wα |+

∣∣vα − z
α

∣∣

and

|(uα + vα)− (wα + zα)| ≤ |uα −wα |+ |vα − zα |

which implies that

max{
∣∣(uα + vα)− (wα + z

α
)
∣∣ , |(uα + vα)− (wα + zα)|}

≤ [max{|uα −wα | , |uα −wα |}+max{
∣∣vα − z

α

∣∣ , |vα − zα |}].
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Hence,

dF(u⊕ v,w⊕ z)≤ dF(u⊕w)+dF(v⊕ z).

which is the proof of the third part.

Theorem 2.1.2. 1-Let

β (x) =


1, x = 0

0, x 6= 0

Then, β ∈ Fℜ is identity element with respect to ⊕.

2-None of u ∈ Fℜ−ℜ has inverse in Fℜ with respect to ⊕.

3-For any x,y≥ 0 or x,y≤ 0 and any u ∈ Fℜ, we have (x+y)�u = x�u⊕y�u.

The result is not true in general.

4-For any λ ∈ℜ and any u,v ∈ Fℜ, we have λ � (u⊕ v) = λ �u⊕λ � v.

5-For any λ ,µ ∈ℜ and any u ∈ Fℜ, we have λ � (µ�u) = (λ µ)�u.

Proof. 1- Let u ∈ Fℜ. Then, for any α ∈ [0,1],

(u⊕β )α = [uα +0,uα +0] = [uα ,uα ] = uα

and

(β ⊕u)α = [0+uα ,0+uα ] = [uα ,uα ] = uα .

Thus, u⊕β = β ⊕u = u.
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2- Let u ∈ Fℜ−ℜ and v ∈ Fℜ be such that

(u⊕ v)α = [uα + vα ,uα + vα ] = [0,0].

Then, vα =−uα and vα =−uα . Since uα ≤ uα and vα =−uα ≤ vα =−uα ,

uα = uα for α ∈ [0,1]. Thus, u(x) = v(x) for all x ∈ℜ. Hence, u ∈ℜ which is a

contradiction.

3- For any x,y≥ 0 and any u ∈ Fℜ, we have

((x+ y)�u)α = [(x+ y)uα ,(x+ y)uα ] = [xuα ,xuα ]⊕ [yuα ,yuα ]

= (x�u⊕ y�u)α

and for any x,y≤ 0 and any u ∈ Fℜ, we have

((x+ y)�u)α = [(x+ y)uα ,(x+ y)uα ] = [xuα ,xuα ]⊕ [yuα ,yuα ]

= (x�u⊕ y�u)α

for any α ∈ [0,1]. In general, the result is not true. Let x = 1 and y =−2.

Let u : ℜ→ [0,1] be defined by

u(x) =
(

1
1+ x2

)2

.
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Then,

((x+ y)�u)0.5 =

[
−
√√

2−1,
√√

2−1
]

and

(x�u⊕ y�u)0.5 =

[
−
√√

2−1,
√√

2−1
]
+

[
−2
√√

2−1,2
√√

2−1
]

=

[
−3
√√

2−1,3
√√

2−1
]
.

Thus, ((x+ y)�u)0.5 6= (x�u⊕ y�u)0.5.

4. For any λ ≥ 0 and any u,v ∈ Fℜ, we have

(λ � (u⊕ v))α = [λ (uα + vα) ,λ (uα + vα)] = [λuα ,λuα ]⊕ [λvα ,λvα ]

= (λ � [uα ,uα ])⊕ (λ � [vα ,vα ]) = (λ �u⊕λ � v)α .

For any λ < 0 and any u,v ∈ Fℜ, we have

(λ � (u⊕ v))α = [λ (uα + vα) ,λ (uα + vα)] = [λuα ,λuα ]⊕ [λvα ,λvα ]

= (λ � [uα ,uα ])⊕ (λ � [vα ,vα ]) = (λ �u⊕λ � v)α .
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5. For any λ ,µ ∈ ℜ and any u ∈ Fℜ, we have

(λ � (µ�u))α =


λ � [µuα ,µuα ] , µ ≥ 0

λ � [µuα ,µuα ] , µ < 0

=



[λ µuα ,λ µuα ] , µ ≥ 0,λ ≥ 0

[λ µuα ,λ µuα ] , µ ≥ 0,λ < 0

[λ µuα ,λ µuα ] , µ < 0,λ ≥ 0

[λ µuα ,λ µuα ] , µ < 0,λ < 0

= ((λ µ)�u)
α

for any α ∈ [0,1].

2.2 Differentiation of Fuzzy Functions

In this section, the differentiation of fuzzy functions will be illustrated.

Definition 2.2.1. Let u and v be two fuzzy numbers such that there exists a fuzzy number

w such that

w⊕ v = u.

Then, w is called Hukuhara difference of u and v and it denoted by u	H v.

Example 2.2.1. Let u = (−2,0,2) and v = (−1,3,7) be two triangular fuzzy numbers.

Then,

u = w⊕ v.

where w = (−1,−3,−5).
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Then,

w = u	H v.

It is worth mentioning that there are two important properties should be satisfied

which are

1- 0 = u	H u.

2- ((u⊕ v)	H v)
α
= uα for all α ∈ [0,1].

Definition 2.2.2. Let B be a subset of ℜ. A fuzzy function F : B→ Fℜ is said to be H-

differentiable at x0 ∈ B if and only if there exist a fuzzy number D f (x0) such that the

following limits (with respect to metric dF ) exist and

D f (x0) = lim
h→0+

1
h
� ( f (x0 +h)	H f (x0))

= lim
h→0+

1
h
� ( f (x0)	H f (x0−h)).

In this case , D f (x0) is called Hukuhara derivative of f at x0. If f is H-differentiable at

each x ∈ B, then f is H-differentiable on B.

Example 2.2.2. Let f : ℜ→ Fℜ be a fuzzy function defined by

f (x) = u� x
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where u is a fuzzy number. Then,

( f (x+h)	H f (x))α = ((u� (x+h))	H (u� x))α

= [(x+h)uα ,(x+h)uα ]	H [xuα ,xuα ]

= [huα ,huα ] .

Thus, (
1
h
� ( f (x+h)	H f (x))

)
α

= [uα ,uα ] = uα

which implies that

lim
h→0+

1
h
� ( f (x+h)	H f (x) = u.

Similarly, for small h > 0, we have x−h > 0 and

( f (x+h)	H f (x))α = ((u� x)	H (u� (x−h)))α

= [xuα ,xuα ]	H [(x−h)uα ,(x−h)uα ]

= [huα ,huα ] .

Thus, (
1
h
� ( f (x)	H f (x−h))

)
α

= [uα ,uα ] = uα

which implies that

lim
h→0+

1
h
� ( f (x)	H f (x−h) = u.



19

Thus, D f (x) = u. For x < 0, x+h < 0 for small h > 0. Thus,

( f (x+h)	H f (x))α = ((u� (x+h))	H (u� x))α

= [(x+h)uα ,(x+h)uα ]	H [xuα ,xuα ]

= [huα ,huα ] .

However, huα 
 huα for α ∈ [0,1]. Thus, Hukuhara difference does not exist which

means f (x) is not H-differentiable when x < 0. When x = 0, we have

( f (0)	H f (0−h))
α
= ((u�0)	H (u� (−h)))

α
= [huα ,huα ] .

Thus, (
1
h
� ( f (0)	H f (0−h))

)
α

= [uα ,uα ]

which implies that

lim
h→+

1
h
� ( f (0)	H f (0−h)) = [u,u].

Also

( f (0+h)	H f (0))
α
= ((u�h)	H (u�0))

α
= [huα ,huα ] .

Thus, (
1
h
� ( f (0+h)	H f (0))

)
α

= [uα ,uα ]

which implies that

lim
h→0+

1
h
� ( f (0)	H f (0−h)) = [u,u].

Thus, f (x) is not H-differentiable at x = 0. Therefore, f (x) is H-differentiable when x > 0

and D f (x) = u.
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Example 2.2.3. Let f : ℜ→ Fℜ be a fuzzy function defined by

f (x) = u� x2

where u is a fuzzy number. Then,

1
h
� ( f (x+h)	H f (x))α =

1
h
� ((u� (x+h)2)	H (u� x2))α

= [(2x+h)uα ,(2x+h)uα ].

which implies that

lim
h→0+

1
h
� ( f (x+h)	H f (x)) =


2x�u, x≥ 0

DNE, x < 0
.

Similarly,

lim
h→0+

1
h
� ( f (x)	H f (x−h)) =


2x�u, x≥ 0

DNE, x < 0
.

Then, f ′(x) = 2x�u if x≥ 0.

Theorem 2.2.1. Let f (x) : I→ Fℜ be a fuzzy function defined by

f (x) = u�g(x),

where u is a fuzzy number and I = (u,v) ⊂ ℜ. Let g : I→ ℜ+ be differentiable function

at x0 ∈ I. If g′(x0)> 0, then

1. Hukuhara differences of f exist at x0,
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2. f is H-differentiable at x0,

3. f ′(x0) = u�g′(x0).

Example 2.2.4. a) let f : ℜ+→ Fℜ be a fuzzy function defined by

f (x) = u� x3.

where u is a fuzzy number. Then, g(x) = x3. Thus, g′(x) = 3x2. Hence, g(x) and g
′
(x) are

positive when x > 0. Thus f is H-differentiable on (0,∞) and

f ′(x) = u�3x2.

b) Let f : (0,∞)→ Fℜ be a fuzzy function defined by f (x) = u� coshx where u is a

fuzzy number. Then, g(x) = coshx. Thus, g′(x) = sinhx. Hence, g(x) and g′(x) are

positive when x > 0. Thus, f is H-differentiable on (0,∞) and f ′(x) = u� sinhx

Also,

g(x) = coshx > 0,

g′(x) = sinhx > 0,

g′′(x) = coshx > 0,

g′′′(x) = sinhx > 0,

and so on, so f (x) is n-times H-differentiable on (0,∞) and

f (n)(x) =


u� sinhx, n is odd

u� coshx n is even
.

Remark: Its clear that theorem 2.1.1 gives the necessary condition to the H-differentiations

but not sufficient condition. For example, f (x) = u� 1 is H-differentiable f ′(x) = u� 0
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but does not satisfy conditions Theorem 2.2.1.

Theorem 2.2.2. Let f : M→ Fℜ be a H-differentiable at x0 with derivative f
′
(x0) where

M ⊂ℜ and x0 ∈M. Then, f ′α (x0) =
[

f
′
(x0) , f̄ ′ (x0)

]
and f (x), f (x) are differentiable at

x0 for all α ∈ [0,1]

Definition 2.2.3. Given two fuzzy numbers u,v ∈ Fℜ, the gH-difference is the fuzzy

number w, if exists, such that

u	gH v = w iff either u = v+w or v = u−w.

We note that

(u	gH v)
α
= [min{uα − vα ,uα − vα} ,max{uα − vα ,uα − vα}] ,

and if H-difference exists, then u	gH v = u	H v. Hence, u	gH v = w exists if one of the

following holds

1- wα = uα − vα and wα = uα − vα with wα is increasing and wα is decreasing

with wα ≤ wα for all α ∈ [0,1].

2- wα = uα − vα and wα = uα − vα with wα is increasing and wα is decreasing

with wα ≤ wα for all α ∈ [0,1].

Example 2.2.5. Let u = (−2,0,2) and v = (6,8,10) be two fuzzy triangles. Then,

(
u	gH v

)
α
= min{2α−2− (2α +6),−2α +2− (−2α +10)}=−8
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and

(u	gH v)
α
= max{2α−2− (2α +6),−2α +2− (−2α +10)}=−8

Conditions (1) and (2) hold. Thus, u	gH v exists.

b) Let u = (0,3,6) and v = (0,2,3,4) be fuzzy triangle and trapezoidal. Then,

(
u	gH v

)
1
= 3−2 = 1

and

(u	gH v)1 = 3−3 = 0.

Then,
(

u	gH v
)

1

 (u	gH v)1 . Thus, u	gH v does not exist.

Definition 2.2.4. Let B be an interval of ℜ. Let x0,x0+h∈B. A fuzzy function f : B→FR

is said to be gH-differentiable at x0 if and only if there exists a fuzzy number f ′gH (x0) such

that the following limit (with respect to metric dF ) exists

f ′gH (x0) = lim
h→0

1
h

f (x0 +h)	gH f (x0) .

In this case, F ′gH (x0) is called gH-derivative of f at x0. If f is gH-differentiable at x ∈ B,

then f is gH-differentiable f over B.

Example 2.2.6. a) Let f : ℜ→ Fℜ be a fuzzy function defined by

f (x) = u� x
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where u is a fuzzy number. Then for h > 0,

( f (x+h)	gH f (x))
α
= [min

{
f (x+h)

α
− f (x)

α
, f (x+h)

α
− f (x)

α

}
,

max
{

f (x)α − f (x)
α
, f (x+h)

α
− f (x)

α

}
] = [uαh,uαh]

and

( f (x)	gH f (x−h))
α
= [min

{
f (x)

α
− f (x−h)

α
, f (x)

α
− f (x−h)

α

}
,

max
{

f (x)
α
− f (x−h)

α
, f (x)

α
− f (x−h)

α

}
] = [uαh,uαh]

for all α ∈ [0,1]. Thus,

f ′gH(x) = lim
h→0

1
h

f (x+h)	gH f (x) = [u,u] = u.

Thus, f is gH-differentiable on (−∞,∞) and f ′gH(x) = u.

b) Let f : ℜ→ Fℜ be a fuzzy function defined by

f (x) = u

where u is a fuzzy number. Then, f (x) = u and f (x) = u are differentiable. Then using

the same argument as in part (a), f is gH-differentiable on (−∞,∞) and f ′gH(x) = 0.

c) Let f : ℜ+→ Fℜ be a fuzzy function defined by

f (x) = u� x2

where u is a fuzzy number. Then, f (x) = ux2 and f̄ (x) = ux2 are differentiable, then using

the same argument as in part (a), f is gH-differentiable on (−∞,∞) and f ′gH(x) = u�2x.
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d) Let f : (0,∞)→ Fℜ be a fuzzy function defined by

f (x) = u� sinhx

where u is a fuzzy number. Then, f (x) = usinhx and f (x) = usinhx are differentiable,

then using the same argument as in part (a), f is gH-differentiable on (−∞,∞) and

f ′gH(x) = u� coshx.

Theorem 2.2.3. If f ,g : A→ Fℜ are H-differentiable at x0 ∈ A⊆ℜ and γ ∈ℜ, then f ⊕g

and γ� f are H-differentiable at x0 and

( f ⊕g)′ (x0) = f ′ (x0)⊕g′ (x0) , (γ� f )′ (x0) = γ� f ′(x0).

Also, f ∈Cn (A,Fℜ) if
(

f (i)(x)
)

α
=
[
( f (x))(i)α ,( f (x))(i)α

]
for i= 0,1, . . . ,n, and α ∈ [0,1].

Example 2.2.7. The fuzzy function f (x) = un� xn⊕ un−1� xn−1⊕ . . .⊕ u1� x, n > 0.

Then, f are H-differentiable on (0,∞) and

f ′(x) = un�nxn−1⊕un−1� (n−1)xn−2⊕ . . .⊕u1�1.

Theorem 2.2.4. Let u ∈ Fℜ and g : In → ℜ+ and I = (v,w) ⊂ ℜ+ be differentiable at

x0 ∈ In. Let f : In→ Fℜ be defined by f (x) = u� g(x). If ∂g(x0)
∂xi

> 0, for i = 1,2, . . . ,n,

then the partial derivative exists at x0 and ∂ f̂ (x0)
∂xi

= â� ∂g(x0)
∂xi

for i = 1,2, . . . ,n.

Example 2.2.8. The fuzzy function f (x,y) = u� e3x+4y. Then, g(x,y) = e3x+4y > 0.
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Since
∂g
∂x = 3e3x+4y > 0, ∂g

∂y = 4e3x+4y > 0, ∂ 2g
∂x2 = 9e3x+4y > 0,

∂ 2g
∂y2 = 16e3x+4y > 0, ∂ 2g

∂x∂y = 12e3x+4y > 0,

then
∂ f
∂x = u�3e3x+4y > 0, ∂ f

∂y = u�4e3x+4y > 0, ∂ 2 f
∂x2 = u�9e3x+4y > 0,

∂ 2 f
∂y2 = u�16e3x+4y > 0, ∂ 2 f

∂x∂y = u�12e3x+4y > 0.

It is easy to see that f ∈C∞(ℜ,Fℜ).
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Chapter 3: Fuzzy Initial Value Problems

3.1 Direct Method for Solving Fuzzy Boundary Value Problems

In this section, the concept of the direct method to solve boundary and initial value

problems will be illustrated. The trickiness of using this method will be explained. To

clarify the idea of this method, consider the following fuzzy differential equation of the

form

y′′ = f
(
t,y,y′

)
, a < t < b (3.1)

If equation (3.1) is linear problem, then it can be written as

a(t)y′′+b(t)y′+ c(t)y = g(t), a < t < b.

where a, b, c, and g are fuzzy functions. Since the functions are fuzzy, then the linear

fuzzy problem can be written in the α-cut format as

[
aα(t),aα(t)][y′′(t),y′′(t)

]
+
[
bα(t),bα(t)][y′

α
(t),y′α(t)

]
+ [cα(t),cα(t)]

[
y

α
(t),yα(t)

]
=
[
g

α
(t),gα(t)

]
.

Thus, we will get two complicated optimization problems

min
{

aαy′′,aαy′′,aαy′′,aαy′′
}
+min

{
bαy′,bαy′α ,bαy′

α
,bαy′α

}
+min

{
cαy

α
,cαyα ,cαy

α
,cαyα

}
= g

α
(t).

and
max

{
aαy′′,aαy′′,aαy′′,aαy′′

}
+max

{
bαy′,bαy′α ,bαy′

α
,bαy′α

}
+max

{
cαy

α
,cαyα ,cαy

α
,cαyα

}
= gα(t).

The above min-max problems are difficult to solve and sometimes not possible. To explain

this idea, let’s consider the following simple examples.
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Example 3.1.1. Consider the following second order fuzzy initial value problem

y′′ =−y(x) , 0 < x < 1.

with

y(0) = 0, y′(0) = [0.9+0.1β ,1.1−0.1β ].

Let

y = [y1,y2], y(0) = [0,0],

y′′ = [ y′′1,y
′′
2], y′(0) = [0.9+0.1β ,1.1−0.1β ].

Then,

[ y′′1,y
′′
2] = [−y2,−y1],

which gives

y′′1 =−y2 , y1(0) = 0 , y′1(0) = 0.9+0.1β ,

y′′2 =−y1 , y2(0) = 0 , y′2(0) = 1.1−0.1β .

Since

y′′1 =−y2,

then,

y′′′′1 =−y′′2 =−(−y1) = y1
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which leads to

y′′′′1 − y1 = 0.

Let y = erx. Then, erx(r4−1) = 0 with roots r1 = 1, r2 =−1, r3 = i, r4 =−i.

Then,

y1(x) =C1 coshx+C2 sinhx+C3 cosx+C4 sinx.

Thus,

y2(x) =−y′′1 =−C1 coshx−C2 sinhx+C3 cosx+C4 sinx.

After substituting the initial conditions, the solution for this problem will be

y(x) = [(−0.1+0.1β )sinhx+ sinx ,(−0.1+0.1β )sinhx+ sinx].

Example 3.1.2. Consider the following fuzzy boundary value problem

y′′ = y(x), 0 < x < 1,

with boundary conditions

y(0) = [0.75+0.25β ,1.125−0.125β ],



30

and

y(1) = [(0.75+0.25β )cosh1+(1.125−0.125β )sinh1,

(1.125−0.125β )cosh1+(1.125−0.125β )sinh1].

Let

y = [y1,y2]

and

y′′ = [y′′1,y
′′
2].

Then,

y′′1 = y1, y′′2 = y2.

Hence, the solution of

y′′1− y1 = 0

is

y1(x) =C1 coshx+C2 sinhx.

Since

y1(0) =C1 = 0.75+0.25β ,
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and

y1(1) = (0.75+0.25β )cosh1+(1.25−0.125β )sinh1,

=C1 cosh1+C2 sinh1.

Then,

y1(x) = (0.75+0.25β )coshx+(1.25−0.125β )sinhx.

Similarly the solution of

y′′2 = y2

with

y2(0) = 1.125−0.125β

and

y2(1) = (1.125−0.125β )cosh1+(1.125−0.125β )sinh1

is

y2(x) = (1.125−0.125β )coshx+(1.125−0.125β )sinhx.

Therefore, the general solution is

y(x) = [(0.75+0.25β )coshx+(1.125−0.125β )sinhx,

(1.125−0.125β )coshx+(1.125−0.125β )sinhx] .
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Example 3.1.3. Consider the following first order initial value problem

y′1 =−2y2 +α, y1(0) = 0

y′2 =−2y1 +α +2, y2(0) = 2α.

Then,

 y′1

y′2

=

 0 −2

−2 0


 y1

y2

+
 α

α +2

 ,

 y1(0)

y2(0)

=

 0

2α

 .

Thus,

0 = det(A−λ I) = det

 −λ −2

−2 −λ

= λ
2−4

which implies that

λ1,λ2 =±2.

For λ1 =−2, the augmented matrix is

 2 −2

−2 2

∣∣∣∣∣∣∣∣
0

0

 .

Multiply the first row by
(

1
2

)
to get
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 1 −1

−2 2

∣∣∣∣∣∣∣∣
0

0

 .

Multiply first row by 2 then add the result to the second row to get

 1 −1

0 0

∣∣∣∣∣∣∣∣
0

0

 .

Thus,

x1− x2 = 0 or x1 = x2.

Hence, the corresponding eigenvector is

V1 =

 1

1

 .

For λ2 = 2, using similar method to find the second eigenvector

V2 =

 −1

1

 .

Therefore, the homogenous solution is

yh =

 y1

y2

=C1e−2t

 1

1

+C2e2t

 −1

1

 .
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Let the particular solution be yp = B. Then,

 0

0

=

 0 −2

−2 0

B+

 α

α +2

 .

Thus

 0 −2

−2 0

B =

 −α

−α−2

 .

Hence,

B =−1
4

 0 2

2 0


 −α

−α−2

=

 0 −1
2

−1
2 0


 −α

−α−2

=

 α+2
2

α

2

 .

Therefore, the general solution is

 y1

y2


g

=C1e−2t

 1

1

+C2e2t

 −1

1

+
 α+2

2

α

2

 .

Then,

 y1(0)

y2(0)

=

 0

2α

=C1

 1

1

+C2

 −1

1

+
 α+2

2

α

2

 .

which implies that

 C1−C2

C1 +C2

=

 −α+2
2

2α− α

2

=

 −α+2
2

3α

2
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or

 1 −1

1 1


 C1

C2

=

 −α+2
2

3α

2

 .

Thus,

 C1

C2

=
1
2

 1 1

−1 1


 −α+2

2

3α

2

=
1
2

 3α−2
2

4α+2
2

 .

which gives that

C1 =
α−1

2
and C2 = α +

1
2
.

Then,

y1(t) =
(

α−1
2

)
e−2t−

(
α +

1
2

)
e2t +

(
α +2

2

)

and

y2(t) =
(

α−1
2

)
e−2t−

(
α +

1
2

)
e2t +

(
α

2

)
.

It is clear that the previous fuzzy initial value problems are difficult to solve.
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Example 3.1.4. Consider the following fuzzy initial value problem

y
′′
=−(y′)2, 0 < x < 1,

with

y(0) = [β ,2−β ],

and

y′(0) = [1+β ,3−β ].

Let

y(x) = [y1,y2],

y′(x) = [y′1,y
′
2],

and

y′′(x) = [y′′1,y
′′
2].

Then,

[y′′1,y
′′
2] = [−max{(y′1)2,y′1y′2,(y

′
2)

2},−min{(y′1)2,y′1y′2,(y
′
2)

2}].

Hence,

y′′1 =−max{(y′1)2,y′1y′2,(y
′
2)

2},

with

y1(0) = β , y
′
1(0) = 1+β ,
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and

y′′2 =−min{(y′1)2,y′1y′2,(y
′
2)

2},

with

y2(0) = 2−β , y′2(0) = 3−β .

If the same technique was implemented to solve the nonlinear case, this will result com-

plicated optimization problem which are not possible to solve explicitly in most of the

cases. For this reason, reproducing kernel method will modified to solve such problems.
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Chapter 4: Reproducing Kernel Method for Solving Initial Value
Problems

4.1 Reproducing Kernel Spaces

In this section, Reproducing Kernel Space (RKS) will be defined and explained by

several examples.

Definition 4.1.1. Let F 6= /0. A function K : F ×F → C is called a reproducing kernel

function of the Hilbert space H if and only if

a) K(·, t) ∈ H for all t ∈ F .

b) 〈ϕ,K(·, t)〉= ϕ(t) For all t ∈ F and all ϕ ∈ H.

The last condition is called ” the reproducing property” as the value of the function

ϕ at the point t is reproduced by the inner product of ϕ with the kernel K(·, t). A Hilbert

space which possesses a reproducing kernel is called a reproducing kernel Hilbert space.

Definition 4.1.2. Let W 1
2 [0,1] = {u : u is absolutely continues real valued function on

[0,1],u
′ ∈ L2[0,1]}.

The inner product in W 1
2 [0,1] is defined as

(u(x),v(x))W 1
2 [0,1]

= u(0)v(0)+
∫ 1

0
u′(x)v′(x)dx, (4.1)

and it’s norm is defined as

‖u‖W 1
2 [0,1]

=
√

(u(x),u(x))W 1
2 [0,1]

(4.2)
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where u,v ∈W 1
2 [0,1].

Theorem 4.1.1. The Hilbert space W 1
2 [0,1] is a reproducing kernel and it’s reproducing

kernel function Ry(x) can be defined by

Ry(x) =


1+ x, x 6 y

1+ y, x > y
.

Proof. Let

u(y) = (u(x),Ry(x)) = u(0)Ry(0)+
∫ 1

0
u′(x)R′y(x)dx. (4.3)

Using integration by parts, we get

u(y) = u(0)Ry(0)+R′y(1)u(1)−R′y(0)u(0)−
∫ 1

0
u(x)R(2)

y (x)dx.

Therefore,

Ry(0)−R′y(0) = 0, (4.4)

R′y(1) = 0. (4.5)

Thus,

u(y) =
〈
u(x),Ry(x)

〉
=−

∫ 1

0
u(x)R(2)

y (x)dx.

Hence,

−R(2)
y (x) = δ (x− y) =


1, if x = y

0, if x 6= y
.

Hence,

Ry(x) =


C1(y)+C2(y)x, y≥ x

d1(y)+d2(y)x, y < x
.
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Since −R(2)
y (x) = δ (x− y), then

Ry(y+) = Ry(y−), (4.6)

and

∂Ry(y+)

∂y
−

∂Ry(y−)
∂y

=−1 (4.7)

For simplicity, let Ci(y) =Ci and di(y) = di for i = 1,2. Solve system (4.4) - (4.7) to get

C1−C2 = 0,

C1 +C2y = d1 +d2y,

d2−C2 =−1,

d2 = 0.

One can get

C1(y) = 1, C2(y) = 1, d1(y) = 1+ y, d2(y) = 0.

Then,

Ry(x) =


1+ x, y > x

1+ y, x > y
.

Definition 4.1.3. Let W 2
2 [0,1] = {u : u,u′ are absolutely continuous real valued function

on [0,1],u
(2) ∈ L2[0,1],u(0) = 0}. Define the inner product by

< u(x),v(x)>W 2
2 [0,1]

= u(0)v(0)+u′(0)v′(0)+
∫ 1

0
u(2)(x)v(2)(x)dx.
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and it’s norm is defined as

‖u‖W 2
2 [0,1]

=
√

(u(x),u(x))W 2
2 [0,1]

(4.8)

where u,v ∈W 2
2 [0,1].

Theorem 4.1.2. The Hilbert space W 2
2 [0,1] is a reproducing kernel space and it’s repro-

ducing kernel function Ry(x) can be defined by

Ry(x) =


yx+ y

2x2− 1
6x3, x≤ y

−y3

6 +(y+ y2

2 )x, x > y
.

Proof. Let Ry(x) be a reproducing kernel function. Then,

u(y) =
〈
u(x),Ry(x)

〉
= u(0)Ry(0)+u′(0)R′y(0)+

∫ 1

0
u(2)(x)R(2)

y (x)dx.

Using integration by parts two times, we get

〈
u(x),Ry(x)

〉
= u(0)Ry(0)+u′(0)R′y(0)+u′(1)R

(2)

y (1)−u′(0)R
(2)

y (0)

−u(1)R
(3)

y (1)+u(0)R(3)
y (0)+

∫ 1

0
u(x)R

(4)

y (x)dx.

Substitute the condition u(0) = 0. Then,

〈
u(x),Ry(x)

〉
= u′(0)R′y(0)+u′(1)R

(2)

y (1)−u′(0)R
(2)

y (0)−u(1)R(3)
y (1)+

∫ 1

0
u(x)R

(4)

y (x)dx.
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Thus, the following conditions are obtained

R′y(0)−R
(2)

y (0) = 0, (4.9)

R(3)
y (1) = 0, (4.10)

R
(2)

y (1) = 0. (4.11)

Hence,

u(y) =
∫ 1

0
R(4)

y (x)u(x)dx

which implies that

R(4)
y (x) = δ (x− y), δ (x− y) =


1, if x = y

0, if x 6= y
.

Hence, Ry(x) is a polynomial of degree 3 when x < y and polynomial of degree 3 when

x > y. Thus,

Ry(x) =


∑

4
i=1Ci(y)xi−1, x 6 y

∑
4
i=1 di(y)xi−1, x > y

.

Since

R(4)
y (x) = δ (x− y),

then

∂ kRy(y+)
∂yk =

∂ kRy(y−)
∂yk , for k = 0,1,2 (4.12)

and

∂ 3Ry(y+)
∂ 3y

−
∂ 3Ry(y−)

∂ 3y
= 1. (4.13)
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Since Ry(x) ∈W 2
2 [0,1] ,

Ry(0) = 0. (4.14)

Thus,

Ry(x) =


C1 +C2x+C3x2 +C4x3, x≤ y

d1 +d2x+d3x2 +d4x3, x > y
,

where

C2−2C3 = 0,

6d4 = 0,

2d3 +6d4 = 0,

C1 +C2y+C3y2 +C4y3 = d1 +d2y+d3y2 +d4y3,

C2 +2C3y+3C4y2 = d2 +2d3y+3d4y2,

2C3 +6C4y = 2d3 +6d4y,

6d4−6C4 = 1,

C1 = 0.

One can get

C1 = 0, C2 = y, C3 =
y
2
, C4 =−

1
6
,

d1 =−
y3

6
, d2 = y+

y2

2
, d3 = 0, d4 = 0.
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Therefore,

Ry(x) =


yx+ y

2x2− 1
6x3, x≤ y

−y3

6 +(y+ y2

2 )x, x > y
.

Definition 4.1.4. Let W 3
2 [0,1] = {u : u,u′,u

(2)
are absolutely continuous real valued func-

tions on [0,1],u
(3) ∈ L2[0,1],u(0) = u′(0) = 0} with inner product

〈u(x),v(x)〉= u(0)v(0)+u′(0)v′(0)+u(1)v(1)+
∫ 1

0
u(3)(x)v(3)(x)dx, u,v ∈W 3

2 [0,1]

and the norm

‖u‖W 3
2
=
√
〈u,u〉W 3

2
.

Theorem 4.1.3. The Hilbert space W 3
2 [0,1] is a reproducing kernel space and it’s repro-

ducing kernel function Ry(x) can be defined by

Ry(x) =


−x2

y2 , x≤ y

1
120y5− 1

24xy4 + y5−12
12y2 x2− 1

12x3y2

+ 1
24x4y2− 1

120x5y2, x > y

.

Proof. Let

u(y) =
〈
u(x),Ry(x)

〉
= u(0)Ry(0)+u′(0)R′y(0)+u(1)Ry(1)+

∫ 1

0
u(3)(x)R(3)

y (x)dx.
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Integrating by parts three times to get

〈
u,Ry

〉
= u(0)Ry(0)+u′(0)R′y(0)+u(1)Ry(1)+u(2)(1)R

(3)

y (1)−u
(2)
(0)R

(3)

y (0)

−u
′
(1)R(4)

y (1)+u′(0)R(4)
y (0)+u(1)R(5)

y (1)−u(0)R(5)
y (0)−

∫ 1

0
u(x)R(6)

y (x)dx.

Substitute the conditions u(0) = u′(0) = 0, to get

u(y) = u(1)Ry(1)+u
(2)
(1)R

(3)

y (1)−u
(2)
(0)R

(3)

y (0)−u
′
(1)R(4)

y (1)

+u(1)R(5)
y (1)−

∫ 1

0
u(x)R(6)

y (x)dx.

Let

Ry(1)−R(5)
y (1) = 0, (4.15)

R(3)
y (1) = 0, (4.16)

R(3)
y (0) = 0, (4.17)

R
(4)

y (1) = 0. (4.18)

Thus, under these conditions, we get

u(y) =−
∫ 1

0
u(x)R(6)

y (x)dx. (4.19)

This implies that

−R(6)
y (x) = δ (x− y)

where
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δ (x− y) =


1 if x = y

0 if x 6= y
.

Thus,

Ry(x) =


∑

6
i=1C1(y)xi−1 x 6 y

∑
6
i=1 di(y)xi−1 x > y

.

Since

−R(6)
y (x) = δ (x− y),

then

∂ kRy(y+)
∂yk =

∂ KRy(y−)
∂yk , for k = 0,1,2,3,4 (4.20)

and

∂ 5Ry(y+)
∂y5 −

∂ 5Ry(y−)
∂y5 =−1. (4.21)

Since Ry ∈W 3
2 [0,1], then

Ry(0) = 0, (4.22)

and

R′y(0) = 0. (4.23)

Then, we get the following system
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6C4 = 0,

4!d5 +5!d6 = 0,

6d4 +24d5y+60d6y2 = 0,

d1 +d2y+d3y2 +d4y3 +d5y4 +d6y5−5!d6 = 0,

C1 +C2y+C3y2 +C4y3 +C5y4 +C6y5 = d1 +d2y+d3y2 +d4y3 +d5y4 +d6y5,

C2 +2C3y+3C4y2 +4C5y3 +5C6y4 = d2 +2d3y+3d4y2 +4d5y3 +5d6y4,

2C3 +6C4y+12C5y2 +20C6y3 = 2d3 +6d4y+12d5y2 +20d6y3,

6C4 +24C5y+60C6y2 = 6d4 +24d5y+60d6y2,

24C5 +120C6y = 24d5 +120d6y,

120d6−120C6 =−1,

C1 = 0,

C2 = 0.

It follows

C1(y) = 0, C2(y) = 0, C3(y) = −1
y2 , C4(y) = 0,

C5(y) = 0, C6(y) = 0, d1(y) = 1
120y5,

d2(y) =− 1
24y4, d3(y) =

y5−12
12y2 , d4(y) =− 1

12y2,

d5(y) = 1
24y2, d6(y) =− 1

120y2.

Then,
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Ry(x) =


−x2

y2 , x≤ y

1
120y5− 1

24xy4 + y5−12
12y2 x2− 1

12x3y2

+ 1
24x4y2− 1

120x5y2, x > y

.

Definition 4.1.5. Let W 4
2 [0,1] = {u : u′,u′′,u′′′ are absolutely continues real valued func-

tions, on u(4) ∈ L2[0,1],u(0)= u′(0)= u(1)= 0}. with inner product in W 4
2 [0,1] is defined

as

(u(x),v(x))W 4
2 [0,1]

= u(0)v(0)+u′(0)v′(0)+u(2)(0)v(2)(0)+u(3)(0)v(3)(0)

+
∫ 1

0
u(4)(x)v(4)(x)dx

and the norm

‖u‖W 4
2 [0,1]

=
√
(u(x),u(x))W 4

2 [0,1]
.

Theorem 4.1.4. The Hilbert space W 4
2 [0,1] is a reproducing kernel space and reproduc-

ing kernel function Ry(x) can be defined by
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Ry(x) =



(
2y2

71 −
7y3

284 −
7y4

1136 +
21y5

5680 −
7y6

5680 +
y7

5680

)
x2

+
(
− 7y2

284 +
16y3

639 −
7y4

10224 +
7y5

17040 −
7y6

51120 +
y7

51120

)
x3

+
(
− 7y2

1136 +
4y3

639 −
7y4

40896 +
7Y 5

68160 −
7y6

204480 +
y7

204480

)
x4

+
(
− y2

2130 +
7y3

17040 +
7y4

68160 −
7y5

113600 +
7y6

340800 −
y7

340800

)
x5

+
(

y
720 +

−1260y2−140y3−35y4+21y5−7y6+y7

1022400

)
x6

+
(
− 1

5040 +
1260y2+140y3+35y4−21y5+7y6−y7

7156800

)
x7

, y≤ x

− y7

5040 +
(

y6

7200

)
x+
(

2y2

71 −
7y3

284 −
7y4

1136 −
y5

2130 −
7y6

5680 +
y7

5680

)
x2

+
(
− 7y2

284 +
16y3

639 + 4y4

639 +
7y5

17040 −
7y6

51120 +
y7

51120

)
x3

+
(
−1260y2−140y3−35y4+21y5−7y6+y7

204480

)
x4

+
(

1260y2+140y3+35y4−21y5+7y6−y7

340800

)
x5

+
(
−1260y2−140y3−35y4+21y5−7y6+y7

1022400

)
x6

+
(

1260y2+140y3+35y4−21y5+7y6−y7

7156800

)
x7

, y > x

.

Proof. Let

u(y) =
〈
u(x),Ry(x)

〉
= u(0)Ry(0)+u′(0)R

′
y(0)+u(2)(0)R(2)

y (0)

+u(3)(0)R
(3)

y (0)+
∫ 1

0
u(4)(x)R

(4)

y (x)dx.

Integration by parts four times to get

〈
u(x),Ry(x)

〉
= u(0)Ry(0)+u′(0)R

′
y(0)+u(2)(0)R(2)

y (0)+u(3)(0)R(3)
y +u(3)(1)R(4)

y (1)

−u(3)(0)R(4)
y (0)−u(2)(1)R(5)

y (1)+u(2)(0)R(5)
y (0)+u′(1)R(6)

y (1)

−u′(0)R(6)
y (0)−u(1)R(7)

y (1)+u(0)R(7)
y (0)

∫ 1

0
u(x)R(8)

y (x)dx.
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Substitute the conditions u(0) = u′(0) = u(1) = 0, to get

u(y) = u
(2)
(0)R

(2)

y (0)+u
(2)
(0)R

(2)

y (0)+u
(3)
(1)R

(4)

y (1)−u
(3)
(0)R

(4)

y (0)−u
(2)
(1)R

(5)

y (1)

+u
(2)
(0)R

(5)

y (0)+u′(1)R
(6)

y (1)+
∫ 1

0
u(x)R(8)

y (x)dx.

Let

R(3)
y (0)−R(4)

y (0) = 0, (4.24)

R(2)
y (0)+R(5)

y (0) = 0, (4.25)

R(4)
y (1) = 0, (4.26)

R(5)
y (1) = 0, (4.27)

R(6)
y (1) = 0. (4.28)

Thus, under the conditions, we get

u(y) =
∫ 1

0
R(8)

y (x)u(x)dx.

This implies that

R(8)
y (x) = δ (x− y)

where

δ (x− y) =


1, if x = y

0, if x 6= y
.

Thus,

Ry(x)


∑

8
i=1 ci(y)xi−1, x 6 y

∑
8
i=1 di(y)xi−1, x > y

.
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Since

R(8)
y (x) = δ (x− y),

then

∂ kRy(y+)
∂yk =

∂ KRy(y−)
∂yk for k = 0,1,2,3,4,5,6 (4.29)

and

∂ (7)Ry(y+)
∂y7 −

∂ (7)Ry(y−)
∂y7 = 1. (4.30)

Since Ry(x) ∈W 4
2 [0,1], then

Ry(0) = 0, (4.31)

R′y(0) = 0, (4.32)

and

Ry(1) = 0. (4.33)

Solve systems (4.24)-(4.33), we get

3!C4−4!C5 = 0,

2C3 +5!C6 = 0,

4!d5 +5!d6 +360d7 +840d8 = 0,

5!d6 +6!d7 +2520d8 = 0,

6!d7 +7!d8 = 0,
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8

∑
i=1

diyi−1 =
8

∑
i=1

Ciyi−1,

8

∑
i=2

(i−1)diyi−2 =
8

∑
i=2

(i−1)Ciyi−2,

8

∑
i=3

(i−1)(i−2)diyi−3 =
8

∑
i=3

(i−1)(i−2)Ciyi−3,

8

∑
i=4

(i−1)(i−2)(i−3)diyi−4 =
8

∑
i=4

(i−1)(i−2)(i−3)Ciyi−4,

24d5 +120d6y+360d7y2 +840d8y3 = 24C5 +120C6y+360C7y2 +840C8y3,

120d6 +720d7y+2520d8y2 = 120C6 +720C7y+2520C8y2,

720d7 +5040d8y = 720C7 +5040C8y,

5040d8−5040C8 = 1,

C1 = 0,

d1 +d2 +d3 +d4 +d5 +d6 +d7 +d8 = 0,

C2 = 0.
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Solve the last system, it follows

C1 = 0, C2 = 0, C3 =
2y2

71
− 7y3

284
− 7y4

1136
+

21y5

5680
− 7y6

5680
+

y7

5680
,

C4 =−
7y2

284
+

16y3

639
− 7y4

10224
+

7y5

17040
− 7y6

51120
+

y7

51120
,

C5 =−
7y2

1136
+

4y3

639
− 7y4

40896
+

7Y 5

68160
− 7y6

204480
+

y7

204480
,

C6 =−
y2

2130
+

7y3

17040
+

7y4

68160
− 7y5

113600
+

7y6

340800
− y7

340800
,

C7 =
y

720
+
−1260y2−140y3−35y4 +21y5−7y6 + y7

1022400
,

C8 =−
1

5040
+

1260y2 +140y3 +35y4−21y5 +7y6− y7

7156800
, d1 =−

y7

5040
,

d2 =
y6

720
, d3 =

2y2

71
− 7y3

284
− 7y4

1136
− y5

2130
− 7y6

5680
+

y7

5680
,

d4 =−
7y2

284
+

16y3

639
+

4y4

639
+

7y5

17040
− 7y6

51120
+

y7

51120
,

d5 =
−1260y2−140y3−35y4 +21y5−7y6 + y7

204480
,

d6 =
1260y2 +140y3 +35y4−21y5 +7y6−y7

340800
,

d7 =
−1260y2−140y3−35y4 +21y5−7y6 + y7

1022400
,

d8 =
1260y2 +140y3 +35y4−21y5 +7y6−y7

7156800
.
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Then,

Ry(x) =



(
2y2

71 −
7y3

284 −
7y4

1136 +
21y5

5680 −
7y6

5680 +
y7

5680

)
x2

+
(
− 7y2

284 +
16y3

639 −
7y4

10224 +
7y5

17040 −
7y6

51120 +
y7

51120

)
x3

+
(
− 7y2

1136 +
4y3

639 −
7y4

40896 +
7Y 5

68160 −
7y6

204480 +
y7

204480

)
x4

+
(
− y2

2130 +
7y3

17040 +
7y4

68160 −
7y5

113600 +
7y6

340800 −
y7

340800

)
x5

+
(

y
720 +

−1260y2−140y3−35y4+21y5−7y6+y7

1022400

)
x6

+
(
− 1

5040 +
1260y2+140y3+35y4−21y5+7y6−y7

7156800

)
x7

, y≤ x

− y7

5040 +
(

y6

7200

)
x+
(

2y2

71 −
7y3

284 −
7y4

1136 −
y5

2130 −
7y6

5680 +
y7

5680

)
x2

+
(
− 7y2

284 +
16y3

639 + 4y4

639 +
7y5

17040 −
7y6

51120 +
y7

51120

)
x3

+
(
−1260y2−140y3−35y4+21y5−7y6+y7

204480

)
x4

+
(

1260y2+140y3+35y4−21y5+7y6−y7

340800

)
x5

+
(
−1260y2−140y3−35y4+21y5−7y6+y7

1022400

)
x6

+
(

1260y2+140y3+35y4−21y5+7y6−y7

7156800

)
x7

, y > x

.

Consider the following second order initial value problem

u
′′
+ p(x)u′+q(x)u = f (x), 0≤ x≤ 1. (4.34)

with

u(0) = α, u
′
(0) = β (4.35)

when p,q ∈ C2(a,b) and f ∈ L2[0,1]. Let α and β be real constant. Transform problem

(4.34-4.35) into the operator form as

(Lu)(x) = f (x), 0≤ x≤ 1 (4.36)
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with

u(0) = u
′
(0) = 0, (4.37)

where

Lu =
d2u
dx2 + p(x)

du
dx

+q(x)(u), (4.38)

and

L : W 3
2 [0,1]→W 1

2 [0,1]. (4.39)

Then,

L(µu+ v)(x) =
d2

dx2 (µu+ v)(x)+ p(x)
d
dx

(µu+ v)(x)+q(x)(µu+ v)(x)

= µ
d2

dx2 u(x)+µ p(x)
d
dx

u(x)+µq(x)u(x)+
d2

dx2 v(x)

+p(x)
d
dx

v(x)+q(x)v(x)

= µL(u)(x)+L(v)(x)

where µ is constant. Then, L is linear operator.

Theorem 4.1.5. The linear operator L is a bounded linear operator.

Proof. We only need to prove ‖Lu‖2
W 1

2
≤ M‖u‖2

W 3
2

, where M > 0 is a positive constant.

By equations (4.1) and (4.2), given that

‖Lu‖2
W 1

2
= 〈Lu,Lu〉W 1

2
=
∫ 1

0

[
Lu′(x)

]2 dx+[Lu(0)]2.

By Theorem (4.1.3), we have

u(x) = 〈u(·),Rx(·)〉W 3
2
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and

Lu(x) = 〈u(·),LRx(·)〉W 1
2
.

By Cauchy–Schwarz inequality,

|Lu(x)| ≤ ‖u‖W 3
2
‖LRx‖W 1

2
= M1‖u‖W 3

2

where M1 > 0 is a positive constant. Thus,

[(Lu)(0)]2 ≤M2
1‖u‖2

W 3
2
.

Since

(Lu)′(x) =
〈
u(·),(LRx)

′ (·)
〉

W 1
2
,

then ∣∣(Lu)′(x)
∣∣≤ ‖u‖W 3

2

∥∥(LRx)
′∥∥

W 3
2
= M2‖u‖W 3

2

where M2 > 0 is a positive constant. We have

[
(Lu)′(t)

]2 ≤M2
2‖u‖2

W 3
2

and ∫ 1

0

[
(Lu)′(x)

]2 dx≤M2
2‖u‖2

W 3
2

which implies that

‖Lu‖2
W 1

2
≤M‖u‖2

W 3
2

where M = M2
1 +M2

2
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4.2 Structure of the Solution

Let {xi}∞

i=1 be a countable dense subset of [0,1]. Let ϕi(x) = Rxi(x) and ψi(x) = L∗ϕi(x),

where L∗ is conjugate operator of L. The orthonormal system
{

Ψ̂i(x)
}∞

i=1
of W 3

2 [0,1] can

be derived from Gram-Schmidt orthogonalization process of {ψi(x)}∞

i=1 by

ψ̂i(x) =
i

∑
k=1

βikψk(x), βii > 0, i = 1,2, . . . .

Theorem 4.2.1. If u(x) is the exact solution of

u′′ = f (x,u,u′), 0 < x < 1. (4.40)

with

u(0) = u0, u′(0) = u1 (4.41)

then

u(x) =
∞

∑
i=1

i

∑
k=1

βik f (xk,uk)Ψ̂i(x). (4.42)

where {xi}∞

i=1 is dense in [0,1].
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Proof. Using the (4.1) and uniqueness of solution of (4.34),

u(x) =
∞

∑
i=1

〈
u(x),Ψ̂i(x)

〉
W 3

2

Ψ̂i(x)

=
∞

∑
i=1

i

∑
k=1

βik 〈u(x),Ψk(x)〉W 3
2

Ψ̂i(x)

=
∞

∑
i=1

i

∑
k=1

βik 〈u(x),L∗ϕk(x)〉W 3
2

Ψ̂i(x)

=
∞

∑
i=1

i

∑
k=1

βik 〈Lu(x),ϕk(x)〉W 1
2

Ψ̂i(x)

=
∞

∑
i=1

i

∑
k=1

βik 〈 f (x,u),Txk〉W 1
2

Ψ̂i(x)

=
∞

∑
i=1

i

∑
k=1

βik f (xk,uk)Ψ̂i(x).

This completes the proof.

Theorem 4.2.2. The approximate solution of a problem 4.34−4.35 can be obtained and

written as

un(x) =
n

∑
i=1

i

∑
k=1

βik f (xk,uk)Ψ̂i(x).

Similar argument can be used for the first order initial value problem. To explain

this idea of the solution, let us consider the following example.

Example 4.2.1. Consider

u′(x) = 2 = f (x,u), 0 6 x 6 1

such that

u(0) = 0.
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The exact solution is u(x) = 2x.

Let

Ry(x) =


yx+ yx2

2 −
1
6x3, x 6 y

−y3

6 +
(

y+ y2

2

)
x, x > y

.

Then,

Rx(y) =


xy+ xy2

2 −
y3

6 , x > y

−x3

6 + xy+ x2y
2 , x < y

.

After differentiation one time, we get

∂Rx(y)
∂y

=


x+ xy− y2

2 , x > y

x+ x2

2 , x < y
.
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Let x1 = 0,x2 =
1
4 ,x3 =

1
2 ,x4 =

3
4 ,x5 = 1 be a partition of [0,1]. Then,

ψ1(x) = LyRx(y)
∣∣
y=0 = x,

ψ2(x) = LyRx(y)
∣∣
y= 1

4
=


− 1

32 +
5x
4 , x > 1

4

x+ x2

2 , x < 1
4

,

ψ3(x) = LyRx(y)
∣∣
y= 1

2
=


−1

8 +
3x
2 , x > 1

2

x+ x2

2 , x < 1
2

,

ψ4(x) = LyRx(y)
∣∣
y= 3

4
=


− 9

32 +
7x
4 , x > 3

4

x+ x2

2 , x < 3
4

,

ψ5(x) = LyRx(y)
∣∣
y=1 = x+

x2

2
.

Now, ψ̂i(x) for i = 1 : 5 will be generated using Gram Schmidt process where

βii > 0, i = 1,2,3,4,5. Then,

ψ̂i(x) =
i

∑
k=1

βikψk(x).

Thus,

ψ̂1(x) = ψ1(x) = x,

β11 = 1.

Now,

ψ̂2(x) = ψ2(x)−
〈ψ2, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).
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Thus β21 =−1.20361, β22 = 1, and

ψ̂2(x) =


− 1

32 +2.45361x, x > 1
4

2.20361x+ x2

2 , x < 1
4

.

Also,

ψ̂3(x) = ψ3(x)−
〈ψ3, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ3, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).

Then, β31 =−1.32031, β32 =−0.548646, and β33 = 1. Thus,

ψ̂3(x) =


0.142145+3.50612x, x > 1

2

−0.0171452+3.00612x+ x2

2 ,
1
4 < x < 1

2

2.86896x+0.774323x2, x < 1
4

.

Now,

ψ̂4(x) = ψ4(x)−
〈ψ4, ψ̂3〉
‖ψ̂3‖2 ψ̂3(x)−

〈ψ4, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ4, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).

Then, β41 =−1.36768, β42 =−0.568405, β43 =−0.414703, and β44 = 1. Thus,

ψ̂4(x) =



−0.350851+4.45024x, x > 3
4

−0.0696006+3.70024x+ x2

2 ,
1
2 < x < 3

4

−0.0177626+3.49288x+0.707352x2, 1
4 < x < 1

2

3.35078x+0.991554x2, x < 1
4

.

Finally,

ψ̂5(x) = ψ5(x)−
〈ψ5, ψ̂4〉
‖ψ̂4‖2 ψ̂4(x)−

〈ψ5, ψ̂3〉
‖ψ̂3‖2 ψ̂3(x)−

〈ψ5, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ5, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).
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Then, β51 = −1.375, β52 = −0.571463, β53 = −0.416957, β54 = −0.347025, and

β55 = 1. Thus,

ψ̂5(x) =



−0.167579+4.32206x+ x2

2 ,
3
4 < x 6 1

−0.0699779+4.06179x+0.673512x2, 1
2 < x < 3

4

−0.0178582+3.85331x+0.881991x2, 1
4 < x < 1

2

3.71045x+1.16772x2, x < 1
4

.

Therefore,

u4(x) =



2ψ̂1(x)−0.407227ψ̂21(x)−1.73792ψ̂31(x)−2.70157ψ̂41(x)

−3.42089ψ̂51(x), x > 3
4

2ψ̂1−0.407227ψ̂21(x)−1.73792ψ̂31(x)−2.70157ψ̂42(x)

−3.42089ψ̂52(x), 1
2 ≤ x < 3

4

2ψ̂1(x)−0.407227ψ̂21(x)−1.73792ψ̂32(x)−2.70157ψ̂43(x)

−3.42089ψ̂53(x), 1
4 ≤ x < 1

2

2ψ̂1(x)−0.407227ψ̂22(x)−1.73792ψ̂33(x)−2.70157ψ̂44(x)

−3.42089ψ̂54(x), x < 1
4

.

Then ‖u(x)−u4(x)‖=

√
1∫
0
(u(x)−u4(x))2dx = 1.0×10−15.

Example 4.2.2. Consider u′′(x) = 2 = f (x,u), 0 6 x 6 1

such that

u(0) = 0, u(1) = 0.

Then, the exact solution is u(x) = x2− x. Let L : W 3
2 [0,1]−→W 1

2 [0,1]
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such that

Lu(x) = u′′(x) = f (x,u), 0 < x < 1

with u(0) = u(1) = 0. Then,

Rx(y)=



−x2y+ xy− 1
20y2x5 + 21

20x2y2 + 1
24x4y2− xy2− 1

12x3y2 + 1
24x2y4

− 1
24xy4− 1

120x2y5 + 1
12y5

, y≤ x

x5

120 −
1
24x4y+ xy− x2y− 1

120x5y2 + 21
20x2y2 + 1

24x4y2− xy2− 1
12x2y3

+ 1
24x2y4− 1

120x2y5
, y > x

.

Then

∂Rx(y)
∂y

=


x− x2−2xy+ 21

10x2y− x3y
6 + x4y

12 −
x5y
60 −

xy3

6 + x2y3

6 + y4

24 −
x2y4

24 , y 6 x

x− x2− x4

24 −2xy+ 21x2y
10 + x4y

12 −
x5y
60 −

x2y2

4 + x2y3

6 −
x2y4

24 , y > x
,

and

LyRx(y) =


−2x+ 21

10x2− x3

6 + x4

12 −
x5

60 −
xy2

2 + x2y2

2 + y3

6 −
x2y3

6 , y 6 x

−2x+ 21x2

10 + x4

12 −
x5

60 −
x2y
2 + x2y2

3 −
x2y3

6 , y > x
.

Let x1 = 0,x2 =
1
4 ,x3 =

1
2 ,x4 =

3
4 ,x5 = 1 be a partition of [0,1]. Then,
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ψ1(x) = LyRx(y)
∣∣
y=0 = 2x+

21x2

10
+

x4

12
− x5

60
,

ψ2(x) = LyRx(y)
∣∣
y= 1

4
=


1

384 +
65
32x+ 4087

1920x2− x3

6 + x4

12 −
x5

60 , x > 1
4

−2x+ 3847
1920x2 + x4

12 −
x5

60 , x < 1
4

,

ψ3(x) = LyRx(y)
∣∣
y= 1

2
=


1

48 −
17
8 x+ 529

240x2− x3

6 + x4

12 −
x5

60 , x > 1
2

−2x+ 469
240x2 + x4

12 −
x5

60 , x < 1
2

,

ψ4(x) = LyRx(y)
∣∣
y= 3

4
=


9

128 −
73
32x+ 1479

640 x2− x3

6 + x4

12 −
x5

60 , x > 3
4

−2x+ 1239
640 x2 + x4

12 −
x5

60 , x < 3
4

,

ψ5(x) = LyRx(y)
∣∣
y=1 =−2x+

29
15

x2 +
x4

12
− x5

60
.

Now, we want to find ψ̂i(x) using Gram Schmidt process where βii > 0, for

i = 1,2,3,4,5. Then,

ψ̂i(x) =
i

∑
k=1

βikψk(x).

Simple calculations give that

ψ̂1(x) = ψ1(x) = 2x+ 21x2

10 + x4

12 −
x5

60 , β11 = 1,

and

ψ̂2(x) = ψ2(x)−
〈ψ2, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x),

which implies that β21 =−1.01136, and β22 = 1, and

ψ̂2(x) =


1

384 −4.05398x+4.25251x2−0.335227x3 +0.167614x4−0.0335227x5, x > 1
4

−4.02273x+4.12751x2−0.168561x3 +0.16714x4−0.0335227x5, x < 1
4

.
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Also,

ψ̂3(x) = ψ3(x)−
〈ψ3, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ3, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).

Then β31 =−1.02976, β32 =−0.509099, β33 = 1, and

ψ̂3(x) =



0.0221591−5.45036x2−0.423144x3 +0.211572x4

−0.0423144x5
, x≥ 1

2

0.00132578−5.09364x+5.20036x2 +0.0256477x3

+0.211572x4−0.0423144x5
, 1

4 ≤ x < 1
2

−5.07773×+5.13672x2−0.171627x3 +0.211572x4

−0.0423144x5
, x < 1

4

.

In addition,

ψ̂4(x) = ψ4(x)−
〈ψ4, ψ̂3〉
‖ψ̂3‖2 ψ̂3(x)−

〈ψ4, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ4, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).

Hence, β41 =−1.04045, β42 =−0.514382, β43 =−0.404164, β44 = 1, and

ψ̂4(x) =



0.0800721−6.26583x+6.48165x2−0.493165x3

+0.246583x4−0.0493165x5
, x≥ 3

4

0.00975961−5.98458x+6.10665x2−0.326499x3

+0.246583x4−0.0493165x5
, 1

2 < x < 3
4

0.00133954−5.93406x+6.00561x2−0.259138x3

+0.246583x4−0.0493165x5
, 1

4 < x < 1
2

−5.91798x+5.94132x2−0.173408x3

+0.246583x4−0.0493165x5
, x < 1

4

.
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Finally

ψ̂5(x) = ψ5(x)−
〈ψ5, ψ̂4〉
‖ψ̂4‖2 ψ̂4(x)−

〈ψ5, ψ̂3〉
‖ψ̂3‖2 ψ̂3(x)−

〈ψ5, ψ̂2〉
‖ψ̂2‖2 ψ̂2(x)−

〈ψ5, ψ̂1〉
‖ψ̂1‖2 ψ̂1(x).

Thus β51 =−1.04231, β52 =−0.515306, β53 =−0.40489, β54 =−0.345464, β55 = 1,

and

ψ̂5(x) =



0.03400676−6.77982x+6.90988x2−0.384662x3

+0.275664x4−0.0551329x5
, 3

4 < x 6 1

−0.0097716−6.68266x+6.78033x2−0.327085x3

+0.275664x4−0.0551329x5
, 1

2 < x < 3
4

0.00134197−6.63205x−6.67911x2 +0.275664x4

−0.0551329x5
, 1

4 < x < 1
2

−6.61594x+6.6147x2−0.173713x3 +0.275664x4

−0.0551329x5
, x < 1

4

.

Therefore,

u4(x) =



2ψ̂1(x)−0.0227296ψ̂21(x)−1.07773ψ̂31(x)−1.91798ψ̂41(x)

−2.1594ψ̂51, x≤ 3
4

2ψ̂1(x)−0.0227296ψ̂21(x)−1.07773ψ̂31(x)−1.91798ψ̂42(x)

−2.1594ψ̂52,
1
2 ≤ x < 3

4 ,

2ψ̂1(x)−0.0227296ψ̂21(x)−1.07773ψ̂32(x)−1.91798ψ̂43(x)

−2.1594ψ̂53,
1
4 ≤ x < 1

2

2ψ̂1(x)−0.0227296ψ̂21(x)−1.07773ψ̂33(x)−1.91798ψ̂44(x)

−2.1594ψ̂54, x < 1
4
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Then, ‖u(x)−u4(x)‖=

√
1∫
0
(u(x)−u4(x))2dx = 2.1×10−15.
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Chapter 5: First Order Fuzzy Initial Value Problem

In this chapter, linear and nonlinear first order fuzzy initial value problem(FIVP)

will be discussed.

5.1 Linear First Order Fuzzy Initial Value Problem

Consider the following linear first order FIVP

y′+a(x)y = b(x), 1 > x > 0 (5.1)

subject to

y(0) = β̂ (5.2)

where β̂ is fuzzy number, a(x) is a continuous function on [0,1], and b(x) is fuzzy func-

tion. Let the α-levels of y(x),b(x), and β̂ be given by

yα(x) = [y1α(x),y2α(x)] ,

yα(0) = [β1,β2] ,

and

bα(x) = [b1α(x),b2α(x)] .

To solve problem (5.1)− (5.2), three cases should be investigated.

Case 1: Let a(x)> 0 for all x ∈ [0,1]. Then,

[y′1α(x),y
′
2α(x)]+a(x)� [y1α(x),y2α(x)] = [b1α(x),b2α(x)]

which produces the following system

y′1α(x)+a(x)y1α(x) = b1α(x), y1(0) = β1, (5.3)
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and

y′2α(x)+a(x)y2α(x) = b2α(x), y2(0) = β2. (5.4)

Then, the method illustrated in Chapter 4 will be implemented to problems (5.3) and

(5.4), separately.

Case 2: Let a(x)< 0 for all x ∈ [0,1]. Then,

[
y′1α(x),y

′
2α(x)

]
+a(x)� [y1α(x),y2α(x)] = [b1α(x),b2α(x)]

which implies that

y′1α(x)+a(x)y2α(x) = b1α(x), y1α(0) = β1, (5.5)

and

y′2α(x)+a(x)y1α(x) = b2α(x), y2α(0) = β2. (5.6)

Let

Yα(x) =

 y1α(x)

y2α(x)

 , Bα(x) =

 b1α(x)

b2α(x)

 , λ =

 β1

β2

 ,

A(x) =

 0 a(x)

a(x) 0

 .

Then, equations (5.5) and (5.6) can be written in the matrix form as

Y ′α(x)+A(x)Yα(x) = Bα(x), Yα(0) = λ . (5.7)

Implement the RkM which is discussed in Chapter 4 to solve problem (5.7). Then, y1α(x)

and y2α(x) can be found.
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Case3: Let c ∈ (0,1) such that either

a) a(x)> 0 on [0,c] and a(x)< 0 on (c,1]

or

b) a(x)< 0 on [0,c) and a(x)> 0 on [c,1].

Without loss of generality, assume that a(x)> 0 on [0,c] and a(x)< 0 on (c,1]. Implement

case 1 to solve the following problem

[y′1α(x),y
′
2α(x)]+a(x)� [y1α(x),y2α(x)] = [b1α(x),b2α(x)]

on [0,c]. Thus,

y′1α(x)+a(x)y1α(x) = b1α(x), y1(0) = β1, 0≤ x≤ c.

and

y′2α(x)+a(x)y2α(x) = b2α(x), y2(0) = β2, 0≤ x≤ c.

Then, implement case 2 to solve the following problem

[y′3α(x),y
′
4α(x)]+a(x)� [y3α(x),y4α(x)] = [b1α(x),b2α(x)]

on [c,1]. Then, we get the following system

y′3α(x)+a(x)y4α(x) = b1α(x), y3α(c) = y1α(c), c≤ x≤ 1,

and

y′4α(x)+a(x)y3α(x) = b2α(x), y4α(c) = y2α(c), c≤ x≤ 1.
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Let

Yα(x) =

 y3α(x)

y4α(x)

 , B1α(x) =

 b1α(x)

b2α(x)

 , λ =

 y1α(x)

y2α(x)

 ,

A(x) =

 0 a(x)

a(x) 0

 .

Then,

Y ′α(x)+A(x)Yα = Bα(x), Yα(0) = λ , c < x≤ 1.

Using the RKM, the above system can be solved to find y3α(x) and y4α(x). Then,

yα(x) = [ f1α(x), f2α(x)]

where

f1α(x) =

 y1α(x), 0 6 x≤ c

y3α(x), c < x 6 1
,

f2α(x) =

 y2α(x), 0 6 x 6 c

y4α(x), c < x 6 1
.

If a(x) Changes it’s sign at a finite distinct number of points c1,c2, . . . ,cn ∈ (0,1), Then

the problem on each subinterval will be solved using the technique described in case 3.

Example 5.1.1. Consider the following problem

y′+ xy = γ̂x 0 < x≤ 1,

subject to

y(0) = β̂



72

where γ̂ = [1,2,3] and β̂ = [0,1,2]. Let the α-cut of y,y′, β̂ , and γ̂ be given by

yα = [y1α ,y2α ] ,

y′α =
[
y′1α ,y

′
2α

]
,

β̂ = [α,2−α],

γ̂ = [α +1,3−α].

Then, the problem becomes

y
′
1α + xy1α = (α +1)x, y1α(0) = α.

y
′
2α + xy2α = (3−α)x, y2α(0) = 2−α.

Then, the exact solution is

yα(x) =
[

1+α− e−
x2
2 ,3−α− e−

x2
2

]
.

Let y6α(x) be the approximate solution as described in chapter 4. Then, the absolute

errors |yα(ih)− y6α(ih)| for i = 0,1, . . . ,h and h = 0.1 are given in Table (5.1).
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Table 5.1: The absolute errors in Example 5.1.1

xi |yα (xi)− y1α6 (xi)| |yα (xi)− y2α6 (xi)|

0 0 0

0.1 1.1∗10−15 1.2∗10−15

0.2 1.2∗10−15 1.3∗10−15

0.3 1.4∗10−15 1.5∗10−15

0.4 1.7∗10−15 1.7∗10−15

0.5 2.0∗10−15 1.9∗10−15

0.6 2.1∗10−15 2.1∗10−15

0.7 2.4∗10−15 2.3∗10−15

0.8 2.6∗10−15 2.5∗10−15

0.9 2.8∗10−15 2.7∗10−15

1 2.9∗10−15 2.8∗10−15

Example 5.1.2. Consider the following problem

y′+(−x)y = γ̂x, 0≤ x≤ 1

subject to

y(0) = β̂

where γ̂ = [−1,0,1] and β̂ = [2,3,4]. Let the α-cut of y,y′, γ̂ , and β̂ be given by

yα = [y1α ,y2α ] , y′α =
[
y
′
1α ,y

′
2α

]
,
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β̂ = [α +2,4−α], γ̂ = [α−1,1−α].

Then, [
y
′
1α ,y

′
2α

]
+[−xy2α ,−xy1α ] = [x(α−1),(1−α)x]

which implies that

y
′
1α − xy2α = x(α−1), y1(0) = α +2,

y
′
2α − xy1α = (1−α)x1, y2(0) = 4−α.

Then, the exact solution

Yα(x) =

 y1α(x)

y2α(x)

 , Bα =

(
(α−1)x
(1−α)x

)
,

λ =

 α +2

4−α

 , A(x) =

 0 −x

−x 0

 .

Then, using the procedure described in chapter 4, the absolute error are reported in Table

(5.2).
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Table 5.2: The absolute errors in Example 5.1.1

xi |yα (xi)− y1α6 (xi)| |yα (xi)− y2α6 (xi)|

0 0 0

0.1 2.1∗10−14 2.2∗10−14

0.2 2.3∗10−14 2.4∗10−14

0.3 2.4∗10−14 2.5∗10−14

0.4 2.6∗10−14 2.7∗10−14

0.5 2.7∗10−14 2.9∗10−14

0.6 2.9∗10−14 3.0∗10−14

0.7 3.2∗10−14 3.2∗10−14

0.8 4.5∗10−14 4.4∗10−14

0.9 5.1∗10−14 5.2∗10−14

1 5.7∗10−14 5.8∗110−14

Example 5.1.3. Consider the following problem

y′+(
1
2
− x)y = γ̂, 0≤ x≤ 1

subject to

y(0) = β̂

where γ̂ = [0,1,2] and β̂ = [1,3,4]. Let the α-cut of y, y′, β̂1 and γ̂ be given by

yα =


[y1α ,y2α ] , 0 6 x < 1

2

[y3α ,y4αx] , 1
2 6 x 6 1

,
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y
′
α =


[
y
′
1α
,y
′
2α

]
, 0 6 x < 1

2[
y
′
3α
,y
′
4α

x
]
, 1

2 6 x 6 1
,

β̂ = [2α +1,4−α], γ̂ = [α,2−α].

Then, for 0 6 x 6 1
2 , we have

y′1α
+
(1

2 − x
)

y1α = α
(1

2 − x
)
, y1α(0) = 2α +1,

y
′
2α

+
(1

2 − x
)

y2α = (2−α)
(1

2 − x
)
, y2α(0) = 4−α,

and for 1
2 6 x 6 1, we have

y
′
3α +

(
1
2
− x
)

y4α = (2−α)

(
1
2
− x
)
, y3α

(
1
2

)
= y1α

(
1
2

)
,

y
′
4α +

(
1
2
− x
)

y3α = α

(
1
2
− x
)
, y4α

(
1
2

)
= y2α

(
1
2

)
,

Then the exact solution is

yα(x) =


[α +(1+α)e

1
2 (x

2−x), 2−α +2e
1
2 (x

2−x)], 0≤ x≤ 1
2

[α + 1
2(α−1)e

1
8 (1−2x)2

+ 1
2(3+α)e−

1
8+

1
2 (x

2−x),

1
2(4−2α− (α−1)e

1
8 (1−2x)2

+(3+α)e−
1
8+

1
2 (x

2−x)],

1
2 ≤ x≤ 1

.

Then, using the procedure described in chapter 4, the absolute error is defined by

‖yα − yα6‖=
∫ 1/2

0 (y1α(x)− y1α6 (x))2dx

+
∫ 1/2

0 (y2α(x)− y2α6(x))2dx+
∫ 1

1/2(y1α(x)− y3α (x))2dx

+
∫ 1

1/2 (y2α(x)− y4α6(x))
2 dx = 1 ·3∗10−12.
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5.2 Nonlinear Fuzzy Initial Value Problem

Consider the following problem

y′ = f (x,y), 0≤ x≤ 1,

subject to

y(0) = β̂ .

Let the α− cut of y(x), β̂ , and the function f (x,y) be given by

yα(x) = [y1α(x),y2α(x)] ,

β̂ = [β1α ,β2α ]

and

fα(x,y) = [ f1α (x,yα(x)) , f2α (x,yα(x))] .

Then, [
y′1α

(x),y′2α
(x)
]
= [ f1α (x,yα(x)) , f2α (x,yα(x))]

which implies that

y′1α(x) = f1α(x,y1α(x),y2α(x)), y1α(0) = β1α , 0≤ x≤ 1

and

y′2α(x) = f2α(x,y1α(x),y2α(x)), y2α(0) = β2α , 0≤ x≤ 1.

Then,

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α (xk,yαk)
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and

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α (xk,yαk)

where

f1α (xk,yαk) = f1α (xk,yα(xk))

= min{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}

and

f2α (xk,yαk) = f1α (xk,yα(xk))

= max{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}.

Example 5.2.1. Consider the following problem

y
′
(x) = y2(x)+ x2, 0≤ x≤ 1,

subject to

y(0) = γ̂

where γ̂ = [0.1α−0.1,0.1−0.1α]. Then, the α− cut of y and y′ are

yα(x) = [y1α(x),y2α(x)] and y′α(x) =
[
y′1α(x),y

′
2α(x)

]
.

Let f (x,y) = y2(x)+ x2. Then, the α-cut of f is

fα(x,y) = [ f1α(x,yα(x)), f2α (x,yα(x))].
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Thus,

y
′
1α
(x) = f1α(x,yα), y1α(0) = 0 ·1α−0.1,

y
′
2α
(x) = f2α(x,yα), y2α(0) = 0.1−0.1α.

Then, using the technique which described in chapter 4, one gets

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α (xk,yαk)

and

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α (xk,yαk)

where

f1α (xk,yαk) = min{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}

and

f2α (xk,yαk) = max{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}.

Let n = 8. Let the absolute error is defined by the residual of y1α8 an y2α8 as

E1(xk ) =
∣∣∣y′1α8(xk)− y2

1α8(xk)− x2
k

∣∣∣
and

E2(xk ) =
∣∣∣y′2α8(xk)− y2

2α8(xk)− x2
k

∣∣∣ .
Then, the result are reported in Table (5.3).
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Table 5.3: The absolute errors in Example 5.2.1

xk E1(xk ) E2(xk )

0 0 0

0.1 1.1∗10−8 1.2∗10−8

0.2 1.2∗10−8 1.4∗10−8

0.3 1.4∗10−8 1.7∗10−8

0.4 1.7∗10−8 1.8∗10−8

0.5 1.9∗10−8 2.1∗10−8

0.6 2.1∗10−8 2.3∗10−8

0.7 2.4∗10−8 2.6∗10−8

0.8 2.7∗10−8 2.8∗10−8

0.9 2.9∗10−8 3.1∗10−8

1 3.3∗10−8 3.5∗10−8

Example 5.2.2. Consider the following problem

y
′
(x) = ey + x4, 0≤ x≤ 1

subject to

y(0) = γ̂

where γ̂=(-1,0,1). Then, the α-cut of y , y′, and γ̂ are

yα = [y1α ,y2α ] , y′α =
[
y′1α ,y

′
2α

]
,
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γ̂ = [α−1,1−α].

Let

fα(x,y) = [ f1α(x,yα(x)), f2α(x,yα(x))].

Then,

y
′
1α
(x) = f1α(x,y), y1α(0) = α−1,

y
′
2α
(x) = f2α(x,y), y2α(0) = 1−α.

Then, using the technique which described in chapter 4, one gets

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α (xk,yαk)

and

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α (xk,yαk)

where

f1α (xk,yαk) = min{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}

and

f2α (xk,yαk) = max{ f (xk,w) : w ∈ [y1α(xk),y2α(xk)]}.

Let n = 8. Let the absolute error be defined by the residual of y1α8 an y2α8 as

E1(xk ) =
∣∣∣y′1α8(xk)− ey(xk)1α8− x4

k

∣∣∣
and

E2(xk ) =
∣∣∣y′2α8(xk)− ey(xk)2α8− x4

k

∣∣∣ .
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Then, the result are reported in Table (5.4).

Table 5.4: The absolute errors in Example 5.2.2

xk E1(xk ) E2(xk )

0 0 0

0.1 2.3∗10−9 2.2∗10−9

0.2 2.7∗10−9 2.5∗10−9

0.3 3.1∗10−9 2.9∗10−9

0.4 3.4∗10−9 3.3∗10−9

0.5 3.7∗10−9 3.7∗10−9

0.6 3.9∗10−9 4.1∗10−9

0.7 4.2∗10−9 4.3∗10−9

0.8 4.6∗10−9 4.7∗10−9

0.9 4.9∗10−9 5.1∗10−9

1 5.1∗10−9 5.3∗10−9
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Chapter 6: Second Order Fuzzy Initial Value Problem

In this chapter linear and nonlinear second order fuzzy initial value problem will

be discussed.

6.1 Linear Second Order Fuzzy Initial Value Problem

Consider the following linear second order FIVP

y′′+a(x)y′+b(x)y = c(x), 0 6 x 6 1, (6.1)

y(0) = β̂ , (6.2)

y′(0) = γ̂, (6.3)

where β̂ and γ̂ are fuzzy numbers a(x), and b(x) are continues functions on [0,1], and

c(x) is fuzzy function. Let the α-levels of y′(x),y(x), c(x), β̂ , and γ̂ be given by

y′α(x) =
[
y′1α

(x),y′2α
(x)
]
,

yα(x) = [y1α(x),y2α(x)] ,

β̂ = [β1,β2] ,

γ̂ = [γ1,γ2] ,

and

cα(x) = [c1α(x),c2α(x)] .

To solve Problem (6.1)− (6.3), four cases should be implemented.

Case l: Let a(x)> 0,b(x)> 0 for all x ∈ [0,1]. Then

[
y′′1α(x),y

′′
2α(x)

]
+a(x)�

[
y′1α(x),y

′
2α(x)

]
+b(x)� [y1α(x),y2α(x)] = [c1α(x),c2α(x)]
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which produce the following system

y′′1α(x)+a(x)y′1α(x)+b(x)y1α(x) = c1α(x), y1(0) = β1, y′1(0) = γ1 (6.4)

and

y′′2α(x)+a(x)y′2α(x)+b(x)y2α(x) = c2α(x), y2(0) = β2, y′2(0) = γ2. (6.5)

Then, the method described in chapter 4 will be implemented to Problems (6.4) and (6.5),

separately.

Case 2: Let a(x)> 0,b(x)< 0 for all x ∈ [0,1]. Then

[
y′′1α(x),y

′′
2α(x)

]
+a(x)�

[
y′1α(x),y

′
2α(x)

]
+b(x)� [y1α(x),y2α(x)] = [c1α(x),c2α(x)]

which implies that

y′′1α(x)+a(x)y′1α(x)+b(x)y2α(x) = c1α(x), y1α(0) = β1, y′1α = γ1 (6.6)

and

y′′2α(x)+a(x)y′2α(x)+b(x)y1α(x) = c2α(x), y2α(0) = β2, y′2α = γ2. (6.7)

Let

Yα(x) =

 y1α(x)

y2α(x)

 , Cα(x) =

 c1α(x)

c2α(x)

 ,

λ =

 β1

β2

 , λ
′ =

 γ1

γ2

 , B(x) =

 0 b(x)

b(x) 0

 .
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Then, Equation (6.6) and (6.7) can be written in the matrix form as

Y ′′α (x)+a(x)Y ′α(x)+B(x)Yα(x) =Cα(x), Yα(0) = λ , Y ′α(0) = λ
′. (6.8)

Implement the proposed method which discussed in Chapter 4 to solve Problem (6.8).

Then, y1α(x) and y2α(x) can be found.

Case 3: Let a(x)< 0,b(x)> 0 for all x ∈ [0,1]. Then,

[
y′′1α(x),y

′′
2α(x)

]
+a(x)�

[
y′1α(x),y

′
2α(x)

]
+b(x)� [y1α(x),y2α(x)] = [c1α(x),c2α(x)]

which implies that

y′′1α(x)+a(x)y′2α(x)+b(x)y1α(x) = c1α(x), y1α(0) = β1, y′1α(0) = γ1, (6.9)

y′′2α(x)+a(x)y′1α(x)+b(x)y2α(x) = c2α(x), y2α(0) = β2, y′2α(0) = γ2. (6.10)

Let

Yα(x) =

 y1α(x)

y2α(x)

 , Cα(x) =

 c1α(x)

c2α(x)

 ,

λ =

 β1

β2

 , λ
′ =

 γ1

γ2

 , A(x) =

 0 a(x)

a(x) 0

 .

Then, Equation (6.9) and (6.10) can be written in the matrix form as

Y ′′α (x)+A(x)Y ′α(x)+b(x)Yα(x) =Cα(x), Yα(0) = λ , Y ′α(0) = λ
′. (6.11)
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Implement the proposed method which discussed in Chapter 4 to solve Problem (6.11).

Then y′1α
(x) and y′2α

(x) can be found.

Case 4: Let a(x)< 0,b(x)< 0 for all x ∈ [0,1].

[
y′′1α(x),y

′′
2α(x)

]
+a(x)�

[
y′1α(x),y

′
2α(x)

]
+b(x)� [y1α(x),y2α(x)] = [c1α(x),c2α(x)] .

which implies that

y′′1α(x)+a(x)y′2α(x)+b(x)y2α(x) = c1α(x), y1α(0) = β1, y′1α(0) = γ1 (6.12)

y′′2α(x)+a(x)y′1α(x)+b(x)y1α(x) = c2α(x), y2α(0) = β2, y′2α(0) = γ2. (6.13)

Let

Yα(x) =

 y1α(x)

y2α(x)

 , Cα(x) =

 c1α(x)

c2α(x)

 ,

λ =

 β1

β2

 , λ
′ =

 γ1

γ2

 , A(x) =

 0 a(x)

a(x) 0

 B(x) =

 0 b(x)

b(x) 0

 .

Then, Equation (6.12) and (6.13) can be written in the matrix form as

Y ′′α (x)+A(x)Y ′α(x)+B(x)Yα(x) =Cα(x), Yα(0) = λ , Y ′α(0) = λ
′. (6.14)

Implement the proposed method which discussed in Chapter 4 to solve problem (6.14).

Then y1α(x) and y2α(x) can be found.
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Example 6.1.1. Consider the following problem

y
′′
+ y

′
= x2, 0≤ x≤ 1

subject to

y(0) = β̂

y
′
(0) = γ̂

where β̂ = (0,1,2) and γ̂ = (1,2,3). Then, the α− cut of y,y′,y′′, β̂ , and γ̂ are

yα = [y1α ,y2α ], y
′
α = [y

′
1α ,y

′
2α ], y

′′
α = [y

′′
1α ,y

′′
2α ],

β̂ = [α,2−α], γ̂ = [α +1,3−α].

Then,

y
′′

1α
+ y

′
1α

= x2, yα(0) = α, y′α(0) = α +1,

y
′′
2α

+ y′2α
= x2, y2α(0) = 2−α, y′2α

(0) = 3−α.

Then, the exact solution is

yα(x) =
[

2α +1− (α +1)e−x− 1
3

x3− x2,5−2α− (3−α)e−x− 1
3

x3− x2
]

.

Using n = 8, the absolute error in y1α and y2α are given in Table (6.1).
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Table 6.1: The absolute errors in Example 6.1.1

xk Abs. error o f y1α Abs. error o f y2α

0 0 0

0.1 2.3∗10−14 2.4∗10−14

0.2 2.4∗10−14 2.5∗10−14

0.3 2.5∗10−14 2.6∗10−14

0.4 2.6∗10−14 2.7∗10−14

0.5 2.7∗10−14 2.8∗10−14

0.6 2.8∗10−14 3.1∗10−14

0.7 3.0∗10−14 3.2∗10−14

0.8 3.1∗10−14 3.4∗10−14

0.9 3.3∗10−14 3.6∗10−14

1 3.5∗10−14 3.8∗10−14

Example 6.1.2. Consider the following problem

y′′+(−1)� y′+ y = 1

subject to

y(0) = β̂

y′(0) = γ̂

where β̂ = (−1,0,1) and γ̂ = (0,1,2). Then, the α-cut of y,g′,y′′, β̂ , and γ̂ are

yα = [y1α ,y2α ] , y′α =
[
y′1α

,y
′
2α

]
, y′′α

[
y′′1α

,y
′′
2α

]
,

β̂ = [α−1,1+α], γ̂ = [α,2−α].
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Then,

y
′′
1α
− y

′
2α

+ y1α = 1, y1α(0) = α−1, y′1α
(0) = α

y
′
2α
− y′1α

+ y2α = 1, y2α(0) = 1+α, y′2(0) = 2−α.

Then, Using Mathematica, the exact solution is

yα(x) =

[
−1

3
e−x/2

(
3cos

[√
3x
2

]
+3ex cos

[√
3x
2

]
−3αex cos

[√
3x
2

]

−3ex/2 cos

[√
3x
2

]2

+3
√

3sin

[√
3x
2

]
−2
√

3α sin

[√
3x
2

]
−3
√

3ex sin

[√
3x
2

]

+
√

3αet sin

[√
3t

2

]
−3ex/2 sin

[√
3x
2

]2
 ,−1

3
e−x/2

(
−3cos

[√
3x
2

]

+3ex cos

[√
3x
2

]
−3αet cos

[√
3x
2

]
−3ex/2 cos

[√
3x
2

]2

−3
√

3sin

[√
3x
2

]

+2
√

3α sin

[√
3x
2

]
−3
√

3ex sin

[√
3x
2

]
+
√

3αex sin

[√
3x
2

]

−3ex/2 sin

[√
3x
2

]2
 .

Using n = 8, the absolute error in y1α and y2α are given in Table (6.2).
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Table 6.2: The absolute errors in Example 6.1.2

xk Abs. error o f y1α Abs. error o f y2α

0 0 0

0.1 3.4∗10−13 3.6∗10−13

0.2 3.6∗10−13 3.8∗10−13

0.3 3.9∗10−13 4.1∗10−13

0.4 4.2∗10−13 4.4∗10−13

0.5 4.5∗10−13 4.6∗10−13

0.6 4.8∗10−13 4.9∗10−13

0.7 5.2∗10−13 5.3∗10−13

0.8 5.6∗10−13 5.7∗10−13

0.9 5.9∗10−13 6.0∗10−13

1 6.2∗10−13 6.3∗10−13

6.2 Nonlinear Second Order Fuzzy Initial Value Problem

Consider the following problem

y′′ = f
(
x,y,y′

)
, 0 6 x≤ 1,

subject to

y(0) = β̂ , y′(0) = γ̂.

Let the α-cut of y(x),y′(x),y′′(x), β̂ , γ̂ , and f (x,y,y′) be given by

yα(x) = [y1α(x),y2α(x)] , y′α(x) =
[
y′1α(x),y

′
2α(x)

]
,
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y
′′
α(x) =

[
y′′1α(x),y

′′
2α(x)

]
, β̂ = [β1α ,β2α ] , γ̂ = [γ1α ,γ2α ] ,

fα

(
x,y,y′

)
=
[

f1α

(
x,y,y′

)
, f2α

(
x,y,y′

)]
where

f1α

(
x,y,y′

)
= min

{
f (x,u,v) : u ∈ [y1α ,y2α ] ,v ∈

[
y
′
1α ,y

′
2α

]}
and

f2α

(
x,y,y′

)
= max

{
f (x,u,v) : u ∈ [y1α ,y2α ] ,v ∈

[
y
′
1α ,y

′
2α

]}
.

Then,

y′′1α = f1α

(
x,y,y′

)
, y1α(0) = β1α , y

′
1α(0) = γ1α ,

and

y′′2α = f2α

(
x,y,y′

)
, y2α(0) = β2α , y

′
2α(0) = γ2α .

Then,

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α

(
xk,yαk,y′αk

)
and

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α

(
xk,yαk,y′αk

)
.

Example 6.2.1. Consider the following problem

y′′ =−
(
y′(x)

)2

subject to

y(0) = β̂ , y′(0) = γ̂

where

β̂ = [α,2−α], γ̂ = [1+α,3−α].
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Then,

y′′1α(x) = f1α

(
x,y,y′

)
, y1α(0) = α, y

′
1α(0) = 1+α,

and

y′′2a(x) = f2α

(
x1y,y′

)
, y2α(0) = 2−α, y′2α(0) = 3−α,

where

f
(
x,y,y′

)
=−

(
y′(x)

)2
.

Then, the exact solution is

yα(x) = [ln((αeα + eα)x+ ex) , ln
(
(3e2−α −αe2−αx)+ e2α

)
]

Then, using the method proposed in Chapter 4, one gets

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α

(
xk,yαk,y′αk

)

y2αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α

(
xk,yαk,y′αk

)
where

f1α

(
xk,yαk ,y

′
αk

)
= min

{
−ν

2 : ν ∈ [y′1α

(
xk),y′2α (xk)

]}
and

f2α

(
xk,yαk ,y

′
αk

)
= max

{
−ν

2 : ν ∈ [y′1α

(
xk),y′2α (xk)

]}
Let n = 8. Let E1(xk) and E2 (xk) be the absolute error in y1α and y2α respectively. The

results are reported in Table (6.3).
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Table 6.3: The absolute error of Example 6.2.1

xk E1(xk ) E2(xk )

0 0 0

0.1 3.1∗10−12 2.9∗10−12

0.2 3.3∗10−12 3.2∗10−12

0.3 3.7∗10−12 3.5∗10−12

0.4 4.1∗10−12 3.9∗10−12

0.5 4.5∗10−12 4.3∗10−12

0.6 4.8∗10−12 4.7∗10−12

0.7 5.2∗10−12 5.1∗10−12

0.8 5.5∗10−12 5.4∗10−12

0.9 5.8∗10−12 5.7∗10−12

1 6.2∗10−12 6.0∗10−12

Example 6.2.2. Consider the following problem

y′′ = x2� y′(x)⊕2x� y(x)⊕ x� β̂

subject to

y(0) = β̂ , y′(0) = γ̂

where

β̂ = [1+α,3−α], γ̂ = [0,0].

Then,

y
′′
1(x) = f1α

(
x,y,y′

)
, y1α(0) = 1+α, y′1α(0) = 0
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and

y
′′
2α(x) = f2α

(
x,y,y′

)
, y2x(0) = 3−α, y2α(0) = 0

where

f
(
x,y,y′

)
= x2� y′(x)⊕2x� y(x)⊕ x� β̂ .

Then, the exact solution is given by

[(
e(x3/3)−1

)
(1−α),

(
2e(x3/3)−1

)
(3−α)

]

Then using the method which proposed in Chapter 4, one gets

y1αn(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f1α
(
xk,yαk,y′αk

)
,

y2an(x) =
n

∑
i=1

i

∑
k=1

βikψ̂i(x) f2α

(
xk,yαk,y′αk

)
,

where

f1α

(
xk,yαk,y′αk

)
= x2y′2α +2xy1α + xβ1,

f2α

(
xk,yαk,y′αk

)
= x2y′2α +2xy1α + xβ2.

Let n = 8. Let E1 (xk) and E2 (xk) be the absolute error in y1α and y2α , respectively. The

results reported in Table (6.4).
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Table 6.4: The Absolute Error of Example 6.2.2

xk E1(xk ) E2(xk )

0 0 0

0.1 2.7∗10−14 2.5∗10−14

0.2 2.9∗10−14 2.7∗10−14

0.3 3.1∗10−14 2.8∗10−14

0.4 3.4∗10−14 3.0∗10−14

0.5 3.5∗10−14 3.2∗10−14

0.6 3.7∗10−14 3.4∗10−14

0.7 3.9∗10−14 3.7∗10−14

0.8 4.2∗10−14 3.9∗10−14

0.9 4.4∗10−14 4.1∗10−14

1 4.7∗10−14 4.4∗10−14
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Chapter 7: Conclusion

In this thesis, the analysis of the reproducing kernel method has been presented for first

and second order fuzzy initial value problems. It Started by preliminaries about fuzzy

number and differentiation, and then highlighted the direct method for solving linear and

nonlinear fuzzy problems. When the direct method was used to solve the problem, com-

plicated optimization problems that is difficult to solve appeared. The proposed method

was based on RKM and Gram Schmidt process. The structure of the RKM was explained

and supported by several examples. The numerical results showed the efficiency of the

proposed method. The absolute errors were computed using Mathematica. This thesis

was divided into 7 chapters. Chapter 1 presented the literature review. Later the pre-

liminaries of fuzzy number and fuzzy function were illustrated. Then direct method for

solving fuzzy initial and value problems was discussed . In addition, the RKM for solv-

ing ordinary initial value problems was presented and analyzed. FIV problems of first

and second order were discussed and investigated in the chapter 5 and 6 respectively.

Finally some conclusion were drawn in chapter 7. For the future work, the fuzzy bound-

ary value problems should be investigated using RKM by implementing the shooting

method. Moreover, several applications for this method should be investigated, such as

Fuzzy Strum- Liouville problems and the delay fuzzy initial value problems.
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