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Abstract

In this thesis, the optimized one-step methods based on the hybrid block method
(HBM) are derived for solving first and second-order fuzzy initial value problems. The
off-step points are chosen to minimize the local truncation error of the proposed methods.
Several theoretical properties of the proposed methods, such as stability, convergence, and
consistency are investigated. Moreover, the regions of absolute stability of the proposed
methods are plotted. Numerical results indicate that the proposed methods have order
three and they are stable and convergent. In addition, several numerical examples are
presented to show the efficiency and accuracy of the proposed methods. Results are com-
pared with the existing ones in the literature. Even though the one off-step point is used,
the results of the proposed methods are better than the ones obtained by other methods

with a less computational cost.

Keywords: Fuzzy initial value problems, Convergence, Stability, Consistency.
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Chapter 1: Fuzzy Logic and Fuzzy Sets

1.1 Introduction

The term fuzzy means things that are not very clear or vague. In real life, a situation
might come across us, and it can’t be decided whether this statement is true or false. At
that time, fuzzy logic offers very valuable flexibility for reasoning. Also, it considers
the uncertainties of any situation. The fuzzy logic algorithm helps to solve a problem
after considering all available data. Then, it takes the best possible decision for the given
input. This logic imitates the human way of decision-making, which considers all the

possibilities between digital values true and false.

Traditional boolean logic deals with two values which are O (false, No) and 1
(True, yes). In the 19th century, a system of algebra and set theory was created by George
Boole. This system could deal mathematically with such two-valued logic, mapping true
and false to 1 and 0, respectively. Then, in the 20th century, a three-valued logic which
is true, possible, and false, was proposed by Jan Lukasiewicz which was not widely ac-
cepted. After that, the interest in fuzzy logic notion was starting when Zadeh noted that
conventional computer logic was not capable of manipulating data representing subjec-
tive or unclear human ideas. He created fuzzy logic to allow computers to determine the
distinctions among data with shades of gray, similar to the process of human reasoning.
Moreover, Zadeh published a paper. This paper initially did not receive special attention
in Western countries. However, over time it began to gain enough supporters, which led
to the expansion of the theories of this paper. Thus, the paper gained more attention and
began to spread in many countries, such as Japan, South Korea, China, and India. Eu-
rope and the States also have been combined gradually into this new area of fuzzy logic,
which spread widely and used in various scientific fields [1]. Recently, fuzzy logic has
become attractive to many researchers due to its applications in various fields. Fuzzy
logic has been applied in various fields, such as computer sciences, information sciences,

mathematics, engineering, economics, business, and finance. Fuzzy logic and fuzzy set



are powerful mathematical tools in the mathematical modeling of uncertain systems in
industry, nature, and humanity. For more details about the history of fuzzy logic and its

applications, see [1, 2, 3].

Fuzzy differential equations have several real-life applications in many interesting
areas, such as physics, control theory, economics, population models, and ecology [4, 5,
6]. These applications have attracted researchers to investigate such problems. One of
these interesting problems is the fuzzy initial value problems (FIVPs). These problems
consist of fuzzy differential equations (FDEs) with fuzzy initial conditions. The FIVPs
are often incomplete or ambiguous. For instance, the initial conditions or the coefficients
of the fuzzy differential equations may not be known accurately. In this situation, FDEs
appear as a natural way to model dynamical systems under uncertain possibilities. To
solve these equations, the derivative is defined by one of three different approaches, see
[7]. The first approach is based on the Hukuhara derivative which was given by Puri-
Ralescu in 1983. The second approach is known as Zadeh’s extension principle and the
last approach is strongly generalized differentiability which was presented by Bede and
Gal in 2005. In this study, the Hukuhara derivative will be chosen in order to define the

differential equations.

Finding the exact solutions of first and second-order fuzzy initial value problems
is a hard task, and it is sometimes not possible. For this reason, researchers were interested
to find numerical solutions by using different methods, such as the decomposition method
[8, 9], homotopy analysis method [10, 11], Runge-Kutta method [12, 13, 14, 15], block
method [16], fuzzy Laplace transform method [17], Lagrange’s multiplier method [18],
and characterization Theorem [19]. The proposed methods will be investigated to find
numerical solutions for these problems. These methods depend on the one-step hybrid
block method. In these methods, the local truncation errors are tried to be optimized
in order to find the best choice of the step-point. The main advantage of the proposed
methods is that they are self-starter which means there is no need to use other methods to

generate more initial starting conditions.



Numerical methods for solving initial value problems are divided into two main
categories. The first category is the one-step methods, which depend only on one initial
value and its derivative to determine other approximations to the exact solution. For
example, Euler, Runge-Kutta, and Taylor methods are one—step methods. The second
category is the multistep methods, which depend on more than one initial value and their
derivative to determine other approximations for the solution. There are several examples
of multistep methods such as Adams-Bashforth and Adams-Moulton methods. The one-
step hybrid block method is a method that belongs to the one-step family since it depends
on one initial value only. However, this method has off-step points, which makes it have
the same properties as multistep methods. Thus, this method is a mixture between one-

step and multistep methods.

The purpose of this research work is to find numerical solutions of the fuzzy initial
value problems of first and second-order using the proposed methods which are giving a
high order of accuracy and convergent to the exact solutions even whenever it 1S impossi-
ble to find the exact solutions in the closed-form. To achieve this desired aim, the one-step
hybrid block method will be applied in the initial value problems. Then, the proposed
methods will be extended to solve the fuzzy type of these problems using some properties
of fuzzy operation. In addition, convergence and stability results of the proposed methods
will be studied. Also, several examples to illustrate the efficiency and accuracy of the
proposed methods are exhibited and the numerical results are compared with the existing

ones in the literature.

1.2 Direct Method for Solving Fuzzy Initial Value Problems

In this section, the idea of the Direct method to solve fuzzy IVPs will be presented.
The difficulties of using this method will be explained. To explain the idea of this method,

consider the following fuzzy initial value problem (FIVP) of the form

YW = f,y ", YY), <t <T (.



subject to

y(to) = yo, ¥ (t0) =0, .., y(to)*V =y(()k71), (1.2)

where yy, ..., y(()k_l) are fuzzy numbers and f,y*, ...,y are fuzzy functions on [t, T] X Fg.
Since the function and initial conditions are fuzzy, the o-level sets operations are applied

to obtain the components of the problem are as follows
() = G1a(0),32.0(0), () = 0160 2.6(0));- -, K (1)) = 0K (1):55,6(1)),

O(10))a = (o1,302)s ¥ (10)a = 01:302); -+ 0lt0) V) = 04 3 ),
(355 e = (i (1 01a0)326(0)), 01 aO55.a0) 5 (K 005 0))).

£ (1:01a(0:320(0)), 01 0 O:95.0(0) - (W (0055 0)) ) )

fi= min{f(t,w,w’,...,wk_l) w € (Valt),y2a(t)), W e (yllﬂ(t)aylz,a(t)):---,

w e O 0055 )}

f2 = max{f(t7wawla"'vwk_l) we (yl,a(t)ayZ,tx(t))v"V, € (yll,a(t)ay/Z,a(t))v"'v

wl e DA (0.5 ()}

The above min-max problems are tried to solve directly. Also, the final an-

swer should be checked. If the solution satisfies the following conditions W >

0, W <0, and y;(r,0t) < ya(t, ). Then it is a fuzzy solution of the fuzzy initial

value problem.

Now, the direct method will be applied to solve the FIVP of second order.



Example 1.2.1. [9] Consider the following linear second order fuzzy initial value problem

&y'(x) =79, y(0)=8, y(0) =5, (1.3)

where a-level set are 64 = [1,2—a], Jo = [0+ 1,3—a], 6, = [0 —1,1 — @] and,
Bo =[ot,2— o). Let y(x) = [y1 (x, &), y2(x, &t)] be the fuzzy solution and y' (x) = ) (x, o),

Yalx, )], ¥ (x) = [ (x, @), y3 (x, )]

By implementing a-level sets, the problem 1.3 becomes

[1?2_ OC] [ylll(x7a)ayl2/(x7a)] = [(X+ 1,3— OC],

[.yl(ova)ayZ(()?a)] = [OC— 17 I OC], [yll(07a)7yl2(07a)] = [06,2— (X].

Then, the min-max problem becomes,

min{ylll(xa OC)?y/Z,(xa OC), (2_ OC)y/{(X,OC), (2_ Oc)ylz'(x, OC)} =a+1,
yl(oua) =0— 1> y/1(07a) =a,
max{ylll(xa a)7y/2/(x7 OC), (2_ a)ylll(xa (X), (2 - a)yIZI(xa OC)} =3- a,

yZ(Oaa) =1- «, y/2(0706> =2—-a.

Since yf(x,00) <y5(x,o0) and2—a > 1, Yo € [0, 1], then,

yixo)=a+1, yi(0,a)=a—1, y1(0,0) = a,

-y (x,a) =3—a, y2(0,a) =1—a, y5(0,00) =2 — «x. (1.4)

Thus, the initial value problems in System 1.4 can be solved directly by applying the



integration two times, then

a+l,
yi(x,a) = S taxte,
(6, 0) = ——% 24 eoxt
X = ——X C3X Cq.
a2, 22— a) 3 4

Applying initial conditions in System 1.4 , then the solution will be

o+1
yi(x,a) = ;rx2+ocx+a—1,

3—o

2
— 2—«o l—a.
2(2_a)x +( )x+

v2(x, ) =

The last step, the solution should be checked if its satisfied the following conditions

1. %L:%xz—}-x—kl = 3lx+1)*+1]>0.

1
(04

9y, _ —(2-)+(3-a) 2 __ 1 2
2. (9_(; = WX —x—1= 2(270‘)2)6 —x—1 SO

3. yi(x, ) < y(x, Q).

Condition 1 holds V x > 0, Condition 2 holds Vx € {1 — \/g 14 \/% and, Condition

3 holds in interval [1 — \/g, 1+ \/g] . Thus the solution is fuzzy solution in interval

{1—\/§,1+\/§]

In this example, the solution can be found easily using the direct method. How-
ever, the solution to such kind of problems might be difficult to solve directly, and ob-
taining exact solutions is not always possible by using the direct method. Thus, proposed
methods are created to solve this kind of problems. It will be presented in Chapter 3 to

solve the FIVPs.



Chapter 2: Preliminaries

In this chapter, the research preliminaries will be introduced such as fuzzy num-

bers, and differentiation of fuzzy functions.

2.1 Fuzzy Numbers

In this section, some definition and theorems of fuzzy numbers are introduced. The

definitions and theorems are referenced from the Lee book [20].

Definition 2.1.1. Let A = [a;,a>] and B = [by,b;] be two intervals. The, addition and

subtraction of A and B are defined as

A+B=[a;+bj,a;+ by

and

A—B= [a1 —bz,az—bl].

Definition 2.1.2. Let R be the set of real numbers and 4 : R — [0, 1] be a fuzzy set. Then,

a is said to be a fuzzy number if it satisfies the followings
a. @ is normal, that is, there exists ¢ € R such that d(c) = 1.
b. disfuzzy convex, thatis d(Au+ (1—A4)v) > min{d(u),a(v)} foru,y e R,A €0, 1].
c. 4 is piecewise continuous.
d. d is defined in real number.

The set of all fuzzy numbers on R is denoted by Fr. For any a € (0, 1], a-level set dq of



any a € Fp is defined by

dg={x€eR:da(x) > a}.

The O-level set d is defined by the closure of {x € R : d(x) > 0}. Then dg is convex
subset of R and it is written as dg = [a,,d¢|. One can see that

l. dg Cacif 0<c<a<l.

2. If the sequence {, } is an increasing sequence in (0, 1] converges to ¢, then

LimaAan - aAa .
n—oo

3. Forany o € (0,1], —o0o < dy < dg < oo.

Some special fuzzy numbers can be defined for ¢ € [0, 1] such as triangle fuzzy number.

Example 2.1.1. Let d : R — [0, 1] be defined by

a(x) = . 2.1)

Graph of 4 is given by Figure 2.1.

Figure 2.1: The graph of Equation (2.1)



Then, a is normal since d@(0) = 1. Moreover, for any u,v € R;A € [0,1],Au+ (1 —

A)v is between u and v. Indeed, @(Au+ (1 — A)v)is between @(u) and d@(v). Thus,

a(Au+ (1 —A)v) > min{d(u),a(v)}.

1— 1—
Hence, d is fuzzy convex. Forany o € (0, 1], {xeR:a(x) > a} = [ \/ \/ ]

is subset of R. Therefore, d is fuzzy number.

Definition 2.1.3. Let 4,b € F with dgq = [ay,d0] and bo = [by,bo). Then, the addition,

the subtraction, and the scalar multiplication are defined by

(@DD)a = [ag + by, aa +bal,

forA € Rand o € [0,1].

Example 2.1.2. Let 4,h: R — [0, 1] be defined by

IS

a(x) = 152

Their graphs are given by Figures (2.2a) and (2.2b).
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2 4 ” 2 4
(a) graph of a(x) (b) graph of b(x)

Figure 2.2: The graphs of d(x) and b(x) in Example 2.1.2

Then,

dos=[-1,11 and bys= [—\/\/5—1,\/\/5—1}.

Also,

50s= [-1- VB 114yVa-1 .
(d@i;os_{ \/7—11+\/ﬁ}

Next, two important fuzzy numbers will be defined as follows

Definition 2.1.4. The trapezoidal fuzzy number 4 is defined by [a; ay a3 a4] where

a(x)
0, x<ap
x—aj
mar USXS@
a(x) = 1, ar <x<a3
aqs—Xx X
a44_a37 az <x<ay a1 az as ag
0, X > a4

\ Figure 2.3: Trapezoidal fuzzy number
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and the graph of trapezoidal fuzzy number 4 is given in the Figure 2.3.

Definition 2.1.5. The triangle fuzzy number 4 is defined by [a; a, a3] where

¢ a(x)
0, x<ap
X—d|
X moa A SXxXSa
a(x) =
ay—x
g @2SX=a3
X
\O, X >ajs aq ap as

Figure 2.4: Triangle fuzzy number

and the graph of triangle fuzzy number 4 is given in the Figure 2.4.

Particular examples for fuzzy numbers are given in the next example.

Example 2.1.3. The trapezoidal fuzzy number d = [—-2 —1 1 2] is given by the following

Figure 2.5.

Q>
—~

X
<

-.\
[or)

0.8

0.6

0.4

0.2

Figure 2.5: The graphof d=[-2 —1 1 2]
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while the triangle fuzzy number @ = [—2 0 2] is given by the following Figure 2.6.

A

a(x)

1.0

0.8

0.6

0.4

0.2

Figure 2.6: The graph of d = [—2 0 2]

A metric on the set of all fuzzy numbers is defined in the following manner.

Definition 2.1.6. Let A,B C R". The Hausdorff matric dy is defined by

du(A,B) = max{sup inf ||a — b||,sup inf Ha—bH} .
acA beB beB acA

Then, the metric dr on Fp is defined by

dp(ﬁ,B)z sup {dH(daylA’a)}7

0<a<l

for all a, be Fr. Since dy and Ba are compact intervals in R,

dp(a,b) = sup max{|ay —bgl,|da —bal} -

0<a<l
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To explain the previous definition, the following example is given.

Example 2.1.4. Let A = [—1,1] and B = [0,2]. Then,

dH(A,B):max{sup inf ||x —y||,sup inf||x—y||}:max{1,1}:l.
beB bep acA

acA

Let,

( (

0, x<—1 0, x< =2
x+1, —1<x<0 X HZ _2<x<0

alx) = and  b(x) =

1-x, 0<x<1 Zx 0<x<2
0, x>1 0, x>2

\ \

Then, for & € [0,1], dq = [0t —1,1—a] and by =[20—2,2—2a]. Thus,

dp(4,b) = sup max{|a—1—2a—2),[1—a—(2—-2a)}
0<a<l1

= sup max{|1—al,|a—1|}=1.
0<a<l1

Theorem 2.1.1. Let (Rr,dF) be a complete metric space. For all a, b, ¢, d € Fg, and

Y € R, it holds that

1. dp(@®é,b@®é)=dr(a®b).

2. dr(A@a,A®0) = || dr(a,o).

3. dp(a®b,édd) <dp(@®é)+dp(bdd).
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Proof. Simple calculations imply that

1.
dp(@®¢,b®¢) = sup max{|(ag+cy) — (by+ o)l |(@a+7Ca) — (ba+7Ca)|}
0<a<l1
= max {|ag — by, |[da —ba|} = dr(a®b).
2.

dp(A®a,A®¢) = sup max{|Aa, —Acy|,|Ado — ACq|}

0<a<l

= |A| sup max{|ay — 4|, [@a —Tal} = |Aldr(a,0).
0<a<l

3. The triangle inequality implies that
Kga_kéa)_(ga_%da)|S‘Qa'_ga|+wba__da|
and
((@a+ba) — (Ca+da)| < [dg — ol + Do — da)|-

Thus,

max {|(aq +be) — (¢4 +dg)|, @+ ba) — (Ca+do)|} <
max{‘ﬂa_Qa‘a‘aa_ga‘}"i_max{u_)a_c_lala ’Ea—ga)‘}-

Hence, dr(d®b,é®d) < dp(a®é)+dr(b®d).

More proprieties of fuzzy numbers are given in the next theorem.
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Theorem 2.1.2. Let F be the set of all fuzzy numbers, then
1. O(x) = , and, O € Fg is identity element with respect to ®.
0, x#0

2. None of a € Fr — R has inverse in Fr with respect to &®.

3. Foranyx,y>0or x,y<0andanyd € Fg, (x+y) ©d=x©0ad®y®a. The result

is not true in general.
4. Forany A €Randany 4, b € Fp, A© (a®b) =2 0a®A Ob.

5. Forany A, u e Randanyd € Fr, A ® (U ad) = (Au) ©@a.

Proof.

1. Letd € Fg. Then, for ¢ € [0, 1],

(d@o)a = [Qa+oaa+0] = [Qaaaa] = dq

and

(@)

( ®d)a = [0+Q(x70+a] - [Qa,a(x] :da.

>

Thus, 660 =0®a4 =

o-

2. Letd € Fg —R and be Fr such that
(a®b)a = [ag +bg,da +ba] = [0,0)
Then, b, = —a, and by = —dg. Since ay < dy and by, < by, a, = dg for a € [0, 1].

Hence, d € R which is a contradiction. Thus, for all @ € Fr — R it has no inverse in

Fgr, with respect to .
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3. For any x, y > 0 and any 4 € Fg,
((x+3) ©d)a = [(x+¥) O dg, (x+¥) O da] = [¥dg,1da]  [yag.Yda] = (x©aBY O b)q.
Also, for any x, y <0 and any a4 € Fg, it holds that

(x4y)@a)g = [(x+Y) Olq, (x+Y) @ ay] = Xag,Xay] D [Yag,vay] = (x©aDyOb)qy

for any o € [0, 1]. In general, the result is not true. Letx =1, y=—2,and d: R —

[0, 1] be defined by

Then,

and

(x@ady®a)ys=[—1,1]®[-2,2] = [-3,3].

4. Forany A >0 and any 4, b € Fg,

= (A0 [ag,8a)) & (A0 [by,ba]) = (AOASBA®b)q,

and for any A < 0 and any 4, b € Fg, it holds that
(A©(a®b))a = [A(@a+ba),A(ag +by)] = [Ada, hag) © [Aba, Ab,]

= (2@ [ag,0]) B (A O [by.ba]) = (AOADA D),

for any o € [0,1].
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5. Forany A, u € R and any 4 € Fg,

A'Q[nuclanuaa]a u >0
AOUBa)g =

A©[udg, pag), <0

Mﬂﬁaalﬂaa]a “2072’ >0
Mﬂaaalﬂﬁa]a u Z Oal <0
[Auae,Apay), p<0,A=0

[A“Qau}tuaa]a H < 07l <0

= (A ©ahd)a

for any o € [0,1].

2.2 Differentiation of Fuzzy Functions

In this section, differentiation of fuzzy functions will be presented using different
approaches such as the Hukuhara differentiation and the gH differentiation. Besides, some

related properties and results will be given.

Definition 2.2.1. Let V be a real vector space and F be the set of fuzzy numbers. Then,
a function /1 : V — Fy is called fuzzy-valued function on V. For any o € 0,1], fz(x) can be
written as [fy(x),gq(x)] for all x € V. The functions fy(x) and gq(x) are called a-level

functions of the fuzzy-valued function h.



Example 2.2.1. Let i : V — Fg be a fuzzy function defined by

hix)=aox,

where d is a fuzzy number. Then, for any o € [0, 1],

18

Definition 2.2.2. Let d and b be two fuzzy numbers. If there exist number ¢ such that

¢@b = a. Then, ¢ is called Hukuhara difference of 4 and b and it is denoted by @ Sy b.

Example 2.2.2. Letd=(—2 0 2)andb=(—1 3 7) be two triangular fuzzy numbers.

Then,

a=¢mb,
where ¢ = (—1 —3 —35). Then,

¢=aoub

It is worth to mention that the following two important properties should satisfy which

are
1. 0=aocgya.
2. ((@®b)oyb)g=ady forall o e l0,1].

In Example 2.2.2, the two properties are hold.
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Definition 2.2.3. [7] Let A be a subset of R. A fuzzy function f : A — Fg is said to be
H-differntiable at xo € A if and only if there exists a fuzzy number Df(x) such that the

following limits (with respect to metric dr) hold true

Df(xo) = hlg(l)l Q(f(xo+h)@Hf(Xo))

and

Df(xo) = hlg(f)l 5 @ (f(x0) &8 f(x0 —h)).

In this case, Df(xo) = f'(xo) is called H-derivative of f at xo . If 7 is H-differntiable

Vx € A, then, f is H-differntiable over A.

Example 2.2.3. Let f : A — Fg be a fuzzy function defined by

where 4 is a fuzzy number . For x > 0,

(fa+h)on f(x)a = (@0 (x+h) ©p (GO x))a

=[(x+h)ay, (x+h)ae) Su [xay,xae) = [hay, hdy).

Thus, for & > 0,

Il
S
Q

(x0+1) Sn f(x0))) o = [ e

)

1
7

which implies that

.Q>

5

lim + © ((x-+ h) & F () =

h—0t
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Similarly, for small 2 > 0, and x —h > 0,

(f(x) en f(x—h)a = (a0 x)0n (@O (h—x)))a

= [xga,xﬁa] OH [(h _X)Qou (h _x)aot] = [h‘_lavhaa]'

Thus,

which implies that

hll%i % o (f(x)en f(x—h)) =a.

Thus, Df(x) =d. For x <0, x4+ h < 0 for small 4 > 0. Thus,

(Fx+h)On f(x)a = (40 (x+h)) On (G©x))q

= [(x+h)ag, (x+h)ay| On [xXadg,xa,] = [hag, hay].

However, ha £ ha for a € [0, 1]. Thus, Hukuhara difference does not exist which means

that f(x) is not H-differntiable. When x = 0,

(f0)on f(0—=h))a=((a©0)cn (@0 (0~ h))q = [haa, hay).

Thus,

which implies that
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Also,

(0+h) O f(0))a = ((A©h) On (A 0)) g = [hay, hda].

5

(

Thus,

(& (F(O+h) Sn F(0))a = laq.a]

which implies that

lim (%@(f(0+h) on £(0)) = a.

h—0t

Thus, f(x) is not H-differntiable at x = 0. Therefore, f(x) is H-differntiable when x > 0

and Df(x) = a.

Theorem 2.2.1. [21] Let f : I — Fg be a fuzzy function defined by

fx)=aogx),

where @ is a fuzzy number and I = (b,c) CR. Let g : [ — R be differentiable function at

xo € 1. If g’ (xg) > 0, then,
1. Hukuhara differences in Definition 2.2.3 of f exist at xo.

2. fis H-differntiable at xy.

Example 2.2.4.  a) Let f : R — F be a fuzzy function defined by

where 4 is a fuzzy number and g(x) = x. Then, g’(x) = 1. Hence, g(x) and g’(x) are
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positive when x > 0. Thus f is H-differntiable on (0,0) and f'(x) = a. However,

last theorem can not be used when x < 0 since g(x) < 0.

b) Let f : R — Fi be a fuzzy function defined by
fx)=a,

where d is a fuzzy number and g(x) = 1. Then, g’(x) = 0. Hence, Theorem 2.2.1

can not be used. However, using the definition, it can be seen that

A

D) = lim 1 © (F(x+ k) ep f(x)) =0,

and

D) = lim + (f(x)op fx— 1)) =0.

Thus, f is H-differntiable on (—oo, ) and (x) = 0.

¢) Let /: Rt — Fg be a fuzzy function defined by
fx)=aox?,

where 4 is a fuzzy number and g(x) = x*. Then, g’(x) = 2x. Hence, g(x) and g'(x)

are positive when x > 0. Thus £ is H-differntiable on (0,c0) and f'(x) = @ ® 2x.

d) Let f: (0,00) — Fz be a fuzzy function defined by

N

f(x) =a®sinh(x),

where d is a fuzzy number and g(x) = sinh(x). Then, g’(x) = cosh(x). Hence, g(x)
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and g'(x) are positive when x > 0. Thus f is H-differntiable on (0,0) and f'(x) =

a® cosh(x). Moreover,

cosh(x), nisodd

sinh(x), niseven

and so f(x) is n-time H-differntiable on (0, ) and

a®cosh(x), nisodd

a©sinh(x), niseven.

Theorem 2.2.2. Let h: I — Fr be H-differntiable at xo with derivative h' (x0) and h=

[fa(x),8a(x)] where I C R and xo € 1. Then, (i (x0))a = [f&(x0), 8 (x0)] and fo(x0), g(x0)

are differentable at xy for all o € [0, 1].

Definition 2.2.4. [7] Given two fuzzy numbers d, b € Fg, the gH-difference is the fuzzy

number ¢, if exists, such that

>

if eitherd=b+¢orb=a—e¢.

SN
o>

@gH =

Thus,
(d @gH B)Ot = [mln{g(x _Qaaaa _E(X}vmax{ga _b(xaa(x _E(X}]a
and if H-difference exists, then d S,y b=a Sy b. Hence, d @ng; = C exists if either

1. ¢ =a, — by and ¢q = aq — by with ¢, is increasing and ¢ is decreasing with

Co < Cq forall a € 0,1], or
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Cq = do —bg and ¢q = a, — b, with ¢, 1s increasing and ¢y, is decreasing with

Co < Cq forall a € [0,1].

Example 2.2.5. a) Leta=(—1 0 1)and b= (3 4 5) be two triangle fuzzy numbers.

b)

Then,

(aSgb), =minfa—1—(a+3),1—a—(5—a)} = —4

and

(@6gnb), =max{a—1—(a+3),1—a—(5—a)} = —4.

Thus, conditions (1) and (2) in Definition 2.2.4 are hold. Hence, (@ ©gpy b) ¢ exists.

Letda=(0 2 5)and b= (0 1 2 3) be triangle and trapezoidal fuzzy numbers.

Then, using Condition (1) in Definition 2.2.4 when ot = 1,

and

Then, (4 ©4n 13)1 £ (ASgH 3)1. Also, using Condition (2) in Definition 2.2.4 when

a=0,

and
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Then, (4 Ogn 13)0 % (@©gn b),. Condition (1) and (2) in Definition 2.2.4 do not

hold. Thus, (4Sgy b)¢ does not exists.

Definition 2.2.5. Let A be an interval of R. Let xo, xo+/h € A. A fuzzy function f A —

Fg is said to be gH-differntiable at x¢ if and only if there exists a fuzzy number sz (x0)

such that (with respect to metric dr)

Fo(30) = lim =7 (30 +1) St £ (x).

=1
h—

In this case, D fgrr (x0) = JZH (xo) is called gH-derivative of f at x. If f is gH-differntiable

atall x € A, f then, is gH-differntiable over A.

Example 2.2.6.  a) Let f : R — Fi be a fuzzy function defined by

Jx) =aox,

where a is a fuzzy number. Then, for & > 0,

(f(xth) Ogr f(0)) o = [min{f (x+h)  — f(x) ,, fx+h)g = f(x) o },max{f(x+h)

_@aafoc_'—h)a _f(x)a}] = lagh,aqh],

and

() Ogtt F(x— 1)) = [min{ f(x),, — =) . F(X) o~ FOx— M) o} max{f(x),,

_f(x_h) 7f(x)(x _f(x_h)oc}] = [Qah7aah]7

04
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d)

26

for all @ € [0, 1]. Then,
A 1, 4 A
Fox) = lim (P )y ) = 0.7 =

Thus, f is gH-differntiable on (—oo,c0) and f;’,H(x) =a.

Let i : R — Fg be a fuzzy function defined by
h(x) = a,

where @ is a fuzzy number. Then h(x) = [f(x),g(x)] = [a,d] are differentiable,

and using the same argument as in part (a), / is gH-differntiable on (—co,c0) and

A

Let i : R — Fg be a fuzzy function defined by

where @ is a fuzzy number. Then f(x) = ax? and g(x) = ax’ are differentiable,
and using the same argument as in part (a), h is gH-differntiable on (—oo, ) and

Let i : R — Fg be a fuzzy function defined by
h(x) = a4 ®sinh(x),

where d is a fuzzy number. Then f(x) = asinh(x) and g(x) = a@sinh(x) are differen-

tiable, and using the same argument as in part (a), his gH-differntiable on (—oo, o)
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and fzé,H (x) = @a®cosh(x).

Theorem 2.2.3. If f, § : A — Fg are H-differentiable at xo € A C R and Y€ R, then fog

and y® f are H-differentiable at xy and,

(f®8) (x0) = f'(x0) B8 (x0), (YO ) (x0) =70 f'(x0).

Also, J € C"(A,Fg) if (JO(x))a = ()Y, (F) D] for i =0,1,...,n and & € [0,1].

Example 2.2.7. Let the fuzzy function f(x) =4, 0X"Bdp_ 10X ' ®...d4,0x, n>0.

Then, f are H-differentiable on (0, ) and

A

f'(x)=a, o '®a,_ 0 m- l))cr“2 D...dao1.

Theorem 2.2.4. Letd € Fg, g:I" — R" and I = (b,c) C R" be differentiable at xo € I".

~ ~ a
Let f : I" — Fg be defined by f(x) =a® g(x). If@ >0, fori=1,2,...,n, then the
Xi
f d
partial derivative exists at xo and *o) =a0o 8(%0) fori=12,...n
8x,~ 8x,~

Example 2.2.8. Consider the fuzzy function f(x) = 4® >*% . Then g(x,y) = e3*+% > 0.

Since
2
98 _3vs g 98 Ly oo 98 g v g
ox " dy T ox? ’
9%g 9%g
-] 4 3x+2y >0 -6 3x+2y >0
FI Y oxay o f ’
then,

_:A®3€3x+2))>0, :&®983x+2y>0’

°f
ox dx?



0%f
a_yj; =404 >0

It is easy to see that f € C*(R?, Fy).

P
" 0xdy

=406 > 0.

28
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Chapter 3: One-Step Hybrid Block Method with One Off-Step Point
for Solving Initial Value Problems (IVPs)

In this chapter, the one-step hybrid block methods with one off-step point will be
derived for first and second-order initial value problems. Some theoretical results will
be presented. In addition, some numerical results will be given to show the efficiency of

those methods.

3.1 Hybrid Block Method

In this section, the idea of the implicit hybrid one step method will be presented.
Some related definitions are given. To explain the idea of these methods, consider the

following initial value problem (IVP) of the form

yW =y YY), g <i<T (3.1)
subject to
_ k—1
W(t0) = yo, ¥'(10) =Y, -, (1) * D =35, (3.2)
where yo, ..., y(()k_]) are real constants and f is smooth function on [ty, T] X R*. There

are several methods to solve IVP (3.1-3.2) such as Euler, Taylor, Runge-kutta, Adams-
Bashforth, and Adam-Moulton methods. The one-step methods such as Euler, Taylor,
and Runge-kutta methods are suitable only for first order IVP since they have low order
of accuracy. If Taylor or Runge-kutta methods are used to solve higher order IVP, then
large function evaluations per step are needed. Therefore, solving Problem (3.1-3.2) by
one step method is required to rewrite the problem into a system of first order [VPs which
make the dimension of the problem and its scale are high. Thus, the approach will be
costly with low accuracy. On the other side, Adams-Bashforth and Moulton methods do
not need to rewrite Problem (3.1-3.2) in a system of first order IVPs. In addition, higher

order accuracy will be produced by these methods. However, two main disadvantages for
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these methods, they are not efficient in terms of function evaluations and not self starter.
To overcome these disadvantage the continuous implicit hybrid one step methods are used.
Let {to,11,...,tn} be a uniform partition of [ty,T| witht; =19+ jh, j=0,1,...,m and

h= % Forne€{0,1,....m—1},letvy,va,...,vp € (0,1) be real numbers with
V< vy <---<vyp

and t,4y, =t,+vih, i=1,2,...,L. The points {t,4,, :i=1,2,...,L} are called off-step
points. The definition of one-step hybrid methods with L off-step points is given in the

following definition.

Definition 3.1.1. [22] Let k be the order of IVP. A one-step hybrid formula with L off-step

points {t,,, :i=1,2,...,L} is given by

k—1 ) 1 L
var1+ Y ai k' =1\ Y bi i+ Y b | (3.3)
i=0 i=0 i=1

where ag and by are non-zeros, y,4; ~ y(t, +ih), and fy1, = f(tutv,, Yntv,)-

The order of formula 3.3 can be found by the following definition.

Definition 3.1.2. [22] Let

oo (s) s k=1 (s+i) s+i 1 7. \,(s+k) s 1 2k—+s
yW(t,) h a;y ) h b;y th) °h
Ly (ta);h] = —(S‘> +) SS )P ) (s')
s=0 ) i=0 : i=0 :

B i s + frtv: y(s—i—k) (t2) (v})° J2k+s

m = Coyn +C1yy + oy + -
i=1 :

If co=ci=cr="---=cprr—1 =0and c, 4 # 0, then the order of the method is p and

the error constant is ¢4 «.
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Rewrite System 3.3 in matrix form as

Ao Yy =A1ym+As Fy,

where

Yntv; Yn—v;
Yntvy Yn—vy
Yn+1 Yn
hy;’l-i-vl hy;z—vl hk Jn
W futw
Yn=1 hyne, |> Im=| hy,, | Fn=
h }’;H Ry, h* Sntv,
K fat
I, )
pk—1 YleiL pE—1 ’(jc_*vi)
k-1 y’;;} 1 ynk—l)

Then, following to Fatunla’s approach [23] the characteristic equation is given by

det(p Ag—A;) =0. (3.4)

If all roots of Equation 3.4 have modules less than or equal 1 and the algebraic multiplicity
of each nonzero root of Equation 3.4 is less than or equal k the order of the IVP, then the
method is called zero stable. If the order of the method is greater than or equal 1, then it

is called consistent. If it is zero stable and consistent, the method is convergent.
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To find the region of absolute stability, the following test problem is considered

y =My, where A <O0.

Then,
YO =A%y se{l,2,....k}. (3.5)

Substitute (3.5) in (3.3) to get

Yor1=M(a)Y,, a=Ah.

The eigenvalue of M(a) are zeros except the last eigenvalue is 4, ().

Let f: C — C be defined by f(z) = A,(z). Then the region of absolute stability is

R={zeC:|f(z)|<1}.

If {z€ C: Re(z) <0} C R, then the method is called A-stable.

3.2 First Order Initial Value Problems

In this section, a numerical method based on the one-step hybrid block method with
one off-step point (HBM1), ¢, where 0 < k < 1, will be used to solve the following

initial value problem (IVP)

y(t) = f(t,y(1), >0 (3.6)

¥(t0) = Yo (3.7)
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To derive HBM1, assume that t,, = nh, where h is the stepsize. The solution of the IVP

(3.6-3.7) will be approximated by a polynomial of degree 3 as follows

3
NOED TS (3.8)
j=0
and its derivative by
3
V() =Y jejtih (3.9)
j=1

By interpolating Equation (3.8) at the point #, and collocating Equation (3.9) at the points

tny tyrk =ty +kh, and t,, 11 = 1, + h, the following system become

L l‘,% t}% €0 Yn
01 2 3t2 c1
" " _| : (3.10)
0 1 2% 31,%+k 2 Ttk
0 1 26y 37, ) \ e fari

where yni; ~ y(tntj) and frij = ¥ (tasj), j= 0,k, 1. Then, the System (3.10) is solved

after substituting t = t,, + wh, to get

yW) = yu + h(oofn+ G furk + 1 fut1), (3.11)

where @, o, and o are functions of w. Evaluating the approximation of y(w) at w =k

and 1 yields

Yntj =Yn + h(Qj fut Q. j fusk+ ) fus1), (3.12)
where j =k, 1 and
~ 3k—1 B 1 o 3k—2
0,1 ok Ml T e —erz Y1 6(k—1)’
_ k(3—k) _ k(2k—3) LS
Ok = 6 Jkk = 6(k—1) 1,k 6(k—1)
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To maximize the order of the implicit block method (3.12), the local truncation errors in
the formula for y, ;| is optimized as follow,
~ 2k—1

L (y(tws1)3h) = Th4y(4) (ta) +

h> (5k* +5k—4
( — NG (tn)+ﬁ(h6). (3.13)

To maximize the order of formula (3.12) where j = 1, the following equation for k is
solved, where 0 < k < 1,
2k—1

— . 14
- =0 (3.14)

Hence,

= 1
k=5, (3.15)

and the local truncation errors is given by

hSy(S) (tn)

+o <h6> = 34722 x 107405 (1) + € <h6> .
Therefore, the HBM1 is given by

h
Yn+1 ZYn+6(fn +4fn+% + fat1),

h

Now, some theoretical results on the one-step hybrid block method with one off-step point
are presented. These results include consistency, stability, and convergence results. Let

us write the System (3.16) as follows

h
y,,+% =Yn+ ﬁ(sfn +8fn+% _fn—H)a

h
Yn+1 ZYn+8(fn+4fn+%+fn+1)- (3.17)
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First, rewrite the HBM1 in Equation (3.17) in the form

A1 Y = Ao ym +A2 By, (3.18)
where
0 1 1 0 > 8 -1
Ag = A = Ay = 24 24 74 7
0 1 0 1 t & &
h fu
YV,_1 Y4l
Ym = "2 Ym = " Fm = /’lfn+1
Yn Yn+1 :
hfn+1

Thus, the characteristic equation of the HBM1 in Equation (3.21) is given by

p(z) =det(zA] —Ap) =z(z—1) =0, (3.19)
which implies that z; = 0 and z; = 1. Then, the multiplicity of the nonzero root of the
characteristic equation is 1, which does not exceed the order of the differential equation.

Hence, the method is zero stable.

The local truncation error of the System (3.16) is

Ly () h] =

RS

L[y (tys1) 1] 2 Crr):])

i’y (1,) = auh®y® (1) + Y auh’y (1), (3.20)
0 =5

I
™

1

where g = a; = @, = a3 = 0 and a4 = (557,0)7. Thus, System (3.16) has order (3,3)7.
For simplicity, the order is denoted by 3. Since the order of the System (3.16) is 3 > 1,
then it is consistent. The consistency and the zero stability of the System (3.16) imply that

it is convergent [22, 24]. To find the region of absolute stability, consider the following
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test problem y' = Ay where A < 0, then

y = f(t,y) = Ay.

Substitute f in the following matrix form

A1 Y1 =Ao Y, +h (BoF,+By Fip1), (3.21)
where
0 1 10 0 2 KR —
Ao = LAl = , Bo= * =" .
1 4 1
01 01 0 ¢ g 5
Y, 1 Vil fi1 fo1
Yn: "2 7Yn+1 = a 7Fn: "2 7Fn+1 = s )
Yn Yn+1 Jn 1
to get
Yor1 =M(2)Y,, z= Ah, (3.22)

where the matrix M(z) is given by
M(z) = (A1 —zB1) "' (Ao +2Bo). (3.23)

The matrix M(z) has eigenvalues {O, —%}. Consider R(z) : C — C defined

by R(z) = —%. The region of absolute stability S is defined as S = {z € C:
|R(z)| < 1}. The Region of absolute stability of the method is presented in Figure 3.1.
The stability region contains the entire left half complex plane and thus, the method is

A-stable.
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Figure 3.1: The region of absolute stability

3.3 Second Order Initial Value Problems

In this section, a numerical method based on the one-step hybrid block method with one
off-step point (HBM1), 1, withO <k <1, is presented to solve the following differ-

ential equation of the form

Y'(2) = f(t,y(1),y' (1)), t >0, (3.24)
y(to) = o, (3.25)
¥ (to) = y1. (3.26)

To derive HBM1, assume that #,, = nh where 4 is the stepsize. The solution of Problem

(3.24-3.26) is approximated by a polynomial of degree 4 as follows,

4
y(6)~ Y ajt/, (3.27)
j=0

and its first derivative by

4
Y(t)y=Y jajt", (3.28)
Jj=1
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and its second derivative by

4

Y'(t) =Y j(j—1)a;t/ 2 (3.29)
j=2

Interpolating Equations (3.27-3.28) at the point #, and collocating Equation (3.29) at the

points t,,, t,+x =t, +kh, and t,,;.1 =1, + h to get the following system

4

n n n ao Yn
0 1 2t, 3t2 48 a v,
00 2 6, 122 a | =1 fi | (3.30)
0 0 2 6ty 1262, as Faik
0 0 2 66,41 1262, as Fatt

where Yyt~ y(tatj), Yy ;Y (tatj), and furj~ ¥ (tatj), j= 0,k, 1. Solving System

(3.30) after substituting t = t,, + wh to get

YW) = yu + oty + B (G f + O fupi + 0 frs1) (3.31)

Y (w) & By, + h(Bofu+ Befosrk + Bifus1) (3.32)

where o, oy, o, o, B, Bo, Bx, and By are functions of w. Then, evaluate the approxi-

mation of y(w) and y'(w)atw =k and 1, to get

Yntj = Yn + h oY), + W (o jfo+ O jfuri+ O jfus1)

Yntj = Bjyn + h(Bojfu+Brjfori+ Brjfas1) (3.33)
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where j =k, 1 and

11 1 1 1

o =1 = s " T M= 550 MU1=5 2+ —
P T T e T ke M 12< +k—1)’

1 (k—2)k? k4
o=k, Ogx=——(k—BK, =l =
k 00,k 12( VK, ok 20(k—1)° Lk 2(k—1)

1 1 1
B1 , Bo.1 > 6k Br1 = ok — 6k2’ Bii= ( +k—1)’

1 (2k—3)k i3
=1 =——(k—=3)k = =
Be=1, Box 6( )k, Brk 6(k—1)’ Bk 6(k—1)
To maximize the order of the implicit block method (3.33) when j = 1, the local truncation

errors in the formula for y,. |, is optimized as follow,

5k-2

L (y(tay1):h) = 360 n ()(n)+

5k*4+5k—3
Bk +5k=3) 1140 )h6y<6>(r,,)+ﬁ(h7).

To maximize the order, the following equation for kK where 0 < k < 1 is solved

Sk—2
- 0. 34
360 0 (3.34)

Hence,

2
k:

= (3.35)

and the local truncation errors for y, 41, Yuik, ¥, and y,_ , are

hoy(©) (1,
Ly (tns1):h] = —?2—0(())+ﬁ(h7) —1.38889 x 10718y ® (1,) + & (h7)
1413y (1,) 6 —4,5,5.(5) 6
Ly (trr) 1] = W+ﬁ<h ) — 2.98667 x 101Ky (tn)+ﬁ(h )
myS) (1)
/ gl — n 6) _ _ ~3,5.(5) 6
LY (tni1):h] 0 +ﬁ<h ) 27777 x 10731y (tn)+ﬁ<h )

813y (t,)

L )] = =5

+0 <h6) = 1.42222 x 10355 (1) + 6 <h6) .
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Then the order of HBM1 is (3,3, 3,3) and the error constant is (O, %, % %) There-

fore, the HBM1 is given as follows

h2
Yn+1 :yn+hy;1+i(9fn+25fn+% +2fnt1),
2h ,  2K?
Vi3 = Int SVt 5= (2T 20f, 3 = 2fu),

h
y:hLl = y:’l + %(3fﬂ +25fn+% + 8fn+1)7

h
V2 =¥nt 355 (39fu+ 555, 3 =4 ). (3.36)

Now, the main properties of the proposed method such as consistency, stability, and con-

vergence will be studied. Let us write System (3.36) in the form

2h ,  2K?
Yard = Int 5Vt 1152 (27fu+20f, 3 = 2fur),
hZ
Yn+1 =Yn +hy;z + ﬁ(gfn +25fn+% +2fn+1)7
h2
I
W2 = hy, + E(”f” +55f,,2 —4fut1),
h2
hyiH_1 :hy;l+%(3fn—|—25fn+%+8fn+1). (3.37)

Then, the System (3.37) can be rewritten in the matrix form as

AOYm :Alym +A2Fm7 (338)
where

Vpi2 Vp_2

nrs n—s hzfn
Yn+1 Yn

Y= L In= CEn= | R |
hy:’H-; hy:l—g 2 i
> /5 h fn+1

hy;H-l hyn
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P 54 40 4
1 000 010 3 1125 1125 1125
0100 0101 > B 2

Ap = , A= ; Ay = o "

39 55 -4
0010 0 0 01 75 225 335
3 25 8
0 0 01 00 0 1 36 36 36

Following to Fatunla’s approach [23], the characteristic equation of HBM1 is

det([.LAQ —Al) = det

which implies that gy = p = 0 and u3 = g = 1. Then, the multiplicity of the nonzero
roots of the characteristic equation is 2 which does not exceed the order of the differential
equation. Hence, it is zero stable.

The local truncation error of the System (3.36) is

L)kl = (L] (12) sh] LD )0 2 [ (1,12) s8] oL [ (1018 )
= Y vy () = 1y (1) + Y whyD (1a), (3.39)

i=0 i=6
where =7 =7 =71 =Y =0and 35 = (0, %, %, ﬁ)T. Thus, System (3.36) has
order (3,3,3,3). For simplicity, the order is denoted by 3. Since the order of System
(3.36) is 3 > 1, then it is consistent. The consistency and the zero stability of System
(3.36) imply that it is convergent [22, 24]. To find the region of absolute stability, consider

the following test problem y’ = Ay where A < 0, then

Y = ft,y,y) = A%. (3.40)
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Substitute f in the following matrix form

BoYy1 = B1Y, +hBoY, | + 1 (CoFy + CiFut), (3.41)
where
/
YI’H—I = yn+% , Yn — yn,% , Y},: — yn—% , Fn — fn,% 7 Fn+1 — fn+%
Yntl Yn Vi fa Fat
10 01 0 2 0 4 40 -4
Bo= , B = , By = S Cy= s | o | T2 TS|
9 25 2
0 1 0 1 0 1 0 0% 2
to get
BoYyi1 = B1Y, 4+ hBoAY, +h* (CoA%Y, + Ci A%V, ). (3.42)

Let S = Ah, then
Y1 =M(S) Yy,

where M(S) = (By — S*C1)~!(By + 8B, + 5?Cy). The eigenvalue of M(S) are

900 + 9008 + 39352 +9353 +115* )
900 — 5782 + 254 ‘

(07

Let f:C — Cby f(S) = 900+90833_323§§ig§f3+“54 where S = Ah. The region of abso-

lute stability will be all § € C such that | f(S)| < 1. This region is given in Figure 3.2 and

the interval of stability is (—4.08611,0).
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Figure 3.2: Region of absolute stability

3.4 Numerical Results of IVPs

In this section, numerical examples will be presented to show the efficiency of the

proposed methods to solve first and second-order IVPs, respectively.

Example 3.4.1. Consider the following linear first order initial value problem

the value of 4 is chosen to be 0.01 and the exact solution is given by

y(x) =e€".

The absolute errors using the proposed method of first order on [0, 1] are presented in

Table 3.1.
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Table 3.1: The absolute errors in Example 3.4.1 for 7 = 0.01.

X Er for y,
0 0
0.1 | 1.53499 x 10~12

0.2 | 3.39262 x 10~12
0.3 | 5.62417 x 10~12
0.4 | 8.28759 x 10~12
0.5 | 1.14493 x 1071

0.6 | 1.51834 x 101!

0.7 | 1.95768 x 10~ 11
0.8 | 2.47273 x 1011
0.9 | 3.07434 x 10~ 1!

1 |3.77529 x 10~ 1

Example 3.4.2. Consider the following linear first order initial value problem

Y(x)=y(x)+1, y(0)=0,

the value of 4 is chosen to be 0.01 and the exact solution is given by

y(x)=e€"—1.

The absolute errors using the proposed method of first order on [0, 1] are presented in

Table 3.2.
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Table 3.2: The absolute errors in Example 3.4.2 for 7 = 0.01.

X Er for y,

0 0
0.1 | 1.53505 x 10~12
0.2 | 3.3927 x 10712
0.3 | 5.62428 x 10~12
0.4 | 8.28754 x 10~12

0.5 | 1.14487 x 10711

0.6 | 1.51833x 10~ !
0.7 | 1.9577x 1011
0.8 | 2.47271 x 10711

0.9 | 3.07432 x 10~ 1!

1 |3.77507 x 1011

Example 3.4.3. Consider the nonlinear first order initial value problem

the value of 4 is chosen to be 0.01 and the exact solution is given by

y(x) = tan(x).

In Table 3.3, the absolute errors obtained by the current method of first order are compared
with ones obtained in [25]. One can see that the results are better than the ones in [25],

even when the method is used only with one off-step point.



Table 3.3: The absolute errors in Example 3.4.3 for 7 = 0.01.

X Er for y, Er for y, in [25]
0 0 0

0.1 | 5.5639 x 10~12 —

0.2 | 1.11475x 10711 1x107

0.3 | 1.65997 x 101! 1x107°
0.4 | 2.12868 x 1011 2% 107
0.5 | 2.3369 x 101! 2x 1073

0.6 | 1.79635 x 10~ 11 3x 1073

0.7 | 7.81752 x 10712 4x1073

0.8 | 8.9329x 10! 5%107°

0.9 | 3.30909 x 10~10 8x 107
1 | 1.07632x107° 1.1x107%

Example 3.4.4. Consider the following second order linear initial value problem

the value of 4 is chosen to be 0.1 and the exact solution is given by
y(x) = cos(x) +sin(x).

Using HBM1,

2

h
Yait = Ynthyy = 25O yn+ 25y, 2+ 2 Vnt),

2h 202
Yurz =¥t Yn— E(W Yn 20,2 =2 yns1),

h
Va1 = Vn — %(3 Yn 25,2 +8yni1),

/

!
yn+% —yn—%(39yn+55yn+% _4yn+1)-

46
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The above system can be written in the matrix form as

Yu=A"'By,+A7'CYy,

where

1+l 2 g 0

8 Yn+1
452 1 8h? 6h> 2h
—75z l4+355%2 0 0 1 =t Vo2
1125 225 125 5 n+2
A= , B= , C= , Y= >
2h 25h h /
5 % 10 —12 1 Ynt1
4h 11h 13h /
~ 225 s 01 75 1 Ynt?

In Table 3.4, the absolute errors obtained by the current method of second order are com-
pared with ones obtained in [26]. One can see that the similar results are got using one

off-step point with low computation cost comparing with [26].

Table 3.4: The absolute errors in Example 3.4.4 for A = 0.1.

X Er for y, Er for y, in [26]
0 0 0
0.1 | 1.35006 x 1071 |  6.92x 107
0.2 | 2.57539x 1078 1.76 x 1078
0.3 | 7.43478 x 1078 1.62x 1078
04| 1.41872x1077 | 4.73x 1078
0.5 | 2.24165 x 1077 1.20 x 1077
0.6 | 3.16758 x 1077 1.87 x 1077
0.7 | 414951 x 1077 | 3.07x1077
0.8 | 5.13904 x 1077 | 4.19x 1077
0.9 | 6.08717x1077 | 5.79x 1077
1 | 6.94524x 1077 | 7.27x 1077




Example 3.4.5. Consider the following second order nonlinear initial value problem

Y =x (W2 ¥(0)=1, Y(0) =5,

the value of 4 is chosen to be 3]70 and the exact solution is given by

1 x+2
=1+4-1
y) =147 n<2_x)
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The absolute errors using the proposed method of second order on [0, 1] are presented in

Table 3.5.

Table 3.5: The absolute errors in Example 3.4.5 for h = %.

X Er for y,

0 0

36 | 2.22045x 10716
55 | 2.22045 x 10716
55 | 1.55431x 1071
330 | 333067 x 1071
50 | 577316 x 10713
55 | 8.65974 x 10715
7

1.26565 x 10714
1.68754 x 10714

)
]
(=]

(98]
o [
(=]

2.17604 x 1014
2.70894 x 1014

(98]
[
[=]

—_
(=)

(95}
D!
(=]
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Chapter 4: First and Second Order Fuzzy Initial Value Problems

In this chapter, the methods were derived in Chapter 3 will be used to solve the
first and second-order fuzzy initial value problems. New theorems will be introduced to
solve such problems. Several examples will be given to show the accuracy and efficiency

of these methods.

4.1 First Order Fuzzy Initial Value Problems

In this section, a proposed method of first order will be implemented to solve
the first order fuzzy initial value problem. In addition, some theoretical results will be
presented.

Consider the following fuzzy initial value problem

y(t)=f(t,y), t>0, (4.1)

¥(0) = yo. (4.2)

Denotes the ot—level of the solution y(z), yo, and the function f(z,y) by

y(tva) - [yl(tva)vyz(t7a)]’
¥(0,0) = [y1,0,320 ],

f(tayva) = [fl(tvy(t’a))?fZ(tvy(t7a))] :



Following the technique described in Chapter 3, the fuzzy HBM1 is given by

Vintla =Vipmat 7 (flna+4f1n+ ot finsia)
h

Yipthoa =Vlnat o7 (5f1na+8f1n+ o« Sint1a)

V2n+la =Yoot 2 (f2n(x+4f2n+ a+f2n+l (X)

h
y27n+%7 )’2na+ (5f2na+8f2 o f2,n+1,a)a

where

Srne =min{f(t,w) : w € [Y1n0: Y210}

Sona = max{f(t,,w) 1w € [V na>Y2n.al}
fintla= min{f(thr%,w) We [yLn—i-%.,a’yZ,n-&—%,a} 2
f2,n+%,a - max{f(ln—i—%’w) S [yl,n—i—%,a’yz,n—i—%,a} 2
fins1,0 =min{ f(tnt-1,w) 1 W € Vint1,0,Y20+1,al}s

fontt,q =min{ f(tny1,w) 1 W € [Vint1,00Y20+1,a] }-

In the next theorem, the HBM1 is studied when f(¢,y) is monotonic function of y.

Theorem 4.1.1. If f(t,y) is increasing on y, then the fuzzy HBM1 becomes

h
Y+l = Yina + _(f(tna)’Ln,a) +4f(tn+%7y1,n+%7a> +f(ln+la)’17n+l.,a))

6

h
)}17,1_5_%7 ylna+ (Sf(tn7y1na)+8f< n+3 1, n+2 ) f(tn+1,y1,n+1,a))

h
YVautl,e = Y2mat+ g(f(tn,yz,n,a) FA4f (1592001 o) F S 15 Y2041.0))

h
y27n+%, = Y2.n,0 + (Sf(tnayZn Ot) +8f( n+s 1,Yy 71+ OC) f(tn+17y2,n+l,a))7

50

4.3)



51

while if f(t,y) is decreasing on y, then the fuzzy HBMI becomes

h

Vigtta = Vima+ o (i yona) T4 (1032 001 o) + 1, y2041.0)
h

yl,n—k%,a =Yina«a + ﬁ(Sf(tn7y2,n,Oc) +8f<tn+%7y27n+%_‘a) _f(tn+17y2,n+l,a)>
h

Y2n+l,00 = Y2n,a + g(f(tmyl,n,a) +4f(tn+%7y17n+%’a) +f(tn+17yl,n+l.,05))

h
yZ,n—O—%,O( =Y2n,a + ﬁ(sf(tnayl,n,(x) +8f(tn+%ay1,n+%7a) _f(tn+17)’1,n+1,a))'

Proof. If f(¢,y) is increasing on y, it follows from (4.3) that

fl,m(x = f(lnayLma): fZ,mOC = f(tn7y27n706)7

fl,nJr%,(x - f(ln+%’y1,n+%,a)’ f2,n+%,(x - f(thr%’yZ,nJr%,a)? (4.4)
finrr,a = ftar 10100 1,0)s fonrta = ftar1: Y204 1,0),
and if f(z,y) is decreasing on y, it follows from (4.3) that
f],n,OC = f(tn;yz,n,a)7 fZ,n,OC = f(tnayl,n,a)a
an—i—%,a - f(tn+%’y27n+%7a)’ f27n+%7a - f(tn—l—%’yl,n—i-%,a)’ (4.5)

fl,n+17oc = f(tn+17y27n+1,oc)a f2,n+17a = f(tn+17y17n+1,a)a

which completes the proof.

In next theorem, the case when f(¢,y) is linear function of y is studied.
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Theorem 4.1.2. Let b = [by,b;| be a fuzzy number, a € R and f(t,y) =ay+Db.
1. If a > 0, then

n
Vin+l,a = (Pn+1yl,0,a +06 Z (pk7
k=0

and

n
Yonita=0""y200+6 Z o
k=0

2. Ifa <0, then

Viptl,a = 01Y1na+ Vb1 + 62y2 0.0 + Vb2,

and

V2ntl,a = V1 na+ V2b1+601y2 00+ V1D2.

Proof. 1) Leta > 0. Then, f(tytj,Yin+ja) = bi+aYintja, where i =1,2 and

j=0,%,1. Thus,

h

Vintla =Yina+ g(bl +ayipat+4bi+a y17n+%7a) +b1+ayintia)
h

Vintha =Ynat 5 501+ ayine) +8(b1+ay, .1 4) = (br+ayiniia)
h

Yontl,a = Yono+ g(bz +ayypna+4(br+a y27n+%,a) +by+ayrnii,a)

h
Voniha =V2nat 5 5(b2+ayina) +8(batayy, 1 4) = (b2+ayiniia)-

The last system can rewritten in the matrix form

A1Y1 =Ry, A2Y) = Ry, (4.6)



where

Al =

Ay =

2
Since det(A) = 5a?h* — Jah+1 = W # 0, then

Thus,

where

C

Hence,

7Y1_

7Y2_

-1
Al =

yl,n+%,a

yLn—i—%,a

Yin+l,a

yZ,n—I—%,a

Y2n+l,a

12—2ah

I ST

I ST

a?h?—6ah+12

8ha

2a2h?—12ah+24

a’h?—6ah+12

Y1in+l,a

B Eha2h276ah+12

a?h?—6ah+12

and C, =

12hb,

Yintle = 212 6ah 1 12

a?h?—6ah+12

=b1 C1 +y1n,0 Co,

b1+

by +

16 a2h? —6ah+12

3 @I+ 3ah+8
2 a2h2—6ah+12

3 a’h®+3ah+8

2a2h2 —6ah+ 12

Sah
1+ ah
ah
I+%
Sah
1+ 4

1+ £

Yin,a-

53

yl,n,()h

Y2n,o-
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272
and 0= 3 a*h"+3ah+8 Then,

12k
Let 8 = 2 2h>—6ah+12°

—6ah+12
Vit = 0+ @ yisa
=0+ 00+ 0y u1,0)

=0+ 0O+ 0*(0+ O Vi)

n
= (pn+1y1707a 1+ Z o*.
k=0
Therefore,

n
Yn+l,a = (Pn+1)’1,0,a +6 Z q)k
k=0

and similarly,

n
Yonita =" y20a+0Y o
k=0

2) Let a < 0. Then, the fuzzy HBM1 becomes
h
Yintta=Yinatg (bl +ayno+4(b1+a y2,n+%,a) +b1+a yz,n+1,a>
h
hﬁ%ﬂzyMa+§Z@@H+am%w+8®rﬂﬂhwgw—%M+¢mme>
h
V2on+l,a = Y20t 6 <b2 +ayino +4(b2 +a y17n+%,a) +by+a )’1,n+1,a>
h
Von+ba =Y2mat oy (5(172 +ayipa) +8(b2+a Y1,n+%,a) — (b2 + a)’17n+17a)) :

The last system can rewritten in the matrix form

AY =R,



where

Since

then

Thus,

55

ah
3 24 yl,n+%,a
2ah  —ah
0 1 - 631 Ta Yin+1l,a
A= Y = ,
—ah ah
3 24 1 0 Y2+l
2ah  —ah
-5 - 0 1 Y2nutl,a
h Sah
2 0 57
h 0 b 1 &
1 6 Yino
R= 1
h 5ah
0 3 by 57 1 Y20
ah
0 h e 1
det(A) 144a*h* — 1728a2h2 + 20736 40
c g
20736 ’
144 B 32> 48ah—2a3 13 __ an(@®’+12)
A H 1242021144 AP 128202 +144  a*HP —1242h2+144 28 A —24a2h2+288
48&21’!2 144—12&21’12 8ah(a2h2+12) 4ah(a2h276)
a*h*—12a2h2+144 a*h*—12a2h2+144 A —12a212 1144 AP —12a2h2 144
48ah—24K3  ah(a*h’+12) 144 _ 362K
AR 1247021144 281 —24ah2+288  a*hA—1242h2+144 1242021144
8ah(a*h?+12) 4ah(a’h*—6) 480212 44— 120212
P 122R 1144 PR 122021144 PR 122K 1144 AP —12a2h2 1144
yl,n+%,(x
Yintlo b Vina
= C + G :
Y2ntla by Y2,n,0

Y2n+1,a



where

T2h—3a*h3

36ah®—3a3n*

a*h*—12a2h2+144

2a*h*—24a2h2 288

—a*h*+1242h%>+288

T2ah—3a’h3

2a*h* —24a2h2 288

a*h*—12a2h2+144

12h(a2h2+12) 7261/’12 a4h4+60a2h2+144 12ah(a2h2+12)
AR 128221144 PR —12ah2 1144 AR 124202+ 144 128212144
C = and C, =
36ah®—3a’h* 72h—3a*h? 72ah—3dI® —a*h* 124> h*+288
2a*h*—24a2h2+288 A —12a2h2+144 a* A —12a2h2 +144 2a*h*—24a2h2+288
Tah? 12h(a®h?+12) 12ah(a®h?+12) PR 60a2 R+ 144
a*h*—12a2h2+144 a*h*—12a2h2 4144 a*h*—12a2h2+144 a*h*—12a2h% 4144
Then,
Yint+l,a = 01Y1 0,0+ Y101+ 02y2 0.0+ V2b2,
V2ntl,a = Y1 na+ b1+ 601y2 0.0+ V12,
where
0 MM+@&#+M49 12ah (a*h? +12)
1 = =

At 12a2h 11447 2T A = 124202 + 144

_ 12h(a*R*+12)
Catht — 12a2h2 4 144

72ah?
a*h® —12a2h2 + 144

N

, 2=

4.2 Second Order Fuzzy Initial Value Problems

In this section, a proposed method of second order will be implemented to solve
the second order fuzzy initial value problem. In addition, some theoretical results will be
given.

Consider the following fuzzy initial value problem

Y'(t) = f(t,y,y),t >0, 4.7)
¥(0) = a, (4.8)
Y (0)=b (4.9)



Let the a-level of the solution y(¢), 4, b and the function f(z,y,y’) be given by

y(l‘,OC) = [yl(t7a)7y2(t7a)]7
y/<l‘,OC) - [y,l (t,OC),y/z(l‘,OC)} )
y(0,0C) = [Cll,az ]7

y’(O, OC) = [bl,bz] s

f(t,y,y’,OC) = [fl (tay(tva)ay,(tva))?fZ(t7y(taa)?)/(tva))} :

Following the technique described in Chapter 3, the fuzzy HBM1 is given by

Y1in+l,00 =

yLn—&—%,a
/
MNun+lo =
y/
2
Ln+s,a
Y2.n+1l,a

y2,n+%,a

/
}’2,n+1,a

/
y2,n+%,a

where

hZ
ylna+hy1na+ (9f1na+25f1n+ a+2f1n+1 Oc)
2h 2h2
=Yina+ 5 Yinat 7755 @1 ina +20f 412 o = 2fint1.0);

h
ylna+ (3f1n(x+25f1n+ a+8f1n+1a)

h
= Vina+ sz (39f1,n,a+55f17n+%7a_4fl,n+1,oc)a

225
2

h
- y2,l’l,a + h yl27n’a + i(9f27n7a + 25‘f27n+%7a + 2f27n+17a)7

2h 2h?

:y2,n,a+?y/27n7a+ 1125 (27f2na+20f2 + .o 2f2,l’l+1,0€)7
h
= y/2,n,a + %(3f27n7a + 25f2,n+%,a + 8f2,n+170¢)7

h
= y/z,l’l,OC + E(39f2,n,(x + 55f27n+%,06 - 4f27n+1,oc)a

Sina = min{ f (t, w, W/) twe [yl,n,OC?yZ,n,Ol] W' e [yll,n,avylz,n,oc} h

fZ,n,a

f17n+%7a — min{f(tn+%,w,w/) ‘we

f2,n+%,(x

fint1,a=

:max{f(tn+%,w,w') Tw e

= maX{f(tn,W, W/) we [y17n7a7y27n7a] ’W/ € [y/l,n,(xayIZ,n,(x] }7

=min{f(t,y1,w, W) WE V1 ntl,a,Y204+1,0) W e [yll,n+1,a7yl2,n+1,a]}7

57

/ / /
[y17n+%7a7y2,n+%7a} W € [yl,n+%,a’y2,n+%,ai|}’

/ / /
[yl,n+%,(x’y2,n+%,a] W € [yl,n+%,a’y2,n+%,a]}’
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frnsta = max{f(tpy1,w, W) 1w € Vinst.aY2nrt.al ;W € Vit Yont1a) -

In next theorem, the case when f(z,y,y’) is monotonic function of y and y’ is studied.

Theorem 4.2.1. Let f(t,y,Y') be increasing function in'y and y'. Then the following are

true.

e Ify>0andy >0, then

. 2
Sinvjo = FltasjsYintiosYintja) Foavja = ftnsjsYontjoYonsja) for j=0, 5 L
e Ify>0andy <0, then
/ / . 2
fl.,n-‘rj,OC = f(tll+j7y1,n+j.,(x:y27n+j,a)7 fz,n-i-j,a = f(tn+j7y2,n+j,a7y1,n+j7(x)7for J= 07 g: I.

e Ify<Oandy <0, then
/ ! . 2
fl,n+j706 :f(tn+j7yZ,rH—j,O(ayZ,’nJrj,a)7 f27n+j,O£ :f(tn+j7y1,n+j7067y1,n+j7(x)7f0r J :07 57 I.
e Ify<Oandy >0, then

/ / .
Sintja = f(tn+jay2,n+j,a7y1,n+j,(x)’ Santjoa= f(tn+j’y1,n+j,a’y2,n+j,tx)7for j=0, 3 1.

The proof of the theorem follows straight forward. The functions f;, ;o for
i=1,2,and j=0, %,1 can be generated for the decreasing case in similar way as in

Theorem 4.2.1.

In the next theorem, the case when f(¢,y,y’) is linear function of y and y' is investigated.
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Theorem 4.2.2. Let ¢ = [c1,¢;]| be a fuzzy number, a, b € R and f(t,y,y') = ay' + by +¢.

Then the fuzzy system of HBM 1 becomes as follow,

1. Ifa>0,and b > 0, then

Yor1 =A]'B Yina +A1_1C1 Vjna +A1_1D1 Cj,

for j =1 and 2, where

_ 8bi? 4bh? _ 8ah? dah? 6ah? + 2
225 1125 225 1125 125 5
_25bi? _2bk*_ 25ai? _ 2ai? 9ah® +h
72 72 72 72 72
Al = 5 Bl = 5
_ 55bh 4bh | _ 55ah 4ah 3ah | |
225 225 225 225 225
_ 25bh _ 8bh _ 25ah _ 8ah 3ah 4
36 36 36 36 36
6bh? 22
s 11 25 Yintla
9bi? h?
7 1 2 Yintla
G = , D1 = s Yop1 =
39bh 2h y
225 5 jnta
3bh /
36 h Yint+l,0

2. Ifa>0,and b <0, then

1 y/],ny(x 1 yl,l’l,a _1 C1
Y1 :A2 B; —l—A2 G +A2 Dy

/
y27n7a y2,n,a (6]



where

_8bi?
25

_ 25bh?
72

_ 55bh
225

_ 25bh
36

By =

0 _ 8ah?* 4ah? _ 8bh? 4bh?
225 1125 225 1125
1 _ 25ah®>  _ 2ah*  _ 25bh*  _ 2bh?
72 72 72 72
0 | _ S5ah 4ah _ 55bh 4bh
225 225 225 225
0 _25ah | _8ah _25bh  _8bh
36 36 36 36
2
A 0 0 1 0
g 0 0 1
72
3o 0 0 0 0
— 8k 0 0 0 0
6ah® +2 0 1
125 75
9ah? +I’l 0 1
72
e+ 1 0 0
41 0 0
) C2 =
6ah* | 2h 6bh?
0 o5 T35 125
9ah* 9bh?
0 7 Th 72
39ah 39bh
0 s 1 225
3ah 3bh
0 36 1 36
212
s 0 Yin+la
2
oo Yintla
2h /
s O Yinta
/
h 0 Yn+1,0
D, = s Yol =
202
0 3 Y2nt2.a
12
0 3 Y2nt1,0
2h /
0 3 y1n+%7a
0 h

/
V2n+1,a

_ 8ah?

225

_ 25ah?*

1-—

72

S5ah
225

_ 25ah

6bh?
125

9bh?
72

39bh
225

3bh
36

36

4ah?*
1125

_ 2ah?
72

dah
225

_ 8ah
36

60



3. Ifa<0,and b > 0, then

Yor1 =A5'Bs

where

1— 8bh2
225

_25bh? 1
72

_ 55bh
225

_ 25bh
36
Az =

B3 =

/
))1,11,(1

/
)72,i1,(x

4bh?
1125

_ 202

4bh
225

_8bh
36

0

9ah®
72

39ah
225

3ah
36

D3 =

—1
_F'f;3 (:é
0 0
0 0
1 0
0 1
_ 8an? 4ah®
225 1125
_ 25ah? 2ah?
72 72
_ 55ah 4ah
225 225
_ 25ah _ 8ah
36 36
6ah?
125
9ah?
72
39ah
225
3ah
36
; (j3 =
2h
3
h
1
1
212
5 0
2
L
0
h 0
22
U
hZ
0 7
2h
U
0 h

) );+4 =

Yina 1
+A;'D;
Y2.n,a
8ah?®
0 0 225
25ah2
0 0 -=5
55ah
0 0 225
25ah
0 0 -5
8bh? 4bh?*
1= 555 1125 0
25bh% 2bh*
—=n 1= 0
_ 55bh 4bh 1
225 225
25bh 8bh
36 ~ 36 0
6bh>
25 1 0
2
% +1 0
39bh
225 0
3bh
36 0
5 b
6bh
0 s +1
2
0o
39bh
0 225
3bh
0 36
)H,nﬁf%,a
Yin+l,a
v
Lnﬁf%,a
7
Ynt+l,a
y2.n+—%.a
Y2.n+1,0
yl
2,n+—%,a

!
YV2n+1,0

1

2

dah
225

_ 8ah
36

61



4. Ifa<0,and b <0, then

/
-1 yl,l’l,a -1 Yina
/
Y 2.n,00 V2,0
where
8bh? 4bh?
1 0 0 0 225 1125
25bh% 2bh?
0 1 0 0 —=3 —
55bh 4bh
0 0 1 0 —5 235
25bh _ 8bh
4 0 0 0 1 T 36
4
_ 8bh? 4bh? _ 8ah? dah* 1 0
225 1125 225 1125
_25bh® 2bh* 25ak® 2ah? 0 1
72 72 72 7
_ 55bh 4bh _ 55ah 4ah 0 0
225 225 225 225
__ 25bh _ 8bh _ 25ah _ 8ah 0 0
36 36 36 36
2h 6ah? 1 6bh?
125 125
9ah? 9bh®
h 72 1 72
39ah 39bh
1 225 0 225
3ah 3bh
L5 U
By = , Gy =
6ah? 2h 6bh? 1
125 5 125
9ah? 9bh?
72 h 72 1
39ah 39bh
225 1 225 0
3ah 3bh
3% 1 3% 0
22
25 0 y 1,n+ % N4
2
=0 Yintla
2h /
35 0 Y nt+3.a
!
h 0 Yint1,a
Dy = s Yop1 =
2%
0 35 Yontla
h2
0 Y2n+1,a
2h /
0 5 y2.n+ % N4
0 h

!
Y2ntl,a

—1
+4;'D,y
_ 8an? 4ah®
225 1125
_ 25ah? 2ah?
72 72
_ 55ah 4ah
225 225
_ 25ah _ 8ah
36 36
0 0
0 0
1 0
0 1

62

1

2
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Proof. 1) Leta > 0 and b > 0. Then,
St YintjorYintja) = Ci+bYintjoa+aVintja

where i = 1,2 and j =0, 2, 1. Thus,

’50

2

h
Yin+l,a :yl.,n706+hyll,n,a +05

72 (9(CI + byl"n’a +ayl17n7a) + 25(C] + by17n+%7a + ayll,nJr%wx)

+ 2(C1 +by1,n+1,ot +ay/1,n+1,oc)) ’

2h 2h?
y1n+ o )’Ina+5)’1na+1125

(27(C1 +by17n706 +ay/1,n,a) +20(C1 +byl7n+%706 +ay/17n+%70£)
_2(C1 +by1,n+1,a +ay/1,n+l,oc)) )
| LR 3(c1 +byina+ay) ) +25(c1 +b +ay )
y],}’l-‘rl,a yl ,n,0 36 €1 yl,n,(x ayl,n,a 1 y]_’n-i,-%’a aylﬂ_,_%ﬂ
+8(Cl +by1.,n+1,06 +ay’1,n+1,ot)) )
/ / h
yl,n+%,a:y17"0‘ 275 (39(51+bYIna+ay1na)+55(cl+by1n+ oc_}_ayln+57 )

_4(Cl +byl,n+l,a +ayll7n+l7a)) ’
/ hz / /
Y2n+l,00 = V2,0 +h Yan,a + i (9(C2 + byZ,n,a +ay27n7a) +25 (CZ + by27n+%7a + ay27n+%7a)

+2(02 + by27n+l7a + ay/z,n+1,a)) )

2h ’ th / /

y2,n+%,a = y2~,n7a + ? yz,l’l,a + 1 125 (27(C2 + by27n7(x + ay27n7a) + 20(C2 + byzﬁn-‘,-%’a + ay27n+%7a)
—2(c2+ bys ni1,0+ ay,z,nJrl,(x)) )
/ / h / /

y2,n+1,oc = yl,n,a + % <3(62 + byzanaa +ay2,n,oc) + 25(62 + byZ,n+%,oc + ayz,n—l—%ﬂ)

+8(c2+byrpy1,0+ ay/2,n+1,a)) )

h

—4(c2+byrnitat W pi1a))-
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The last system can be rewritten in the matrix form as

A Y1 =B1 Y a+CiYina+Dict, AiYa=B1 Y, q+Ci yrna+Dica,

where
__ 8bi? 4bh? _ 8ah? 4ah®
225 1125 225 1125 Y+l Y20+t
_25bi? _2bk* _25ak* _ 2ai?
72 0P 72 72 Yin+lo Y2n+l,0
A= , = , hh= ;
_ 55bh 4bh | _ 55ah dah / /
225 225 225 225 Vntla Yont+2a
_ 25bh _ 8bh _ 25ah _ 8ah / /
36 36 36 36 Vint+la Y2n+l,a
6ah’> | 2h 6bh? 2h%
s 35 s 1 25
9ah? obh? 5
7 Th 7 +1 2
Bl = 3 Cl == ) Dl ==
39ah 39bh 2h
s 1 225 5
3ah 3bh
36 1 36 h
Since

det(A) = 43740000a*h +15309000abh? —306180000a/-+ 14580006*h* —41553000b/h>
= 656100000

+656100000 ?é 0
)

then Afl exist. Thus for j = 1,2,

yj,n—&-%,a
Yintla /
/ =E1YjpatE2Yjna+Esc),

. 2
_],I’l+§,a

y

!
yj,n+1,(x

where
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2h(h(a(3abh®+16(a*+b)h>—1200)—165bh)+4500)
25(h(60ha®+21(bh2—20)a+bh(2bh>—57) )+900)
h(h(186bh+a(—3abh®—5(a?+b)h?+60) )+1800)
2h(60ha?+21(bh?>—20)a-+bh(2bh>—57) )+1800
22500—h(4h(8bh?+225)a?+3(b(2bh*+135 ) h?+500 ) a+3bh(24bh*—125)) |’
25(h(60ha®+21(bh2—20)a+bh(2bh>—57) )+900)
h(5h(bh?+36)a>+3(bh*+16) (bh>+20)a+3bh(9bh>+262) ) +1800
2h(60ha?+21(bh?>—20)a-+bh(2bh>—57) )+1800
6ab” 1 +8b(4a”—5b)h* —75abh>+375 (4a’+b) h* —10500ah+22500
25(h(60ha®+21(bh?—20)a+bh(2bh*—57) )+900)
h(—5h(bh*—24)a*—3(b(bh*+26 ) h*+280 ) a+2bh(11bh*+393) ) +1800
2h(60ha?+21(bh?>—20)a+bh(2bh>—57))+1800
2bh(bh?+75) (3bh*+16ah—60) ’
25(h(60ha’+21(bh?—20)a+bh(2bh>—57) )+900)
bh(bh?*+12) (3bh*+5ah+150)
2h(60ha?+21(bh?—20)a-+bh(2bh>—57) )+1800
2h?(ah—15)(3bh*+16ah—60)
25(h(60ha>+21(bh?—20)a+bh(2bh>—57))+900)
h?(ah—6) (3bh>+5ah+150)
2h(60ha®+21(bh?—20)a+bh(2bh>—57) )+1800
2h(bh*+75) (3bh?+16ah—60)
25(1(60ha>+21(bh?—20)a+bh(2bh>—57))+900)
h(bh?+12) (3bh*+5ah+150)
2h(60ha?+21(bh?—20)a-+bh(2bh>—57) )+1800

E :Al_lBl =

E> :Al_]Cl =

Es=A;'D/ =

Using a similar argument, the three other cases (2), (3), and (4) can be proven.

4.3 Numerical Results of FIVPs

In this section, a numerical examples will be presented to show the efficiency of
the proposed methods. The two types of FIVPs will be studied which are linear, and non-

linear problems for first and second-order fuzzy initial value problems, respectively.

Example 4.3.1. Consider the following linear first order fuzzy initial value problem

V(x) =0 oy) @ (7ox?), y0) =7

where a-level set for = (1 2 3)is ¥4 = [l + &,3 — a] and, h = 0.01. Let y(x) =

[v1(x, &), y2(x, )] be the fuzzy solution. By implementing c-level sets, the problem be-
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Di(x,a) ) (x,00] = (P O (v, a) (v o)) @2 6O (1+a),x° © 3 - a),

D1(0,0),y2(0, )] = [1 + ¢, 3 — at].

Using HBM1 for the lower bound,

h
Yin+t1 =Yin+ < (Xﬁyl,n —|—x,%(1 +a)+4 (xﬁ+%y17n+% -|-.XZ+ (1 -l-oc)) +

6

1
2

xr21+1yhn+1 +x%+1 (1+ 0‘)) )

h
Yy =Vt 57 (5 via+x0+a@) +8 (2 vy, 2 (14 @) -

(x%+1yl,n+1 +X£+1(1 + oc))) .

Letx, =nh, x, 1 = % +nh and x,, 1 = h+nh. Then, the above system can be written in

-1
a matrix form as

Yu=A"'By,+A7'C,

where
Vil 1—2(h+nh)? 2244 nh)? 1+ 2(nh)?
Ym = 3 A= ) B= ’
Viptl L(h+nh)? 1= 30(1 4 nh)? 1+ 32(nh)?
and
c B(14 o) ((nh)? +4(% +nh)? + (h+nh)?)
1 =
P (1+ ) (5(nh)* +8(4 +nh)? — (h+nh)?)



Similarly, HBM1 can be applied for the upper bound. Then,

where

The errors of approximation of y; , and y, , for a = 0, 0.25, 0.5, 0.75, 1, are given in

, A=

G =

(ool

Yu=A""By,+A7'C;

1— %(h+nh)2

2 (h+nh)?

%(%%—nh)z

Sy

(3—a) ((nh)* +4(% +nh)* + (h+nh)?)

%(3— @) (S(nh)* +8( +nh)? — (h-+ nh)?)

Tables 4.1 and 4.2, respectively, where the exact solution is given by

3

3

(27 —1)(1+a),(2¢7 —1)(3—0a)].

1+ 2(nh)?

Al

1+ 32 (nh)?

Table 4.1: The absolute error in approximating y; , for 4 = 0.01.

Yin
* 0 0.25 0.5 0.75 1
X

0 0 0 0 0 0
0.1 | 1.38889x 1012 | 1.73617 x 10712 | 2.08322 x 1072 | 2.4305x 1012 | 2.77778 x 1012
02 |5.56177x 10712 | 6.95222 x 1012 | 8.34266 x 1012 | 9.7331x 1012 | 1.11235x 10!
03 | 1.25429x 1071 | 1.56786 x 10711 | 1.88143 x 10~!1 | 2.195x 10~!! | 2.50857 x 10~!!
0.4 | 223879 x 1071 | 2.79847 x 101 | 3.35818 x 10! | 3.91789 x 107! | 4.47757 x 10~
0.5 |3.51532x 1071 | 439417 x 10711 | 527298 x 10! | 6.15179 x 107! | 7.03064 x 10~!!
0.6 |507772x 1071 | 6.34715x 10711 | 7.61657 x 1071 | 8.886x 10~!! | 1.01554 x 10~10
0.7 | 6.87681 x 1071 | 8.59601 x 10~'1 | 1.03152 x 10710 | 1.20344 x 10710 | 1.37536 x 10~1°
0.8 | 8.74738 x 10711 | 1.09342 x 10710 | 1.31211 x 10719 | 1.53079 x 10710 | 1.74948 x 10~10
0.9 |1.02472x 10710 | 1.2809 x 10710 | 1.53708 x 10719 | 1.79326 x 10710 | 2.04944 x 10~10
1 1.03102 x 10710 | 1.28878 x 10719 | 1.54654 x 10710 | 1.80429 x 1010 | 2.06205 x 10710




Table 4.2: The absolute error in approximating y, , for 7 = 0.01.

Y2.n
o
0 0.25 0.5 0.75 1
X
0 0 0 0 0 0
0.1 |4.16644 x 10712 | 3.81961 x 10712 | 3.47233 x 10712 | 3.12506 x 102 | 2.77778 x 1012
0.2 | 1.66849 x 10711 | 1.52944 x 10~ | 1.3904 x 1011 | 1.25135x 10~ | 1.11231 x 101!
0.3 |3.76281 x 10711 | 3.44924 x 10~ | 3.13567 x 10~ | 2.8221 x 107! | 2.50853 x 101!
04 |6.71627 x 10711 | 6.15659 x 10~ | 5.59686 x 10~ | 5.03717 x 10~'! | 4.47749 x 10~11
0.5 | 1.05457 x 10710 | 9.66689 x 10~ | 8.78808 x 1011 | 7.90923 x 10~!! | 7.03042 x 101!
0.6 |1.52329x 10710 | 1.39635x 10710 | 1.26941 x 1010 | 1.14246 x 1019 | 1.01552 x 10710
0.7 |2.06303x10710 | 1.89111x 10710 | 1.71919 x 10710 | 1.54727 x 10719 | 1.37534 x 1010
0.8 | 2.6242x 10710 | 2.40551x 10710 | 2.18682 x 10710 | 1.96814 x 10710 | 1.74946 x 1010
0.9 |3.07414x 10710 | 2.81795 x 10719 | 2.56177 x 10710 | 2.3056 x 10710 | 2.04941 x 10~10
1 3.09304 x 10710 | 2.83528 x 10710 | 2.57752 x 10719 | 2.31977 x 10710 | 2.06201 x 10~10
y1(x,a)
3.5;
3.0
25F — y1(x,0)
’ y¥1(x,0.25)
2:0¢ ¥1(x,0.5)
1.5F — y1(x,0.75)
E — y1(x,1)

Figure 4.1: The approximate solution y; for o« = 0,0.25,0.5,0.75,1.

y2(x,a)

4

5F

0.2

0.4

y2(x,0)
y2(x%,0.25)
y2(x,0.5)
y2(x,0.75)
y2(x,1)

Figure 4.2: The approximate solution y; for o« = 0,0.25,0.5,0.75,1.
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5,
5,

4 L
i — Jix0) — 029
3} Jelt) % 3l

2,
$(10) // 12(0.25)
1,
Axxlxxxlxxxlxxxlxxxlx

4 L
4F
3 — yix0.5) 3t — y(x0.75)
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Figure 4.3: The crisp (y.) and approximate solutions (y;, y;), for different « s.

Example 4.3.2. Consider the nonlinear first order fuzzy initial value problem

Y (x) =yx)*++%, y(0)=19, x>0,

where a-level set for = (—0.1 0 0.1) is o = [0.1(ac —1),0.1(1 — a)], and h = 0.1. Let
y(x) = [y1(x, a),y2(x, @)] be a fuzzy solution. By implementing o-level sets, the problem

becomes

[yll (x, a)vyIZ(x7 )] = [y1(x, @), y2(x, (X)]2+x2, 1(0,0),y2(0,00)] =[0.1(0t—1),0.1(1 — et)],
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where the exact solution is given by
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for k =1, 2,J,,(z) is the Bessel function of the first kind, and I'(z) is the Euler Gamma
function. In Table 4.3, the absolute error of the results obtained by the current (HBM1)

method and the ones obtained in [27] is presented.

Table 4.3: Absolute error for yj g5 and y; ¢ 5.

Error Er for y; o5 Er for y> 0.5 Er for y; 9. s(HPM) in [27] | Er for y; o 5 (HPM) in [27]
o
0 5.57124 x 1078 | 5.43066 x 108 1.63068 x 107° 1.99421 x 1076
0.2 5.6527 x 1078 | 5.58044 x 1078 1.03431 x 1076 1.27971 x 1076
0.4 5.72014 x 108 | 5.68912 x 108 6.33486 x 1077 8.09126 x 1077
0.6 577142 x 1078 | 5.76168 x 108 3.51316 x 1077 4.87165 x 1077
0.8 5.80413 x 1078 | 5.80253 x 1078 1.34909 x 1077 2.50421 x 1077
1 5.81552x 1078 | 5.81552 x 1078 5.46386 x 1078 5.46386 x 1078

Example 4.3.3. Consider the second order fuzzy linear initial value problem

y'=—=y(x), y(0)=0, y(0)=71,

where Yo = [0.9+0.1a,1.1 — 0.1, and & = 0.1. Let y(x) = [y;(x, ), y2(x, )] be a

fuzzy solution and y'(x) = [y} (x, &), ¥ (x, ot)].

By implement the o-level sets, the problem will be

[ylll(x>a>7yl2l(x7a)] = [—yz(X,OC), _yl(x7 OC)], [yl((),OC),yz(0,0C)] = 0,




Using HBM1,

/
Yintla =YinoathYi e —

yl,n+%,a
/
Yn+1,0
/
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[v1(0,0),¥5(0,@)] = [0.9+0.1¢c,1.1 - 0.1cx].
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The above system can be written in the matrix form

where

2h* 25k’ on?
1 0 00 = > 0.0 1 -3
4n%  40hn? 54h%
0 I 00 —3% 135 0 0 1 —1135
8h 25h 3h
0 0 1.0 3 % 00 0 — 36
4h 55k 39
0 0 01 —55 35 00 5 0 — 355
B g o 0 00 e
72 72 72
4n>  40K° _ 547
T 1125 1125 0 0 0 1 0 0 T 1125 1
8h 25h 3h
6 % 00 0 0 10 — 36 0
e 33 000 0 0 01 -3¢ 0

225 225
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The error in approximating y; , and y» ,, for o =0, 0.25, 0.5, 0.75, 1 are given in Table

4.4 and 4.5, respectively, where the exact solution is given by

[(0.1a —0.1) sinh(x) + sin(x), (0.1 —0.1a) sinh(x) 4 sin(x)].

Table 4.4: The absolute error in approximating y; , for 2= 0.1

Yin
o
0 0.25 0.5 0.75 1
X

0 0 0 0 0 0
0.1 |4.50043 x 10712 | 439764 x 10712 | 4.29483 x 10712 | 4.19204 x 10712 | 4.08924 x 1012
0.2 | 2.49082x 108 | 2.56047 x 1078 | 2.63012x 1073 | 2.69978 x 1078 | 2.76943 x 10~8
0.3 | 7.40714x 1078 | 7.6176x 1078 | 7.82805x 1073 | 8.03851 x 1078 | 8.24896 x 10~ 8
04 | 1.46254 %1077 | 1.50506 x 107 | 1.54759x 10~7 | 1.59012x 10~7 | 1.63264 x 107
0.5 | 239628 x 1077 | 2.46812x 1077 | 2.53997 x 10~7 | 2.61182x 1077 | 2.68366 x 107
0.6 | 3.51805x 1077 | 3.62763x 1077 | 3.73722x 1077 | 3.8468 x 10~7 | 3.95639 x 10~
0.7 | 479859 x 1077 | 4.95509x 1077 | 5.11159 x 10~7 | 5.26808 x 10~7 | 5.42458 x 10~
0.8 | 6.20368x 1077 | 6.41718 x 1077 | 6.63068 x 107 | 6.84418 x10~7 | 7.05768 x 10~
0.9 7.6945x 1077 | 7.9762x 1077 | 8.2579x 1077 | 8.5396x10~7 | 8.82131x 10~
1 9.22809 x 1077 | 9.59051 x 10~7 | 9.95292 x 107 | 1.03153 x107% | 1.06777 x 10~°




Table 4.5: The absolute error in approximating y; , for 2= 0.1

0.2

0.6 0.8

Y2.n
o
0 0.25 0.5 0.75 1
X
0 0 0 0 0 0
0.1 |3.67807 x 10712 | 378086 x 10712 | 3.88367 x 1012 | 3.98646 x 102 | 4.08926 x 1012
0.2 | 3.04804 x 108 | 2.97839x 1078 | 2.90874 x 1073 | 2.83908 x 10~8 | 2.76943 x 10~8
0.3 | 9.09078 x 10°% | 8.88032x 1078 | 8.66987 x 1073 | 8.45941 x 1078 | 8.24896 x 108
04 | 1.80275x 1077 | 1.76023x 107 | 1.7177x 1077 | 1.67517x 1077 | 1.63264 x 107
0.5 | 297104 x 1077 | 2.8992x 1077 | 2.82735x 1077 | 2.75551 x 1077 | 2.68366 x 107
0.6 | 4.39473x 1077 | 4.28515x 1077 | 4.17556 x 10~7 | 4.06598 x 10~7 | 3.95639 x 107
0.7 | 6.05057x 107 | 5.80408 x 107 | 5.73758 x 10~7 | 5.58108 x 10~7 | 5.42458 x 1077
0.8 | 7.91169x 1077 | 7.69819x 1077 | 7.48469 x 10~7 | 7.27119x 1077 | 7.05768 x 107
0.9 | 9.94812x 1077 | 9.66642x 1077 | 9.38471 x 107 | 9.10301 x 10~7 | 8.82131 x 10~
1 1.21274 % 107° | 1.1765x107° | 1.14026 x 10~° | 1.10402 x 107° | 1.06777 x 10~°

y1(x,Q)

0.8;

06l — y1(x,0)

[ y1(x,0.25)
4; a Y (x,0.5)
oar — 1(x,0.75)
— y1(x,1)

Figure 4.4: The approximate solution y; for o« = 0,0.25,0.5,0.75,1.

y2(x,a@)
1.0

0.6 -

0.2

y2(x,0)
v2(%,0.25)
y2(x,0.5)
y2(%,0.75)
ya(x,1)

Figure 4.5: The approximate solution y; for o« = 0,0.25,0.5,0.75,1.
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1.0
0.8 0.8
— y1(x,0) — y1(x,0.25)
0.6 0.6
Ve (x) Ve (x)
0.4 0.4
¥2(x,0) ¥2(x,0.25)
0.2 0.2
X ¥ X
02 04 06 08 1.0 02 04 06 08 1.0
0.8 0.8
06 — y1(x,0.5) 0.6 — y1(x,0.75)
0.4 Ye(x) 0.4 Ve (x)
x,0.5 x,0.75
02 ya( ) 0.2 y2( )
X ¥ X
02 04 06 08 10 02 04 06 08 10

Figure 4.6: The crisp (y.) and approximate solutions (y;, y»), for a s.

Example 4.3.4. Consider the following nonlinear second order fuzzy initial value prob-

lem

V(@) == ('), ¥0)=Fa Y(0)=84, 0<x<0.I,

where J = [0t,2 — ], 6y = [l + 0,3 — ], and h = 0.01. Let y(x) = [y1 (x, ), y2(x, )]
be a fuzzy solution and y'(x) = [y} (x, @),y5(x,a)]. Using a-level sets, the problem will
have the following form

1
1

D (r ) 5 ()] = = ([ (v, @), y2 (%, )],
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[yl(oaa)vyZ(()?a)] = [(X,Z— OC], [yll(()?a)vy/Z(O?a)] = [1 +a,3— OC],

where the exact solution is given by

[In((ae® +e%)x+e%),In ((362_0C — an—a) X+ ez_a)} .

In Tables 4.6 and 4.7, the absolute error of the results obtained by the current (HBM1)

method and the ones obtained in [11] is presented.

Table 4.6: The absolute error for y; o 1.

Y1,0.1
Error Er for y1 0.1 Er for hy HAM in [11] | Er for i) HAM in [11] | Er for OHAM in [11]
(04
0 2.42502 x 10710 1.53529 x 1077 3.98956 x 1078 1.59889 x 10~1°
0.2 5.79712 x 10710 4.51332x 1077 3.91122 x 10710 3.91122 x 10710
0.4 1.20466 x 1077 1.1207 x 10~° 3.79328 x 1077 3.79328 x 1077
0.6 2.25974 x 1077 2.4597 x 1076 4.47279 x 1078 2.61947 x 1077
0.8 3.92067 x 1070 4.9128 x 107° 6.92457 x 1078 6.69669 x 1078
1 6.39707 x 1077 9.10987 x 1076 1.53606 x 1077 1.11097 x 1078
Table 4.7: The absolute error for y; o 1.
Y2,0.1
Error Er for y70.1 Er for hy HAM in [11] | Er for i) HAM in [11] | Er for OHAM in [11]
o
0 4.07084 x 1078 9.6735x 107> 6.7076 x 10° 1.26440 x 1077
0.2 2.98335x 1078 6.4822 x 107> 3.6619 x 1076 9.18889 x 1078
0.4 2.13238 x 1078 4.2133 x 1073 1.8656 x 10° 7.34552 % 1078
0.6 1.48046 x 1078 2.6432x 1073 8.76047 x 1077 3.52946 x 1078
0.8 9.93257 x 1077 1.5907 x 107> 3.76985 x 1077 1.51728 x 1078
1 6.39707 x 1077 9.10987 x 1076 1.53606 x 10~/ 1.11097 x 1078
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4.4 Concluding Remarks

In this section, the analysis of the results will be presented for first and second-
order fuzzy initial value problems. Optimized one-step hybrid block methods have been
proposed for solving fuzzy first and second-order initial value problems of ordinary dif-
ferential equations. The methods are self-starting methods since they depend on the initial
conditions only. The proposed methods are zero stable, have order 3, consistent, and thus
they are convergent. Also, the method for order one IVPs is A-stable as illustrated by the
regions of absolute stability in Figures 3.1. The numerical results show the efficiency of
the current methods where high precision is achieved even when the only one-step point is
used. For researchers who are interested to get more accuracy, they can use two or three
off-step points. The absolute error in this case will be almost zero. Several examples,
linear and nonlinear using the current methods are studied. From Tables 4.1, 4.2, 4.4, and
4.5, it is noted that the results are highly accurate with a small perturbation of errors. In
Tables 4.3, 4.6, and 4.7, the obtained results with other ones obtained in [27] and [11]
respectively are compared. It is remarked that proposed methods are better and more ac-
curate than others in [27] and [11]. Besides, Figures 4.1 and 4.4 show the behavior of the
lower bound solutions y; are increasing as ¢ increases, and Figures 4.2 and 4.5, show the
behavior of upper bound solutions y; is decreasing as o increases. Consequently, from
these behaviors, the solutions can be concluded that are fuzzy. At the end, Figures 4.3 and
4.6, show that the crisp solutions are bounded by y; and y, and they become close to the

crisp solution as o approaches to one.

For the future work, the boundary value problems will be investigated using HBM1
by applied Simple shooting method. In addition, an application for this method will be
investigated such as eigenvalue problems as fuzzy Sturm-Liouville problems. Moreover,

the delay fuzzy initial value problems will be investigated.
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