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Abstract

In this thesis, the optimized one-step methods based on the hybrid block method
(HBM) are derived for solving first and second-order fuzzy initial value problems. The
off-step points are chosen to minimize the local truncation error of the proposed methods.
Several theoretical properties of the proposed methods, such as stability, convergence, and
consistency are investigated. Moreover, the regions of absolute stability of the proposed
methods are plotted. Numerical results indicate that the proposed methods have order
three and they are stable and convergent. In addition, several numerical examples are
presented to show the efficiency and accuracy of the proposed methods. Results are com-
pared with the existing ones in the literature. Even though the one off-step point is used,
the results of the proposed methods are better than the ones obtained by other methods
with a less computational cost.

Keywords: Fuzzy initial value problems, Convergence, Stability, Consistency.



 

Title and Abstract (in Arabic) 

 

  البذائية   طريقة عذدية لحل المسائل الضبابية رات القيم

 الملخص

ثذائيح هي الشذثح الأّلٔ في ُزٍ الأطشّحح، سيرن اشرماق طشق الخطْج الْاحذج الوثلٔ لحل الوسائل الضثاتيح راخ المين ال

ذود دساسح الؼذيذ   يرن اخرياس ًماط خاسج الخطْج هي اخل الرمليل الاهثل لخطأ الالرطاع الوحلي للطشق الومرشحح.  .حّالثاًي

هي الخصائص الٌظشيح للطشق الومرشحح هثل الثثاخ ّالرماسب ّالاذساق. ػلاّج ػلٔ رلك، يرن سسن هٌطمح الاسرمشاس 

تالإضافح إلٔ رلك،   الومرشحح لِا ذشذية ثلاثي ّأًِا هسرمشج ّهرماستح.أظِشخ الٌرائح أى الطشق   الوطلك للطشق الومرشحح.

ذن ذمذين الؼذيذ هي الأهثلح الؼذديح لإظِاس فؼاليح ّدلح الطشق الومرشحح.  ذن هماسًح الٌرائح هغ الٌرائح الوْخْدج في الأتحاز 

رائح شثيِح ّ احياًاً أفضل هي الطشق ًحصل ػلٔ ً  الاخشٓ ّ لاحضٌا اًَ حرٔ اتاسرخذام ًمطح ّاحذج خاسج الخطْج،

 .الأخشٓ تركلفح حساتيح ألل

 .لوسائل الضثاتيح راخ المين الثذائيح،  الرماسب،   الاسرمشاس،  الثثاخا: مفاهيم البحث الرئيسة
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Chapter 1: Fuzzy Logic and Fuzzy Sets

1.1 Introduction

The term fuzzy means things that are not very clear or vague. In real life, a situation

might come across us, and it can’t be decided whether this statement is true or false. At

that time, fuzzy logic offers very valuable flexibility for reasoning. Also, it considers

the uncertainties of any situation. The fuzzy logic algorithm helps to solve a problem

after considering all available data. Then, it takes the best possible decision for the given

input. This logic imitates the human way of decision-making, which considers all the

possibilities between digital values true and false.

Traditional boolean logic deals with two values which are 0 (false, No) and 1

(True, yes). In the 19th century, a system of algebra and set theory was created by George

Boole. This system could deal mathematically with such two-valued logic, mapping true

and false to 1 and 0, respectively. Then, in the 20th century, a three-valued logic which

is true, possible, and false, was proposed by Jan Lukasiewicz which was not widely ac-

cepted. After that, the interest in fuzzy logic notion was starting when Zadeh noted that

conventional computer logic was not capable of manipulating data representing subjec-

tive or unclear human ideas. He created fuzzy logic to allow computers to determine the

distinctions among data with shades of gray, similar to the process of human reasoning.

Moreover, Zadeh published a paper. This paper initially did not receive special attention

in Western countries. However, over time it began to gain enough supporters, which led

to the expansion of the theories of this paper. Thus, the paper gained more attention and

began to spread in many countries, such as Japan, South Korea, China, and India. Eu-

rope and the States also have been combined gradually into this new area of fuzzy logic,

which spread widely and used in various scientific fields [1]. Recently, fuzzy logic has

become attractive to many researchers due to its applications in various fields. Fuzzy

logic has been applied in various fields, such as computer sciences, information sciences,

mathematics, engineering, economics, business, and finance. Fuzzy logic and fuzzy set
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are powerful mathematical tools in the mathematical modeling of uncertain systems in

industry, nature, and humanity. For more details about the history of fuzzy logic and its

applications, see [1, 2, 3].

Fuzzy differential equations have several real-life applications in many interesting

areas, such as physics, control theory, economics, population models, and ecology [4, 5,

6]. These applications have attracted researchers to investigate such problems. One of

these interesting problems is the fuzzy initial value problems (FIVPs). These problems

consist of fuzzy differential equations (FDEs) with fuzzy initial conditions. The FIVPs

are often incomplete or ambiguous. For instance, the initial conditions or the coefficients

of the fuzzy differential equations may not be known accurately. In this situation, FDEs

appear as a natural way to model dynamical systems under uncertain possibilities. To

solve these equations, the derivative is defined by one of three different approaches, see

[7]. The first approach is based on the Hukuhara derivative which was given by Puri-

Ralescu in 1983. The second approach is known as Zadeh’s extension principle and the

last approach is strongly generalized differentiability which was presented by Bede and

Gal in 2005. In this study, the Hukuhara derivative will be chosen in order to define the

differential equations.

Finding the exact solutions of first and second-order fuzzy initial value problems

is a hard task, and it is sometimes not possible. For this reason, researchers were interested

to find numerical solutions by using different methods, such as the decomposition method

[8, 9], homotopy analysis method [10, 11], Runge-Kutta method [12, 13, 14, 15], block

method [16], fuzzy Laplace transform method [17], Lagrange’s multiplier method [18],

and characterization Theorem [19]. The proposed methods will be investigated to find

numerical solutions for these problems. These methods depend on the one-step hybrid

block method. In these methods, the local truncation errors are tried to be optimized

in order to find the best choice of the step-point. The main advantage of the proposed

methods is that they are self-starter which means there is no need to use other methods to

generate more initial starting conditions.
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Numerical methods for solving initial value problems are divided into two main

categories. The first category is the one-step methods, which depend only on one initial

value and its derivative to determine other approximations to the exact solution. For

example, Euler, Runge-Kutta, and Taylor methods are one–step methods. The second

category is the multistep methods, which depend on more than one initial value and their

derivative to determine other approximations for the solution. There are several examples

of multistep methods such as Adams-Bashforth and Adams-Moulton methods. The one-

step hybrid block method is a method that belongs to the one-step family since it depends

on one initial value only. However, this method has off-step points, which makes it have

the same properties as multistep methods. Thus, this method is a mixture between one-

step and multistep methods.

The purpose of this research work is to find numerical solutions of the fuzzy initial

value problems of first and second-order using the proposed methods which are giving a

high order of accuracy and convergent to the exact solutions even whenever it is impossi-

ble to find the exact solutions in the closed-form. To achieve this desired aim, the one-step

hybrid block method will be applied in the initial value problems. Then, the proposed

methods will be extended to solve the fuzzy type of these problems using some properties

of fuzzy operation. In addition, convergence and stability results of the proposed methods

will be studied. Also, several examples to illustrate the efficiency and accuracy of the

proposed methods are exhibited and the numerical results are compared with the existing

ones in the literature.

1.2 Direct Method for Solving Fuzzy Initial Value Problems

In this section, the idea of the Direct method to solve fuzzy IVPs will be presented.

The difficulties of using this method will be explained. To explain the idea of this method,

consider the following fuzzy initial value problem (FIVP) of the form

y(k) = f (t,y′,y′′, . . . ,y(k−1)), t0 < t < T (1.1)
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subject to

y(t0) = y0, y′(t0) = y′0, . . . , y(t0)(k−1) = y(k−1)
0 , (1.2)

where y0, . . . ,y
(k−1)
0 are fuzzy numbers and f ,yk, . . . ,y are fuzzy functions on [t0,T ]×FR.

Since the function and initial conditions are fuzzy, the α-level sets operations are applied

to obtain the components of the problem are as follows

(y(t))α = (y1,α(t),y2,α(t)), (y′(t))α = (y′1,α(t),y
′
2,α(t)), . . . , (yk(t))α = (yk

1,α(t),y
k
2,α(t)),

(y(t0))α = (y0,1,y0,2), y′(t0)α = (y′0,1,y
′
0,2), . . . , (y(t0)(k−1))α = (y(k−1)

0,1 ,y(k−1)
0,2 ),

( f (t,y,y′, . . . ,yk−1))α =
(

f1

(
t,(y1,α(t),y2,α(t)) ,

(
y′1,α(t),y

′
2,α(t)

)
, . . . ,

(
yk−1

1,α (t),yk−1
2,α (t)

))
,

f2

(
t,(y1,α(t),y2,α(t)) ,

(
y′1,α(t),y

′
2,α(t)

)
, . . . ,

(
yk−1

1,α (t),yk−1
2,α (t)

)))
,

f1 = min{ f (t,w,w′, . . . ,wk−1) : w ∈ (y1,α(t),y2,α(t)),w′ ∈ (y′1,α(t),y
′
2,α(t)), . . . ,

wk−1 ∈ (yk−1
1,α (t),yk−1

2,α (t))},

f2 = max{ f (t,w,w′, . . . ,wk−1) : w ∈ (y1,α(t),y2,α(t)),w′ ∈ (y′1,α(t),y
′
2,α(t)), . . . ,

wk−1 ∈ (yk−1
1,α (t),yk−1

2,α (t))},

The above min-max problems are tried to solve directly. Also, the final an-

swer should be checked. If the solution satisfies the following conditions ∂y1(t,α)
∂α

≥

0, ∂y2(t,α)
∂α

≤ 0, and y1(t,α) ≤ y2(t,α). Then it is a fuzzy solution of the fuzzy initial

value problem.

Now, the direct method will be applied to solve the FIVP of second order.
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Example 1.2.1. [9] Consider the following linear second order fuzzy initial value problem

σ̂ y′′(x) = γ̂, y(0) = θ̂ , y′(0) = β̂ , (1.3)

where α-level set are σ̂α = [1,2−α], γ̂α = [α + 1,3−α], θ̂α = [α − 1,1−α] and,

β̂α = [α,2−α]. Let y(x) = [y1(x,α),y2(x,α)] be the fuzzy solution and y′(x) = [y′1(x,α),

y′2(x,α)], y′′(x) = [y′′1(x,α),y′′2(x,α)].

By implementing α-level sets, the problem 1.3 becomes

[1,2−α] [y′′1(x,α),y′′2(x,α)] = [α +1,3−α],

[y1(0,α),y2(0,α)] = [α−1,1−α], [y′1(0,α),y′2(0,α)] = [α,2−α].

Then, the min-max problem becomes,

min{y′′1(x,α),y′′2(x,α),(2−α)y′′1(x,α),(2−α)y′′2(x,α)}= α +1,

y1(0,α) = α−1, y′1(0,α) = α,

max{y′′1(x,α),y′′2(x,α),(2−α)y′′1(x,α),(2−α)y′′2(x,α)}= 3−α,

y2(0,α) = 1−α, y′2(0,α) = 2−α.

Since y′′1(x,α)≤ y′′2(x,α) and 2−α ≥ 1, ∀α ∈ [0,1], then,

y′′1(x,α) = α +1, y1(0,α) = α−1, y′1(0,α) = α,

(2−α)y′′2(x,α) = 3−α, y2(0,α) = 1−α, y′2(0,α) = 2−α. (1.4)

Thus, the initial value problems in System 1.4 can be solved directly by applying the



6

integration two times, then

y1(x,α) =
α +1

2
x2 + c1x+ c2,

y2(x,α) =
3−α

2(2−α)
x2 + c3x+ c4.

Applying initial conditions in System 1.4 , then the solution will be

y1(x,α) =
α +1

2
x2 +αx+α−1,

y2(x,α) =
3−α

2(2−α)
x2 +(2−α)x+1−α.

The last step, the solution should be checked if its satisfied the following conditions

1. ∂y1
∂α

= 1
2x2 + x+1 = 1

2 [(x+1)2 +1]≥ 0.

2. ∂y2
∂α

= −(2−α)+(3−α)
2(2−α)2 x2− x−1 = 1

2(2−α)2 x2− x−1≤ 0.

3. y1(x,α)≤ y2(x,α).

Condition 1 holds ∀ x ≥ 0, Condition 2 holds ∀x ∈
[

1−
√

3
2 ,1+

√
3
2

]
and, Condition

3 holds in interval
[

1−
√

3
2 ,1+

√
3
2

]
. Thus the solution is fuzzy solution in interval[

1−
√

3
2 ,1+

√
3
2

]
.

In this example, the solution can be found easily using the direct method. How-

ever, the solution to such kind of problems might be difficult to solve directly, and ob-

taining exact solutions is not always possible by using the direct method. Thus, proposed

methods are created to solve this kind of problems. It will be presented in Chapter 3 to

solve the FIVPs.
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Chapter 2: Preliminaries

In this chapter, the research preliminaries will be introduced such as fuzzy num-

bers, and differentiation of fuzzy functions.

2.1 Fuzzy Numbers

In this section, some definition and theorems of fuzzy numbers are introduced. The

definitions and theorems are referenced from the Lee book [20].

Definition 2.1.1. Let A = [a1,a2] and B = [b1,b2] be two intervals. The, addition and

subtraction of A and B are defined as

A+B = [a1 +b1,a2 +b2]

and

A−B = [a1−b2,a2−b1].

Definition 2.1.2. Let R be the set of real numbers and â :R→ [0,1] be a fuzzy set. Then,

â is said to be a fuzzy number if it satisfies the followings

a. â is normal, that is, there exists c ∈ R such that â(c) = 1.

b. â is fuzzy convex, that is â(λu+(1−λ )v)≥min{â(u), â(v)} for u,v∈R,λ ∈ [0,1].

c. â is piecewise continuous.

d. â is defined in real number.

The set of all fuzzy numbers on R is denoted by FR. For any α ∈ (0,1], α-level set âα of
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any â ∈ FR is defined by

âα = {x ∈ R : â(x)≥ α}.

The 0-level set â0 is defined by the closure of {x ∈ R : â(x) > 0}. Then âα is convex

subset of R and it is written as âα = [aα ,aα ]. One can see that

1. âα ⊆ âc if 0 < c≤ α ≤ 1.

2. If the sequence {αn} is an increasing sequence in (0,1] converges to α , then

Lim
n→∞

âαn = âα .

3. For any α ∈ (0,1], −∞ < âα ≤ âα < ∞.

Some special fuzzy numbers can be defined for α ∈ [0,1] such as triangle fuzzy number.

Example 2.1.1. Let â : R→ [0,1] be defined by

â(x) =
1

1+ x2 . (2.1)

Graph of â is given by Figure 2.1.

-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

a(x)

Figure 2.1: The graph of Equation (2.1)
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Then, â is normal since â(0) = 1. Moreover, for any u,v ∈R,λ ∈ [0,1],λu+(1−

λ )v is between u and v. Indeed, â(λu+(1−λ )v)is between â(u) and â(v). Thus,

â(λu+(1−λ )v)≥min{â(u), â(v)}.

Hence, â is fuzzy convex. For any α ∈ (0,1], {x∈R : â(x)≥α}=

[
−
√

1−α

α
,

√
1−α

α

]
is subset of R. Therefore, â is fuzzy number.

Definition 2.1.3. Let â, b̂ ∈ FR with âα = [aα ,aα ] and b̂α = [bα ,bα ]. Then, the addition,

the subtraction, and the scalar multiplication are defined by

(â⊕ b̂)α = [aα +bα ,aα +bα ],

(â	 b̂)α = [aα −bα ,aα −bα ],

(λ ⊗ â)α =


[λaα ,λaα ], λ ≥ 0

[λaα ,λaα ], λ < 0,

for λ ∈ R and α ∈ [0,1].

Example 2.1.2. Let â, b̂ : R→ [0,1] be defined by

â(x) =
1

1+ x2 , b̂(x) =
1

(1+ x2)2 .

Their graphs are given by Figures (2.2a) and (2.2b).
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-4 -2 2 4
x

0.2

0.4

0.6

0.8

1.0

a(x)

(a) graph of â(x)
-4 -2 2 4

x

0.2

0.4

0.6

0.8

1.0

b
(x)

(b) graph of b̂(x)

Figure 2.2: The graphs of â(x) and b̂(x) in Example 2.1.2

Then,

â0.5 = [−1,1] and b̂0.5 =

[
−
√√

2−1,
√√

2−1
]
.

Also,

(â⊕ b̂)0.5 =

[
−1−

√√
2−1,1+

√√
2−1

]
,

(â	 b̂)0.5 =

[
−1−

√√
2−1,1+

√√
2−1

]
,

(2� â)0.5 = (−2� â)0.5 = [−2,2].

Next, two important fuzzy numbers will be defined as follows

Definition 2.1.4. The trapezoidal fuzzy number â is defined by [a1 a2 a3 a4] where

â(x) =



0, x < a1

x−a1
a2−a1

, a1 ≤ x≤ a2

1, a2 ≤ x≤ a3

a4−x
a4−a3

, a3 ≤ x≤ a4

0, x > a4

a1 a2                         a3 a4

a(x)

x

Figure 2.3: Trapezoidal fuzzy number
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and the graph of trapezoidal fuzzy number â is given in the Figure 2.3.

Definition 2.1.5. The triangle fuzzy number â is defined by [a1 a2 a3] where

â(x) =



0, x < a1

x−a1
a2−a1

, a1 ≤ x≤ a2

a3−x
a3−a2

, a2 ≤ x≤ a3

0, x > a3 a1 a3a2

a(x)

x

Figure 2.4: Triangle fuzzy number

and the graph of triangle fuzzy number â is given in the Figure 2.4.

Particular examples for fuzzy numbers are given in the next example.

Example 2.1.3. The trapezoidal fuzzy number â= [−2 −1 1 2] is given by the following

Figure 2.5.

-3 -2 -1 1 2 3
x

0.2

0.4

0.6

0.8

1.0

a(x)

Figure 2.5: The graph of â = [−2 −1 1 2]
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while the triangle fuzzy number â = [−2 0 2] is given by the following Figure 2.6.

-3 -2 -1 1 2 3
x

0.2

0.4

0.6

0.8

1.0

a(x)

Figure 2.6: The graph of â = [−2 0 2]

A metric on the set of all fuzzy numbers is defined in the following manner.

Definition 2.1.6. Let A,B⊆ Rn. The Hausdorff matric dH is defined by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
||a−b||,sup

b∈B
inf
a∈A
||a−b||

}
.

Then, the metric dF on FR is defined by

dF(â, b̂) = sup
0≤α≤1

{
dH(âα , b̂α)

}
,

for all â, b̂ ∈ FR. Since âα and b̂α are compact intervals in R,

dF(â, b̂) = sup
0≤α≤1

max
{
|aα −bα |, |aα −bα |

}
.
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To explain the previous definition, the following example is given.

Example 2.1.4. Let A = [−1,1] and B = [0,2]. Then,

dH(A,B) = max
{

sup
a∈A

inf
b∈B
||x− y||,sup

b∈B
inf
a∈A
||x− y||

}
= max{1,1}= 1.

Let,

â(x) =



0, x <−1

x+1, −1≤ x≤ 0

1− x, 0≤ x≤ 1

0, x > 1

and b̂(x) =



0, x <−2

x+2
2 , −2≤ x≤ 0

2−x
2 , 0≤ x≤ 2

0, x > 2

.

Then, for α ∈ [0,1], âα = [α−1,1−α] and b̂α = [2α−2,2−2α]. Thus,

dF(â, b̂) = sup
0≤α≤1

max{|α−1− (2α−2)|, |1−α− (2−2α)|}

= sup
0≤α≤1

max{|1−α|, |α−1|}= 1.

Theorem 2.1.1. Let (RR,dF) be a complete metric space. For all â, b̂, ĉ, d̂ ∈ FR, and

γ ∈ R, it holds that

1. dF(â⊕ ĉ, b̂⊕ ĉ) = dF(â⊕ b̂).

2. dF(λ � â,λ � ĉ) = |λ | dF(â, ĉ).

3. dF(â⊕ b̂, ĉ⊕ d̂)≤ dF(â⊕ ĉ)+dF(b̂⊕ d̂).
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Proof. Simple calculations imply that

1.

dF(â⊕ ĉ, b̂⊕ ĉ) = sup
0≤α≤1

max
{
|(aα + cα)− (bα + cα)|, |(aα + cα)− (bα + cα)|

}
= max

{
|aα −bα |, |aα −bα |

}
= dF(â⊕ b̂).

2.

dF(λ � â,λ � ĉ) = sup
0≤α≤1

max{|λaα −λcα |, |λaα −λcα |}

= |λ | sup
0≤α≤1

max{|aα − cα |, |aα − cα |}= |λ |dF(â, ĉ).

3. The triangle inequality implies that

|(aα +bα)− (cα +dα)| ≤ |aα − cα |+ |bα −dα |

and

|(aα +bα)− (cα +dα)| ≤ |aα − cα |+ |bα −dα)|.

Thus,

max
{
|(aα +bα)− (cα +dα)|, |(aα +bα)− (cα +dα)|

}
≤

max{|aα − cα |, |aα − cα |}+max
{
|bα −dα |, |bα −dα)|

}
.

Hence, dF(â⊕ b̂, ĉ⊕ d̂)≤ dF(â⊕ ĉ)+dF(b̂⊕ d̂).

More proprieties of fuzzy numbers are given in the next theorem.
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Theorem 2.1.2. Let FR be the set of all fuzzy numbers, then

1. 0̂(x) =


1, x = 0

0, x 6= 0

, and, 0̂ ∈ FR is identity element with respect to ⊕.

2. None of â ∈ FR−R has inverse in FR with respect to ⊕.

3. For any x, y≥ 0 or x, y≤ 0 and any â ∈ FR, (x+y)� â = x� â⊕y� â. The result

is not true in general.

4. For any λ ∈ R and any â, b̂ ∈ FR, λ � (â⊕ b̂) = λ � â⊕λ � b̂.

5. For any λ , µ ∈ R and any â ∈ FR, λ � (µ⊕ â) = (λ µ)� â.

Proof.

1. Let â ∈ FR. Then, for α ∈ [0,1],

(â⊕ 0̂)α = [aα +0,a+0] = [aα ,aα ] = âα

and

(0̂⊕ â)α = [0+aα ,0+a] = [aα ,aα ] = âα .

Thus, â⊕ 0̂ = 0̂⊕ â = âα .

2. Let â ∈ FR−R and b̂ ∈ FR such that

(â⊕ b̂)α = [aα +bα ,aα +bα ] = [0,0]

Then, bα =−aα and bα =−aα . Since aα ≤ aα and bα ≤ bα , aα = aα for α ∈ [0,1].

Hence, â ∈ R which is a contradiction. Thus, for all â ∈ FR−R it has no inverse in

FR, with respect to ⊕.
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3. For any x, y≥ 0 and any â ∈ FR,

((x+ y)� â)α = [(x+ y)�aα ,(x+ y)�aα ] = [xaα ,xaα ]⊕ [yaα ,yaα ] = (x� â⊕ y� b̂)α .

Also, for any x, y≤ 0 and any â ∈ FR, it holds that

((x+ y)� â)α = [(x+ y)�aα ,(x+ y)�aα ] = [xaα ,xaα ]⊕ [yaα ,yaα ] = (x� â⊕ y� b̂)α

for any α ∈ [0,1]. In general, the result is not true. Let x = 1, y =−2, and â : R→

[0,1] be defined by

â(x) =
1

1+ x2 .

Then,

((x+ y)� â)0.5 = [−1,1]

and

(x� â⊕ y� â)0.5 = [−1,1]⊕ [−2,2] = [−3,3].

4. For any λ ≥ 0 and any â, b̂ ∈ FR,

(λ � (â⊕ b̂))α = [λ (aα +bα),λ (aα +bα)] = [λaα ,λaα ]⊕ [λbα ,λbα ]

= (λ � [aα ,aα ])⊕ (λ � [bα ,bα ]) = (λ � â⊕λ � b̂)α ,

and for any λ ≤ 0 and any â, b̂ ∈ FR, it holds that

(λ � (â⊕ b̂))α = [λ (aα +bα),λ (aα +bα)] = [λaα ,λaα ]⊕ [λbα ,λbα ]

= (λ � [aα ,aα ])⊕ (λ � [bα ,bα ]) = (λ � â⊕λ � b̂)α ,

for any α ∈ [0,1].
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5. For any λ , µ ∈ R and any â ∈ FR,

λ � (µ⊕ â)α =


λ � [µaα ,µaα ], µ ≥ 0

λ � [µaα ,µaα ], µ ≤ 0

=



[λ µaα ,λ µaα ], µ ≥ 0,λ ≥ 0

[λ µaα ,λ µaα ], µ ≥ 0,λ < 0

[λ µaα ,λ µaα ], µ < 0,λ ≥ 0

[λ µaα ,λ µaα ], µ < 0,λ < 0

= (λ µ� â)α

for any α ∈ [0,1].

2.2 Differentiation of Fuzzy Functions

In this section, differentiation of fuzzy functions will be presented using different

approaches such as the Hukuhara differentiation and the gH differentiation. Besides, some

related properties and results will be given.

Definition 2.2.1. Let V be a real vector space and FR be the set of fuzzy numbers. Then,

a function ĥ : V → FR is called fuzzy-valued function on V. For any α ∈ [0,1], ĥ(x) can be

written as [ fα(x),gα(x)] for all x ∈ V . The functions fα(x) and gα(x) are called α-level

functions of the fuzzy-valued function ĥ.
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Example 2.2.1. Let ĥ : V → FR be a fuzzy function defined by

ĥ(x) = â� x,

where â is a fuzzy number. Then, for any α ∈ [0,1],

ĥ(x) =


[xaα ,xaα ], x≥ 0

[xaα ,xaα ], x < 0

.

Definition 2.2.2. Let â and b̂ be two fuzzy numbers. If there exist number ĉ such that

ĉ⊕ b̂ = â. Then, ĉ is called Hukuhara difference of â and b̂ and it is denoted by â	H b̂.

Example 2.2.2. Let â = (−2 0 2) and b̂ = (−1 3 7) be two triangular fuzzy numbers.

Then,

â = ĉ⊕ b̂,

where ĉ = (−1 −3 −5). Then,

ĉ = â	H b̂.

It is worth to mention that the following two important properties should satisfy which

are

1. 0̂ = â	H â.

2. ((â⊕ b̂)	H b̂)α = âα for all α ∈ [0,1].

In Example 2.2.2, the two properties are hold.
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Definition 2.2.3. [7] Let A be a subset of R. A fuzzy function f̂ : A→ FR is said to be

H-differntiable at x0 ∈ A if and only if there exists a fuzzy number D f̂ (x0) such that the

following limits (with respect to metric dF ) hold true

D f̂ (x0) = lim
h→0+

1
h
� ( f̂ (x0 +h)	H f̂ (x0))

and

D f̂ (x0) = lim
h→0+

1
h
� ( f̂ (x0)	H f̂ (x0−h)).

In this case, D f̂ (x0) = f̂ ′(x0) is called H-derivative of f̂ at x0 . If f̂ is H-differntiable

∀x ∈ A, then, f̂ is H-differntiable over A.

Example 2.2.3. Let f̂ : A→ FR be a fuzzy function defined by

f̂ (x) = â� x,

where â is a fuzzy number . For x > 0,

( f̂ (x+h)	H f̂ (x))α = ((â� (x+h))	H (â� x))α

= [(x+h)aα ,(x+h)aα ]	H [xaα ,xaα ] = [haα ,haα ].

Thus, for h > 0,

1
h
� ( f̂ (x0 +h)	H f̂ (x0)))α = [aα ,aα ] = âα

which implies that

lim
h→0+

1
h
� ( f̂ (x+h)	H f̂ (x)) = â.
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Similarly, for small h > 0, and x−h > 0,

( f̂ (x)	H f̂ (x−h))α = ((â� x)	H (â� (h− x)))α

= [xaα ,xaα ]	H [(h− x)aα ,(h− x)aα ] = [haα ,haα ].

Thus,

1
h
� ( f̂ (x)	H f̂ (x−h)))α = [aα ,aα ] = âα

which implies that

lim
h→0+

1
h
� ( f̂ (x)	H f̂ (x−h)) = â.

Thus, D f̂ (x) = â. For x < 0, x+h < 0 for small h > 0. Thus,

( f̂ (x+h)	H f̂ (x))α = ((â� (x+h))	H (â� x))α

= [(x+h)aα ,(x+h)aα ]	H [xaα ,xaα ] = [haα ,haα ].

However, ha� ha for α ∈ [0,1]. Thus, Hukuhara difference does not exist which means

that f̂ (x) is not H-differntiable. When x = 0,

( f̂ (0)	H f̂ (0−h))α = ((â�0)	H (â� (0−h)))α = [haα ,haα ].

Thus,

(
1
h
� ( f̂ (0)	H f̂ (0−h)))α = [aα ,aα ]

which implies that

lim
h→0+

(
1
h
� ( f̂ (0)	H f̂ (0−h)) = [a,a].
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Also,

( f̂ (0+h)	H f̂ (0))α = ((â�h)	H (â�0))α = [haα ,haα ].

Thus,

(
1
h
� ( f̂ (0+h)	H f̂ (0)))α = [aα ,aα ]

which implies that

lim
h→0+

(
1
h
� ( f̂ (0+h)	H f̂ (0)) = â.

Thus, f̂ (x) is not H-differntiable at x = 0. Therefore, f̂ (x) is H-differntiable when x > 0

and D f̂ (x) = â.

Theorem 2.2.1. [21] Let f̂ : I→ FR be a fuzzy function defined by

f̂ (x) = â�g(x),

where â is a fuzzy number and I = (b,c)⊆R. Let g : I→R+ be differentiable function at

x0 ∈ I. If g′(x0)> 0, then,

1. Hukuhara differences in Definition 2.2.3 of f̂ exist at x0.

2. f̂ is H-differntiable at x0.

3. f̂ ′(x) = â� ĝ′(x).

Example 2.2.4. a) Let f̂ : R→ FR be a fuzzy function defined by

f̂ (x) = â� x,

where â is a fuzzy number and g(x) = x. Then, g′(x) = 1. Hence, g(x) and g′(x) are
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positive when x > 0. Thus f̂ is H-differntiable on (0,∞) and f̂ ′(x) = â. However,

last theorem can not be used when x≤ 0 since g(x)≤ 0.

b) Let f̂ : R→ FR be a fuzzy function defined by

f̂ (x) = â,

where â is a fuzzy number and g(x) = 1. Then, g′(x) = 0. Hence, Theorem 2.2.1

can not be used. However, using the definition, it can be seen that

D f̂ (x) = lim
h→0+

1
h
� ( f̂ (x+h)	H f̂ (x)) = 0̂,

and

D f̂ (x) = lim
h→0+

1
h
� ( f̂ (x)	H f̂ (x−h)) = 0̂.

Thus, f̂ is H-differntiable on (−∞,∞) and f̂ ′(x) = 0.

c) Let f̂ : R+→ FR be a fuzzy function defined by

f̂ (x) = â� x2,

where â is a fuzzy number and g(x) = x2. Then, g′(x) = 2x. Hence, g(x) and g′(x)

are positive when x > 0. Thus f̂ is H-differntiable on (0,∞) and f̂ ′(x) = â�2x.

d) Let f̂ : (0,∞)→ FR be a fuzzy function defined by

f̂ (x) = â� sinh(x),

where â is a fuzzy number and g(x) = sinh(x). Then, g′(x) = cosh(x). Hence, g(x)
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and g′(x) are positive when x > 0. Thus f̂ is H-differntiable on (0,∞) and f̂ ′(x) =

â� cosh(x). Moreover,

ĝ(n)(x) =


cosh(x), n is odd

sinh(x), n is even

and so f̂ (x) is n-time H-differntiable on (0,∞) and

Dn f̂ (x) = f̂ (n)(x) =


â� cosh(x), n is odd

â� sinh(x), n is even.

Theorem 2.2.2. Let ĥ : I → FR be H-differntiable at x0 with derivative h′(x0) and ĥ =

[ fα(x),gα(x)] where I⊂R and x0 ∈ I. Then, (ĥ′(x0))α = [ f ′α(x0),g′α(x0)] and f ′α(x0), g′α(x0)

are differentable at x0 for all α ∈ [0,1].

Definition 2.2.4. [7] Given two fuzzy numbers â, b̂ ∈ FR, the gH-difference is the fuzzy

number ĉ, if exists, such that

â	gH b̂ = ĉ i f either â = b̂+ ĉ or b̂ = â− ĉ.

Thus,

(â	gH b̂)α = [min{aα −bα ,aα −bα},max{aα −bα ,aα −bα}],

and if H-difference exists, then â	gH b̂ = â	H b̂. Hence, â	gH b̂ = ĉ exists if either

1. cα = aα − bα and cα = aα − bα with cα is increasing and cα is decreasing with

cα ≤ cα for all α ∈ [0,1], or
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2. cα = aα − bα and cα = aα − bα with cα is increasing and cα is decreasing with

cα ≤ cα for all α ∈ [0,1].

Example 2.2.5. a) Let â = (−1 0 1) and b̂ = (3 4 5) be two triangle fuzzy numbers.

Then,

(â	gH b̂)
α
= min{α−1− (α +3),1−α− (5−α)}=−4

and

(â	gH b̂)
α
= max{α−1− (α +3),1−α− (5−α)}=−4.

Thus, conditions (1) and (2) in Definition 2.2.4 are hold. Hence, (â	gH b̂)α exists.

b) Let â = (0 2 5) and b̂ = (0 1 2 3) be triangle and trapezoidal fuzzy numbers.

Then, using Condition (1) in Definition 2.2.4 when α = 1,

(â	gH b̂)
1
= 2−1 = 1

and

(â	gH b̂)1 = 2−2 = 0.

Then, (â	gH b̂)
1
� (â	gH b̂)1. Also, using Condition (2) in Definition 2.2.4 when

α = 0,

(â	gH b̂)
0
= 5−3 = 2,

and

(â	gH b̂)0 = 0−0 = 0.
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Then, (â	gH b̂)
0
� (â	gH b̂)0. Condition (1) and (2) in Definition 2.2.4 do not

hold. Thus, (â	gH b̂)α does not exists.

Definition 2.2.5. Let A be an interval of R. Let x0, x0 +h ∈ A. A fuzzy function f̂ : A→

FR is said to be gH-differntiable at x0 if and only if there exists a fuzzy number f̂ ′gH(x0)

such that (with respect to metric dF )

f̂ ′gH(x0) = lim
h→0

1
h
( f̂ (x0 +h)	gH f̂ (x0)).

In this case, D f̂gH(x0) = f̂ ′gH(x0) is called gH-derivative of f̂ at x0. If f̂ is gH-differntiable

at all x ∈ A, f̂ then, is gH-differntiable over A.

Example 2.2.6. a) Let f̂ : R→ FR be a fuzzy function defined by

f̂ (x) = â� x,

where â is a fuzzy number. Then, for h > 0,

( f̂ (x+h)	gH f̂ (x))α = [min{ f (x+h)
α
− f (x)

α
, f (x+h)

α
− f (x)

α
},max{ f (x+h)

α

− f (x)
α
, f (x+h)

α
− f (x)

α
}] = [aαh,aαh],

and

( f̂ (x)	gH f̂ (x−h))α = [min{ f (x)
α
− f (x−h)

α
, f (x)

α
− f (x−h)

α
},max{ f (x)

α

− f (x−h)
α
, f (x)

α
− f (x−h)

α
}] = [aαh,aαh],
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for all α ∈ [0,1]. Then,

f̂ ′gH(x) = lim
h→0

1
h
( f̂ (x+h)	gH f̂ (x)) = [a,a] = â.

Thus, f̂ is gH-differntiable on (−∞,∞) and f̂ ′gH(x) = â.

b) Let ĥ : R→ FR be a fuzzy function defined by

ĥ(x) = â,

where â is a fuzzy number. Then h(x) = [ f (x),g(x)] = [a,a] are differentiable,

and using the same argument as in part (a), ĥ is gH-differntiable on (−∞,∞) and

ĥ′gH(x) = 0̂.

c) Let ĥ : R→ FR be a fuzzy function defined by

ĥ(x) = â� x2,

where â is a fuzzy number. Then f (x) = ax2 and g(x) = ax2 are differentiable,

and using the same argument as in part (a), ĥ is gH-differntiable on (−∞,∞) and

ĥ′gH(x) = â�2x.

d) Let ĥ : R→ FR be a fuzzy function defined by

ĥ(x) = â� sinh(x),

where â is a fuzzy number. Then f (x) = asinh(x) and g(x) = asinh(x) are differen-

tiable, and using the same argument as in part (a), ĥ is gH-differntiable on (−∞,∞)
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and ĥ′gH(x) = â� cosh(x).

Theorem 2.2.3. If f̂ , ĝ : A→ FR are H-differentiable at x0 ∈ A⊆R and γ ∈R, then f̂ ⊕ ĝ

and γ� f̂ are H-differentiable at x0 and,

( f̂ ⊕ ĝ)′(x0) = f̂ ′(x0)⊕ ĝ′(x0), (γ� f̂ )′(x0) = γ� f̂ ′(x0).

Also, f̂ ∈Cn(A,FR) if ( f̂ (i)(x))α = [( f (x))(i)α ,( f (x))(i)α ] for i = 0,1, ...,n and α ∈ [0,1].

Example 2.2.7. Let the fuzzy function f̂ (x) = ân�xn⊕ ân−1�xn−1⊕ ...⊕ â1�x, n > 0.

Then, f̂ are H-differentiable on (0,∞) and

f̂ ′(x) = ân�nxn−1⊕ ân−1� (n−1)xn−2⊕ ...⊕ â1�1.

Theorem 2.2.4. Let â ∈ FR , g : In→R+ and I = (b,c)⊂R+ be differentiable at x0 ∈ In.

Let f̂ : In→ FR be defined by f̂ (x) = â� g(x). If
∂g(x0)

∂xi
> 0, for i = 1,2, ...,n, then the

partial derivative exists at x0 and
∂ f̂ (x0)

∂xi
= â� ∂g(x0)

∂xi
for i = 1,2, ...,n.

Example 2.2.8. Consider the fuzzy function f̂ (x) = â�e3x+2y.Then g(x,y) = e3x+2y > 0.

Since

∂g
∂x

= 3 e3x+2y > 0,
∂g
∂y

= 2 e3x+2y > 0,
∂ 2g
∂x2 = 9 e3x+2y > 0,

∂ 2g
∂y2 = 4 e3x+2y > 0,

∂ 2g
∂x∂y

= 6 e3x+2y > 0,

then,

∂ f̂
∂x

= â�3 e3x+2y > 0,
∂ f̂
∂y

= â�2 e3x+2y > 0,
∂ 2 f̂
∂x2 = â�9 e3x+2y > 0,
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∂ 2 f̂
∂y2 = â�4 e3x+2y > 0,

∂ 2 f̂
∂x∂y

= â�6 e3x+2y > 0.

It is easy to see that f̂ ∈C∞(R2,FR).
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Chapter 3: One-Step Hybrid Block Method with One Off-Step Point
for Solving Initial Value Problems (IVPs)

In this chapter, the one-step hybrid block methods with one off-step point will be

derived for first and second-order initial value problems. Some theoretical results will

be presented. In addition, some numerical results will be given to show the efficiency of

those methods.

3.1 Hybrid Block Method

In this section, the idea of the implicit hybrid one step method will be presented.

Some related definitions are given. To explain the idea of these methods, consider the

following initial value problem (IVP) of the form

y(k) = f (t,y′,y′′, . . . ,y(k−1)), t0 < t < T (3.1)

subject to

y(t0) = y0, y′(t0) = y′0, . . . , y(t0)(k−1) = y(k−1)
0 , (3.2)

where y0, . . . ,y
(k−1)
0 are real constants and f is smooth function on [t0,T ]×Rk. There

are several methods to solve IVP (3.1-3.2) such as Euler, Taylor, Runge-kutta, Adams-

Bashforth, and Adam-Moulton methods. The one-step methods such as Euler, Taylor,

and Runge-kutta methods are suitable only for first order IVP since they have low order

of accuracy. If Taylor or Runge-kutta methods are used to solve higher order IVP, then

large function evaluations per step are needed. Therefore, solving Problem (3.1-3.2) by

one step method is required to rewrite the problem into a system of first order IVPs which

make the dimension of the problem and its scale are high. Thus, the approach will be

costly with low accuracy. On the other side, Adams-Bashforth and Moulton methods do

not need to rewrite Problem (3.1-3.2) in a system of first order IVPs. In addition, higher

order accuracy will be produced by these methods. However, two main disadvantages for



30

these methods, they are not efficient in terms of function evaluations and not self starter.

To overcome these disadvantage the continuous implicit hybrid one step methods are used.

Let {t0, t1, . . . , tm} be a uniform partition of [t0,T ] with t j = t0 + j h, j = 0,1, . . . ,m and

h = T−t0
m . For n ∈ {0,1, . . . ,m−1}, let v1,v2, . . . ,vL ∈ (0,1) be real numbers with

v1 < v2 < · · ·< vL

and tn+vi = tn + vi h, i = 1,2, . . . ,L. The points {tn+vi : i = 1,2, . . . ,L} are called off-step

points. The definition of one-step hybrid methods with L off-step points is given in the

following definition.

Definition 3.1.1. [22] Let k be the order of IVP. A one-step hybrid formula with L off-step

points {tn+vi : i = 1,2, . . . ,L} is given by

yn+1 +
k−1

∑
i=0

ai hi y(i)n = hk

[
1

∑
i=0

bi fn+i +
L

∑
i=1

bn+vi fn+vi

]
, (3.3)

where a0 and b0 are non-zeros, yn+i ≈ y(tn + i h), and fn+vi ≈ f (tn+vi,yn+vi).

The order of formula 3.3 can be found by the following definition.

Definition 3.1.2. [22] Let

L [y(tn) ;h] =
∞

∑
s=0

[
y(s)(tn) hs

s!
+

k−1

∑
i=0

ai y(s+i)(tn) hs+i

s!
−

1

∑
i=0

bi y(s+k)(tn) is h2k+s

s!

−
L

∑
i=1

bn+vi + fn+vi y(s+k)(tn) (vi)
s h2k+s

s!

]
= c0yn + c1y′n + c2y′′n + . . . .

If c0 = c1 = c2 = · · · = cp+k−1 = 0 and cp+k 6= 0, then the order of the method is p and

the error constant is cp+k.
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Rewrite System 3.3 in matrix form as

A0 Ym = A1 ym +A2 Fm,

where

Ym =



yn+v1

...

yn+vL

yn+1

h y′n+v1

...

h y′n+vL

h y′n+1
...

hk−1 yk−1
n+v1

...

hk−1 yk−1
n+vL

hk−1 yk−1
n+1



, ym =



yn−v1

...

yn−vL

yn

h y′n−v1

...

h y′n−vL

h y′n
...

hk−1 y(k−1)
n−v1

...

hk−1 y(k−1)
n−vL

hk−1 y(k−1)
n



, Fm =



hk fn

hk fn+v1

...

hk fn+vL

hk fn+1


.

Then, following to Fatunla’s approach [23] the characteristic equation is given by

det(µ A0−A1) = 0. (3.4)

If all roots of Equation 3.4 have modules less than or equal 1 and the algebraic multiplicity

of each nonzero root of Equation 3.4 is less than or equal k the order of the IVP, then the

method is called zero stable. If the order of the method is greater than or equal 1, then it

is called consistent. If it is zero stable and consistent, the method is convergent.
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To find the region of absolute stability, the following test problem is considered

y′ = λ y, where λ < 0.

Then,

y(s) = λ
s y, s ∈ {1,2, . . . ,k}. (3.5)

Substitute (3.5) in (3.3) to get

Yn+1 = M(α) Yn, α = λ h.

The eigenvalue of M(α) are zeros except the last eigenvalue is λn(α).

Let f : C→ C be defined by f (z) = λn(z). Then the region of absolute stability is

R = {z ∈ C : | f (z)|< 1}.

If {z ∈ C : Re(z)< 0} ⊂ R, then the method is called A-stable.

3.2 First Order Initial Value Problems

In this section, a numerical method based on the one-step hybrid block method with

one off-step point (HBM1), tn+k where 0 < k < 1, will be used to solve the following

initial value problem (IVP)

y′(t) = f (t,y(t)), t ≥ 0 (3.6)

y(t0) = y0. (3.7)
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To derive HBM1, assume that tn = nh, where h is the stepsize. The solution of the IVP

(3.6-3.7) will be approximated by a polynomial of degree 3 as follows

y(t)'
3

∑
j=0

c j t j, (3.8)

and its derivative by

y′(t)'
3

∑
j=1

j c j t j−1. (3.9)

By interpolating Equation (3.8) at the point tn and collocating Equation (3.9) at the points

tn, tn+k = tn + kh, and tn+1 = tn +h, the following system become



1 tn t2
n t3

n

0 1 2tn 3t2
n

0 1 2tn+k 3t2
n+k

0 1 2tn+1 3t2
n+1





c0

c1

c2

c3


=



yn

fn

fn+k

fn+1


, (3.10)

where yn+ j ≈ y(tn+ j) and fn+ j ≈ y′(tn+ j), j = 0,k,1. Then, the System (3.10) is solved

after substituting t = tn +wh, to get

y(w) ≈ yn + h(α0 fn +αk fn+k +α1 fn+1), (3.11)

where α0,αk, and α1 are functions of w. Evaluating the approximation of y(w) at w = k

and 1 yields

yn+ j = yn + h(α0, j fn +αk, j fn+k +α1, j fn+1), (3.12)

where j = k,1 and

α0,1 =
3k−1

6k
,αk,1 =

1
6k−6k2 ,α1,1 =

3k−2
6(k−1)

,

α0,k =
k(3− k)

6
,αk,k =

k(2k−3)
6(k−1)

,α1,k =
k3

6(k−1)
.
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To maximize the order of the implicit block method (3.12), the local truncation errors in

the formula for yn+1 is optimized as follow,

L (y(tn+1) ;h) =
2k−1

72
h4y(4) (tn)+

h5 (5k2 +5k−4)
720

y(5) (tn)+O
(

h6
)
. (3.13)

To maximize the order of formula (3.12) where j = 1, the following equation for k is

solved, where 0 < k < 1,
2k−1

72
= 0 . (3.14)

Hence,

k =
1
2
, (3.15)

and the local truncation errors is given by

L [y(tn+1) ;h] =−h5y(5) (tn)
2880

+O
(

h6
)
=−3.4722×10−4h5y(5) (tn)+O

(
h6
)
.

Therefore, the HBM1 is given by

yn+1 = yn +
h
6
( fn +4 fn+ 1

2
+ fn+1),

yn+ 1
2
= yn +

h
24

(5 fn +8 fn+ 1
2
− fn+1). (3.16)

Now, some theoretical results on the one-step hybrid block method with one off-step point

are presented. These results include consistency, stability, and convergence results. Let

us write the System (3.16) as follows

yn+ 1
2
= yn +

h
24

(5 fn +8 fn+ 1
2
− fn+1),

yn+1 = yn +
h
6
( fn +4 fn+ 1

2
+ fn+1). (3.17)
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First, rewrite the HBM1 in Equation (3.17) in the form

A1 Ym = A0 ym +A2 Fm, (3.18)

where

A0 =

 0 1

0 1

 , A1 =

 1 0

0 1

 , A2 =

 5
24

8
24

−1
24

1
6

4
6

1
6

 ,

ym =

 yn− 1
2

yn

 ,Ym =

 yn+ 1
2

yn+1

 ,Fm =


h fn

h fn+ 1
2

h fn+1

 .

Thus, the characteristic equation of the HBM1 in Equation (3.21) is given by

ρ(z) = det(zA1−A0) = z(z−1) = 0, (3.19)

which implies that z1 = 0 and z2 = 1. Then, the multiplicity of the nonzero root of the

characteristic equation is 1, which does not exceed the order of the differential equation.

Hence, the method is zero stable.

The local truncation error of the System (3.16) is

L [y(tn) ;h] =
(
L
[
y
(

tn+ 1
2

)
;h
]
,L [y(tn+1) ;h]

)
=

∞

∑
i=0

αihiy(i)(tn) = α4h4y(4)(tn)+
∞

∑
i=5

αihiy(i)(tn), (3.20)

where α0 = α1 = α2 = α3 = 0 and α4 = ( 1
384 ,0)

T . Thus, System (3.16) has order (3,3)T .

For simplicity, the order is denoted by 3. Since the order of the System (3.16) is 3 ≥ 1,

then it is consistent. The consistency and the zero stability of the System (3.16) imply that

it is convergent [22, 24]. To find the region of absolute stability, consider the following
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test problem y′ = λy where λ < 0, then

y′ = f (t,y) = λy.

Substitute f in the following matrix form

A1 Yn+1 = A0 Yn +h (B0 Fn +B1 Fn+1) , (3.21)

where

A0 =

 0 1

0 1

 , A1 =

 1 0

0 1

 , B0 =

 0 5
24

0 1
6

 ,B1 =

 8
24 − 1

24

4
6

1
6

 ,

Yn =

 yn− 1
2

yn

 ,Yn+1 =

 yn+ 1
2

yn+1

 ,Fn =

 fn− 1
2

fn

 ,Fn+1 =

 fn+ 1
2

fn+1

 ,

to get

Yn+1 = M(z) Yn, z = λh, (3.22)

where the matrix M(z) is given by

M(z) = (A1− zB1)
−1 (A0 + zB0) . (3.23)

The matrix M(z) has eigenvalues
{

0,− 2(z−3)(z+6)
3(z2−6z+12)

}
. Consider R(z) : C −→ C defined

by R(z) = − 2(z−3)(z+6)
3(z2−6z+12)

. The region of absolute stability S is defined as S = {z ∈ C :

|R(z)| < 1}. The Region of absolute stability of the method is presented in Figure 3.1.

The stability region contains the entire left half complex plane and thus, the method is

A-stable.
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Figure 3.1: The region of absolute stability

3.3 Second Order Initial Value Problems

In this section, a numerical method based on the one-step hybrid block method with one

off-step point (HBM1), tn+k with 0 < k < 1, is presented to solve the following differ-

ential equation of the form

y′′(t) = f (t,y(t),y′(t)), t ≥ 0, (3.24)

y(t0) = y0, (3.25)

y′(t0) = y1. (3.26)

To derive HBM1, assume that tn = nh where h is the stepsize. The solution of Problem

(3.24-3.26) is approximated by a polynomial of degree 4 as follows,

y(t)'
4

∑
j=0

a j t j, (3.27)

and its first derivative by

y′(t)'
4

∑
j=1

j a j t j−1, (3.28)
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and its second derivative by

y′′(t)'
4

∑
j=2

j( j−1)a j t j−2. (3.29)

Interpolating Equations (3.27-3.28) at the point tn and collocating Equation (3.29) at the

points tn, tn+k = tn + kh, and tn+1 = tn +h to get the following system



1 tn t2
n t3

n t4
n

0 1 2tn 3t2
n 4t3

n

0 0 2 6tn 12t2
n

0 0 2 6tn+k 12t2
n+k

0 0 2 6tn+1 12t2
n+1





a0

a1

a2

a3

a4


=



yn

y′n

fn

fn+k

fn+1


, (3.30)

where yn+ j ≈ y(tn+ j), y′n+ j ≈ y′(tn+ j), and fn+ j ≈ y′′(tn+ j), j = 0,k,1. Solving System

(3.30) after substituting t = tn +wh to get

y(w) ≈ yn + h α y′n + h2 (α0 fn +αk fn+k +α1 fn+1) (3.31)

y′(w) ≈ β y′n + h(β0 fn +βk fn+k +β1 fn+1) (3.32)

where α, α0, αk, α1, β , β0, βk, and β1 are functions of w. Then, evaluate the approxi-

mation of y(w) and y′(w)at w = k and 1, to get

yn+ j = yn + h α j y′n + h2 (α0, j fn +αk, j fn+k +α1, j fn+1)

y′n+ j = β j y′n + h(β0, j fn +βk, j fn+k +β1, j fn+1) (3.33)
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where j = k,1 and

α1 = 1, α0,1 =
1
3
− 1

12k
, αk,1 =

1
12k−12k2 , α1,1 =

1
12

(
2+

1
k−1

)
,

αk = k, α0,k =−
1

12
(k−4)k2, αk,k =

(k−2)k2

12(k−1)
, α1,k =

k4

12(k−1)
,

β1 = 1, β0,1 =
1
2
− 1

6k
, βk,1 =

1
6k−6k2 , β1,1 =

1
6

(
3+

1
k−1

)
,

βk = 1, β0,k =−
1
6
(k−3)k, βk,k =

(2k−3)k
6(k−1)

, β1,k =
k3

6(k−1)
.

To maximize the order of the implicit block method (3.33) when j = 1, the local truncation

errors in the formula for yn+1, is optimized as follow,

L (y(tn+1) ;h) =
5k−2

360
h5y(5) (tn)+

(5k2 +5k−3)
1440

h6y(6) (tn)+O
(
h7) .

To maximize the order, the following equation for k where 0 < k < 1 is solved

5k−2
360

= 0 . (3.34)

Hence,

k =
2
5
, (3.35)

and the local truncation errors for yn+1, yn+k, y′n+1, and y′n+k are

L [y(tn+1) ;h] =−h6y(6) (tn)
7200

+O
(
h7)=−1.38889×10−4h6y(6) (tn)+O

(
h7) ,

L [y(tn+k) ;h] =
14h5y(5) (tn)

46875
+O

(
h6
)
= 2.98667×10−4h5h5y(5) (tn)+O

(
h6
)
,

L
[
y′ (tn+1) ;h

]
=−h5y(5) (tn)

360
+O

(
h6
)
=−2.7777×10−3h5y(5) (tn)+O

(
h6
)
,

L
[
y′ (tn+k) ;h

]
=

8h5y(5) (tn)
5625

+O
(

h6
)
= 1.42222×10−3h5y(5) (tn)+O

(
h6
)
.
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Then the order of HBM1 is (3,3,3,3) and the error constant is
(
0, 14

46875 ,
−1
360 ,

8
5625

)
. There-

fore, the HBM1 is given as follows

yn+1 = yn +h y′n +
h2

72
(9 fn +25 fn+ 2

5
+2 fn+1),

yn+ 2
5
= yn +

2h
5

y′n +
2h2

1125
(27 fn +20 fn+ 2

5
−2 fn+1),

y′n+1 = y′n +
h

36
(3 fn +25 fn+ 2

5
+8 fn+1),

y′n+ 2
5
= y′n +

h
225

(39 fn +55 fn+ 2
5
−4 fn+1). (3.36)

Now, the main properties of the proposed method such as consistency, stability, and con-

vergence will be studied. Let us write System (3.36) in the form

yn+ 2
5
= yn +

2h
5

y′n +
2h2

1125
(27 fn +20 fn+ 2

5
−2 fn+1),

yn+1 = yn +h y′n +
h2

72
(9 fn +25 fn+ 2

5
+2 fn+1),

hy′n+ 2
5
= hy′n +

h2

225
(39 fn +55 fn+ 2

5
−4 fn+1),

hy′n+1 = hy′n +
h2

36
(3 fn +25 fn+ 2

5
+8 fn+1). (3.37)

Then, the System (3.37) can be rewritten in the matrix form as

A0Ym = A1ym +A2Fm, (3.38)

where

Ym =



yn+ 2
5

yn+1

h y′
n+ 2

5

h y′n+1


, ym =



yn− 2
5

yn

h y′
n− 2

5

h y′n


, Fm =


h2 fn

h2 fn+ 2
5

h2 fn+1

 ,
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A0 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, A1 =



0 1 0 2
5

0 1 0 1

0 0 0 1

0 0 0 1


, A2 =



54
1125

40
1125

−4
1125

9
72

25
72

2
72

39
225

55
225

−4
225

3
36

25
36

8
36


.

Following to Fatunla’s approach [23], the characteristic equation of HBM1 is

det(µA0−A1) = det



µ −1 0 −2
5

0 µ−1 0 1

0 0 µ −1

0 0 0 µ−1


= µ

2(µ−1)2 = 0,

which implies that µ1 = µ2 = 0 and µ3 = µ4 = 1. Then, the multiplicity of the nonzero

roots of the characteristic equation is 2 which does not exceed the order of the differential

equation. Hence, it is zero stable.

The local truncation error of the System (3.36) is

L [y(tn) ;h] =
(
L
[
y
(

tn+ 2
5

)
;h
]
,L [y(tn+1) ;h] ,L

[
y′
(

tn+ 2
5

)
;h
]
,L
[
y′ (tn+1) ;h

])
=

∞

∑
i=0

γihiy(i)(tn) = γ5h5y(5)(tn)+
∞

∑
i=6

γihiy(i)(tn), (3.39)

where γ0 = γ1 = γ2 = γ3 = γ4 = 0 and γ5 = (0, 14
46875 ,

8
5625 ,

1
360)

T . Thus, System (3.36) has

order (3,3,3,3)T . For simplicity, the order is denoted by 3. Since the order of System

(3.36) is 3 ≥ 1, then it is consistent. The consistency and the zero stability of System

(3.36) imply that it is convergent [22, 24]. To find the region of absolute stability, consider

the following test problem y′ = λy where λ < 0, then

y′′ = f (t,y,y′) = λ
2y. (3.40)
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Substitute f in the following matrix form

B0Yn+1 = B1Yn +hB2Y ′n+1 +h2(C0Fn +C1Fn+1), (3.41)

where

Yn+1 =

yn+ 2
5

yn+1

 , Yn =

yn− 2
5

yn

 , Y ′n =

y′
n− 2

5

y′n

 , Fn =

 fn− 2
5

fn

 , Fn+1 =

 fn+ 2
5

fn+1



B0 =

1 0

0 1

 , B1 =

0 1

0 1

 , B2 =

0 2
5

0 1

 , C0 =

0 54
1125

0 9
72

 , C1 =

 40
1125

−4
1125

025
72

2
72

 ,

to get

B0Yn+1 = B1Yn +hB2λYn +h2(C0λ
2Yn +C1λ

2Yn+1). (3.42)

Let S = λh, then

Yn+1 = M(S) Yn,

where M(S) = (B0−S2C1)−1(B1 +SB2 +S2C0). The eigenvalue of M(S) are

(0,
900+900S+393S2 +93S3 +11S4

900−57S2 +2S4 ).

Let f : C −→ C by f (S) = 900+900S+393S2+93S3+11S4

900−57S2+2S4 where S = λh. The region of abso-

lute stability will be all S ∈ C such that | f (S)|< 1. This region is given in Figure 3.2 and

the interval of stability is (−4.08611,0).
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Figure 3.2: Region of absolute stability

3.4 Numerical Results of IVPs

In this section, numerical examples will be presented to show the efficiency of the

proposed methods to solve first and second-order IVPs, respectively.

Example 3.4.1. Consider the following linear first order initial value problem

y′(x) = y(x), y(0) = 1,

the value of h is chosen to be 0.01 and the exact solution is given by

y(x) = ex.

The absolute errors using the proposed method of first order on [0,1] are presented in

Table 3.1.
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Table 3.1: The absolute errors in Example 3.4.1 for h = 0.01.

x Er for yn

0 0

0.1 1.53499×10−12

0.2 3.39262×10−12

0.3 5.62417×10−12

0.4 8.28759×10−12

0.5 1.14493×10−11

0.6 1.51834×10−11

0.7 1.95768×10−11

0.8 2.47273×10−11

0.9 3.07434×10−11

1 3.77529×10−11

Example 3.4.2. Consider the following linear first order initial value problem

y′(x) = y(x)+1, y(0) = 0,

the value of h is chosen to be 0.01 and the exact solution is given by

y(x) = ex−1.

The absolute errors using the proposed method of first order on [0,1] are presented in

Table 3.2.
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Table 3.2: The absolute errors in Example 3.4.2 for h = 0.01.

x Er for yn

0 0

0.1 1.53505×10−12

0.2 3.3927×10−12

0.3 5.62428×10−12

0.4 8.28754×10−12

0.5 1.14487×10−11

0.6 1.51833×10−11

0.7 1.9577×10−11

0.8 2.47271×10−11

0.9 3.07432×10−11

1 3.77507×10−11

Example 3.4.3. Consider the nonlinear first order initial value problem

y′(x) = y(x)2 +1, y(0) = 0,

the value of h is chosen to be 0.01 and the exact solution is given by

y(x) = tan(x).

In Table 3.3, the absolute errors obtained by the current method of first order are compared

with ones obtained in [25]. One can see that the results are better than the ones in [25],

even when the method is used only with one off-step point.



46

Table 3.3: The absolute errors in Example 3.4.3 for h = 0.01.

x Er for yn Er for yn in [25]

0 0 0

0.1 5.5639×10−12 —

0.2 1.11475×10−11 1×10−5

0.3 1.65997×10−11 1×10−5

0.4 2.12868×10−11 2×10−5

0.5 2.3369×10−11 2×10−5

0.6 1.79635×10−11 3×10−5

0.7 7.81752×10−12 4×10−5

0.8 8.9329×10−11 5×10−5

0.9 3.30909×10−10 8×10−5

1 1.07632×10−9 1.1×10−4

Example 3.4.4. Consider the following second order linear initial value problem

y′′ =−y(x), y(0) = y′(0) = 1,

the value of h is chosen to be 0.1 and the exact solution is given by

y(x) = cos(x)+ sin(x).

Using HBM1,

yn+1 = yn +h y′n−
h2

72
(9 yn +25 yn+ 2

5
+2 yn+1),

yn+ 2
5
= yn +

2h
5

y′n−
2h2

1125
(27 yn +20 yn+ 2

5
−2 yn+1),

y′n+1 = y′n−
h
36

(3 yn +25 yn+ 2
5
+8 yn+1),

y′n+ 2
5
= y′n−

h
225

(39 yn +55 yn+ 2
5
−4 yn+1).
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The above system can be written in the matrix form as

Ym = A−1B yn +A−1C y′n,

where

A =



1+ h2

36
25h2

72 0 0

− 4h2

1125 1+ 8h2

225 0 0

2h
9

25h
36 1 0

− 4h
225

11h
45 0 1


, B =



1− h2

8

1− 6h2

125

− h
12

−13h
75


, C =



h

2h
5

1

1


, Ym =



yn+1

yn+ 2
5

y′n+1

y′
n+ 2

5


.

In Table 3.4, the absolute errors obtained by the current method of second order are com-

pared with ones obtained in [26]. One can see that the similar results are got using one

off-step point with low computation cost comparing with [26].

Table 3.4: The absolute errors in Example 3.4.4 for h = 0.1.

x Er for yn Er for yn in [26]

0 0 0

0.1 1.35006×10−10 6.92×10−9

0.2 2.57539×10−8 1.76×10−8

0.3 7.43478×10−8 1.62×10−8

0.4 1.41872×10−7 4.73×10−8

0.5 2.24165×10−7 1.20×10−7

0.6 3.16758×10−7 1.87×10−7

0.7 4.14951×10−7 3.07×10−7

0.8 5.13904×10−7 4.19×10−7

0.9 6.08717×10−7 5.79×10−7

1 6.94524×10−7 7.27×10−7
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Example 3.4.5. Consider the following second order nonlinear initial value problem

y′′ = x (y′(x))2, y(0) = 1, y′(0) =
1
2
,

the value of h is chosen to be 1
320 and the exact solution is given by

y(x) = 1+
1
2

ln
(

x+2
2− x

)

The absolute errors using the proposed method of second order on [0,1] are presented in

Table 3.5.

Table 3.5: The absolute errors in Example 3.4.5 for h = 1
320 .

x Er for yn

0 0
1

320 2.22045×10−16

2
320 2.22045×10−16

3
320 1.55431×10−15

4
320 3.33067×10−15

5
320 5.77316×10−15

6
320 8.65974×10−15

7
320 1.26565×10−14

8
320 1.68754×10−14

9
320 2.17604×10−14

10
320 2.70894×10−14
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Chapter 4: First and Second Order Fuzzy Initial Value Problems

In this chapter, the methods were derived in Chapter 3 will be used to solve the

first and second-order fuzzy initial value problems. New theorems will be introduced to

solve such problems. Several examples will be given to show the accuracy and efficiency

of these methods.

4.1 First Order Fuzzy Initial Value Problems

In this section, a proposed method of first order will be implemented to solve

the first order fuzzy initial value problem. In addition, some theoretical results will be

presented.

Consider the following fuzzy initial value problem

y′(t) = f (t,y), t ≥ 0, (4.1)

y(0) = y0. (4.2)

Denotes the α−level of the solution y(t), y0, and the function f (t,y) by

y(t,α) = [y1(t,α),y2(t,α)] ,

y(0,α) = [y1,0,y2,0 ] ,

f (t,y,α) = [ f1(t,y(t,α)), f2(t,y(t,α))] .
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Following the technique described in Chapter 3, the fuzzy HBM1 is given by

y1,n+1,α = y1,n,α +
h
6
( f1,n,α +4 f1,n+ 1

2 ,α
+ f1,n+1,α)

y1,n+ 1
2 ,α

= y1,n,α +
h

24
(5 f1,n,α +8 f1,n+ 1

2 ,α
− f1,n+1,α)

y2,n+1,α = y2,n,α +
h
6
( f2,n,α +4 f2,n+ 1

2 ,α
+ f2,n+1,α)

y2,n+ 1
2 ,α

= y2,n,α +
h

24
(5 f2,n,α +8 f2,n+ 1

2 ,α
− f2,n+1,α),

where

f1,n,α = min{ f (tn,w) : w ∈ [y1,n,α ,y2,n,α ]},

f2,n,α = max{ f (tn,w) : w ∈ [y1,n,α ,y2,n,α ]},

f1,n+ 1
2 ,α

= min{ f (tn+ 1
2
,w) : w ∈

[
y1,n+ 1

2 ,α
,y2,n+ 1

2 ,α

]
}, (4.3)

f2,n+ 1
2 ,α

= max{ f (tn+ 1
2
,w) : w ∈

[
y1,n+ 1

2 ,α
,y2,n+ 1

2 ,α

]
},

f1,n+1,α = min{ f (tn+1,w) : w ∈ [y1,n+1,α ,y2,n+1,α ]},

f2,n+1,α = min{ f (tn+1,w) : w ∈ [y1,n+1,α ,y2,n+1,α ]}.

In the next theorem, the HBM1 is studied when f (t,y) is monotonic function of y.

Theorem 4.1.1. If f (t,y) is increasing on y, then the fuzzy HBM1 becomes

y1,n+1,α = y1,n,α +
h
6
( f (tn,y1,n,α)+4 f (tn+ 1

2
,y1,n+ 1

2 ,α
)+ f (tn+1,y1,n+1,α))

y1,n+ 1
2 ,α

= y1,n,α +
h

24
(5 f (tn,y1,n,α)+8 f (tn+ 1

2
,y1,n+ 1

2 ,α
)− f (tn+1,y1,n+1,α))

y2,n+1,α = y2,n,α +
h
6
( f (tn,y2,n,α)+4 f (tn+ 1

2
,y2,n+ 1

2 ,α
)+ f (tn+1,y2,n+1,α))

y2,n+ 1
2 ,α

= y2,n,α +
h

24
(5 f (tn,y2,n,α)+8 f (tn+ 1

2
,y2,n+ 1

2 ,α
)− f (tn+1,y2,n+1,α)),
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while if f (t,y) is decreasing on y, then the fuzzy HBM1 becomes

y1,n+1,α = y1,n,α +
h
6
( f (tn,y2,n,α)+4 f (tn+ 1

2
,y2,n+ 1

2 ,α
)+ f (tn+1,y2,n+1,α))

y1,n+ 1
2 ,α

= y1,n,α +
h

24
(5 f (tn,y2,n,α)+8 f (tn+ 1

2
,y2,n+ 1

2 ,α
)− f (tn+1,y2,n+1,α))

y2,n+1,α = y2,n,α +
h
6
( f (tn,y1,n,α)+4 f (tn+ 1

2
,y1,n+ 1

2 ,α
)+ f (tn+1,y1,n+1,α))

y2,n+ 1
2 ,α

= y2,n,α +
h

24
(5 f (tn,y1,n,α)+8 f (tn+ 1

2
,y1,n+ 1

2 ,α
)− f (tn+1,y1,n+1,α)).

Proof. If f (t,y) is increasing on y, it follows from (4.3) that

f1,n,α = f (tn,y1,n,α), f2,n,α = f (tn,y2,n,α),

f1,n+ 1
2 ,α

= f (tn+ 1
2
,y1,n+ 1

2 ,α
), f2,n+ 1

2 ,α
= f (tn+ 1

2
,y2,n+ 1

2 ,α
), (4.4)

f1,n+1,α = f (tn+1,y1,n+1,α), f2,n+1,α = f (tn+1,y2,n+1,α),

and if f (t,y) is decreasing on y, it follows from (4.3) that

f1,n,α = f (tn,y2,n,α), f2,n,α = f (tn,y1,n,α),

f1,n+ 1
2 ,α

= f (tn+ 1
2
,y2,n+ 1

2 ,α
), f2,n+ 1

2 ,α
= f (tn+ 1

2
,y1,n+ 1

2 ,α
), (4.5)

f1,n+1,α = f (tn+1,y2,n+1,α), f2,n+1,α = f (tn+1,y1,n+1,α),

which completes the proof.

In next theorem, the case when f (t,y) is linear function of y is studied.
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Theorem 4.1.2. Let b = [b1,b2] be a fuzzy number, a ∈ R and f (t,y) = a y+b.

1. If a≥ 0, then

y1,n+1,α = ϕ
n+1y1,0,α +θ

n

∑
k=0

ϕ
k,

and

y2,n+1,α = ϕ
n+1y2,0,α +θ

n

∑
k=0

ϕ
k.

2. If a < 0, then

y1,n+1,α = θ1y1,n,α + γ1b1 +θ2y2,n,α + γ2b2,

and

y2,n+1,α = θ2y1,n,α + γ2b1 +θ1y2,n,α + γ1b2.

Proof. 1) Let a ≥ 0. Then, f (tn+ j,yi,n+ j,α) = bi +a yi,n+ j,α , where i = 1,2 and

j = 0, 1
2 ,1. Thus,

y1,n+1,α = y1,n,α +
h
6
(b1 +a y1,n,α +4(b1 +a y1,n+ 1

2 ,α
)+b1 +a y1,n+1,α)

y1,n+ 1
2 ,α

= y1,n,α +
h

24
(5(b1 +a y1,n,α)+8(b1 +a y1,n+ 1

2 ,α
)− (b1 +a y1,n+1,α)

y2,n+1,α = y2,n,α +
h
6
(b2 +a y2,n,α +4(b2 +a y2,n+ 1

2 ,α
)+b2 +a y2,n+1,α)

y2,n+ 1
2 ,α

= y2,n,α +
h

24
(5(b2 +a y2,n,α)+8(b2 +a y2,n+ 1

2 ,α
)− (b2 +a y2,n+1,α).

The last system can rewritten in the matrix form

A1Y1 = R1, A2Y2 = R2, (4.6)
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where

A1 =

 1− ah
3

ah
24

−2ah
3 1− ah

6

 ,Y1 =

 y1,n+ 1
2 ,α

y1,n+1,α

 ,R1 =

 h
2

h

b1 +

 1+ 5ah
24

1+ ah
24

y1,n,α ,

A2 =

 1− ah
3

ah
24

−2ah
3 1− ah

6

 ,Y2 =

 y2,n+ 1
2 ,α

y2,n+1,α

 ,R2 =

 h
2

h

b2 +

 1+ 5ah
24

1+ ah
24

y2,n,α .

Since det(A1) =
1

12a2h2− 1
2ah+1 = (ah−3)2+3

12 6= 0, then

A−1
1 =

 12−2ah
a2h2−6ah+12

−ha
2a2h2−12ah+24

8ha
a2h2−6ah+12

12−4ah
a2h2−6ah+12

 .

Thus,  y1,n+ 1
2 ,α

y1,n+1,α

= b1 C1 + y1,n,α C2,

where

C1 =

 −3
2h ah−4

a2h2−6ah+12

12 h
a2h2−6ah+12

and C2 =

 − 1
16

7a2h2−192
a2h2−6ah+12

3
2

a2h2+3ah+8
a2h2−6ah+12

 .

Hence,

y1,n+1,α =
12hb1

a2h2−6ah+12
+

3
2

a2h2 +3ah+8
a2h2−6ah+12

y1,n,α .
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Let θ = 12hb1
a2h2−6ah+12 and ϕ = 3

2
a2h2+3ah+8

a2h2−6ah+12 . Then,

y1,n+1,α = θ + ϕ y1,n,α

= θ + ϕ(θ + ϕ y1,n−1,α)

= θ + ϕθ +ϕ
2(θ + ϕ y1,n−2,α)

...

= ϕ
n+1y1,0,α +θ

n

∑
k=0

ϕ
k.

Therefore,

y1,n+1,α = ϕ
n+1y1,0,α +θ

n

∑
k=0

ϕ
k

and similarly,

y2,n+1,α = ϕ
n+1y2,0,α +θ

n

∑
k=0

ϕ
k.

2) Let a < 0. Then, the fuzzy HBM1 becomes

y1,n+1,α = y1,n,α +
h
6

(
b1 +a y2,n,α +4(b1 +a y2,n+ 1

2 ,α
)+b1 +a y2,n+1,α

)
y1,n+ 1

2 ,α
= y1,n,α +

h
24

(
5(b1 +a y2,n,α)+8(b1 +a y2,n+ 1

2 ,α
)− (b1 +ay2,n+1,α)

)
y2,n+1,α = y2,n,α +

h
6

(
b2 +a y1,n,α +4(b2 +a y1,n+ 1

2 ,α
)+b2 +a y1,n+1,α

)
y2,n+ 1

2 ,α
= y2,n,α +

h
24

(
5(b2 +ay1,n,α)+8(b2 +a y1,n+ 1

2 ,α
)− (b2 +ay1,n+1,α)

)
.

The last system can rewritten in the matrix form

AY = R,
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where

A =



1 0 −ah
3

ah
24

0 1 −2ah
3

−ah
6

−ah
3

ah
24 1 0

−2ah
3

−ah
6 0 1


,Y =



y1,n+ 1
2 ,α

y1,n+1,α

y2,n+ 1
2 ,α

y2,n+1,α


,

R =



h
2 0

h 0

0 h
2

0 h


 b1

b2

+



1 5ah
24

1 ah
6

5ah
24 1

ah
6 1


 y1,n,α

y2,n,α

 .

Since

det(A) =
144a4h4−1728a2h2 +20736

20736
6= 0,

then

A−1 =



144
a4h4−12a2h2+144 − 3a2h2

a4h4−12a2h2+144
48ah−2a3h3

a4h4−12a2h2+144 − ah(a2h2+12)
2a4h4−24a2h2+288

48a2h2

a4h4−12a2h2+144
144−12a2h2

a4h4−12a2h2+144
8ah(a2h2+12)

a4h4−12a2h2+144 − 4ah(a2h2−6)
a4h4−12a2h2+144

48ah−2a3h3

a4h4−12a2h2+144 − ah(a2h2+12)
2a4h4−24a2h2+288

144
a4h4−12a2h2+144 − 3a2h2

a4h4−12a2h2+144
8ah(a2h2+12)

a4h4−12a2h2+144 − 4ah(a2h2−6)
a4h4−12a2h2+144

48a2h2

a4h4−12a2h2+144
144−12a2h2

a4h4−12a2h2+144


.

Thus, 

y1,n+ 1
2 ,α

y1,n+1,α

y2,n+ 1
2 ,α

y2,n+1,α


= C1

 b1

b2

+ C2

 y1,n,α

y2,n,α

 ,
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where

C1 =



72h−3a2h3

a4h4−12a2h2+144
36ah2−3a3h4

2a4h4−24a2h2+288

12h(a2h2+12)
a4h4−12a2h2+144

72ah2

a4h4−12a2h2+144

36ah2−3a3h4

2a4h4−24a2h2+288
72h−3a2h3

a4h4−12a2h2+144

72ah2

a4h4−12a2h2+144
12h(a2h2+12)

a4h4−12a2h2+144


and C2 =



−a4h4+12a2h2+288
2a4h4−24a2h2+288

72ah−3a3h3

a4h4−12a2h2+144

a4h4+60a2h2+144
a4h4−12a2h2+144

12ah(a2h2+12)
a4h4−12a2h2+144

72ah−3a3h3

a4h4−12a2h2+144
−a4h4+12a2h2+288
2a4h4−24a2h2+288

12ah(a2h2+12)
a4h4−12a2h2+144

a4h4+60a2h2+144
a4h4−12a2h2+144


.

Then,

y1,n+1,α = θ1y1,n,α + γ1b1 +θ2y2,n,α + γ2b2,

y2,n+1,α = θ2y1,n,α + γ2b1 +θ1y2,n,α + γ1b2,

where

θ1 =
a4h4 +60a2h2 +144
a4h4−12a2h2 +144

, θ2 =
12ah

(
a2h2 +12

)
a4h4−12a2h2 +144

,

γ1 =
12h

(
a2h2 +12

)
a4h4−12a2h2 +144

, γ2 =
72ah2

a4h4−12a2h2 +144
.

4.2 Second Order Fuzzy Initial Value Problems

In this section, a proposed method of second order will be implemented to solve

the second order fuzzy initial value problem. In addition, some theoretical results will be

given.

Consider the following fuzzy initial value problem

y′′(t) = f (t,y,y′), t ≥ 0, (4.7)

y(0) = â, (4.8)

y′(0) = b̂. (4.9)
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Let the α-level of the solution y(t), â, b̂ and the function f (t,y,y′) be given by

y(t,α) = [y1(t,α),y2(t,α)] ,

y′(t,α) =
[
y′1(t,α),y′2(t,α)

]
,

y(0,α) = [a1,a2 ] ,

y′(0,α) = [b1,b2] ,

f (t,y,y′,α) =
[

f1(t,y(t,α),y′(t,α)), f2(t,y(t,α),y′(t,α))
]
.

Following the technique described in Chapter 3, the fuzzy HBM1 is given by

y1,n+1,α = y1,n,α +h y′1,n,α +
h2

72
(9 f1,n,α +25 f1,n+ 2

5 ,α
+2 f1,n+1,α),

y1,n+ 2
5 ,α

= y1,n,α +
2h
5

y′1,n,α +
2h2

1125
(27 f1,n,α +20 f1,n+ 2

5 ,α
−2 f1,n+1,α),

y′1,n+1,α = y′1,n,α +
h

36
(3 f1,n,α +25 f1,n+ 2

5 ,α
+8 f1,n+1,α),

y′1,n+ 2
5 ,α

= y′1,n,α +
h

225
(39 f1,n,α +55 f1,n+ 2

5 ,α
−4 f1,n+1,α),

y2,n+1,α = y2,n,α +h y′2,n,α +
h2

72
(9 f2,n,α +25 f2,n+ 2

5 ,α
+2 f2,n+1,α),

y2,n+ 2
5 ,α

= y2,n,α +
2h
5

y′2,n,α +
2h2

1125
(27 f2,n,α +20 f2,n+ 2

5 ,α
−2 f2,n+1,α),

y′2,n+1,α = y′2,n,α +
h

36
(3 f2,n,α +25 f2,n+ 2

5 ,α
+8 f2,n+1,α),

y′2,n+ 2
5 ,α

= y′2,n,α +
h

225
(39 f2,n,α +55 f2,n+ 2

5 ,α
−4 f2,n+1,α),

where

f1,n,α = min{ f (tn,w,w′) : w ∈ [y1,n,α ,y2,n,α ] ,w′ ∈
[
y′1,n,α ,y

′
2,n,α

]
},

f2,n,α = max{ f (tn,w,w′) : w ∈ [y1,n,α ,y2,n,α ] ,w′ ∈
[
y′1,n,α ,y

′
2,n,α

]
},

f1,n+ 2
5 ,α

= min{ f (tn+ 2
5
,w,w′) : w ∈

[
y1,n+ 2

5 ,α
,y2,n+ 2

5 ,α

]
,w′ ∈

[
y′1,n+ 2

5 ,α
,y′2,n+ 2

5 ,α

]
},

f2,n+ 2
5 ,α

= max{ f (tn+ 2
5
,w,w′) : w ∈

[
y1,n+ 2

5 ,α
,y2,n+ 2

5 ,α

]
,w′ ∈

[
y′1,n+ 2

5 ,α
,y′2,n+ 2

5 ,α

]
},

f1,n+1,α = min{ f (tn+1,w,w′) : w ∈ [y1,n+1,α ,y2,n+1,α ] ,w′ ∈
[
y′1,n+1,α ,y

′
2,n+1,α

]
},
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f2,n+1,α = max{ f (tn+1,w,w′) : w ∈ [y1,n+1,α ,y2,n+1,α ] ,w′ ∈
[
y′1,n+1,α ,y

′
2,n+1,α

]
}.

In next theorem, the case when f (t,y,y′) is monotonic function of y and y′ is studied.

Theorem 4.2.1. Let f (t,y,y′) be increasing function in y and y′. Then the following are

true.

• If y > 0 and y′ > 0, then

f1,n+ j,α = f (tn+ j,y1,n+ j,α ,y′1,n+ j,α), f2,n+ j,α = f (tn+ j,y2,n+ j,α ,y′2,n+ j,α), f or j = 0,
2
5
, 1.

• If y > 0 and y′ < 0, then

f1,n+ j,α = f (tn+ j,y1,n+ j,α ,y′2,n+ j,α), f2,n+ j,α = f (tn+ j,y2,n+ j,α ,y′1,n+ j,α), f or j = 0,
2
5
, 1.

• If y < 0 and y′ < 0, then

f1,n+ j,α = f (tn+ j,y2,n+ j,α ,y′2,n+ j,α), f2,n+ j,α = f (tn+ j,y1,n+ j,α ,y′1,n+ j,α), f or j = 0,
2
5
, 1.

• If y < 0 and y′ > 0, then

f1,n+ j,α = f (tn+ j,y2,n+ j,α ,y′1,n+ j,α), f2,n+ j,α = f (tn+ j,y1,n+ j,α ,y′2,n+ j,α), f or j = 0,
2
5
, 1.

The proof of the theorem follows straight forward. The functions fi,n+ j,α for

i = 1,2, and j = 0, 2
5 ,1 can be generated for the decreasing case in similar way as in

Theorem 4.2.1.

In the next theorem, the case when f (t,y,y′) is linear function of y and y′ is investigated.
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Theorem 4.2.2. Let ĉ = [c1,c2] be a fuzzy number, a, b ∈R and f (t,y,y′) = ay′+by+ ĉ.

Then the fuzzy system of HBM1 becomes as follow,

1. If a≥ 0, and b≥ 0, then

Yn+1 = A−1
1 B1 y′j,n,α +A−1

1 C1 y j,n,α +A−1
1 D1 c j,

for j = 1 and 2, where

A1 =



1− 8bh2

225
4bh2

1125 −8ah2

225
4ah2

1125

−25bh2

72 1− 2bh2

72 −25ah2

72 −2ah2

72

−55bh
225

4bh
225 1− 55ah

225
4ah
225

−25bh
36 −8bh

36 −25ah
36 1− 8ah

36


, B1 =



6ah2

125 + 2h
5

9ah2

72 +h

39ah
225 +1

3ah
36 +1


,

C1 =



6bh2

125 +1

9bh2

72 +1

39bh
225

3bh
36


, D1 =



2h2

25

h2

2

2h
5

h


, Yn+1 =



y j,n+ 2
5 ,α

y j,n+1,α

y′
j,n+ 2

5 ,α

y′j,n+1,α



2. If a≥ 0, and b < 0, then

Yn+1 = A−1
2 B2

 y′1,n,α

y′2,n,α

+A−1
2 C2

 y1,n,α

y2,n,α

+A−1
2 D2

 c1

c2

 ,
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where

A2 =



1 0 − 8ah2

225
4ah2

1125 − 8bh2

225
4bh2

1125 0 0

0 1 − 25ah2

72 − 2ah2

72 − 25bh2

72 − 2bh2

72 0 0

0 0 1− 55ah
225

4ah
225 − 55bh

225
4bh
225 0 0

0 0 − 25ah
36 1− 8ah

36 − 25bh
36 − 8bh

36 0 0

− 8bh2

225
4bh2

1125 0 0 1 0 − 8ah2

225
4ah2

1125

− 25bh2

72 − 2bh2

72 0 0 0 1 − 25ah2

72 − 2ah2

72

− 55bh
225

4bh
225 0 0 0 0 1− 55ah

225
4ah
225

− 25bh
36 − 8bh

36 0 0 0 0 − 25ah
36 1− 8ah

36



,

B2 =



6ah2

125 + 2h
5 0

9ah2

72 +h 0

39ah
225 +1 0

3ah
36 +1 0

0 6ah2

125 + 2h
5

0 9ah2

72 +h

0 39ah
225 +1

0 3ah
36 +1



, C2 =



1 6bh2

125

1 9bh2

72

0 39bh
225

0 3bh
36

6bh2

125 1

9bh2

72 1

39bh
225 0

3bh
36 0



,

D2 =



2h2

25 0

h2

2 0

2h
5 0

h 0

0 2h2

25

0 h2

2

0 2h
5

0 h



, Yn+1 =



y1,n+ 2
5 ,α

y1,n+1,α

y′
1,n+ 2

5 ,α

y′1,n+1,α

y2,n+ 2
5 ,α

y2,n+1,α

y′
2,n+ 2

5 ,α

y′2,n+1,α



.
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3. If a≤ 0, and b > 0, then

Yn+1 = A−1
3 B3

 y′1,n,α

y′2,n,α

+A−1
3 C3

 y1,n,α

y2,n,α

+A−1
3 D3

 c1

c2

 ,

where

A3 =



1− 8bh2

225
4bh2

1125 0 0 0 0 − 8ah2

225
4ah2

1125

− 25bh2

72 1− 2bh2

72 0 0 0 0 − 25ah2

72 − 2ah2

72

− 55bh
225

4bh
225 1 0 0 0 − 55ah

225
4ah
225

− 25bh
36 − 8bh

36 0 1 0 0 − 25ah
36 − 8ah

36

0 0 − 8ah2

225
4ah2

1125 1− 8bh2

225
4bh2

1125 0 0

0 0 − 25ah2

72 − 2ah2

72 − 25bh2

72 1− 2bh2

72 0 0

0 0 − 55ah
225

4ah
225 − 55bh

225
4bh
225 1 0

0 0 − 25ah
36 − 8ah

36 − 25bh
36 − 8bh

36 0 1



,

B3 =



2h
5

6ah2

125

h 9ah2

72

1 39ah
225

1 3ah
36

6ah2

125
2h
5

9ah2

72 h

39ah
225 1

3ah
36 1



, C3 =



6bh2

125 +1 0

9bh2

72 +1 0

39bh
225 0

3bh
36 0

0 6bh2

125 +1

0 9bh2

72

0 39bh
225

0 3bh
36



,

D3 =



2h2

25 0

h2

2 0

2h
5 0

h 0

0 2h2

25

0 h2

2

0 2h
5

0 h



, Yn+1 =



y1,n+ 2
5 ,α

y1,n+1,α

y′
1,n+ 2

5 ,α

y′1,n+1,α

y2,n+ 2
5 ,α

y2,n+1,α

y′
2,n+ 2

5 ,α

y′2,n+1,α



.
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4. If a≤ 0, and b < 0, then

Yn+1 = A−1
4 B4

 y′1,n,α

y′2,n,α

+A−1
4 C4

 y1,n,α

y2,n,α

+A−1
4 D4

 c1

c2

 ,

where

A4 =



1 0 0 0 − 8bh2

225
4bh2

1125 − 8ah2

225
4ah2

1125

0 1 0 0 − 25bh2

72 − 2bh2

72 − 25ah2

72 − 2ah2

72

0 0 1 0 − 55bh
225

4bh
225 − 55ah

225
4ah
225

0 0 0 1 − 25bh
36 − 8bh

36 − 25ah
36 − 8ah

36

− 8bh2

225
4bh2

1125 − 8ah2

225
4ah2

1125 1 0 0 0

− 25bh2

72 − 2bh2

72 − 25ah2

72 − 2ah2

72 0 1 0 0

− 55bh
225

4bh
225 − 55ah

225
4ah
225 0 0 1 0

− 25bh
36 − 8bh

36 − 25ah
36 − 8ah

36 0 0 0 1



,

B4 =



2h
5

6ah2

125

h 9ah2

72

1 39ah
225

1 3ah
36

6ah2

125
2h
5

9ah2

72 h

39ah
225 1

3ah
36 1



, C4 =



1 6bh2

125

1 9bh2

72

0 39bh
225

0 3bh
36

6bh2

125 1

9bh2

72 1

39bh
225 0

3bh
36 0



,

D4 =



2h2

25 0

h2

2 0

2h
5 0

h 0

0 2h2

25

0 h2

2

0 2h
5

0 h



, Yn+1 =



y1,n+ 2
5 ,α

y1,n+1,α

y′
1,n+ 2

5 ,α

y′1,n+1,α

y2,n+ 2
5 ,α

y2,n+1,α

y′
2,n+ 2

5 ,α

y′2,n+1,α



.
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Proof. 1) Let a≥ 0 and b≥ 0. Then,

f (tn+ j,yi,n+ j,α ,y′i,n+ j,α) = ci +byi,n+ j,α +ay′i,n+ j,α ,

where i = 1,2 and j = 0, 2
5 ,1. Thus,

y1,n+1,α = y1,n,α +h y′1,n,α +
h2

72

(
9(c1 +by1,n,α +ay′1,n,α)+25(c1 +by1,n+ 2

5 ,α
+ay′1,n+ 2

5 ,α
)

+ 2(c1 +by1,n+1,α +ay′1,n+1,α)
)
,

y1,n+ 2
5 ,α

= y1,n,α +
2h
5

y′1,n,α +
2h2

1125

(
27(c1 +by1,n,α +ay′1,n,α)+20(c1 +by1,n+ 2

5 ,α
+ay′1,n+ 2

5 ,α
)

−2(c1 +by1,n+1,α +ay′1,n+1,α)
)
,

y′1,n+1,α = y′1,n,α +
h
36

(
3(c1 +by1,n,α +ay′1,n,α)+25(c1 +by1,n+ 2

5 ,α
+ay′1,n+ 2

5 ,α
)

+8(c1 +by1,n+1,α +ay′1,n+1,α)
)
,

y′1,n+ 2
5 ,α

= y′1,n,α +
h

225

(
39(c1 +by1,n,α +ay′1,n,α)+55(c1 +by1,n+ 2

5 ,α
+ay′1,n+ 2

5 ,α
)

−4(c1 +by1,n+1,α +ay′1,n+1,α)
)
,

y2,n+1,α = y2,n,α +h y′2,n,α +
h2

72

(
9(c2 +by2,n,α +ay′2,n,α)+25(c2 +by2,n+ 2

5 ,α
+ay′2,n+ 2

5 ,α
)

+2(c2 +by2,n+1,α +ay′2,n+1,α)
)
,

y2,n+ 2
5 ,α

= y2,n,α +
2h
5

y′2,n,α +
2h2

1125

(
27(c2 +by2,n,α +ay′2,n,α)+20(c2 +by2,n+ 2

5 ,α
+ay′2,n+ 2

5 ,α
)

−2(c2 +by2,n+1,α +ay′2,n+1,α)
)
,

y′2,n+1,α = y′2,n,α +
h
36

(
3(c2 +by2,n,α +ay′2,n,α)+25(c2 +by2,n+ 2

5 ,α
+ay′2,n+ 2

5 ,α
)

+8(c2 +by2,n+1,α +ay′2,n+1,α)
)
,

y′2,n+ 2
5 ,α

= y′2,n,α +
h

225

(
39(c2 +by2,n,α +ay′2,n,α)+55(c2 +by2,n+ 2

5 ,α
+ay′2,n+ 2

5 ,α
)

−4(c2 +by2,n+1,α +ay′2,n+1,α)
)
.
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The last system can be rewritten in the matrix form as

A1Y1 = B1 y′1,n,α +C1 y1,n,α +D1 c1, A1Y2 = B1 y′2,n,α +C1 y2,n,α +D1 c2,

where

A1 =



1− 8bh2

225
4bh2

1125 −8ah2

225
4ah2

1125

−25bh2

72 1− 2bh2

72 −25ah2

72 −2ah2

72

−55bh
225

4bh
225 1− 55ah

225
4ah
225

−25bh
36 −8bh

36 −25ah
36 1− 8ah

36


, Y1 =



y1,n+ 2
5 ,α

y1,n+1,α

y′
1,n+ 2

5 ,α

y′1,n+1,α


, Y2 =



y2,n+ 2
5 ,α

y2,n+1,α

y′
2,n+ 2

5 ,α

y′2,n+1,α


,

B1 =



6ah2

125 + 2h
5

9ah2

72 +h

39ah
225 +1

3ah
36 +1


, C1 =



6bh2

125 +1

9bh2

72 +1

39bh
225

3bh
36


, D1 =



2h2

25

h2

2

2h
5

h


.

Since

det(A1) =
43740000a2h2+15309000abh3−306180000ah+1458000b2h4−41553000bh2+656100000

656100000 6= 0,

then A−1
1 exist. Thus for j = 1,2,



y j,n+ 2
5 ,α

y j,n+1,α

y′
j,n+ 2

5 ,α

y′j,n+1,α


= E1 y′j,n,α +E2 y j,n,α +E3 c j,

where
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E1 = A−1
1 B1 =



2h(h(a(3abh3+16(a2+b)h2−1200)−165bh)+4500)
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)
h(h(186bh+a(−3abh3−5(a2+b)h2+60))+1800)
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800

22500−h(4h(8bh2+225)a2+3(b(2bh2+135)h2+500)a+3bh(24bh2−125))
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)

h(5h(bh2+36)a2+3(bh2+16)(bh2+20)a+3bh(9bh2+262))+1800
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800


,

E2 = A−1
1 C1 =



6ab2h5+8b(4a2−5b)h4−75abh3+375(4a2+b)h2−10500ah+22500
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)

h(−5h(bh2−24)a2−3(b(bh2+26)h2+280)a+2bh(11bh2+393))+1800
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800

− 2bh(bh2+75)(3bh2+16ah−60)
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)

bh(bh2+12)(3bh2+5ah+150)
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800


,

E3 = A−1
1 D1 =



2h2(ah−15)(3bh2+16ah−60)
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)

− h2(ah−6)(3bh2+5ah+150)
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800

− 2h(bh2+75)(3bh2+16ah−60)
25(h(60ha2+21(bh2−20)a+bh(2bh2−57))+900)

h(bh2+12)(3bh2+5ah+150)
2h(60ha2+21(bh2−20)a+bh(2bh2−57))+1800


.

Using a similar argument, the three other cases (2), (3), and (4) can be proven.

4.3 Numerical Results of FIVPs

In this section, a numerical examples will be presented to show the efficiency of

the proposed methods. The two types of FIVPs will be studied which are linear, and non-

linear problems for first and second-order fuzzy initial value problems, respectively.

Example 4.3.1. Consider the following linear first order fuzzy initial value problem

y′(x) = (x2� y(x))⊕ (γ̂� x2), y(0) = γ̂

where α-level set for γ̂ = (1 2 3) is γα = [1 + α,3−α] and, h = 0.01. Let y(x) =

[y1(x,α),y2(x,α)] be the fuzzy solution. By implementing α-level sets, the problem be-
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comes

[y′1(x,α),y′2(x,α)] = (x2� [y1(x,α),y2(x,α)])⊕ [x2� (1+α),x2� (3−α)],

[y1(0,α),y2(0,α)] = [1+α,3−α].

Using HBM1 for the lower bound,

y1,n+1 = y1,n +
h
6

(
x2

ny1,n + x2
n(1+α)+4

(
x2

n+ 1
2
y1,n+ 1

2
+ x2

n+ 1
2
(1+α)

)
+

x2
n+1y1,n+1 + x2

n+1(1+α)
)
,

y1,n+ 1
2
= y1,n +

h
24

(
5
(
x2

ny1,n + x2
n(1+α)

)
+8
(

x2
n+ 1

2
y1,n+ 1

2
+ x2

n+ 1
2
(1+α)

)
−(

x2
n+1y1,n+1 + x2

n+1(1+α)
))

.

Let xn = nh, xn+ 1
2
= h

2 +nh and xn+1 = h+nh. Then, the above system can be written in

a matrix form as

Ym = A−1B y1,n +A−1C1,

where

Ym =

y1,n+1

y1,n+ 1
2

 , A =

1− h
6(h+nh)2 4h

6 (
h
2 +nh)2

h
24(h+nh)2 1− 8h

24(
h
2 +nh)2

 , B =

 1+ h
6(nh)2

1+ 5h
24(nh)2

 ,

and

C1 =

 h
6(1+α)

(
(nh)2 +4(h

2 +nh)2 +(h+nh)2)
h
24(1+α)

(
5(nh)2 +8(h

2 +nh)2− (h+nh)2)
 .
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Similarly, HBM1 can be applied for the upper bound. Then,

Ym = A−1B y2,n +A−1C2

where

Ym =

y2,n+1

y2,n+ 1
2

 , A =

1− h
6(h+nh)2 4h

6 (
h
2 +nh)2

h
24(h+nh)2 1− 8h

24(
h
2 +nh)2

 , B =

 1+ h
6(nh)2

1+ 5h
24(nh)2

 ,

C2 =

 h
6(3−α)

(
(nh)2 +4(h

2 +nh)2 +(h+nh)2)
h
24(3−α)

(
5(nh)2 +8(h

2 +nh)2− (h+nh)2)
 .

The errors of approximation of y1,n and y2,n for α = 0, 0.25, 0.5, 0.75, 1, are given in

Tables 4.1 and 4.2, respectively, where the exact solution is given by

[(2e
x3
3 −1)(1+α),(2e

x3
3 −1)(3−α)].

Table 4.1: The absolute error in approximating y1,n for h = 0.01.

y1,n

x

α
0 0.25 0.5 0.75 1

0 0 0 0 0 0

0.1 1.38889×10−12 1.73617×10−12 2.08322×10−12 2.4305×10−12 2.77778×10−12

0.2 5.56177×10−12 6.95222×10−12 8.34266×10−12 9.7331×10−12 1.11235×10−11

0.3 1.25429×10−11 1.56786×10−11 1.88143×10−11 2.195×10−11 2.50857×10−11

0.4 2.23879×10−11 2.79847×10−11 3.35818×10−11 3.91789×10−11 4.47757×10−11

0.5 3.51532×10−11 4.39417×10−11 5.27298×10−11 6.15179×10−11 7.03064×10−11

0.6 5.07772×10−11 6.34715×10−11 7.61657×10−11 8.886×10−11 1.01554×10−10

0.7 6.87681×10−11 8.59601×10−11 1.03152×10−10 1.20344×10−10 1.37536×10−10

0.8 8.74738×10−11 1.09342×10−10 1.31211×10−10 1.53079×10−10 1.74948×10−10

0.9 1.02472×10−10 1.2809×10−10 1.53708×10−10 1.79326×10−10 2.04944×10−10

1 1.03102×10−10 1.28878×10−10 1.54654×10−10 1.80429×10−10 2.06205×10−10
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Table 4.2: The absolute error in approximating y2,n for h = 0.01.

y2,n

x

α
0 0.25 0.5 0.75 1

0 0 0 0 0 0

0.1 4.16644×10−12 3.81961×10−12 3.47233×10−12 3.12506×10−12 2.77778×10−12

0.2 1.66849×10−11 1.52944×10−11 1.3904×10−11 1.25135×10−11 1.11231×10−11

0.3 3.76281×10−11 3.44924×10−11 3.13567×10−11 2.8221×10−11 2.50853×10−11

0.4 6.71627×10−11 6.15659×10−11 5.59686×10−11 5.03717×10−11 4.47749×10−11

0.5 1.05457×10−10 9.66689×10−11 8.78808×10−11 7.90923×10−11 7.03042×10−11

0.6 1.52329×10−10 1.39635×10−10 1.26941×10−10 1.14246×10−10 1.01552×10−10

0.7 2.06303×10−10 1.89111×10−10 1.71919×10−10 1.54727×10−10 1.37534×10−10

0.8 2.6242×10−10 2.40551×10−10 2.18682×10−10 1.96814×10−10 1.74946×10−10

0.9 3.07414×10−10 2.81795×10−10 2.56177×10−10 2.3056×10−10 2.04941×10−10

1 3.09304×10−10 2.83528×10−10 2.57752×10−10 2.31977×10−10 2.06201×10−10

α

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y1(x,α)

y1(x,0)

y1(x,0.25)

y1(x,0.5)

y1(x,0.75)

y1(x,1)

Figure 4.1: The approximate solution y1 for α = 0,0.25,0.5,0.75,1.

α

0.2 0.4 0.6 0.8 1.0
x

1
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3

4

5

y2(x,α)

y2(x,0)

y2(x,0.25)

y2(x,0.5)

y2(x,0.75)

y2(x,1)

Figure 4.2: The approximate solution y2 for α = 0,0.25,0.5,0.75,1.



69

0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

y1(x,0)

yc(x)

y2(x,0)

0.2 0.4 0.6 0.8 1.0
x

1

2

3

4

5

y1(x,0.25)

yc(x)

y2(x,0.25)

0.2 0.4 0.6 0.8 1.0
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y2(x,0.75)

Figure 4.3: The crisp (yc) and approximate solutions (y1, y2), for different α s.

Example 4.3.2. Consider the nonlinear first order fuzzy initial value problem

y′(x) = y(x)2 + x2, y(0) = γ̂, x≥ 0,

where α-level set for γ̂ = (−0.1 0 0.1) is γ̂α = [0.1(α−1),0.1(1−α)], and h = 0.1. Let

y(x) = [y1(x,α),y2(x,α)] be a fuzzy solution. By implementing α-level sets, the problem

becomes

[y′1(x,α),y′2(x,α)]= [y1(x,α),y2(x,α)]2+x2, [y1(0,α),y2(0,α)]= [0.1(α−1),0.1(1−α)],
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where the exact solution is given by

yk(x,α) =
(1−α)J−3

4
(x2

2 ) Γ(1
4)+(−1)k20xJ3

4
(x2

2 ) Γ(3
4)

(α−1)J1
4
(x2

2 ) Γ(1
4)+(−1)k20J−1

4
(x2

2 ) Γ(3
4)

,

for k = 1, 2,Jn(z) is the Bessel function of the first kind, and Γ(z) is the Euler Gamma

function. In Table 4.3, the absolute error of the results obtained by the current (HBM1)

method and the ones obtained in [27] is presented.

Table 4.3: Absolute error for y1,0.5 and y2,0.5.

α

Error
Er for y1,0.5 Er for y2,0.5 Er for y1,0.5(HPM) in [27] Er for y2,0.5 (HPM) in [27]

0 5.57124×10−8 5.43066×10−8 1.63068×10−6 1.99421×10−6

0.2 5.6527×10−8 5.58044×10−8 1.03431×10−6 1.27971×10−6

0.4 5.72014×10−8 5.68912×10−8 6.33486×10−7 8.09126×10−7

0.6 5.77142×10−8 5.76168×10−8 3.51316×10−7 4.87165×10−7

0.8 5.80413×10−8 5.80253×10−8 1.34909×10−7 2.50421×10−7

1 5.81552×10−8 5.81552×10−8 5.46386×10−8 5.46386×10−8

Example 4.3.3. Consider the second order fuzzy linear initial value problem

y′′ =−y(x), y(0) = 0, y′(0) = γ̂,

where γα = [0.9+ 0.1α,1.1− 0.1α], and h = 0.1. Let y(x) = [y1(x,α),y2(x,α)] be a

fuzzy solution and y′(x) = [y′1(x,α),y′2(x,α)].

By implement the α-level sets, the problem will be

[y′′1(x,α),y′′2(x,α)] = [−y2(x,α),−y1(x,α)], [y1(0,α),y2(0,α)] = 0,
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[y′1(0,α),y′2(0,α)] = [0.9+0.1α,1.1−0.1α].

Using HBM1,

y1,n+1,α = y1,n,α +h y′1,n,α −
h2

72
(9y2,n,α +25y2,n+ 2

5 ,α
+2y2,n+1,α),

y1,n+ 2
5 ,α

= y1,n,α +
2h
5

y′1,n,α −
2h2

1125
(27y2,n,α +20y2,n+ 2

5 ,α
−2y2,n+1,α),

y′1,n+1,α = y′1,n,α −
h

36
(3y2,n,α +25y2,n+ 2

5 ,α
+8y2,n+1,α),

y′1,n+ 2
5 ,α

= y′1,n,α −
h

225
(39y2,n,α +55y2,n+ 2

5 ,α
−4y2,n+1,α),

y2,n+1,α = y2,n,α +h y′2,n,α −
h2

72
(9y1,n,α +25y1,n+ 2

5 ,α
+2y1,n+1,α),

y2,n+ 2
5 ,α

= y2,n,α +
2h
5

y′2,n,α −
2h2

1125
(27y1,n,α +20y1,n+ 2

5 ,α
−2y1,n+1,α),

y′2,n+1,α = y′2,n,α −
h

36
(3y1,n,α +25y1,n+ 2

5 ,α
+8y1,n+1,α),

y′2,n+ 2
5 ,α

= y′2,n,α −
h

225
(39y1,n,α +55y1,n+ 2

5 ,α
−4y1,n+1,α).

The above system can be written in the matrix form

Ym = A−1Bym +A−1Cy′m,

where

A =



1 0 0 0 2h2

72
25h2

72 0 0

0 1 0 0 − 4h2

1125
40h2

1125 0 0

0 0 1 0 8h
36

25h
36 0 0

0 0 0 1 − 4h
225

55h
225 0 0

2h2

72
25h2

72 0 0 1 0 0 0

− 4h2

1125
40h2

1125 0 0 0 1 0 0

8h
36

25h
36 0 0 0 0 1 0

− 4h
225

55h
225 0 0 0 0 0 1



, B =



1 −9h2

72

1 − 54h2

1125

0 −3h
36

0 −39h
225

−9h2

72 1

− 54h2

1125 1

−3h
36 0

−39h
225 0



,
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C =



h 0

2h
5 0

1 0

1 0

0 h

0 2h
5

0 1

0 1



, Ym =



y1,n+1

y1,K+n

y′1,n+1

y′1,k+n

y2,n+1

y2,K+n

y′2,n+1

y′2,k+n



, ym =

 y1,n

y2,n

 , y′m =

 y′1,n

y′2,n

 .

The error in approximating y1,n and y2,n for α = 0, 0.25, 0.5, 0.75, 1 are given in Table

4.4 and 4.5, respectively, where the exact solution is given by

[(0.1α−0.1)sinh(x)+ sin(x),(0.1 −0.1α)sinh(x)+ sin(x)].

Table 4.4: The absolute error in approximating y1,n for h = 0.1

y1,n

x

α
0 0.25 0.5 0.75 1

0 0 0 0 0 0

0.1 4.50043×10−12 4.39764×10−12 4.29483×10−12 4.19204×10−12 4.08924×10−12

0.2 2.49082×10−8 2.56047×10−8 2.63012×10−8 2.69978×10−8 2.76943×10−8

0.3 7.40714×10−8 7.6176×10−8 7.82805×10−8 8.03851×10−8 8.24896×10−8

0.4 1.46254×10−7 1.50506×10−7 1.54759×10−7 1.59012×10−7 1.63264×10−7

0.5 2.39628×10−7 2.46812×10−7 2.53997×10−7 2.61182×10−7 2.68366×10−7

0.6 3.51805×10−7 3.62763×10−7 3.73722×10−7 3.8468×10−7 3.95639×10−7

0.7 4.79859×10−7 4.95509×10−7 5.11159×10−7 5.26808×10−7 5.42458×10−7

0.8 6.20368×10−7 6.41718×10−7 6.63068×10−7 6.84418×10−7 7.05768×10−7

0.9 7.6945×10−7 7.9762×10−7 8.2579×10−7 8.5396×10−7 8.82131×10−7

1 9.22809×10−7 9.59051×10−7 9.95292×10−7 1.03153×10−6 1.06777×10−6
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Table 4.5: The absolute error in approximating y2,n for h = 0.1

y2,n

x

α
0 0.25 0.5 0.75 1

0 0 0 0 0 0

0.1 3.67807×10−12 3.78086×10−12 3.88367×10−12 3.98646×10−12 4.08926×10−12

0.2 3.04804×10−8 2.97839×10−8 2.90874×10−8 2.83908×10−8 2.76943×10−8

0.3 9.09078×10−8 8.88032×10−8 8.66987×10−8 8.45941×10−8 8.24896×10−8

0.4 1.80275×10−7 1.76023×10−7 1.7177×10−7 1.67517×10−7 1.63264×10−7

0.5 2.97104×10−7 2.8992×10−7 2.82735×10−7 2.75551×10−7 2.68366×10−7

0.6 4.39473×10−7 4.28515×10−7 4.17556×10−7 4.06598×10−7 3.95639×10−7

0.7 6.05057×10−7 5.89408×10−7 5.73758×10−7 5.58108×10−7 5.42458×10−7

0.8 7.91169×10−7 7.69819×10−7 7.48469×10−7 7.27119×10−7 7.05768×10−7

0.9 9.94812×10−7 9.66642×10−7 9.38471×10−7 9.10301×10−7 8.82131×10−7

1 1.21274×10−6 1.1765×10−6 1.14026×10−6 1.10402×10−6 1.06777×10−6

α

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

y1(x,α)

y1(x,0)

y1(x,0.25)

y1(x,0.5)

y1(x,0.75)

y1(x,1)

Figure 4.4: The approximate solution y1 for α = 0,0.25,0.5,0.75,1.

α

0.2 0.4 0.6 0.8 1.0
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y2(x,α)

y2(x,0)

y2(x,0.25)

y2(x,0.5)

y2(x,0.75)

y2(x,1)

Figure 4.5: The approximate solution y2 for α = 0,0.25,0.5,0.75,1.
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Figure 4.6: The crisp (yc) and approximate solutions (y1, y2), for α s.

Example 4.3.4. Consider the following nonlinear second order fuzzy initial value prob-

lem

y′′(x) =−
(
y′(x)

)2
, y(0) = γ̂α , y′(0) = θ̂α , 0≤ x≤ 0.1,

where γ̂α = [α,2−α], θ̂α = [1+α,3−α], and h = 0.01. Let y(x) = [y1(x,α),y2(x,α)]

be a fuzzy solution and y′(x) = [y′1(x,α),y′2(x,α)]. Using α-level sets, the problem will

have the following form

[y′′1(x,α),y′′2(x,α)] =−([y1(x,α),y2(x,α)])2 ,
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[y1(0,α),y2(0,α)] = [α,2−α], [y′1(0,α),y′2(0,α)] = [1+α,3−α],

where the exact solution is given by

[
ln((αeα + eα)x+ eα) , ln

((
3e2−α −αe2−α

)
x+ e2−α

)]
.

In Tables 4.6 and 4.7, the absolute error of the results obtained by the current (HBM1)

method and the ones obtained in [11] is presented.

Table 4.6: The absolute error for y1,0.1.

y1,0.1

α

Error
Er for y1,0.1 Er for h1 HAM in [11] Er for h2 HAM in [11] Er for OHAM in [11]

0 2.42502×10−10 1.53529×10−7 3.98956×10−8 1.59889×10−10

0.2 5.79712×10−10 4.51332×10−7 3.91122×10−10 3.91122×10−10

0.4 1.20466×10−9 1.1207×10−6 3.79328×10−9 3.79328×10−9

0.6 2.25974×10−9 2.4597×10−6 4.47279×10−8 2.61947×10−9

0.8 3.92067×10−9 4.9128×10−6 6.92457×10−8 6.69669×10−8

1 6.39707×10−9 9.10987×10−6 1.53606×10−7 1.11097×10−8

Table 4.7: The absolute error for y2,0.1.

y2,0.1

α

Error
Er for y2,0.1 Er for h1 HAM in [11] Er for h2 HAM in [11] Er for OHAM in [11]

0 4.07084×10−8 9.6735×10−5 6.7076×10−6 1.26440×10−7

0.2 2.98335×10−8 6.4822×10−5 3.6619×10−6 9.18889×10−8

0.4 2.13238×10−8 4.2133×10−5 1.8656×10−6 7.34552×10−8

0.6 1.48046×10−8 2.6432×10−5 8.76047×10−7 3.52946×10−8

0.8 9.93257×10−9 1.5907×10−5 3.76985×10−7 1.51728×10−8

1 6.39707×10−9 9.10987×10−6 1.53606×10−7 1.11097×10−8
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4.4 Concluding Remarks

In this section, the analysis of the results will be presented for first and second-

order fuzzy initial value problems. Optimized one-step hybrid block methods have been

proposed for solving fuzzy first and second-order initial value problems of ordinary dif-

ferential equations. The methods are self-starting methods since they depend on the initial

conditions only. The proposed methods are zero stable, have order 3, consistent, and thus

they are convergent. Also, the method for order one IVPs is A-stable as illustrated by the

regions of absolute stability in Figures 3.1. The numerical results show the efficiency of

the current methods where high precision is achieved even when the only one-step point is

used. For researchers who are interested to get more accuracy, they can use two or three

off-step points. The absolute error in this case will be almost zero. Several examples,

linear and nonlinear using the current methods are studied. From Tables 4.1, 4.2, 4.4, and

4.5, it is noted that the results are highly accurate with a small perturbation of errors. In

Tables 4.3, 4.6, and 4.7, the obtained results with other ones obtained in [27] and [11]

respectively are compared. It is remarked that proposed methods are better and more ac-

curate than others in [27] and [11]. Besides, Figures 4.1 and 4.4 show the behavior of the

lower bound solutions y1 are increasing as α increases, and Figures 4.2 and 4.5, show the

behavior of upper bound solutions y2 is decreasing as α increases. Consequently, from

these behaviors, the solutions can be concluded that are fuzzy. At the end, Figures 4.3 and

4.6, show that the crisp solutions are bounded by y1 and y2 and they become close to the

crisp solution as α approaches to one.

For the future work, the boundary value problems will be investigated using HBM1

by applied Simple shooting method. In addition, an application for this method will be

investigated such as eigenvalue problems as fuzzy Sturm-Liouville problems. Moreover,

the delay fuzzy initial value problems will be investigated.
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