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Mast cells (MCs) are innate immune cells with a versatile set of functionalities,

enabling them to orchestrate immune responses in various ways. Aside from their

known role in allergy, they also partake in both allograft tolerance and rejection

through interaction with regulatory T cells, effector T cells, B cells and

degranulation of cytokines and other mediators. MC mediators have both pro-

and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways.

Paradoxically, they are also seen as having potential protective effects in tissue

remodeling post-injury. This manuscript elaborates on current knowledge of the

functional diversity of mast cells in kidney transplants, combining theory and

practice into a MC model stipulating both protective and harmful capabilities in

the kidney transplant setting.
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1 Introduction

Kidney transplant (KTx) recipients often experience progressive transplant injury and loss of

function. Within 10 years, approximately 50% of KTx from deceased donors and 30% of KTx

from living donors suffer complete graft loss (1). Although improved donor-recipient matching

and better immunosuppressive drug combination therapy has resulted in a decrease of early

rejection and graft loss over the past decades, late rejection and graft loss still remain a significant

problem for KTx patients (2–5). While modern immunosuppression can halt an episode of acute

rejection, in approximately half of all patients their graft function will not return to baseline and

they remain at high risk for subsequent graft loss (6). Using the Banff classification of Renal

Allograft Pathology, renal allograft rejection can be broadly categorized into T cell-mediated
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rejection (TCMR) and antibody-mediated rejection (AMR) (7). Both

innate and adaptive immune systems are involved in graft-injury.

General tissue injury initially triggers the innate immune system,

potentially leading to activation of the adaptive immune system by

donor or recipient innate cell antigen presentation and mediator

release through interaction with T cells (8). Interstitial fibrosis (IF)

results from an abundant deposition of extracellular matrix (ECM) in

the tubulointerstitial compartment, eventually leading to scar formation

(9). IF is a marker for graft dysfunction (10), and fibrosis with

inflammation is a strong predictor of subsequent graft dysfunction and

graft loss (10–12). Inflammation within areas of IF and tubular atrophy

(i-IFTA) is a transitional phase between initial inflammation and tubulitis

and either resolved fibrosis or chronic i-IFTA with progressive fibrosis. i-

IFTA is a strong predictor of graft failure in TMCR, but a diverse gene

expression pattern is witnessed, including B cell, plasma cell andmast cell

transcripts (13).

Mast cells (MCs) are a critical component of both innate and

adaptive immune responses, for example in allergy and anaphylaxis

(14, 15), and host defense against parasites and animal toxins (16–18).

MCs are also associated with various fibrotic diseases, although their

exact role in fibrosis remains controversial (19, 20). To what extent MCs

contribute to the formation of graft fibrosis and its relation to transplant

outcome remains unclear (2). This manuscript will first focus on the

current knowledge of MCs within the KTx setting, elaborating on the

functional diversity of MCs in KTx. Thereafter, an integrative model of

MCs in kidney tolerance and rejection will be proposed.
2 Current knowledge on functionality
of mast cell in kidney allografts

21 Mast cell development and function

The exact origin of MCs remains unclear, with both a bi-potent

basophil/mast cell progenitor (21) and a unique progenitor line

besides the known myeloid cell line having been proposed (22, 23).

MCs have a long lifespan, sometimes outlasting an entire immune

response, aiding the process of clearing pathogens, including

helminths (nematodes), reptile and arthropod venoms and certain

tick species (16–18). MCs also partake in and help regulate host

defence against viral and bacterial pathogens (24). As first responders,

MCs possess sensory and regulatory functions in inflammatory

processes, such as pathogen detection, mediator release, cellular and

vascular tissue activation (25), antigen presentation (26) and

pathogen removal (27–31). MCs mature and reside within

peripheral tissues and can be found in almost all vascularized

tissue, being most abundant in and around skin and mucosal

surfaces (17). Furthermore, they have a different molecular

expression profile depending on the tissue they reside and mature

in, but share a common transcriptional MC signature of 128 genes

(32). Additionally, they contain granules filled with premade

mediators, including vasoactive amines (serotonin and histamine),

proteoglycans, proteases (tryptase and chymase) and cytokines (33).

As innate immune cells, MCs possess toll-like receptors (TLRs),

which can be activated by pathogen- or damage-associated molecular

pattern molecules (25) to effect certain MC functions like mediator
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release, their antigen-presenting cell (APC) capabilities and

interaction with dendritic cells (DCs) (34, 35) or interaction with

other immune cells (18, 19). They respond to cell injury

independently of TLRs through IL-33 activation and many other

mediators (36). As an ‘unprofessional’ APC they can, in conjunction

with DCs, fine-tune a type 2 immune response through promoting

DC migration to draining lymph nodes, thereby priming an adequate

T helper 2 (Th2) cell response. MCs and DCs secrete IL-10,

interferons and tissue growth factor beta (TGF-b), thereby assisting

regulatory T cells (Tregs) in their immune-protective actions against

alloreactive T cells (37); thus, they can both activate and inhibit T cell-

mediated responses (18, 34, 38).

There are two types of mast cells described in mice based on their

phenotypical characteristics and their location, namely connective

tissue-type and mucosal type. The first is found more often in serosal

cavities, around venules and near nerves and the latter more often in

the mucosa of the gut and respiratory tract (39). In the human setting,

there are two main types of MCs: those that contain tryptase granules

(MCT), and those containing both tryptase and chymase granules

(MCTC) (40). MCTC also contain cathepsin G, a serine protease

similar to chymase (41). In lung tissue, MC subtype occurrence

depends on its surrounding tissue; MCs around smooth muscle

tissue are mostly MCTCs while MCs in alveoli are more often MCTs

(42). Interestingly, in the mucosa of small intestine most mast cells are

MCTs and in the submucosa the MCTs are only scarcely represented

(43). Differences in the type of mast cell therefor represent their

function within the different microenvironments. Distribution

patterns have not been studied in kidneys, but the MCT is

presumed to be the most prevalent in the normal tubular

interstitium (44), although an MCTCs count of 54% has been

observed (40).
2.2 Mast cells and organ transplant rejection

Chronic rejection is associated with an increase in MCs within the

solid organ transplant, including kidney (40, 44–47), intestine (48),

lung (49), heart (50, 51) and liver (52, 53). An increase in MCs was

also observed during acute rejection (50, 53–56), although not

consistently (51, 52, 57). The increase in MCs could, however, be

secondary to the inflammatory response of rejection, as it is related to

both IF and time post-transplantation, suggesting that MCs are a

marker for cumulative burden of tissue injury (58). Due to the

minimal amount of data investigating mast cells numbers in

transplantation in relation to time post transplantation, it is not

known whether it is time dependent.

In KTx rejection, the number of MCTCs is increased in

comparison to native kidneys, constituting approximately 57-60%

of MCs (40, 44), although a subset of patients with rejection had a low

MCCT to MCT ratio (40). A higher total MC count as well as a higher

MCTC : MCT ratio is related to fibrosis and rejection (40, 44).

Interestingly, both the absolute and relative amount of MCTCs was

drastically increased in patients with poorer transplant outcome,

suggestion a more potent role of chymase in rejection and IF and a

phenotype switch of MC subtype in transplant disease, a

phenomenon also observed in lung Tx (59).
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2.2.1 Mast cell recruitment and activation
Stem cell factor (SCF) is important in MC development,

maturation, activation, recruitment and chemotaxis of (im)mature

MCs (60–62). SCF is secreted by endothelial cells and fibroblasts (63,

64) and binds to the c-KIT receptor. It is found in soluble form (sSCF)

and membrane bound form (mSCF), the latter being cleaved into

sSCF by chymase (65) and matrix metalloproteinase-9 (MMP-9) (66),

both of which are released by MCs. This suggests a positive feedback

loop of degranulation, with chymase release resulting in more sSCF

and thus increased MC recruitment (65). SCF is linked to increased

MC infiltration, fibrosis and interstitial alpha smooth muscle actin (a-
SMA) (63, 67), as well as tissue remodeling (68). SCF stimulation has

a protective role on (c-KIT positive) tubular epithelium and kidney

function after ischemia-reperfusion injury (66, 69) and can be a

predictive factor of eGFR in healthy, aging kidneys (70).

IL-9 has the ability to recruit MCs and is secreted by different cell

types, including Th cells, Tregs and MCs (71). Naive Th cells express

IL-9 after TGF-b and IL-4 exposure, while Th2 cells expresses IL-9

after IL-1 stimulation. IL-10 and SCF exposure enhance IL-9

synthesis by MCs, resulting in a positive feedback loop (72). Finally,

IgE bound antigens can induce MC chemotaxis (61, 73). Donor

specific anti-HLA I and II IgE has been found in transplant studies in

both mice and humans, linking it to rejection (74). Although IgE

presence in the kidney transplant is much higher in AMR, non-anti-

HLA IgE antibodies are also found in areas with interstitial fibrosis

and tubular atrophy (IF/TA) (47).

FcϵRI is a high affinity IgE receptor, giving MCs their infamous

reputation in anaphylaxis. This receptor can be highly fine-tuned

depending on the type of stimulation (75, 76); stimulation is at its

strongest when bound to high concentrations of IgE with high antigen

affinity and proximate IgE epitopes within the antigen (33). IgE-

independent activation of MCs has also been described, for example by

compound 48/80 (a synthetic ‘histamine liberator’ used to study MC

degranulation (77, 78)), substance P and the Mas-related G protein-

coupled receptor-X2 (MRGPRX2 or MRGX2), although MRGPRX2 is

presumably absent in renal mast cells (78). Finally, MC expression of

high-affinity IgG receptor FCgRI has also been reported (79).

Interestingly, low dose antigen exposure of MCs can result in

desensitization of the FcϵRI and MC tolerance to the antigen (75).

Unique to the immune system, MCs can recover and resynthesize new

granules after IgE (80, 81) or compound 48/80 mediated degranulation,

after which they can be reactivated again by either mechanism (82). MCs

can release granules with mixed mediator contents, or specific mediators,

depending on the type of activation (33). MC stimulation and exocytosis

can be highly fine-tuned, with focused or ‘piecemeal exocytosis’, multi-

vesicular exocytosis and compound exocytosis (mass degranulation),

depending on the amount of intracellular Ca2+ and type of activation

(83, 84).

Combinations of IgE and substance P stimulation can result in either

very localized (piecemeal) or systemic (compound) degranulation of

MCs. Piecemeal exocytosis is related to complement factors C3a and C5a,

endothelin and, most importantly, substance P (83). C3a and C5a are

chemo-attractants for MCs in allergy and result in a rapid release of

intracellular Ca2+ when activating MCs (85), which also has been

observed in rejection (74).

After mast cell degranulation, proinflammatory cytokines as

TNF-a, IL-6 and IL-8 are rapidly released. These cytokines also
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contribute to the inflammatory process as described in the

following sections. In contrast, inhibition of IgE-dependent mast

cell activation can be achieved by the cytokine TGF-b can inhibit

mast cell degranulation and TNF-a production (86).

2.2.2 Mast cells and pro-inflammatory pathways
MCs can produce and release pro-inflammatory cytokines upon

various different stimuli. IgE stimulates MCs to release TNF-a, a pro-
inflammatory cytokine, resulting in the recruitment of innate

immune cells like neutrophils (25, 87), DCs and T cells. Mouse

models have shown that after MC degranulation, histamine and

serotonin increase vascular permeability (88, 89). In human models,

MCs have been shown to also selectively release vascular endothelial

growth factor (VEGF) together with IL-6 and IL-8 (90, 91). This

combination can increase local vascular permeability and stimulate

leukocyte and lymphocyte infiltration, which can result in a

transplant can result in transplant dysfunction, due to rejection.

Indirect communication with other innate cells occurs when MC

granules are ingested by DCs and macrophages (25, 34).

2.2.3 Crosstalk with T cells
Activated MCs primed with IgE can interact with various T cells,

mainly through MHC-TCR interaction with co-stimulation of

OX40L-OX40. TNF-a upregulates OX40L expression by MCs, and

it is a potent factor in MC-T cell interaction (92). When linked with

CD4+ Th cells, (co-)stimulation of TNF-a, IL-6 and MHC II antigen

presentation will result in activation and proliferation of Th cells and

release of pro-inflammatory cytokines (35, 93). In MC cross-talk with

CD8+ T cells, (co-)stimulation with CCL5, 4-1BBL, TNF-a and MHC

I antigen presentation will result in CD8+ recruitment, activation,

proliferation and cytokine release (93, 94). While the OX40L-OX40

interaction activates T cells, it inhibits MC degranulation (94). Treg

cells react differently to IgE activated MCs compared to CD4+ and

CD8+ T cells; MCs suppress Treg activity through OX40L-OX40

cross-linking, in combination with histamine and IL-6 release (93).

The crosstalk with T-cells, and in particular with CD8+ T cells can

result in the development of an acute t cell-mediated rejection in the

KTx as it is known that CD8+ T cells are a main player in transplant

rejection (95).

2.2.4 Crosstalk with B cells
MC interaction with B cells has been described in mice after

migration of MCs from the skin to a draining lymph node (96). It is

there where proliferation of B cells is achieved by OX40-OX40L as

well as CD40-CD40L interaction in combination with MC derived IL-

6 stimulation after IgE sensitization (97, 98). While most of these

pathways lead to B cell activation and IgA, IgE or IgG producing

plasma cells, pathways leading to IL-10 producing regulatory B cells

have also been suggested (96, 98). It is in antibody mediated rejection

that B-cells have a prominent function and the role of MC crosstalk

with B-cells should also be further studied in this context (99).
2.3 Mast cells and allograft tolerance

MC tolerance to a specific antigen can be accomplished in

several ways. Treg-MC interaction through OX40L-OX40 and IL-9
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induces a tolerogenic state in MCs and perhaps the entire allograft

(71, 94, 100, 101), provided the MC is not activated by IgE. OX40L

activation in MCs will inhibit IgE-mediated degranulation. Tregs

increase intracellular cAMP in MCs, resulting in lower levels of

Ca2+, further inhibiting degranulation (102). IL-9, secreted by

Tregs, Th9 and Th17 cells, regulates MCs, promoting their

immune-suppressive functions and decreasing pro-inflammatory

release (103). MCs produce IL-10 and TGF-b, which enhances

Treg differentiation and recruitment, subsequently promoting

Foxp3 expression (37, 94, 100). MCs secrete GM-SCF and TNF-

a, resulting in a tolerogenic state of DCs (37, 104). In turn,

tolerogenic DCs (tDCs) also increase tolerance through Treg

proliferation, again through IL-10 and TGF-b (105). Although

TNF-a is considered pro-inflammatory, it also enhances tolerance

trough tDC stimulation (37). MC mediators that inhibit effector T

cell proliferation and function include Mast Cell Protease 6

(MCP6), a tryptase inhibiting the pro-inflammatory IL-6

cytokine and Th7 cells (106), TGF-b, IL-10 (94, 107), and

histamine (37). IL-10 and TGF-b induce anergy of naïve CD4+

and CD8+ T cells, or T cells cross-linked to APCs (108). Together

with DCs, MCs can induce type 1 regulatory T cells (Tr1), which

are immunosuppressive cells similar to Tregs (108, 109). Tr1s

show suppressed alloreactivity to specific antigens and inhibit

other naive alloreactive CD4+ T cells (110) by producing IL-10

and TGF-b themselves (108). TGF-b and IL-10 also inhibit FcϵRI
function, implying MC self-regulation and DC inhibition of MC

degranulation (86, 111). MC-derived IL-10, in co-stimulation with

IL-4, results in suppression of progenitor MC recruitment and

survival, thereby countering positive feedback loops of MC

recruitment (112). IL-10 has anti-fibrotic capabilities (64), and

together with tDCs, Tregs and Tr1s, MCs thus potentially

modulate inflammation and fibrogenesis in KTx (113, 114).

IgE-mediated MC degranulation inhibits peripheral tolerance in

multiple ways: the balance between effector T cells and Tregs is

distorted, alloreactivity within T cells is restored and an efflux of Tregs

out of the Tx is observed (115). Thus, MC degranulation in tolerant

transplants can theoretically promote T cell-mediated rejection. It is

important to note that even local degranulation can lead to systemic

breakdown of peripheral tolerance.
2.3 Mast cells and fibrosis

Stressed or injured epithelial cells (e.g. due to hypoxia) can

acquire a mesenchymal phenotype, a process known as epithelial-

to-mesenchymal transition (EMT). In the kidney this process has

been controversial, and most recently has been defined as partial

EMT. The latter indicates mesenchymal transition of epithelial cells

that do not become myofibroblasts but are important drivers of

inflammation and fibrosis through cross-talk with immune cells

and mesenchyme (116).

EMT is linked to myofibroblast activation and proliferation, Smad

pathway activation and IF in the kidney, both dependently and

independently of TGF-b (117, 118). Myofibroblasts originate from

both fibroblasts and pericytes, and express a-SMA and high amounts
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of extracellular matrix upon activation of various pathways including

but not limited to TGF-b, inflammatory, and extracellular matrix

pathways (116).

An important factor in tissue TGF-b synthesis is the renin-

angiotensin system (RAS) and its end-product angiotensin II (ANG

II) (9). Angiotensin converting enzyme (ACE), mostly derived from

lung capillaries, is required for conversion of ANG I to ANG II. MC-

derived chymase is capable of cleaving ANG I, leading to an ACE-

independent ANG II and subsequent TGF-b formation. Thus,

kidney resident MCTCs can contribute to intra-renal ANG II,

TGF-b synthesis and fibrosis (119). MCs are also capable of

releasing TGF-b as well as fibroblast growth factor-2 (FGF-2) (35,

120, 121). MMP-9, an ECM degrading enzyme secreted by MCs

(also known as gelatinase B) (122), is another source of

matrix-bound TGF-b activation and fibroblast contraction, further

increasing MC potential to activate (myo)fibroblasts independently

of RAS. Chymase can activate the plasmin system (123) and degrade

fibrin/fibrinogen (124), thus countering the pro-fibrotic actions of

the coagulation system. MCs have also been shown to crosstalk and

form adhesion with tissue fibroblasts through c-KIT and CADM1

receptors. Crosstalk in combination with tryptase secretion leads to

mostly pro-fibrotic activation and enhanced MC survival in co-

culture studies, although select MC cultures exhibit anti-fibrotic

activities (19).

Studies investigating MCs and fibrosis in human KTx patients are

rare, but one study found a pro-fibrotic role of MCs, especially

chymase positive MCs (44). Mouse models investigating MC

influence on fibrosis shows the relationship to be more complex.

Investigations using MC deficient mice show increased amount of

fibrosis in aminonucleoside-nephrosis (125) and the unilateral

ureteral obstruction model (126).

While MCs are regarded as inflictors of tissue fibrosis, MCs are

also capable of modulating tissue remodeling. Local IL-10 release

reduces collagen I deposition and decreased a-SMA and other

fibroblast gene expression (127). Besides promoting fibroblasts,

chymase also activates MMP-1 and MMP-3 function, both

remodeling factors that degrade collagen fibers. Additionally,

chymase cleaves and inactivates a latent factor called tissue

inhibitor of metalloproteinase (TIMP-2), which inhibits MMP-2

within the ECM (128). MCs can express MMP-2 and MMP-9

themselves (122, 128, 129) after T cell mediated TNF-a stimulation

(122). MCs are also capable of secreting, activating and removing

inhibition of MMPs within the tubulo-interstitial compartment, a

function unique to MCs. The contributory role of MMPs in fibrosis is

complex, as e.g. TGF-ß increases both MMP-2 expression and release

of its antagonist TIMP-2 (130).
3 Discussion

Mast cells are a pluripotent cell type that can either enhance or

resolve injury, depending on their real-time environment. In this

manuscript we propose a model depicting the multifaceted

contribution of mast cells in the setting of kidney transplantation,

namely in tolerance, rejection and chronic damage/fibrosis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1122409
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


van der Elst et al. 10.3389/fimmu.2023.1122409
As discussed in this mini review, MCs contain a vast set of

mediators and can act independently or in interaction with

locoregional (immune) cells. There are distinct pro-inflammatory and

tolerogenic patterns of interaction, with modulation of fibrogenesis. In

kidney transplantation, IgE-mediated activation leads to the most

profound degranulation, resulting in activation of pro-inflammatory

and pro-fibrotic pathways, but IgE-independent activation also occurs.

A hypothetical model, split between MC actions in rejection and
Frontiers in Immunology 05
transplant tolerance, is shown in Figures 1, 2. This model portrays

the most important pathways of all MC actions within the transplant.

Ultimately, the current model may constitute a paradigm

shift: stimulating donor-tolerance should be considered, rather than

focusing on immunosuppressive drugs, undermining the patient’s

immune system (131). This would lessen the (therapeutic) burden of

transplant recipients, could potentially prevent transplant rejection

and would result in a more natural state of self-induced tolerance.
FIGURE 1

Mast cell (MC) interactions within the transplant during tolerance. FcϵRI activity is inhibited by TGF-b, IL-10 and OX40 ligation. Tregs also inhibit
degranulation by lowering intracellular Ca2+ levels through increased cAMP. IL-10 suppresses alloreactivity within CD4+ and CD8+ T cells
and promote anergy and regulatory functions of CD4+ T cells. IL-10 mediated inhibition of fibroblasts also inhibit subsequent formation of
myofibroblasts. IL-10 with co-stimulation of IL-4 decrease MC proliferation, while IL-9 increases proliferation. GM-CSF, granulocyte-macrophage
colony-stimulating factor; IL, interleukin; MCP6, mat cell protease 6; SCF, stem cell factor; tDC, tolerogenic dendritic cell; TGF-b, tissue growth factor
beta; TNF-a, tissue necrotic factor alpha; Tr1, regulatory T cell type 1 (induced); Treg, regulatory T cell (natural); Blue lines symbolize activating pathways,
red lines inhibitory pathways, gray lines symbolize subsequent events. Lighting icons are used in the most profound activation patterns, which are
inhibited in tolerogenic environments.
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Treg-based therapies are already being investigated, although long-

term stability of said tolerance is unknown (3, 132). As our model

shows, MCs could play an important role in inducing and upholding

this state of tolerance towards the KTx. So, rather than eradicating or

fully inhibiting MCs, MC modulation toward tolerogenic action

should be investigated.
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FIGURE 2

Mast cell (MC) interactions within the graft during rejection. Pathways can include both cytokines (like TNF-a) and membrane bound interaction (like
MHC I-TLR interaction). MC-T cell interaction through OX40L-OX40 cross-linking inhibits MC degranulation, represented by the inhibitory pathway
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C3a/C5a, complement component; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; FGF-2; fibroblast growth factor-2; Ig,
immunoglobulin; IL, interleukin; MHC, major histocompatibility complex; MMPs, matrix metalloproteinase; SCF, stem cell factor; tDC, tolerogenic
dendritic cell; TGF-b, tissue growth factor beta; Th cell, T helper cell; TIMP-2, tissue inhibitor of metalloproteinase-2; TNF-a, tissue necrotic factor
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yellow lines represent pre-formed mediators within MCs. Grey lines represent subsequent events. Lighting icons are used in the most profound
activation patterns.
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