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Most pumping actions entail a physical volume change of the duct, which is
frequently achieved by having a compliant wall or membrane. To the best of our
knowledge, the current study is the first report on a mathematical model
developed to analyze the peristaltic transport of a Newtonian fluid in a curved
duct with rectangular face and compliant walls. Such geometries are most
commonly used in clinical and biological equipment, where the walls of the
duct need to be flexible. Flexible ducts are more useful than rigid ones because
they do not require any extramodifications or accessories. Here, we have used the
conditions of lubrication theory to construct an accurate model, and a common
perturbation technique was incorporated to handle the Navier-Stokes equations
with emphasis on various aspect ratios and curvatures. A system of curvilinear
coordinates operating according to the principles of the cylindrical system was
employed to represent the mathematical problem. No-slip boundary limitations
were considered at the walls along with the extra constraint of compliant walls
showing damping force and stiffness. Comprehensive graphical representations
weremade to illustrate the effects of all emerging factors of the study in both two-
and three-dimensional formats. We found that large curvatures and flexure rigidity
decreased the fluid velocity uniformly, but the aspect ratio and amplitude
parameters could promote fluid velocity. Validation of the results was
performed through the generation of a residual error curve. The current
readings were taken again with a straight duct to make a comparison with the
existing literature.
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1 Introduction

Peristalsis describes the mechanism whereby rhythmic
contraction and expansion of the walls of tubing propels the
contents forward. Physiologically, peristalsis is the primary
motive force in all flow processes in the human body including
the passage of food from the mouth to the esophagus, urine flow
from the kidney through the bladder, blood flow in the arteries, and
sperm passage through the urethra. Because of the versatility and
efficiency of peristaltic flow, many researchers are currently working
on applications of this type of fluid transport. Javed and Naz [1] have
determined the pumping stream characteristics of Jeffrey model
material in a wavy, asymmetric compliant channel by taking very
small amplitudes and discovered that peristaltic reversal of the flow
occurred at the boundaries. Khan et al. [2] studied the
magnetohydrodynamic transport of a nanofluid composed of
particles of different shapes in a channel with peristaltic walls,
and they found that the heat generated could produce large
temperature increases in the fluid. Raza et al. [3] published a
numerical and analytical study of the effects of an induced
magnetic field on the wavy features of various CNTs through an
asymmetric porous channel, and pressure gradient curves showed a
reduction in height with large values of the heat generation factor. A
study by Imran et al. [4] addressed the components of a
homogeneous–heterogeneous reaction on the peristaltic motion
of a Rabinowitsch flow model in a flexible channel. They
employed a lubrication approach for the analysis and found that
the considered reaction exhibited a reversal of the concentration
field. Hayat et al. [5] considered the flow characteristics of a Sutterby
fluid model in an orthogonal peristaltic channel with thermal
exchange and compliant walls and determined that the fluid
reacted with higher velocity and temperature diffusion in
contrast to the viscous liquid. However, all such studies were
conducted in two-dimensional channels, and more results with
this type of model are reported in [6–12].

Most of the geometries used in medical equipment like
endoscopes and catheters involve curved shapes. Duct
configuration is also very important in the design of industrial
equipment to exhaust dust particles. Rashid et al. [13]
investigated the influence of magnetic fields on a Williamson
model in a curved enclosure with peristaltic activity and noted
that the strength of the generated magnetic field was reduced for a
Williamson liquid compared to a Newtonian fluid. Anber et al. [14]
reported the results of a study of the pumping characteristics of a
hybrid nanofluid in a curved enclosure, while Riaz et al. [15]
discussed the thermal characteristics of nanoparticles distributed
in a curved channel. They assumed that the slip constraint of the
walls was of the second order and concluded that slip parameters can
produce opposite readings with respect to the flow attributes
throughout the domain. Ahmed et al. [16] obtained numerical
results for peristaltic flow and mixed convection phenomena
across a curved geometry and concluded that flow properties
such as fluid speed were greater as a result of large thermal
Grashof and Hartmann numbers. In their work, Hina et al. [17]
performed a heat and mass analysis for peristaltic transport of a
Johnson–Segalman model in a flexible curved conduit and
concluded from their observations that the axial velocity of a
non-linear liquid was higher than that of a viscous material.

Most fluid flows in the human body and in medical
instrumentation are directly influenced by the 3-D structure.
Keeping in mind the core applications of blood flow in arteries
and the pumping mechanism of a peristaltic pump, researchers have
found it necessary to investigate the nature of three-dimensional
peristaltic streams. Ellahi et al. [18] have contributed to the literature
in their study of wavy pumping in a non-uniform rectangular 3-D
duct enclosure by performing a heat-mass exchange analysis. They
generated some exact solutions to the problem and also discussed
the limiting cases of the duct. Mekheimer et al. [19] tested the effect
of wall flexibility on the wavy stream in an asymmetric duct of
rectangular shape and concluded that the pressure gradient was
higher in the duct than in a channel of any geometry. Akram and
Saleem [20] focused on the thermal phenomena associated with
various forms of complex waves for the peristaltic motion of a
Carreau model in ducts of various geometries and claimed that the
number of trapping circulation contours was decreased by the large
aspect ratio of the conduit. Saleem et al. [21] assumed the peristaltic
heated flow of a non-linear fluid in an elliptical duct and concluded
that the elliptical duct was preferable in some industrial systems over
a circular type of enclosure. Akbar and Butt [22] considered a
nanofluid model undergoing peristaltic transport in a plumb duct
and summed up their investigation with the conclusion that when
pure water was transferred to a Cu-water, trapped boluses at the
upper side became larger but were fewer in number. Curved
configurations are frequently used in real hydraulic structures as
curved diffusers in hydraulic turbines, S-shaped bulb turbines, and
fittings, etc. [23]. Li et al. [24] executed an experimental and
quantitative comparison to understand the features of three-
dimensional flows in a 120° curved duct with a rectangular face
and varying curvature, which is the design most often used for two-
phase centrifugal pumps. They tested three different curvatures, the
double circular line, the spiral line, and the involute line, and also
assumed three aspect ratios of 0.4, 1.0, and 2.3 with very large
Reynolds numbers. On the basis of their numerical data and
experimental readings, they concluded that the flow
characteristics in a duct with continuously varying curvature
were very different from those of a constant curvature duct. Ghia
and Sokhey [25] examined the incompressible laminar transport of a
viscous fluid in a rectangular-faced curved duct and formulated a
model with three-dimensional parabolized governing equations by
taking two forms of the coordinate system; they fully discussed the
effects of longitudinal curvature on flow attributes. Recently, Dolon
et al. [26] performed a computational analysis of general flow and
heat transport through a curved rectangular duct and revealed that
the flow characteristics were highly affected by the curved shape and
the aspect ratio. They also declared that the thermal exchange
capacity of the fluid was enhanced in the curved duct. Recently,
Riaz et al. [27] published their work on peristaltic flow in a curved
rectangular duct and concluded that the pumping rate was lower in
ducts with large curvature and aspect ratios. Further information on
3-D flows can be found in [28, 29].

In our survey of the peristaltic pump literature, we found no
studies that discuss the peristaltic flow characteristics of a viscous
fluid in a curved duct of rectangular cross-section with compliant
walls. Thus, keeping in mind the remarkable success in biological
and mechanical systems of the application of compliant walls on
pumping flows in curved ducts, the authors sought to produce some
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mathematical representations of the peristaltic flow of a viscous
fluid in a curved duct of rectangular cross-section having
compliant surfaces. These results should be helpful in many
industrial and medical systems where curved geometries are
preferred to straight ones as discussed previously. A three-
dimensional cylindrical coordinate system was used here
initially and later converted into a curvilinear system by
introducing suitable transformations. Based on lubrication
theory, the mathematical features of the problem have been
expressed as a set of partial differential equations with variable
coefficients, which can be handled by a common perturbation
strategy. A system of compliant walls, which expressed the
pressure gradient at the boundaries, was assumed together
with the no-slip boundary conditions. In the last part of the
study, the results obtained analytically were plotted as velocity
fields (both 2-D and 3-D) with streamlines to examine the core
effects of various emerging parameters on the flow properties.
Axial velocity was also plotted against the curvature coordinates
to estimate the direct impact of curvature on the different flow
regimens.

2 Mathematical modeling

Considering a fluid under conditions of a linear stress–strain
model flowing through a curved rectangular duct (CRD) of
height, 2h, and width, 2d, a sinusoidal wave with uniform
speed, c, was generated along a longitudinal path. The
arrangement of the conduit assumed that the elastic walls
produced waves along the vertical axis (y-axis), whose
equations have been taken through a function of angle θ and
time t. L is the reference length from central point O, as shown in
Figure 1, while the flow structure was managed as a cylindrical
frame of reference, with r, θ and y assumed as the reference
variables.

The equations for the conservation of mass and momentum in
the cylindrical system for the velocity field (u, w, v) are expressed as
in [26]:

zu

zr
+ 1
r

zw

zθ
+ zv

zy
+ u

r
� 0 (1)

zu

zt
+ V · Ε( )u − w2

r
� −1

ρ

zp
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+ μ

ρ
Δ*u − u

r2
− 2
r2

zw

zθ
( ) (2)

zw
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r
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ρ

zp

zy
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ρ
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Here, V · Ε and Δ* are first- and second-order differential operators,
correspondingly, which are defined as V · Ε � u z

zr + w
r

z
zθ + v z

zy,Δ* �
z2

zr2 + 1
r

z
zr + 1

r2
z2

zθ2
+ z2

zy2.
The peristaltic walls are represented by

~a θ, t( ) � h + b cos
2π
λ

Lθ − ct( ) (5)

where b is the wave amplitude and λ is the wavelength. The
aforementioned equations were non-dimensionalized by the
application of the following transformations [26, 27]:

�t � c

λ
t, �u � 1

cξ
u, �v � 1

cξ
v, �w � 1

c
w, r � L + d�x, y � h�y, a � ~a

h
, Lθ

� λ�z, �p � d2

cλμ
p

(6)
Here, ξ (� h

λ) is the wave number, μ is the fluid viscosity, t gives the
time, and p is the pressure. By utilizing the relation (6), Eqs 1–5 are
transformed to

α
z�u

z�x
+ 1
1 + δ�x

z �w

z�z
+ z�v

z�y
+ αδ

1 + δ�x
�u � 0 (7)

FIGURE 1
Geometrical view of the curved duct.
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Re ξα ξ2
z�u

z�t
+ αξ2�u

z�u

z�x
+ ξ2�v

z�u

z�y
+ ξ2 �w

1 + δ�x

z�u

z�z
− αδ

1 + δ�x
�w2( )

� ξ2 α2
z2�u

z�x2 +
δα2

1 + δ�x

z�u

z�x
+ ξ2

1 + δ�x( )2
z2�u

z�z2
+ z2�u

z�y2 −
αδ

1 + δ�x
( )

2

�u(
−2α δ1/2

1 + δ�x
( )

2
z �w

z�z
) − α3

z�p

z�x
(8)

Re ξ α
z �w

z�t
+ α2�u

z �w

z�x
+ α�v

z �w

z�y
+ α �w

1 + δ�x( )
z �w

z�z
− α2δ

1 + δ�x( )�u �w( )
� α2

z2 �w

z�x2 +
δα2

1 + δ�x

z �w

z�x
+ ξ2

1 + δ�x( )2
z2 �w

z�z2
+ z2 �w

z�y2 −
αδ

1 + δ�x
( )

2

�w(

+2αξ2 δ1/2

1 + δ�x
( )

2
z�u

z�z
) − α2

1 + δ�x

z�p

z�z
(9)

Re ξ3(1
α

z�v

z�t
+ �u

z�v

z�x
+ 1
α
�v
z�v

z�y
+ �w

α 1 + δ�x( )
z�v

z�z
)

� ξ2
z2�v

z�x2 +
δ

1 + δ�x

z�v

z�x
+ ξ2

α2 1 + δ�x( )2
z2�v

z�z2
+ 1
α2

z2�v

z�y2( ) − z�p

z�y
.

(10)
In the aforementioned relations, the new dimensionless

quantities produced are described as follows:

α � h

d
, δ � d

L
, Re � ρdc

μ
, ξ � h

λ
, ϕ � b

h
. (11)

Using criteria of long wavelength and smallest Reynolds’
number provides the reduced form of Eqs 8–10, which is shown
as follows (exempting the bars):

zp

zx
� 0, (12)

α2

1 + δx

zp

zz
� α2

z2w

zx2
+ δα2

1 + δx

zw
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+ z2w
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( )

2

w, (13)
zp

zy
� 0. (14)

Eqs 12–14 predict that �p≠�p(�x, �y), and from Eq. 13, we get the
final equation (after dropping the bars) to be solved as described as
follows:

α2

1 + δx

zp

zz
� α2

z2w

zx2
+ δα2

1 + δx

zw

zx
+ z2w

zy2
− αδ

1 + δx
( )

2

w. (15)

The relevant boundary function values for the flow mechanism
are suggested as follows:

w �x,±�a( ) � 0 andw ± d, �y( ) � 0 (16)
where peristaltic walls are considered as compliant, resulting in an
equation whose basic form is as follows [17]:

–τ
z3

zz3
+ σ

z3

zzzt2
+ ε

z2

zzzt
( ) ~a � zp

zz
, at y � ±~a, (17)

where τ, σ, and ε reflect the elasticmembrane tension,mass over the unit
area, and viscous damping coefficient, respectively. In dimensionless
fashion (with no bar signs), Eqs 13 and 14 take the form of

w x,± a( ) � 0 andw ± 1, y( ) � 0,where a � 1 + ϕ cos 2π z − t( )
(18)

E1
z3

zz3
+ E2

z3

zzzt2
+ E3

z2

zzzt
( )~a � zp

zz
, aty � ± a (19)

3 Solution scheme

In order to solve the PDE obtained in Eq. 15 along with the B.Cs
displayed in Eqs 18 and 19, a well-known perturbation technique
(HPM) [30–32] was employed. The linear operator chosen in the
process was Ψyy � z2/zy2. The initial guess for satisfying the
conditions was w0 � π(z)(−a2+y2)α2

2+2xδ . The zeroth and first-order
systems have the following respective forms:

Ψyyŵ0 − Ψyyw0 � 0, ŵ0 x,± a( ) � 0 and ŵ0 ± 1, y( ) � 0 (20)

Ψyyŵ1 + Ψyyŵ0 + α2Ψxxŵ0 + δα2

1 + δx
Ψxŵ0 − αδ

1 + δx
( )

2

w − α2

1 + δx
π z( )� 0,

ŵ1 x,± a( ) � 0 and ŵ1 ± 1, y( ) � 0 (21)

Ψyyŵ2 + α2Ψxxŵ1 + δα2

1 + δx
Ψxŵ1 − αδ

1 + δx
( )

2

w1 � 0, ŵ2 x,± a( )

� 0 and ŵ2 ± 1, y( ) � 0

(22)
By solving the aforementioned three systems simultaneously

using the built-in command, DSolve of Mathematica, we generated
the solutions of axial velocity parts w0, w1, andw2 as follows:

w0 � π z( )α2 y2 − a2( )
2 1 + x δ( ) , (23)

w1 � −5 a4 π z( )α4δ2 + 6a2π z( )y2α4δ2 − π z( )y4α4δ2

24 1 + xδ( )3 , (24)

w2 � π z( ) a − y( ) a + y( )α4δ2 10 −5a2 + y2( ) + 20x −5a2 + y2( )δ((
+ 10x2 −5a2 + y2( ) + 3 61a4 − 14 a2y2 + y4( )α2( )δ2))
/ 240 1 + xδ( )5 (25)

According to the rules of HPM, we assume a series solution as
given as follows:

w x, y( ) � ŵ x, y( )∣∣∣∣q→1
� w0 + qw1 + q2w2 + . . . . (26)

Now, substituting the values of w0, w1, andw2 into Eq. 26, we obtain
the subsequent final solution:

w x, y( ) � − 1

80 1 + xδ( )5 π z( )( a − y( ) a + y( )α2
× 40 + 160xδ + 240x2δ2 160x3δ3(
+(40x4 + (61a4 − 14a2y2 + y4)α4)δ4)) (27)

Here, π(z) � −E1ϕ cos[t − z] − E2ϕ cos[t − z] + E3ϕ cos[t − z].

4 Graphical data and discussion

In this section, the manual calculations are converted into graphs
of some key parameters, such as axial velocity against the vertical
coordinate and axial velocity versus the curvature and trapping bolus
to examine the patterns of flow behavior. In Figures 2A–5A, B, the
axial velocity function has been presented along the coordinate y axis
under a monotonic increase in the absolute values of the aspect ratio
(α), mass per unit area E1, viscous damping force E2, flexure rigidity
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E3, and amplitude ratio ϕ, both in 2-D and 3-D views, accordingly.
In each of these graphs, a quantitative comparison is also shown
for curved ducts vs straight ducts. All these graphs have been
structured for the horizontal range of coordinate y as [−a, a]where

a is the wave height function which directly relates to the angular
coordinate ″z″. Figures 6–9 have been designed to visualize the
variation in velocity curvature domain. These figures show the
impact of α, E1, E2, and ϕ on the profile of velocity w, respectively,

FIGURE 2
Axial velocity profile for the aspect ratio, α. (A) 2D. (B) 3D.

FIGURE 3
Axial velocity profile for mass per unit area, E1. (A) 2D. (B) 3D.

FIGURE 4
Axial velocity profile for viscous damping force, E2. (A) 2D. (B) 3D.
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and show how the fluid velocity depends on the overall impact of
duct curvature. In these diagrams, a uniform range [0,3] of the
parameter δ was taken to investigate the impact of curvature on

flow. Figures 10 and 11 have been included to estimate the
quantitative analysis of contourvariations for various emerging
parameters like α, and E_1, correspondingly.

FIGURE 5
Axial velocity profile for flexure rigidity, E3. (A) 2D. (B) 3D.

FIGURE 6
w-δ curves for α.

FIGURE 7
w-δ curves for E1.

FIGURE 8
w-δ curves for E2.

FIGURE 9
w-δ curves for ϕ.
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Figure 2 shows the graphical behavior of axial velocity for
increasing values of the aspect ratio factor α. It can be seen that
the fluid velocity is directly affected by the aspect ratio. The aspect
ratio is the ratio of width to height of the rectangular cross-section of
the duct, so the aspect ratio is increased by increasing the length
while keeping the height fixed. Increasing the aspect ratio exerts
more pressure on the fluid and pushes it forward faster. It should
also be noted here that fluid speed is faster in a straight duct
compared to a curved enclosure, possibly due to the turning
effects of the walls. Figure 3 shows the velocity variation relative
to the mass per unit area E1. The graph shows that a large mass per
unit area causes the fluid to flow at a greater velocity, but in this case,
the flow in a straight duct is slower than the flow in a curved duct.
The effects of viscous damping force E2 on the fluid flow can be
examined in Figure 4, which shows that velocity becomes larger with
increasing damping force in both straight and curved ducts. In
contrast, flexure rigidity E3 has an inverse impact on fluid flow by
decreasing its speed (Figure 5). This can be physically explained as
the compliance of the rigid walls opposing the flow by applying extra
resistance in the direction of the stream. In the three-dimensional
graphs, Figures 2–5B, we can see that the velocity remains uniform
along the radial direction of the enclosure because of the presence of
uniform flow and the absence of boundary slip in most parts of the

domain; however, maximum velocity is observed near the central
line where x ≈ 0.2.

To assess the velocity attributes near the domain of curvature,
Figure 6 illustrates the impact of α on velocity. From this diagram, it
can be seen that when we increase the curvature of the section, the
fluid moves at a lower speed, which can be finalized for δ � 0
(straight duct) where there is maximum velocity and for δ � 3 (large
curvature) with the lowest velocity. Moreover, the velocity curves are
elevated by increasing the aspect ratio. Figure 7 indicates that E1 has
a direct effect on the velocity curves when these are plotted for the
curvature domain; however, in this graph, the curves are more
parabolic than the previous figure (Figure 6). Figure 8 shows how
the curvature affects velocity, when the parametric values of E2 are
varied. According to the calculations, E2 results in a similar variation,
as obtained for E1. The influence of the amplitude ratio ϕ on the
velocity–curvature curves is pictured in Figure 9. The amplitude
ratio is linearly related to the velocity but curves downward from
the left domain to the right side. Overall, a larger curvature
results in a reduction in fluid speed in its axial direction.

Figure 10 shows the trapping bolus mechanism of the flow in
relation to the increasing amplitude of the aspect ratio factor α. It
can be assumed here that the trapping bolus is extending its
dimensions, while the closed contours are reducing its magnitude,

FIGURE 10
(A–C) Flow pattern for α.
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FIGURE 11
(A–C) Flow pattern for E1.

FIGURE 12
Residual error curve for the axial velocity function, w.
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which indicates that more fluid travels through the section when the
aspect ratio of the rectangular face is increased. Due to the variation in
E1 of the compliant walls, the boluses are enlarged which shows that
fluid can easily pass by the channel by increasing damping force
(Figure 11). It should also be noted that there is a symmetric
variation in bolus shape across the central line which reveals the
physical aspect that compliant walls affect the flow more strongly
than the plane region of the geometry. From these results, it is
concluded that boluses are highly affected by the curvature of the
geometry and that the straight duct readings can be retained by
reducing the value of the curvature parameter, δ.

Figure 12 validates the results by collecting residual error data
obtained from the solution and the governing differential equations.
From the figure, it can be seen that the results are quite satisfactory
because the residual error is very small throughout the solution
domain. Near the right edge, the error approaches zero which not
only ensures that the solution justifies the equation but also satisfies
the boundary conditions.

5 Conclusions

In this study, the authors have analyzed the peristaltic flow
phenomenon for a viscous fluid in a curved duct having a
rectangular cross-section with compliant walls. After incorporating
certain limitations, the derivation of the PDEs was achieved by
applying the well-known perturbation scheme (HPM) and making
use of the computational software application Mathematica through
the DSolve tool. Stream functions were obtained using the Integrate
tool. The analytical solutions are illustrated in graphs, and the
diagrammatical observations were discussed thoroughly. The key
findings of this study can be summarized as follows:

1. With the current duct geometry, the velocity was reduced by larger
aspect ratios as compared to the straight ducts, but it can be seen that
the velocity can also be increased by the larger effect of compliant
walls in a curved duct.

2. It was found that velocity is an inverse function of flexural rigidity
of the walls, but inverse characteristics have also been reported
for the aspect ratio, viscous damping, and mass per unit area.

3. It was found that increasing the curvature of the conduit caused
the fluid to travel more slowly.

4. It was observed that compliance of the walls reduced the bolus
size but increased the bolus number.

5. More studies on this topic with regard to magnetic fields and
slip conditions need to be performed to render these results
useful in the field of medical sciences where curved surfaces
are encountered for electrically conducting fluids.
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Nomenclature

Symbols definition

h height

d width

c wave speed

t time coordinate

(u, v, andw) velocity components

ρ density

μ viscosity

~a wave function

b amplitude

λ wavelength

L length

p pressure

τ elastic membrane tension

σ mass over unit area

ε viscous damping coefficient

dimensionless symbols

�t, �x, �y, and �z dimensionless independent coordinates

(r, θ, andy) curvilinear cylindrical coordinates
(x, y, and z) transformed coordinates

�p dimensionless pressure

(u, v, andw) dimensionless velocity components

�a dimensionless wave function

ξ dimensionless wave number

α aspect ratio

δ dimensionless curvature

Re Reynolds number

ϕ amplitude ratio

E1, E2, and E3 compliant wall parameters
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