arXiv:2204.00602v3 [quant-ph] 20 Feb 2023

Perceval: A Software Platform for Discrete Variable
Photonic Quantum Computing

Nicolas Heurtel'2, Andreas Fyrillas*®, Grégoire de Gliniasty!, Raphaél Le Bihan?,
Sébastien Malherbe*, Marceau Pailhas!, Eric Bertasi!, Boris Bourdoncle!,
Pierre-Emmanuel Emeriau!, Rawad Mezher!, Luka Music!, Nadia Belabas?,
Benoit Valiron?, Pascale Senellart®, Shane Mansfield!, and Jean Senellart?

1Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France

2Université Paris-Saclay, Inria, CNRS, ENS Paris-Saclay, CentraleSupélec, LMF, 91190, 15 Gif-sur-Yvette, France
3Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas
Gobert, 91120, Palaiseau, France

*Département de Physique de I'Ecole Normale Supérieure - PSL, 45 rue d'Ulm, 75230, Paris Cedex 05, France

We introduce Perceval, an open-source software platform for simulating and in-
terfacing with discrete-variable photonic quantum computers, and describe its
main features and components. Its Python front-end allows photonic circuits
to be composed from basic photonic building blocks like photon sources, beam
splitters, phase-shifters and detectors. A variety of computational back-ends
are available and optimised for different use-cases. These use state-of-the-art
simulation techniques covering both weak simulation, or sampling, and strong
simulation. We give examples of Perceval in action by reproducing a variety of
photonic experiments and simulating photonic implementations of a range of
quantum algorithms, from Grover’s and Shor’s to examples of quantum machine
learning. Perceval is intended to be a useful toolkit for experimentalists wish-
ing to easily model, design, simulate, or optimise a discrete-variable photonic
experiment, for theoreticians wishing to design algorithms and applications for
discrete-variable photonic quantum computing platforms, and for application
designers wishing to evaluate algorithms on available state-of-the-art photonic
quantum computers.

1 Introduction

Quantum computing has gained huge interest and momentum in recent decades because
of its promise to deliver computational advantages and speedups compared to the classical
computing paradigm. The essential idea is that information processing takes place on
physical devices, and if the components of those devices behave according to the laws of
quantum rather than classical physics then it opens the door to exploiting quantum effects
to process information in radically different and potentially advantageous ways.
Quantum algorithms like Shor’s factorisation algorithm [1]|, which gives an exponential
speedup over its best known classical counterpart, or Grover’s search algorithm [2], which

nicolas.heurtel@quandela.com
shane.mansfield@quandela.com

jean.senellart@quandela.com

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Perceval:%20A%20Software%20Platform%20for%20Discrete%20Variable%20Photonic%20Quantum%20Computing&reason=title-click
https://quantum-journal.org/?s=Perceval:%20A%20Software%20Platform%20for%20Discrete%20Variable%20Photonic%20Quantum%20Computing&reason=title-click
mailto:nicolas.heurtel@quandela.com
mailto:shane.mansfield@quandela.com
mailto:jean.senellart@quandela.com

gives a quadratic speedup over its classical counterparts, are often cited, and have captured
the imagination and provided motivation for the rapid developments that have taken place
in quantum technologies. However, for such algorithms to have practical significance will
require large-scale fault-tolerant quantum computers. Yet the quantum devices that are
available commercially or in research laboratories today are somewhat more limited and
belong, for now at least, to the so-called noisy-intermediate scale quantum (NISQ) regime
[3].

Of course NISQ devices are a necessary step on the path to large-scale fault-tolerant
quantum computers, but in principle they could already enable quantum computational
advantages [4] — in which they could outperform even the most powerful classical super-
computers available today — for tasks with practical relevance. Several experiments have
already claimed to demonstrate quantum computational advantage in sampling tasks [5—
9]. The practical significance of these is still being explored [10-12], but meanwhile many
other promising proposals for quantum algorithms that may deliver practical advantages
in this regime are also being pursued. Among others, these include the quantum varia-
tional eigensolver [13], universal function approximators like that of [14] (both of which
we will return to later in this paper), the quantum approximate optimisation algorithm
[15], as well as a host of other algorithms [16] with applications that range from chemistry
[17, 18] and many-body physics [19, 20| to combinatorial optimisation [21, 22] and machine
learning [23, 24].

In fact, a number of technological routes to building quantum computers are being
actively pursued, in which quantum information is encoded in very different kinds of phys-
ical systems. These include matter-based approaches that rely on superconducting circuits,
cold atoms, or trapped ions, but also light-based approaches in which photons are the ba-
sic information-carrying systems. Among these, photons have a privileged status, as they
are the natural and indeed only viable support for communicating quantum information,
which will eventually be required for networking quantum processors and devices. As such
they will necessarily be a part of any longer-term developments in quantum computational
hardware and infrastructure. More than this, photons provide viable routes to both NISQ
[25] and large-scale fault-tolerant quantum computing through measurement-based models
[26, 27| in their own right.

Perceval is a complete and efficient software platform for the discrete variable (DV)
model for photonic quantum computing.'It especially uses Fock state descriptions of pho-
tons generated by sources, evolving through linear optical networks — composed for example
of beam splitters, phase shifters, waveplates or other linear optical components — and then
being detected. The familiar qubit and measurement-based models for quantum comput-
ing can be encoded within the DV model (see e.g. [25, 26]). However, the DV model is
also of significant interest in its own right — not least because it has led to some of the
first proposals [28] for quantum computational advantage to be demonstrated with NISQ
devices. This concerns a computational problem known as Boson Sampling, discussed in
detail in Section 4.2, which essentially consists of sampling from the output distribution
of photons that interfere in a generic interferometer. We will also demonstrate direct DV
photonic approaches to quantum machine learning in Section 4.6.

Perceval’s features can be useful for designing, optimising, simulating, and eventually
transpiling DV linear optical circuits and executing them on cloud-based physical pro-
cessors. Although Perceval provides bridges (see Section 3.2.6) with other open-source

! Perceval does not aim to treat the continuous variable (CV) model of photonic quantum computing,
which is concerned with infinite dimensional observables of the electromagnetic field, and which is the
natural realm of the Strawberry Fields platform [29].

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 2

quantum computing toolkits [30] such as Qiskit [31], it further allows users to work at a
level that is closer to the photonic hardware than these toolkits regular gate-based qubit
quantum circuit model, which is already the focus of a number of other software platforms.
It is also more flexible and supports many more functionalities than existing packages for
linear optical quantum systems [32|. The finer-grained control of the physical hardware
can be valuable both for the NISQ regime, where it is crucial to achieve the maximum per-
formance from the specific hardware resources available, and for optimising the building
block photonic modules in schemes for reaching the large-scale fault-tolerant regime.

Perceval is intended to be useful for experimentalists wishing to design photonic ex-
periments, including allowing for realistic modelling of noise and imperfections, and for
computer scientists and theoreticians seeking to develop algorithms and applications for
photonic quantum computers. It is an open source platform that is intended for community
development via , the project and an updated

Perceval integrates several state-of-the-art algorithms for running simulations optlmlsed
with low-level single instruction, multiple data (SIMD) implementations, allowing users to
push close to the limits of classical simulability with desktop computers. Extensions to the
framework are also intended for high-performance computing (HPC) cluster deployment
which can permit simulation to scale further. Since version 0.7, Perceval is able to run
samples from real photonic chips through the , giving the user access in real-time
to the exact hardware characteristics of the photonic source (brightness, purity, indistin-
guishability), the chip, and the detectors. Remote computers are also available if the user
wants to perform classical simulation with greater computational power.”

The remainder of this white paper is structured as follows. We provide some brief
background on photonic quantum computing in Section 2, before outlining the structure
and key features of Perceval in Section 3, and then go on to give a number of illustrative
examples of Perceval in action in Section 4. The code of the examples can be found in
Appendix B. This paper is based on version 0.7.3 of Perceval.

2 Photonic Quantum Computing

Similar to the qubit quantum circuit model, the DV photonic model can be presented as
a gate-based model, in which states are prepared, transformed as they are acted upon by
gates, and measured.

We consider a number m € N of spatial modes. Physically these could correspond to
waveguides in an integrated circuit, optical fibres, or paths in free space. Photon sources
prepare initial states in these spatial modes. These are number states |n), where n is the
number of photons in the mode, or superpositions of number states. We use the shorthand
notation |0, 1) for a two-mode system with state |0) in the first and |1) in the second, etc.
Unless otherwise specified, photons are assumed to be indistinguishable. Sometimes we
will wish to keep track of the polarisation of the photons, which can be achieved by further
splitting each spatial mode into two polarisation modes, e.g. horizontal (denoted by |H))
and vertical (denoted by |V)), and recording the (superpositions of) number states for
each. Perceval also allows the possibility of tracking other attributes of photons.

Transformations are performed on the states by evolving them through linear optical
networks. The simplest linear optical operations (gates) are: phase shifters, which act
on a single spatial mode, and beam splitters, which act on pairs of spatial modes. These
operations preserve photon number and are best described as unitary matrices that act on

2More details on

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 3

https://github.com/Quandela/Perceval
https://perceval.quandela.net/forum
https://perceval.quandela.net/docs
https://cloud.quandela.com/
https://perceval.quandela.net/docs/notebooks/Remote%20computing.html

the creation operator of each mode (see [33, 34| for a more detailed treatment). A creation
operator is defined by its action af [n) = \/n +1|n 4 1). The unitary associated with a
phase shifter P, with phase parameter ¢ € [0, 2] is simply the scalar ¢'?, while in the Rx
convention the unitary matrix associated to a beam splitter By is given in Equation 1. We
have included for clarity the basis on which the matrix acts in gray above and on the left.

1,00 o,

1)
(1,0 cos() isin (%)

ﬁBS(Q): (0, 1] zsm() COS(%) ’ o

where the parameter 0 relates to the reflectivity and |1,0) denotes the state in which the
photon travels in the first spatial mode. Perceval introduces all theoretically equivalent
beam splitter matrix conventions as shown in Table 1. The action of any linear optical
circuit is thus given by the unitary matrix obtained by composing and multiplying the
matrices associated with its elementary components. Interestingly, it can be shown that
conversely any unitary evolution can be decomposed into a combination of beam splitters
and phase shifters, e.g. in a ‘triangular’ [35] or ‘square’ [36] array.

Perceval also allows for swaps or permutations of spatial modes, and can include op-
erations like waveplates, which act on polarisation modes of a single spatial mode and are
described by the following unitary [37]:

) v)
~ _ (H|[isin(9) cos (2&) + cos (0) isin (0) sin (2€)
Uwe(0,6) =y, (isin(8)sin (26) —isin (9) cos (26) + cos ()) - @)

Here § is a parameter proportional to the thickness of the waveplate and £ represents
the angle of the waveplate’s optical axis in the {|H),|V)} plane. Especially important is
the case that § = m/2, known as a half-wave plate, which rotates linear polarisations in the
{|H),|V)} plane. Quarter-wave plates (6 = m/4) convert circular polarisations to linear
ones (e.g. |L) = (|H) +1i|V))/v/2) and vice-versa.

Polarising beam splitters will convert a superposition of polarisation modes in a single
spatial mode to the corresponding equal-polarisation superposition of two spatial modes,
and vice versa, and so in this sense allow us to translate between polarisation and spatial
modes. The unitary matrix associated to a polarising beam splitter acting on the tensor
product of the spatial mode and the polarisation mode is

|H,0) [V,0) [0,H) [0,V)

(H.0l{ 0 0 1 0

N wv.olf o 1 0 0

Upps O.H| 1 0 0 0o | 3)
0,VI\ 0 0 0 1

where |H, 0) denotes the single-photon state in which the photon travels in the first spatial
mode with a horizontal polarisation.

Similarly then, any unitary evolution on spatial and polarisation modes can be decom-
posed into an array of polarising beam splitters, beam splitters and phase shifters.

Finally measurement, or readout, is made by single photon detectors (these may be
partially or fully number resolving). Both photon generation and measurement are non-
linear operations. In particular, measurements can be used to induce probabilistic or post-
selected non-linearities in linear optical circuits. This could be used to further implement
feedforward, whereby measurement events condition parameters further along in a circuit.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 4

The basic post-selection-, feedforward- and polarisation-free (without polarisation mo-
des or operations) fragment of the DV model described above is precisely the model con-
sidered by Aaronson and Arkhipov in [28]. For classical computers, simulating this simple
model, straightforward though its description may be, is known to be #P-hard, and up
to complexity-theoretic assumptions the same is true for approximate classical simula-
tion. The reason for this essentially comes down to the fact that calculating the detection
statistics requires evaluating the permanents of unitary matrices, a problem which itself is
known to be #P-hard [38]. We describe this in a little more detail when we look at Boson
Sampling in Section 4.2.

Similarly the polarisation-free fragment was shown by Knill, Lalamme and Milburn
to be quantum computationally universal [25]. In particular, it can be used to represent
qubits and qubit logic gates.

Just as the bit — any classical two level system — is generally taken as the basic infor-
mational unit in classical computer science, the qubit — any two level quantum system — is
usually taken as the basic informational unit in quantum computer science. Photons have
many degrees of freedom and offer a rich variety of ways to encode qubits. One of the most
common approaches is to use the dual-rail path encoding of [25]. Each qubit is encoded
by one photon which may be in superposition over two spatial modes, which correspond
to the qubit’s computational basis states:

‘O>qubit = ‘1’0>) ’1>qubit = ‘07 1> : (4)

Single-qubit unitary gates are particularly straightforward to implement in this encoding,
requiring only a fully parametrisable beam splitter, as in Equation 1, and a phase shifter.
An example of an entangling two-qubit gate (CNOT), which uses heralding, i.e. post-
selection over auxiliary modes, will be presented in Section 3.

Another common qubit encoding is the polarisation encoding, and indeed versions
of the KLM scheme also exist for this encoding [39]. Here each qubit is encoded in the
polarisation degree of freedom of a single photon. This encoding will be used in the example
of Section 4.3. In practice, encodings may be chosen based on the availability or ease of
implementation of different linear optical elements in laboratory settings. For instance
path-encoding is at present more accessible than polarisation encoding in integrated optics,
where linear optical circuits are implemented ‘on-chip’. Although we have discussed ways
of encoding qubit quantum circuits into the DV model, it should be reiterated that the
DV model has interesting features in its own right, and the examples of Boson Sampling
in Section 4.2 and quantum machine learning in Section 4.6 give some illustrations of
interesting applications that bypass qubit descriptions.

We have presented the idealised DV model, but it is important to note that in real-
istic implementations various noise, imperfections, and errors will arise. Perceval is also
intended as a tool for designing, modelling, simulating and optimising realistic DV lin-
ear optical circuits and experiments, and to incorporate realistic noise-models. We briefly
demonstrate how Perceval handles imperfect photon purity at source and distinguishabil-
ity due to imperfect synchronisation in Section 4.1. Other relevant factors are losses at
all stages from source to detection, imperfect or imperfectly characterised linear optical
components, cross-talk effects, detector dark-counts, etc. Future versions of Perceval will
contain increasingly sophisticated and parametrised modelling of such factors.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 5

3 Presentation of Perceval

3.1 Global Architecture

Perceval is a linear optical circuit development framework whose design is based on the
following core ideas:

e It is simple to use, both for theoretical and experimental physicists and for computer
scientists.

e [t does not constrain the user to any framework-specific conventions that are theoret-
ically equivalent (for example it was noticed early on that many different conventions
for beam splitters can be found in the literature).

e [t provides state-of-the-art optimised algorithms — as benchmarked on specific use
cases.

e [t provides — when possible and appropriate — access to symbolic calculations for
finding analytical solutions.

e [t provides companion tools, such as a unitary matrix toolkit, and A TEXor HTML
rendering of algorithms.

e It incorporates realistic, parameterisable error and noise modelling.

e It aims to provide a seamless transition from simulators to actual photonic processors
(QPU). As such, most of the programmatic interfaces are designed for QPU control.
In particular, fixing a specific QPU automatically hides methods giving access to
properties (such as probability amplitudes) and features which would be unavailable
on the actual hardware.

Perceval is a modular object-oriented Python code, with optimised functions written
in C making use of SIMD vectorisation. In the following section, we give an overview of
the main classes available to the user. A full documentation is maintained on and
available online through the project

3.2 Main Classes
3.2.1 States

Information in a linear optical circuit is encoded in the state of photons in certain “modes”
that are defined by the circuit designer. States are implemented in Perceval by the following
two classes:

e BasicState is used to describe Fock states of n photons over m modes.By default,
photons are indistinguishable but each photon can be annotated, controlling its dis-
tinguishability. An annotation is a way to associate additional information to each
photon and can thus represent additional degrees of freedom — for instance, polari-
sation is represented as a photon annotation;

e StateVector extends BasicState to represent superpositions of states.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 6

https://github.com/Quandela/Perceval
https://perceval.quandela.net/docs

3.2.2 Circuits

The Circuit class provides a practical way to assemble a linear optical circuit from prede-
fined elementary components, other circuits, or unitary matrices. It can also compute the
unitary matrix associated to a given circuit, or conversely decompose a unitary into a linear
optical circuit consisting of user-defined components. A library of predefined elementary
components is provided (see Table 1). Those components can be added on the desired
mode(s) on the right of a Circuit with the Circuit.add(modes, component) method.
An example of code using this class can be found in Code 1.

Name Unitary Matrix Representation

Rx convention:

_ei(¢tz+¢tr) CoS (g) iei(@utom) gin (g) %
_iei(¢tl+¢br) sin (g) et (dvr+dor) cog (g)]

Ry convention:

Beam Splitter [eil6uterr) cos (g) —e! (Pt sin (%) 5
ei((z)tl""(z)br) Sin (g) ei(¢bl+¢br) CcOS <g)
H convention:
gy sl | e
et (Putdor) gin (g) —eidvr+dor) cog (%)
Phase Shifter [eiﬂ #
0 1
Mode Permutation ><
1 0
1sin (0) cos (2€) + cos (§ 1sin (0) sin (2
Wave Plate (6) cos (2€) (6) (6) sin (2€) I
isin (0) sin (2€) —isin () cos (2&) + cos (d)
0010
Polarising 0100 ‘
Beam Splitter 1 000
0 0 01
cos (0) sin(9)
Polarising Rotator D)

—sin (6) cos (9)

Time Delay

Table 1: Components available in the components library. Note that the beam splitter differs from
the one given in Equation 1. The extra parameters allow the user to fix their own preferred convention
for the beam splitter. Perceval includes a library which allows the user to define their own personal set
of components, each with its own visual representation and unitary matrix. By default, all the phases
¢ of the beam splitters are set to zero.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 7

3.2.3 Back-ends

Perceval allows the user to choose between its four back-ends — CliffordClifford2017,
Naive, SLOS and Stepper — each one taking a different computational approach to circuit
simulation. They perform the following tasks:

e Sample individual single output states — CliffordClifford2017;

e Compute the probability, or probability amplitude, of obtaining a given output state
from a given input state — Naive;

e Describe the exact complete output state — SLOS, Stepper.

The CliffordClifford2017 Back-end. This back-end is the implementation of the
algorithm introduced in [40]. The algorithm, applied to Boson Sampling, aims to “produce
provably correct random samples from a particular quantum mechanical distribution”. Its
time and space complexity are respectively O(n2" —|—mn2) and O(m). The algorithm
has been implemented in C++, and uses an adapted Glynn algorithm [41] to efficiently
compute n simultaneous “sub-permanents”.

Recently, the same authors have proposed a faster algorithm in [42] with an average
time complexity of O(npp) for a number of modes m = §n which is linear in the number
of photons n, where:

B (29 + 1)20+1 .
Pe = (40)9(0 + 1)f+1 ()

For example, taking 6§ = 2, which corresponds to dual rail path encoding without

auxiliary modes, the average performance of this algorithm is (9(71(8?;’;3)”) ~ O(nl.8")

as opposed to O(n2") for the original algorithm of [40]. The implementation of [42]| in
Perceval is in progress.

The Naive Back-end. This back-end implements direct permanent calculation and is
therefore suited for single output probability computation with small memory cost. Both
Ryser’s [43] and Glynn’s [41] algorithms have been implemented. Extra care has been taken
on the implementation of these algorithms, with usage of different optimisation techniques
including native multithreading and SIMD vectorisation primitives. A benchmark of these
algorithms against the implementation present in the The Walrus [44] is provided
in Figure 1.

The SLOS Back-end. The Strong Linear Optical Simulation SLOS algorithm developed

by a subset of the present authors is introduced in [45]. It unfolds the full computation

m+n—1)
n

path in memory, leading to a remarkable time complexity of (’)(n() for computing

the full distribution. The current implementation also allows restrictive sets of outputs,
with average computing time in O(npj) for single output computation. As discussed in
[45], it is possible to use the SLOS algorithm in a hybrid manner that can combine both
weak and strong simulation, though it has not yet been implemented in the current version
of Perceval. The tradeoff in the SLOS algorithm is a huge memory usage of (’)(n(mt?_l))

that limits usage to circuits with ~ 20 photons on personal computers and with ~ 24
photons on super-computers.

3Following the methodology presented at

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 8

https://github.com/XanaduAI/thewalrus
https://the-walrus.readthedocs.io/en/latest/gallery/permanent_tutorial.html
https://the-walrus.readthedocs.io/en/latest/gallery/permanent_tutorial.html

+ thewalrus + :
101 perceval-glynn
—— perceval-ryser-4 X
X perceval-ryser-32 + %
2101 x
C
o
§ +
€1073{ XXXXXXXXXXXXXX
£
T
1075 + .
+ +++
0 5 10 15 20 25 30

Matrix size n

Figure 1: Comparison of the average time to calculate a permanent®of an n x n Haar random matrix.
The processor is a 32 core, 3.1GHz Intel Haswell. For The Walrus, version 0.19 is used and installed
from pypi. The Ryser implementation is run on 4 or 32 threads. The Glynn implementation is run
on a single thread. What is interesting to note is that all implementations have convergence to the
theoretical performance but the factor between optimised and less optimised implementation still makes
a perceptible time difference for the end-user. Based on different behaviour between Ryser and Glynn
with n and potential multi-threading, Perceval has some built-in logic to switch between the two
algorithms.

The Stepper Back-end. This back-end takes a completely different approach. Without
computing the circuit’s overall unitary matrix first, it applies the unitary matrix associated
with the components (see Table 1) in each layer of the circuit one-by-one, simulating the
evolution of the state vector. The complexity of this back-end is therefore proportional to
the number of components. It has the nice features that:

e it can support more complex components like Time Delay;

e it is very flexible with simulating noise in the circuit, like photon loss, or more
generally with simulating any non-linear operation the user would wish to implement;

e it simplifies the debugging of circuits by exposing intermediate states.

The Stepper back-end is really meant for circuit simulation with losses or non linear
components. In all other cases, it is more efficient to directly consider the unitary matrix
of the whole circuit and compute the output state with SLOS, instead of performing a
computation for each component using the Stepper back-end.

Theoretical performances and specific features of the different back-ends are sum-
marised in Table 2.

3.2.4 Processors

The Processor class allows the user to emulate a real photonic quantum processor, taking
into account the single photon source, the circuit and the detectors. The Perceval source
model allows tuning of the transmittance, multiple photon emission probability, and indis-
tinguishability. By default, the source is perfect. The circuit can be composed of unitary
or non-unitary components. Detector imperfections can be emulated — one can switch
between number resolving detectors and threshold detectors. Post-selection features can

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 9

Feature CC2017 SLOS Naive Stepper
Sampling _1
Bfconey | O F PO | () o(n2(Mh)
Single Output _
N A skk on N, m+n—1
Efficiency /) Om2") O< C(")>
Full Distribution _ _ _
Efficiency N/A O(n("Hf 1)> O(nQ” (m—w 1)) O(Nc(m+: 1))
Probabilit
robabiity No Yes Yes Yes
Amplitude
S ts Symboli
HPbOrts Lymbole No No Yes Yes
Computation
S
upports No No No Yes
Time-Circuit
Practical
n ~ 30 n,m < 20 n =~ 30
Limits (*¥**)

Table 2: Theoretical performance and specific features of Perceval back-ends. (*) An implementation
based on “Fuaster Classical Boson Sampling” [42] is in progress; p is a polynomial function. (**) An
implementation of SLOS Sampling and single output efficiency is in progress. (***) Practical limits
are subjective and corresponding to a memory usage < 16Gb, and a usage time for a given function
of less than a few seconds. For Stepper, it is hard to evaluate exactly the complexity since it is
really proportional to the number of “components” (N.) and the size of the output space that are
circuit-specific.

also be added to a Processor via heralded modes and/or a final post-selection function.
See the Appendix A.4 for more details.

3.2.5 Algorithms

The algorithm library provides a set of tasks which can be performed on a Processor.
These tasks can be as simple as obtaining a sample result (see Appendix A.4), or slightly
more complex Analyzer will output a probability table of expected input-output correla-
tions, as illustrated in Figure 4.

3.2.6 Bridges to Other Quantum Computing Toolkits

In order to facilitate work across multiple platforms, Perceval provides both a catalog of
predefined components and specific converters:

e The predefined component catalog is available in Perceval.components.catalog,
where each element is an instance of CatalogItem providing a ready-to-use circuit
(as_circuit() method), a processor (as_processor() method), and a complete
documentation (doc property).

e Converters to Perceval from other frameworks are available in perceval.converters.
Their task is to provide a photonic Perceval equivalent of circuits and algorithms de-
fined in other open source frameworks. Currently a qiskit® converter is available
and converters for and are in development.

“https://qiskit.org

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 10

https://github.com/CQCL/tket
https://myqlm.github.io

Examples for both tools are provided in a notebook of the Perceval documentation.

3.2.7 Step-by-Step Example

The following code implements a simple linear optical circuit corresponding to a path-
encoded CNOT gate (after post-selection in the coincidence basis) [46].
import perceval as pcvl

from perceval.components import BS
import numpy as np

theta_13 = BS.r_to_theta(r=1/3)
cnot = (pcvl.Circuit (6, name="Ralph CNOT")
.add((0, 1), BS.H(theta_13, phi_bl=np.pi,
phi_tr=np.pi/2, phi_tl=-np.pi/2))
.add ((3, 4), BS.HO)
.add((2, 3), BS.H(theta_13, phi_bl=np.pi,
phi_tr=np.pi/2, phi_tl=-np.pi/2))
.add ((4, 5), BS.H(theta_13))
.add ((3, 4), BS.HO))
pcvl.pdisplay(cnot) #displays the circuit
pcvl.pdisplay(cnot.compute_unitary(), output_format=pcvl.Format.LATEX)
#outputs the unitary matrix of the circuit

Code 1: Implementation of the CNOT of [46]

Let us explain how it works. We remind that the CNOT gate is a two-qubit gate that
acts in the following way:

CNOT(|z,y) = |z, z ®), (6)

i.e. it’s a controlled-not gate where the first qubit acts as control and the second qubit is
the target. We use dual-rail encoding (see Equation 4) and thus need four spatial modes
to represent the target and the control. We additionally need two auxiliary empty modes
to implement this post-selected linear optical CNOT. The circuit is made of three central
beam splitters of reflectivity 2/3, whereas the two to the left and right of the central ones
have a reflectivity of 1/2. The corresponding circuit displayed by Perceval is depicted in
Figure 2.

©=1.9106

IR

©_tI=3*pi/2
®_bl=pi
_tr=pi/2

©=1.9106

E.

®_tl=3%pi/2
@_bl=pi

@_tr=pi/2
©=1.9106

Figure 2: The circuit generated by Perceval, output of the Code 1.

The first and last spatial modes correspond to the auxiliary empty modes, the second
and third to the control qubit, and the fourth and fifth to the target qubit. The associated

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 11

https://perceval.quandela.net/docs/notebooks/Qiskit%20conversion.html
https://perceval.quandela.net/docs/

unitary matrix acting on the six spatial modes computed with Perceval is displayed in
Figure 3.

(3 B 9 0 0 0]
Vs 9 0 00
3 31 31

R T N
o 0 -5 % 0 ¥
0 0 ¥ 9 ¥ B
3 3 3
Lo 0 0 ¥ Y3 _¥3

Figure 3: The unitary matrix computed symbolically, output of the Code 1.

We then need to post-select on measuring two (dual-rail encoded) qubits in the modes
corresponding to the target and the control, i.e. on measuring exactly one photon in the
second or third spatial modes and exactly one photon in the fourth or fifth spatial modes.
One can check that this measurement event happens with probability 1/9 — we call this
number the ‘performance’ of a post-selected gate. We say that the error rate is 0 if the
implementation of the gate is perfect (after post-selection). This computation can be done
with Perceval: we define a processor, use the SLOS back-end, and perform a full output
distribution and performance analysis, as illustrated in Figure 4.

def post_process(output_state):
’’’postselected states are those containing one photon in the modes
{1,2} and the other in the modes {3,4}’’’
return (output_state[1l] + output_state[2]) == 1 \
and (output_state[3] + output_state[4]) == 1

cnot_processor = pcvl.Processor ("SLOS", cnot)
cnot_processor.set_postprocess (post_process)

states = {
pcvl.BasicState([O, 1, O, 1, O, 0]): "o0O",
pcvl.BasicState([O, 1, O, O, 1, 0]): "O1",
pcvl.BasicState ([0, O, 1, 1, O, 0]): "10",
pcvl.BasicState([O, O, 1, O, 1, 0]): "11"
X
analyzer = pcvl.algorithm.Analyzer (cnot_processor, states)
analyzer.compute (expected={"0O": "0O", "O1": "O1", "10": "11", "11": "10"})

pcvl.pdisplay(analyzer, output_format=pcvl.Format.LATEX)
print ("=> performance=Ys, fidelity=%.1£f%%" %
(pcvl.simple_float (analyzer.performance) [1], analyzer.fidelity*100))

Code 2: Analysis of the input-output map of the CNOT from Code 1

4 Perceval in Action

In this section we provide examples of the Perceval software in use. We reproduce several
photonic experiments that implement important quantum algorithms and then demon-
strate a photonic quantum machine learning algorithm on a simulated photonic quantum
processor.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 12

00 01 10 11
oo 1 0 0 O
01 0o 1 0 O
10 0 0 0 1
1 0 0 1 0
=> performance=1/9, fidelity=100.0%

Figure 4: Output of Code 2

4.1 The Hong-Ou-Mandel Effect
4.1.1 Introduction

The Hong-Ou-Mandel (HOM) effect [47] is an interference effect between pairs of indis-
tinguishable photons, which, when incident on a balanced beam splitter via the respective
input modes, will bunch and emerge together in either of the output modes with equal
probability. In 2002, Santori et al. demonstrated the HOM effect with a unique source of
single photons [48], evidencing the indistinguishability of consecutive photons and paving
the way to many developments in experimental quantum optics.

In this experiment, “two pulses separated by 2 ns and containing O or 1 photons, arrive
through a single-mode fibre. The pulses are interfered with each other using a Michelson-
type interferometer with a (2 ns+At) path-length difference. |[...] The interferometer
outputs are collected by photon counters, and the resulting electronic signals are correlated
using a time-to-amplitude converter followed by a multi-channel analyser card, which gen-
erates a histogram of the relative delay time T = t9 — t1 between a photon detection at one
counter (t1) and the other (t2)’ |48]. An equivalent experiment was carried out in [49]
with similar results, presented in Figure 5.

1500 - ' ' ' ' ' g
1000 - -
0
[
3
g o
500 - -

-12 0 12
Delay (ns)

Figure 5: Measured correlation histogram between the HOM outputs in linear scale [49]. The red line
shows the theoretical histogram for a perfect two-photon interference.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 13

4.1.2 Perceval Implementation

The implementation on Perceval uses a simple circuit composed of a beam splitter (corre-
sponding to the main beam splitter of [48, Figure 3(a)]), the lower output mode of which
then passes through a 1-period time-delay, and then a second beam splitter on the modes
where the interference happens.

The circuit and result are presented in Figure 6. The resolution is less fine-grained than
the original experiments due to the absence of modelling of photon length in the current
implementation of Perceval. However, we clearly recognise the same distinctive peaks in
the relative amplitude. The very small coincidence rate at 7 = 0 is the signature of photon
interference. The implementation of the algorithm is provided in Appendix.

0.0175 A
0.0150
0.0125 A

w 0.0100 4

>

U

Y 00075 A

0.0050 4

0.0025 4

0.0000 -

(a) (b)

Figure 6: Reproduction of the experiments of [48] and [49] in Perceval. (a) The circuit as constructed
in Perceval. (b) Time simulation is run with Perceval and the difference between two consecutive

detections on both arms is plotted. An imperfect source emitting a photon with a 30% probability,

and with probability 1% of generating two photons at each cycle has been simulated. This slight géo)

imperfection explains the nonzero value at 7 = 0.

4.2 Boson Sampling
4.2.1 Introduction

Boson Sampling” is a sampling problem originally proposed by Aaronson and Arkhipov
[28]. We give a detailed description of the problem below. It essentially consists of sampling
from the probability distribution of outcome detection coincidences when single photons
are introduced into a random linear optical circuit.

Let m,n € N* be positive integers with m > n. Let S, 5, be the set of all possible tuples
(s1,...,8m) of m non-negative integers s; € N, with >, s; = n. Let U be an m x m
Haar-random unitary matrix. From U we construct an n x n matrix Ur g as follows. For
a given S = (s1,...,8m) € Spmn, first construct an n x m matrix Ug by copying s; times
the ith row of U. Then, for a given (fixed) T = (t1,...,tn) € Sm,n, construct Ur g from
Us by taking t; copies of the §™ column of Us. Let Perm(Urg) be the permanent [51,
Chapter 7| of Ur g, and let

|Perm(Ur s)|?
81! . Sm!tl! .. .tm!.

P(S) = (7)

5The technical introduction to the problem here draws heavily on a previous work by a subset of the
authors of this paper [50].

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 14

It can be shown that P(S) € [0,1], and that the set Dy = {P(S) | S € Spn} is a
probability distribution over outcomes S |28].

Let € € [0,1] be a given precision. Approximate Boson Sampling can then be defined
as the problem of sampling outcomes S from a probability distribution D such that

1D~ Dyl <, (8)

where ||.|| denotes the total variational distance between two probability distributions.
Exact Boson Sampling corresponds to the case in which € = 0.

For m > n?, it was shown in [28] that:

e No classical algorithm can solve Exact Boson Sampling in time poly(n),

e No classical algorithm can solve Approximate Boson Sampling in time poly(n, %),

unless some widely accepted complexity theoretic conjectures turn out to be false.

These hardness results are closely related to the hardness of computing the permanent of
matrices [28, 38|.

On the other hand, Boson Sampling can be solved efficiently in the exact case on
a photonic quantum device which is noiseless 28], while the approximate version only
requires sufficiently low noise levels [52-54]. This is done by passing n identical single
photons through a lossless m-mode universal linear optical circuit [35, 36] configured in such
a way that it implements the desired Haar-random unitary transformation U. Universal
here is meant in the sense of photonic unitaries and refers to the ability of the circuit
to generate any arbitrary unitary evolution on the creation operators of the modes. A
universal linear optical circuit can be configured to implement any m X m unitary chosen
from the Haar measure, for example using the recipe of [55]. The input configuration of
single photons corresponds to a tuple T. We then measure the output modes of the circuit
using perfect single photon detectors, and will obtain the output configuration tuple S
according to the distribution Dy [28]. The detectors should be photon-number resolving
in general, but not necessarily when working in the no-collision regime (n? << m) [28].

422 Perceval Implementation®

Boson Sampling with single photons in a 60 mode linear optical circuit with up to 14-
photon coincidences at the outputs was reported in [56]. In this Section, we report the
results of a noiseless Boson Sampling simulation performed with Perceval for n = 14 single
photons and m = 60 modes. For this Boson Sampling, the total number of possible output
states is M = ("7 = (%) ~ 101 [28].

For an input state of 14 photons in 14 arbitrarily chosen modes k1, ..., k14 € {0, ..., 59},
we generated 300 Haar random 60 x 60 unitaries, and performed for each of these unitaries
5 x 10° runs of Boson Sampling, where each run consists of sampling a single output. In
total, we collected 1.5 x 10° samples.

The classical algorithm for Boson Sampling integrated into Perceval and which was
used for this simulation is that of Clifford and Clifford [40]. Note that faster versions of
this algorithm have been found by the same authors in the case where m is proportional
to n [42]. Integration of the algorithm of [42]| into Perceval is a subject of on-going work.
The simulations were performed on a 32-core 3.1GHz Intel Haswell processor, at the rate
of 8547 runs (samples) per second. It took roughly 2 days to collect 1.5 x 10° samples.

5This implementation is accompanied by a

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 15

https://perceval.quandela.net/docs/notebooks/Boson%20Sampling.html

Brute-force certification that our simulation has correctly implemented Boson Sampling
would require, for each of the 300 Haar random unitaries, calculation of approximately 10
permanents (to get the ideal probability distribution of the Boson Sampler), then perform-
ing ~ 10" runs of Boson Sampling using our simulation, in order to get the distribution
of the simulated Boson Sampler to within the desired accuracy. Clearly, this task is com-
putationally intractable. In order to get around this issue, while still having some level
of confidence that our Boson Sampling simulation has indeed been implemented correctly,
we have appealed to computing partial certificates [50, 57|. These certificates are usually
efficiently computable, but nevertheless can be used to rule out some common adversarial
strategies designed to spoof Boson Sampling [58, 59|, although they cannot provably rule
out every possible adversarial spoofing strategy [50, 57-59].

The partial certificate we used here is the probability P(K) that all n input photons
are measured in the first K output modes of the Boson Sampler [57], where K < m. We
believe this choice of partial certificate is natural for benchmarking our simulation mainly
for the following reasons. First, it can be computed straightforwardly from the output
probabilities of Boson Sampling. Second, it relies on computing high order marginals,
which are most likely difficult to compute efficiently classically [28]. Finally, for some
values of n,m, and K, P(K) can be computed to very good accuracy by using only a
polynomial number of samples from the device [57].

P(K) = POk 41, ..., 0m) =

>

{S|sx 1= =sm=0}

P(S), (9)

where, for a given m X m unitary U, P(S) is computed as in Equation 7. The aver-

age (P(K)) of P(K) over the Haar measure of m x m unitaries U has been computed

analytically in [57]:

KK+1)...(K+n-1)

mm+1)...(m+n—1)
We computed an estimate (P(K)) of (P(K)) by computing an estimate P(K) of P(K)

using 5 x 10 samples for each of the 300 Haar random unitaries, then performing a uniform

average over all these 300 unitaries. Our calculations for various values of K, together with
the standard deviation of the distribution of P(K) are presented in Table 3.

(P(K)) =

(10)

K 30 40 50 55 57
(P(K)) | 0.015% | 0.54% | 9.30% | 32.03% | 50.89%
(P(K)) | 0.021% | 0.65% | 10.11% | 33.33% | 52.20%

Std. Dev. | 0.00005% | 0.0014% | 0.015% | 0.035% | 0.045%

Table 3: Analytical values ({P(K)), and values computed with Perceval ((P(K))) of the probability
that all 14 photons gather in the first K out of 60 output modes, for various values of K.

We observe a good agreement between the analytical values and the values computed
with Perceval, in particular when the value of K is close to 60. This is to be expected,
since these values of K are closest to the regime in which n(m— K) < m, where it has been
shown [57] that (P(K)) is polynomially close to one in n and m, and therefore a poly(n, m)
number of samples from the Boson Sampler is enough to compute P(K) to good precision
so as to allow a reliable certification.

As a final remark, note that Perceval can also simulate imperfect Boson Sampling,
where the imperfections integrated so far include photon loss and the possibility of multi-
photon emissions. For further details we refer the reader to the

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 16

https://perceval.quandela.net/docs/

4.3 Grover's Algorithm
4.3.1 Introduction

Grover’s algorithm [2] is an O (\/N) -runtime quantum algorithm for searching an unstruc-
tured database of size IN. It is remarkable for providing a polynomial speedup over the
best known classical algorithm for this task, which runs in time O(N). We now provide
an intuitive explanation of how this algorithm works, similar to that which can be found
in the Qiskit or in [60].

We work in the n-qubit Hilbert space (C2?)®", which allows us to treat a database
of size N = 2™ In its standard formulation, the goal of Grover’s algorithm is to look
for an unknown computational basis state |T"), which we will call the target state, with
T €{0,1}"™.

Let |R) be the (normalised) uniform superposition of all the N —1 computational basis
states other than |T"), which is orthogonal to |T"). The uniform superposition |S) of all N
computational basis states can then be written as

P VN 1
- VN VN

Describing the problem setting in this way allows us to describe Grover’s algorithm in a
geometric picture. Indeed, we can now think of the states |T'), |R), and |S) as lying in a 2-
dimensional plane with a basis {|R), |T)}. For example, |S) forms an angle § = arcsin(\/%)

with respect to |R) (or § — 6 with respect to |T7)).
Grover’s algorithm relies on the application of two unitaries noted Up and Uy. The
former is an oracle unitary’ defined on computational basis states |z) as

Uole) = { 17 1 2= T, (12)
|x) otherwise

)+ |R). (11)

while the latter is the diffusion unitary Uy is defined as
Ua :=2|S)(5] = 1n, (13)
where 1,, the n-qubit identity matrix. On the uniform superposition, the unitary Up acts

as
1 7 vN -1
VN VN
Geometrically, Up reflects the state |S) through the vector |R). Let’s call the resulting
reflected state |Sp). Then, Uy performs a reflection of |Sp) through the vector |S). Let the
resulting reflected state be denoted [Sp 4). One can see that these transformations keep
the states in the same 2D-plane, and that |Sp 4) forms an angle of 26 with respect to |S)
(or § — 360 with respect to |T')). The state after applying UqUo is thus closer to |T") than
the initial state |\S) was.
The reflections that we described correspond to one iteration of Grover’s algorithm.
The full algorithm first creates the state |S) by applying n Hadamard gates H®™ to an
input state [0)®™. It then transforms the state |.S) into |T') by applying k times the unitary

Uo|S) =) + IR). (14)

"An oracle is a unitary which the algorithm can apply without having knowledge about its internal
implementation.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 17

https://qiskit.org/textbook/ch-algorithms/grover.html

UaUo to |S). Following the geometric reasoning above, the required number of iterations
k is given by:

z - T 1
ko~ {229 -‘ B 4arcsin(ﬁ) 2 ~ O(\/N)’ (15)

where [-] is the ceiling function.

As a closing remark, let us mention that the original version of Grover’s algorithm
presented here is non-deterministic, albeit with a probability of success approaching one
exponentially quickly with increasing N [2]. Fully deterministic versions of Grover’s algo-
rithm can be obtained, for example by using different oracles and diffusion unitaries than
those used here [61], or by using two different types of diffusion unitaries while keeping the
same Ugp [60].

4.3.2 Perceval Implementation®

Here we reproduce the photonic demonstration of Grover’s algorithm of [62]. It uses
the spatial and polarisation degrees of freedom to implement a mode realisation of the
algorithm with two spatial modes. We spell out the correspondence between the marked
database element and the associated quantum state in Table 4.

Marked database element | Quantum state
00 |0,P: H)
01 |0,P:V)
10 |P: H,0)
11 |P:V,0)

Table 4: Equivalence between database elements and states in Perceval.

Quantum Circuit. Figure 7 represents the quantum circuit that implements Grover’s
algorithm on two qubits, encoded over two spatial modes and their polarisation modes as
described in Table 4. It features a state initialisation stage creating a uniform quantum
superposition over all states, an oracle stage, and a diffusion stage. Replacing N = 4 in

Equation 15 gives k ~ /= — % = 1. Thus, one application of the oracle and diffusion gates

ENE

suffices.

0),

Oracle 0) ‘O>p (0f <0|p -1

o1, —{}—

Figure 7: Quantum circuit implementing Grover's algorithm using the spatial (s) and polarisation (p)
degrees of freedom. H denotes a Hadamard gate. The first set of Hadamard gates creates a uniform
superposition over all states. Subsequently, the oracle is applied on the superposition, followed by a
Grover diffusion operation coupled to detection devices.

Linear Optical Circuit. The linear optical circuit we will use in our simulation is shown
in Figure 8. This circuit was experimentally realised by Kwiat et al. [62] using bulk (i.e.

8This implementation is accompanied by a

Accepted in { Yuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 18

https://perceval.quandela.net/docs/notebooks/2-mode%20Grover%20algorithm.html

free-space) optics and compiled to limit the number of optical elements introduced in the
experimental setup, by moving and combining operations like phase shifts.

y & p)
=veffo=3+2 o=n =0 cn=3*n/2\6_1/2 =vaffo=3+m2
- Z o Z
L/

INITIALIZATION ORACLE INVERSION

Figure 8: Linear optical circuit implementing Grover's algorithm. The oracle is set here to mark
the element '00', which encodes the state |0, P : H). Because the circuit has been compiled, the
initialisation, oracle and inversion stages do not strictly apply the expected operation. The half-wave
plates in this figure are followed by a —7/2 phase shift to match the half-wave plate definition of Kwiat
et al. The figure has been generated using Perceval.

Simulation. Here, we simulate in Perceval the linear optical circuit of [62] (see Figure
8), a photonic realisation of the quantum circuit in Figure 7, which implements Grover’s
algorithm for marked elements 00, 01, 10 and 11. The results are displayed in Figure 9,
along with the experimental results of Kwiat et al. [62].

Kwiat et al. Perceval
1.0 1.0 = 0,{P:H}>
08 4 0.8 4 |0, {P:V}>
== |{P:H},0>
mm |{P:V},0>

©
>
1

o o
o N
1 1
{____
|
o
o

Detection probability
o
(o)}
o
N

Detection probability
o
(o)}

©
N
!

IIOOII IIOlII IIlOII Illlll ! IIOOII IIOlII II10II II11II
Marked database element Marked database element

Figure 9: Left: experimental results from Kwiat et al. [62]. Right: results of the simulation in Perceval.
The simulated results are as expected and thus match the results obtained in the experiment (up to
experimental error).

4.4 Shor's Algorithm
4.4.1 Introduction

The problem of factoring an integer is thought to be in NP-intermediate and the best known
classical algorithms only achieve sub-exponential running times. Its classical complexity
is well studied since it has been used as the basis of the most widely adopted encryption
scheme, Rivest-Shamir-Adleman (RSA) [63]|, where the secret key consists in two large
primes p and ¢, while their product N = pq is the corresponding public key. In this
context, Shor’s algorithm [1] greatly boosted interest in quantum algorithms by showing
that such composite numbers can in fact be factored in polynomial time on a quantum
computer.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 19

From Period-Finding to Factoring (Classically). We start by assuming that there
exists a period-finding algorithm for functions over integers given as a black-box. This
algorithm is used to find the order of integers a in the ring Zy, i.e. the smallest value r
such that a” =1 (mod N). In particular, the values of a are sampled at random until the
associated 7 is even.

Once such an a has been found,” we have that a” — 1 = (aZz —1)(a? + 1) is a multiple
of N but not a2 — 1 (otherwise the period would be r/2). We test whether a% + 1 is a
multiple of N and if so restart the procedure.'’ Otherwise, we have found a multiple of
one of the prime factors p, q since az + 1 divides a multiple of N. Taking the greatest
common divisor (GCD) of az +1 and N easily yields this prime factor. Indeed, the GCD
can be found efficiently classically for example by using Euclid’s algorithm.

In summary, all the steps described are basic arithmetic operations, simple to imple-
ment on a classical machine, and most of the complexity is hidden in the period-finding
algorithm.

Shor’s Quantum Period-Finding Algorithm. The key contribution of Shor’s work
was to show that the period-finding algorithm can be done in polynomial time on a quantum
computer.

Indeed, finding the order for a value a can be reduced to a problem of phase estimation
for the unitary U, implementing the Modular Exponentiation Function (MEF) z — a”
(mod N) on computational basis states. It can be shown that all eigenvalues of these
operators are of the form e* T for an integer k and the value of interest . The phase
estimation algorithm uses as basis the Quantum Fourier Transform and its inverse, along
with controlled versions of unitaries of the type U,» up to 2P ~ N2.!' This part of the
circuit is specific to the value of a and N and can therefore be optimised once they have
been chosen. Although the most costly part of the algorithm in terms of gates, the unitaries
C-U,2» (controlled U,.» gates) can still be implemented in polynomial time on a quantum
computer, making the overall procedure efficient as well.

4.4.2 Perceval Implementation'?

Here we reproduce the photonic realisation of Shor’s algorithm from [64].

Quantum Circuit. The quantum circuit shown in Figure 10 for factoring N = 15 using
parameter a = 2, whose order is 7 = 4. It acts on 5 qubits labelled xq, 1, z2 (for the top
three) and fi, fo (for the bottom two). The CNOT gates apply a version of the MEF which
has been optimised for this specific value of a to the qubits z; in superposition, storing the
outcome in qubits f;. The outcome is given by measuring the qubits x1, x2, followed by
classical post-processing.

Linear Optical Circuit. Since qubit zy remains unentangled from the other qubits it
can be removed from the optical implementation of this circuit. Furthermore, the CNOT

9Values of a that verify this property are common in Zy.

107t can be proven that the probability of not restarting at this step is high, and on average the algorithm
needs to be repeated only once.

"Using this family of unitaries reduces the precision required of the phase estimation procedure from
1/N? to constant.

12This implementation is accompanied by a

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 20

https://perceval.quandela.net/docs/notebooks/Shor%20Implementation.html

10),, —{H] QFT! —

‘0>ZEQ ﬂ *
10}, SZ
Dy, S5

Figure 10: Quantum circuit implementing Shor’s algorithm for N = 15 and a = 2.

gates on x;, f; can be realised as
CNOTLQ = HQ O CZLQ [¢] HQ, (16)

where the indices denote the qubits to which the gate is applied (in the case of CNOT,
the first qubit is the control). Finally, the inverse Quantum Fourier Transform can be
performed via classical post-processing, and so does not need to be implemented as a
quantum gate in the circuit. The circuit after these simplifications is given in Figure 11.

10)e, —{HF—+——
10)4, —{H]
), —{H] [H—
D,

Figure 11: Simplified Shor quantum circuit.

T

T

The expected output state of the circuit above is

% (10)2110) 5y + (V)21 [1) 1) © (10} [1) o + [1)2, 10} 1) - (17)

We work with path encoded qubits, as in [64]. With path encoding, each H gate in the
quantum circuit is implemented with a beam splitter with reflectivity R = 1/2 between the
two paths corresponding to the qubit. In our implementation in Perceval, phase shifters
are added to properly tune the phase between each path.

CZ gates are implemented with 3 beam splitters with reflectivity R = 2/3 acting on
6 modes: one inner beam splitter creates interference between the two qubits, and two
outer beam splitter balance detection probability using auxiliary modes. This optical
implementation succesfully yields the output state produced by a CZ gate with probability
1/9; otherwise it creates a dummy state, which can be removed by post-selection.

The circuit implemented in Perceval is illustrated in Figure 12.

The matrix associated to the optical circuit, giving the probability amplitude of each
combination of input and output modes, is given in Figure 13.

Simulation. After entering the initial Fock state associated to the input qubit state
10)2,10)2510) £,|1) £,, we plot the probability amplitudes of the output state, post-selected

Accepted in (Yuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 21

Figure 12: Linear optical circuit implementing Shor’s algorithm. The 12 modes are ordered from 0 to
11, from top to bottom. Modes (1,2), (3,4), (7,8), (9,10) encode qubits x1, x2, f1, fo respectively.
Modes 0, 5,6, 11 are the auxiliary modes for CZ gates.

on Fock states corresponding to a qubit state with path encoding. The results are given
in Figure 14.

After re-normalisation we find that the output amplitudes computed with Perceval
match the expected output state described in Equation 17 up to numerical precision.

When decomposing the expected output state in the qubit basis, the qubit states
with non-zero amplitude are |0001), [0100), [1011) and [1110) for qubits z1,x2, fi, fo.
We plot the output distribution of the circuit, post-selected on these states, without re-
normalisation; the result is presented in Table 5.

0,0,0,1) | [0,1,0,0) | |1,0,1,1) | |1,1,1,0)
0,0,0,1) | 0.003086 | 0.003086 | 0.003086 | 0.003086

Table 5: The output distribution for qubits z1, z2, f1, fa.

The distribution obtained with Perceval is uniform over each outcome, which matches
the expected distribution in [64].

Outcome Distribution Interpretation. For each outcome, the values of qubits 9, z1,
xo (with g = 0) represent a binary number between 0 and 7, here corresponding to 0,4, 2, 6
in the order of Table 5. After sampling the circuit, obtaining outcomes 2 or 6 allows to

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 22

V¥ g 9 0 0o 0o 0 0 0 0
@ é % 00 o 0o 0 0 0 0 0
VR A
o X ¥ = 2 9 9 0 0 0 0 0
N N
o XL _YE ¥ ¥ 9 o 0o 0 0 0
\oi \oi V3 V3i
o 0 LT 0 0 0 0 0 0
o 0 o M MW, 0o 0 0
0 0 0 0 0 0 %3 ‘/75’ ‘f" 0 0 0
0 0 0 0 0 0 @ $ {" o o 0
0 0 0 0 0 0 o W& e B
3] 6 3 3
Voi Vei 43 \Vai
0o 0 0 0 0 0 o Y VM VI N
\6i \/6i Na \V3i
o 0 0 0 0 o o ¥ VI, ¥ I
0o 0 0 0 0 o o o o ¥ M ¥

Figure 13: Unitary matrix associated with the optical circuit from Figure 12.

successfully compute the order r = 4 [64]. Obtaining outcome 0 is an expected failure of
the quantum circuit, inherent to Shor’s algorithm. Outcome 4 is an expected failure as
well, as it only allows to compute the trivial factors 1 and 15.

Since the distribution from Figure 5 is uniform the circuit successfully yields a successful
outcome with probability 1/2. This probability can be amplified exponentially close to 1
by sampling the circuit multiple times [64].

4.5 Variational Quantum Eigensolver
4.5.1 Introduction

The Variational Quantum Eigensolver (VQE) introduced by [13] is an algorithm for finding
eigenvalues of an operator. Applications range from finding ground state energies and
properties of atoms and molecules to various combinatorial optimisation problems.
Since the eigenvector [¢*) associated to the smallest eigenvalue of H minimises the
Rayleigh-Ritz quotient
(V" [H]y™)
(W|y*)
the eigenvalue problem can be rephrased as a variational problem on this quantity. The
VQE algorithm uses as a sub-routine the Quantum Expectation Estimation (QEE) algo-
rithm, developed in the same paper, whose task is precisely to compute the expectation
value (H) := (|H|¢) of Hamiltonian H for an input state [¢)) (here assumed to be nor-
malised). Given an ansatz represented by tunable experimental parameters {6;}, set to
some initial values {#i"}, the VQE algorithm works by iterating a loop which first applies
the QEE algorithm on a state generated using the initial parameters {#"*}. Then, based
on the outcome, it tunes these parameters using a classical minimisation algorithm. This
process is repeated until a termination condition specified by the classical minimisation
algorithm is satisfied.
Let n be the number of qubits of our system, o, oy, and o the single qubit Pauli X,
Y, and Z matrices, and 1 the single qubit identity matrix.
Any n-qubit Hamiltonian H can be decomposed as

H = Z hyo, (19)

(18)

where 0 = ®],0;, 0; € {03,04,0,1}, and h, € R.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 23

Output state amplitude:

|%X1,%o,f1,f5>

10,0,0,0> 0j

10,0,0,1> (0.055555555555555566+07)

10,0,1,0> 0j

10,0,1,1> 0j

10,1,0,0> (-0.055555555555555557-1.734723475976807e-187)

10,1,0,1> (-1.3877787807814457e-17-1.734723475976807e-18j)
10,1,1,0> (-1.734723475976807e-18j+07)

10,1,1,1> 0j

11,0,0,0> 0j

11,0,0,1> (-1.3877787807814457e-17+07)

11,0,1,0> (-1.734723475976807e-183+0j)

11,0,1,1> (-0.055555555555555557-1.734723475976807e-183)

|1,1,0,0>
[1,1,0,1>
[1,1,1,0>
[1,1,1,1>

(1.3877787807814457e-17+03)

0

(0.05555555555555558+07)
(1.3877787807814457e-17+5.204170427930421e-183)

(post-selected on qubit states, not renormalized)

Figure 14: The output state amplitudes computed with Perceval, j%2 = —1.

The expectation value (1|o|1) of an n-qubit Pauli operator o with respect to a state
|1)) can be estimated efficiently by performing local measurements on [¢) [13]. Thus, if
the number of terms in the sum in Equation 19 is poly(n), then computing (H) can be
performed efficiently on a quantum device, as it reduces to computing poly(n) expectations
of the form (¢|o|y), each of which can be done efficiently. Unfortunately, various issues
regarding the scalability of the VQE approach manifest with increasing the system size.
Notably, VQE circuits having a good expressivity [65] generally have a number of parame-
ters scaling rapidly with the system size. Furthermore, in some cases, the expectation value
(¥|o|v) might be exponentially small in n, requiring, from standard statistical arguments
[66], an exponential, and thus prohibitive, number of experimental samples to compute
accurately.

452 Perceval Implementation'’

Here we use Perceval to reproduce the original photonic implementation of the VQE from
[13]. For small enough instances of the problem, Perceval is able to compute explicitly the
complete state vector |¢)). This allows us to skip the QEE subroutine and directly compute
the mean value (H).

Linear Optical Circuit. We use the linear optical circuit of the original paper [13]
which was first introduced in [67]. The circuit has 6 optical modes, consists of 13 beam
splitters, 8 tunable phase shifters and 4 single-photon detectors, and is shown in Figure
15. This circuit is essentially a 2-qubit circuit where qubits 1 and 2 are path encoded
respectively in mode pairs (1,2) and (3,4) (here mode numbering is from 0 to 5, from
top to bottom). Modes 0 and 5 are auxiliary modes. The circuit consists of two parts.
The first part being the 3 central beam splitters in Figure 15, together with the 2 beam
splitters to the left and right of these central beam splitters, and which act on modes 3

13This implementation is accompanied by a

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 24

https://perceval.quandela.net/docs/notebooks/Variational%20Quantum%20Eigensolver.html

and 4. The 3 central beam splitters have reflectivity 1/3, whereas the two to the left and
right of the central ones have reflectivity 1/2. These 5 beam splitters are used, together
with modes 0 and 5, to apply a CNOT gate to qubits 1 and 2 [46]. This CNOT is successful
with probability 1/9 under post-selection. The second part of the circuit consists of the
remaining 8 beam splitters and phase shifters, and is used to implement arbitrary single
qubit rotations on qubits 1 and 2. All 8 phase shifters have tunable phase shifts, and all 8
beam splitters have reflectivity 1/2.

0=1.9106
: [""

©=1.9106

L.

©=0¢7 =08

=91 =02 =06

1

s

©=1.9106

ZaN

©=¢3 O=04

SINGLE QUBIT ROTATION CNOT SINGLE QUBIT ROTATION

Figure 15: Linear optical circuit implementing the VQE algorithm. The 6 modes are ordered from
0 to 5. Modes (1,2) and (3,4) encode the 2 qubits. Modes 0 and 5 are the auxiliary modes for the
CNOT.

Simulation. Our strategy for the simulation of the VQE is as follows. We first compute
the output state vector |1) of the linear optical circuit, which depends on the phase shifters
parameters (¢;)ieq1,..8) [13], for some random initial configuration of these parameters.
This enables the evaluation of the Rayleigh-Ritz quotient in Equation 18. Then, we proceed
to minimise this quantity by using the Nelder-Mead minimisation algorithm [68].

Using these techniques, we computed the ground-state molecular energies for the Hamil-
tonians of three different experiments [13] [69] [70]. In all these experiments, we used the
circuit of Figure 15 to compute the output states [¢). In line with the VQE algorithm, at
each iteration we produce a different [¢)) by tuning the angles of the phase shifters of the
circuit in Figure 15. To test the validity of our techniques, we computed the theoretical
ground-state molecular energies of the Hamiltonians of each of the 3 experiments. This
was done with the NumPy [71] linear algebra package. A plot of these energies computed
both theoretically and with Perceval is shown in Figure 16.

-5.50 T T - T T . . -0.6 T T T —-0.6, T T T T
Theoretical eigenvalues —0.7 Theoretical eigenvalues o 07 Theoretical eigenvalues]
—-555¢ < Eigenvalues computed with] = : * Eigenvalues computed with s « Eigenvalues computed with
g Perceval g -0.8 Perceval Sé —o0.8 Perceval
= 560 B = [}
S |1 e S 09 Z ool
> _s.651 o] = =
20 5 —-1.0 % —-1.0
w c u:_,
S -5.70f < p wo_g, 11
_s.75k | 1l . L 1 L . . L
5075 100 125 150 175 200 255 250 0.5 1.0 15 2.0 05 10 15 20 25

Atomic separation R (pm)

(a) Perceval simulation of

the H

amiltonian given in [13].

Atomic separation R (A)

(b) Perceval simulation of
the Hamiltonian given in [69].

Atomic separation R (A)

(¢) Perceval simulation of
the Hamiltonian given in [70].

Figure 16: Simulations of ground-state molecular energies.

The circuit of Figure 15 was originally used in [13] to compute the ground-state energies
of the Hamiltonian in Figure 16a. We observe a very good overlap between theoretical

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

25

https://numpy.org/

and computed energies, indicating that the Perceval simulation was succesful. In [69, 70],
different circuits than that of Figure 15 were used for computing the ground-state energies.
Nevertheless, and in order to explore the expressivity [65] of the circuit of Figure 15, we
computed and plotted in 16b,16¢ the results of ground-state energy computations of the
Hamitonians in |69, 70| using a VQE with the circuit of Figure 15. Our results in Figures
16b,16¢ indicate in general a good overlap between theoretical and computed energies, with
the deviations between theoretical and computed energies probably due to the fact that
the circuit of Figure 15 is not expressive enough to give better accuracies.

4.6 Quantum Machine Learning
4.6.1 Introduction

Linear optics has proven to be a fascinating playground for exploring the advantages offered
by quantum devices over their classical counterparts. For example, as discussed in Section
4.2, Boson Sampling [28], shows how a quantum device composed only of single photons,
linear optical circuits, and single-photon detectors, can perform a computational task which
quickly becomes unfeasible for the most powerful classical computers.

In [14], the authors show how linear optical circuits, similar to those used in Boson
Sampling, can be used to solve other problems of more practical use than sampling. The
basic idea is, following the work of [72, 73] for qubit-based quantum circuits, to encode
data points x € R onto the angles of phase shifters of a universal linear optical circuit. Ef-
fectively, this allows a non-linear manipulation of these data points. Indeed, this encoding
of the data points = allows to express the expectation value of some observable, computed
using the linear optical circuit, as a Fourier series

f(z) = Z et (20)

wes)

of the data points = [14]. The Fourier series, being a well known universal (periodic)
function approximator, can be used for a variety of tasks, including approximating the
solution of differential equations, which we will study here.

Interestingly, @ = {—n,...,n} where n is the number of photons inputted into the
linear optical circuit [14]; meaning that the expressivity of the Fourier series — how well it
can approximate a given function — depends (among other things) on the number of input
photons of the linear optical circuit.

In the coming sections, we give an example of a quantum machine learning algorithm,
using the above encoding, which solves a differential equation.

4.6.2 Expression of Photonic Quantum Circuit Expectation Values as Fourier Series

We focus on constructing a universal function approximator of a one-dimensional function
f(z) with a photonic quantum device of n photons and m modes. This device consists of
the following components: n sources of single photons, m-mode universal linear optical
circuits, and m number-resolving single-photon detectors [74]. Linear optical circuits can
be configured to implement m X m unitary matrices U. A linear optical circuit is called
universal if it can implement any such unitary U [35]. The n single photon sources produce
input Fock states of the form |nq,...,n,,), where n; is the number of photons in mode 4,
and >, ., ni =n. The Fock space of n photons in m modes is isomorphic to the Hilbert

space CM | with M = (mt?_l) [28]. This isomorphism, together with a homomorphism

from U(m) to U(M) (the m and M-dimensional unitary groups) detailed in [28], allows to

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 26

understand the action of the m x m unitary U implemented by the linear optical circuit as
an M x M unitary U acting on the input Fock state. In the rest of this section, as in [14],
we will work with these M x M unitary matrices when computing the universal function
approximator.

The circuit architecture of [14] implements the M x M unitary transformation

Uz, 0) := W (8,) S(z)WwD (6,) . (21)

The phase shift operator S(x) incorporates the x dependency of the function we wish to
approximate. It is sandwiched between two universal linear optical circuits W(l)(Ol) and
w® (02). The parameters (angles of beam splitters and phase shifters of the linear optical
circuits) €1 and 02 are tunable to enable training of the circuit, 6 := {61, 02}.

Let [n®) = |n§i), ngi), - ,n%)) be the input state consisting of n photons where nt is
the number of photons in input mode j. Consider the operator M(A), given by
M) = 37 Apioyn) (0] (22)
In(®)

where the sum is taken over all M possible Fock states \n(f)) of n photons in m modes,
and {)\|n(f)>} some tunable set of parameters. The expectation value

£ (z,0,X) = <n<i>

Ut (z,0) MA\)U(z, 9)\ n<i>> : (23)

of M(X) with respect to the output state U(x,0)|n®) of the linear optical circuit can be
computed by measuring the output modes of this circuit using number-resolving detectors.
™ (z,0,) can be rewritten as the following Fourier series [14]

F(2,0,0) = 3 e, (0, X)e™”, (24)

wENp

where Q, = [—n,n] is the frequency spectrum one can reach with n incoming photons
and {c,(0,A)} are the Fourier coefficients. Hence this specific architecture can be used as
a universal function approximator.

4.6.3 Application to Differential Equation Solving

The most general form of a differential equation verified by a function f(z) is

F[{d"f/dz™}, , f,x] =0, (25)

F[.] being an operator acting on f(x), its derivatives and z.

Given such an expression, we wish to optimise the parameters such that f(™ (z,0,))
is a good approximation to a solution f(x). More precisely, in this Quantum Machine
Learning task, we aim at minimising a loss function £(6) whose value is related to the
closeness of our approximator to a solution. This is done via a classical optimisation of
the quantum free parameters 6, yielding ideally in the end

0* = arg mein £(0). (26)

For the solving of differential equations, the loss function described in [75] consists of two
terms

EG [{dmg/dwm}m 7 f7 $] — ﬁ(gdiﬂ) [{dmg/dxm}m .9, .CE] + £(0boundary) [97 x]) (27)

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 27

The first term Eédiﬁ) [{d™g/dxz™}, ., g,] corresponds to the differential equation which has
been discretised over a set of M points {z;}:

M
6 [{d"g/da™,, g.a) = 52 3 L(F[dyg (@) g (@) 2], 0) (28)
i=1
where L(a,b) := (a — b)? for a,b € R. The second term E(BboundarY) [g,] is associated to
the initial conditions of our desired solution. It is defined as
boundar
Lo [g.2] = nL (g(x0). fo) - (29)

where 7 is the weight granted to the boundary condition and fy is given by f(z¢) = fo, for
some initial data point zg. These functions will be applied to the iterated approximations
F (. 0,X).

4.6.4 Perceval Implementation'”

Our aim is to reproduce some of the results of [75], where the authors use so-called differ-
entiable quantum circuits, together with the classical optimisation BFGS method of
[76], to provide an approximation to the solution of the nonlinear differential equation

daf

. + Af(z)(k + tan(Ax)) = 0, (30)

x

with A\, k € R, and boundary condition f(0) = fy € R. The analytical solution of this
differential equation is

f(z) = exp(—rAz) cos(Az) + fo — 1. (31)

Here, we solve this differential equation using the linear optical circuit architectures of
Section 4.6.2 simulated in Perceval, together with classical optimisation. Note that the
authors of [75] use Chebyshev polynomials as universal function approximators, whereas
here we will use the Fourier series.

In our Perceval implementation, 7 is chosen empirically as n = 5, granting sufficient
weight to the boundary condition. Concerning the A parameters, each one of them is
sampled uniformly randomly in the interval {—200,...,200}, which is also empirically
chosen. One could tune these A parameters as well for greater accuracy, at the cost of
a considerably slower minimisation procedure. The number of modes m is taken to be
equal to the number of photons n. Differentiation is numerically conducted, % ~ %, Ax
taken as 1073, The discretised version of the loss function is taken on a grid of 50 points,
uniformly spaced between 0 and 1.

Results are shown for various photon numbers in Figure 17a, demonstrating the in-
crease in expressivity of the quantum circuit with growing n. The converged solution for 6
input photons provides a convincing approximation to the analytical solution. Increasing
the number of photons further should yield even more accurate results, allowing for the
realisation of more complex Quantum Machine Learning tasks.

A common indicator of the performance of a machine learning algorithm is the conver-
gence of its loss function [77]. Confirming the results from Figure 17a, additional photons
allow us to reach lower values of the loss function, as shown in Figure 17b. However this
results in a longer convergence time due to an increased number of tunable parameters.
Further details concerning the simulation in Perceval can be found in the

14This implementation is accompanied by a

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 28

https://scipy.org/
https://github.com/Quandela/Perceval
https://perceval.quandela.net/docs/notebooks/Differential%20equation%20solving.html

T T T T T T T T T T
1.0F = Analytical solution T 7 —— 3 photons
—— 3 photons 107F T
p 4 photons
—— 4 photons () p
—— 5 photons S —— 5 photons
—— 6 photons fg 105 B —— 6 photons]
S
5 103 7
[}
5
Y= 1L -
= 10
%]
3
1071t 1
1 1 1 1
0 100 200 300
X Number of epochs

(a) Comparison of the analytical solution to the (b) Loss evolution as a function of the number of
considered differential equation to converged solu- epochs for various input photon numbers.

tions of the discretised quantum loss function in

terms of input photon number. Parameters of the

differential equation are taken as A = 8, k = 0.1,

fo =1 matching that of [75].

Figure 17: Results of QML simulation using Perceval.

To summarise, we have used Perceval to simulate linear optical circuits providing uni-
versal function approximators [14], and shown that these can be used together with tech-
niques from Quantum Machine Learning to accurately compute the solutions of differential
equations. The accuracy of these function approximators depends, among other things, on
the number of input photons of the linear optical circuits. An interesting future direction
we aim to pursue is using Perceval and our developed techniques to solve other types of
differential equations of significant practical interest |78, 79].

5 Conclusion

Perceval is a unique framework dedicated to linear optics and photonic quantum comput-
ing. This white paper has aimed to provide an overview of the platform, the motivations
for its development, its structure and main features, and to give a variety of examples of
Perceval in action. These examples are intended to be illustrative of some of the immediate
uses of the platform.

Perceval’s simulation back-ends are optimised to run on local desktop devices, with
extensions for HPC clusters. They can be used to run computational experiments to fine-
tune algorithms, compare with experimental data from actual experiments and photonic
quantum computing platforms, and can reproduce published articles in few lines of code.

Perceval is intended to be accessible to physicists, both experimental and theoretical,
and computer scientists alike, with a goal of providing a bridge between these communi-
ties. With the intention of keeping a strong connection between software and hardware for
photonic quantum computing, a major focus of future development will be on the contin-
ued development of realistic noise-models, that can describe with increasing accuracy the
functioning of specific hardware components.

Perceval allows users to design algorithms and linear optical circuits through a large
collection of predefined components. The collection of algorithms described here are avail-
able and presented as tutorials in the . This is an open source project, with
a modular architecture, and is welcoming of contributions from the community.

It is intended that future versions of Perceval will include more optimised simula-

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 29

https://perceval.quandela.net/docs/index.html

tors, noisy simulators, features for working with density matrices and cluster states, more
advanced features and options for detectors to cover both threshold and photon-number
resolving detectors, as well as features for treating circuits with feedforward.

Acknowledgements

The authors wish to thank Mario Valdiva for invaluable technical support, Arno Ricou for
code and discussions on variational algorithms, and Jeanne Bourgeois, William Howard,
Rayen Mahjoub, and Bechara Nasr, whose internships nourished early developments on the
way to this paper. Finally, the authors would like to thank N. Quesada and the referees
for their very valuable feedback that has greatly improved the quality of the paper.

References

[1] Shor, P., “Algorithms for quantum computation: discrete logarithms and factoring,”

in Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124-134. IEEE, Nov., 1994.

[2] Grover, L.K., “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing,
STOC 96, pp. 212-219. Association for Computing Machinery, July, 1996.

[3] Preskill, J., “Quantum computing in the NISQ era and beyond,” Quantum 2. 79
(2018).

[4] Preskill, J., “Quantum computing and the entanglement frontier,” arXiv:1203.58157
[quant-ph] (2011).

[5] Arute, F., Arya, K., Babbush, R., Bacon, D. et al, “Quantum supremacy using a
programmable superconducting processor,” Nature 574, 505-510 (2019).

[6] Zhong, H.S., Wang, H., Deng, Y.H., Chen, M.C. et al, “Quantum computational
advantage using photons,” Science 370, 14601463 (2020).

[7] Wu, Y., Bao, W.S., Cao, S., Chen, F. et al, “Strong quantum computational
advantage using a superconducting quantum processor,” Physical Review Letters
127, 180501 (2021).

[8] Zhong, H.S., Deng, Y.H., Qin, J., Wang, H. et al, “Phase-programmable Gaussian
Boson Sampling using stimulated squeezed light,” Physical Review Letters 127,
180502 (2021). Publisher: American Physical Society.

[9] Madsen, L.S., Laudenbach, F., Askarani, M.F., Rortais, F. et al, “Quantum
computational advantage with a programmable photonic processor,” Nature 606,
75-81 (2022).

[10] Nikolopoulos, G.M. and Brougham, T., “Decision and function problems based on
Boson Sampling,” Physical Review A 94, 012315 (2016).

[11] Nikolopoulos, G.M., “Cryptographic One-Way Function based on Boson Sampling,”
Quantum Information Processing 18, 259 (2019).

[12] Banchi, L., Fingerhuth, M., Babej, T., Ing, C. and Arrazola, J.M., “Molecular
docking with Gaussian Boson Sampling,” Science Advances 6, eaax1950 (2020).

[13] Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H. et al, “A variational eigenvalue
solver on a photonic quantum processor,” Nature Communications 5, 4213 (2014).

[14] Gan, B.Y., Leykam, D. and Angelakis, D.G., “Fock State-enhanced expressivity of
Quantum Machine Learning models,” in Conference on Lasers and Flectro-Optics,
p- JW1A.73. Optica Publishing Group, 2021.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 30

http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/arXiv:1203.5813
http://dx.doi.org/arXiv:1203.5813
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1126/science.abe8770
http://dx.doi.org/10.1103/PhysRevLett.127.180501
http://dx.doi.org/10.1103/PhysRevLett.127.180501
http://dx.doi.org/10.1103/PhysRevLett.127.180502
http://dx.doi.org/10.1103/PhysRevLett.127.180502
http://dx.doi.org/10.1038/s41586-022-04725-x
http://dx.doi.org/10.1038/s41586-022-04725-x
http://dx.doi.org/10.1103/PhysRevA.94.012315
http://dx.doi.org/10.1007/s11128-019-2372-9
http://dx.doi.org/10.1126/sciadv.aax1950
http://dx.doi.org/10.1038/ncomms5213
http://dx.doi.org/10.1364/CLEO_AT.2021.JW1A.73

15]
[16]
17]
18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]
[27]

28]

[29]
[30]
[31]

[32]

[33]
[34]

[35]

Farhi, E., Goldstone, J. and Gutmann, S., “A Quantum Approximate Optimization
Algorithm,” arXiw:1/11.4028 [quant-ph] (2014).

Bharti, K., Cervera-Lierta, A., Kyaw, T.H., Haug, T. et al, “Noisy intermediate-scale
quantum algorithms,” Rev. Mod. Phys. 94, 015004 (2022).

Cao, Y., Romero, J., Olson, J.P., Degroote, M. et al, “Quantum chemistry in the age
of quantum computing,” Chemical Reviews 119, 1085610915 (2019).

McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S.C. and Yuan, X., “Quantum
computational chemistry,” ev. Mod. Phys. 92, 015003 (2020).

Jiang, Z., Sung, K.J., Kechedzhi, K., Smelyanskiy, V.N. and Boixo, S., “Quantum
algorithms to simulate many-body physics of correlated fermions,” Phys. Rew.
Applied 9, 044036 (2018).

Davoudi, Z., Hafezi, M., Monroe, C., Pagano, G. et al, “Towards analog quantum
simulations of lattice gauge theories with trapped ions,” FPhys. Rev. Research 2
023015 (2020).

Vikstal, P., Gronkvist, M., Svensson, M., Andersson, M. et al, “Applying the
Quantum Approximate Optimization Algorithm to the tail-assignment problem,”
Phys. Rev. Applied 14, 034009 (2020).

Zhu, L., Tang, H.L., Barron, G.S., Calderon-Vargas, F.A. et al, “An adaptive
quantum approximate optimization algorithm for solving combinatorial problems on
a quantum computer,” arXiv.2005. 10258 [quant-ph/ (2020

Schuld, M., Bradler, K., Israel, R., Su, D. and Gupt, B., “Measuring the similarity of
graphs Wlth a Gaussmn Boson sampler ” Phys. Rev. A 101, 032314 (2020).

Huang, H.Y., Broughton, M., Cotler, J., Chen, S. et al, “Quantum advantage in
learning from experiments,” arXiv. 2112) 00778 [quant-ph/ (2021).

Knill, E., Laflamme, R. and Milburn, G.J., “A scheme for efficient quantum
computation with linear optics,” Nature 409, 4652 (2001).

Kieling, K., Rudolph, T. and Eisert, J., “Percolation, renormalization, and quantum
computing w1th nondeterministic gates ” Physical Review Letters 99, 130501 (2007).
Bartolucci, S., Birchall, P., Bombin, H., Cable, H. et al, “Fusion-based quantum
computation,” arXiv .JHU.U!UI(/ /(/u,u,//f ph/ (2021).

Aaronson, S. and Arkhipov, A., “The computational complexity of linear optics,” in
Proceedings of the forty-third annual ACM symposium on Theory of computing,
STOC 11, pp. 333-342. Association for Computing Machinery, June, 2011.
Killoran, N., Izaac, J., Quesada, N., Bergholm, V. et al, “Strawberry Fields: A
software platform for photonic quantum computing,” Quantum 3, 129 (2019).
Fingerhuth, M., Babej, T. and Wittek, P., “Open source software in quantum
computing,”]’L()S ONFE 13, 0208561 (2 (18).

tA v, A., ANIS, M.S., Abby-Mitchell, Abraham, H. et al, “Qiskit: An Open-source
Framework for Quantum Computing,” 2021.

Aguado, D.G., Gimeno, V., Moyano-Fernandez, J.J. and Garcia-Escartin, J.C.,
“QOptCraft: A Python package for the design and study of linear optical quantum
systems,” arXiv.2108.06186 [quant-ph] (2021)

Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C. et al, “Linear optical quantum
computing with photonic qubits,” Rev. Mod. Phys. 79, 135-174 (2007).

Kok, P. and Lovett, B.W., “Introduction to optical quantum information
processing,”. Cambridge University Press, 2010.

Reck, M., Zeilinger, A., Bernstein, H.J. and Bertani, P., “Experimental realization of
any discrete unitary operator,” Phys. Rev. Lett. 73, 58-61 (1994).

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 31

http://dx.doi.org/10.48550/arXiv.1411.4028
http://dx.doi.org/10.1103/RevModPhys.94.015004
http://dx.doi.org/10.1021/acs.chemrev.8b00803
http://dx.doi.org/10.1103/RevModPhys.92.015003
http://dx.doi.org/10.1103/PhysRevApplied.9.044036
http://dx.doi.org/10.1103/PhysRevApplied.9.044036
http://dx.doi.org/10.1103/PhysRevResearch.2.023015
http://dx.doi.org/10.1103/PhysRevResearch.2.023015
http://dx.doi.org/10.1103/PhysRevApplied.14.034009
http://dx.doi.org/10.48550/ARXIV.2005.10258
http://dx.doi.org/10.1103/PhysRevA.101.032314
http://dx.doi.org/10.48550/ARXIV.2112.00778
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/PhysRevLett.99.130501
http://dx.doi.org/10.48550/arXiv.2101.09310
http://dx.doi.org/10.1145/1993636.1993682
http://dx.doi.org/10.1145/1993636.1993682
http://dx.doi.org/10.22331/q-2019-03-11-129
http://dx.doi.org/10.1371/journal.pone.0208561
http://dx.doi.org/10.48550/arxiv.2108.06186
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1017/CBO9781139193658
http://dx.doi.org/10.1103/PhysRevLett.73.58

[36]

[37]
[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]

[47]

(48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]

Clements, W.R., Humphreys, P.C., Metcalf, B.J., Kolthammer, W.S. and Walmsley,
LA., “Optimal design for universal multiport interferometers,” Optica 3, 14601465
(2016).

Chekhova, M. and Banzer, P., “Polarization of Light: In Classical, Quantum, and
Nonlinear Optics,”. De Gruyter, 2021.

Valiant, L.G., “The complexity of computing the permanent,” Theoretical Computer
Science 8, 189-201 (1979).

Spedalieri, F., Lee, H., Lee, H., Dowling, J. and Dowling, J., “Linear optical
quantum computing with polarization encoding,” in Fronticrs in Optics (2005),
paper LMBZ, p. LMB4. Optica Publishing Group, Oct., 2005.

Clifford, P. and Clifford, R., “The classical complexity of Boson Sampling,” in
Proceedings of the 2018 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), Proceedings, pp. 146-155. Society for Industrial and Applied Mathematics,
Jan., 2018.

Glynn, D.G., “The permanent of a square matrix,” Furopean Journal of
Combinatorics 31, 1887-1891 (2010).

Clifford, P. and Clifford, R., “Faster classical Boson Sampling,” arXiv:2005.0/21)
[quant-ph] (2020).

Ryser, H.J., “Combinatorial mathematics,”, vol. 14. American Mathematical Society,
1963.

Gupt, B., Izaac, J. and Quesada, N., “The Walrus: a library for the calculation of
hafnians, Hermite polynomials and Gaussian boson sampling,” Journal of Open
Source Software 4, 1705 (2019).

Heurtel, N., Mansfield, S., Senellart, J. and Valiron, B., “Strong Simulation of Linear
Optical Processes,” arXiw:2200.105/9 [quant-ph] (2022).

Ralph, T.C., Langford, N.K., Bell, T.B. and White, A.G., “Linear optical
controlled-NOT gate in the coincidence basis,” Physical Review A 65, 062324 (2002).
Hong, C.K., Ou, Z.Y. and Mandel, L., “Measurement of subpicosecond time intervals
between two photons by interference,” FPhysical Review Letters 59, 2044-2046 (1987).
Publisher: American Physical Society.

Santori, C., Fattal, D., Vuckovi¢, J., Solomon, G.S. and Yamamoto, Y.,
“Indistinguishable photons from a single-photon device,” Nature 419, 594-597 (2002).
Giesz, V., Cavity-enhanced photon-photon interactions with bright quantum dot
sources. Theses, Université Paris Saclay (COmUE), Dec., 2015.

Mezher, R. and Mansfield, S., “Assessing the quality of near-term photonic quantum
devices,” arXiv:2202.04735 [quant-ph] (2022).

Brualdi, R.A. and Ryser, H.J., “Combinatorial Matrix Theory,”. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1991.

Aaronson, S. and Brod, D.J., “BosonSampling with lost photons,” FPhys. Rev. A 93,
012335 (2016).

Arkhipov, A., “BosonSampling is robust against small errors in the network matrix,”
Phys. Rev. A 92, 062326 (2015).

Kalai, G. and Kindler, G., “Gaussian noise sensitivity and Boson Sampling,”
arXiv:1409.3093 [quant-ph] (2014).

Russell, N.J., Chakhmakhchyan, L., O’Brien, J.L. and Laing, A., “Direct dialling of
Haar random unitary matrices,” New Journal of Physics 19, 033007 (2017).

Wang, H., Qin, J., Ding, X., Chen, M.C. et al, “Boson Sampling with 20 input
photons and a 60-mode interferometer in a 10'*-dimensional Hilbert space,” hysical
Review Letters 123, 250503 (2019).

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 32

http://dx.doi.org/10.1364/OPTICA.3.001460
http://dx.doi.org/10.1364/OPTICA.3.001460
http://dx.doi.org/doi:10.1515/9783110668025
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1364/LS.2005.LMB4
http://dx.doi.org/10.1364/LS.2005.LMB4
http://dx.doi.org/10.1137/1.9781611975031.10
http://dx.doi.org/10.1137/1.9781611975031.10
http://dx.doi.org/10.1137/1.9781611975031.10
http://dx.doi.org/https://doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/https://doi.org/10.1016/j.ejc.2010.01.010
http://dx.doi.org/10.48550/arXiv.2005.04214
http://dx.doi.org/10.48550/arXiv.2005.04214
https://bookstore.ams.org/car-14
http://dx.doi.org/10.21105/joss.01705
http://dx.doi.org/10.21105/joss.01705
https://arxiv.org/abs/2206.10549
http://dx.doi.org/10.1103/PhysRevA.65.062324
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1038/nature01086
https://tel.archives-ouvertes.fr/tel-01272948
http://dx.doi.org/10.48550/arXiv.2202.04735
http://dx.doi.org/10.1017/CBO9781107325708
http://dx.doi.org/10.1103/PhysRevA.93.012335
http://dx.doi.org/10.1103/PhysRevA.93.012335
http://dx.doi.org/10.1103/PhysRevA.92.062326
http://dx.doi.org/10.48550/arXiv.1409.3093
http://dx.doi.org/10.1088/1367-2630/aa60ed
http://dx.doi.org/10.1103/PhysRevLett.123.250503
http://dx.doi.org/10.1103/PhysRevLett.123.250503

[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]

[67]

[68]
[69]

[70]

[71]
[72]

73]

[74]

[75]

[76]

[77]

(78]

Shchesnovich, V.S., “Universality of generalized bunching and efficient assessment of
Boson Sampling,” Phys. Rev. Lett. 116, 123601 (2016).

Tichy, M.C., Mayer, K., Buchleitner, A. and Mglmer, K., “Stringent and efficient
assessment of Boson-Sampling devices,” Phys. Rev. Lett. 113, 020502 (2014).
Walschaers, M., Kuipers, J., Urbina, J.D., Mayer, K. et al, “Statistical benchmark
for BosonSampling,” New Journal of Physics 18, 032001 (2016).

Roy, T., Jiang, L. and Schuster, D.I., “Deterministic Grover search with a restricted
oracle,” arXiv:2201.00091 [quant-ph] (2022).

Long, G.L., “Grover algorithm with zero theoretical failure rate,” Phys. Rev. A 64,
022307 (2001).

Kwiat, P.G., Mitchell, J.R., Schwindt, P.D.D. and White, A.G., “Grover’s search
algorithm: An optical approach,” Journal of Modern Optics 47, 257-266 (2000).
Rivest, R.L., Shamir, A. and Adleman, L., “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Commun. ACM 21, 120-126 (1978).
Politi, A., Matthews, J.C.F. and O’Brien, J.L., “Shor’s quantum factoring algorithm
on a photonic chip,” Science 325, 12211221 (2009).

Du, Y., Hsieh, M.H., Liu, T. and Tao, D., “Expressive power of parametrized
quantum circuits,” Physical Review Research 2, 033125 (2020).

Hoeffding, W., “Probability inequalities for sums of bounded random variables,” in
The collected works of Wassily Hoeffding, pp. 409-426. Springer, 1994.

Shadbolt, P.J., Verde, M.R.., Peruzzo, A., Politi, A. et al, “Generating, manipulating
and measuring entanglement and mixture with a reconfigurable photonic circuit,”
Nature Photonics 6, 45-49 (2012).

Nelder, J.A. and Mead, R., “A Simplex Method for Function Minimization,” 7he
Computer Journal 7, 308-313 (1965).

O’Malley, P.J.J., Babbush, R., Kivlichan, I.D., Romero, J. et al, “Scalable quantum
simulation of molecular energies,” Phys. Rev. X 6, 031007 (2016).

Colless, J.I., Ramasesh, V.V., Dahlen, D., Blok, M.S. et al, “Computation of
molecular spectra on a quantum processor with an error-resilient algorithm,” Phys.
Rev. X 8, 011021 (2018).

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R. et al, “Array
programming with NumPy,” Nature 585, 357-362 (2020).

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E. and Latorre, J.I., “Data
re-uploading for a universal quantum classifier,” Quantum 4, 226 (2020).

Schuld, M., Sweke, R. and Meyer, J.J., “Effect of data encoding on the expressive
power of variational quantum-machine-learning models,” Phys. Rev. A 103, 032430
(2021).

Hadfield, R.H., “Single-photon detectors for optical quantum information
applications,” Nature Photonics 3, 696-705 (2009).

Kyriienko, O., Paine, A.E. and Elfving, V.E., “Solving nonlinear differential
equations with differentiable quantum circuits,” Physical Review A 103, 052416
(2021).

Virtanen, P.; Gommers, R., Oliphant, T.E., Haberland, M. et al, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17,
261-272 (2020).

Raschka, S. and Mirjalili, V., “Python machine learning: Machine learning and deep
learning with Python, scikit-learn, and TensorFlow 2,”. Packt Publishing Ltd, 2019.
Widder, D.V., “The heat equation,”, vol. 67. Academic Press; 1976.

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 33

http://dx.doi.org/10.1103/PhysRevLett.116.123601
http://dx.doi.org/10.1103/PhysRevLett.113.020502
http://dx.doi.org/10.1088/1367-2630/18/3/032001
http://dx.doi.org/10.48550/arXiv.2201.00091
http://dx.doi.org/10.1103/PhysRevA.64.022307
http://dx.doi.org/10.1103/PhysRevA.64.022307
http://dx.doi.org/10.1080/09500340008244040
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1126/science.1173731
http://dx.doi.org/*
http://dx.doi.org/*
http://dx.doi.org/*
http://dx.doi.org/10.1038/nphoton.2011.283
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1103/PhysRevX.6.031007
http://dx.doi.org/10.1103/PhysRevX.8.011021
http://dx.doi.org/10.1103/PhysRevX.8.011021
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.1103/PhysRevA.103.032430
http://dx.doi.org/10.1103/PhysRevA.103.032430
http://dx.doi.org/10.1038/nphoton.2009.230
http://dx.doi.org/10.1103/PhysRevA.103.052416
http://dx.doi.org/10.1103/PhysRevA.103.052416
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1038/s41592-019-0686-2
https://www.packtpub.com/product/python-machine-learning/9781783555130
https://www.elsevier.com/books/the-heat-equation/widder/978-0-12-748540-9

[79] Constantin, P. and Foias, C., “Navier-stokes equations,”. University of Chicago
Press, 2020.

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

34

https://press.uchicago.edu/ucp/books/book/chicago/N/bo5973146.html
https://press.uchicago.edu/ucp/books/book/chicago/N/bo5973146.html

A Examples Codes of the Back-ends and the Processor class

A.l CliffordClifford2017

import perceval as pcvl
from perceval.components import Unitary

circuit = Unitary(pcvl.Matrix.random_unitary(8))
input_state = pcvl.BasicState([1, 0]x*4)
nsamples = 5
clifford_backend = pcvl.BackendFactory.get_backend("CliffordClifford2017")
circuit_simulator = clifford_backend(circuit)
Clifford&Clifford back-end is specialized in sampling tasks
samples = circuit_simulator.samples (input_state, nsamples)
for s in samples:
print (s)

Code 3: Example of how to use the back-end CliffordClifford2017 described in Section 3.2.3

b

/1,0,0,0,0,1,2,0>
l0,1,1,1,1,0,0,0>
10,0,4,0,0,0,0,0>
/1,0,0,0,0,3,0,0>
11,0,0,0,1,1,1,0>

b b

Figure 18: Output of Code 3

A.2 Naive

import perceval as pcvl
from perceval.components import Unitary

circuit = Unitary(pcvl.Matrix.random_unitary(4))

input_state = pcvl.BasicState([1, O, 1, 0])

output_states = [pcvl.BasicState([1, 0, 1, 01),
pcvl.BasicState([1, O, 0, 1]),
pcvl.BasicState ([0, 1, 1, 0]),
pcvl.BasicState ([0, 0, 2, 01)]

nsamples = 5

naive_backend = pcvl.BackendFactory.get_backend("Naive")

circuit_simulator = naive_backend(circuit)

Naive is able to compute probabilities and probability amplitudes
for an input / output state pair
for os in output_states:

p = circuit_simulator.prob(input_state, os)

pa = circuit_simulator.probampli(input_state, os)

print (£"{input_state} -> {os}: p={p}, p.ampl.={pal")

Code 4: Example of how to use the back-end Naive described in Section 3.2.3

A.3 SLOS

import perceval as pcvl
from perceval.components import Unitary

circuit = Unitary(pcvl.Matrix.random_unitary(4))

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

35

11,0,1,0> -> [1,0,1,0>: p=0.11351, p.ampl.=(-0.23806+0.23841})
11,0,1,0> -> [1,0,0,1>: p=0.09711, p.ampl.=(0.30757+0.05013;)
11,0,1,0> -> 10,1,1,0>: p=0.19920, p.ampl.=(-0.02982+0.44532j)
11,0,1,0> -> 10,0,2,0>: p=0.11104, p.ampl.=(-0.33287-0.01555j)

Figure 19: Output of Code 4

input_state = pcvl.BasicState([1, 0, 1, 0])

nsamples = 5
slos_backend = pcvl.BackendFactory.get_backend("SLOS")
circuit_simulator = slos_backend(circuit)

SLOS computes all output probabilities at once

They can be retrieved via a specialized iterator in the back-end

state_distribution = pcvl.BSDistribution ()

for ostate, prob in circuit_simulator.allstateprob_iterator (input_state):
state_distribution[ostate] = prob

pcvl.pdisplay(state_distribution, output_format=pcvl.Format.LATEX)

Code 5: Example of how to use the back-end SLOS described in Section 3.2.3

state probability
[1,0,1,0> 0.18959
12,0,0,0> 0.162852
[0,0,1,1> 0.158684
10,0,2,0> 0.138282
10,0,0,2> 0.117126
[1,0,0,1> 0.088445
[0,1,1,0> 0.075928
10,1,0,1> 0.056393
10,2,0,0> 0.01188

[1,1,0,0> 0.000819328

Figure 20: Output of Code 5

A4 Processor and Algorithm

import perceval as pcvl

import numpy as np

from perceval.algorithm import Sampler, Analyzer
from perceval.components import Processor, Source

SLOS backend does not support sampling natively

However, the Sampler algorithm is able to reconstruct sampling results,
transparently, through probability
computing

cnot = pcvl.Circuit(6, "Raplh CNOT")

cnot.add((3, 4), pcvl.BS())

cnot.add((0, 1), pcvl.BS(pcvl.BS.r_to_theta(l / 3), phi_bl=np.pi, phi_tr=np
.pi/2, phi_tl=-np.pi/2))

cnot.add((2, 3), pcvl.BS(pcvl.BS.r_to_theta(l / 3), phi_bl=np.pi, phi_tr=np
.pi/2, phi_tl=-np.pi/2))

cnot.add((4, 5), pcvl.BS(pcvl.BS.r_to_theta(l / 3)))

cnot.add ((3, 4), pcvl.BS())

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 36

def postselection_func(ostate):

return ostate[0] == 0 and (ostate[1] + ostate[2] == 1) \
and ostate[5] == 0 and (ostate[3] + ostate[4] == 1)
cnot_processor = pcvl.Processor ("SLOS", cnot)

cnot_processor.set_postprocess (postselection_func)

nsample = 50000

sampler = Sampler (cnot_processor)

cnot_processor.with_input (pcvl.BasicState ([0, 1, O, 1, O, 0])) #
Corresponds to logical qubit state
,0>

output = sampler.sample_count(nsample)

pcvl.pdisplay (output[’results’], output_format=pcvl.Format.LATEX)

print (f"Ratio of samples with 2 photons: {pcvl.simple_float (output[’
physical_perf’]) [0]}")

print (f"Gate performance: {pcvl.simple_float (output[’logical_perf’])[0]}"

cnot_processor.source = Source(emission_probability=0.5) # Now use a
source with a 50% first lens
brigthness

|0

)

With an imperfect source, the expected state is turned to an actual input

distribution by the source model.

cnot_processor.with_input(pcvl.BasicState([O, 1, O, 1, 0, 0]))

output = sampler.sample_count(nsample)

Here we expect perfect results, with a low physical performance

(a lot of samples are discarded because they do not produce a 2 photon
coincidence)

pcvl.pdisplay (output[’results’], output_format=pcvl.Format.LATEX)

print (f"Ratio of samples with 2 photons: {pcvl.simple_float (output[’
physical_perf’]) [0]}")

print (f"Gate performance: {pcvl.simple_float (output[’logical_perf’])[0]}"

Now use a source that may emit distinguishable photons, or 2 photons at
once
cnot_processor.source = Source(emission_probability=0.5,
indistinguishability=0.95,
multiphoton_component=0.1)
cnot_processor.with_input(pcvl.BasicState([O, 1, O, 1, 0, 0]))
output = sampler.sample_count (nsample)
Here the results start being noisy
pcvl.pdisplay (output[’results’], output_format=pcvl.Format.LATEX)
print (f"Ratio of samples with 2 photons: {pcvl.simple_float (outputl[’
physical_perf ’]) [0]}")

)

print (f"Gate performance: {pcvl.simple_float (output[’logical_perf’])[0]}")
Code 6: Example of how to use the Processor described in Section 3.2.4
Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 37

state count
|0,1,0,1,0,0> 50000
Ratio of samples with 2 photons: 1

Gate performance: 1/9

state count
|0,1,0,1,0,0> 50000
Ratio of samples with 2 photons: 1/4

Gate performance: 1/9

state count
[0,1,0,1,0,0> 47347
10,0,1,1,0,0> 2653
Ratio of samples with 2 photons: 0.257315
Gate performance: 0.108027

Figure 21: Output of Code 6

B Codes of Section 4
B.1 The Hong-Ou-Mandel Effect

import perceval as pcvl

from random import random

from collections import Counter
import matplotlib.pyplot as plt

register_click function will register each consecutive click
and calculate the distance between
click on different arms of the inteferometer

last_click is where we found the last photon
last_click = None

distance is how many click away it was
distance = None

def register_click(sample):
global counts, last_click, distance
if sample[0] and sample[1]:
counts [0] += 1
last_click = None
else:
if sample[1]:
if last_click == O0:
counts [distance] += 1
last_click = 1
distance = 1
elif sample[0]:
if last_click == 1:
counts [-distance] += 1
last_click =
distance = 1
elif distance:
distance += 1

i
0

imperfect source with a slight g_2
source = pcvl.Source(multiphoton_component=0.01)

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

we define the circuit

HOM = pcvl.Processor ("SLOS", 2, source)
HOM.add ((0,1), pcvl.BS())

HOM.add (1, pcvl.TD(1))

HOM.add ((0,1), pcvl.BS())
pcvl.pdisplay (HOM)

the circuit is "expanded" - ie, time loop is converted into
additional modes
and we define a new processor for this circuit

expand_components, extend_m = pcvl.computation.expand_TD (HOM.flatten(), 2,

2, 1, False)
p = pcvl.Processor("CliffordClifford2017", extend_m, source)
for r, ¢ in expand_components:
p-add(r, c)
pcvl.pdisplay (p)

counts = Counter ()
photon_delay = 0
generate 2000 photons, since we have expanded time in
additional modes, each iteration is 2 time-steps
for i in range (1000):
photon have 30} of being emitted
input = [random()>0.3 and 1 or 0, 0, random()>0.3 and 1 or 0, O,
photon_delay]
if sum(input):
if there is at least one photon
p-with_input (pcvl.BasicState (input))
out = pcvl.algorithm.Sampler (p).samples (1) ["results"][0]
register_click (out[0:2])
register_click(out[2:4])
photon_delay=out [4]
else:
otherwise, we register the 2 following clicks as 0
register_click ((0,0))
register_click ((0,0))
photon_delay=0

the distribution
print (counts)

fig = plt.figure()

dist = list(range(-2,3))

ax = fig.add_axes([0,0,1,1])
count_dist = [counts[d] for d in dist]
ax.bar (dist, count_dist)

plt.show ()

Code 7: Example code - 4.1 Hong-Ou-Mandel Effect

B.2 Boson Sampling

from collections import Counter
import gzip

import pickle

import time

import random

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

39

import perceval as pcvl
from perceval.algorithm import Sampler

n = 14 #number of photons at the input
m = 60 #number of modes

N = 5000000 #number of samples

Unitary_60 = pcvl.Matrix.random_unitary(m)

mzi = (pcvl.BS() // (0, pcvl.PS(phi=pcvl.Parameter ("\phi_a")))
// pcvl.BS() // (1, pcvl.PS(phi=pcvl.Parameter ("\phi_b"))))
Linear_Circuit_60 = pcvl.Circuit.decomposition(Unitary_60, mzi,
phase_shifter_fn=pcvl.PS,
shape="triangle")
QPU = pcvl.Processor("CliffordClifford2017", Linear_Circuit_60)

#one can choose which mode he/she wants at input, or we can choose it

randomly
def Generating_Input(n, m, modes = None):

"This function randomly chooses an input with n photons in m modes."
if modes == None

modes = sorted(random.sample(range(m),n))
state = "|"
for i in range(m):

state = state + "0"*(1 - (i in modes)) +"1"*(i in modes)+ ","*x(i <

m-1)
return pcvl.BasicState(state + ">")

input_state = Generating_Input(n, m)
QPU.with_input (input_state)

Keep all outputs
QPU.mode_post_selection(0)

sampler = Sampler (QPU)

if we want to launch parallel process
worker_id=1

#store the input and the unitary
with open("/%dphotons_/dmodes_%dsamples-workers-unitary.pkl" % (n,m,N,
worker_id), ’wb’) as f:
pickle.dump(Unitary_60, f)

with open("%dphotons_%dmodes_Jdsamples-workers-inputstate.pkl" %(n,m,N,

worker_id), ’w’) as f:
f.write(str (input_state)+"\n")

with gzip.open(")dphotons_/dmodes_Jdsamples-worker/s-samples.txt.gz" %(n,m,

N,worker_id), ’wb’) as f:
start = time.time ()
for _ in range(N):
f.write((str(sampler.samples (1) ["results"][0])+"\n").encode())
end = time.time ()

f.write(str("==> %d\n") (end-start)).encode())

count = 0
bunching_distribution = Counter ()

with gzip.open("%dphotons_Ydmodes_Jdsamples-worker/s-samples.txt.gz"/%(n,m,N
,worker_id), "rt") as f:

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 40

for 1 in f£f:
1 = 1l.strip()
if l.startswith("[|") and 1l.endswith(">"):
try:
st = pcvl.BasicState(1l)
count+=1
bunching_distribution[st.photon2mode(st.n-1)]+=1
except :
pass
print (count, "samples")
print ("Bunching Distribution:", "\t".join([str(bunching_distribution[k])
for k in range(m)]))

Code 8: Example code - 4.2 Boson Sampling

B.3 Grover's Algorithm

import numpy as np

import sympy as sp

import matplotlib.pyplot as plt
import perceval as pcvl

states = [pcvl.BasicState("|0,{P:H}>"),
pcvl.BasicState (" |0,{P:V}>"),
pcvl.BasicState (" |{P:H},0>"),
pcvl.BasicState (" |{P:V},0>"),

]
states_modes = [
pcvl.BasicState ([0, O, O, 1]),
pcvl.BasicState ([0, 0, 1, 0]),
pcvl.BasicState ([0, 1, 0, 0]),
pcvl.BasicState([1, 0, 0, 0])

BS = pcvl.BS.Ry()
pcvl.pdisplay (BS.U)

def HWP(xsi):
hwp = pcvl.Circuit(m=1)
hwp.add (0, pcvl.HWP(xsi)).add(0, pcvl.PS(-sp.pi/2))
return hwp

init_circuit pcvl.Circuit (m=2, name="Initialization")
init_circuit.add (0, HWP(sp.pi/8))

init_circuit.add ((0, 1), BS)

init_circuit.add (0, pcvl.PS(-sp.pi))

def oracle(mark):
"""Values 0, 1, 2 and 3 for parameter ’mark’ respectively mark the

elements "00", "01", "10" and "11
" of the list."""

oracle_circuit = pcvl.Circuit(m=2, name=’0racle’)

The following dictionnary translates n into the corresponding
component settings

oracle_dict = {0: (1, 0), 1: (0, 1), 2: (1, 1), 3: (0, 0O)}

PC_state, LC_state = oracle_dict [mark]

Mode b

if PC_state == 1:

oracle_circuit.add (0, HWP(0))
Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 41

oracle_circuit.add (0, pcvl.PR(sp.pi/2))

if LC_state == 1:
oracle_circuit.add (0, HWP(0))
Mode a

if LC_state 1:
oracle_circuit.add (1, HWP(0))
if PC_state == 1:
oracle_circuit.add (1, HWP(0))
return oracle_circuit

inversion_circuit = pcvl.Circuit(m=2, name=’Inversion’)
inversion_circuit.add((0, 1), BS)
inversion_circuit.add (0, HWP(sp.pi/4))
inversion_circuit.add ((0, 1), BS)

detection_circuit = pcvl.Circuit(m=4, name=’Detection’)
detection_circuit.add((0, 1), pcvl.PBS())
detection_circuit.add((2, 3), pcvl.PBS())

def grover_circuit (mark):
grover_circuit = pcvl.Circuit(m=4, name=’Grover’)
grover_circuit.add (0, init_circuit).add(0, oracle(mark)).add(O0,
inversion_circuit)
grover_circuit.add (1, pcvl.PERM([1, 0])).add(0, detection_circuit)
return grover_circuit

Circuit simulation
input_state = pcvl.BasicState("|{P:H},0, 0, 0>")
results_list = [] # probability amplitudes storage

for mark in range(4):
sim = pcvl.Processor ("Naive", grover_circuit (mark))
ca = pcvl.algorithm.Analyzer (sim,
input_states=[input_statel],
output_states=states_modes,
)
results_list.append(ca.distribution[0])

Plot data

labels = [’>"00">, >"Q1">, >mqQ">, >"vqiq1">]
state_O_prob_list = results_list[0]
state_1_prob_list = results_list[1]
state_2_prob_list = results_list[2]
state_3_prob_list = results_list[3]

x = np.arange (4) label locations

width = 0.1 # the width of the bars

H*

fig, ax = plt.subplots(dpi=150)

rects_0 = ax.bar(x - 3 * width / 2, state_O_prob_list, width, label=str(

states[0]))

rects_1 = ax.bar(x - width / 2, state_1_prob_list, width, label=str(states|
11))

rects_2 = ax.bar(x + width / 2, state_2_prob_list, width, label=str(states|[
21))

rects_3 = ax.bar(x + 3 * width / 2, state_3_prob_list, width, label=str(

states[3]))

ax.set_xlabel (’Marked database element’)
ax.set_ylabel(’Detection probability’)
ax.set_xticks(x, labels)

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

‘ax.legend()
‘ax.grid(True, axis=’x’)
'plt.show ()

L

Code 9: Example code - 4.3 Grover's algorithm

B.4 Shor's Algorithm

import perceval as pcvl

def toFockState(qubitState):
path encoding
pe = {0:[1,0], 1:[0,1]1%}
return [0] + pelqubitState[0]] \
+ pelqubitState[2]] + [0, 0] \
+ pelqubitState[1]] + pelqubitState[3]] + [O0]

def toQubitState(fockState):
qubit modes
x1 = [1, 2]

f1 = [3, 4]
x2 = [7, 8]
f2 = [9, 10]

auxiliary modes
amli = [0, 5]
am2 = [6, 11]

auxiliary modes
for i in aml + am2:
if fockStatel[i] != 0:
return None
L =[]
qubit modes
for q in [x1, x2, f1, f2]:
if fockState[q[0]] + fockState[q[1]] != 1:
return None
else:
L.append (fockState[q[1]])
return L

def strState(state):
return str(pcvl.BasicState(state))

Build the circuit
circ = pcvl.Circuit(12)

qubit modes
for qubit states 0, 1
x1 = [1, 2]

f1 = [3, 4]
x2 = [7, 8]
£f2 = [9, 10]

auxiliary modes
amli = [0, 5]
am2 = [6, 11]

H gates
for q in [x1, f1, x2, f2]:
circ.add(q, pcvl.BS.H())

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

CZ gates

for x, £, am in [(x1, f1, aml), (x2, f2, am2)]:
circ.add((am[0], x[0]), pcvl.BS(pcvl.BS.r_to_theta(1/3))) # R = 1/3
circ.add((x[1], £[0]), pcvl.BS(pcvl.BS.r_to_theta(1/3)))
circ.add ((£[1], am[1]), pcvl.BS(pcvl.BS.r_to_theta(1/3)))

H gates
for q in [f1, £f2]:
circ.add(q, pcvl.BS.H())

Create input state
qubit_istate = [0,0,0,1]
istate = toFockState(qubit_istate)

Simulation
backend = pcvl.BackendFactory().get_backend("Naive")
simulator = backend(circ)

output_qubit_states = [
[x1,x2,f1,f2]
for x1 in [0,1] for x2 in [0,1] for f1 in [0,1] for f2 in [0,1]

print ("Output state amplitudes: (post-selected on qubit states, not
renormalized)")
print ("|x1,x2,f1,£f2>")
for ogstate in output_qubit_states:
ostate = toFockState(ogstate)

))
print (strState (ogstate), a)

input_states = {
pcvl.BasicState (pcvl.BasicState(istate)): strState(qubit_istate)
}

expected_output_states = {

)
for x1 in [0,1] for x2 in [0,1]

p = pcvl.Processor ("Naive", circ)

ca = pcvl.algorithm.Analyzer (p, input_states, expected_output_states)
ca.compute ()

print ("Output state distribution: (post-selected on expected qubit states
not renormalized)")

print ("|x1,x2,f1,£f2>")

pcvl.pdisplay(ca)

a = simulator.probampli(pcvl.BasicState(istate), pcvl.BasicState(ostate

pcvl.BasicState (toFockState ([x1,x2,x1,1-x2])): strState([x1,x2,x1,1-x2]

3

Code 10: Example code - 4.4 Shor's algorithm

B.5 Variational Quantum Eigensolver

[

‘from tqdm.auto import tqdm

‘import numpy as np

‘from scipy.optimize import minimize

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

import random
import matplotlib.pyplot as plt
import perceval as pcvl

simulator_backend = pcvl.BackendFactory().get_backend("Naive")

#List of the parameters phil,phi2,...,phi8
List_Parameters=/[]

VQE is a 6 optical mode circuit
VQE=pcvl.Circuit (6)

VQE.add ((1,2), pcvl.BS())
VQE.add ((3,4), pcvl.BS())
List_Parameters.append(pcvl.Parameter ("phil"))
VQE.add ((2,) ,pcvl.PS(phi=List_Parameters[-1]))
List_Parameters.append(pcvl.Parameter ("phi3"))
VQE.add((4,) ,pcvl.PS(phi=List_Parameters[-1]))
VQE.add ((1,2), pcvl.BS())
VQE.add ((3,4), pcvl.BS())
List_Parameters.append(pcvl.Parameter ("phi2"))
VQE.add ((2,) ,pcvl.PS(phi=List_Parameters[-1]))
List_Parameters.append(pcvl.Parameter ("phi4d"))
VQE.add ((4,) ,pcvl.PS(phi=List_Parameters[-1]))

CNOT (Post-selected with a success probability of 1/9)

PERM([0,1,2,3,4,5]))#Identity PERM (permutation
) for the purpose of drawing a nice

VQE.add([0,1,2,3,4,5], pcvl.

circuit
VQE.add ((3,4), pcvl.BS())
VQE.add([0,1,2,3,4,5], pcvl.

PERM([0,1,2,3,4,5]))#Identity PERM (permutation
) for the same purpose

VQE.add ((0,1), pcvl.BS(pcvl.BS.r_to_theta(1/3)))
VQE.add ((2,3), pcvl.BS(pcvl.BS.r_to_theta(1/3)))
VQE.add((4,5), pcvl.BS(pcvl.BS.r_to_theta(1/3)))

VQE.

VQE.
VQE.

add([0,1,2,3,4,5], pcvl.

add ((3,4), pcvl.BS())

add([0,1,2,3,4,5], pcvl.

PERM([0,1,2,3,4,5]))#Identity PERM (permutation
) for the same purpose

PERM([0,1,2,3,4,5]))#Identity PERM (permutation
) for the same purpose

List_Parameters.append(pcvl.Parameter ("phi5"))
VQE.add ((2,) ,pcvl.PS(phi=List_Parameters[-1]))
List_Parameters.append(pcvl.Parameter ("phi7"))
VQE.add ((4,) ,pcvl.PS(phi=List_Parameters[-1]))
VQE.add ((1,2), pcvl.BS())
VQE.add ((3,4), pcvl.BS(Q))
List_Parameters.append(pcvl.Parameter ("phi6"))
VQE.add ((2,) ,pcvl.PS(phi=List_Parameters[-1]))
List_Parameters.append(pcvl.Parameter ("phi8"))
VQE.add ((4,) ,pcvl.PS(phi=List_Parameters[-1]))
VQE.add((1,2), pcvl.BSQ))
VQE.add ((3,4), pcvl.BS(Q))

Mode 0 and 5 are auxillary.
#1st qubit is path encoded in modes 1 & 2
#2nd qubit in 3 & 4

#Input states of the photonic circuit
input_states = {

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

pcvl.BasicState([0,1,0,1,0,0]):"[00>"}

#0utputs in the computational basis
output_states = {

def

pcvl.BasicState([0,1,0,1,0,0]):"|00>",
pcvl.BasicState([0,1,0,0,1,0]):"|01>",
pcvl.BasicState([0,0,1,1,0,0]):"[10>",
pcvl.BasicState([0,0,1,0,1,0]):"[11>"}

minimize_loss (1lp=None) :

Updating the parameters on the chip

for idx, p in enumerate (lp):
List_Parameters[idx].set_value (p)

Simulation, Quantum processing part of the V(QE
s_VQE = simulator_backend (VQE.compute_unitary(use_symbolic=False))

Collecting the output state of the circuit
psi = []
for input_state in input_states:
for output_state in output_states: # 100>,101>,110>,]111>
psi.append(s_VQE.probampli (input_state, output_state))

Evaluating the mean value of the Hamiltonian. # The Hamiltonians
H is defined in the
following block
psi_prime = np.dot(H[R][1], psi)

loss = np.real(sum(sum(np.conjugate(psi) * np.array(psi_prime[0])))) /
(sum([i * np.conjugate(i) for i
in psil))

loss = np.real(loss)

tq.set_description(’%g / %g loss function=%g’ % (R, len(H), loss))
return (loss)

Hamiltonian #1
Hamiltonian_elem = np.array([[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]1],

#00
rce,o0,0,01,0,1,0,01,[0,0,1,01,[0,0,0,111,
#II
rco,t,0,01,r1,0,0,01,[0,0,0,11,[0,0,1,011,
#IX
(rt,0,0,01,0,-1,0,0]1,[0,0,1,0],[0,0,0,-1]1,
#1Z
(co,o,1,01,0,0,0,11,[1,0,0,0],[0,1,0,017,
#XI
rco,o,0,11,r0,0,1,01,[0,1,0,01,[1,0,0,011,
#XX
rco,o,1,01,0,0,0,-11,[1,0,0,0],[0,-1,0,017,
#XZ
rct,o0,0,01,0,1,0,01,[0,0,-1,0],[0,0,0,-117,
#Z1
rco,t,0,01,r1,0,0,0J],[0,0,0,-11,[0,0,-1,0]1,
#7ZX
rcte,o0,0,01,[0,-1,0,01,[0,0,-1,0],[0,0,0,1111)
#7227

Hamiltonian_coef = np.matrix(
[R,II,IX,IZ,XI,XZ,XX,Z2I1,ZX,ZZ]

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 46

[[0.05,33.9557,-0.1515,-2.4784,-0.1515,0.1412,0.1515,-2.4784,0.1515,0.2746]

[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.

[1
[1
[1

[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[1
[2

[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[2.
[3,

>

1,13.3605,-0.1626,-2.4368,-0.1626,0.2097,0.1626,-2.4368,0.1626,0.2081],
15,6.8232,-0.1537,-2.3801,-0.1537,0.2680,0.1537,-2.3801,0.1537,0.1512],
2,3.6330,-0.1405,-2.2899,-0.1405,0.3027,0.1405,-2.2899,0.1405,0.1176],
26,1.7012,-0.1324,-2.1683,-0.1324,0.3211,0.1324,-2.1683,0.1324,0.1010],
3,0.3821,-0.1306,-2.0305,-0.1306,0.3303,0.1306,-2.0305,0.1306,0.0943],
356,-0.5810,-0.1335,-1.8905,-0.1335,0.3344,0.1335,-1.8905,0.1335,0.09361],
4,-1.3119,-0.1396,-1.7568,-0.1396,0.3352,0.1396,-1.7568,0.1396,0.0969],
45,-1.8796,-0.1477,-1.6339,-0.1477,0.3339,0.1477,-1.6339,0.1477,0.10301],
5,-2.3275,-0.1570,-1.5236,-0.1570,0.3309,0.1570,-1.5236,0.1570,0.1115],
56,-2.6844,-0.1669,-1.4264,-0.1669,0.3264,0.1669,-1.4264,0.1669,0.1218],
6,-2.9708,-0.1770,-1.3418,-0.1770,0.3206,0.1770,-1.3418,0.1770,0.1339],
65,-3.2020,-0.1871,-1.2691,-0.1871,0.3135,0.1871,-1.2691,0.1871,0.1475],
7,-3.3893,-0.1968,-1.2073,-0.1968,0.3052,0.1968,-1.2073,0.1968,0.1626],
75,-3.5417,-0.2060,-1.1552,-0.2060,0.2958,0.2060,-1.1552,0.2060,0.1791],
8,-3.6660,-0.2145,-1.1117,-0.2145,0.2853,0.2145,-1.1117,0.2145,0.1968],
86,-3.7675,-0.2222,-1.0758,-0.2222,0.2738,0.2222,-1.0758,0.2222,0.2157],
9,-3.8505,-0.2288,-1.0466,-0.2288,0.2613,0.2288,-1.0466,0.2288,0.2356],
956,-3.9183,-0.2343,-1.0233,-0.2343,0.2481,0.2343,-1.0233,0.2343,0.25641],
-3.9734,-0.2385,-1.0052,-0.2385,0.2343,0.2385,-1.0052,0.2385,0.2779],

.05,-4.0180,-0.2414,-0.9916,-0.2414,0.2199,0.2414,-0.9916,0.2414,0.3000],
.1,-4.05639,-0.2430,-0.9820,-0.2430,0.2053,0.2430,-0.9820,0.2430,0.3225],
[1.
.2,-4.1050,-0.2418,-0.9725,-0.2418,0.1756,0.2418,-0.9725,0.2418,0.3678],
.25,-4.1224,-0.2392,-0.9716,-0.2392,0.1610,0.2392,-0.9716,0.2392,0.3902],
.3,-4.1356,-0.2353,-0.9728,-0.2353,0.1466,0.2353,-0.9728,0.2353,0.4123],
.356,-4.1454,-0.2301,-0.9757,-0.2301,0.1327,0.2301,-0.9757,0.2301,0.4339],
.4,-4.15623,-0.2239,-0.9798,-0.2239,0.1194,0.2239,-0.9798,0.2239,0.4549],
.45,-4.1568,-0.2167,-0.9850,-0.2167,0.1068,0.2167,-0.9850,0.2167,0.4751],
.5,-4.1594,-0.2086,-0.9910,-0.2086,0.0948,0.2086,-0.9910,0.2086,0.4945],
.556,-4.1605,-0.1998,-0.9975,-0.1998,0.0837,0.1998,-0.9975,0.1998,0.5129],
.6,-4.1602,-0.1905,-1.0045,-0.1905,0.0734,0.1905,-1.0045,0.1905,0.5304],
.65,-4.1589,-0.1807,-1.0116,-0.1807,0.0640,0.1807,-1.0116,0.1807,0.5468],
.7,-4.1668,-0.1707,-1.0189,-0.1707,0.0555,0.1707,-1.0189,0.1707,0.5622],
.75,-4.1540,-0.1605,-1.0262,-0.1605,0.0479,0.1605,-1.0262,0.1605,0.5766],
.8,-4.1508,-0.1503,-1.0334,-0.1503,0.0410,0.1503,-1.0334,0.1503,0.5899],
.85,-4.1471,-0.1403,-1.0404,-0.1403,0.0350,0.1403,-1.0404,0.1403,0.6023],
.9,-4.1431,-0.1305,-1.0473,-0.1305,0.0297,0.1305,-1.0473,0.1305,0.6138],
.95,-4.1390,-0.1210,-1.0540,-0.1210,0.0251,0.1210,-1.0540,0.1210,0.6244],

15,-4.0825,-0.2431,-0.9758,-0.2431,0.1904,0.2431,-0.9758,0.2431,0.3451],

-4.1347,-0.1119,-1.0605,-0.1119,0.0212,0.1119,-1.0605,0.1119,0.6342],
056,-4.1303,-0.1031,-1.0667,-0.1031,0.0178,0.1031,-1.0667,0.1031,0.6432],
1,-4.1258,-0.0949,-1.0727,-0.0949,0.0148,0.0949,-1.0727,0.0949,0.6516],
15,-4.1214,-0.0871,-1.0785,-0.0871,0.0124,0.0871,-1.0785,0.0871,0.65941],
2,-4.1169,-0.0797,-1.0840,-0.0797,0.0103,0.0797,-1.0840,0.0797,0.66661],
25,-4.1125,-0.0729,-1.0893,-0.0729,0.0085,0.0729,-1.0893,0.0729,0.6733],
3,-4.1082,-0.0665,-1.0944,-0.0665,0.0070,0.0665,-1.0944,0.0665,0.67961,
35,-4.1040,-0.0606,-1.0993,-0.0606,0.0058,0.0606,-1.0993,0.0606,0.6854],
4,-4.0998,-0.0551,-1.1040,-0.0551,0.0047,0.0551,-1.1040,0.0551,0.6909],
45,-4.0957,-0.0500,-1.1085,-0.0500,0.0039,0.0500,-1.1085,0.0500,0.69611],
5,-4.0918,-0.0454,-1.1128,-0.0454,0.0032,0.0454,-1.1128,0.0454,0.7010],
55,-4.0879,-0.0411,-1.1170,-0.0411,0.0026,0.0411,-1.1170,0.0411,0.7056],
6,-4.0841,-0.0371,-1.1210,-0.0371,0.0021,0.0371,-1.1210,0.0371,0.70991],
65,-4.0805,-0.0335,-1.1248,-0.0335,0.0017,0.0335,-1.1248,0.0335,0.7141],
7,-4.0769,-0.0303,-1.1285,-0.0303,0.0014,0.0303,-1.1285,0.0303,0.7181],
75,-4.0735,-0.0273,-1.1321,-0.0273,0.0011,0.0273,-1.1321,0.0273,0.7218],
8,-4.0701,-0.0245,-1.1356,-0.0245,0.0009,0.0245,-1.1356,0.0245,0.7254],
85,-4.0669,-0.0221,-1.1389,-0.0221,0.0007,0.0221,-1.1389,0.0221,0.7289],
9,-4.0638,-0.0198,-1.1421,-0.0198,0.0006,0.0198,-1.1421,0.0198,0.7322],
95,-4.0607,-0.0178,-1.1452,-0.0178,0.0005,0.0178,-1.1452,0.0178,0.73541],
-4.0578,-0.0159,-1.1482,-0.0159,0.0004,0.0159,-1.1482,0.0159,0.7385],

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

47

[3.05,-4.0549,-0.0142,-1.1511,-0.0142,0.0003,0.0142,-1.1511,0.0142,0.7414],

[3.1,-4.0521,-0.0127,-1.15639,-0.0127,0.0002,0.0127,-1.15639,0.0127,0.7443]

>

[3.15,-4.0494,-0.0114,-1.1566,-0.0114,0.0002,0.0114,-1.1566,0.0114,0.74701],

[3.2,-4.0468,-0.0101,-1.1592,-0.0101,0.0001,0.0101,-1.1592,0.0101,0.7497]

3

[3.25,-4.0443,-0.0090,-1.1618,-0.0090,0.0001,0.0090,-1.1618,0.0090,0.7522],

[3.3,-4.0418,-0.0081,-1.1643,-0.0081,0.0001,0.0081,-1.1643,0.0081,0.7547]

>

[3.35,-4.0394,-0.0072,-1.1666,-0.0072,0.0001,0.0072,-1.1666,0.0072,0.75711],

[3.4,-4.0371,-0.0064,-1.1690,-0.0064,0.0001,0.0064,-1.1690,0.0064,0.7595]

>

[3.45,-4.0349,-0.0056,-1.1712,-0.0056,0.0000,0.0056,-1.1712,0.0056,0.7617],

[3.5,-4.0327,-0.0050,-1.1734,-0.0050,0.0000,0.0050,-1.1734,0.0050,0.7639]

>

[3.55,-4.0306,-0.0044,-1.1756,-0.0044,0.0000,0.0044,-1.1756,0.0044,0.76611],

[3.6,-4.0285,-0.0039,-1.1776,-0.0039,0.0000,0.0039,-1.1776,0.0039,0.7681]

>

[3.65,-4.0265,-0.0035,-1.1796,-0.0035,0.0000,0.0035,-1.1796,0.0035,0.7702],

[3.7,-4.0245,-0.0030,-1.1816,-0.0030,0.0000,0.0030,-1.1816,0.0030,0.7721]

>

[3.75,-4.0226,-0.0027,-1.1835,-0.0027,0.0000,0.0027,-1.1835,0.0027,0.77401],

[3.8,-4.0208,-0.0024,-1.1854,-0.0024,0.0000,0.0024,-1.1854,0.0024,0.7759]

>

[3.85,-4.0190,-0.0021,-1.1872,-0.0021,0.0000,0.0021,-1.1872,0.0021,0.7777],

[3.9,-4.0172,-0.0018,-1.1889,-0.0018,0.0000,0.0018,-1.1889,0.0018,0.7795]

>

[3.95,-4.0155,-0.0016,-1.1906,-0.0016,0.0000,0.0016,-1.1906,0.0016,0.7812]]

)

#Building the Hamiltonian H[O0]= Radius, H[1]=H(Radius)

H=[]
(n,m)=Hamiltonian_coef.shape
for i in range(n): #i = Radius

h_0=1.0*np.matrix(Hamiltonian_elem[0])
for j in range(1l,m):

h_O0+= Hamiltonian_coef [i,j]*np.matrix(Hamiltonian_elem[j])
H.append([Hamiltonian_coef [i,0],h_0])

Simulation

tq = tqdm(desc=’Minimizing...’) # Displaying progress bar
radiusl = []

E1 = []

init_param = []

for R in range(len(H)): # We try to find the ground state eigenvalue for
each radius R

radiusl.append (H[R] [0])
if (init_param == []): #

init_param = [2 * (np.pi) * random.random() for _ in

List_Parameters]

else:

for i in range(len(init_param)):

init_param[i] = VQE.get_parameters () [i]._value

Finding the ground state eigen value for each H(R)
result = minimize(minimize_loss, init_param, method=’Nelder-Mead’)

El.append(result.get(’fun’))
tq.set_description(’Finished’)

E1_th=[]

for h in H:
10=np.linalg.eigvals(h[1])
10.sort ()

El_th.append(min(10))

plt.plot(100*np.array(radiusi) ,E1_th,’orange’)
plt.plot (100*np.array(radiusl) ,E1,’x’)
plt.ylabel (’Energy (MJ/mol)’)

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

48

plt.xlabel (’Atomic separation R (pm)’)

plt.legend([’Theoretical eigenvalues’, ’Eigenvalues computed with Perceval’
D)

plt.show ()

plt.plot(100*np.array(radiusi) ,E1_th,’orange’)
plt.plot (100*np.array(radiusl) ,E1,’x’)
plt.axis([50,250,-5.8,-5.5])

plt.ylabel (’Energy (MJ/mol)’)

plt.xlabel (’Atomic separation R (pm)’)

plt.legend([’Theoretical eigenvalues’, ’Eigenvalues computed with Perceval’

D
plt.show ()

min_value=min(E1)

min_index = E1.index(min_value)

print (’The minimum energy is E_g(’+str(radiusl[min_index])+’)="+str(E1[
min_index])+’ MJ/mol and is attained
for R_min =’+str(radiusl[min_index])+
) pm))

Code 11: Example code - 4.5 Variational Quantum Eigensolver

B.6 Quantum Machine Learning - Differential Equation Solving

import perceval as pcvl

import numpy as np

from math import comb

from scipy.optimize import minimize
import time

import matplotlib.pyplot as plt
import matplotlib as mpl

import tqdm as tqdm

nphotons = 4

Differential equation parameters
lambd = 8

kappa = 0.1

def F(u_prime, u, x): # DE, works with numpy arrays
return u_prime + lambd * u * (kappa + np.tan(lambd * x))

Boundary condition (f(x_0)=f_0)
x_0 =0
f_ 0 =1

Modeling parameters

n_grid = 50 # number of grid points of the discretized differential
equation

range_min = 0 # minimum of the interval on which we wish to approximate
our function

range_max = 1 # maximum of the interval on which we wish to approximate
our function

X = np.linspace(range_min, range_max-range_min, n_grid) # Optimisation
grid

Differential equation’s exact solution - for comparison

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 49

def u(x):
return np.exp(- kappa*lambd*x)*np.cos (lambd*x)

Parameters of the quantum machine learning procedure

N = nphotons # Number of photons

m = nphotons # Number of modes

eta = 5 # weight granted to the initial condition

a = 200 # Approximate boundaries of the interval that the

image of the trial function can
cover

fock_dim = comb(N + m - 1, N)

lambda coefficients for all the possible outputs

lambda_random = 2 * a * np.random.rand(fock_dim) - a

dx serves for the numerical differentiation of f

dx = (range_max-range_min) / (n_grid - 1)

Input state with N photons and m modes
input_state = pcvl.BasicState([1]*N+[0]*(m-N))

"Haar unitary parameters"

number of parameters used for the two universal interferometers (2*m**2
per interferometer)

parameters = np.random.normal (size=4*m*x2)

px = pcvl.P("px")
¢ = pcvl.Unitary(pcvl.Matrix.random_unitary(m, parameters[:2 * m **x 2]),
name="W1")\
// (0, pcvl.PS(px))\
// pcvl.Unitary(pcvl.Matrix.random_unitary(m, parameters[2 * m **x 2:])
, name="W2")

simulator_backend = pcvl.BackendFactory().get_backend ("SLOS")
sl = simulator_backend(pcvl.Matrix.random_unitary(m))
sl.compile (input_state)

pcvl.pdisplay(c)

def computation(params):

global current_loss

global computation_count

"compute the loss function of a given differential equation in order

for it to be optimized"

computation_count += 1

f_theta_0 = 0 # boundary condition

coefs = lambda_random # coefficients of the M observable

initial condition with the two universal interferometers and the

phase shift in the middle

pcvl.Matrix.random_unitary(m, params[:2 * m ** 2])
pcvl.Matrix.random_unitary(m, params[2 * m *x 2:])

U_1
U_2

px = pcvl.P("x"
¢ = pcvl.Unitary(U_2) // (0, pcvl.PS(px)) // pcvl.Unitary(U_1)

px.set_value(np.pi * x_0)

U = c.compute_unitary(use_symbolic=False)

s1.U = U

f_theta_0 = np.sum(np.multiply(sl.all_prob(input_state), coefs))

boundary condition given a weight eta
loss = eta * (f_theta_0 - f_0) #** 2 x len(X)

Accepted in {fuantum 2023-02-07, click title to verify. Published under CC-BY 4.0. 50

Y[0] is before the domain we are interested in (used for

differentiation), x_0 is at Y[1]

Y = np.zeros(n_grid + 2)

x_0 is at the beginning of the domain, already calculated
Y[1] = f_theta_O

px.set_value(np.pi * (range_min - dx))

s1.U = c.compute_unitary(use_symbolic=False)
Y[0] = np.sum(np.multiply(sl.all_prob(input_state), coefs))

for i in range(l, n_grid):

x = X[i]
px.set_value(np.pi * x)
s1.U = c.compute_unitary(use_symbolic=False)

Y[i + 1] = np.sum(np.multiply(sl.all_prob(input_state), coefs))

px.set_value(np.pi * (range_max + dx))
s1.U = c.compute_unitary(use_symbolic=False)

Y[n_grid + 1] = np.sum(np.multiply(sl.all_prob(input_state), coefs))

Differentiation
Y_prime = (Y[2:] - Y[:-2])/(2*dx)

loss += np.sum((F(Y_prime, Y[1:-1], X)) *x2)

current_loss = loss / len(X)
return current_loss

def callbackF (parameters):

"""callback function called by scipy.optimize.minimize allowing to
monitor progress"""

global current_loss

global computation_count

global loss_evolution

global start_time

now = time.time ()

pbar.set_description("M= %d Loss: %0.5f #computations: %d elapsed:
5f" %

(m, current_loss, computation_count, now-

%0

start_time))

pbar .update (1)

loss_evolution.append((current_loss, now-start_time))
computation_count = 0

start_time = now

computation_count = 0
current_loss = 0
start_time = time.time ()
loss_evolution = []

pbar = tqgdm.tqdm()

res = minimize (computation, parameters, callback=callbackF, method=’BFGS’,

options={’gtol’: 1E-2})
print ("Unitary parameters", res.x)

def plot_solution(m, N, X, optim_params, lambda_random):
=[]
= pcvl.Matrix.random_unitary(m, optim_params[:2 * m *x 2])

Y
U_1
U_2 = pcvl.Matrix.random_unitary(m, optim_params[2 * m **x 2:])

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

51

px = pcvl.P("x"
¢ = pcvl.Unitary(U_2) // (0, pcvl.PS(px)) // pcvl.Unitary(U_1)

for x in X:
px.set_value(np.pi * x)
U = c.compute_unitary(use_symbolic=False)
s1.U = U
f_theta = np.sum(np.multiply(sl.all_prob(input_state),
lambda_random))
Y.append (f_theta)
exact = u(X)
plt.plot(X, Y, label="Approximation with {} photons".format (N))

X = np.linspace(range_min, range_max, 200)

Change the plot size
default_figsize = mpl.rcParamsDefault[’figure.figsize’]
mpl.rcParams[’figure.figsize’] = [2 * value for value in default_figsize]

plot_solution(m, N, X, res.x, lambda_random)

plt.plot (X, u(X), ’r’, label=’Analytical solution’)
plt.legend ()
plt.show ()

plt.plot ([v[0] for v in loss_evolution])
plt.yscale("log")

plt.xlabel ("Number of epochs")
plt.ylabel("Loss function value")

Code 12: Example code - 4.6 Quantum Machine Learning

Accepted in (uantum 2023-02-07, click title to verify. Published under CC-BY 4.0.

52

	1 Introduction
	2 Photonic Quantum Computing
	3 Presentation of Perceval
	3.1 Global Architecture
	3.2 Main Classes
	3.2.1 States
	3.2.2 Circuits
	3.2.3 Back-ends
	3.2.4 Processors
	3.2.5 Algorithms
	3.2.6 Bridges to Other Quantum Computing Toolkits
	3.2.7 Step-by-Step Example

	4 Perceval in Action
	4.1 The Hong-Ou-Mandel Effect
	4.1.1 Introduction
	4.1.2 Perceval Implementation

	4.2 Boson Sampling
	4.2.1 Introduction
	4.2.2 Perceval Implementation

	4.3 Grover's Algorithm
	4.3.1 Introduction
	4.3.2 Perceval Implementation

	4.4 Shor's Algorithm
	4.4.1 Introduction
	4.4.2 Perceval Implementation

	4.5 Variational Quantum Eigensolver
	4.5.1 Introduction
	4.5.2 Perceval Implementation

	4.6 Quantum Machine Learning
	4.6.1 Introduction
	4.6.2 Expression of Photonic Quantum Circuit Expectation Values as Fourier Series
	4.6.3 Application to Differential Equation Solving
	4.6.4 Perceval Implementation

	5 Conclusion
	A Examples Codes of the Back-ends and the Processor class
	A.1 CliffordClifford2017
	A.2 Naive
	A.3 SLOS
	A.4 Processor and Algorithm

	B Codes of Section 4
	B.1 The Hong-Ou-Mandel Effect
	B.2 Boson Sampling
	B.3 Grover's Algorithm
	B.4 Shor's Algorithm
	B.5 Variational Quantum Eigensolver
	B.6 Quantum Machine Learning - Differential Equation Solving

