
29 March 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessment of layerwise user-elements in Abaqus for static and free vibration analysis of variable stiffness composite
laminates / Moreira, J. A.; Moleiro, F.; Araújo, A. L.; Pagani, A.. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. -
STAMPA. - 303:(2022), p. 116291. [10.1016/j.compstruct.2022.116291]

Original

Assessment of layerwise user-elements in Abaqus for static and free vibration analysis of variable
stiffness composite laminates

Publisher:

Published
DOI:10.1016/j.compstruct.2022.116291

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972334 since: 2022-10-14T15:34:59Z

Elsevier Ltd



Composite Structures 303 (2023) 116291

A
0
n

Contents lists available at ScienceDirect

Composite Structures

journal homepage: www.elsevier.com/locate/compstruct

Assessment of layerwise user-elements in Abaqus for static and free vibration
analysis of variable stiffness composite laminates
J.A. Moreira a,∗, F. Moleiro a, A.L. Araújo a, A. Pagani b

a IDMEC, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal
b MUL2, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

A R T I C L E I N F O

Keywords:
Abaqus user-elements
Variable stiffness composites
Curvilinear fibre paths
Layerwise theory
Shear deformation theories

A B S T R A C T

In this work, user-elements (UEL) in Abaqus are taken a step forward into the high-order layerwise modelling
of variable stiffness composite laminates with curvilinear fibre paths, extending the limited number of available
literature on refined multilayered UEL models. Two layerwise UEL models with three discrete layers are here
proposed, assigning to each layer the displacements of the first- and third-order shear deformation theories,
thus named UEL1 and UEL3, respectively. A complete assessment of the models predictive capabilities is
carried out by a comparison with available static and free vibration solutions in the literature – either for
constant or variable stiffness laminates – considering various boundary and loading conditions, as well as thin
and moderately thick plates. Numerical results demonstrate that the developed models are capable to render
fairly accurate and computationally efficient results, with particular emphasis on the higher-order model for
predicting the global–local response behaviour of moderately thick plates.
1. Introduction

The ever-growing advances in composite material science have
provided crucial achievements in the design technology of lightweight
and high strength structures for various cutting-edge engineering appli-
cations. In particular, the recent advances in automated manufacturing
techniques [1,2] shed light on the capability of tailoring variable stiff-
ness composites (VSC), with curvilinear fibre paths, as an emerging and
promising structural technology to further improve the performance
of the conventional constant stiffness composite (CSC) laminates with
straight fibres. Therefore, it is crucial the development of refined
finite element (FE) models suitable for an accurate design and analysis
of curvilinear fibre composite laminates. In response to the limited
number of available literature on refined multilayered models imple-
mented through the user-element (UEL) subroutine in Abaqus, this
work focuses on the development and assessment of two layerwise (LW)
user-elements for static and free vibration analysis of VSC laminates,
including high-order modelling for the first time available. Thus, push-
ing forward the current knowledge on the application of UEL models
to render numerically accurate and computationally efficient analyses
of advanced composite laminates within a standard and broadly used
commercial software.

Since the leading works by Gürdal and Olmedo [3,4], in the early
1990s, on the in-plane and buckling response of VSC laminates with
spatially varying fibre orientations – also called variable angle-tow
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E-mail address: joao.anjos.moreira@tecnico.ulisboa.pt (J.A. Moreira).

(VAT) laminates – the VSC design technology have received a tremen-
dous research interest. Actually, the exceptional tailor-ability of VSC
laminates relies mostly on a broad design space of fibre orientations
throughout the lamination scheme, turning them suitable to be opti-
mized for various operational conditions. Hence, despite the original
purpose of using VSCs to improve buckling stability, more applications
have been addressed, including the maximization of the fundamental
frequency [5], the optimization of buckling and first-ply failure re-
sponses [6], the minimization of maximum deflections [7] or even the
aeroelastic stability augmentation [8,9] (just to name a few noteworthy
works).

In view of the assessment of finite element (FE) models based on
High-Order Shear Deformation Theories (HSDT) for the analysis of VSC
laminated plates, Akhavan and Ribeiro [10] and Akhavan et al. [11]
applied the Reddy’s Third-Order Shear Deformation Theory (TSDT)
for free vibration analysis and evaluation of large deflections and
stresses, respectively. It is emphasized that the Reddy’s TSDT is based
on an Equivalent Single Layer (ESL) description and therefore, Yazdani
et al. [12] as well as Yazdani and Ribeiro [13,14] developed a p-version
LW model assigning the First-Order Shear Deformation Theories (FSDT)
displacement field for each composite layer.

Moreover, regarding the application of more advanced and unified
frameworks, such as the Generalized Unified Formulation (GUF), De-
masi et al. [15] reported some numerical assessments on the linear
vailable online 4 October 2022
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static analysis of VSC plates, employing ESL and LW descriptions, with
various orders of expansion for each displacement variable. As far as
VSC laminated shells are concerned, Tornabene et al. [16] introduced
the Carrera Unified Formulation (CUF) for static analysis of doubly-
curved VSC laminates and Sánchez-Majano et al. [17] focused on the
accuracy assessment of LW and ESL descriptions in stress analysis of
VSC shells. Besides the previously mentioned studies on static response,
the free vibration analysis of VSC laminates through refined 1D CUF
elements was firstly presented by Viglietti et al. [18,19] and further
extended by Yan et al. [20]. An additional remark may be noteworthy
concerning the recent works by Pagani and Sánchez-Majano [21,22]
devoted to the influence analysis of manufacturing defects on the
buckling behaviour and failure onset of VSC laminates, applying once
again the CUF.

Concerning the computational implementation of FE models, the
approach typically followed by researchers is the development of in-
house programmes (for instance in Matlab or Fortran environment).
However, it is possible to define customizable user-elements in some
commercial finite element codes, such as the broadly used Abaqus.
For doing so, Abaqus provides the UEL subroutine, where the defi-
nitions associated with a certain FE formulation are translated into
a straightforward Fortran code, linked to the main software. Thus,
the user can take advantage of the native pre- and post-processing
features, as well as the different solvers. In fact, even thought Ferreira
et al. [23] have discussed the implementation of a user-element based
on the CUF, the paper was limited to ESL descriptions applied to stress
analysis. Therefore, Moreira et al. [24] addressed the implementation
of LW electro-elastic user-elements for the static and free vibration
analysis of piezoelectric composite plates. For three discrete layers, the
electro-elastic UEL models assume a piecewise continuous FSDT dis-
placement field, combined with a linear or quadratic through-thickness
distribution of the electric potential.

In the present work, LW user-elements in Abaqus are taken a step
forward to the analysis of VSC laminates with curvilinear fibre paths,
including both first- and high-order models. To the best of the authors’
knowledge, this is the first time that a high-order LW element is
implemented through the UEL subroutine, being also among the few
available works that apply and compare LW descriptions for both static
and free vibration analysis of VSC laminates. Two LW user-element
models with three discrete layers are here proposed, assigning to each
layer continuous through-thickness distributions of displacements using
the first- and third-order shear deformation theories, thus named UEL1
and UEL3, respectively.

Numerical applications consider the static and free vibration analy-
sis of both straight and curvilinear fibre composite laminates, i.e. CSC
and VSC laminates, respectively, assuming various boundary and load-
ing conditions, as well as two side-to-thickness ratios to address both
thin and moderately thick plates. The accuracy assessment of the UEL
models is firstly provided by a comparison with three-dimensional
(3D) exact static and free vibration solutions for simply supported
CSC laminates developed by Moleiro et al. [25]. Then, regarding the
analysis of VSC laminates, the present models predictive capabilities
are compared with available FE solutions in the literature, namely
Marques et al. [7] in static analysis of maximum deflections, as well
as Akhavan and Ribeiro [10] and Viglietti et al. [18] in free vibration
analysis. The test cases consist of three VSC laminates with linear
fibre angle distributions. Nevertheless, a conventional cross-ply lam-
inate is also considered throughout the analyses to further compare
the VSC laminates with a quite standard CSC laminate, including the
through-thickness distribution of displacements and stresses as well.

2. Layerwise models

In the present work, two LW models involving three discrete layers –
top (𝑡), core (𝑐) and bottom (𝑏), as schematically represented in Fig. 1 –
are implemented using the UEL subroutine in Abaqus. For each discrete
2

layer, the developed UEL1 and UEL3 models assign the displacement
field of the FSDT and TSDT, respectively.

The layers are assumed to be perfectly bonded to each other, being
made of a purely elastic composite material with orthotropic symme-
try and in-plane continuous graded properties introduced by spatially
varying fibre orientations (i.e. curvilinear fibre paths). Hence, for each
material layer, the plane stress constitutive equations, written in the
global coordinate system (𝑥, 𝑦, 𝑧), are given as shown:
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(1)

where 𝜎𝑖𝑗 denotes the stress tensor components, while 𝜀𝑖𝑖 and 𝛾𝑖𝑗 are
the infinitesimal normal strains and the engineering shear strains,
respectively. The reduced elastic constants �̄�𝑖𝑗 are given explicitly in
Reddy [26] resorting to the well-known rotation matrix between the
material axes of orthotropy and the global coordinate system.

For conciseness, Eq. (1) is written in the following compact form:

{𝜎} =
[

�̄�
]

{𝜀} (2a)

Additionally, since only small displacements are considered, the
linear strain–displacement relation is given by:

𝜀𝑖𝑗 =
1
2
(

𝑢𝑖,𝑗 + 𝑢𝑗,𝑖
)

(3)

where (𝑢1, 𝑢2, 𝑢3) ≡ (𝑢, 𝑣,𝑤) are the displacement components in the 𝑥-,
𝑦- and 𝑧-axis, respectively, and the comma-derivative notation is here
adopted. The engineering shear strains are given by 𝛾𝑖𝑗 = 2𝜀𝑖𝑗 .

Within the scope of this work, the variable stiffness composites
herein modelled are fibre reinforced composites with curvilinear fibre
paths, where a reference path is shifted along an axis to create the
remaining paths, lying at a fixed distance between each other. One
of the crucial aspects related to the modelling of curvilinear fibre
composites is the parametrization of the fibre trajectories, which are
supposed to be continuous curvilinear paths, with a reduced number
of parameters suitable to completely define the overall orientations.
Hence, the local fibre angle is a function of the in-plane coordinates,
i.e. 𝜃(𝑥, 𝑦), and therefore the reduced elastic constants in the global
coordinate system are in-plane continuously graded �̄�𝑖𝑗 (𝑥, 𝑦) as well.

In line with the leading works by Gürdal and Olmedo [3,4], a linear
fibre angle distribution along the 𝑥-axis, with two control angles, is con-
sidered in the present paper. Regardless of manufacturing limitations
on the maximum curvature that can be introduced into a fibre path,
which shorten the feasible design space of control angles ⟨𝑇0, 𝑇1⟩, the
fibre angle distribution is given as follows:

𝜃(𝑥) = 𝑇0 +
2(𝑇1 − 𝑇0)

𝑎
|

|

|

|

𝑥 − 𝑎
2
|

|

|

|

(4)

where 𝑇0 = 𝜃(𝑎∕2) and 𝑇1 = 𝜃(0) = 𝜃(𝑎) are the fibre orientations at the
entre and edges of the plate, respectively, as illustrated in Fig. 2.

The through-thickness distribution of the LW displacement field,
ssigned by each UEL model, is presented in the following subsections.
evertheless, for the three discrete layers, the interlaminar continuity
onditions of each 𝑖-displacement component are given as shown:

𝑐
𝑖
(

𝑥, 𝑦, 𝑧 = ℎ𝑐∕2
)

= 𝑢𝑡𝑖
(

𝑥, 𝑦, 𝑧 = �̄�𝑡 − ℎ𝑡∕2
)

(5a)

𝑢𝑐𝑖
(

𝑥, 𝑦, 𝑧 = −ℎ𝑐∕2
)

= 𝑢𝑏𝑖
(

𝑥, 𝑦, 𝑧 = �̄�𝑏 + ℎ𝑏∕2
)

(5b)

where ℎ𝑘 is the 𝑘-layer thickness and, as shown in Fig. 1, �̄�𝑡 and �̄�𝑏
are the mid-plane transverse coordinates of the top and bottom layers,
respectively.
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Fig. 1. Laminated composite plate divided in three discrete layers: top, core and bottom.
Fig. 2. Curvilinear fibre composite layer with a linear fibre angle distribution along
the 𝑥-axis.

2.1. First-order shear deformation model

The displacement field of the UEL1 model is derived upon the
application of the FSDT [26] to each discrete layer, fulfilling a priori the
interlaminar continuity conditions given in Eq. (5). Thus, the continuity
of displacements is ensured at the interfaces between adjacent layers,
while reducing the total number of independent variables needed to
address the through-thickness distribution of the displacement field.

In line with Moreira et al. [24], the LW FSDT displacement field of
the three discrete layers is given as shown:

𝑢𝑐 (𝑥, 𝑦, 𝑧) = 𝑢𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑥(𝑥, 𝑦) (6a)

𝑣𝑐 (𝑥, 𝑦, 𝑧) = 𝑣𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑦(𝑥, 𝑦) (6b)

𝑢𝑡(𝑥, 𝑦, 𝑧) = 𝑢𝑡0(𝑥, 𝑦) + (𝑧 − �̄�𝑡)
(

𝛼1𝑢
𝑐
0(𝑥, 𝑦) + 𝛼2𝜃

𝑐
𝑥(𝑥, 𝑦) + 𝛼3𝑢

𝑡
0(𝑥, 𝑦)

)

(6c)

𝑣𝑡(𝑥, 𝑦, 𝑧) = 𝑣𝑡0(𝑥, 𝑦) + (𝑧 − �̄�𝑡)
(

𝛼1𝑣
𝑐
0(𝑥, 𝑦) + 𝛼2𝜃

𝑐
𝑦(𝑥, 𝑦) + 𝛼3𝑣

𝑡
0(𝑥, 𝑦)

)

(6d)

𝑢𝑏(𝑥, 𝑦, 𝑧) = 𝑢𝑏0(𝑥, 𝑦) + (𝑧 − �̄�𝑏)
(

𝛽1𝑢
𝑐
0(𝑥, 𝑦) + 𝛽2𝜃

𝑐
𝑥(𝑥, 𝑦) + 𝛽3𝑢

𝑏
0(𝑥, 𝑦)

)

(6e)

𝑣𝑏(𝑥, 𝑦, 𝑧) = 𝑣𝑏0(𝑥, 𝑦) + (𝑧 − �̄�𝑏)
(

𝛽1𝑣
𝑐
0(𝑥, 𝑦) + 𝛽2𝜃

𝑐
𝑦(𝑥, 𝑦) + 𝛽3𝑣

𝑏
0(𝑥, 𝑦)

)

(6f)

𝑤𝑐 (𝑥, 𝑦, 𝑧) = 𝑤𝑡(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (6g)

where the subscript 0 stands for the mid-plane location of the layer,
while 𝜃𝑐𝑥 and 𝜃𝑐𝑦 denote the rotations of the normals to the mid-plane
about the 𝑦- and 𝑥-axes of the core, respectively.

As derived from the interlaminar continuity conditions, the
layerwise-constants 𝛼𝑗 and 𝛽𝑗 , with 𝑗 = {1, 2, 3}, are given by:

𝛼1 = −2∕ℎ𝑡, 𝛼2 = −ℎ𝑐∕ℎ𝑡, 𝛼3 = −𝛼1 (7a)

𝛽1 = 2∕ℎ𝑏, 𝛽2 = −ℎ𝑐∕ℎ𝑏, 𝛽3 = −𝛽1 (7b)

Overall, the displacement vector {𝑢}𝑘 of each 𝑘-layer, with 𝑘 =
{𝑡, 𝑐, 𝑏}, is related to the mechanical degrees of freedom (DOFs) vector
3

{𝑑1}, i.e. the nine independent mechanical unknowns associated to the
LW FSDT displacements in Eq. (6), by a 3 × 9 matrix [𝑍1]𝑘, which
allows the following relation:

{𝑢}𝑘 =
{

𝑢𝑘 𝑣𝑘 𝑤𝑘}𝑇 = [𝑍1]𝑘{𝑑1} (8a)

{𝑑1} =
{

𝑢𝑐0 𝑣𝑐0 𝑤0 𝜃𝑐𝑥 𝜃𝑐𝑦 𝑢𝑡0 𝑣𝑡0 𝑢𝑏0 𝑣𝑏0
}𝑇

(8b)

In view of Eqs. (1), (3) and (6), one obtains that the FSDT based
model (UEL1) predicts a linear through-thickness distribution of in-
plane stresses in each material layer, along with just constant transverse
shear stresses.

2.2. Third-order shear deformation model

The third-order shear deformation model, implemented as UEL3,
considers a TSDT displacement field within each discrete layer. In
particular, the TSDT assumes a cubic 𝑧-expansion of in-plane displace-
ments and keeps the transverse inextensibility as the FSDT (i.e. 𝜀𝑧𝑧 = 0).
Imposing the interlaminar continuity conditions given in Eq. (5), one
can derive the following LW TSDT displacement field:

𝑢𝑐 (𝑥, 𝑦, 𝑧) = 𝑢𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑥(𝑥, 𝑦) + 𝑧2𝜘𝑐
𝑥(𝑥, 𝑦) + 𝑧3𝜆𝑐𝑥(𝑥, 𝑦) (9a)

𝑣𝑐 (𝑥, 𝑦, 𝑧) = 𝑣𝑐0(𝑥, 𝑦) + 𝑧𝜃𝑐𝑦(𝑥, 𝑦) + 𝑧2𝜘𝑐
𝑦 (𝑥, 𝑦) + 𝑧3𝜆𝑐𝑦(𝑥, 𝑦) (9b)

𝑢𝑡(𝑥, 𝑦, 𝑧) = 𝛼1𝑢𝑐0(𝑥, 𝑦) + 𝛼2𝜃𝑐𝑥(𝑥, 𝑦) + 𝛼3𝜘𝑐
𝑥(𝑥, 𝑦) + 𝛼4𝜆𝑐𝑥(𝑥, 𝑦) + 𝛼5𝜃𝑡𝑥(𝑥, 𝑦)+

𝛼6𝜘𝑡
𝑥(𝑥, 𝑦) + 𝛼7𝜆𝑡𝑥(𝑥, 𝑦) + (𝑧 − �̄�𝑡)𝜃𝑡𝑥(𝑥, 𝑦) + (𝑧 − �̄�𝑡)2𝜘𝑡

𝑥(𝑥, 𝑦)+
(𝑧 − �̄�𝑡)3𝜆𝑡𝑥(𝑥, 𝑦)

(9c)
𝑣𝑡(𝑥, 𝑦, 𝑧) = 𝛼1𝑣𝑐0(𝑥, 𝑦) + 𝛼2𝜃𝑐𝑦(𝑥, 𝑦) + 𝛼3𝜘𝑐

𝑦 (𝑥, 𝑦) + 𝛼4𝜆𝑐𝑦(𝑥, 𝑦) + 𝛼5𝜃𝑡𝑦(𝑥, 𝑦)+
𝛼6𝜘𝑡

𝑦(𝑥, 𝑦) + 𝛼7𝜆𝑡𝑦(𝑥, 𝑦) + (𝑧 − �̄�𝑡)𝜃𝑡𝑦(𝑥, 𝑦) + (𝑧 − �̄�𝑡)2𝜘𝑡
𝑦(𝑥, 𝑦)+

(𝑧 − �̄�𝑡)3𝜆𝑡𝑦(𝑥, 𝑦)

(9d)
𝑢𝑏(𝑥, 𝑦, 𝑧) = 𝛽1𝑢𝑐0(𝑥, 𝑦) + 𝛽2𝜃𝑐𝑥(𝑥, 𝑦) + 𝛽3𝜘𝑐

𝑥(𝑥, 𝑦) + 𝛽4𝜆𝑐𝑥(𝑥, 𝑦) + 𝛽5𝜃𝑏𝑥(𝑥, 𝑦)+
𝛽6𝜘𝑏

𝑥(𝑥, 𝑦) + 𝛽7𝜆𝑏𝑥(𝑥, 𝑦) + (𝑧 − �̄�𝑏)𝜃𝑏𝑥(𝑥, 𝑦) + (𝑧 − �̄�𝑏)2𝜘𝑏
𝑥(𝑥, 𝑦)+

(𝑧 − �̄�𝑏)3𝜆𝑏𝑥(𝑥, 𝑦)

(9e)
𝑣𝑏(𝑥, 𝑦, 𝑧) = 𝛽1𝑣𝑐0(𝑥, 𝑦) + 𝛽2𝜃𝑐𝑦(𝑥, 𝑦) + 𝛽3𝜘𝑐

𝑦 (𝑥, 𝑦) + 𝛽4𝜆𝑐𝑦(𝑥, 𝑦) + 𝛽5𝜃𝑏𝑦(𝑥, 𝑦)+
𝛽6𝜘𝑏

𝑦 (𝑥, 𝑦) + 𝛽7𝜆𝑏𝑦(𝑥, 𝑦) + (𝑧 − �̄�𝑏)𝜃𝑏𝑦(𝑥, 𝑦) + (𝑧 − �̄�𝑏)2𝜘𝑏
𝑦 (𝑥, 𝑦)+

(𝑧 − �̄�𝑏)3𝜆𝑏𝑦(𝑥, 𝑦)

(9f)

𝑤𝑐 (𝑥, 𝑦, 𝑧) = 𝑤𝑡(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (9g)

where (𝜘𝑘
𝑥 ,𝜘

𝑘
𝑦 ) and (𝜆𝑘𝑥, 𝜆

𝑘
𝑦) are the higher-order generalized displace-

ments of each 𝑘-layer.
The associated layerwise-constants 𝛼𝑗 and 𝛽𝑗 , with 𝑗 = {1,… , 7}, are

given by:

𝛼1 = 1, 𝛼2 = ℎ𝑐∕2, 𝛼3 = 𝛼22 , 𝛼4 = 𝛼32 , 𝛼5 = ℎ𝑡∕2, 𝛼6 = −𝛼25 , 𝛼7 = 𝛼35

(10a)
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𝛽1 = 1, 𝛽2 = −ℎ𝑐∕2, 𝛽3 = 𝛽22 , 𝛽4 = −𝛽32 , 𝛽5 = −ℎ𝑏∕2, 𝛽6 = −𝛽25 , 𝛽7 = 𝛽35
(10b)

In the LW TSDT model, the in-plane displacements of the top
nd bottom layers mid-plane are written as a linear combination of
he remaining generalized displacements of the model. Therefore, one
btains finite layerwise-constants when setting a null thickness for the
op and bottom layers in Eq. (10), using then the middle discrete layer
s an ESL representative of the whole laminate.

To summarize, the displacement vector of each 𝑘-layer, with 𝑘 =
{𝑡, 𝑐, 𝑏}, is obtained from the DOFs vector {𝑑3}, i.e. the twenty one inde-
pendent generalized displacements associated to the LW displacements
in Eq. (9), defining a 3 × 21 matrix, denoted by [𝑍3]𝑘, which allows
the following relation:

{𝑢}𝑘 =
{

𝑢𝑘 𝑣𝑘 𝑤𝑘}𝑇 = [𝑍3]𝑘{𝑑3} (11a)

{𝑑3} =
{

𝑢𝑐0 𝑣𝑐0 𝑤0 𝜃𝑐𝑥 𝜃𝑐𝑦 𝜘𝑐
𝑥 𝜘𝑐

𝑦 𝜆𝑐𝑥 𝜆𝑐𝑦 𝜃𝑡𝑥 𝜃𝑡𝑦

× 𝜘𝑡
𝑥 𝜘𝑡

𝑦 𝜆𝑡𝑥 𝜆𝑡𝑦 𝜃𝑏𝑥 𝜃𝑏𝑦 𝜘𝑏
𝑥 𝜘𝑏

𝑦 𝜆𝑏𝑥 𝜆𝑏𝑦
}𝑇

(11b)

It is emphasized that for FSDT based model, a similar nomenclature
was adopted in Eq. (8), but using an index ‘1’ instead of ‘3’ in light of
the piecewise linear theory.

Moreover, according to Eqs. (1), (3) and (9), one concludes that the
TSDT based model (UEL3) predicts a cubic through-thickness distribu-
tion of in-plane stresses in each material layer, along with quadratic
transverse shear stresses. Actually, the parabolic profile of transverse
shear strains, instead of the just constant in the FSDT, does not requires
the application of a shear correction factor and allows a closer fulfil-
ment of the stress-free boundary conditions, i.e. null transverse shear
stresses on the upper and lower surfaces of the laminate, as well as of
the interlaminar continuity conditions of transverse shear stresses.

3. Finite element formulation

For both FSDT and TSDT based formulations used in the UEL1 and
UEL3, respectively, the FE approximations in-plane are achieved using
eight-node quadratic serendipity interpolation functions [26] for the
DOFs in Eqs. (8b) and (11b). For brevity, since the FE formulation
of the models is similar, it is present in a general fashion, omitting
systematically the index associated to the model. Hence, for each
model, a general matrix form of the FE approximations of the elements
DOFs {𝑑}(𝑒) can be written as shown:

{𝑑}(𝑒) = [𝑁] {𝛥}(𝑒), {𝛥}(𝑒) = {{𝑑}(𝑒)
𝑇

1 ...{𝑑}(𝑒)
𝑇

8 }𝑇 (12)

where the matrix [𝑁] contains the interpolation functions in eight
𝑛𝑑 × 𝑛𝑑 diagonal blocks, where 𝑛𝑑 is the number of DOFs per node of
the model (i.e. 9 and 21 for the UEL1 and UEL3, respectively).

Additionally, for each 𝑘-layer, with 𝑘 = {𝑡, 𝑐, 𝑏}, the relation between
the strain vector and the nodal DOFs is given by:

{𝜀}𝑘 = [𝑆]𝑘[𝐵]𝑘{𝛥} (13)

where the transverse functions are featured in the [𝑆]𝑘 matrices, while
the in-plane interpolation functions and their derivatives are isolated
within the [𝐵]𝑘 matrices. The entries and dimensions of these matrices
are dependent on the UEL model.

The dynamic equilibrium equations of the elements are derived
applying the Hamilton’s principle [24], the constitutive law in Eq. (2),
the displacement-DOFs relation in Eq. (12) and the strain-DOFs relation
in Eq. (13), leading to the usual canonical form as follows:
[

𝑀
](𝑒) {𝛥} +

[

𝐾
](𝑒) {𝛥} = {𝐹 }(𝑒) (14)

where {𝛥} and {𝛥} are the nodal DOFs and their second time deriva-
4

tives, respectively.
Moreover,
[

𝑀
](𝑒) and

[

𝐾
](𝑒) are the element mass and stiffness

matrices, respectively, while {𝐹 }(𝑒) is element force vector, which are
all together given by:

[

𝑀
](𝑒) =

∑

𝑘=𝑐,𝑡,𝑏
∫

1

−1 ∫

1

−1
𝜌𝑘 [𝑁]𝑇 [𝑃 ]𝑘 [𝑁] 𝑑𝜉𝑑𝜂 (15a)

[

𝐾
](𝑒) =

∑

𝑘=𝑐,𝑡,𝑏
∫

1

−1 ∫

1

−1
[𝐵]𝑇𝑘 [�̂�]𝑘 [𝐵]𝑘  𝑑𝜉𝑑𝜂 (15b)

{𝐹 }(𝑒) =
∑

𝑘=𝑐,𝑡,𝑏
∫

1

−1 ∫

1

−1
[𝑁]𝑇 [𝑍]𝑇𝑘

{

𝑓𝑠
}

𝑘  𝑑𝜉𝑑𝜂 (15c)

where 𝜌𝑘 and
{

𝑓𝑠
}

𝑘 denote the density and the surface forces of each 𝑘-
layer, respectively, while  is the determinant of the Jacobian needed
to numerically evaluate the integrals by Gauss quadrature in natural
coordinates (𝜉, 𝜂). In addition, for the FSDT based model (UEL1), a shear
correction factor of a unit value is adopted, as suggested by Birman
and Bert [27] for sandwich plates (being indeed the assumed value by
Moreira et al. [24] as well).

Furthermore, the [𝑃 ]𝑘 matrix in Eq. (15a), as well as the generalized
elastic matrix [�̂�]𝑘 in Eq. (15b), are obtained following the analytical
integration on the transverse direction of each discrete layer as shown:

[𝑃 ]𝑘 = ∫

𝑧𝑠𝑘

𝑧𝑖𝑘

[𝑍]𝑇𝑘 [𝑍]𝑘 𝑑𝑧 (16a)

[�̂�]𝑘 = ∫

𝑧𝑠𝑘

𝑧𝑖𝑘

[𝑆]𝑇𝑘
[

�̄�
]

𝑘 [𝑆]𝑘 𝑑𝑧 (16b)

where 𝑧𝑖𝑘 and 𝑧𝑠𝑘, with 𝑘 = {𝑐, 𝑡, 𝑏}, are the 𝑘-layer 𝑧-coordinates of the
lower and upper surfaces, respectively. For laminates with more than
three layers, a subdivision in three sublaminates must be carried out,
each one treated as a sole ESL. Thus, for each 𝑘-layer that mathemati-
cally represents a sublaminate, the thickness integration of the reduced
elastic constants in Eq. (16b) is indeed the sum of the integrals on the
transverse direction of each material layer within the sublaminate.

It is worth remarking that an accurate discretization of the in-plane
distributed stiffness introduced by curvilinear fibre composites, which
relies mostly on a low discretization error of the fibre angle distri-
bution, is ensured through the evaluation of the fibre orientations in
each integration point. Therefore, when sufficiently refined meshes are
applied, a quasi-continuous description of the fibre angle distribution
in-plane is achieved. For doing so, the transformation between the
natural coordinates (𝜉, 𝜂) and the global coordinates (𝑥, 𝑦) is applied to
obtain the integration points within an element, written in the global
axes [26]. Then, for each integration point, the local fibre angle is
assessed for a predetermined fibre angle distribution, underlying the
final evaluation of the local reduced elastic constants in Eq. (1).

4. Abaqus user-element implementation

The UEL subroutine is an advanced tool provided by the commercial
software Abaqus, where users can implement their own FE models to
be applied in a large number of analyses. The subroutine is coded
in Fortran, using a default heading (provided in [23]) to get the
interaction with Abaqus. For each user-element within a mesh, Abaqus
calls the subroutine to evaluate the necessary element matrices, which
are typically coded through loops on the integration points, including
the right-hand side vector if necessary.

For static analysis, even though the inertial terms in Eq. (14) are
neglected, the mass matrix is defined within the UEL subroutine as an
identity matrix, with the same dimension as the stiffness matrix. In
addition, the element stiffness matrix, given in Eq. (15b) is obtained
using Gauss numerical integration, with reduced integration for the
shear terms to avoid shear locking [26]. Actually, for the case of
VSC laminates, it is emphasized that the integration of the membrane,

bending and coupling membrane-bending stiffness terms is not fully
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exact. Nevertheless, following the local fibre orientation modelling
methodology previously explained, the fibre angle in each integration
point is assessed and the elastic constants are updated accordingly (thus
promoting an accurate evaluation of the distributed stiffness when re-
fined meshes are applied). Moreover, as followed by Moreira et al. [24],
the post-processing of stresses is performed at the integration points,
using then direct local extrapolation.

Furthermore, when free vibration analysis is considered, the com-
putation of the mass matrix, provided in Eq. (15a), is also numerically
performed using Gauss integration. Additionally, no external forces are
applied on the structure and the element DOFs are supposed to be
harmonic.

For each laminated plate, an UEL subroutine must be written and
a fibre angle distribution prescribed if necessary. Hence, for different
fibre angle distributions, a given UEL subroutine is coded, changing
solely the 𝜃(𝑥, 𝑦) function. Besides the subroutine (.for extension), a
text file defining the intended analysis, known as the input file (.inp
extension), must be provided as well.

Further details on the implementation of Abaqus user-elements are
presented by Moreira et al. [24], explaining precisely the nomenclature,
flowchart, input and output variables, as well as the application of
boundary and loading conditions. A template input file is also pro-
vided, including the definition of a dummy mesh, which is used to:
(i) apply transverse forces without programming the force vector and
(ii) visualize the nodal variables within Abaqus/Viewer. Actually, the
distributed surface loads are defined using the DLOAD subroutine. It
is worth remarking that in present work, the nine active DOFs of the
UEL1, stated in Eq. (8), are numbered in the input file as 1–6 and 14–
16, while the UEL2 ones, defined in Eq. (11), are ordered as 1–6 and
14–28.

5. Numerical applications

As intended by this work, to verify the formulation and imple-
mentation of the proposed models, numerical applications consider the
static and free vibration analysis of both straight and curvilinear fibre
composite laminated plates. The accuracy assessment is carried out for
various boundary and loading conditions, including the case of thin and
moderately thick plates to further compare the UEL models.

As a first validation of the developed UEL models, the static and
free vibration analysis of a simply-supported CSC laminate (0∕90∕0) is
presented and compared with 3D exact solutions reported by Moleiro
et al. [25]. Accordingly, the static response is evaluated for plates with
the upper surface subjected to bi-sinusoidal transverse load given by:

𝑞(𝑥, 𝑦) = 𝑞0 sin (𝜋𝑥∕𝑎) sin (𝜋𝑦∕𝑎) (17)

In line with the original benchmark by Pagano [28], as also followed
by Moleiro et al. [25], it is assumed square plates (𝑎 = 𝑏) with two
ide-to-thickness ratios, viz. 𝑎∕ℎ = 100 and 10, to assess the case of thin

and moderately thick plates, respectively. The composite layers have an
equal thickness ℎ∕3 and the following material properties: 𝐸1 = 25𝐸0,
𝐸2 = 𝐸3 = 𝐸0, 𝐺12 = 𝐺13 = 0.5𝐸0, 𝐺23 = 0.2𝐸0, 𝜈12 = 𝜈13 = 𝜈23 = 0.25
nd 𝜌 = 1600 kg/m3, with 𝐸0 = 7 GPa.

All results are given using the following nondimensionalized form:

�̃�, �̃�] =
100𝐸0ℎ2

𝑞0𝑎3
[𝑢, 𝑣], �̃� =

100𝐸0ℎ3

𝑞0𝑎4
𝑤

[�̃�𝑥𝑥, �̃�𝑦𝑦, �̃�𝑥𝑦] =
ℎ2

𝑞0𝑎2
[𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑦]

�̃�𝑥𝑧, �̃�𝑦𝑧] =
ℎ
𝑞0𝑎

[𝜎𝑥𝑧, 𝜎𝑦𝑧]

(18)

here 𝐸0 has the aforementioned value and 𝑞0 is the amplitude value
f the transverse load.

Regarding VSC laminates, three symmetric laminates are investi-
ated, having each layer a linear fibre angle distribution along the
-axis as given in Eq. (4). A cross-ply CSC laminate is also considered
5

hroughout all analyses to compare the response behaviour of the
SC laminates with a conventional composite laminate. The stacking
equences are the following:

• Constant stiffness composite (CSC): (0/90/0)
• Variable stiffness composite 1 (VSC1): (⟨0, 45⟩/⟨−45,−60⟩/⟨0, 45⟩)
• Variable stiffness composite 2 (VSC2): (⟨30, 0⟩/⟨45, 90⟩/⟨30, 0⟩)
• Variable stiffness composite 3 (VSC3): (⟨90, 45⟩/⟨60, 30⟩/⟨90, 45⟩)

For the accuracy assessment of the developed UEL models in the
nalysis of VSC laminates, numerical results are compared with FE
olutions available in the literature, namely Marques et al. [7] for
tatic analysis, as well as Akhavan and Ribeiro [10] and Viglietti
t al. [18] for free vibration analysis. Hence, to be consistent with the
enchmarks, the square plates have a fixed side 𝑎 = 𝑏 = 1 m and a
otal thickness ℎ determined by the side-to-thickness ratio 𝑎∕ℎ = 100
nd 10, i.e. thin and moderately thick plates, respectively. The material
roperties of the (equal thickness) composite layers are the following:
1 = 173 GPa, 𝐸2 = 𝐸3 = 7.2 GPa, 𝐺12 = 𝐺13 = 𝐺23 = 3.76 GPa,
12 = 𝜈13 = 𝜈23 = 0.29 and 𝜌 = 1540 kg/m3.

Firstly, the assessment of the maximum transverse displacement
s carried out for plates under uniformly distributed transverse load,
.e. 𝑞(𝑥, 𝑦) = 𝑞0, assuming six different boundary conditions: (i) fully
imply supported (SSSS); (ii) fully clamped (CCCC); (iii) simply sup-
orted at 𝑥 = 0 and 𝑎 (SSFF); (iv) clamped at 𝑥 = 0 and 𝑎 (CCFF);
v) simply supported at 𝑥 = 0 and 𝑦 = 0 (SFSF) and (vi) clamped
t 𝑥 = 0 and 𝑦 = 0 (CFCF). The maximum transverse displacements
redicted by the UEL models are compared with those developed by
arques et al. [7], resorting to a FE model based on the FSDT. Even

hough Marques et al. [7] have only considered the case of thin plates
𝑎∕ℎ = 100), the scenario of moderately thick plates (𝑎∕ℎ = 10) is
urther investigated herein to thoroughly compare the UEL models for
he various constrains. In addition, the nondimensionalized form given
n Eq. (18) is adopted to present the predicted deflections concisely.

Furthermore, to provide a more insightful description and com-
arison of the UEL models predictive capabilities, particularly on the
valuation of the through-thickness distribution of displacements and
tresses, the complete static analysis is carried out for moderately thick
lates, with 𝑎∕ℎ = 10. It is assumed that the plates are simply supported
nd subjected to a bi-sinusoidally distributed transverse load as given in
q. (17). Numerical results are also provided in the nondimensionalized
orm stated in Eq. (18).

As far as free vibration analysis is concerned, the natural frequen-
ies associated to the first nine bending modes of each laminate are
valuated, considering both simply supported and clamped boundary
onditions, as well as thin and moderately thick plates. Numerical
esults are compared with the benchmark solutions by Akhavan and
ibeiro [10], predicted by a FE model assigning the Reddy’s TSDT.
dditionally, considering the work by Viglietti et al. [18], the natural

requencies of the clamped VSC1 and VSC2, predicted by a refined LW
D CUF model, are included as well.

Although not shown, for both UEL models, a prior convergence
nalysis reveals that 30 × 30 elements ensure converged solutions for
ll laminates, side-to-thickness ratios and boundary conditions. More-
ver, despite the various boundary conditions assumed throughout the
umerical applications, the simply supported boundary conditions of
he TSDT based model are exemplified as follows:

𝑘
0 = 𝑤𝑘

0 = 𝜃𝑘𝑥 = 𝜘𝑘
𝑥 = 𝜆𝑘𝑥 = 0 at 𝑦 = 0, 𝑎 (19a)

𝑘
0 = 𝑤𝑘

0 = 𝜃𝑘𝑦 = 𝜘𝑘
𝑦 = 𝜆𝑘𝑦 = 0 at 𝑥 = 0, 𝑎 (19b)

here 𝑘 = {𝑡, 𝑐, 𝑏}, noting that for the FSDT based model, the high-order
eneralized displacements (𝜘𝑘, 𝜘𝑘, 𝜆𝑘, 𝜆𝑘) are not included.
𝑥 𝑦 𝑥 𝑦
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Table 1
Static analysis results of the simply supported composite laminate (0∕90∕0), with 𝑎∕ℎ = 100 and 10, under bi-sinusoidal load: comparison with 3D exact solutions.

𝑎∕ℎ Model �̃�
(

0, 𝑎
2
, ℎ
2

)

�̃�
(

𝑎
2
, 0, ℎ

2

)

�̃�
(

𝑎
2
, 𝑎
2
, 0
)

�̃�𝑥𝑥
(

𝑎
2
, 𝑎
2
, ℎ
2

)

�̃�𝑦𝑦
(

𝑎
2
, 𝑎
2
, ℎ
2

)

�̃�𝑥𝑧
(

0, 𝑎
2
, 0
)

100 Exact [25] −0.6780 −0.6823 0.4347 0.5393 0.0269 0.3947
UEL1 −0.6778 −0.6822 0.4346 0.5398 0.0269 0.3940
UEL3 −0.6780 −0.6823 0.4347 0.5394 0.0269 0.3950

10 Exact [25] −0.7351 −1.0995 0.7530 0.5906 0.0429 0.3573
UEL1 −0.7153 −1.0857 0.7402 0.5728 0.0399 0.3589
UEL3 −0.7407 −1.1050 0.7556 0.5930 0.0426 0.3585
Table 2
First ten nondimensionalized natural frequencies �̃�𝑚𝑛 = 𝜔𝑚𝑛

√

𝜌∕𝐸0(𝑎2∕ℎ) of the simply supported composite laminate (0∕90∕0), with 𝑎∕ℎ = 10: comparison with 3D exact solutions.

Model �̃�11 �̃�12 �̃�01 �̃�10 �̃�21 �̃�13 �̃�22 �̃�23 �̃�02 �̃�20

Exact [25] 11.457 18.212 22.214 22.214 28.182 30.564 31.892 40.537 44.429 44.429
UEL1 11.568 18.379 22.215 22.215 28.653 30.979 32.366 41.159 44.429 44.429
UEL3 11.451 18.179 22.214 22.214 28.170 30.468 31.855 40.438 44.429 44.429
5.1. Analysis of CSC plates: Comparison with 3D exact solutions

The accuracy assessment of the UEL models is firstly presented
considering a comparison with 3D exact static and free vibration so-
lutions for simply supported multilayered plates with constant stiffness
composite layers. Table 1 shows some static analysis results, consid-
ering both thin and moderately thick plates, with 𝑎∕ℎ = 100 and 10,
respectively. All results are given at the absolute maximum in-plane
location, alongside with the 3D exact solutions developed by Moleiro
et al. [25].

Additionally, for the case of 𝑎∕ℎ = 10, Table 2 presents the first ten
nondimensionalized natural frequencies predicted by the UEL models,
as well as the associated 3D exact solutions in line with the previous
benchmark work [25]. For each frequency, the in-plane mode shape
(𝑚, 𝑛), i.e. the number of half-waves in the 𝑥- and 𝑦-axis, respectively,
is also indicated. It is underlined that the modes in the form of (𝑚, 0)
nd (0, 𝑛), that emerge among the remaining bending modes, are special
odes with null transverse displacement (i.e. purely extensional).

From the provided results, the following remarks can be pointed
ut:

• For thin plates, all static analysis results obtained by the UEL
models are in excellent agreement with the 3D exact solutions.
However, for moderately thick plates, the third-order model
(UEL3) predicts displacements and stresses closer to the 3D exact
solutions than the first-order model (UEL1);

• Although the transverse shear stresses are locally well predicted
by both UEL models – even being derived from the constitutive
equation – the UEL1 is not able to accurately describe the over-
all through-thickness distribution (as detailed in the following
subsection).

• Both UEL models predict the first ten natural frequencies and
mode shapes in fairly agreement with the 3D exact solutions, even
thought the UEL3 is slightly more accurate when higher-order
bending modes of moderately thick plates are of interest.

.2. Static analysis of VSC plates

In view of the UEL models validation in static analysis of VSC
aminates, Table 3 presents the (nondimensionalized) maximum trans-
erse displacement of the four composite laminates, considering the
ase of both thin and moderately thick plates, with 𝑎∕ℎ = 100 and
0, respectively, subjected to uniform transverse load and various
oundary conditions. For the case of thin plates, the results of the three
SC laminates are presented alongside with the solutions developed by
arques et al. [7] (FSDT). As expected due to high side-to-thickness

atio, the deflections predicted by both UEL models are in excellent
greement with the first-order ESL model [7], for all laminates and
oundary conditions.
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Table 3
Nondimensionalized maximum transverse displacement �̃�max of laminated plates, with
𝑎∕ℎ = 100 and 10, under uniform transverse load and various boundary conditions.

Case 𝑎∕ℎ Model SSSS CCCC SSFF CCFF SFSF CFCF

CSC 100 UEL1 0.669 0.141 0.679 0.136 140.35 6.830
UEL3 0.669 0.141 0.680 0.137 140.38 6.833

10 UEL1 0.903 0.373 0.932 0.382 147.14 7.971
UEL3 0.925 0.391 0.958 0.403 147.50 8.073

VSC1 100 FSDT [7] 0.553 0.210 1.019 0.288 59.997 7.584
UEL1 0.549 0.210 1.019 0.286 59.402 7.580
UEL3 0.550 0.210 1.020 0.286 59.507 7.585

10 UEL1 0.785 0.455 1.506 0.627 65.765 9.290
UEL3 0.809 0.474 1.546 0.654 66.668 9.421

VSC2 100 FSDT [7] 0.758 0.160 1.517 0.237 109.60 4.970
UEL1 0.758 0.160 1.515 0.237 109.56 4.966
UEL3 0.758 0.160 1.518 0.237 109.59 4.969

10 UEL1 1.008 0.400 2.133 6.078 114.07 0.525
UEL3 1.030 0.419 2.183 6.171 114.37 0.549

VSC3 100 FSDT [7] 0.682 0.141 13.266 1.357 72.674 6.572
UEL1 0.675 0.141 13.268 1.352 70.938 6.570
UEL3 0.675 0.141 13.271 1.353 70.987 6.572

10 UEL1 0.925 0.373 13.777 1.774 76.916 7.616
UEL3 0.948 0.391 13.840 1.807 77.504 7.705

However, for moderately thick plates, the results presented in Ta-
ble 3 show that the FSDT based model (UEL1) underestimates the
maximum transverse deflection compared to the TSDT based model
(UEL3). In particular, the major discrepancy between the UEL1 and
UEL3 models is found in the fully clamped plates, taking values slightly
lower than 5%. Ultimately, a careful observation of Table 3 reveals
that the CSC laminate outperforms the VSC laminates only for SSFF
and CCFF boundary conditions.

To provide a more complete understanding and comparison of the
UEL models accuracy in the assessment of all displacement and stress
components, Table 4 presents the static analysis results of simply sup-
ported plates, with 𝑎∕ℎ = 10 (i.e. moderately thick), under bi-sinusoidal
transverse load. All variables are shown using the nondimensionalized
form given in Eq. (18). As apparent by the underlying results, from
a practical standpoint, the solutions predicted by the UEL models are
in good agreement with each other, except for the transverse shear
stresses.

A more insightful description of the response behaviour of each
laminate, predicted by each UEL model, is given in Figs. 3 to 6 (the
interested reader is suggested to see the coloured version available
online for a more easy and clear interpretation). Particularly, Fig. 3
illustrates the distribution of the transverse displacement along the 𝑥-
axis at 𝑦 = 𝑎∕2, demonstrating that as one moves from the supports
towards the centre, i.e. in the direction of the maximum deflection,

the UEL3 model predicts successively higher transverse displacements
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Table 4
Static analysis results of simply supported CSC and VSC laminates, with 𝑎∕ℎ = 10, under applied bi-sinusoidal transverse load.
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CSC UEL1 −0.671 −0.885 0.590 0.532 0.035 −0.026 0.379 0.082
UEL3 −0.695 −0.908 0.605 0.551 0.036 −0.030 0.379 0.104

VSC1 UEL1 −0.489 −0.749 0.516 0.405 0.031 −0.930 0.291 0.029
UEL3 −0.515 −0.777 0.532 0.427 0.032 −0.962 0.242 0.026

VSC2 UEL1 −0.737 −0.689 0.664 0.460 0.178 −0.053 0.327 0.127
UEL3 −0.760 −0.713 0.679 0.479 0.185 −0.053 0.327 0.127

VSC3 UEL1 −0.514 −0.682 0.616 0.050 0.557 −0.967 0.094 0.456
UEL3 −0.536 −0.705 0.631 0.051 0.577 −1.037 0.073 0.522
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Fig. 3. Distribution of the nondimensionalized transverse displacement �̃� (𝑥, 𝑎∕2) along
the 𝑥-axis of simply supported plates, with 𝑎∕ℎ = 10, under applied bi-sinusoidal load.

compared to the UEL1 model. However, according to Table 4, the max-
imum discrepancy between the models is around 3%, which indicates
that they are in agreement with each other from a practical standpoint.

In addition, Fig. 4 shows the through-thickness distribution of the
nondimensionalized in-plane displacements at the absolute maximum
in-plane location. Likewise, Figs. 5 presents the through-thickness dis-
tribution of nondimensionalized in-plane normal stresses.

Finally, Fig. 6 presents the through-thickness profile of nondimen-
sionalized transverse shear stresses derived from the constitutive equa-
tion, highlighting the major difference between the UEL models. In
fact, the UEL1 model predicts a constant through-thickness distribution
of transverse shear stresses in each layer, which has discontinuities
in adjacent layers and violates the stress free boundary conditions
on the upper and lower surfaces of the plate. On the other hand,
the UEL3 model predicts a quadratic through-thickness distribution
of transverse shear stresses, with vanishing transverse shear on the
upper and lower surfaces of the plate, fulfilling approximately the
interlaminar continuity conditions (even though not being imposed a
priori in the formulation). Thus, comparing the numerical results shown
in Table 4 and Fig. 6, one concludes that depending on the transverse
coordinate, as well as on the laminate, the values predicted by the UEL
models can be very similar or completely distinct. Although not shown,
the discrepancy between the models on the evaluation of transverse
shear stresses can be smoothed by the integration of the equilibrium
equations, which imposes a priori the stress free boundary conditions,
as well as the interlaminar continuity [24,26].

A close examination of Figs. 3 to 6 all together reveals several
differences on the response behaviour of the four laminates. Even
though only the VSC1 reduces the maximum transverse displacement

ith respect to the CSC (Fig. 3), all VSC laminates have a lower
aximum in-plane stress in the 𝑥-direction (Fig. 5) due to the variable

ibre orientations. Furthermore, as shown by the numerical results
hown in Table 4 and Fig. 5, the VSC1 shows the lowest maximum
n-plane stress in the 𝑦-direction as well.

Likewise, Fig. 6 shows that the distribution of transverse shear
7

tresses 𝜎𝑥𝑧 within the VSC2 is analogous to CSC, but with an overall
ower amplitude, which is solely outperformed – in the scene of lower
tresses – by the VSC3. However, for the transverse shear stresses 𝜎𝑦𝑧,
ne concludes from Fig. 6 that the VSC2 shows higher stress levels
hroughout the entire thickness when compared to the CSC, but lower
han the VSC3.

Overall, among the numerical results presented in Table 4 and
igs. 3 to 6, the in-plane stresses and transverse shear stresses predicted
y the higher-order model (UEL3) highlight for its slightly superior
eliability, with respect to the first-order UEL1 model, when the em-
hasis of the analysis is to assess highly accurate descriptions at the
ayer level. Nevertheless, this discrepancy shall be more notorious
s one considers lower side-to-thickness ratios, where the through-
hickness distributions of displacements and stresses are more complex
i.e. non-linear).

.3. Free vibration analysis of VSC plates

The assessment of the present models predictive capabilities in free
ibration analysis of thin (𝑎∕ℎ = 100) and moderately thick (𝑎∕ℎ = 10)

is shown in Tables 5 and 6, considering simply supported and clamped
boundary conditions, respectively. In line with the benchmark solutions
by Akhavan and Ribeiro [10], it is emphasized that only bending modes
are evaluated. Thus, special modes with null transverse displacement,
which emerge among the bending modes for the simply supported
boundary conditions, are excluded.

For thin plates, either simply supported or clamped, the first nine
natural frequencies predicted by the UEL models are in excellent agree-
ment with those reported by Akhavan and Ribeiro [10]. However, for
moderately thick plates, the discrepancy between the UEL3 model and
the Reddy’s TSDT model (ESL) [10] increases slightly. Actually, the
advantages of refined LW descriptions shall be more pronounced as the
side-to-thickness ratio decreases towards the case of thick plates.

Additionally, for both clamped VSC1 and VSC3, the solutions devel-
oped by Viglietti et al. [18] (denoted by CUF) are included in Table 6 as
an advanced structural model to further validate the UEL models with
available benchmarks. As perceived from Table 6, both UEL models
predict natural frequencies in fairly agreement with the CUF based
model. In view of the presented UEL3 results for moderately thick
plates, the highly accurate predictive capabilities of the high-order LW
model in the free vibration analysis are shown through solutions closer
to the LW 1D CUF based model by Viglietti et al. [18] than to the
Reddy’s TSDT model by Akhavan and Ribeiro [10] (throughout all nine
modes of interest).

Moreover, for all laminates and side-to-thickness ratios, the UEL1
model predicts natural frequencies very close to the Reddy’s TSDT
model by Akhavan and Ribeiro [10]. Even though the discrepancy
between the UEL1 model and the refined LW CUF model by Viglietti
et al. [18] is higher, from a purely practical point of view, it is almost
negligible. Therefore, comparing the UEL models, the UEL1 ensures a
better compromise between accuracy and computational effort on the
evaluation of the first natural frequencies of both thin and moderately
thick VSC plates, either simply supported or clamped. Nevertheless,
despite the increased computational cost of the higher-order LW model

(UEL3), its piecewise cubic through-thickness distribution of in-plane
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Fig. 4. Through-thickness distribution of nondimensionalized in-plane displacements �̃� and �̃� of simply supported plates, with 𝑎∕ℎ = 10, under applied bi-sinusoidal load.
Fig. 5. Through-thickness distribution of nondimensionalized in-plane normal stresses �̃�𝑥𝑥 and �̃�𝑦𝑦 of simply supported plates, with 𝑎∕ℎ = 10, under applied bi-sinusoidal load.
Fig. 6. Through-thickness distribution of nondimensionalized transverse shear stresses �̃�𝑥𝑧 and �̃�𝑦𝑧 of simply supported plates, with 𝑎∕ℎ = 10, under applied bi-sinusoidal load.
displacements is crucial for an accurate modelling of the behaviour of
thick multilayered plates (as also shown by the prior comparison with
3D exact solutions for simply supported CSC plates).

A further remark may be noteworthy concerning the comparison of
VSC laminates with respect to the CSC one, especially regarding the
lowest natural frequencies and the mode shapes. For simply supported
plates, the numerical results shown in Table 5 demonstrate that both
VSC1 and VSC3 outperform the CSC in terms of the first three natural
frequencies. On the other hand, for clamped plates, Table 6 reveals
that only the VSC3 has a fundamental frequency higher than the CSC.
Additionally, as apparent in Fig. 7, the variable stiffness provides
noticeable changes on the in-plane mode shapes in comparison to the
case of the conventional straight fibre composites. Hence, a careful
design of the fibre paths, as well as of the lamination scheme, should
properly distribute the stiffness in such fashion that the desired mode
shapes and natural frequencies can be achieved, at least in part.

6. Conclusions

In this work, user-elements in Abaqus are taken a step forward
to render computationally efficient and numerically accurate static
8

and free vibration analysis of VSC laminates, broadening the current
state-of-the-art of refined multilayered UEL models and its available
literature. The two LW user-element models, UEL1 and UEL3, are
implemented using, for each discrete layer, the displacement field of
the FSDT and TSDT, respectively. For the first time available, UEL
models are purposely formulated to deal with the emerging and highly
promising curvilinear fibre composites and a high-order LW descrip-
tion is implemented in the UEL subroutine, making progress on the
high-order modelling of curvilinear fibre composites.

Numerical applications address a comprehensive assessment of the
UEL models predictive capabilities in static and free vibration analysis
of both CSC and VSC laminates. Firstly, the present models are vali-
dated by a comparison with 3D exact static and free vibration solutions
for simply supported CSC plates. It is worth remarking that the obtained
results are in agreement with the 3D exact solutions, for both thin and
moderately thick plates, highlighting the successful implementation of
the UEL models.

Furthermore, the models accuracy assessment in the analysis of VSC
plates is presented for three laminates with linear fibre angle distribu-

tions. Various boundary and loading conditions are assumed, as well as
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Table 5
First nine natural frequencies 𝜔𝑛, in Hz, of thin and moderately thick plates, with 𝑎∕ℎ = 100 and 10, respectively, considering simply supported boundary conditions.

Case 𝑎∕ℎ Model 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9

CSC 100 UEL1 51.58 78.10 137.54 190.76 205.13 227.21 242.13 310.67 344.52
UEL3 51.57 78.09 137.51 190.62 204.98 227.13 241.96 310.46 344.31

10 UEL1 439.35 670.71 1112.04 1199.47 1318.10 1605.03 1671.43 2018.83 2046.06
UEL3 433.90 663.71 1097.87 1167.70 1286.84 1571.71 1645.39 1955.15 2005.64

VSC1 100 TSDT [10] 57.06 93.89 152.85 171.12 211.34 234.70 274.81 340.13 360.06
UEL1 56.78 93.56 152.57 170.80 210.42 232.97 273.22 330.56 354.29
UEL3 56.74 93.49 152.46 170.66 210.21 232.81 272.92 330.28 353.86

10 TSDT [10] 467.07 746.16 1114.23 1165.68 1348.32 1662.97 1735.90 1854.68 2039.23
UEL1 468.66 746.23 1134.28 1164.10 1364.93 1658.07 1752.77 1890.28 2068.69
UEL3 461.60 734.93 1107.02 1146.61 1333.52 1628.47 1713.78 1835.21 2011.24

VSC2 100 TSDT [10] 49.15 80.18 134.57 180.05 203.69 208.08 270.83 279.94 372.74
UEL1 49.14 80.18 134.54 180.05 203.34 207.90 269.93 278.09 363.10
UEL3 49.13 80.16 134.51 179.94 203.26 207.76 269.75 277.96 362.87

10 TSDT [10] 417.05 672.55 1066.99 1133.38 1334.27 1482.87 1763.35 1871.98 1934.38
UEL1 421.25 677.58 1074.66 1159.87 1358.07 1497.96 1778.07 1909.22 1959.67
UEL3 416.49 670.58 1061.40 1130.81 1328.99 1474.46 1770.12 1858.77 1918.45

VSC3 100 TSDT [10] 52.47 85.85 141.07 173.67 203.70 223.11 279.40 288.04 352.78
UEL1 52.26 85.33 140.26 172.75 201.63 221.02 269.91 283.34 343.63
UEL3 52.24 85.30 140.21 172.63 201.49 220.89 265.76 283.17 343.33

10 TSDT [10] 437.14 700.65 1100.69 1123.43 1313.72 1532.03 1775.99 1828.13 1969.63
UEL1 439.74 703.97 1109.85 1146.25 1331.65 1549.74 1774.57 1858.29 2004.07
UEL3 434.30 695.78 1095.57 1118.98 1304.24 1523.05 1744.65 1813.88 1952.67
Table 6
First nine natural frequencies 𝜔𝑛, in Hz, of thin and moderately thick plates, with 𝑎∕ℎ = 100 and 10, respectively, considering clamped boundary conditions.

Case 𝑎∕ℎ Model 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9

CSC 100 UEL1 112.09 140.14 202.21 293.13 297.86 309.49 348.44 418.53 423.52
UEL3 111.99 140.03 202.06 292.53 297.63 308.88 347.83 417.89 423.11

10 UEL1 683.87 930.16 1332.24 1356.35 1486.65 1796.86 1891.07 2094.96 2201.59
UEL3 667.54 912.15 1295.23 1331.49 1449.60 1756.61 1855.72 2034.31 2141.42

VSC1 100 TSDT [10] 92.21 130.75 195.09 237.74 274.85 282.52 339.92 388.90 430.80
CUF [18] 92.90 132.28 198.97 240.46 278.75 291.12 346.60 404.07 444.97
UEL1 92.25 130.76 195.06 237.92 275.02 282.42 339.84 388.42 430.39
UEL3 92.18 130.67 194.92 237.54 274.59 282.18 339.33 388.02 429.77

10 TSDT [10] 613.80 909.08 1232.39 1337.94 1484.89 1797.68 1931.29 1964.59 2151.17
CUF [18] 609.79 903.63 1216.00 1328.41 1469.33 1774.84 1930.15 1931.36 2113.88
UEL1 618.41 910.17 1238.78 1331.47 1489.51 1781.26 1933.09 1968.74 2149.38
UEL3 605.49 893.80 1206.46 1307.55 1454.56 1745.29 1894.10 1912.88 2091.45

VSC2 100 TSDT [10] 106.18 137.34 196.50 270.73 282.59 302.79 361.25 367.76 458.30
UEL1 106.22 137.36 196.51 270.88 282.69 302.90 361.06 367.33 456.57
UEL3 106.14 137.26 196.36 270.53 282.29 302.39 360.50 366.93 455.91

10 TSDT [10] 659.67 906.58 1299.78 1307.38 1521.87 1719.71 1944.31 2024.49 2156.96
UEL1 663.53 908.69 1299.45 1303.73 1518.06 1715.21 1938.98 2001.37 2145.40
UEL3 648.44 892.51 1268.38 1277.49 1483.23 1683.22 1901.90 1945.19 2104.18

VSC3 100 TSDT [10] 113.12 145.18 212.55 268.92 292.32 316.33 362.59 392.59 464.80
CUF [18] 114.32 148.92 223.15 279.60 303.80 332.45 381.32 425.44 507.54
UEL1 113.08 145.09 212.11 268.64 291.91 314.73 356.43 390.04 460.35
UEL3 112.98 144.97 211.91 268.22 291.41 314.27 355.87 389.44 459.64

10 TSDT [10] 681.85 917.02 1304.03 1312.60 1465.90 1714.09 1919.82 1990.01 2000.08
CUF [18] 672.68 909.02 1270.07 1301.02 1441.95 1690.38 1904.58 1943.18 1943.44
UEL1 686.34 920.18 1299.48 1312.40 1463.20 1706.61 1909.70 1968.58 1978.61
UEL3 670.22 902.88 1263.80 1288.50 1430.05 1673.03 1874.52 1927.52 1949.01
the case of thin and moderately thick plates. As a result, the accuracy
of the developed UEL models is demonstrated and discussed using
different benchmarks available in the literature, such as ESL models
(either FSDT or Reddy’s TSDT) and refined LW 1D-CUF models. For the
case of moderately thick plates, the UEL3 model improves the UEL1
on the evaluation of displacements, stresses and natural frequencies.
However, even thought the piecewise cubic model (UEL3) demonstrates
an overall advantage on characterizing the through-thickness response
behaviour, the piecewise linear model (UEL1) ensures a better compro-
mise between accuracy and computational effort, especially when thin
plates are concerned.

Ultimately, the comparison of the different VSC laminates leads to
the conclusion that through a careful design of the curvilinear fibre
paths, one can ensure high global bending stiffness, tackling maximum
deflections and natural frequencies, while locally tailoring the distribu-
tion of stresses and mode shapes. Therefore, refined structural models
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are crucial for an accurate analysis and design of VSC laminates. In
effect, the two LW user-elements in Abaqus here proposed may allow
further ensuing research, namely on design optimization of curvilinear
fibre composites, analysis of variable stiffness sandwich panels, and
even extension of UEL models to buckling and non-linear analysis.
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