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Abstract—Global Navigation Satellite Systems (GNSSs) have
been established as one of the most significant infrastructures
in today’s world and play an important role in many critical
applications. It is known that the power of the GNSS signals
at the receivers’ antenna is extremely weak and the transmitted
signals are vulnerable to interference, which can cause degraded
positioning and timing accuracy or even a complete lack of
position availability. Thus, it is essential for GNSS applications
to detect interference and further recognize the types of it for
the mitigation in GNSS receivers to guarantee reliable solutions.
In this paper, the focus is on the automatic detection and classi-
fication of chirp signals, known as one of the most common and
disruptive interfering signals. The classifier is a Convolutional
Neural Networks (CNN) based on multi-layer neural networks
that operate on the representation of the signals in transformed
domains, Wigner-Ville and Short Time Fourier transforms. The
representation of signals is fed to a CNN algorithm to classify
the different shapes of chirp signals. The proposed method
is performed in two case-study scenarios: the monitoring and
classification by a terrestrial interference monitor and from
a Low-Earth-Orbit (LEO) satellite. The experimental results
demonstrate that the CNN model has a classification accuracy of
93% and can be a suitable approach to classify different shapes
of chirp signals.

Index Terms—GNSS, Interference, Machine Learning, CNN

I. INTRODUCTION

The widespread use of positioning and timing services
based on Global Navigation Satellite Systems (GNSS)
includes several applications for which the availability and
continuity of such services are of paramount importance.
In the presence of Radio Frequency Interference (RFI) on
the GNSS bandwidths, the estimation of position and time
performed by a GNSS receiver is degraded and, in some
cases even totally denied, thus threatening the applications
relying on it. RFI can increase the error of the code
and phase measurements, consequently, the quality of the
constructed pseudoranges [1]. The jamming is usually a
simple interference signal of a proper level which is used to
intentionally transmit signals with a carrier frequency varying
over GNSS bands in a specific area [2]. The existence of
jamming signals affects both acquisition and tracking stages
in the receiver, which leads to the loss of quality of the
GNSS satellite signals [3]. Therefore, The GNSS applications
need to detect interference and further recognize the types
of interference to mitigate in order to acquire high reliability

and prevent a complete lack of positioning.

Various techniques have been proposed to detect RFI
at different stages of receivers such as, Automatic Gain
Control (AGC) monitoring [4] and Time-domain statistical
analysis at Front-end stage [5], Spectral Monitoring and
Carrier to Noise power density ratio (C/N0) Monitoring at
the Post-Correlation stage [6]. A successful detection of the
threat is rather easy to be obtained since the ultimate goal
of jammers is the service denial. However, in presence of
jammers if an effective countermeasure has to be applied,
it is necessary to estimate the jammer’s features in terms
of time and frequency behaviour, and not only in terms
of an on-off presence. This is a typical classification task,
that, thanks to the increased computational capabilities
of the receiver, can be performed by means of Machine
Learning (ML) techniques. The objective of ML algorithm
is to automatically extract the most appropriate set of
features to build a model that could achieve the desired goal
in classification of the jamming signal with high precision [7].

Recently, many works have addressed using ML to detect
and classify RFI, working on the time series of digital
samples obtained at the output of the receiver front-end. For
GPS interference signals [8], the authors implemented the
fast independent component analysis method to extract the
interference characteristic factors in the frequency domain,
time domain, and time-frequency domain and they performed
a new algorithm based on a Support Vector Machine (SVM).
Similarly in [9], a methodology to classify jammer types
was proposed by using two different ML algorithms: SVM
and CNN on the set of generated images of time-frequency
analysis. According to the conclusion in the classification of
the interference and interference-free scenario, it is stated
that with a small set of images and not excessively complex
parameters, a high accuracy result is obtained. In addition,
[10] presents some applications in GNSS that use ML to
provide the new solution or new services, and it also showed
among the all ML methods, using Neural Network methods
offer the best results.

This paper proposes a method for automatic and accurate
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detection of chirp signals based on Convolutional Neural
Networks (CNN). The idea is to create an image dataset
of images of the signals and feed it into CNN as input in
order to detect and classify different types of interference. The
effectiveness of the proposed method is demonstrated in two
case-study scenarios: the monitoring and classification by a
terrestrial interference monitor, and from a Low-Earth-Orbit
(LEO) satellite.

II. METHODOLOGY

Intentional interference by jammers disrupts GNSS service
in a given area of operations and may make the GNSS
receivers inoperable. Chirp signals behave differently in
terms of time and frequency characteristics, and appropriate
analysis of time-frequency domains allow to detect and
classify different types of disturbing signals. The time-
frequency distributions of a signal can be represented using
a variety of approaches such as spectrogram, Wigner-Ville
Transform (WVT), or Wavelet transform. In this paper, the
spectrogram and WVT have been used to analyze the signal,
and since the representation of signals in the time-frequency
domain using these two transforms can be stored as images,
the proposed method to classify different shapes of chirp
signals is image classification.

There are many techniques to perform image classifications.
Some of the most common methods are studied to find the
best-matched technique according to the desired target,
such as CNN, Transfer Learning and SVM. A CNN-based
method is considered to achieve a more accurate result
in image classification by referring to a study on different
introduced techniques [11] [12]. A CNN is a multilayer neural
network proposed to identify visual patterns from images
represented by pixels with the least pre-processing [13]. The
main advantages of using CNN are that pre-trained weights
can be shared among different methods, the simplification
of computation without losing important data. Finally, it is
important to mention that it does not require feature extraction
manually, and it’s done by the convolution and pooling layers
[12].

A general scheme of the methodology is depicted in Figure
1, where the input signals are downconverted to the Interme-
diate Frequency (IF) and further digitized. Then the transfor-
mation is applied to IF digital samples and the representation
as an image is used to create image dataset. In the final step,
a CNN classifier is implemented for the classification of chirp
signals.

A. Short-Time Fourier Transform

Since the frequency of chirp signals change over time, it
needs techniques to translates the time-amplitude represen-
tation of a signal to a time-frequency representation. Short
Time Fourier Transform (STFT) comes to overcome the poor
time resolution of the Fourier transform. According to STFT,
considering some portion of the non-stationary signal as

Fig. 1. Diagram explaining the methodology of the research

stationary makes it possible to take the window function of
fixed length and move it along the signal [14]. Comparing to
Fourier transform in terms of mathematics, formulation looks
as follow:

F (ω) =

∫ ∞

−∞
f(t)e−iωtdt (1a)

F (τ, ω) =

∫ ∞

−∞
f(t)w(t− τ)e−iωtdt (1b)

where τ is translation parameter and w(t − τ) represents
the window function. The only difference with respect to
Fourier Transform is the window function where the signal is
smoothed. The spectrogram is a representation of the signal’s
power spectral density which is derived from the squared
magnitude of the STFT [15].

B. Wigner-Ville Transform

Basically, there are two approaches to time-frequency
analyses, Linear approaches and Quadratic methods. Linear
approaches include the Wavelet, Gabor and Zak transform,
whereas Quadratic methods cover time-frequency distributions
such as the Wigner distribution, smoothed versions of the
Wigner distribution and the ambiguity function. Wigner-Ville
Transform (WVT) is a time-frequency representation of the
signal and a helpful tool to analyze non-stationary signals.
The basic idea of this method is to develop a joint function
of time and frequency [16].

From theoretical and application points of view, the
Wigner-Ville Distribution (WVD) plays a major role in the
time-frequency signal analysis for the following reasons.
First, it provides a high-resolution representation in both
time and frequency for non-stationary signals. Second, it has
the special properties of satisfying the time and frequency
marginals in terms of the instantaneous power in time, energy
spectrum in frequency, and total energy of the signal in the
time and frequency plane [17].

WVT essentially computes the Fourier transform of the so-
called Auto-correlation FAAunction (AF) [AF (τ) = x(t +
τ/2)x∗(t − τ/2)] which is a general representation of the
signal’s autocorrelation function. The WVT does not suffer
from leakage effects as the STFT does and hence, gives the
best spectral resolution [18]. There are several presentations in
literature for the Discrete Wigner-Ville Transform (DWVT),



the general form (WVx[n,m]) can be written as equation 2
[19] for a signal x[t] where it is sampled by N number.

WVx[n,m] =

N∑
k=−N

x

[
n+

k

2

]
x∗

[
n− k

2

]
e−2πikm/N (2)

where x∗ denotes the conjugate of x, n and m denote the
index numbers for the time and frequency vectors, respectively.

In order to avoid the cross-terms effect in quadratic form,
smoothed pseudo Wigner distribution [20] is used to analyse
the signal which uses independent windows to smooth in time
and frequency and its formulation is as follow:

WVx[n,m] =

N∑
k=−N

g(n)h(m)x

[
n+

k

2

]
x∗

[
n− k

2

]
e−2πikm/N

(3)
where h(m) represents the lag window function, and g(n)
represents the time smooth window function. The length of
the signal is used to choose the lengths of Kaiser windows
that are used for smoothing in time and frequency.

C. Common jamming signals
The chirp signals are known as one of the most common

disruptive or interfering signals with the power to disassemble
or block a specific portion of the GNSS signal band and disrupt
receiver operations. Chirp is a signal in which its frequency
varies with respect to the time; thus, the frequency increment
or decrement is known as Up-chirp or Low-chirp, respectively.
This type of signal is known as the swept frequency signal. The
swept-frequency jammers are distinguished by their ability to
generate overwhelming signals with carrier frequencies that
vary over GNSS signal bands [21]. According to the survey
in [22], chirp signal characteristics can classify in terms of
shape, sweep range, sweep rate, and power. Figure 2 shows
different types of chirp signals.

Fig. 2. Chirp Signal Classifications

Table I shows the bandwidth of each chirp signal used in
this research, and Figure 3 illustrates the spectrogram of 11
common chirp types and hence most likely that the receiver
will encounter.

TABLE I
BANDWIDTH OF CHIRP SIGNALS

Chirp Name Bandwidth
Wide sweep 16 MHz

narrow sweep 5 MHz
Triangular wave 14 MHz

Triangular 16 MHz
Sawtooth 12 MHz

Hooked sawtooth 14 MHz
Tick 16 MHz

Multi tone 3 MHz

Fig. 3. Spectrogram of 11 common chirp types

D. Convolutional Neural Networks

A Neural Network (NN) is a network of artificial neurons
that reflect the way the human brain operates, and many
neurons shape a real NN in different layers. NN is made
up of several nodes distributed in various layers, and each
node implements an instruction called algorithms that guides
the machine in identifying patterns in the dataset and solving
common problems [23]. What has made NN so famous and
influential is CNN: the name comes from after the convolu-
tional operator from the filtering domain. With a linear and
timing-variant filter, CNN can filter the input vector extracted
from signals, images, and other possible types of data. The
CNN becomes powerful in solving different problems by
implementing three important concepts [24] as follows:

• Local Receptive Fields: This concept explains using of
a new design in such a way that each neuron in the
next layer is connected to a subset of the outputs of the



previous layer, instead of using a fully connected neural
network. It is rather evident that the number of parameters
are extremely decreased.

• Shared weights/biases: this concept implies that all
weights and biases in each window of neurons are the
same, and consequently, the number of parameters is
reduced.

• Pooling Layers: A pooling layer is essentially a down-
sampling layer and reduces the data dimensions by com-
bining the outputs of neuron clusters at one layer into a
single neuron in the next layer.

III. RESULT

There are many models of CNN to perform the image
classification including, AlexNet [25], GoogleNet [26],
SqueezeNet [27]. The performance of these 3 networks is
evaluated in terms of the speed of training samples and the
accuracy of the classification model. The evaluation of these 3
classifier for the same image dataset (detection of interference
on the ground) represent that although the accuracy is almost
the same for all three of them, AlexNet is faster compared
to the other introduced pre-trained architectures regarding the
speed of the training process. The reason is that AlexNet
has eight layers of depth with respect to SqueezNet and
GoogleNet, which have 18 and 22 layers of depth, respectively.

Alex Krizhevsky primarily designed AlexNet CNN. The
input to AlexNet can be a RGB image of size 227×227 pixel
that implies all images in the train and test set need to be of
size 227×227 pixel. All the images used in this experience
are resized to the desired size. In addition, by using a filter,
all the input images are changed to grayscale mode. AlexNet
comprises 5 convolutional layers and 3 fully connected layers,
3 max-pooling layers, 2 normalization layers, and 1 softmax
layer. AlexNet has in total about 60 million parameters and
the best initial hyperparameters and configurations derived by
a grid search is described in table II.

TABLE II
INITIAL HYPERPARAMETERS AND CONFIGURATION OF ALEXNET

Parameter Value
Minimization Algorithm Stochastic Gradient Descent Momentum
Initial Learning Rate (λ) 0.001
Batch size 64
Input Image Size 227 x 227
Weight Learn Rate Factor 20
Bias Learn Rate Factor 20
Maximum Number of Epoch 5

The image datasets obtained by transformation are divided
into three parts, 70% is used to train the model of CNN, 10%
of data is utilized for tuning the parameters of the model
(validation dataset) while 20% is dedicated to the evaluation
of the model (test dataset). The CNN is trained during five
epochs using the Stochastic Gradient Descent Momentum
(SGDM) algorithm, which means the all images in the training
dataset is passed through the neural network five times both

in forward and back-propagation to find the optimal values of
the network’s parameters. The last step is to assess the trained
network, and the evaluation phase provides a performance
metric of the trained model on unobserved data. For the
evaluation phase of the model, test data is utilized in order to
create the confusion matrix. The confusion matrix determines
the accuracy of a classification model in the way of how
well it predicts the correct and incorrect class for the test data.

The proposed methodology is performed for two different
scenarios, detection and classification of interference on the
ground and from the space. Each of them is analyzed and
simulated using Matlab, and their results are explained as
follows.

A. Detection and Classification Interference from the Space

Recent works started to address the idea to monitor the
presence of GNSS interference from space [28]. The objective
of the GINKO-S project [29] is to perform continuous
monitoring of the interference in GNSS navigation bands in
low earth orbit on a regional/global scale. The architecture
of this monitoring system is basically composed of a NADIR
antenna, a Radio Front-End (RFE), and a software processing
unit. The NADIR antenna is pointed toward the earth’s
surface in order to grab possible interference generated on the
ground. The RFE is in charge of converting the signal from
analog to digital; it first amplifies and filters the analog signal;
then, it downconverts the Radio Frequency (RF) signal to an
intermediate frequency in order to allow digital conversion.
Due to on-board processing limitations, raw samples of
interfering received signals are transferred to the ground
station, and the classification algorithms are implemented in
the ground processor.

Three possible RFE bandwidths (BIF ) of 5, 10, and 20
MHz are evaluated, and the sampling frequency is set to
fs = 2.2 · BIF Msamples/s to provide for some margin
against the Nyquist frequency. Moreover, the interference
signal is embedded in White Gaussian Noise (WGN), where
the thermal noise variance over the GINKO bandwidth BIF

has been accounted in the margin as well: σ2
IF = N0BIF

where N0 is noise power spectral density estimated to
be N0 = −205 dBW/Hz. In addition, the power of the
interference signal received at the LEO satellite is estimated
to be in the range between -144 dBW up to -125 dBW.

As explained, in this scenario 3 different datasets of inter-
ference signals are simulated considering the RFE bandwidth
BF = 5, 10, 20 MHz. The spectrogram and WVT of all the
signals are calculated and the output are stored as images
in order to create of image datasets. Therefore in total, 6
image datasets are created and each of them consists of 11,000
images (1000 for each class). The CNN model is implemented
for each image dataset and the Table III shows their training
and test set accuracies.



TABLE III
ACCURACY OF THE MODEL WITH DIFFERENT DATASETS

Bandwidth Transform Training Accuracy Test Accuracy
5 MHz STFT 82.82 % 80.18 %

10 MHz STFT 91.9 % 89.31 %
20 MHz STFT 95.82 % 95.45 %
5 MHz WV 81.06 % 83.70 %

10 MHz WV 90.91 % 88.74 %
20 MHz WV 92.73 % 92.95 %

Table III shows that high accuracy is acquired when
the chosen RFE bandwidth is higher because all the entire
bandwidth of the chirp signal enter into the RFE, but
on the other hand by increasing bandwidth, the sampling
frequency is increased, which leads to taking more the time
for calculation of the STFT and WVT. The obtained result
for both transforms STFT and WVT have almost the same
accuracy, but the calculation time of WVT is about 5 times
more than STFT. Figure 4 illustrate the confusion matrix of
CNN classifier for the RFE bandwidth of 20MHz using STFT
analysis.

Fig. 4. Confusion Matrix of CNN for bandwidth of 20 MHz

Due to the fact that there are many convolutional layers,
including lots of parameters such as weights and biases,
the increment of computational time and complexity in the
analysis of data is expected. As the next point, the CNN
technique has a high accuracy in image classification which
is the target of this work.

The main privilege of using CNN over the statistical
approach is feature selection done by convolutional layers.
Due to the redundant attributes and a large amount of input
data in original data sets, feature selection is an important
technique for improving neural network performance which
uses several convolutional layers to detect the most significant
features.

B. Detection and Classification of Interference on the Ground

In this scenario, GNSS signals are simulated using N-
FUELS (FULL Educational Library of Signals for Navigation)
[30], which is a signal/disturbances generator, implemented
as a set of non-real-time Matlab scripts able to simulate
the samples of a GNSS signal as seen by the receiver after
the Analog to Digital (A/D) conversion. The simulated
GNSS signals belong to the GPS constellation and L1 band
(1575.42 MHz). Then, totally eight different shapes of chirp
signals are generated where their sampling frequency and
duration are 40 MHz and 100µs, respectively (the same as
the GNSS signal). Despite the different chirp signal shapes,
chirp signals’ power is amplified from -142 dBW up to -107
dBW, representing medium and strong power. The sweep
rate of linear wide-band signal can vary from 2 up to 16
chirp repetitions in 100 microseconds and in the simulation,
the case of ten chirp repetitions in 100 microseconds is only
considered to have a normal distribution in terms of the
number of signals in each class.

Figure 5 illustrates the confusion matrix of the test dataset.
It represents that the CNN method for classification has an
overall accuracy of 93.46%. The CNN is also able to predict
the existence and detect the shape of the chirp signal within
the GNSS signal with an accuracy of 92.65%.

Fig. 5. Confusion Matrix of CNN Algorithm

IV. CONCLUSION

This work performed a full-field analysis method, where
CNN classifier is developed in order to identify and classify
the chirp interference based on the analysis of the spectrum
of the signal. Hence, in this scenario, the datasets included
spectrum images. Based on the different studies, the CNN
method reportedly has a good performance in image
classification problems. This seems to be matched with our



result of applying this algorithm to the dataset.
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