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Abstract 

 

Climate change is one of the greatest global challenges of our time, and its impacts 
have already been studied in a variety of research fields. Given that the building 
sector accounts for a considerable amount of worldwide energy consumption and it 
is the primary source of greenhouse gas emissions, its contribution to climate 
change is evident. Therefore, the crucial role of building energy performance in 
climate change mitigation is a primary concern of a large and growing body of 
literature. However, buildings are not merely the cause of climate change. Due to 
their long lifespans, they are also adversely affected by it in numerous ways, 
demonstrating the importance of fostering their adaption capacity and climate 
resilience. Up to now, less attention has been paid to the built environment’s climate 

resilience and adaptation compared to its role in mitigating climate change. In 
addition, there is far too little research on analysing the Italian building stock toward 
this issue, and there is a need to perform quantitative analyses, particularly on a 
regional scale. Accordingly, this research attempts to analyse buildings’ energy 
performance, optimization, and thermal comfort in a changing climate (long-term 
assessment) within a regional scale for Italian building stock. Several adaptation 
strategies regarding the building’s condition and resilient cooling solutions are 

studied and comparatively analysed to measure their effect on buildings’ energy 

performance and thermal comfort. To this aim, as a first step, future weather data 
generation methods are studied considering representative concentration pathway 
(RCP) 4.5 and 8.5 (W/m2 ) scenarios introduced by the fifth assessment report of 
the Intergovernmental Panel on Climate Change. The reliability of these future 
weather data is assessed, and a weather data set is created for which the systemic 
errors and biases are also adjusted. Followingly, a preliminary analysis is carried 



 

 

 

 

 

out to draw a clearer picture of the effects of climate change on the Italian built 
environment for typical and Nearly Zero Energy Buildings (NZEBs). Advanced 
solar shading/advanced glazing, cool envelop materials (CEMs), and ventilative 
cooling are the resilient cooling solutions that have been assessed. The results 
suggest that, depending on the building's condition, mechanical ventilative cooling 
and ultra-selective double-glazed windows have the greatest impact on reducing the 
effects of climate change. It has been discovered the combination of these solutions 
could help keep the trade-offs of energy efficiency. Finally, a global sensitivity 
analysis is performed to discover the contribution of variances of parameters 
regarding specific resilient cooling technologies and building conditions to 
variances of particular key performance indicators representing energy 
performance and thermal comfort of buildings. This sensitivity analysis is applied 
to a representative building in the climate zone of Rome -using the created future 
weather data- and has been performed for three time periods (2010s, 2050s, and 
2090s). In brief, the results demonstrated the changes in the built environment 
energy performance and thermal comfort pattern. For the Italian residential building 
stock, the annual thermal energy need for space cooling will dramatically increase 
(up to 55%) while the annual thermal energy need for space heating will moderately 
decrease. Moreover, the risk of overheating increases significantly (up to 155%). 
Accordingly, annual electrical energy consumption (from the grid) for cooling and 
ventilation rises up to 70%. Such changes are highly dependent on the building 
typology and its state of refurbishment. It is seen that even the NZEBs do not meet 
the requirements in the future. In addition, the significant contribution of buildings’ 

condition (level of insulation) and their typology is revealed to foster buildings’ 

climate resilience and adaptation capacity. 
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1. Introduction 

1.1 Motivations 

Recently, the issue of climate change and its associated impacts has received 
considerable attention in a wide range of disciplines. According to the fifth 
Assessment Report (AR5) of the Intergovernmental Panel on Climate Change 
(IPCC), if the emissions continue to rise, the global average temperature will be 
2.6-4.8 degrees Celsius higher than the present by the end of the 21st century. 
Limiting this temperature rise is necessary for combating the worst and most serious 
impacts. Accordingly, the world members of the UN Framework Convention on 
Climate Change (UNFCCC) in 2010 agreed on limiting the temperature rise to a 
maximum of 2 °C above pre-industrial levels and considering the reduction of this 
maximum value to 1.5 °C in the near future. However, in the latest report of the 
Intergovernmental Panel on Climate Change (AR6), it is shown that despite the 
implementation of nationally determined contributions (NDCs), global greenhouse 
gas (GHG) emissions in 2030 are very likely to cause temperature rise more than 
1.5 °C limit during the twenty-first century. Even supposing the immediate stop of 
the greenhouse gas emissions, the temperature increase will endure as a result of 
already present greenhouse gases in the atmosphere (IPCC, 2021).  

This result comes from the provision of detailed projection scenarios performed by 
IPCC through analysing human activities' influence based on historic data. In more 
detail, historical cumulative carbon dioxide (CO2) emissions recorded between 
1850-2019 have been confirmed to cause an increase in global surface temperature, 
and based on these data, illustrative emissions scenarios for three 20-year time 
periods have been analysed to predict the changes in global surface temperature for 
near term (2021-2040), mid-term (2041-2060) and long-term (2081-2100). IPCC 
defines emission scenario as “a plausible representation of the future development 

of emissions of substances that are radiatively active (e.g., greenhouse gases 
(GHGs) or aerosols that absorb incoming solar radiation or outgoing infrared 
radiation), plus human-induced land cover changes that can be radiatively active 
via albedo changes, based on a coherent and internally consistent set of assumptions 
about driving forces (such as demographic and socio-economic development, 



 

 

 

 

2 

 

technological change, energy, and land use) and their key relationships” (IPCC: 
Mitigation of climate change, 2014; Oxford, 2007). These emissions scenarios help 
to predict the possible future climate in a scientific way. While these scenarios were 
also presented in the fifth assessment report of IPCC (IPCC: Mitigation of climate 
change, 2014), the sixth report considers a broader range of greenhouse gas (GHG), 
land use, and air pollutants.  

The fifth assessment report introduced the representative concentration pathways 
(RCPs), according to which four different emissions and atmospheric composition 
pathways (2.6, 4.5, 6.0, and 8.5 W/m2) were analysed. Each RCP projection is based 
on a set of economic, technological, and land-use assumptions besides many 
relevant mitigation scenarios in a way that the foreseen future is a function of 
actions referring to limiting greenhouse gas emissions. In addition, the RCPs are 
based on different pathways of radiative forcing as the effective change in the 
amount of solar energy received per second of sunlight per square meter of land 
(W/m2). This quantity is a function of the concentration of greenhouse gases (e.g., 
CO2, CH4, N2O), clouds, aerosols such as sulphate aerosols that reflect incoming 
sunlight, and changes to the land surface that alters its albedo or reflectivity. “In 

essence, radiative forcing is a measure of the increase in heating of the Earth’s 

surface due to changes in the atmosphere or to the Earth’s surface” (IPCC: 
Mitigation of climate change, 2014). As an example, for RCP8.5, which is the 
worst-case climate change scenario, the amount of radiative forcing that exceeds by 
2100 equals 8.5 W/m2. This scenario assumes a ‘business-as-usual’ in the years to 

come. According to this RCP, the concentrations of CO2 in the atmosphere will 
become three to four times higher than pre-industrial levels. On the other hand, the 
aggressive mitigation scenario (RCP 2.6) is the best-case scenario, according to 
which the emissions will be halved by 2050, and the temperature is not likely to 
exceed 2 ° C more. As explained earlier, for this scenario, a 2.6 W/m2 of radiative 
forcing is expected to be stabilized at around or after 2100. The following figure 
represents all four RCPs and their associated and predicted impacts on temperature 
rise. 
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Figure 1: The four RCP (Representative Concentration Pathway) scenarios each project a 
certain amount of carbon to be emitted by 2100 - adapted from IPCC AR5 (Symon, 2013) 

Afterward, the concept of Shared Socio-Economic Pathways (SSPs) was introduced 
by IPCC, and it has been applied in the sixth assessment report. The most significant 
difference in this new set of scenarios lies in consideration of mitigation and 
adaptation policies and socio-economic challenges within the framework. Shared 
Socio-Economic Pathways are categorized as sustainability (SSP1), middle-of-the-
road development (SSP2), regional rivalry (SSP3), inequality (SSP4), and fossil-
fuelled development (SSP5) (IPCC, 2021).  

In addition, like the previous case of RCPs, for each SSP, the associated radiative 
forcing is specified following the assigned number representing the order of 
scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Both the 
historical increases and the projected future of global surface temperature since 
1850–1900 as a function of cumulative CO₂ emissions (Gt CO₂) for each of the five 

SSPs are presented in figure 2. As can be seen, the historical global warming is 
represented with the grey colour in the figure, and the global surface temperature 
projections are shown with different colours referring to each illustrative scenario 
line. The median estimate is represented as the central lines, and uncertainty ranges 
are shown as shaded areas.  
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Figure 2: Global surface temperature increase since 1850–1900 (OC) as a function of 

cumulative CO₂ emissions (GtCO₂) – adopted from (IPCC, 2021) 

The results show that even if the adaptation/mitigation requirements of SSP1-1.9 
are met, until at least 2100, the temperature is likely to remain high above the last 
decade (IPCC, 2021). In addition, regardless of the scenario, until at least the mid-
century, the global surface temperature is very likely to continue increasing, and it 
might exceed 1.5 °C and 2 °C during the 21st century unless a huge cut in 
greenhouse gas emissions is seen in the coming years and decades (IPCC, 2021). 

The largest driver of climate change is the emission of greenhouse gases, of which 
more than 90% are carbon dioxide (CO2) and methane. Considering that the 
building sector contributes to 32% of global energy consumption − as the main 

driver of GHG emissions − its impact on intensifying climate change is undeniable 

(Lucon et al., 2014). Accordingly, buildings can play a crucial role in the mitigation 
of climate change. Furthermore, buildings are not only responsible for climate 
change. Likewise, they are extremely affected by it in several ways considering 
their long-life span, and they need adaptation solutions as well. The negative 
impacts of global warming on buildings include both chronic stresses in the form 
of daily pressure -such as changes in the building energy consumption patterns- and 
acute shocks, such as a significant increase in the frequencies of extreme weather 
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events. Considering the latter, recent studies reveal that climate change has doubled 
the probability of the European heatwaves and longer heatwaves are more than 90% 
definite as the climate pattern has been disrupted (Symon, 2013). Heatwave is 
defined as a singular microclimate condition with temperatures over a specific 
percentile and characterized by more than three consequent hot days. This event is 
associated with drastic physiological impacts on human health. For instance, the 
August 2003 heatwave contributed to around 45,000 excess deaths across 12 
European countries (Zuo et al., 2015). Some other impacts are the changes in 
building energy performance, thermal comfort conditions, and grid interactions 
(Chai et al., 2019).  

The impacts of climate change on buildings − as mentioned earlier − do not only 
refer to acute shocks like heatwaves. These impacts also include long-term chronic 
stresses. Among all these impacts, one of the major challenges caused by climate 
change is building overheating, which leads to a significant rise in cooling energy 
consumption and, therefore, in energy shortage. The existing body of research on 
this issue is analysed in detail in section 1.3. Currently, countries worldwide have 
put in place policies and strategies to reduce the energy consumption of buildings 
in order to promote reductions of greenhouse gas emissions and energy utilization. 
It is possible to optimize building energy performance by using advanced 
technologies and energy retrofitting systems. Since 2007, the European Union (EU) 
has implemented a strict strategy aimed at lowering energy use and increasing 
global/overall energy savings. The Energy and Climate Policy Framework for 2030 
(European Commission, 2014) sets forth ambitious EU commitments to reduce 
greenhouse gas emissions by at least 40% compared to 1990, to increase the share 
of renewable energy in final consumption, to increase the amount of renewable 
energy used in final consumption, to enhance energy efficiency, and to improve 
energy security, competitiveness, and sustainability. However, climate change 
would impact the functionality and habitability of buildings - as discussed above - 
and this effect will, in turn, cause the misuse of resource consumption. This effect 
needs to be adequately understood. The lack of such an understanding tarnished the 
existing energy efficiency and sustainability criteria. That’s where the resilience 
concept comes into play, and climate resilience here refers to the process of not 
only mitigation measures to support sustainable development and reduce the 
building's contribution to emissions but also adaptation scenarios in a way that 
future risks are taken into account. The present study informs these challenges and 
tries to investigate the climate resilience of buildings considering the impacts of 
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climate change on the built environment. In the following subsections of this 
chapter, initially, an overview of the definitions of resilience is given, then a review 
of literature is performed on the resilience of buildings to the impacts of climate 
change, and finally, the research questions and aims are presented. 

1.2 Literature review on the concept of resilience related to 
building performance  

We live in a world of increasing uncertainty and unpredictability coming from 
climate events, economic crises, demographic shocks, social inequity, and above 
all, climate change, which is responsible for intensifying lots of environmental 
threads. The existing state of flux and uncertainty resulted in the publicity and 
promotion of the resilience concept as a useful framework that can create tools to 
overcome future challenges. “It appears that resilience is replacing sustainability in 
everyday discourses in much the same way as the environment has been subsumed 
in the hegemonic imperatives of climate change” (Davoudi et al., 2012).  

Among a wide range of academic disciplines − which currently adopt resilience 
thinking in their research − ecologists were the first to mainstream the concept. In 
1973, in his seminal publication, C.S. Holling defined resilience as the capacity of 
a system to return to normality following a shock (Holling, 1973). According to this 
primitive definition, a system becomes more resilience in two ways, first by 
reducing the magnitude of the disturbance and second by enhancing the adaptive 
capacity in a way that the disturbance is absorbed before the system changes its 
structure (Holling, 1996). Later on, the concept started to become popular in other 
disciplines, including and not limited to engineering, psychology, social sciences, 
planning, etc. Accordingly, the definitions of resilience started to develop and vary 
based on the academic discipline.  

The challenges driven by climate change made the resilience concept a central tool 
for fulfilling sustainable development goals (SDGs). Ensuring the sustainability and 
reliability of energy resources (goal 7), fostering the resilience of cities (goal 11), 
and especially, the urgent need to combat climate change impacts (goal 13) are 
some efforts to establish the importance of resilience thinking for future 
development. In addition to the necessity of mainstreaming the resilience concept, 
it is also suggested that the issue is urgent to be implemented. Limiting warming to 
less than 2 °C would thus require a rapid acceleration of mitigation efforts and 
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resilient solutions. Resilience here is defined as the “capacity of interconnected 

social, economic, and ecological systems to cope with a hazardous event, trend or 
disturbance, responding or reorganising in ways that maintain their essential 
function, identity and structure” (IPCC_AR6_WGIII, 2021). In addition, more 
specific definitions are also existing in the literature on the concept of climate-
resilient development which is “the process of implementing greenhouse gas 

mitigation and adaptation measures to support sustainable development for all” 

(IPCC, 2021). Based on this definition, to mitigate the climate change impacts and 
to enhance resilience against them, it is necessary to maintain the adaptation 
capacity, reduce the exposure and vulnerability to the adverse effects, find 
innovative solutions and facilitate system transformations when needed.  

To investigate the climate resilience of buildings to future uncertainties, it is 
necessary to further clarify the relevant definition of the term resilience and other 
related concepts in the field. In the relevant literature, the resilience of buildings 
against climate change impacts is usually defined based on abrupt climate events 
like heatwaves. This association is because building resilience usually refers to the 
capacity to cope with abrupt shocks or hazards. “Hazard is the potential occurrence 

of a natural or human-induced physical event or trend that may cause loss of life, 
injury, or other health impacts, as well as damage and loss to property, 
infrastructure, livelihoods, service provision, ecosystems, and environmental 
resources” (IPCC, 2021). This focus on heatwaves as climate hazards is essential 
since climate change is expected to increase the frequency and intensity of 
heatwaves, and it is necessary to make the existing and future buildings adaptable 
and resilient. In this context, resilience is defined as the capacity of systems 
(buildings, in this study) to withstand shocks (e.g., heatwaves), absorb the impacts, 
rapidly recover from them, and mitigate similar future scenarios (Chaudry et al., 
2011; Keogh & Cody, 2012; Overbye et al., 2013; Skea, J. & Ekins, 2009).  

Nevertheless, built environment climate resilience cannot be limited to capacity 
building against heatwaves and other abrupt events. It is also necessary to consider 
the chronic pressures caused by climate change impacts and investigate possible 
mitigation/adaptation scenarios. As an example, a substantial body of literature on 
climate change impacts demonstrates great changes in heating and cooling demands 
of buildings (Keogh & Cody, 2012; Wan et al., 2012) that are projected to be more 
challenging in hot summer and mild winter regions, when cooling demands are 
more critical (Li et al., 2012; Wan et al., 2012). If this increased demand for thermal 
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comfort is not addressed, it can have a negative impact on health, sleep quality, and 
job productivity, disproportionately affecting vulnerable groups and worsening 
energy poverty (Sun et al., 2020). In addition, “Closing the adaptation gap requires 

moving beyond short-term planning and ensuring timely and adequate 
implementation” (IPCC, 2022).  

In case of either abrupt shocks -such as heatwaves- or chronic stresses -such as 
increased electricity demand- it is necessary to reduce the vulnerability of the 
buildings to make them more resilient. “Vulnerability is the propensity or 

predisposition to be adversely affected. Vulnerability encompasses a variety of 
concepts and elements, including sensitivity or susceptibility to harm and lack of 
capacity to cope and adapt” (IPCC, 2022). Thus, vulnerability is always associated 
with a coping capacity that is composed of exposure to drivers of change and 
adaption potential against the relevant challenges. Reducing exposure and thus 
reducing vulnerability is possible by removing the drivers of the unwanted changes 
or putting the desired system in places and settings where it is not adversely 
affected. Adaptation, in the case of this study, is “the process of adjustment to actual 

or expected climate and its effects.” In addition to these two factors, A resilient 
pathway also considers the mitigation opportunity, which -in the case of climate 
change- is defined as “a human intervention to reduce the sources or enhance the 

sinks of greenhouse gases” (IPCC, 2022). The following table summarizes the 
terms which have been explained above and will be used in this study. 

 

Table 1: Definitions of the term resilience and other correlated concepts  

Theme Definition Reference 

 

 

 

Adaptation 

“Adaptation: The process of adjustment to 
actual or expected climate and its effects. In 
human systems, adaptation seeks to moderate 
or avoid harm or exploit beneficial 
opportunities. In some natural systems, 
human intervention may facilitate adjustment 
to expected climate and its effects. {WGII, 
III}” 

(IPCC, 2021)(IPCC: 
Mitigation of climate 
change, 2014), (IPCC: 
Mitigation of climate 
change, 2014) 
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“Adaptive capacity: The ability of systems, 
institutions, humans, and other organisms to 
adjust to potential damage, to take advantage 
of opportunities, or to respond to 
consequences {WGII, III}” 

(IPCC, 2013),  

(IPCC: Mitigation of 
climate change, 2014) 

 

 

 

Disaster 

“Disaster: Severe alterations in the normal 
functioning of a community or a society due 
to hazardous physical events interacting with 
vulnerable social conditions, leading to 
widespread adverse human, material, 
economic or environmental effects that 
require immediate emergency response to 
satisfy critical human needs and that may 
require external support for recovery. 
{WGII}” 

(IPCC, 2013) 

(IPCC, 2022) 

 

“Hazard: The potential occurrence of a 
natural or human-induced physical event or 
trend or physical impact that may cause loss 
of life, injury, or other health impacts, as well 
as damage and loss to property, 
infrastructure, livelihoods, service provision, 
ecosystems, and environmental resources. In 
this report, the term hazard usually refers to 
climate-related physical events or trends or 
their physical impacts. {WGII}” 

(IPCC, 2013), (IPCC: 
Global and Sectoral 
Aspects, 2014) 

(IPCC, 2022) 

 

 

Exposure 

“The presence of people, livelihoods, species 
or ecosystems, environmental functions, 
services, and resources, infrastructure, or 
economic, social, or cultural assets in places 
and settings that could be adversely affected. 
{WGII}” 

(IPCC, 2013), (IPCC: 
Global and Sectoral 
Aspects, 2014) (IPCC, 
2022) 

 

 

Global 
warming 

“Global warming refers to the gradual 
increase, observed or projected, in global 
surface temperature, as one of the 

(IPCC, 2013), (IPCC: 
Mitigation of climate 
change, 2014) (IPCC, 
2022) 
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consequences of radiative forcing caused by 
anthropogenic emissions. {WGIII}”  

 

Mitigation 

 

“Mitigation (of climate change) A human 
intervention to reduce the sources or enhance 
the sinks of greenhouse gases (GHGs).” 

(IPCC, 2013), (IPCC: 
Mitigation of climate 
change, 2014) (IPCC, 
2022) 

 

 

 

 

Resilience 

 

“Climate-resilient pathways: Iterative 
processes for managing change within 
complex systems in order to reduce 
disruptions and enhance opportunities 
associated with climate change” 

(IPCC, 2013) 

“The capacity of social, economic, and 
environmental systems to cope with a 
hazardous event or trend or disturbance, 
responding or reorganizing in ways that 
maintain their essential function, identity, 
and structure, while also maintaining the 
capacity for adaptation, learning, and 
transformation.” 

(IPCC, 2013), (IPCC: 
Global and Sectoral 
Aspects, 2014), 
(IPCC: Mitigation of 
climate change, 2014) 

“The ability of a system to preserve its 
functions in a risky and changing 
environment (WGII Section 2.5 and Sections 
20.2 – 20.6; Folke et al., 2010; Gallopin, 
2006)” 

(IPCC: Mitigation of 
climate change, 2014) 

“Resilience refers to the ability of any urban 
system to withstand and recover quickly from 
all plausible shocks and stresses and maintain 
continuity of functions.” 

(UN-Habitat, 2017) 

“Climate resilient development (CRD): in 
the WGII Report refers to the process of 
implementing greenhouse gas mitigation and 

(IPCC, 2022) 
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adaptation measures to support sustainable 
development for all.” 

 

 

Risk 

“The potential for consequences where 
something of value is at stake and where the 
outcome is uncertain, recognizing the 
diversity of values. Risk is often represented 
as probability or likelihood of occurrence of 
hazardous events or trends multiplied by the 
impacts if these events or trends occur. In this 
report, the term risk is often used to refer to 
the potential, when the outcome is uncertain, 
for adverse consequences on lives, 
livelihoods, health, ecosystems and species, 
economic, social, and cultural assets, services 
(including environmental services), and 
infrastructure. {WGII, III}” 

(IPCC, 2013) 

(IPCC: Global and 
Sectoral Aspects, 
2014) 

(IPCC: Mitigation of 
climate change, 2014) 

(IPCC, 2022) 

 

 

Sustainability 

“Sustainability: A dynamic process that 
guarantees the persistence of natural and 
human systems in an equitable manner. 
{WGII, III}” 

(IPCC, 2013), (IPCC: 
Mitigation of climate 
change, 2014) 

 

“Sustainable development: Development 
that meets the needs of the present without 
compromising the ability of future 
generations to meet their own needs (WCED, 
1987). {WGII, III}” 

(IPCC, 2013), (IPCC: 
Mitigation of climate 
change, 2014) 

 

 

 

Uncertainty 

“A state of incomplete knowledge that can 
result from a lack of information or from 
disagreement about what is known or even 
knowable. It may have many types of 
sources, from imprecision in the data to 
ambiguously defined concepts or 
terminology or uncertain projections of 
human behaviour. Uncertainty can therefore 
be represented by quantitative measures (e.g., 
a probability density function) or by 

(IPCC, 2013) 
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qualitative statements (e.g., reflecting the 
judgment of a team of experts) (see Moss and 
Schneider, 2000; Manning et al., 2004; 
Mastrandrea et al., 2010). See also 
Confidence and Likelihood. {WGI, II, III}” 

“A cognitive state of incomplete knowledge 
that can result from a lack of information or 
from disagreement about what is known or 
even knowable.” 

(IPCC: Mitigation of 
climate change, 2014) 
(IPCC, 2022) 

 

Vulnerability 

“The propensity or predisposition to be 
adversely affected. Vulnerability 
encompasses a variety of concepts and 
elements, including sensitivity or 
susceptibility to harm and lack of capacity to 
cope and adapt. {WGII}” 

(IPCC, 2013) (IPCC: 
Global and Sectoral 
Aspects, 2014) (IPCC, 
2022) 

 

In order to clarify the interconnection between the over mentioned themes -which 
are helpful for creating the methodological framework of this study- the following 
scheme is presented. According to this scheme, resilience consists of two 
interconnected components of risk and vulnerability. The reduction of both factors 
helps to foster the resilience of the system. In addition, for risk reduction, mitigation 
and risk management are the solutions, among which the mitigation of future risk 
is a strategy that this study aims to contribute to. Turning now to vulnerability 
reduction, the enhancement of adaptive capacity, and reducing exposure to risk are 
the components. The study aims to contribute to both of these two components of 
vulnerability reduction in case of the impacts of climate change on buildings. 
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Figure 3: Schematic representation of resilience and its correlated concepts 

As mentioned earlier, this thesis studies the challenges referring to the adverse 
impact of climate change on building energy performance. These adverse impacts 
include changes in the energy consumption pattern (especially cooling need), 
increased hours of discomfort, power outage, etc. In order to enhance the coping 
capacity and adaptation potential and reduce the vulnerability of buildings, it is 
necessary to first analyse the patterns of changes in each of the overmentioned 
factors based on the context of the study. In addition, to shed light on the concept 
of climate resilience for buildings -which builds up the theoretic background of the 
study-, it is essential to unpack the impacts of climate change on the built 
environment. In other words, prior to defining the climate resilience of buildings, it 
is necessary to answer, “resilience to what?” to adopt the proper definition of the 
concept. There is a growing body of literature that analyses the effect of climate 
change on building energy performance (BEP), which is summarized in the 
following paragraphs. 

1.3 The effect of climate change on building energy 
performance and thermal comfort  

There is an increasing body of literature that investigates the impacts of climate 
change on building energy performance. Wan et al. (Wan et al., 2012) estimated the 
changes in the energy use for heating and cooling of an office building in five major 
representative cities of China with different climates, using MIROC3.2-H for 
weather projection. The authors identified that the estimated increase in cooling 
energy use is up to 24.2% for the low forcing scenario and argue that there would 
be a shift towards more electricity demand. To determine the effect of climate 
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change on U.S building energy performance, Pengyuan Shen (P. Shen, 2017) used 
the morphing method for downscaling the global climate models and analysed 
residential and office buildings in four cities. He identified that there is a rise in 
cooling energy use and a decrease in heating energy use in both office and 
residential buildings for all the cities. However, the extent of variation is different, 
and Shen concluded that climate change is diminishing the inconsistency of energy 
use in residential buildings located in cold and hot regions in the U.S. In another 
article, Shen and Lukes (P. Shen & Lukes, 2015) measured the impact of climate 
change on the efficiency of a ground source heat pump, for office and residential 
buildings in the U.S., using TRNSYS and eQuest simulation software. They 
estimated that global warming decreases the efficiency of the ground source heat 
pump, in all the studied cities, due to the rise in inlet and outlet water temperature 
of the heat pump. However, this negative impact is not significant for office 
buildings. Berardi and Jafarpur (Berardi & Jafarpur, 2020) demonstrated the need 
to perform analysis of the future energy performance of buildings by assessing the 
heating and cooling demand of 16 ASHRAE building prototypes using future 
weather data of populated urban regions in Canada. They point out that would be 
an increase in cooling demand by up to 126% and a decrease in heating demand by 
up to 33%. It was also highlighted that a higher insulation layer, higher zone ratios, 
lower window-to-wall ratio, and smaller outdoor air supply can scale down the 
negative effect of climate change on building energy performance. In Argentina, 
Flores-Larsen et al. (Flores-Larsen et al., 2019) analysed a typical mid-income 
house for medium and long-term climate change using the A2 scenario of the global 
model HadCM3 for four different cities. The authors concluded that cooling loads 
increase by 360-790 % and heating loads decrease by up to 59% in 2080. They also 
argued the effect of present bioclimatic strategies on the future performance of 
buildings toward global warming. The same studies were carried out for countries 
with colder climates, like Nordic countries. Nik and Kalagasidis (Nik & Sasic 
Kalagasidis, 2013) discussed the future energy performance of residential building 
stock in Stockholm and its uncertainties by analysing 153 buildings for 12 climate 
scenarios and with three cooling solutions. The authors found out that the heating 
demand will decrease, and the cooling demand will increase. However, the 
variation in cooling demand is more sensitive to different climate scenarios, and in 
most cases, it can be covered by natural ventilation in the Swedish climate. Another 
example is the analysis of a residential single-family from the 1980s in Benevento 
(Italy) by De Masi et al. (2021) using medium and long-term climatic projections 
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(2050 s and 2080 s, respectively). The case study also employed a number of 
passive retrofit solutions. The installation of double-glazed low emissive windows 
and the insulation intervention were found to be ineffective because the findings 
also revealed a 56% decrease in heating energy requirements and a 62% increase in 
cooling requirements (2080 s). The morphing future climatic data for Stockholm 
City and Rome were used in a different study (J. Shen et al., 2020) to examine the 
adaptive designs for multifamily buildings in the changing climate. The cooling and 
dehumidification need in Rome would increase from 5.3% to 23.6%, while the 
heating and humidification needs would fall from 27% to 16%, leading to more 
failure of the majority of conventional adaptive design methods. Additionally, for 
buildings in Rome that rely solely on natural ventilation, overheating would be a 
growing concern for public health. The research was conducted on a neighbourhood 
in Bari (south Italy) as indicative of a typical construction typology of the late 1970s 
in Italy in order to quantify the influence of climate change on the energy 
consumption of the public housing building stock (Vurro et al., 2022). The 
CCWorldWeatherGen tool (CCWorldWeatherGen V.1.8 - University of 
Southampton Blogs, 2012)was used to create the climatic data for the years 2020, 
2050, and 2080 using the morphing technique. The cooling energy consumed will 
rise by 37% in 2050 compared to 2020 and by 38% in 2080 compared to 2050. 

There is also research being conducted on overheating risk. Peacock et al. (Peacock 
et al., 2010) investigated overheating risk in UK dwellings by studying occupant 
thermal discomfort indicator (CIBSE, 2006) and the number of ‘‘cooling nights’’ 

in a year. The authors considered near term period (by the year 2030) for their 
analysis and concluded that overheating appears mostly in the south of the UK, 
which can cause the cooling problem for a third of a year. This increase in cooling 
demand and overheating risk was also predicted for Mediterranean countries. Dino 
and Akgül (Dino et al., 2019) investigated the impact of climate change on a typical 
mid-rise residential building in four cities in Turkey, considering three space 
cooling scenarios. They concluded that the occupants would experience 
overheating risk, especially in naturally ventilated dwellings. As a result of current 
and future climate change, building stocks that are currently free running in the 
summer may quickly utilize air conditioning systems, which will have an effect on 
carbon emissions, grid performance, and socioeconomic and health inequalities. 

For air-conditioned buildings, they found that the increase in the annual mean 
temperature increases the cooling load by up to 177%, varied for different cities. 
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Cartalis et al. (Cartalis et al., 2001) simulated climate change in 2030 in Greece. 
They pointed out the increase in cooling degree days and cooling demand, with 
various magnitudes in different cities, and discussed the importance of modification 
of energy management in the country. This change in the energy use pattern was 
also identified by Zachariadis and Hadjinicolaou for Cyprus (Zachariadis & 
Hadjinicolaou, 2014). An increase of 6% in the country's annual electricity demand 
was estimated. Besides, the authors also ran economic analysis and argued that the 
country might need to forsake up to two years of economic growth to cope with 
extra electricity needs. Pérez-Andreu et al. (Pérez-Andreu et al. 2018) analysed a 
typical Mediterranean residential building in Valencia (as the representative city for 
the Mediterranean climate) under various scenarios for the mid and the end of the 
21st century. The authors concluded that the heating demand decreases while 
cooling demand and overheating risk increase considerably. Moreover, they 
discussed a range of passive improvement measures for the building (up to reaching 
nearly zero-energy building) and found out that the expected energy consumption 
changes are not going to happen after the major retrofit. Rodrigues and Fernandes 
(Rodrigues & Fernandes, 2020) performed a similar series of analyses but by 
considering 16 different Mediterranean cities. They demonstrated that the extent of 
the cooling demand increases varies for different locations and must be analysed 
further. The general conclusion they made is that the present ideal U-values will not 
exacerbate the risk of overheating for all the studied cities except one of them. 

In addition, the studies on the impacts of climate change on buildings are not limited 
to the overmentioned articles. Several authors have analysed such impacts on the 
energy performance of energy-efficient buildings. As an example, Sameni et al. 
(Tabatabaei Sameni et al., 2015) analyse 25 flats over three cooling seasons in 
Coventry, UK. The sample buildings are built under the Passivhaus standard, which 
was first developed in Germany in the late 1980s as a model that minimizes space 
heating and cooling needs. These buildings mainly use passive design features such 
as insulation, airtightness, and solar orientation in addition to limited active 
elements -such as mechanical ventilation with heat recovery (MVHR)- to meet 
energy efficiency measures. Their analysis shows that the standard of Passivhaus 
dwellings in the UK may face overheating and thermal discomfort condition during 
cooling seasons. Therefore, they point out the necessity of identifying the buildings 
with a higher risk of overheating under both current and future climate conditions. 
A more recent study by Attia et al. (Attia et al., 2020) analysed a Belgian reference 
case of nearly zero-energy building (NZEB). This study measured the climate 
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change-related increases in overheating hours by the years 2050 and 2100 regarding 
static and adaptive comfort models. The results show a remarkable presence of 
overheating (up to +43,5% by the end of the century) in the sample buildings and 
the failure to overcome the risk of overheating by 2050. Another study was 
performed by Xiaoming Wang et al. (Wang et al., 2010), where the impacts of 
climate change on the heating and cooling energy need in residential buildings in 
Australia were analysed. The local climate was projected using nine General 
Circulation Models (GCMs) under three carbon emission scenarios. The study 
showed that in the newly constructed 5-star houses, the heating and cooling need is 
subject to a significant variation between 26% to 101% by 2050 and 48% to 350% 
by 2100. In addition, this study is applied to five different regional climates, from 
cold to hot and humid, and the overmentioned result is reached regardless of the 
region. The other relevant finding refers to fewer absolute changes while higher 
percentage changes in the total energy requirements for energy efficient (5-star) 
buildings. In specific Regions like Sydney, which has more H/C balanced temperate 
climate, this increase might reach 530% for a 7-star house. Accordingly, they 
suggest that the high sensitivity of energy efficient buildings to global warming 
must be addressed in their planning, considering the future energy requirements. A 
more recent study is done by D. D'Agostino et al. (D’Agostino et al., 2022) on Eight 
European climate zones of Stockholm, Milan, Vienna, Madrid, Paris, Munich, 
Lisbon, and Rome. The research analyses the energy balance and changes in the PV 
outputs of the Nearly Zero Energy Buildings (NZEBs), considering a future climate 
change scenario regarding the year 2060. The building simulations are derived for 
both baseline and cost-optimized residential buildings. They notice that the heating 
decreases by 38% to 57% while cooling increases by 99% to 380% in different 
cities. In addition, the productivity of PV in NZEB sample increases up to three-
times regarding the requirements of the baseline building. They claim that 
considering climate change impacts, energy efficiency is an “effective hedge” since 

optimized NZEBs are more resilient against temperature extremes. Another study 
by Karimpour et al. (Karimpour et al. 2015), analysing a building with an energy 
efficient envelope in the mild temperature climate of Adelaide, Australia, shows 
that the cooling demand will be dominated by 2070 due to climate change and 
heating need reduces significantly. They conclude that the measures which help to 
reduce the cooling load of better-insulated buildings will become more critical in 
the future. Therefore, the current strategies -which excessively focus on heating- 
must be dramatically changed toward the cooling need. They also suggest some 
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solutions that help to overcome the overmentioned challenges, including using foil 
in roofs, more reflective roofs, and tiles for floor covering. In the Italian context, 
the energy performance of an NZEB multi-family residential building in Lecce, 
Italy, for 2020, 2050, and 2080 weather scenarios was calculated by Baglivo et al. 
(2022). The findings indicate that the NZEB verifications are not entirely met. In 
addition to an increase in cooling requirements of up to 75% from 2020 to 2080, all 
flats will see an increase of around 16% in the number of hours when the operative 
temperature is over 26 °C while the outdoor temperature rises by 11%. Another 
study examined the effects of climate change on a residential NZEB in Rome that 
was constructed in accordance with Italian law. The energy need for cooling and 
heating respectively increased up to 50.3% and decreased up to 185.8%. In the same 
vein, Summa et al. (Summa et al., 2020) study the virtuosity of NZEBs in the future 
by evaluating the changes in the yearly performance of a residential NZEB in Rome 
regarding future scenarios. The study compares the current energy consumption 
with the one of 2050 by performing hourly dynamic simulations. It is concluded 
that the reference building might meet an increase of 18% in annual power 
consumption by 2050 due to the protracted activation of the air conditioning system 
and enhanced peak power requirements. It was discovered that peak electricity 
demand was particularly concerning. It will be crucial in the future to effectively 
reduce the requirement for air conditioning by aiming for a resilient NZEB design. 

1.4 Aims and research questions 

In summary, the review of the reported literature verifies the increasing concern 
about the effect of climate change on the future energy performance of buildings 
especially referring to the cooling demand rise and overheating risk. However, as 
seen earlier in section 1.3, little research - mostly in recent years – has been 
conducted on analysing the Italian building stock toward this issue, so there is still 
a need to deepen these analyses. Although a paradigm shift in the BEP is likely to 
happen, there is a need to perform quantitative analysis on a regional scale. The aim 
of this Ph.D. research is to assess and foster the climate resilience of Italian building 
stock through a regional approach. This thesis intends to investigate and optimize 
energy performance and thermal comfort of buildings in a changing climate (long-
term assessment) on the regional scale. Several factors in buildings - particularly 
regarding building conditions and considering cooling strategies- are effective in 
optimizing the energy performance and thermal comfort of buildings both at present 
and in the future. The contribution of these factors to the BEP varies due to future 
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climate changes, and in order to assess their climate resilience, it is crucial to be 
comparatively analysed in different periods of time. To this aim, a set of KPIs 
(hours of exceedance, thermal energy need for space cooling, electrical energy 
consumption from the grid for cooling) are selected to represent the present, and 
future performance of buildings/thermal comfort and the relative impact of several 
building’s conditions (insulation level of envelops) and cooling strategies 
(advanced solar shading/advanced glazing, cool envelop materials, and ventilative 
cooling) on these KPIs are analysed. This comparative analysis is first performed 
quantitatively for a representative building in Rome in three different periods 
(2010s, 2050s, and 2090s). Furthermore, in order to broaden the study and more 
accurately analyse the relative contribution of each building’s condition or cooling 
technology to the variation of KPIs, a variance-based sensitivity analysis (Sobol) is 
performed. Through this process, the variances of the KPIs are considered as model 
outputs and are decomposed into fractions which can be attributed to the parameters 
referring to the building’s conditions and cooling strategies as model inputs.  

The remaining part of the thesis proceeds as follows: First, in chapter 2, the 
framework of the research is presented by noting the collaboration with the project 
IEA-EBC Annex 80: Resilient cooling and defining the case studies. In chapter 3, 
information regarding future weather data generation is given, which is essential 
for analysing the future performance and thermal comfort of buildings. Within the 
relevant sub-sections, a literature review on weather data creation is provided, 
followed by an analysis of different future weather datasets, a reliability assessment 
of existing future weather data models, and finally, explaining methods for 
adjusting systemic errors and biases. Following the creation of future weather data, 
a preliminary analysis is carried out in chapter 4 in order to create a broad and 
clearer picture of the climate change impacts on typical Italian residential buildings. 
In chapter 5, the required methodological information on the resilient cooling 
technologies, the case study, and KPIs are provided, and both sets of analysis 
explained above are performed. Finally, the most significant results and conclusions 
of this thesis are explained. 
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2. Framework of the research  

2.1 IEA-EBC Annex 80: Resilient cooling   

This thesis is developed in synergy with the research activities of the IEA EBC 
Annex 80 on Resilient Cooling of Buildings (IEA EBC Annex 80 - Resilient Cooling 
of Buildings, n.d.), which is part of the Technology Collaboration Programme 
(TCP) Energy in Buildings and Communities (EBC) of the International Energy 
Agency (IEA). Officially the activities of the Annex started in July 2019 and 
continued until July 2022, besides a reporting phase of one year until the end of 
July 2023. The Annex mainly aims to support and mainstream low-energy and low-
carbon cooling systems in order to foster the transition toward resilient built 
environments. The main challenges that the annex tries to tackle are cooling and 
overheating issues in buildings. Four groups of active and passive cooling 
technologies are addressed with different aims:  

a) Reduce heat loads to people and indoor environments 

b) Remove sensible heat from indoor environments  

c) Enhance personal comfort apart from space cooling 

d) Remove latent heat from indoor environments 

The annex tries to obtain these objectives through coordinating a four-step 
approach: (A) systematic technology assessment, (B) specific R&D-actions, (C) 
real performance evaluations, and (D) support of policy actions. Within this 
framework, the Annex focuses on the following subtasks: Subtask A: 
Fundamentals, Subtask B: Solutions, Subtask C: Field studies, and Subtask D: 
Policy Actions.  

This research takes advantage of and contributes to subtasks A, B, and D. Subtask 
A deals with definitions and provides evaluation criteria. More detailed, it analyses 
disciplines, disaster risk management strategies, and resilience measures to define 
resilience in terms of cooling for buildings. In addition, for the evaluation of 
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resilience, it introduces a set of key performance indicators (KPIs). These KPIs are 
provided through a multidimensional approach that considers economical and 
technical criteria, environmental impacts, cultural and social aspects, and ecological 
issues. The weather data task force was created within this subtask to agree on a 
common and scientifically robust methodology to produce sets of weather data of 
characteristic climate zones & representative cities. Subtask B analyses these 
indicators in terms of limitations and performance besides the implementation 
barriers and opportunities. It also supports integrating resilient cooling systems to 
measurement methods of energy performance and indoor comfort prediction. By 
developing and proposing new solutions, technologies, and applications, it aims to 
expand the current low carbon/energy cooling solutions. Finally, for improving 
resilient cooling and overheating protection solutions, this task supports specific 
R&D activities. The last subtask which is relevant to this thesis is subtask D which 
deals with policy actions. This task aims to identify international best practices and 
potential barriers by analysing a set of policies, including product labelling 
programmes, AC minimum energy performance standards (MEPs), building 
regulations, standards, and compliance requirements. The identification of best 
practices and potential barriers helps to provide a set of future policy 
recommendations in order to mainstream the resilient cooling systems on national, 
European, and international levels for the future. 

2.2 Definition of case studies 

For the purpose of analysing the future energy performance and thermal comfort of 
the Italian residential building stock, the buildings simulated in this research have 
been selected from the IEE-TABULA research project (Ballarini et al., 2014). 
TABULA was aimed at creating a harmonized definition of the residential building 
typology at the European level. Each participating country developed its national 
building typology and identified representative building types of the existing 
residential building stock. Each building type has average geometrical and thermo-
physical features of the building stock cluster that it represents. In TABULA, each 
cluster is characterized by a specific climatic zone, building size, and construction 
period. The building typology can be effectively applied to develop bottom-up 
energy models by taking the advantage of scaling up the results of the representative 
building type to the building stock cluster. Consequently, the building typology 
approach can be used to predict the energy performance of building stocks 
(Ballarini & Corrado, 2017), to assess effective energy-saving potentials, and to 
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develop reliable refurbishment scenarios of the stock (Corrado & Ballarini, 2016a). 
Three building types of the Italian residential building typology have been selected: 
single-family house (SFH), multi-family house (MFH), and apartment block (AB), 
all belonging to the construction period 1946–1960. These buildings have been 
chosen as they present a higher energy-saving potential compared to buildings of 
other construction periods(Ballarini et al., 2015; Corrado & Ballarini, 2016b) For 
each part of the study, one or more of them are used based on the aim of analysis. 
The main geometric and thermo-physical features of the building types are shown 
in Table 2. The building sizes cover a significant range of shape factors (Aenv/Vgr) 
and window-to-wall ratios (WWR). 

Table 2: Data of the Italian residential building typology (construction period:1946–1960) 

 Building type 

 Single-family 
house (SFH) 

Multi-family 
house (MFH) 

Apartment block 
(AB) 

Thermal zones and boundary conditions: 

        conditioned space 

         unconditioned space 

         adjacent building 

         ground 

 

 
 

Geometric 
parameters 

Symbol    

Gross conditioned 
volume 

Vgr [m3] 584 3076 5949 

Net floor area Af,net [m2] 162 827 1552 
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Thermal envelope 
area 

Aenv [m2] 424 1576 2740 

Shape factor Aenv/Vgr [m−1] 0.73 0.51 0.46 

Window-to-Wall 
Ratio  

WWR [-] 0.09 0.20 0.23 

Number of floors - 2 3 4 

Number of units - 1 12 24 

Thermo-physical 
parameters: 

Symbol:    

External wall thermal 
transmittance 

Uwl,ext [W·m-2K-1] 1.48 1.48 1.15 

Wall thermal 
transmittance to 
adjacent 
unconditioned space 

Uwl,unc [W·m-2K-1] - 1.70 2.32 

Upper floor thermal 
transmittance 

Ufl,up [W·m-2K-1] 1.65 1.65 1.65 

Lower floor thermal 
transmittance 

Ufl,lw [W·m-2K-1] 2.00 1.30 1.30 

Windows thermal 
transmittance 

Uw [W·m-2K-1] 4.90 4.90 4.90 

Total solar energy 
transmittance of 
glazing for normal 
incidence angle 

ggl,n [-] 0.85 0.85 0.85 
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The buildings have uninsulated envelope components, as the construction period 
predates the first Italian law on energy savings issued in 1976. For all stages of 
analysis performed in this thesis, the retrofitted state of the building has been 
considered accordingly. However, according to the annual report on the energy 
certification of buildings (Italian National Agency for New Technologies, Energy 
and Sustainable Economic Development & Italian Thermo Technical Committee, 
2021), among the buildings analysed to get an energy performance certificate 
within the last four years, most of them were built before 1991, ( 41.8% for the 
period 1946–1960). The distribution by energy class of these cases confirms the 
prevalent presence of properties with lower performance (60-70%), with few cases 
in the best energy classes (around 3-4%). 

The opaque external wall is solid brick masonry, while the horizontal envelope 
components are reinforced brick-concrete slabs. The transparent envelope 
components are single-glazing and wood-frame windows with exterior wooden 
Venetian blinds (ggl+sh = 0.35). The blind has a solar transmittance of 0.4 and solar 
reflectance of 0.12. The buildings have been simulated using the dynamic 
simulation engine Energy Plus (Version 9.0). The energy performance of the 
building types was assessed considering standard user behaviour. Hourly profiles 
of internal heat gains and ventilation airflow rates were set up under the Italian 
National Annex draft of EN 16798-1 technical standard (Italian National Annex of 
EN 16798-1 technical standard). An example of the hourly profile is shown in 
Figure 4 for the internal heat gains of each building type; the heat gains take into 
account occupants, electric lighting, and appliances and follow a typical residential 
hourly occupancy profile. The variability of the heat gains among the building types 
is due to a different occupancy density in the building unit, as specified in EN 
16798-1.  
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Figure 4: Hourly profile of the internal heat gains per unit of net floor area 

The Italian most common technical building system technologies are considered for 
the base case studies: centralized gas standard boilers for heat generation and 
radiators as heat emitters. Space cooling is provided by an individual (per-
apartment) direct expansion air conditioner (split systems). According to Italian 
standards (The Italian National Organization for Standardization, UNI/TS 11300-
1: 2014), heating and cooling temperature set points were assumed equal to 20 °C 
and 26 °C, respectively. Moreover, the heating season and cooling period was 
assumed on the base of the climate zone. To carry out the energy simulation, the 
blinds are considered under operation if the beam plus diffuse solar irradiance 
incident on the window exceeds 300 W/m2. Besides, mean monthly natural 
ventilation airflow rates equal to 0.30 h−1 were applied.  
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3. Creation of future weather data 
for energy performance and 
thermal comfort assessment 

3.1 Literature review on weather data creation  

To investigate the future performance of a building in the context of climate change, 
building energy simulation (BES) is a vital support tool. BES needs a robust 
weather dataset that defines the external boundary conditions the building will face 
during its lifetime. Typically, a representative year of hourly weather data is 
required to represent the typical regional climate condition and to define the 
dynamic energy behaviour of the building. Several methodologies have been 
developed to create this one-year climate data from historical climate records 
(Herrera et al., 2005). The most commonly used methodology is the Typical 
meteorological year (TMY), which was introduced in 1978(Hall et al., 1978). TMY 
is a fictive year constructed of twelve representative typical months (Barnaby et al., 
2011). Representative months are selected by comparing the distribution of each 
month with the long-term distribution of that month for the available climate dataset 
(the Finkelstein–Schafer statistics) (Finkelstein et al., 1971). The analysis of the 
present climate is based on the observation of climate variables and the application 
of statistical methods for understanding the current trends. On the other hand, the 
analysis of future climate is based on future scenarios and the projections of climate 
models. 

Future scenarios are the input data used to provide initial conditions for General 
Circulation Models or Global Climate Models (GCMs), which are models for 
forecasting climate change. Global climate models are complicated numerical 
models that simulate the state and evolution of the atmosphere, including 
atmospheric circulation and energy exchanges in terms of radiation, heat, and 
moisture. They simulate the processes related to cloud formation and precipitation 
and take into account the interaction with the ocean and the land (Ramon et al., 
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2019). To check if GCMs can simulate the evolution of the climate systems, they 
are validated against past climate conditions (Uppala et al., 2005). After verification 
and validation, GCMs are set to run by forcing greenhouse gas concentration 
scenarios as an initial condition. GCMs results have global or continental scale 
spatial resolution and long temporal resolution such as seasonal or annual periods. 
GCMs, provide climate information on a global scale with a typical spatial 
resolution of 150–600 km (Symon, 2013). Consequently, if they are used for 
building energy simulation, the climate change effect and related weather extremes 
at the local level will not be considered. In this case, the GCMs should be 
downscaled to applicable spatial (less than 100 km ) and temporal resolution (less 
than monthly value). There are two main approaches to downscale GCMs: 
dynamical and statistical downscaling. Several studies compared different 
methodologies that use these approaches for the generation of future weather data. 
Jentsch et al. indicate that weather variability is not generated in the statistically 
downscaled weather dataset, and this approach includes the effect of climate change 
independently between the variables (M. Jentsch et al., 2013). On the other hand, 
Dias et al. point out that the statistical downscaling approach has the advantage of 
reducing the computational time so that various climate change scenarios can be 
applied (Bravo Dias et al., 2020), besides providing enough information to study 
the performance of the building (Moazami et al., 2019). In light of these studies, 
there is still a need to deeply analyse different methodologies for future weather 
data generation. Statistical downscaling and dynamical downscaling are two main 
approaches; they are presented as follows. 

Statistical downscaling develops and applies statistical relationships between 
regional or local climate variables and large-scale climate data using deterministic 
or stochastic approaches (Moazami et al., 2019). This downscaling approach is a 
computationally less demanding alternative that facilitates achieving various sets 
of results. The simplicity of this method—in comparison with dynamical 
downscaling—persuades many researchers to favor it. This method is mostly 
applied to GCM projections, while it may also be applied to Regional Climate 
Model (RCM) output as being a better representative of the local climate 
(Laflamme et al., 2016). In the two following paragraphs, major approaches for 
applying statistical downscaling are explained in more detail.  

Stochastic weather generators are among the statistical models which fill in missing 
data and enable the production of long synthetic weather series indefinitely. This 
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becomes possible by simulating major properties of observed meteorological 
records, including daily means, variances, covariances, frequencies, extremes, etc. 
(Belcher et al., 2005). These models rely on statistical analysis of recorded climate 
data in which a few independent weather variables—such as solar irradiation—are 
adequate to derive all other relevant variables. The stochastic weather generation 
method has the advantage of enabling the integration of the distribution used for the 
climate change signal. In addition, it is accountable for potential changes in weather 
patterns and climate variability (Ramon et al., 2019). However, what appears to be 
a limitation of this method is the need for a large amount of data to train the model 
since distributions for generating future data are based on the baseline data given to 
the model (Belcher et al., 2005). The well-known tool that uses this method is 
Meteonorm(Meteonorm Software V.7.3, 2018). More details about this software 
and the way it becomes applied in this study will be explained in Section 2.2.1. 

Morphing is the most common statistical downscaling method for the adjustment 
of time series toward the future. This method was first presented by Belcher et al. 
in 2005, assuming the current weather data as a baseline (Belcher et al., 2005). In 
order to transform this baseline to a future time series, monthly climate change 
signals given by a GCM, or RCM are used. There are three ways to morph data—

shifting, scaling, or a combination of them—depending on the climate variable and 
expression of the climate change signal (absolute, relative): 

• The Shift is applied according to Equation (1): 

xm = x0 + Δxm. (1) 

where Δxm is the absolute monthly mean change derived from a GCM or RCM 
predicted for a given variable (x0), such as atmospheric pressure, for the month ‘m’, 

• The Stretch is applied according to Equation (2): 

xm = αm · x0. (2) 

where αm is the relative monthly mean change derived from a GCM or RCM 
predicted for a given variable (x0), such as wind speed, for the month ‘m’, 
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• The combination of Shift and Stretch is applied when both absolute and relative 

monthly mean changes derived from a GCM or RCM are predicted for a given 
variable (x0), such as dry-bulb temperature, for the month m, according to Equation 
(3): 

xm = x0 + Δxm + αm (x0 − x0,m) (3) 

where x0,m is the variable x0 average over the month ‘m’ for all the considered 
averaging years of future data provided by the climate models. 

CCWorldWeatherGen (CCWorldWeatherGen V.1.8 - University of Southampton 
Blogs, 2012) and WeatherShiftTM (WeatherShift,2020) are two available tools that 
use the morphing method to create future weather data. More details about these 
tools and their application in this study will be explained in Section 2.2. 

Dynamical downscaling uses a nesting strategy to obtain climate information at a 
resolution of 2.5–100 km. To this aim, a Regional Climate Model (RCM) is used to 
derive local or regional climate information. This method simulates “atmospheric 

and land surface processes while accounting for high-resolution topographical data, 
land-sea contrasts, surface characteristics, and other components of the Earth 
system” (American Meteorological Society, 2013). The climate information 
generated by RCMs has much finer spatial resolution compared to GCMs. This 
allows RCMs to better represent the spatial and temporal variability of local climate 
and guarantee physically consistent datasets (Soares et al., 2012). However, a large 
amount of computational power and storage for data creation is one of the 
limitations of this method. Furthermore, the accuracy of the relevant GCM 
determines the overall quality of the output. In order to evaluate such uncertainties, 
different GCM–RCM pairings are combined, and a series of simulations are 
performed. ENSEMBLES (van der linden & Mitchell, 2009) and EURO-CORDEX 
(Jacob et al., 2014) projects are two of such efforts. 

EURO-CORDEX—as the main reference framework for regional downscaling 
research—aims to facilitate the process of knowledge exchange and 
communication. Many sectors—e.g., the building sector, agriculture, heat and fire 
risk, and air quality—utilize EURO-CORDEX since it provides a consistent 
database of downscaled multi-year projections for various regions all over the world 
(Giorgi, 2019). In addition, by providing a better understanding of the regional and 
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local climate and its associated uncertainties, EURO-CORDEX evaluates and 
enhances different RCMs. CORDEX includes a large RCM database, and it is 
updated with new climate data from available domains all over the globe (World 
Research Climate Program (WRCP), n.d.). For European countries, the grid 
resolution provided by EURO-CORDEX projections equals 12.5 km. For the 
Middle East and North Africa, this quantity is 25 km, while the rest of the world 
has the grid resolution of 50 km. The time scales—on which the data in the multi-
layer format are available—include monthly, daily, every six hours, every three 
hours, and hourly during the historical period from 1976 to 2005 and for the future 
period from 2006 to 2100. The data are available either for RCP 4.5 or RCP 8.5 
scenarios, depending on the model (EUROCORDEX: Cordex Archive 
Specifications, n.d.). Although most of the available data on the platform are not 
bias-adjusted, a number of bias-adjusted data are available for some specific models 
and climate variables.  

3.2 Application for Weather data creation 

Four future weather datasets to be analysed in this work were generated for Rome 
using Meteonorm, CCWorldWeatherGen, and WeatherShiftTM weather generator 
tools, and one RCM (GERICS-REMO-2015) from the EURO-CORDEX project. 
The weather datasets were developed for the 2001-2020 (2010s), 2041-2060 
(2050s), and 2081-2100 (2090s) periods. The following paragraphs describe the 
applied methodology in detail.  

By integrating the climate database with spatial interpolation of the principal 
weather variables and a stochastic weather generator, Meteonorm generates hourly 
weather data for any site in the world (Remund & Kunz, 1997). These data can be 
used as input for building performance simulation. Weather variables such as global 
irradiance on a horizontal plane at the ground level, dry-bulb temperature, dew-
point temperature, and wind speed are provided by Meteonorm. This tool can also 
be used for climate change studies. GCMs under the IPCC fourth assessment report 
(AR4) (Pachauri & Reisinger, 2008) are used in this tool to generate future weather 
data for different emission scenarios (B1, A1B, and A2), with 10-year intervals 
from 2010 until 2100 (Remund et al., 2010). The Meteonorm version 7.2 was used 
in this study to generate weather data for the A2 emission scenario (pessimist 
scenarios) for the city of Rome. 
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The CCWorldWeatherGen is a Microsoft® Excel-based tool developed by the 
Sustainable Energy Research Group of Southampton University (M. Jentsch et al., 
2013). It uses the Morphing methodology to create future weather datasets in 
Energy Plus Weather (EPW) format for different locations all over the world. The 
output data of the UK Met-office, the Hadley Centre Coupled Model 3 (HadCM3, 
n.d.) global climate model, forced with IPCC A2 emission scenarios, is used in this 
tool. The HadCM3 climate model was chosen since, by the time—in comparison 
with 29 other climate models—this model was the only one that had all necessary 
climate variables for the morphing procedure (M. F. Jentsch, n.d.). What HadCM3 
provides as input for the Morphing procedure in CCWorldWeatherGen is the 
monthly value of relative changes regarding the period of 1961–1990. The Excel 
tool superimposes this input on the weather variables of the baseline weather data 
stored in an EPW file. The tool generates future weather data sets for 3-time slices: 
2001-2020 (2010s), 2041-2060 (2050s), and 2081-2100 (2090s). Being a free 
online tool is an advantage that makes it widely used. However, due to possible 
differences in the reference time frame between HadCM3 and the EPW data, 
inaccuracy in the outputs of the tool may occur (M. F. Jentsch et al., 2008). In this 
study, the International Weather for Energy Calculation (IWEC) TMY file of 
Rome—downloaded from the Energy Plus database—was used to be morphed for 
the overmentioned time periods.  

The WeatherShift TM tool was developed upon morphing methodology by Arup and 
Argos Analytics for creating future weather data (WeatherShift). “The tool blends 

14 of the more recently simulated GCMs1 into cumulative distribution functions 
(CDF) (Pachauri & Reisinger, 2008). It is based on RCP 4.5 and 8.5 emission 
scenarios of the IPCC's fifth assessment report. Creating CDFs allows a percentile 
distribution (called warming percentile factor) and “smooths out” the inter-modal 
uncertainty and stochastic climate behaviour (Troup & Fannon, 2016).  

The tool produces future weather data for time periods of 20 years, starting from 
2011 and ending in 2100. The morphing method in this tool is applied to 8 climate 
variables of the reference TMY: the mean, maximum, and minimum daily 

 
1 BCC-CSM1.1, BCC-CSM1.1(m), CanESM2, CSIRO- Mk3.6.0, GFDL-CM3, GFDL-ESM2G, 
GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, 
IPSL-CM5B-LR, NorESM1-M 
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temperature, relative humidity, daily total solar irradiance, wind speed, atmospheric 
pressure, and precipitation. The future projections are relative to the baseline period 
of 1976-2005. In this study, the 50th percentile and the RCP 8.5 emission scenarios 
were selected to set the tool for generating future weather datasets of Rome. The 
IWEC-TMY was the baseline for this procedure.  

The CORDEX platform provides a variety of climate models and socioeconomic 
projections, among which the selection of the proper one was the first step. Several 
conditions had to be met in order to reduce the available climate model options. 
First, the availability of weather variables for reassembling weather datasets input 
for energy simulations of buildings. Second, providing 3 hours minimum of 
temporal frequency and finally, 25 km as the minimum of spatial frequency.  

So far, there are three GCM-RCM climate model combinations at the moment of 
the study that meet the above-mentioned criteria, which are Met Office Hadley 
Centre (MOHC) HadGEM2-ES/GERIC-REMO 2015, Max Planck Institute for 
Meteorology (MPI-M) MPI-ESM-LR/GERIC-REMO 2015, and Norwegian 
Climate Centre (NCC) NorESM1-M /GERIC-REMO 2015. For a holistic 
assessment, an ensemble-based approach must be followed. However, regarding 
limitations caused by computational cost, for either of these options, the dry-bulb 
temperature projections were compared to several other models, and the (MPI-M) 
MPI-ESM-LR/REMO combination was finally chosen for being the closest to the 
median temperature of all climate models projections according to figure 5. (Flato 
et al., 2013). 
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Figure 5: “Ranked modelled versus observed monthly mean temperature for the 

Mediterranean region for the 1961–2000 period” (IPCC, 2013b) 

The data for this model was downloaded from the EURO-CORDEX entry point 
through the Earth System Grid Federation (ESGF) for the Europe domain on a 
0.11 ° grid in polar coordinates (equivalent to a 12.5 km grid). These data are 
available in the NetCDF4 format, which is a file format for storing 
multidimensional scientific data. The extraction of the data for our case study (city 
of Rome) was performed through the Cordex Data Extractor software (CORDEX 
Data Extractor, n.d.), which allows finding the closest data point on the grid to the 
desired latitude and longitude. The extracted climate variables are near-surface air 
temperature, near-surface relative humidity, surface air pressure, surface 
downwelling shortwave radiation, and near-surface wind speed. RCP 8.5 scenario 
was adapted to extract these data for 2010s (2001-2020), 2050s (2041-2060), and 
2090s (2081-2100) periods.  
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For splitting the direct and diffuse components of global solar irradiation, the 
Boland–Ridley model (Boland et al., 2008) is applied in this study. The method is 
a robust and straightforward predictor model that needs a few input data. It is 
reliable as the Italian Standardization body has adopted it to split the global solar 
irradiance for creating national climatic data (UNI 10349-1:2016). In addition, the 
model was validated in a later study (Ridley et al., 2010).  

Boland–Ridley determines a logistic function (sigmoid function) for the diffuse 
fraction of global solar radiation on a horizontal surface based on the clearness 
index, which is the ratio of the global solar radiation to the extra-terrestrial solar 
radiation all on a horizontal plane. The latter can be easily calculated using the solar 
elevation and the extra-atmospheric solar irradiance received on a theoretical 
surface orthogonal to the sun's rays and at the earth's mean distance from the sun 
(depending on the earth's orbital angle). By having this fraction, the direct and 
diffuse components can be calculated.  

Following this, for the generation of the weather data for building energy 
simulation, direct normal solar irradiance (Kasten, 1996) is required. This value 
equals the division of the solar irradiation direct component to the cosine of the 
solar zenith angle. Calculation of direct-normal solar radiation can yield unphysical 
results when the direct-horizontal solar radiation and the cosine of the solar zenith 
angle are both small because the sun is low. In this case, a threshold is introduced 
by applying a physical model(Remund et al., 2003) that considers the Rayleigh 
optical depth (in the function of the mass of air) and the Linke Turbidity (TL) 
(Remund & Bern, 2010), which accounts for scattering and absorption by both 
atmospheric aerosols and atmospheric gases. 

Typical meteorological years (TMYs) are created using the international standard 
EN ISO 15927-4 (CEN, 2005) method. The procedure is applicable for assessing 
the climate change impact on the long-term mean energy loads of buildings. It is 
not suitable for constructing extreme or semi-extreme meteorological data. TMYs 
are constructed from ’12’ representative months (typical months) from multi-year 
records. For selecting the ‘typical months,’ two sets of parameters are taken into 
account: Primary parameters, including dry-bulb air temperature, global solar 
irradiance, and relative humidity (or air absolute humidity, water vapour pressure, 
or dew point temperature) and secondary parameters, including wind speed. The 
Finkelstein–Schafer statistic (Fs) (Finkelstein & Biometrika, 1971) is calculated for 
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all the primary climatic parameters for each month and year of the data set. Fs is a 
goodness-to-fit statistic that proved to be more potent than conventional 
alternatives. It is the sum of the differences between two cumulative distribution 
functions: the first relating to a specific year and the second regarding the multi-
year dataset. By ranking the Fs in increasing order for each primary parameter and 
calculating the total ranking (the sum of the primary parameter’s ranks) for each 

year, for each calendar month, three months (with the lowest total ranking) are 
selected. The month with the lowest deviation in wind speed (secondary parameter) 
is selected as the “typical” month to be included in the typical year. This method is 
applied to three sets of 20-year RCM data (2010s, 2050s, and 2090s) to generate a 
TMY for present and future typical meteorological years (F-TMY) for 2050s and 
2090s. These TMYs were then converted to EnergyPlus weather files (.EPW) for 
use in building energy simulations. The EnergyPlus auxiliary program “weather 

converter” tool(EnergyPlus Version 9.6.0 /Auxiliary Programs. 2021) is used for 
this purpose. 

3.3 Reliability assessment of existing future weather data 
models  

This section aims to contribute to evaluating the suitability and robustness of 
different future weather data for analysing the future performance of reference 
buildings both in terms of thermal comfort and energy performance. It represents a 
comparative study of four future weather datasets explained in section 3.2, 
considering IWEC-TMY as the present weather dataset. The study investigates the 
impact of each type of these future weather data on building energy performance 
and thermal comfort predictions. It evaluates the heating and cooling demand, the 
global/overall energy performance in the presence of heating and cooling systems, 
and the overheating risk in a free-floating regime. SFH and AB were selected from 
the representative of the existing residential building stock in Italy (explained in 
section 2.2) since these two building sizes present a significantly different shape 
factor—0.73 m−1 for the SFH and 0.46 m−1 for the AB—and window-to-wall ratio: 
0.09 for the SFH and 0.23 for the AB. As a generation subsystem type for this 
analysis, a reversible heat pump has been chosen, considering continuous operation. 
The analysis was carried out for Rome, as it is one of the representative cities of 
Mediterranean hot summer climates according to the Köppen classification 
(Köppen, 1884). Representative Concentration Pathways 8.5 (business as usual) 
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(Symon, 2013) have been applied in this study for the mid-century period from 
2041 to 2060 (2050s). This period was used for the analysis, since GCMs 
uncertainties due to internal climate variability, climate model, and future scenarios 
increase significantly over time (Hawkins & Sutton, 2009, 2011). A schematic 
representation of different future weather data reliability assessment is presented in 
figure 6.  

 
Figure 6: Graphic representation of different future weather data reliability assessment 

 

3.3.1 Energy performance assessment 

The building energy performance was assessed by means of a detailed dynamic 
simulation model using EnergyPlus (version 9.0) with an hourly time step. The 
results are discussed in terms of annual thermal energy need for space heating and 
space cooling (EPH/C,nd) and electrical energy demand per unit of area (Eel /Af,net). 
The latest indicator (Eel /Af,net) was calculated according to Equation (4): 

Eel / Af,net =
EPH,nd 

ηH,u ∙ ηH,g 
+

EPC,nd 

ηC,u ∙ ηC,g 
 (4) 

where EPH/C,nd is the annual thermal energy need for space heating/cooling, ηH/C,u 
is the mean seasonal efficiency of the heating/cooling utilization (including 
emission, control, and distribution) subsystems, and ƞH/C,g is the mean seasonal 
efficiency of the heating/cooling generation subsystem.  
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The reference mean seasonal efficiency values of the utilization subsystems were 
assumed in compliance with the Italian Interministerial Decree of June 26th, 2015 
(Italian Republic, Interministerial Decree of June 26th, 2015). As a reversible heat 
pump has been selected as a generation subsystem type to carry out the analysis, a 
future value of the mean seasonal generation efficiency was adopted to take into 
account the increase of the ambient temperature due to climate change. The mean 
seasonal efficiency of the heating generation subsystem was calculated assuming 
proportionality between the maximum theoretical mean coefficient of performance 
at present and its future value over different temperatures, as in Equation (5): 

ƞH,g ~
∑ Hheating season

∑ (H ∙
𝑇cond,out − 𝑇evap,in

𝑇cond,out
)heating season

                          
(5) 

where H is the hourly thermal energy load for heating, Tcond,out is the condenser 
outlet temperature (hot water), and Tevap,in is the evaporator inlet air temperature. 

In the same way, proportionality between the maximum theoretical mean energy-
efficiency ratio and its future value over different temperatures has been assumed, 
as in Equation (6): 

ƞC,g ~
∑ Ccooling season

∑ (C ∙
𝑇cond,in − 𝑇evap,out

𝑇evap,out
)cooling season

 (6) 

where C is the hourly thermal energy load for cooling, Tevap,out is the evaporator 
outlet temperature (chilled water), and Tcond,in is the condenser inlet air temperature.  

3.3.2 Thermal comfort assessment 

The thermal comfort was assessed in accordance with the EN 16798-1 standard 
(European Committee for Standardization, 2005). The adaptive comfort model was 
adopted to predict how the pattern of outside weather conditions affects the indoor 
thermal sensation of the user in free-floating condition. In this model, the optimal 
operative temperature (θo,c, in °C) is calculated as in Equation (7): 
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𝜃𝑜,𝑐 = 0.33 ⋅ 𝜃𝑟,𝑚 + 18.8 (7) 

where θr,m is the outdoor running mean temperature (in °C), which is calculated as 
in Equation (8): 

𝜃𝑟,𝑚 = (1 − 𝛼) ⋅  {𝜃𝑒𝑑−1 + 𝛼 ⋅ 𝜃𝑒𝑑−2 + 𝛼2 ⋅ 𝜃𝑒𝑑−3} (8) 

where α is a constant between 0 and 1 (recommended value is 0,8), 𝜃𝑒𝑑−1 is the 
daily mean outdoor air temperature for the previous day, and 𝜃𝑒𝑑−𝑖 is daily mean 
outdoor air temperature for the i-th previous day.  

In this research, a medium level of occupant expectation ( the second category of 
indoor environmental quality, as defined in (European Committee for 
Standardization, 2005)) was applied, in which the range of comfort is between 
θo,c +3 °C (highest limit) and θo,c − 4 °C (lowest limit). In addition, the hours of 
exceedance (HE) were calculated as an indicator to quantify indoor overheating. 
The HE indicator is equal to the number of hours during the cooling period in which 
the operative temperature of the zone is greater than the upper limit temperature of 
the thermal comfort range. 

3.3.3 Results and discussion 

The aim of this part of the research is to analyse different types of future weather 
datasets by comparing their relative impact on building energy performance 
predictions. In the first set of results, boxplots of the outdoor dry-bulb temperature 
and the global horizontal solar irradiance during daily hours, which are the weather 
key variables in building energy simulation, are plotted (Figures 7 and 8). Boxplots 
show a pattern of increase in both variables due to climate change. All future 
weather files show almost similar mean values higher than the present weather file. 
Nevertheless, F-TMY—which is derived from a dynamical downscaling method—

shows lower dispersion compared to other future files (statistically downscaling 
methods). 

Followingly, Figures 9 and 10 present net thermal energy needs for heating and 
cooling normalized by the conditioned floor area for the single-family house and 
apartment block for present and different future weather data to assess the building 
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energy performance of the case studies. The heating energy demand for the single-
family house (SFH) dominates over the cooling demand. In addition, SFH also has 
higher energy demand for heating compared to the apartment block (AB). This is 
due to the higher shape factor (S/V) ratio, which entails that heat transfer by 
transmission is the most relevant term of the energy balance, and outdoor 
temperature is the main driving force. Consequently, the decrease of EPH,nd in the 
values of EPH,nd and EPC,nd. It appears that the heating need is slightly dominant in 
the present, but it will be overtaken by cooling in the future. For all future weather 
data except F-TMY, the relative change of EPH,nd is in the range of 30 % to 34 % 
for both buildings, while the relative change of EPC,nd is above 160 % for SFH and 
above 100 % for AB. This unevenness in relative variation is mainly related to the 
different magnitudes of the present energy need, in which more contribution refers 
to cooling need. As regards F-TMY, lower values of EPH,nd, and EPC,nd are shown 
compared to the other future weather data, meaning that EPH,nd will decrease more 
and EPC,nd will increase less. This trend is strictly dependent on the lower dispersion 
of temperature values for F-TMY compared to the other future weather datasets. 
Comparing the four sets of weather data, WeatherShiftTM (WS), Meteonorm 
(MET), and CCWorldWeatehrGen (CCW) show almost similar variations in EPH,nd 

and EPC,nd, while the F-TMY presents a significantly different variation in the two 
indicated parameters. This comes from the fact that WS, MET, and CCW are all 
statistically downscaled weather datasets, and F-TMY is a dynamically downscaled 
weather dataset. In order to better present this trend, the box plots of thermal energy 
load for heating in the month of January and for cooling in the month of August are 
shown in Figures 11-14. The figures indicate that for both SFH and AB, the mean 
values for the month of January are almost the same for all future weather files, 
while the deviation of F-TMY is lower than the three other files. On the other hand, 
for the month of August, the mean values of WS, MET, and CCW is significantly 
higher than F-TMY. The reason lies in the fact that the dynamically downscaled 
weather data, in comparison with the statistical ones, better represents the temporal 
variability of climate, which leads to a more consistent dataset. As another outcome 
of the inconsistency in the statistical downscaled weather files, figures 12 and 14 
demonstrate the overestimation of the data in the thermal energy load for cooling 
in August. 
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Figure 7: Boxplots of the outdoor dry-bulb temperature for IWEC (Present), 

WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. 
All future weather files are for 2050s, considering Representative Concentration Pathway 

(RCP) 8.5. 

 
Figure 8: Boxplots of the global solar irradiance for IWEC (Present), WeatherShiftTM 

(WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. All future 
weather files are for 2050s, considering Representative Concentration Pathway (RCP) 

8.5. 
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Figure 9: Net thermal energy needs for heating and cooling normalized by the 

conditioned floor area for the single-family house for IWEC (Present), WeatherShiftTM 
(WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. All future 

weather files are for 2050s considering RCP 8.5. 

 

 
Figure 10:Net thermal energy needs for heating and cooling normalized by the 

conditioned floor area for the apartment block for IWEC (Present), WeatherShiftTM (WS), 
Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. All future weather files 

are for 2050s considering RCP 8.5. 
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Figure 11: Boxplots of heating loads in January for the single-family house for IWEC 
(Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and 

F-TMY. All future weather files are for 2050s considering RCP 8.5. 

 

 
Figure 12: Boxplots of cooling loads in August for the single-family house for IWEC 

(Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and 
F-TMY. All future weather files are for 2050s considering RCP 8.5. 
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Figure 13: Boxplots of heating loads in January for the apartment block for IWEC 

(Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and 
F-TMY. All future weather files are for 2050s considering RCP 8.5. 

 

 
Figure 14: Boxplots of cooling load in August for the apartment block for IWEC 

(Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and 
F-TMY. All future weather files are for 2050s considering RCP 8.5. 
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The adaptive comfort analysis in the free-floating condition of SFH and AB for 
IWEC (Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehrGen 
(CCW), and F-TMY is presented in Figures 15 and 16. The graphs show the 
distribution of hours of the cooling period (April 16th until October 14th: 4368 
hours) in three ranges: Comfort, warm discomfort, and cold discomfort. The 
discrepancy between F-TMY and other future weather data is pointed out. The 
percentage of warm discomfort hours for the WS, MET and CCW is almost the 
same and equals around 40 % for SFH and 90 % for AB. For the F-TMY, the 
percentage of warm discomfort hours is less for both cases (29 % for SFH and 72 
% for AB). This discrepancy can be found in Figures 17 and 18, where boxplots of 
the last floor operative temperature of SFH and AB in August for present and 
different future weather data are presented. In this case, despite having similar 
dispersions, the mean values of the last floor operative temperature of F-TMY are 
significantly lower than the mean value of the other three future weather datasets 
for both SFH and AB. This is strongly dependent on the lower dispersion of 
temperature values for F-TMY.  

If we now turn to the comparison of the two building types, occupants in AB will 
experience overheating much more often than the occupants in SFH because of a 
reduced potentiality of exploiting the heat transfer in AB through the envelope for 
ejecting heat produced by internal and solar sources. This is due to the lower S/V 
value and larger window-to-wall ratio (WWR) of the AB compared to SFH. In 
addition, hours of exceedance (HE) for all the weather datasets for SFH and AB are 
presented in Table 3. It is observed that the absolute change of the increase in the 
HE for statistically downscaled future weather datasets is almost the same, while 
for dynamically downscaled future weather, data are significantly lower. 
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Figure 15: Adaptive comfort analysis for the single-family house for IWEC (Present), 

WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. 
All future weather files are for 2050s considering RCP 8.5. 

 
Figure 16: Adaptive comfort analysis for the apartment block for IWEC (Present), 

WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. 
All future weather files are for 2050s considering RCP 8.5. 
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Figure 17: Boxplot of last floor operative temperature of the single-family house in 

August, for IWEC (Present), WeatherShiftTM (WS), Meteonorm (MET), 
CCWorldWeatehr-Gen (CCW), and F-TMY. All future weather files are for 2050s 

considering RCP 8.5. 

 

 
Figure 18: Boxplot of last floor operative temperature of the apartment block in August, 
for IWEC (Present), WeatherShiftTM (WS), Meteonorm (MET), CCWorldWeatehr-Gen 

(CCW), and F-TMY. All future weather files are for 2050s considering RCP 8.5. 
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In addition, Table 3 also summarizes the values of the electrical energy demand per 
unit of area (Eel/Af,net). The Eel/Af,net increases in SFH and AB similarly for WS, 
MET, and CCW, while the absolute change is not significantly high. On the other 
hand, Eel/Af,net slightly decreases for F-TMY in both cases. The reason can be 
explained below: as mentioned before, a future value for the mean seasonal 
efficiency of the heating (ƞH,g) and the cooling (ƞC,g) generation subsystem was 
adopted to consider the increase of ambient temperature due to climate change. The 
mean seasonal efficiency increases for the heating and decreases for the cooling for 
all the future weather datasets. However, due to the lower discrepancy of the 
temperature values for F-TMY compared to other future weather datasets, the 
increase for ƞH,g in the dynamically downscaled model is more, while the decrease 
in the ƞC,g is less. Consequently, according to Equation (4), the reduction in the 
energy for winter conditioning outweighs the cooling demand in the case of F-
TMY. Finally, if the variation of Eel/Af,net for SFH and AB are compared, the 
absolute changes are lower for SFH, which comes from its higher S/V value that 
skews the energy usage of it more toward the heating regime. 

 
Table 3: Electrical energy demand per unit of area and hours of exceedance for a single-

family house (SFH) and apartment block (AB), for IWEC (Present), WeatherShiftTM 
(WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. All future 

weather files are for 2050 

  IWEC  WS MET CCW TMY-R 

 Absolute 

change 

 Absolute 

change 

 Absolute 

change 

 Absolute 

change 

SFH Eel/Af,net 

[kWh 

/m2 ] 

38.7 40.7 2 41.5 2.8 40.5 1.8 29.8 -8.9 

HE[h] 222 887 665 877 655 910 688 638 416 

AB Eel/Af,net 

[kWh 

/m2 ] 

22.9 29 6.1 29.5 6.6 28.1 5.2 19.4 -3.5 

HE[h] 1273 1995 722 2060 787 1984 711 1596 323 
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Statistical and dynamical are the two main approaches to downscale global climate 
models for creating weather datasets to be used in building energy simulations. 
Considering there are different methodologies that use these approaches, evaluating 
their suitability and robustness is vital. This chapter set out to compare 
WeatherShiftTM, Meteonorm, and CCWorldWeatherGen—which are common 
weather generator tools applying statistical downscaling—in addition to a TMY 
created using a high-quality regional climate models database (from Euro-
CORDEX) that applies the dynamical downscaling. All future weather files are for 
the 2050s considering RCP 8.5. Two representative buildings of the Italian 
residential building stock, including a single-family house (SFH) and an apartment 
block (AB), were selected to perform the analysis.  

The results of this investigation show that different statistically downscaled future 
weather datasets created by weather generators predict the future energy 
performance and comfort analysis of the buildings quite similarly compared to the 
dynamical one. This is demonstrated by almost the same values in the mean outdoor 
dry-bulb temperature, relative changes of thermal energy need for heating and 
cooling normalized by the conditioned floor area, mean value of thermal energy 
load for heating and cooling, the hours of discomfort, and the absolute changes in 
the electrical energy demand per unit of area. However, when it comes to the 
dynamically downscaled weather data, the above-mentioned parameters follow a 
different pattern. According to the boxplots, these parameters show less dispersion 
and fewer outliers for dynamically downscaled weather data. Consequently, it was 
verified that dynamical downscaling, by better representing the spatial and temporal 
variability of local climate, provides physically consistent datasets.  

The other significant result of this study is reached by comparing different building 
types. In more detail, the observed discrepancy between the future predictions of 
statistical and dynamical downscaling is affected not only by using different 
approaches for creating future weather datasets but also by building type. As an 
example, the thermal energy need for cooling in SFH for statistically downscaled 
datasets increases by around 170 %, and for the dynamical one, it increases by 
around 70%. On the other hand, in AB, this parameter increases 100 % for 
statistically downscaled data and around 40 % for the dynamical one. This 
inequality in relative variation comes from the different magnitudes of the present 
energy need for different building types. For buildings with a higher shape factor 
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(SFH), the heating energy demand dominates the cooling energy demand, which 
also makes them more sensitive to climate change.  

Overall, this chapter has provided a deeper insight into analysing the effect of 
climate change on the future energy performance of buildings by considering 
different future weather datasets and building types. Firstly, it was shown that the 
climate change impact magnitude is not equal for different case studies so that in a 
changing climate, performing a regional and localized analysis becomes vital. In 
addition, the results demonstrated that the morphing method—regardless of its way 
of application—can provide adequate information to perform comparative analysis 
on long-term changes in energy building performance. However, the existing 
inconsistency within this method may lead to high prediction errors. In this case, 
the dynamical downscaling method is found to be more reliable when the aim is to 
develop, assess, and communicate resilient solutions to withstand as well as prevent 
the future impacts of climate change on building energy performance. Further 
studies are suggested to be carried out to consider model uncertainties of RCMs by 
following an ensemble-based approach. In addition, it is important to bear in mind 
that RCMs have been run not only for the future but also for the historical period. 
So, they can be compared with the real data, and the biases associated with the 
climate model data can be adjusted to reduce uncertainties and increase their 
physical consistency. This possibility does not exist for statistical downscaling 
method tools, as they are based on transforming the actual real data; it is possible 
to say they are often “black-box” tools.  

3.4 Bias Adjustment 

Making decisions and planning adaptation scenarios to enhance climate change 
resilience requires precise future climate projections, which rely on the accuracy of 
our global and regional climate models. Climate models -despite ongoing 
advancements- are subjected to systemic errors and biases. In this study, 
particularly for analysing the resilience of cooling technologies in chapter 5, the 
chosen GCM-RCM climate model combination ((MPI-M) MPI-ESM-LR/REMO ) 
has been bias adjusted. Quantile delta mapping (QDM) and Multivariate Bias 
Correction with N-dimensional Probability Density Function Transform (MBCn) 
are used to bias-correct climatic variables. QDM is a univariate bias correction 
algorithm that explicitly preserves climate models’ relative changes in simulated 
precipitation quantiles based on the quantile delta change/ perturbation and 
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detrended quantile mapping methods. Basically, these techniques are quantile 
mapping variations on the classic "delta change" on climate model projections 
models (Olsson et al., 2009). In this technique, for addressing systematic 
distributional biases in relation to observations in a historical baseline era, all 
projected future quantiles from a model are first detrended, and then quantile 
mapping is applied to the detrended series. The projected trends in the modelled 
quantiles are then reintroduced over the bias-corrected outputs following 
detrending and quantile mapping, ensuring that the bias correction had no impact 
on the underlying climate model's sensitivity to change (A. Cannon et al., 2015).  

QDM, together with the majority of bias correction techniques used in climatology, 
are utilized in a univariate context. To consider how different climate variables 
might interact, Multivariate Bias Corrections (MBCn) using the N-dimensional 
Probability Density Function Transform method can be applied (A. J. Cannon, 
2018). This method transfers all features of an observed continuous multivariate 
distribution to the matching multivariate distribution of variables from a climate 
model. In other words, for climate models, this method provides a multivariate 
generalization of quantile mapping in which the variable's quantile changes for the 
historical and projection periods are preserved.  

The final result of this method is multivariate version of quantile mapping, which 
transfers the statistical properties of an observed continuous multivariate 
distribution to the equivalent multivariate distribution of simulated variables. 
According to Cannon et al. (2015), MBCn is not constrained to correcting a specific 
measure of joint dependence, such as Pearson or Spearman rank correlation, and it 
does not make strong stationarity assumptions about the temporal sequencing of 
climate models, in contrast to other multivariate bias correction algorithms, such as 
those by Bürger et al. (2011), Vrac and Friederichs (2015) Mehrotra and Sharma 
(2016), and Cannon (A. Cannon, 2016). 
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Figure 19: Representation of Statistical Downscaling using Quantile Mapping adopted 
from (Statistical Downscaling | Regional Climate Model Evaluation System-California 

Institute of Technology) 

For applying the bias adjustment to the data, initially, the QDM approach is used to 
correct each of the climate variables. Then, using an iterative reshuffling procedure, 
the dependence structure of the climatic variables is adjusted. The climate data is 
rotated in all iterations by multiplying the data by random orthogonal matrices. 
Finally, using the inverse random matrices, the data are re-correlated. Except for 
global solar irradiation, the MBCn is used to bias-correct all variables of climate 
data. For global solar irradiation, QDM is applied. The reason is that the diurnal 
structure of global solar irradiation will break if MBCn is performed, and this is due 
to the reshuffling of marginally corrected global solar irradiation values in this 
method. As a result, this deficiency results in unrealistic values for either global or 
direct/diffused solar irradiation. Since it is aimed to keep the month-to-month 
variability of bias-corrected climate data, both calibrating the MBCn/QDM and 
predicting bias-corrected values are performed for each month of the year. For the 
calibration of bias-correction methods, all years for which observational data are 
available are taken into account. 

3.4.1 Technical validation  

Here, by comparing the observational data and the bias-corrected one over the 
period of validation, the bias correction is applied for the city of Rome. The relevant 
time period refers to the overlapping period of observational and contemporary one 
(2008-2017). In this way, for validation of the bias correction, the whole length of 
the available observational data is utilized. After being validated, it is seen that for 
both QDM and MBCn methods, the RCM simulations biases are significantly 
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reduced. These results are presented in table 4 and Figures 20 and 21. In table 4, for 
the observational and time-period, data referring to the mean climate statistics, raw 
RCM, and bias-corrected RCM are presented. The findings demonstrate a 
considerable bias in the projected temperature, solar irradiation, wind speed, and 
relative humidity from RCMs. This bias is diminished by the use of the bias-
correction step. As it is clear from Figures 20 and 21, the bias correction not only 
minimizes bias throughout the average climate features but also effectively corrects 
bias entire distribution of climate variables. As can be observed, the bias-correction 
process properly modifies the PDFs of raw RCM to mimic the PDFs of 
observations. This underlines the efficiency of the bias-correction process in 
reproducing realistic estimates of a range of climate variables taken into account in 
this study, not only for temperature but also for more complex variables like wind 
speed. 

 

Table 4: Mean temperature, solar irradiance, wind speed, and relative humidity in Rome 
over the validation time-period 

  Temperature 

oC 

Solar irradiance 

W/m2 

Wind speed  

m/s 

Relative humidity  

% 

CZ City OBS RCM 

(raw) 

RCM 

(bc) 

OBS RCM 

(raw) 

RCM 

(bc) 

OBS RCM 

(raw) 

RCM 

(bc) 

OBS RCM 

(raw) 

RCM 

(bc) 

3A Rome 16.3 16.5 16.3 187.8 161.8 187.8 3.6 2.7 3.6 72.5 70.7 72.5 

 

Table 5 shows values of mean temperatures, solar radiation, wind speed, and 
relative humidity for the city of Rome over the 20-year datasets of the 2010s, 2050s, 
and 2090s and three typical meteorological years (TMY) generated from them after 
bias adjustment. An increase in the temperature is revealed by comparing the 
contemporary period (2010s) with the two future periods (2050s and 2090s). On the 
other hand, global solar irradiation shows a decrease which can be the consequence 
of two factors: first, higher reflectance of solar radiation from increasing aerosol 
concentrations and sometimes increasing cloudiness, and second, increases in the 
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annual number of precipitation/rain events. In general, the projected changes in 
climate variables in the future TMYs are consistent with those resulting from the 
comparison of the 20-year datasets. This means that the statistically based TMYs 
are indeed representative of the climate projections over a significant period of time 
(i.e., 20 years). Therefore, they are suitable for assessing the impact of climate 
change on building energy loads. 

 

Table 5: Mean temperatures, solar irradiance, wind speed, and relative humidity in Rome 
over 2010s, 2050s, and 2090s time periods obtained from multi-year bias-corrected RCM 

data and in the three TMYs weather files created from them. 

Temperature 

oC 

Solar irradiance 

W/m2 

Wind speed  

m/s 

Relative humidity  

% 
 

2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 

20-
year 
data 

16.0 16.9 19.5 187.6 185.7 183.7 3.6 3.5 3.4 72.1 75.0 71.4 

TMY 16.2 17.0 19.5 189.4 187.6 182.2 3.6 3.4 3.2 71.8 73.5 71.6 
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Figure 20: Probability density functions of temperature and solar irradiation at Rome 

from observations (grey), raw RCM (blue), and bias-corrected RCM (red) datasets over 
the validation period 
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Figure 21: Probability density functions of wind speed and relative humidity at Rome 

from observations (grey), raw RCM (blue), and bias-corrected RCM (red) datasets over 
the validation period 
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4. Effect of climate change on the 
built environment 

4.1 Analysis of Italian residential building stock 

As a first step, to draw a clearer picture and to form a general overview of the future 
performance of Italian residential buildings, it is decided to perform a preliminary 
comparative analysis using the Morphing method. As discussed in section 3.3.3, 
this method can offer sufficient data to do a comparative analysis of long-term 
changes in energy-building performance. This part of the study uses the 
WeatherShift TM tool to carry out analysis of Italian building stock for Milan. This 
city is chosen in this step, as it is one of the representative cities of the Italian middle 
climatic zone (2100 < HDD ≤ 3000), which includes 4250 Italian municipalities on 

a total amount of 8100 (Italian Republic, Interministerial Decree of June 26th, 2015).  

Herein four weather data sets were generated: referring to a near-term period (NT) 
from 2026 till 2045 and a long-term period (LT) from 2080 till 2099, considering 
RCP 4.5 and RCP 8.5 and the median (50 %) warming percentile. The Milan 
International Weather for Energy Calculation (IWEC) was used as the base scenario 
(Huang et al., 2014). In Table 6, the annual average of climate variables (dry bulb 
temperature, T, solar irradiance on horizontal plane, SIhor, and relative humidity, 
RH) for four developed future weather data are presented. As shown, the dry bulb 
temperature is more likely to change compared with other variables, and LT-RCP 
8.5 scenario is associated with the most significant variation. It is important to 
indicate that wind speed has not been morphed by the WeatherShiftTM tool. 
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Table 6: Annual average value of Milan climate variables for different scenarios 

 
Base  NT-RCP 4.5 NT-RCP 8.5 LT-RCP 4.5 LT-RCP 8.5 

 Relative 
change 

 Relative 
change 

 Relative 
change 

 Relative 
change 

T [°C] 11.8 13.3 12.7 % 13.7 16.1% 14.3 21.2% 16.6 40.7% 

SIhor 
[W m−2] 

147 154 4.7% 156 5.6% 155 5.6% 171 16% 

RH [%] 75 73.1 −2.5% 73.1 −2.5% 72.8 −2.9% 70.8 −5.6% 

 

Subsequently, Heating Degree Days (HDD) and Cooling Degree Days (CDD) have 
been calculated for different scenarios. HDD and CDD reflect the heating and 
cooling energy demand for a building. In this calculation, base 18 °C heating and 
cooling degree days have been considered (ASHRAE, 2017). Figure 22 presents 
the monthly HDDs and CDDs for Milan base and future scenarios. It can be seen 
that HDDs increase, CDDs decrease, while changes in CDDs are more severe. 
However, degree days give a primary insight into changes in BEP, and for more 
deep analysis, BEP simulations must be run.  
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(a) 

 

(b) 

Figure 22: Monthly heating (a) and cooling (b) degree days for Milan under different 
scenarios. 
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For the purpose of analysing the future performance of Italian residential building 
stock, all the building types described in section 2.2 have been selected and 
simulated in the present chapter: single-family house (SFH), multi-family house 
(MFH), and apartment block (AB), all belonging to the climatic zone of Milan (zone 
E, 2100 < HDD ≤ 3000). 

To assess the impact of climate changes in case of refurbished buildings, an 
insulated fabric of the existing buildings has been assumed. The insulation level of 
the envelope components was set to match the U-values of the reference building 
currently adopted to verify compliance with the nearly zero-energy building 
(NZEB) requirements in Italy. For each envelope component, in accordance with 
the Italian Interministerial Decree of June 26th, 2015 (Italian Republic, 
Interministerial Decree of June 26th, 2015), the U-values of the reference building 
are listed in Table 7 for the climatic zone of Milan. Whereas the replacement of the 
existing windows has been assumed, no modification of the solar shading devices 
has been considered because of the high performance of the wooden Venetian blind 
and the new window (ggl+sh = 0.12). 

 
Table 7: Thermal transmittance values of the building envelope components assumed for 
the refurbished buildings in Milan (Italian Republic, Interministerial Decree of June 26th, 

2015) 

Building envelope component U-value [W·m−2K−1] 

External wall 0.26 

Upper floor (roof) 0.22 

Bottom floor 0.26 

Windows 1.40 
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Since the energy efficiency increase due to the refurbishment actions that would 
occur in the future might differ from that hypothesized in the present work, the 
assumption to adopt the current reference U-values of the Italian NZEB can be 
considered a reasonable starting point to carry out the analysis. 

The simulation engine, user behaviour, profiles of internal gains, and the operation 
of blinds are the same as explained in section 2.2. The heating period was set 
between October 15th till April 15th as indicated in UNI/TS 11300-1 for climatic 
zone E and fixed by the Italian energy regulations. The cooling mode is assumed to 
be available from April 16th till October 14th since the results show the cooling 
system is only active in the months of June, July, and August.  

4.1.1 Energy performance assessment 

The investigation of the climate change effect on building performance in the future 
is done based on the comparison of different indexes. The BEP was evaluated for 
all the scenarios by comparing the annual net energy need for space heating and 
space cooling of the building normalized by the net conditioned floor area (EPH,nd 
and EPC,nd). Besides, the global/overall energy performance (EPgl), expressed as the 
ratio of the annual non-renewable primary energy for space heating and space 
cooling to the net conditioned floor area, was calculated and analysed for different 
scenarios according to equation 9. The Italian most common technical building 
system technologies are considered in this study: centralized gas standard boilers 
for heat generation, and radiators as heat emitters, while space cooling is provided 
by individual direct expansion air conditioners (split systems). 

                                    EPgl =
EPH,nd ⋅fP,nren,gas

ηH,u ⋅ƞH,g 
+

EPC,nd ⋅fP,nren,el

ηC,u ⋅ƞC,g 
                                  (9) 

where, EPH/C,nd is the annual energy need for space heating/cooling, fP,nren,gas/el is the 
non-renewable primary energy conversion factor for natural gas (1.05) and 
electricity (1.95) respectively, ηH/C,u is the mean seasonal efficiency of the 
heating/cooling utilization (including emission, control, and distribution) 
subsystems, which is equal to 0.81 for heating and 0.83 for cooling, and ƞH/C,g is the 
mean seasonal efficiency of the heating and the cooling generation subsystem. The 
reference mean seasonal efficiency values of the thermal subsystems were assumed 
in compliance with the Italian Interministerial Decree of June 26th, 2015 (Italian 
Republic, Interministerial Decree of June 26th, 2015). The mean seasonal 
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efficiency of the heating generation was considered equal to the reference value 
(0.95), while the current mean seasonal efficiency of the cooling generation 
subsystem was assumed equal to the reference value of 2.5. As regards the future 
mean seasonal efficiency ratio of the cooling generation subsystem, it was obtained 
by assuming proportionality between the efficiency energy ratio (EER) of the chiller 
and its maximum theoretical efficiency (EERCarnot) over different temperatures, 
according to EN 16798-13 (CEN. EN 16798-13, 2017). The future seasonal mean 
seasonal efficiency ratio of the cooling generation subsystem is calculated as 
follows: 

𝜂C,g,future = 𝜂C,g,ref ⋅

∑ (𝛷C,𝑗

𝑇cond,in,𝑗−𝑇evap,out

𝑇evap,out
)current 

cooling 
season

∑ 𝛷C,𝑗current 
cooling 
season

⋅

∑ 𝛷C,𝑗future 
cooling 
season

∑ (𝛷C,𝑗

𝑇cond,in,𝑗−𝑇evap,out

𝑇evap,out
)future 

cooling 
season

  (10) 

where 𝜂C,g,ref, is the reference value of the cooling generation subsystem efficiency 
(equal to 2.5),  C,j is the hourly thermal energy load for cooling at time j, Tevap,out 
is the evaporator air outlet temperature (equal to 280 K), and Tcond,in,j is the 
condenser air inlet temperature at time j.  

4.1.2 Thermal comfort assessment 

For analysing the thermal comfort and overheating risk, the adaptive comfort model 
of EN 16798-1:2019, was implemented in free-floating condition. The main driving 
force behind the adaptive approach is the pattern of outside weather conditions and 
exposure to them. This allows the prediction of likely comfort temperatures or 
ranges of comfort temperature, from the outdoor running mean temperature, to 
capture the occupant's thermal sensation in a situation where they can be in comfort 
by taking adaptive adjustments (Italian National Annex of the EN 16798-1 technical 
standard). In this model, the optimal operative temperature (θo,c, in ° C) is calculated 
as mentioned earlier in equation 7. For assessing whether the building is overheated 
or not, the hours of exceedance (HE) indicator was calculated. HE is equal to the 
number of hours during the cooling period in which the operative temperature of 
the zone is greater than the upper limit temperature.  
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4.1.3 Results and discussion 

The results obtained from the simulations of the selected building types are shown 
in Figures 23 to 31 and in Tables 7 and 8.  

Figures 23 a to 25 a, which refer to the buildings before refurbishment, indicate that 
the thermal energy need for heating (EPH,nd) decreases up to 29 % for SFH and up 
to 31% for MFH and AB. On the opposite, when the thermal energy need for 
cooling (EPC,nd) is compared to the base scenario, increases up to 255 % for SFH, 
180% for MFH, and 174% for AB, are obtained. As regards the refurbished 
buildings, which are represented through Figures 23 b to 25 b, the thermal energy 
need for heating (EPH,nd) decreases up to 36 % for SFH and up to 38 % for MFH 
and AB. On the contrary, the thermal energy need for cooling (EPC,nd) increases till 
117% for SFH, 101% for MFH, and 111% for AB. The comparison between the 
thermal energy needs for heating and cooling before and after refurbishment shows 
that the relative variations of EPH,nd due to climate change increase after 
refurbishment for the same building while changes of EPC,nd decrease. This is due 
to the positive effect of the insulation when a cooling system is considered.  

In addition, the thermal energy need for cooling in SFH − especially before 

refurbishment of the building − is found to be more sensitive to climate change. 

This result is due to the fact that SFH has a higher shape factor in comparison with 
MFH and AB, which means it has a larger surface area in proportion to its volume 
and will be more sensitive to the warming weather. It is also important to indicate 
that relative changes in cooling demand for either existing or refurbished buildings 
in all case studies are more dramatic in comparison with variation in their heating 
demand, and this can be associated with their lower cooling energy use in the 
present days. 
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(a)   

  

(b) 

Figure 23: Thermal energy need for heating and cooling normalized by the conditioned 
floor area for single-family house (SFH) existing building (a) and after refurbishment (b) 

under different future scenarios in Milan. 
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(a) 

 

(b) 
Figure 24: Thermal energy need for heating and cooling normalized by the conditioned 

floor area for multi-family house (MFH) existing building (a) and after refurbishment (b) 
under different future scenarios in Milan 
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(a) 

 

(b) 
Figure 25: Thermal energy need for heating and cooling normalized by the conditioned 

floor area for apartment block (AB) existing building (a) and after refurbishment (b) 
under different future scenarios in Milan 
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Figures 26 to 28 present the breakdown of the adaptive comfort analysis. The 
graphs show the distribution of hours of the cooling period (April 16th till October 
14th - 4368 hours) in three ranges: Comfort, warm discomfort, and cold discomfort. 
Figures 26 a to 28 a refer to the buildings before refurbishment, and Figures 26 b to 
28 b represent buildings after refurbishment. Results report that for all analysed 
cases before refurbishment, occupants will experience overheating up to 50 % of 
the time by the mid-century (NT) and up to 80% of the time by the end of the 
century (LT). The overheating hours after refurbishment for the same building types 
reach 79 % of the time by the mid-century (NT) and 92 % of the time by the end of 
the century (LT). It is apparent that for all the scenarios and case studies, the period 
of warm discomfort increases due to climate change. This issue is more significant 
for buildings after refurbishment due to the negative effect of insulation that causes 
heat trap in the buildings in a free-floating regime. It is important to note these 
results do not take into account the effect of ventilative cooling because the standard 
ventilation flow rate is considered (0.30 h−1). This trend can also be revealed in 
Figures 29 to 31, which present the hourly operative temperature on the upper floor 
of the analysed buildings in free-floating condition for the second week of May 
under different future scenarios. By comparing the hourly temperature profile after 
refurbishment (Figures 29 b to 31b) and existing buildings (Figures 29 a to 31a), 
although the changes in temperature are steadier after refurbishment, its average 
value is higher. In addition, MFH and AB are found to be more sensitive to 
overheating risk, and the reason is that MFH and AB buildings have larger windows 
in comparison to SFH, as their WWR is higher (see also Table 2). Likewise, this 
issue can be seen in the hourly temperature profiles (Figures 29 to 31). As an 
example, for the worst-case scenario (LT 8.5) after refurbishment, temperatures of 
the upper floor reach up to 31 °C for MFH and AB while they reach up to 29 °C for 
SFH. Besides, hours of exceedance (HE) for all the scenarios are presented in 
Tables 7 and 8. It can be seen that although HE increases after refurbishment, as 
mentioned earlier, the relative change in HE due to climate change for buildings 
will be less compared to buildings before refurbishment.  
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(a) 

 

(b) 
Figure 26 : Adaptive comfort analysis for single-family house (SFH) existing building (a) 

and after refurbishment (b) under different future scenarios in Milan 
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(a) 

 

(b) 
Figure 27: Adaptive comfort analysis for multi-family house (MFH) existing building (a) 

and after refurbishment (b) under different future scenarios in Milan 
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(a) 

 

(b) 
Figure 28: Adaptive comfort analysis for apartment block (AB) existing building (a) and 

after refurbishment (b) under different future scenarios in Milan 
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(a) 

 

(b) 
Figure 29: Hourly operative temperature in the upper floor of single-family house (SFH) 

existing building (a) and after refurbishment (b) for the second week of May under 
different future scenarios in Milan. 
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(a) 

 

(b) 

Figure 30: Hourly operative temperature in the upper floor of multi-family house 
(MFH) existing building (a) and after refurbishment (b) for the second week of 

May under different future scenarios in Milan. 
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(a) 

 

(b) 
Figure 31: Hourly operative temperature in the upper floor of apartment block (AB) 
existing building (a) and after refurbishment (b) for the second week of May under 

different future scenarios in Milan. 
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Tables 8 and 9 also provide the results of the global/overall energy performance 
calculation. The analysis of this factor is crucial for the interpretation of the energy 
usage of case studies under the impact of global warming. Before the refurbishment, 
the EPgl increases for MFH and AB in all scenarios. However, the degree of change 
is not so significant, except for the pessimistic scenario (LT.8.5). This illustrates 
that the reduction in the energy for winter conditioning outweighs the cooling 
demand, which results in a slight alteration of the final total energy for the building.  

The reason is that the analysis has been done for a city in the Italian middle climatic 
zone, having HDDs from 2100 to 3000, in which the energy usage of the building 
is more biased towards heating. Besides, it is also important to consider that 
electricity has a higher primary energy factor than natural gas. Nonetheless, the EPgl 
for SFH in all scenarios decreases except the LT.8.5. This is associated with the 
higher shape factor of SFH, which skews the energy usage of it more toward the 
heating regime. It results in a very limited decrease in the total primary energy. 

After refurbishment, the EPgl increases for all the building types in all scenarios, 
and the degree of change is significant. Besides, the relative changes of EPgl for 
refurbished buildings are higher compared to existing buildings. As an example, in 
the pessimistic scenario (LT.8.5), the relative change of EPgl for SFH before 
refurbishment is equal to 9.1%, while after refurbishment, it reaches 70%. The 
reason is that the heating demand is not dominant anymore for any case study after 
the refurbishment. In other words, these results show that the effect of 
refurbishment on EPgl will reduce due to climate change. Even though the effect of 
the renovation is reduced by Climate Change, comparing the absolute values shows 
that there is still an improvement over the existing building. 
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Table 8: Global/overall energy performance and hours of exceedance for SFH, MFH, and 

AB, existing buildings under different scenarios in Milan. 

 Base  NT-RCP 4.5 NT-RCP 8.5 LT-RCP 4.5 LT-RCP 8.5 

 Relative 

change 

 Relative 
change 

 Relative 
change 

 Relative 
change 

SFH EPgl 

[kWh·m-2 ] 

219 213 -2.5% 210 -3.9% 214 -2.4% 239 9.1% 

HE 

[h] 

550 884 60.6% 884 60.6% 965 75.2% 1405 155.3% 

MFH EPgl 

[kWh·m-2 ] 

202 205 1.7% 204 1.4% 211 4.9% 258 28% 

HE [h] 1709 2228 30.4% 2184 27.8% 2490 45.7% 3014 76.4% 

AB EPgl 

[kWh·m-2 ] 

116 118 1.5% 117 1.2% 121 4.5% 147 26.9% 

HE [h] 1571 2346 49.3% 2346 49.3% 2650 68.7% 3315 111% 
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Table 9: Global/overall energy performance and hours of exceedance for SFH, MFH, and 
AB, after refurbishment under different scenarios in Milan. 

 Base  NT-RCP 4.5 NT-RCP 8.5 LT-RCP 4.5 LT-RCP 8.5 

 Relative 
change 

 Relative 
change 

 Relative 
change 

 Relative 
change 

SFH EPgl 

[kWh·m-2 ] 

49.1 54.8 11.6% 55.5 13.1% 59.9 22% 83.6 70.2% 

HE 

[h] 

2808 3057 8.8% 3057 8.8% 3232 15.1% 3652 30% 

MFH EPgl 

[kWh·m-2 ] 

60.9 68.8 13% 70.1 15.2% 75.7 24.3% 107.2 76.1% 

HE [h] 3172 3442 8.5% 3442 8.5% 3538 11.5% 3798 19.7% 

AB EPgl 

[kWh·m-2 ] 

42 46 9.6% 46.7 11.2% 49.8 18.6% 68.1 62.6% 

HE [h] 2917 3338 14.4% 3338 14.4% 3518 20.6% 3997 37% 

 

Overall, comparing EPH,nd, EPC,nd, EPgl, and HE of all building types for the near-
term period scenarios presents a slight difference between RCP 4.5 and 8.5, while 
changes become more significant considering the long-term period. This finding 
represents that the effect of climate change on the Italian residential buildings from 
2026 till 2045 does not alter a lot whether the CO2 emission level stabilized or 
continues to grow. As an example, warm discomfort hours for all the case studies 
are almost the same in both NT scenarios and thermal energy need for cooling 
differs up to 2 kWh/m2. Although climate change exacerbates the performance of 
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the buildings even in the NT period, the impact of reducing the emission levels will 
be significant for the long-term period assessment. 

Finally, in order to generalize the results for different building types and insulation 
levels, a new parameter was introduced to express the outdoor temperature 
sensitivity of the building, expressed as the ratio of the overall transmission heat 
transfer coefficient (Htr) to the gross conditioned volume (Vgr). Htr is calculated 
according to the EN ISO 13789 standard (CEN. EN ISO 13789, 2017), as in 
Equation (11): 

 
tr D g U A i i i k k k

i k
H H H H H b A U b l = + + + =   +   

          (11) 

where, HD is the direct heat transfer coefficient between the heated or cooled space 
and the exterior through the building envelope, Hg is the steady-state ground heat 
transfer coefficient, HU is the transmission heat transfer coefficient through 
unconditioned spaces, and HA is the transmission heat transfer coefficient to 
adjacent buildings. For each i-th component, bi is the adjustment factor for the 
temperature difference, Ai is the area, and Ui is the thermal transmittance. For each 
k-th linear thermal bridge, bk is the adjustment factor for the temperature difference, 
lk is the length of the linear thermal bridge, and 𝜓k is the linear thermal 
transmittance. 

In Figure 32, the relation between EPH,nd , EPC,nd, and EPgl versus Htr/V is presented. 
As can be seen from the trend lines, all three energy performance indicators increase 
when Htr/V grows. This trend is significantly slighter for EPC,nd as the refurbishment 
in this study is applied by merely increasing the insulation level of the envelope, 
which makes it less effective on thermal energy need for cooling. In Figures 33 and 
34, the relation between the variation of all three energy performance indicators 
versus Htr/V for NT (2021-2040) and LT (2081-2099) periods based on the RCP 8.5 
scenario is presented. RCP 8.5 scenario is selected as there is evidence that it is 
already late for more optimistic scenarios, so RCP 8.5 is the most probable scenario. 
Results show a decrease in EPH,nd and an increase in EPC,nd in both time periods. 
These changes are slighter in NT (2021-2040) period and greater in LT (2081-2099) 
period, expectedly. In addition, EPgl decreases with the slightest variation in both 
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time periods. In other words, the sensitivity of EPgl variations to the outdoor 
temperature after climate change is less than the other two indicators’ variations.  

A general consideration is that the EPgl variation after climate change mainly 
depends on the outdoor temperature sensitivity of the building and on the heating-
to-cooling need ratio that, in turn, is a function of the outdoor temperature 
sensitivity. Consistently with this consideration, the performed analysis confirms 
that the EPgl is not biased toward heating after refurbishment. In addition, the most 
striking result to emerge is that after refurbishment, the effect of building typology 
on the energy performance, and also its variations due to climate change, will 
significantly decrease.  

 

 
Figure 32: Energy Performance (EP) vs. Htr/V 
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Figure 33: EP variation vs. Htr/V for NT (2021-2040) RCP 8.5 scenario 

 
Figure 34: EP variation vs. Htr/V for LT (2081-2099) RCP 8.5 scenario 
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This study sets out to analyse the impacts of climate change on Italian residential 
buildings' performance. While the changes in energy need pattern are well studied, 
the impacts of future scenarios on the Italian building stock on a regional scale are 
neglected. To fill this gap, three representative building types of the existing 
residential building stock were simulated under two future scenarios (RCP 4.5 and 
RCP 8.5) for the city of Milan (representative of the Middle Climatic zone). In 
addition, the effect of adding insulation level of the envelopes in all these conditions 
is analysed to incorporate the influence that the refurbishment has on the future 
performance of buildings, especially considering the measures that are commonly 
applied in the country. This analysis lays the foundation for future actions toward 
the resiliency of the built environment. To quantify and better present the impact of 
climate change, even considering the significant long-life span of buildings in Italy, 
both near-term (2026-2045) and long-term (2080-2099) periods were assessed.   

For different residential building types, the results clearly show that there is a 
drastic rise in cooling energy use and a moderate decrease in heating energy use, as 
expected. The cooling and heating demand is demonstrated to change from 47.1 % 
(AB) to 255 % (SFH) and from −9.5 % (SFH) to −31 % (AB), respectively in 
existing buildings. For refurbished buildings, the changes in the cooling demand 
vary between 29 % (MFH) to 117 % (SFH), and in the heating demand varies 
between −12 % (SFH) to −38 % (AB). In addition, the overheating risk for existing 
buildings increases significantly as the warm discomfort hours raise between almost 
30 % (MFH) to 155 % (SFH). After refurbishment, this increase varies between 8.5 
% (MFH) to 37 % (AB). Likewise, it is shown that the global/overall energy 
performance for different scenarios changes from −3.9 % (SFH) to 28 % (MFH) for 
the existing and between 9.6 % (AB) to 76 % (MFH) for refurbished buildings. It 
was also concluded that buildings with higher shape factor are more sensitive to 
climate change, and this sensitivity is reduced by applying refurbishment. However, 
it is crucial to point out that the effect of refurbishment − despite being always 

positive − reduces in the future compared to the current situation. This illustrates 
the need to consider climate change for re-identifying refurbishment actions. 
Besides, it was confirmed that the effect of different scenarios on Italian residential 
buildings is more severe in the long term. Therefore, the climate change impact 
magnitude is not equal for different future weather scenarios and case studies, so in 
a changing climate, it becomes absolutely necessary to perform a regional and 
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localized analysis. These findings point out the urgent need to establish building 
adaptation measures for climate change.  

In the next section, in order to reach a more holistic overview, the impact of climate 
change on energy performance and thermal comfort of a nearly zero-energy 
building is analysed. This analysis is applied to two other climate zones of Italy 
(Mediterranean Zone: Rome and Palermo) in addition to Milan.  

4.2 Analysis of nearly zero energy buildings (NZEBs) 

Energy efficient buildings like NZEBs - as efforts to reduce the contribution of the 
building sector on climate change – are also impacted by climate change like all 
building types in the same ways mentioned in sections 1.3 and 4.1. In the following, 
the associated energy performance requirements, and the key targets of NZEBs are 
explained in more detail.  

According to Directive 2010/31/EU of the European Parliament (2010), ‘nearly 

zero-energy building’ means a building that has a very high energy performance. 

The nearly zero or very low amount of energy required should be covered to a very 
significant extent by energy from renewable sources, including energy from 
renewable sources produced on-site or nearby. As reported by the international 
standards, four classes of requirements are proposed for NZEBs: a) energy needs 
(building fabric), b) total (renewable + non-renewable) primary energy use, c) non-
renewable primary energy use (without compensation between energy carriers), and 
d) non-renewable primary energy use (with compensation between energy carriers) 
(European Committee for Standardisation, 2017). In addition, it is desirable that 
indicators for partial EP requirements related to fabric and HVAC systems features 
are added in order to avoid performance unbalance between different systems and 
components of the building. 

According to the Italian legislation, three main energy performance requirements 
are provided, namely the annual energy needs for space heating (EPH,nd) and space 
cooling (EPC,nd), and the overall annual total primary energy (EPgl,tot), including 
space heating, space cooling, domestic hot water, mechanical ventilation, lighting, 
and transportation (the last two energy services only for non-residential buildings). 
The reference values of the performance indicators are obtained through the 
notional reference-building approach (European Committee for Standardisation, 
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2017b). Strict requirements are also provided for renewable energy ratio, namely 
for domestic hot water (RERW) and for heating, cooling, and domestic hot water 
(RERH+C+W), respectively.  

The electrical energy produced by the PV system is allocated to different services 
(heating, cooling, DHW) according to their respective demands. The surplus 
energy, which includes exported energy and energy for non-EP uses (e.g., electrical 
appliances), is calculated on a monthly basis and is not accounted for in the EP 
assessment. Finally, partial requirements related to fabric include the envelope 
average U-value, the ratio of the envelope effective solar area to the floor area, and 
the thermal and solar properties of single envelope components. Specific 
requirements on the efficiency of generators and of other HVAC equipment are also 
provided. 

The performance of NZEBs in the future has not yet been investigated sufficiently. 
The climate is changing, and compliance with NZEB requirements may not be a 
guarantee of energy performance and indoor environmental quality. Considering 
the long-life span of buildings, the performance of NZEBs should be analysed using 
future weather data to ensure energy efficiency, sustainability, and climate 
resilience over time.  

This chapter investigates the effects of climate changes on the energy performance 
of a nearly zero-energy building in different climatic zones in Italy: Milan (2404 
HDD), Rome (1415 HDD), and Palermo (751 HDD). The analysis is carried out by 
analysing the NZEB requirements under different scenarios. “Representative 

Concentration Pathways (RCPs)” 8.5 (business as usual) of emission, and 
concentration scenarios, according to the fifth assessment report of the 
Intergovernmental Panel on Climate Change (Symon, 2013), have been applied in 
this study. Dynamically downscaled future hourly weather data from the regional 
climate models ((MPI-M) MPI-ESM-LR/GERIC-REMO) are used in this work to 
create future typical meteorological year (TMY). The weather data was not bias 
adjusted in this step, as finding observational data for all three cities was impossible. 
Energy simulations are carried out using EnergyPlus for the mid-term (from 2041 
to 2060) and long-term (from 2081 to 2100) periods. In Figure 35, the box plots of 
outdoor air-dry bulb temperatures for Milan, Rome, and Palermo TMYs in 2020, 
2050, and 2090, are presented.  
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Figure 35: Box plot of outdoor air-dry bulb temperature for Milan, Rome, and Palermo in 

2010, 2050 and 2080 

The analysis has been carried out assuming as a case study the “Vivaldi House” 

(Figure 36), described in the EN 12831:2003 standard (European Committee for 
Standardisation, 2003). The “Vivaldi House” is a residential building with one 

conditioned story above ground and an unconditioned basement. The attic and the 
staircase are unconditioned too. The basement hosts the cellar and the garage and a 
conditioned hobby room. The West-oriented building facade is in adherence to 
another residential building. The conditioned story is 0.5 m above ground; part of 
the story is on a ventilated suspended floor. The main geometric data of the 
conditioned space are listed in Table 10. 

The building is assumed to be located in three different Italian climatic zones, 
Milan, Rome, and Palermo. The technologies adopted in the case study represent 
the most widespread passive solutions in Italy. The opaque envelope components 
are thermally insulated on the external side. The transparent envelope components 
are Low-E triple-glazing windows for the building in Milan, Low-E double-glazing 
windows for the building in Rome, and uncoated double-glazing windows for the 
building in Palermo, to meet the thermal transmittance in accordance with the 
decree stated later. The South- and East-oriented windows are equipped with 
external movable solar shading devices. 

With the aim to verify the NZEB requirements in Italy, the thermal transmittance 
of the envelope components was set in accordance with the reference building, as 
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defined in the Inter.D. of June 26th, 2015 (Italian Republic, Interministerial Decree 
of June 26th, 2015). The thermal transmittance values are listed in Table 11 for each 
climatic zone.  

The parameters of the solar shading devices were set such that the total solar energy 
transmittance value of the glazing plus shading system is equal to 0.35, in 
agreement with the Italian reference building approach (Italian Republic, 
Interministerial Decree of June 26th, 2015). 

 

Table 10: Geometric data of the case study 

Quantity Value Unit 

Conditioned gross 
volume, Vg 

396 [m3] 

Conditioned net 
volume, Vn 

278 [m3] 

Conditioned net floor 
area, Af,net 

103 [m2] 

Compactness ratio, 
Aenvelope/Vg 

0.99 [m-1] 

Windows area, Awin 15.2 [m2] 

Window-to-wall ratio, 
WWR 

0.15 [-] 
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Figure 36: Geometric model of the case study 

 
Table 11: Thermal transmittance of the building envelope components of the NZEB in 

the analysed climatic zones 

Component 
U-value [W·m‒2K‒1] 

Milan Rome Palermo 

External 
wall 

0.26 0.29 0.43 

Roof  0.22 0.26 0.35 

Floor 0.26 0.29 0.44 

Window 1.40 1.80 3.00 

Space heating and space cooling are provided through fan coil units. In design 
conditions, the supply water temperature is set to 55 ° C and 7 ° C for heating and 
cooling, respectively. The return water temperature is set to 40 ° C for heating and 
12 ° C for cooling. The emission system is characterized by a continuous operation 
of the heating and cooling systems, considering 20 ° C and 26 ° C temperature set-
points, respectively. 

Heat (for space heating and domestic hot water) and cold are provided by an 
electrical reversible air-to-water heat pump with a multi-stage compressor. The 



 

 

 

 

85 
 

sizing of the heat pump is based on the heating peak load for Milan and on the 
cooling peak load for Rome and Palermo. In the heating mode, the design inlet air 
dry bulb temperature is 7 ° C and the outlet water temperature is 55 ° C. For Milan 
and Rome, the rated COP is equal to 2.90, and the rated heating power is equal to 
5.5 kW. For Palermo, the rated COP is equal to 2.90, and the rated heating power 
is equal to 4 kW. In the cooling mode, the inlet air dry bulb temperature is 35 ° C 
and the outlet water temperature is 7 ° C. For Milan, the EER is equal to 3.33, and 
the rated cooling power is equal to 6.5 kW. For Rome and Palermo, the EER is 
equal to 2.9, and the nominal power for cooling is equal to 9 kW.  

The domestic hot water delivery is set to 40 °C. To meet the need for domestic hot 
water, a 100-l hot water storage tank at a temperature of 55 °C is considered.  

The efficiency of the heating/cooling/DHW utilization (including emission, control, 
and distribution) subsystems was assumed equal to 0.81 in compliance with the 
Italian Inter.D. of June 26th, 2015 (Italian Republic, Interministerial Decree of June 
26th, 2015). 

The photovoltaic system (235 W peak power) with crystalline silicon modules 
installed on the South-oriented roof pitch was considered as well. The Eckstein 
(1990) model for crystalline PV modules was employed, in which the electricity 
production (current voltage) of the circuit is a function of the module temperature. 
Besides, the cell temperature of modules is computed based on an energy balance 
relative to NOCT (Nominal Operating Cell Temperature) conditions (Duffie & 
Beckman, 1991). 

For the simulation, a standard user behaviour was assumed for the quantification of 
the internal heat gains and the airflow rates by natural ventilation, according to the 
Italian National Annex of EN 16798-1 (Italian Thermomechanical Committee, 
2020). 

4.2.1 Energy performance assessment 

The building energy performance indicators assessed in this part are the annual 
energy needs for space heating and space cooling (EPH,nd and EPC,nd, respectively), 
the overall annual total primary energy (EPgl,tot), which includes space heating, 
space cooling and domestic hot water, the mean seasonal coefficient of performance 
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(COPm) and the mean seasonal energy efficiency ratio (EERm) of the heat 
generators, and the renewable energy ratio (RER), under different climate change 
scenarios. The indicators refer to the NZEB requirements, as defined by the Italian 
energy regulations. 

The performance indicators are calculated and assessed through detailed dynamic 
simulation using EnergyPlus. The primary energy conversion factors of the energy 
carriers applied in this study are those provided by the Italian Interministerial 
Decree (Inter.D.) of June 26th, 2015 (Italian Republic, Interministerial Decree of 
June 26th, 2015). Specifically, the total primary energy conversion factor of 
electricity from the grid amounts to 2.42, split into non-renewable (1.95) and 
renewable (0.47) parts. 

4.2.2 Results and Discussion  

A set of comparative analysis is performed on different NZEB requirements in three 
Italian climate zones for the mid-term (2050s) and long-term (2090s) period for the 
selected case study. The aim is to assess the impact of climate change on the future 
performance of NZEBs. 

The annual energy needs for space heating and space cooling (EPH,nd and EPC,nd, 
respectively) are represented in Figure 37. The results show decreases in EPH,nd 

from 7.1 % up to 99.3 % for all the cities and for both time periods compared to 
2020 as the reference case. On the other hand, EPC,nd, increases from 4.5 % to 94.1 
%. A closer analysis of these data shows that the NZEB compliance of annual 
energy needs for space cooling is not met in the future for either cities or time 
periods. However, the magnitude of the variation is not equal in different scenarios. 
As an example, the maximum increase in the cooling demand (94.1 %) is expected 
to occur in 2090s in Rome, while the maximum decrease in heating demand 
(99.3%) is likely to happen in Palermo by the same period. It is also important to 
indicate that NZEBs in Milan are the least sensitive to climate change, which is due 
to buildings’ lower cooling energy use at present. 
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Figure 37: The annual energy needs for space heating and space cooling for Milan, Rome, 

and Palermo in 2010, 2050 and 2080 

The overall annual total primary energy (EPgl,tot) is presented in the last set of 
columns in Figures 38, 39, and 40 for all cities. In addition, the splits of EPgl,tot for 
heating (H), domestic hot water (W), and cooling (C) are shown in the previous 
columns of the same Figures. It can be noticed that EPH decreases, EPw remains 
constant, and EPC increases, regardless of the time period or the climatic zone. If 
we now turn into EPgl,tot, it is seen that in 2050s, it decreases for Milan and Palermo, 
while it increases for Rome. This is due to a higher reduction of annual energy need 
for heating in 2050 for Milan and Palermo. On the other hand, in 2090s EPgl,tot 

decreases for Milan and increases for Rome and Palermo. The change in Milan is 
slight (‒1.9 %), while for Rome and Palermo, this change is more significant (36.3 
% and 45.6 %, respectively). This is due to the fact that for Milan − unlike the two 

other cities − the energy for winter conditioning outweighs the cooling demand, 
which results in a slight alteration of the final total energy for the building in the 
future. It can be concluded that in 2090s, the NZEB compliance of EPgl,tot was not 
met for Rome and Palermo, while in 2050s, it was not met only in the case of Rome. 

In Figures 38-40, the share of either non-renewable (EPnren) or renewable (EPren) 
primary energy is also presented. The relative changes in these values are noted in 
Table 12 as well. EPnren decreases for Milan and increases for Rome and Palermo 
for both periods. This might be associated with the dominance of the cooling energy 
need in Rome and Palermo, which leads to an increase in the electrical energy 
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demand from the grid. EPren in 2050s decreases for Milan and Palermo (4.2 % and 
8.8 %, respectively) and slightly increases for Rome (1.2 %). On the other hand, in 
2090s, EPren increases for all cities. It can be suggested that by the end of the 
century, the exploitation of renewable energy will increase due to climate change. 

 

 
Figure 38: Annual primary energy for heating (H), domestic hot water (W), cooling (C), 

and overall, of the building in Milan, in 2010, 2050 and 2080 

 

 
Figure 39: Figure 5: Annual primary energy for heating (H), domestic hot water (W), 

cooling (C), and overall, of the building in Rome, in 2010, 2050 and 2080 
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Figure 40: Annual primary energy for heating (H), domestic hot water (W), cooling (C), 

and overall, of the building in Palermo, in 2010, 2050 and 2080 

 

 
Table 12: Relative changes of non-renewable, renewable, and total primary energy for 

Milan, Rome, and Palermo, in 2050 and 2080 compared to 2010 

 
      Milan      Rome      Palermo 

2050s 2090s 2050s 2090s 2050s 2090s 

EPgl,nren −4.9% −12.5% 19.2% 44.1% 5.8% 57.1% 

EPgl,ren −4.2% 4.5% 1.2% 31.2% −8.8% 38.7% 

EPgl,tot −4.5% −1.9% 8.3% 36.3% −3.4% 45.6% 

The annual delivered energy by each energy carrier (i.e., electricity from the grid, 
on-site PV electricity, and on-site aerothermal energy), expressed by unit of 
conditioned net floor area, is shown in Figures 41, 42 and 43, for the building in 
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Milan, Rome, and Palermo, respectively. In addition, the PV surplus is shown in 
the last set of columns of the same Figures. The results show that the delivered 
energy decreases for heating, remains constant for domestic hot water and increases 
for cooling for all the scenarios. Looking at the overall delivered energy, it is 
apparent that electricity from the grid will increase in the future for Rome and 
Palermo and decreases for Milan. The reason lies in the dominance of the heating 
energy need in Milan. The on-site aerothermal energy increases in all scenarios, 
while this increase is more significant in 2090s and for Rome and Palermo. This 
comes from the fact that the higher outside temperature leads to more aerothermal 
energy extraction by the heat pump. Furthermore, the on-site PV electricity slightly 
decreases in all future scenarios. This may be associated with the reduction in the 
voltage that PVs can generate because of higher temperatures. Besides, the amount 
of direct and diffuse radiation varies in the future due to the changes in cloud cover 
and atmospheric aerosol loadings. This leads to lower efficiency of PVs. In 
addition, the PV surplus decreases in every scenario (except in Palermo for 2050s) 
since not only the on-site PV electricity decrease but also the electricity demand 
increases.  

 

 
Figure 41: Annual delivered energy for heating (H), domestic hot water (W), cooling (C), 

overall, and PV surplus in Milan in 2010, 2050 and 2080 
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Figure 42: Annual delivered energy for heating (H), domestic hot water (W), cooling (C), 

overall, and PV surplus in Rome in 2010, 2050 and 2080 

 

 
Figure 43: Annual delivered energy for heating (H), domestic hot water (W), cooling (C), 

overall, and PV surplus in Palermo in 2010, 2050 and 2080 

 

Finally, in Table 13, the renewable energy ratio (RERH+W+C), the mean seasonal 
coefficient of performance (COPm), and the mean seasonal energy efficiency ratio 
(EERm) are presented for each city in every period. In all scenarios, the compliance 
with the RER requirement for the NZEB is met (i.e., higher than 50%, according to 
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the current Italian legislation). However, the changes in this value are not 
significant. In addition, COPm increases for Rome and Palermo in all scenarios 
(except in Rome for 2050s), as the increase in temperature due to climate change 
makes the heat pump more efficient in winter. For Milan, the COPm decreases in 
all scenarios because of the higher decrease in the heating load factor compared to 
the other two cities, despite higher outside temperatures. Besides, EERm increases 
in all scenarios, except in 2050s for Palermo. This is due to the fact that by 
increasing the energy need for cooling in the future, the cooling load factor 
increases too.  

It is important to indicate that the existence of exceptions in results and discussion 
may be due to the fact that the weather data have not been bias-adjusted to reduce 
long-term bias associated with climate model data. 

 

 

Table 13: Renewable energy ratio, mean coefficient of performance, and mean energy 
efficiency ratio for Milan, Rome, and Palermo in 2010, 2050 and 2080 

  
            Milan              Rome            Palermo 

2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 

RERH+W+C 62% 62% 66% 60% 56% 58% 63% 59% 60% 

COPm 1.96 1.91 1.89 1.90 1.87 1.94 2.10 2.18 2.32 

EERm 2.72 2.85 2.98 2.07 2.13 2.48 2.19 2.12 2.52 

 

The aim of the present chapter was to investigate the energy performance of NZEBs 
in future scenarios of climate change. Three locations belonging to different Italian 
climatic zones were selected to perform the analysis: Milan, Rome, and Palermo. 
The NZEB energy performance requirements according to Italian regulations were 
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compared for the mid-term and the long-term future periods with the present time. 
The main findings are summarized as follows: 

1. The impacts of climate change on the NZEBs energy performance highly 
depend on the climatic zone. As an example, although in all scenarios, the 
NZEB requirements are not met, it was demonstrated that the NZEBs in 
Milan are less sensitive to climate change compared to Rome and 
Palermo.  

2. The studied period also affects the evaluation results significantly. For 
2090s, compared to 2050s, the incompliance with the NZEB requirements 
is more severe. For instance, the annual energy needs for cooling in 2050 
may increase up to 8.2 % (Milan), while this value may raise up to 94.1% 
(Rome) in 2090s. 

3. The analysis performed on renewable and non-renewable primary energy 
showed that for renewable energy, the changes depend on the type of 
energy source. More in detail, while the on-site aerothermal energy 
increases, the on-site PV electricity decreases for all scenarios. On the 
other hand, the non-renewable delivered primary energy increases for 
Rome and Palermo, which once more verifies the importance of the 
climatic zone for such analyses.  

Overall, buildings will miss the target of meeting nearly zero energy in the future, 
so a new configuration is needed to keep the NZEB goals in the future. These results 
highlight the significance of considering future weather for the energy performance 
assessment of NZEBs and establishing building adaptation measures for climate 
change besides NZEB measures to ensure a holistic approach. 
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5. Resilient cooling technologies  

5.1 Literature review on resilient cooling solutions  

Climate change will have impacts on buildings' energy performance and their 
cooling systems. As explained earlier in chapter 1, the major and critical impacts of 
climate change on buildings include overheating, which results in more cooling 
energy consumption and in energy shortage. Accordingly, providing cooling 
technologies that are energy efficient now and still functional in the future is crucial. 
In other words, resilient cooling solutions are those that both help to mitigate the 
negative impacts of buildings on the environment and adapt to future scenarios so 
that future risks are prevented. According to Zhang et al. (2021), resilient cooling 
solutions favour from efficient “absorptive capacity, adaptive capacity, restorative 

capacity, and recovery speed.” As mentioned earlier, this thesis has been developed 
in nexus with the research activities of Buildings and Communities Programme 
(EBC) Annex 80 ‘‘Resilient Cooling of Buildings” which studies the resilience of 

cooling technologies and solutions and divides cooling strategies into four groups 
presented in table 14.  
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Table 14: Classification of the most widespread cooling technologies according to Annex 
80 ‘‘Resilient Cooling of Buildings” 

Categories The most widespread technologies 

Reducing heat gains to 
indoor environments and 
people 

• Advanced solar shading/advanced glazing 

technologies  

• Cool envelope materials  

• Green roofs, roof pond, green facades, ventilated 

roofs, and ventilated facades  

• Thermal mass utilization, including PCM and off-
peak ice storage 

Removing sensible heat from 
indoor environments 

• Ventilative cooling  

• Adiabatic/evaporative cooling  

• Compression refrigeration  

• Absorption refrigeration, including desiccant cooling 

• Natural heat sinks, such as groundwater, borehole 

heat exchangers, ground labyrinths, earth tubes, and 
sky radiative cooling   

• High-temperature cooling system: Radiant cooling, 
chill beam 

Enhancing personal comfort 
apart from cooling whole 
spaces 

• Comfort ventilation (elevated air movement)  

• Micro-cooling and personal comfort control 

Removing latent heat from 
indoor environments 

• High-performance dehumidification, including 
desiccant humidification 
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The cooling solutions which have been adopted in this study are from the first and 
second categories. The first two, which aim at reducing heat gains to indoor 
environments and people, are advanced solar shading/advanced glazing 
technologies besides the cool envelop materials. The third solution is ventilative 
cooling, which is among the solutions that help remove sensible heat from indoor 
environments. More information is given on these three cooling solutions in the 
following paragraphs.  

5.1.1 Advanced solar shading/advanced glazing 

The first cooling solution is advanced solar shading/advanced glazing technologies, 
which refers to “reducing heat gains to indoor environments and people.” The 
characteristics of glazing and shading technologies, the way they are combined, and 
the relevant functional classification - static and dynamic, besides manual and 
automatic- could determine the resilience of the cooling solution. Windows can 
have a significant impact on peak cooling loads, cooling energy use, and occupant 
comfort (C. Zhang et al., 2021). By absorbing, transmitting, and reflecting solar 
energy, thanks to the materials used in the glass and glazing system's construction, 
glazing technologies can control the cooling loads caused by solar gain. To increase 
the thermal management capability of the glazing, traditional clear glass which has 
a very high solar transmittance, is equipped with coatings and body tints to increase 
their reflection/absorption. Low thermal-infrared emittance ("low-E") coatings are 
the most efficient and extensively used glazing solutions that will limit solar heat 
gain and lower the window's thermal transmittance (or "U-value") when 
appropriately positioned within an insulating glass unit. While effectively lowering 
solar gain, low-E coatings could offer spectrum control and admit the majority of 
daylight, which also decreases the building cooling loads related to electric lighting 
(Rubin et al., 1999). Low-E coatings have two main functions in energy 
management. Since long-wave radiative heat transmission is decreased by the high 
reflectance of all low-E coatings between 4 µm and 50 µm, the insulated glass unit's 
overall thermal conductance is decreased. The initial generation of low-E coatings, 
which were employed in passive solar-heated buildings, had a high solar spectrum 
transmittance. The reflectance transition wavelength was reduced from around 4 
µm to about 0.7 µm by the second generation of coatings available since the 1990s, 
followed by subsequent improvements in multilayer coatings. As a result, the 
majority of the near-infrared radiation in sunlight (0.7-2.5 µm) is reflected. The 
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most popular low-E coatings nowadays are those that are spectrally selective. Some 
are applied immediately to the hot glass on the float line, while the majority are 
magnetron sputtered under vacuum after the glass is created. Low-E coating 
emissivity varies from roughly 0.10-0.15 for pyrolytic coatings to 0.03-0.08 for the 
majority of post-processed sputtered coatings; the emissivity of glass is 0.84. These 
highly calibrated multilayer optical filters, which typically have low absorptance 
and high reflectivity in the NIR, as well as varying degrees of daylight 
transmittance, are made of sputtered coatings. The "light to solar gain" ratio, which 
is defined as visual transmittance divided by solar heat gain coefficient, is 
frequently used to describe spectrally selective coatings that permit daylight but 
restrict overall solar gain. The best spectrally selective "triple silver" sputtered 
coatings have an LSG ratio of about 2.4, while bronze-tinted glazing has an LSG 
ratio of about 0.5 (Kirankumar et al., 2017; Rissim & Hallie, 2013; Schaefer et al., 
1997). In addition, several different ‘‘smart glazing” products are manufactured to 

overcome the limitations of fixed solar optical and thermal properties of glasses. 
Thermochromic glasses, for example, can change the solar optical features of the 
window based on changes in temperature (Aburas et al., 2019). Turning now to the 
solar shading technologies, the options come in a variety of forms, are made of 
various materials, and can be used in different types of structures. Static or dynamic 
shading systems can be mounted to the glass from the outside or the inside. 
Although less cost-efficient, shading equipment is more energy-efficient in 
controlling solar loads when positioned on the building's exterior. Some well-
known shading solutions include blinds, and drapes on the interior and screens, 
operable shades, and external fins/overhangs. There are also more complicated 
solutions that control the airflow and manage heat removal or recovery by using the 
between the shading and glazing. The most recent kind of exterior solar shading has 
the ability to include PV arrays for power generation (X. Zhang et al., 2018).  

5.1.2 Cool envelop materials (CEMs) 

The second cooling strategy relevant to this study is the application of cool envelop 
materials (CEMs), including cool roofs, green facades or roofs, roof ponds, etc. As 
mentioned earlier, four categories are suggested for resilience cooling solutions, 
among which the “absorptive” capacity is the one that the CEMs provide (C. Zhang 
et al., 2021). CEMs are solar-opaque surfaces using a reflecting product in order to 
minimize the net radiative heat gain and have a less radiative heat gain compared 
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to traditional envelope materials. This helps to lessen heat flow into the occupied 
space. According to the critical review and assessment by C. Zhang et al. (2021), 
the CEM strategies include “static high solar reflectance (light-coloured or 
ultrabright white CEM), static high near-infrared (NIR) reflectance (cool-coloured 
CEM), temperature-sensitive high solar reflectance (thermochromic CEM), angle-
sensitive high solar reflectance (directionally selective reflector CEM), static solar 
retroreflection (solar-retroreflective CEM), and static near-unity solar reflectance + 
static selective thermal emittance (daytime sky radiator CEM).” When power is 
available, CEMs reduce indoor temperatures in an air-conditioned building by 
conserving cooling energy; when power is unavailable, or the building lacks 
cooling equipment, they lower indoor temperatures in an unconditioned building; 
and finally in case of undersized cooling equipment and in the presence of power 
for an extremely hot day, CEMs combine energy savings and indoor temperature 
reduction. From the category of CEMs, this study focuses on cool roofs, which are 
demonstrated to be effective, especially in climate zones with high solar radiation 
on no heating requirement (Dabaieh et al., 2015; Garg et al., 2016; Kolokotroni et 
al., 2018; Mavrogianni et al., 2011; Radhi et al., 2017). The resilience of this 
technology is also claimed to be enhanced in hot-dry climates rather than humid 
ones. The reason lies in the reduction of solar reflectance due to weathering in 
humid regions. In addition, because of more cloudiness, the sky radiative cooling 
effect becomes smaller in tropical regions, which results in the lower performance 
of the solution (Torres-Quezada et al., 2019). On the other hand, cool roofs are more 
efficient in low-rise buildings since they occupy the top floor of construction. 

5.1.3 Ventilative cooling 

The other cooling solution is ventilative cooling which gets the advantage of 
outdoor air-cooling potential through the wind airflow, buoyancy forces, or fans. It 
is also possible to use the combination of these techniques. According to Annex 80 
categories based on their approaches to cooling people or the indoor environment, 
ventilative cooling is classified as a solution that removes sensible heat from indoor 
environments. A distinction can be made between ventilation aimed at daytime 
comfort (or direct cooling) and night cooling (or indirect). Daytime comfort 
ventilation introduces the flow of outside air through the building during the day to 
directly remove heat gains. It aims to improve the thermal comfort of the occupants 
through the transport of convective heat, increasing the evaporative cooling effect 
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on the occupants' skin and decreasing the internal air temperature. Night cooling 
has a double effect: on the one hand, it uses the thermal mass of the building during 
the night, which acts as a heat sink during the busy period, and on the other hand, 
it reduces the indoor air temperature during the hours (C. Zhang et al., 2021). The 
availability of heat sinks (external heat mass) with appropriate temperature 
gradients and coupling between the thermal mass and sink are major determinants 
of ventilative cooling systems' efficiency (Heiselberg & Kolokotroni, 2017a; 
Santamouris et al., 2010). One of the key advantages of VC is the use of natural 
ventilation, which is one of the most energy-efficient cooling sources and can 
improve air quality -assuming the outdoor air is less polluted and cooler than the 
inside air- while boosting users' thermal comfort. However, the main limitation 
refers to the dependence of this solution on the occupant's behaviour which is 
influenced by psychological, cultural, educational, social, and lifestyle factors 
(Heiselberg & Kolokotroni, 2017b). It has been demonstrated by some studies, 
including the one by Artman et al. (2008), that climate change will affect ventilation 
cooling performance, such as the night-time ventilative cooling potential, and it is 
needed to reassess the resilience of this strategy. Accordingly, some other studies 
analysed the adaptability of various natural ventilation strategies to future climatic 
conditions discovering that buildings using advanced natural ventilation systems 
are more resilient to future climate change than structures using single-side natural 
ventilation (Lomas & Ji, 2009). Similar to the previous solutions, since local 
climatic variables have an impact on ventilative cooling systems, they must be re-
evaluated in light of changing climes. In this thesis, mechanical ventilative cooling 
is applied, which is claimed by some researchers, including Burman & Mumovic 
(2018), to be more resilient despite increasing energy consumption.  

5.2 Case study, Technologies, and KPIs  

For evaluating the resilience of the reviewed cooling technologies, a set of analysis 
is performed for a representative case study in Rome. In synergy with the selection 
criteria of IEA EBC ANNEX 80 Weather Data Task Group, Rome has been selected 
since it is a city with relatively high population and population growth and belongs 
to the climate zone 3A (Warm Humid) of ASHRAE classification (ASHRAE, 
2020). With the aim of extending the research outcomes at a broader territorial 
scale, the case study was selected in a way to be representative of a specific 
category, that is, the Italian single-family house built in the period 1946-1960 
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(Ballarini et al., 2014) described in details in section 2.2. In a recent study 
(Tootkaboni et al., 2021), this type of building was found to be more sensitive to 
climate change due to its high shape factor. 

The thermo-physical features of the building envelope components are provided in 
Table 15, assuming the building type both in the original pre-retrofit situation and 
in the retrofitted state. This double condition allows for assessing the effect of the 
passive cooling strategies both on low energy-efficiency buildings and on already 
insulated buildings. The U-values of the envelope components in the pre-retrofit 
state refer to typical technologies of the construction period (solid brick masonry 
and single-glazing windows). The retrofitted state presents components insulated in 
accordance with the notional reference building for the climatic zone of Rome, as 
expressed by the Italian energy regulations (Italian Republic, Interministerial 
Decree of June 26th, 2015), which also represents the nearly zero-energy building 
target. The post-retrofit windows present a low-E double-glazing. In addition, while 
the original building is not equipped with solar shading devices, these are provided 
for in the retrofitted building (external wooden Venetian blinds). 

As far as the technical building systems are concerned, the building in the pre-
retrofit state is equipped with a gas standard boiler and radiators for space heating 
and a split system for space cooling. In the post-retrofit phase, both heating and 
cooling are provided by a reversible air-to-water heat pump with fan coils as heat 
emitters. The air conditioning is auto sized to design days according to each weather 
condition. Since passive cooling technologies are simulated, the auto-sizing of the 
HVAC system will produce energy savings or improvements in thermal comfort 
that are not solely attributable to passive cooling technologies but rather to the 
compound effect of cooling technologies, plus changes in HVAC system sizing. As 
a result, the baseline model should be used to estimate the HVAC capacities for 
heating and cooling coils, and these fixed capacities should be applied throughout 
the performance assessment of passive cooling technology. The simulation engine, 
user behaviour, profiles of internal gains, operation mode of the technical building 
system, heating, and cooling setpoints, and the operation of blinds are the same as 
explained in section 2.3.2. 
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Table 15: Thermo-physical parameters of the envelope components 

Component Parameter Pre-retrofit   Post-retrofit  

External wall U [W·m−2K−1] 1.48 0.29 

Roof U [W·m−2K−1] 1.65 0.26 

s [-] 0.75 0.75 

s [-] 0.25 0.25 

Bottom floor U [W·m−2K−1] 2.00 0.29 

Windows U [W·m−2K−1] 4.9 1.30 

Glazing U [W·m−2K−1] 5.7 1.20 

g [-] 0.85 0.59 

v [-] 0.90 0.80 

Shading s [-] N/A 0.40 

s [-] N/A 0.12 

Among the reviewed technologies in the previous chapter, the resilience of four 
solutions is evaluated for the case study explained above. The cooling solutions 
were selected from the first and second cooling categories provided by IEA EBC 
Annex 80, which are “reducing heat gains to indoor environments and people, 

removing sensible heat from indoor environments.” From the first category, ultra-
selective double-glazed windows, external roller blinds, and cool roof tiles are 
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analysed, and from the second category, mechanical ventilative cooling is chosen. 
The ultra-selective double-glazed window is a static technology that incorporates 
low thermal-infrared emittance (low-E) coatings with spectral control to reduce the 
window heat loss and solar heat gain while admitting most daylight. The external 
roller blind is a dynamic technology with a low solar transmittance that strongly 
reduces the solar heat gain due to its external position and can be controlled to 
optimise both thermal and visual comfort and energy demands for heating, cooling, 
and lighting. Cool roof tiles are a static technology that reduces net radiative heat 
gain at the envelope (solar + thermal infrared radiation) thanks to the high solar 
reflectance. 

For applying mechanical ventilative cooling, the air exchange rate was calculated 
using the ventilative cooling potential tool (VC Tool), which was developed within 
the Annex 62 project (Heiselberg, 2018). By taking into account building envelope 
thermal attributes, internal gains, ventilation requirements, and occupancy patterns, 
the VC Tool (Venticool, 2018) intends to evaluate the potential efficacy of 
ventilative cooling systems. The tool uses a method that considers well-mixed, 
single-zone energy balance with heat transfer surfaces defining its boundaries. In 
order to keep indoor air temperatures at a certain internal heating setpoint 
temperature, it is presumable that a heating balance point for the external air 
temperature could be established below which heating must be applied. Hence, 
direct ventilation helps keep indoor comfort when the temperature of the external 
dry bulb is more than the temperature of the heating balance point. 
Ventilative cooling is no longer effective at or below the heating balance point 
temperature. However, heat recovery ventilation should be employed to maintain 
the required minimum air change rates for keeping indoor air quality and 
minimizing heat losses. 

In the VC Tool, five ventilative cooling modes (0–4) have been identified (Belleri 
& Chiesa, 2018). Mode [0]: “when the outdoor temperature is below the heating 

balance point temperature, no ventilative cooling is required since heating is 
needed”; Mode [1]: “direct ventilation with airflow rate maintained at the minimum 
required for indoor air quality can potentially ensure comfort when the outdoor 
temperature exceeds the balance point temperature, yet it falls below the lower 
temperature limit of the comfort zone”; Mode [2]: “Direct ventilative cooling with 

increased airflow rate can potentially ensure comfort when the outdoor temperature 
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is within the range of comfort”; Mode [3]: “direct evaporative cooling (DEC) can 

potentially ensure comfort even if direct ventilation alone is not useful because the 
outdoor temperature exceeds the upper-temperature limit”; Mode [4]: “Direct 

ventilative cooling is not useful when the outdoor temperature exceeds the upper-
temperature limit of the comfort zone, and furthermore this limit is also overtaken 
from the expected DEC outlet temperature.” The Ventilative Cooling mode [2] was 
employed in this study. The tool determines the necessary airflow rate for 
ventilative cooling mode 2 in addition to dividing the total number of hours the 
building is occupied into the specified groups. When the external temperature falls 
within the range of comfort zone temperatures, direct ventilative cooling with 
enhanced airflow rate could be able to guarantee comfort. In this instance, the tool 
determines the airflow rate necessary to keep the indoor air temperature within 
acceptable ranges. 

The following three key performance indicators (KPIs) were used for the 
performance assessment of the selected cooling solutions: 

- HE [%], i.e., hours of exceedance, which are the number of hours in which 
the operative temperature of the zone is greater than the upper limit 
temperature 
 

- EPC,nd [kWh/m2], annual thermal energy need for space cooling  
 

- Eel,C [kWh/m2], annual electrical energy consumption (from the grid) for 
cooling and ventilation 

The above indicators were chosen from the list of KPIs officially adopted in IEA 
EBC Annex 80 to represent the summer performance of the building according to 
the following criteria: a) thermal discomfort in free-floating conditions (absence of 
cooling or power outage) or in case of power shortage, b) thermal performance of 
the fabric in cooling operation, and c) energy performance of the building 
(including HVAC system) in cooling operation. 

All the adopted indicators are based on international standards. HE accounts for the 
number of hours exceeding the acceptable range of the indoor operative 
temperature. For free-floating condition, the adaptive comfort method is assumed 
according to the Annex-H of EN ISO 7730, 2005. EPC,nd reflects the basic energy 



 

 

 

 

104 
 

needs of the building in ideal thermal conditions (uniform and ideally controlled 
indoor temperature) without interaction with specific technical building systems 
(EN ISO 52016-1, 2017). Eel,C represents the energy delivered to the building for 
cooling by adding the effect of the energy losses of the cooling system (EN ISO 
52000-1, 2017). The analysis of the case study is performed twice: once in section 
4.3 for assessing the resilience of cooling technologies using thermal comfort and 
energy performance metrics (explained KPIs) and then in section 4.4 to deepen this 
assessment by applying a sensitivity analysis to compare the impact of each 
technology and the relevant parameters on the KPIs.  

5.3 Analysing the resilience of cooling technologies 

5.3.1 Modelling assumption and Simulation 

For performing the resilience analysis of the selected technologies explained above, 
for each, a set of parameters are selected to represent their technical characteristics 
to be used in simulations. Initially, a range for the relevant parameters -according 
to the criteria explained in section 5.2- is defined, which will later be used to 
perform the sensitivity analysis. Besides, for all these parameters, a configuration 
is selected to run the simulations in this section.   

For ultra-selective double-glazed windows, the considered parameters are thermal 
transmittance (Uw) W/(m².K), total Solar factor (g) %, and light transmittance (τv) 
%. For Uw value, the upper range is equal to 1.8 W/(m².K) according to the Italian 
energy regulations (M.D 26 June 2015) for the notional reference building in the 
climatic zone of Rome. For g and τv ranges are g ≤ 30% and τv ≥ 60%, as suggested 

by the critical review and qualitative assessment of Annex 80 on advanced glazing 
technology (C. Zhang et al., 2021). Using the European AGC glass configurator 
dataset, glass products manufactured or processed by AGC company in the market 
within these ranges were found. These products were used to fix the lower range of 
the Uw value (0.9 W/(m².K)) in a realistic way. For the external roller blind, the 
considered parameters are solar transmittance (τs,blind) and solar reflectance (ρs,blind). 
Based on the Italian energy regulations (M.D 26 June 2015), the total solar energy 
transmittance of the glazing, including the solar protection device (ggl+sh), must be 
equal to 0.35. Accordingly, considering the window properties of the pre-retrofitted 
building, the range of τs,blind is calculated according to ISO 52022-1 (CEN, 2017), 
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which must be less than 0.25. Afterward, using blinds from the European solar 
shading database, the lower range (equal to 0.01) is found. After defining the τs,blind, 
it has been tried to fix the αs,blind (0.65) in a way to arrive at an acceptable range of 
ρs,blind. Turning now to the cool roof tiles, the considered parameters are solar 
absorbance (αs,roof) and solar reflectance (ρs,roof). According to EN ISO 22969, the 
ρs,roof for a pitched roof should be greater than 30%. Similarly, the available 
products in Cool Roof Rating Council database were referred to finding the upper 
limit, which equals 70%. Afterward, the range for αs,roof is defined considering the 
range of ρs,roof for a pitched roof. For mechanical ventilative cooling, using the VC 
tool for the described case study, the airflow rate equal to 2.8 ACH was calculated. 
The tool also defines the standard deviation, which in this case is 1.75, according 
to which the range of the airflow rate was determined. All the values and ranges of 
the parameters and the selected configuration for running the simulations in this 
section are presented in table 16. The simulations are performed as presented in 
figure 44. In total, 90 simulations were run.  
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Table 16: Parameters of studied cooling technologies 

Technologies  Parameter  Resilient technologies  

Selected 
configuration 

The range for 
sensitivity analysis 

Glazing  Window thermal 
transmittance (Uw) W/(m².K) 

Total Solar factor (g) % 

Light transmittance(τv) % 

Solar transmittance (τs ) % 

Uw=1.2 

g =30% 

τv =64% 

τs =21% 

(g) ≤ 30% 

(τv) ≥ 60%. 

0.9≤ Uw ≤1.8   

 

Shading  Solar transmittance (τs,blind )% 

Solar reflectance (ρs,blind ) % 

 

τs,blind= 13% 

ρs,blind = 42% 

 

1% ≤ τs,blind ≤ 25%  

αs,blind =65% 

 

Cool roofs  Solar absorbance (αs,roof) % 

Solar reflectance (ρs,roof) % 

αs,roof = 50% 

ρs,roof= 50% 

 

0.3≤ αs,roof ≤0.7 

0.3≤ ρs,roof ≤0.7 

Ventilative 
cooling  

Air change rate by 
mechanical ventilative 
cooling (h-1)  

 

2.8 1 ≤ ACH≤ 5 
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Figure 44: Simulation flow chart of analysing the resilience of cooling technologies 

5.3.2 Results and discussion 

The results obtained from the simulations are shown in Figures 45 to 50. The first 
two refer to the annual thermal energy need for space cooling (EPC,nd) in 2010, 
2050, and 2090. Besides, Figures 47 and 48 represent the annual electrical energy 
consumption (from the grid) for cooling and ventilation (Eel,C). In each graph, the 
base case and the case with the activation of the different cooling strategies are 
compared. An increase of up to 55 % for the pre-retrofitted and 40 % for the post-
retrofitted case is shown in EPC,nd over time due to climate change. Furthermore, 
the increase of Eel,C is up to 70 % for the pre-retrofitted and 60 % for the post-
retrofitted building. For post-retrofitted buildings, the variations of EPC,nd, and Eel,C 
are less than the pre-retrofitted ones. It can be argued that the post-retrofitted 
building is less sensitive to the effects of climate change.  
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Figure 45: Annual thermal energy need for space cooling in 2010s, 2050s, and 2090s for 

pre-retrofit building 

 
Figure 46: Annual thermal energy need for space cooling in 2010s, 2050s, and 2090s for 

post-retrofit building 
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The reduction in the EPC,nd, and Eel,C caused by either of the cooling solutions are 
more significant in the pre-retrofitted building. In addition, it is shown that the most 
effective solution on EPC,nd, and Eel,C for the pre-retrofit condition is ultra-selective 
glazing. In post-retrofit condition, ventilative cooling becomes more effective in 
reducing EPC,nd while the effect of ventilative cooling, considering the electricity 
consumption of the fans, is almost the same as ultra-selective glazing on reducing 
Eel,C. In general, the positive effect of mechanical ventilative cooling solution will 
diminish over time as this solution works in relation to the outside air temperature, 
which will increase due to climate change in the future. 

The cool roof has a minor effect, as the building has a pitched roof with an 
unconditioned attic. This effect is negligible for the electrical energy consumption 
in the post-retrofitted building in all three periods. If all cooling solutions are 
applied, the EPC,nd, and Eel,C can be reduced to the degree that in 2090 they are even 
less than the present base case. This result is valid for both buildings’ conditions. 

 
Figure 47: Annual electrical energy consumption (from the grid) for cooling and 

ventilation in 2010s, 2050s, and 2090s for pre-retrofit building 
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Figure 48: Annual electrical energy consumption (from the grid) for cooling and 

ventilation in 2010s, 2050s, and 2090s for post-retrofit building 

As mentioned earlier, when it comes to the impacts of climate change on buildings, 
it is necessary to take the overheating risk into account. For this purpose, by running 
free-floating simulations, hours of exceedance in 2010s, 2050s, and 2090s are 
calculated and presented in Figures 49 and 50. Results report that the hours of 
exceedance increase due to climate change in both conditions. However, in post-
retrofitted buildings, occupants will experience overheating equal to 4925 hours in 
future scenarios, while this amount reaches a maximum of 1603 hours for pre-
retrofitted buildings in 2090s. This result is due to the unwanted effect of insulation 
that causes heat trap in the building in a free-floating regime.  

It is shown that the cooling solutions can reduce exceedance hours. For both 
conditions, the effect of ventilative cooling is more than other solutions. For the 
pre-retrofit case, by applying ventilative cooling, the hours of exceedance in 2090 
are reduced to 856 hours. For post-retrofitted case, this reduction is even more and 
reaches to 660 hours in 2090. The difference between the effectiveness of 
ventilative cooling in comparison to the impact of other solutions is significantly 
more in post-retrofit condition. This result is valid even considering the 
overmentioned fact that the positive effect of mechanical ventilative cooling 
solution will diminish due to climate change. The results show the capacity of this 
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cooling solution to adapt to the unwanted effects of insulation in the post-retrofitted 
building, which also demonstrates its resilience. The impact of ultra-selective 
glazing and roller blind is almost the same and significantly higher than the cool 
roof. By applying all the cooling solutions, hours of exceedance reduce significantly 
for both cases. However, the hours of exceedance in the post-retrofitted building 
for the worst case (2090) equals 73 hours which is much less than the pre-retrofitted 
case (237 h). 

 
Figure 49: Hours of exceedance in 2010s, 2050s, and 2090s for pre-retrofit building, in 

free-floating condition 
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Figure 50: Hours of exceedance in 2010s, 2050s, and 2090s for post-retrofit building, in 

free-floating condition 

This section aims to examine the climate resilience of four passive cooling solutions 
regarding the future performance of Italian residential buildings. The current results 
indicate that among selected solutions -depending on the building’s condition- the 
mechanical ventilative cooling and the ultra-selective double-glazed window have 
the most significant impact on reducing the effect of climate change on thermal 
energy need for space cooling, electrical energy consumption from the grid for 
cooling and ventilation, and hours of exceedance in free-floating condition. The 
findings also revealed that applying all four mentioned cooling solutions could 
significantly develop the energy performance of the buildings so that in the worst 
future case scenario (2090), the energy performance will be enhanced. This 
improvement is more considerable for the post-retrofitted building. These findings 
shed new light on the trade-off between energy efficiency and climate resiliency. 
In this case, it is necessary to identify cooling solutions that help to mitigate climate 
change and foster adaptation to it to ensure both sustainability and climate resilience 
for the built environment.  
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5.4 Sensitivity analysis 

In many areas of research, it is crucial to know how variation in input affects the 
outcome. When the outcome is a function of multiple factors, measurement of the 
magnitude of change in output caused by a change in each factor, or interaction 
between factors, allows for more efficient policy making and intervention, 
particularly when the limitation in data creates uncertainty in understating the 
function. Sensitivity analysis aims to find and quantify the source of uncertainty in 
the outcome. It is defined as “The study of how the uncertainty in the output of a 

model (numerical or otherwise) can be apportioned to different sources of 
uncertainty in the model input” (Saltelli et al., 2004). 

The sensitivity analysis methods are diverse and chosen according to the research 
question or design. In general, they can be classified into two main sub-categories: 
local and global. The local methods measure “the effect of a given input on a given 

output.” This measurement is usually done by computing derivative 𝜕𝑌/𝜕𝑋𝑖, 
where𝑋𝑖 is the input of interest. The method of local sensitivity analysis is 
derivative based. It has the advantage of being efficient in computing time but 
inefficient in terms of the analyst's time since it requires the repeated intervention 
of the analyst when ad hoc coding is needed (Saltelli et al., 2008). But perhaps the 
more critical shortcoming of this method is “that it is unwarranted when the model 
input is uncertain and when the model is of unknown linearity.” Derivatives are 
defined at one point and provide no information on the whole range of the input. 
This shortcoming becomes salient when the system is non-linear. Moreover, local 
approaches cannot measure the effect of interaction between inputs (Puy et al., 
2022). 

Unlike the local approach, global sensitivity analysis suits questions with uncertain 
inputs. Global sensitivity is based “on the consideration that a handful of data points 

judiciously thrown into that space is far more effective, in the sense of being 
informative and robust, than estimating derivatives at a single data point in the 
centre of the space.” A commonly used global sensitivity analysis method is Sobol's 

variance-based method, which is applied in this study and will be explained in the 
following section. 
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5.4.1 Methodology and theory  

Variance-based sensitivity analysis can measure sensitivity across the entire input 
space and compute the sensitivity of interaction between inputs. The basic idea is 
to use variance to describe uncertainty in the model output (Puy et al., 2022). The 
variance of output is decomposed to variances of inputs and their interactions. This 
method was introduced by Sobol (Sobol, 2001). 

The model is in the format Y=f (X), where X is a vector of “k” inputs and Y is a 
scalar output. X1…Xk are independent inputs, each defined by a probability 
distribution. It is assumed that F(X) is square-integrable. Y can be defined in the 
following format: 

 
𝑌 = 𝐹(𝑋) = 𝑓0 + ∑ 𝑓𝑖(𝑥𝑖)𝑖 + ∑ ∑ 𝑓𝑖𝑗𝑖<𝑗𝑖 (𝑥𝑖, 𝑥𝑗) + ⋯ + 𝑓1,2,…,𝑘(𝑥1, 𝑥2, … , 𝑥𝑘)                (12) 
 
Where: 
 
𝑓0 = 𝐸(𝑌),        𝑓𝑖(𝑋𝑖) = 𝐸(𝑌|𝑋𝑖) − 𝑓𝑜          𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) = 𝐸(𝑌|𝑋𝑖, 𝑋𝑗) − 𝑓𝑜 − 𝑓𝑖 − 𝑓𝑗    , …. (13) 

 

The variance of Y can be decomposed in the following way:  
 
 

𝑉(𝑌) = ∑ 𝑉𝑖𝑖 + ∑ ∑ 𝑉𝑖𝑗𝑖<𝑗𝑖 + ⋯ + 𝑉1,2,…,𝑘                               (14) 
 
 
Where: 
 
 

𝑉𝑖 = 𝑉𝑥𝑖
(𝐸𝑥𝑖

(𝑌|𝑋𝑖))    

𝑉𝑖𝑗 = 𝑉𝑥𝑖,𝑥𝑗
(𝐸𝑥𝑖,𝑗

(𝑌|𝑋𝑖))- 𝑉𝑥𝑖
(𝐸𝑥𝑖

(𝑌|𝑋𝑖)) − 𝑉𝑥𝑗
(𝐸𝑥𝑗

(𝑌|𝑋𝑗))                          (15) 
 

Based on these variances, Sobol's indices are defined as follows: 

𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
      𝑆𝑖𝑗 =

𝑉𝑖𝑗

𝑉(𝑌)
   ……                                (16) 
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Where Sis are first-order indices, Sijs are second-order indices, and similarly for 
higher-order indices. Si is the fraction of V(Y), which could be reduced if Xi were 
fixed. Similar interpretations hold for higher-order indices. By dividing two sides 
of equation (14) by V(Y), we have: 

∑ 𝑆𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑆𝑖𝑗𝑖<𝑗 + ⋯ + 𝑆1,2,…,𝑘 = 1𝑖                                   (17) 

In the case of no interaction between inputs ∑ 𝑆𝑖
𝑘
𝑖=1 = 1. In reality, this is rarely the 

case, and first-order indices are not enough to explain the output variance (Puy et 
al., 2022). 

It can be seen that with an increase in the number of inputs, the number of 
interaction terms will increase exponentially (there are 2k-1 terms in equation (17)). 
This makes the computation of second and higher-order indices difficult. To tackle 
this issue, Homma and Saltelli (1996) introduced the total-order index Ti: 

 𝑇𝑖 = 1 −
𝑉𝑥𝑖

(𝐸𝑥𝑖
(𝑌|𝑋𝑖)) 

𝑉(𝑌)
=𝐸𝑥𝑖

(𝐸𝑉𝑥𝑖
(𝑌|𝑋𝑖)) 

𝑉(𝑌)
                            (18) 

A (quasi) Monte Carlo method is used to compute these indices. First, two N×k 
matrices (A & B) of random sample points are generated, where “k” is the number 
of parameters and N is the sample size. Each column in these two matrices is a 
model input, i.e., the probability distribution of a parameter, and each row is a 
sample point. The next step is the creation of AB

(i) or BA
(i) matrices. AB

(i) is the 
matrix that is constructed by replacing the column (i) of matrix A with the same 
column of matrix B. BA

(i) matrices are built similarly. Then, estimators of Sobol's 
indices can be computed from these matrices.  

A range of estimators has been defined by scholars for the estimation of Sobol's 
indices. In this study, the Sensobol package in R is utilized, which provides a set of 
combinations of first, second, and total order indices (Puy et al., 2022). The analysis 
is limited to first and total-order indices. “Saltelli” first order and “Sobol” total-
order estimators are used, which are defined below: 

“Saltelli” first order estimator: (Saltelli et al., 2010) 
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1
𝑁

∑ 𝑓(𝐵)𝑣[𝑓(𝐴𝐵
(𝑖)

)
𝑣

− 𝑓(𝐴)𝑣]𝑁
𝑣=1

𝑉(𝑌)
                                   (19) 

“Sobol” total order estimator: (Sobol′, 2001) 

 

1
𝑁

∑ 𝑓(𝐴)𝑣[𝑓(𝐴)𝑣 − 𝑓(𝐴𝐵
(𝑖)

)
𝑣

]𝑁
𝑣=1

𝑉(𝑌)
                                   (20) 

5.4.2 Application and simulations  

The sensitivity analysis in this study aims to determine the contribution of variances 
of building conditions (insulation level of envelopes) and cooling technologies to 
the variances of building energy performance and thermal comfort. Accordingly, 
the outputs (Ys) are:  

- HE [%], i.e., hours of exceedance in the second floor of the case study, 
which are the number of hours in which the operative temperature of the 
zone is greater than the upper limit temperature 

- EPC,nd [kWh/m2], annual thermal energy need for space cooling  
- Eel,C [kWh/m2], annual electrical energy consumption (from the grid) for 

cooling 

These KPIs are dependent on the parameters representing the building’s conditions 
and cooling technologies. These input parameters are selected and listed in table 
17. All of them have uniform distribution within the specified range. For the 
resilient cooling solutions, the procedure for defining the ranges is explained in 
chapter 4.3.1. In addition, for considering the condition of the building, the ranges 
of insulation materials thicknesses for different envelopes are specified. In this case, 
the lower limit refers to the absence of insulation material, and the upper range is 
calculated according to the value of the thermal transmittance in accordance with 
the notional reference building for the climatic zone of Rome, as expressed by the 
Italian energy regulations (Italian Republic, Interministerial Decree of June 26th, 
2015). 
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Table 17: sensitivity analysis input parameters and their distribution ranges 

 Parameter Distribution 

Glazing  Window Thermal 
transmittance (Uw) W/(m².K) 

 

       U ( 0.9, 1.8 ) 

 

Shading  Solar transmittance (τs,blind  )%         U ( 1, 25 ) 

 

Cool roofs  Solar absorbance (αs,roof) % 

 

       U ( 30, 70 ) 

Ventilative 
cooling  

Air change rate by mechanical 
ventilative cooling (ACH) h-1 

 

       U ( 1, 5 ) 

Wall thermal 
transmittance 

The thickness of insulation 
material (dins,wall) m 

 

        U ( 0, 0.40 ) 

Roof thermal 
transmittance 

 

The thickness of insulation 
material (dins,roof) m 

 

        U ( 0, 0.35 ) 

Bottom floor 
thermal 
transmittance 

 

The thickness of insulation 
material (dins,floor) m 

        U ( 0, 0.40 ) 
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To start the analysis, the command Sobol_matrices() in the package is used to 
generate the required matrices of inputs. The command requires the following 
parameters: character vectors (c ("A," "B," "AB")), N (size of sample), names of 
the model parameters, order of indices, and "type," which indicates the approach to 
construct the sample matrices. The default approach is QRN (quasi-random 
numbers). 

 After A, B, and AB
(i) matrices are generated, they will be exported to 

JEPlus(JEPlus,v2.1.0, 2020) for simulation and the generation of the output vector 
(Y). The JEPlus tool has been developed to use EnergyPlus for complicated 
parametric analysis. It offers a graphical user interface (GUI) for setting design 
parameters, editing models, controlling simulation runs, and gathering data. The 
GUI allows for the rapid creation of hundreds of thousands of simulation cases. The 
tool is an open-source project built in Java. For using the software, it is needed to 
choose a construction model (an IDF or group of IMF files) and enter search words 
in the positions of the parameters; then, it is required to provide all possible values 
for the parameters in JEPlus; JEPlus then chooses a set of values and calls 
EnergyPlus. This enables us to easily set up numerous simulations runs to 
investigate the design possibilities. 

Since the number of parameters in the sensitivity analysis is seven, there will be 7 
AB

(i) matrices and, therefore, nine quasi-randomly generated matrices. The exported 
matrix from R has the dimension 9N×7, where N is the sample size. The smallest 
sample size for the Sobol indices (including first and total-order indices) is n(2k+2), 
where n is the least number of model evaluations needed to estimate a single effect; 
n can range from 16, 32, 64…1024; and k is the total number of variables (Homma 
et al., 2012). In my case, considering the computational cost, a sample size of 3000 
is chosen, which is between 2048 (=128(2k+2)) and 4096 (=256(2k+2)). Therefore, 
the number of simulations equals 27000 for three time periods and three outputs. A 
smaller sample size might fail to achieve convergence in the computation of indices, 
and a larger one would be unfeasible. In any case, the convergence of the indices 
must be controlled in the study. 

After the simulation is completed, the output matrices will be imported to R again 
to compute the Sobol indices with the command sobol_indices(). For this command, 
character vectors (c ("A," "B," "AB")), N (size of sample), names of the model 
parameters, order of indices, and the type of estimators (first=" Saltelli," total=" 
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Sobol," order=" first") and "type" which is QRN by default. The function bootstraps 
the Sobol indices, and the number of replications is considered equal to 1000. In 
addition, the confidence interval equals 0.95. 

Finally, the convergence of Sobol's indices is checked by the command 
sobol_convergence(). The package allows checking convergence "backward." If 
the initial sample is N, it is possible to check how the convergence evolves up to N. 
The command divides the original sample into sub-sample and plots the 
convergence of Sobol's indices as the size of the sub-sample increases.  

 

5.4.3 Results and discussion 

In this section, the results coming from the Sobol sensitivity analysis are reported 
for all three KPIs considering three time periods (2010s, 2050s, and 2090s). Each 
Figure represents the Sobol indices of input variables.  

The first three figures in this section represent the Sobol first (red) and total (green) 
indices of window thermal transmittance (Uw) W/(m².K), shading solar 
transmittance (τs,blind )%, roof solar absorbance (αs,roof) %, air change rate by 
mechanical ventilative cooling (ACH) h-1, the thickness of insulation material 
(dins,wall) m, the thickness of insulation material (dins,roof) m, and thickness of 
insulation material (dins,floor). These indices reflect each parameter’s contribution to 
the variance of annual thermal energy need for space cooling (EPC,nd [kWh/m2]).  
 
Figures 51,52, and 53 consecutively represent the results for 2010s, 2050, and 
2090s. It is evident from the figures that in all three periods, the difference between 
the first and the total order is not significant, which means interactions between the 
parameters are not a considerable source of variance in the EPC,nd. For all three 
periods, the variance of wall insulation thickness has the most contribution to the 
variance of the output. This demonstrates the high importance of the building’s 

condition. For 2010s, after the wall insulation thickness, the variance of air change 
rate by mechanical ventilative cooling has more significance. However, this pattern 
changes in 2050s and 2090s towards the more contribution of roof insulation 
thickness. This might be due to the fact that the effect of ventilative cooling 
diminishes over time as this solution works in relation to the outside air 
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temperature, which will increase due to climate change in the future. This confirms 
that the importance of the building’s condition will increase over time. Turning now 
to the parameters representing the cooling solutions, in all three periods, the most 
contribution refers to air change rate by mechanical ventilative cooling (h-1). 
Finally, figure 54 presents that the convergence of all mentioned Sobol indices for 
annual thermal energy need for space cooling is verified, which confirms the 
adequacy of the sample size. 

 
Figure 51: First and total order of the Sobol indices of the input parameters for annual 

thermal energy need for space cooling in 2010s 
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Figure 52: First and total order of the Sobol indices of the input parameters for annual 

thermal energy need for space cooling in 2050s 

 
Figure 53: First and total order of the Sobol indices of the input parameters for annual 

thermal energy need for space cooling in 2090s 
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Figure 54: The plot of convergence of the input parameters for annual thermal energy 

need for space cooling in 2010s, 2050, and 2090s 
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Turning now to the annual electrical energy consumption (from the grid) for cooling 
(Eel,C [kWh/m2]), the variance of ACH is the most effective on the output variance 
in 2010s, as shown in figure 55. This result is due to the fact that more electrical 
energy is consumed when ACH is higher. However, the contribution of ACH 
reduces in 2050s (figure 56) and more significantly in 2090s (figure 57). The reason 
is the same as mentioned before and refers to the rise of outside temperature due to 
climate change previously shown in table 5 in section 3.4.1. In 2050s, and 2090s, 
the variance of wall insulation thickness is more effective, and in 2090s, the roof 
insulation thickness becomes the second important contributor in the variation of 
Eel,C . This confirms once more that the building’s condition plays a crucial role in 
the future climate. Finally, figure 58 presents that the convergence of all mentioned 
Sobol indices for annual electrical energy consumption (from the grid) for cooling 
is verified, which confirms the adequacy of the sample size also in this case. 

 
Figure 55: First and total order of the Sobol indices of the input parameters for annual 

electrical energy consumption (from the grid) for cooling in 2010s 
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Figure 56: First and total order of the Sobol indices of the input parameters for annual 

electrical energy consumption (from the grid) for cooling in 2050s 

 
Figure 57: First and total order of the Sobol indices of the input parameters for annual 

electrical energy consumption (from the grid) for cooling in 2090s 
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Figure 58: The plot of convergence of the input parameters for annual electrical energy 

consumption (from the grid) for cooling in 2010s, 2050, and 2090s 
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The last set of results refers to hours of exceedance -on the second floor- which is 
the number of hours in which the operative temperature of the zone is greater than 
the upper limit temperature (HE [%]). First, it is seen that the difference between 
the first and the total order of Sobol indices of parameters is considerable. This 
means that when analysing the building in free floating condition, the interactions 
between parameters are a significant source of variance in the output. In all three 
periods, the variation of ACH has the most contribution to the variation of hours of 
warm discomfort, and even its effect reduces over time. The second important 
contributor in 2010s and 2050s is the thickness of floor insulation, while in 2090s 
the importance of roof insulation thickness becomes more. It has also been 
discovered between the parameters representing the cooling solutions, solar 
absorbance of roof tiles, and solar transmittance of the blinds contribute more to the 
variation of HE if we compare them to their contribution to the variations of EPC,nd, 

and Eel,C. Besides, figure 62 presents that the convergence of all mentioned Sobol 
indices for hours of exceedance is verified, which confirms the adequacy of the 
sample size also in this case. 

 
Figure 59: First and total order of the Sobol indices of the input parameters for hours of 

exceedance in second floor in 2010s 
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Figure 60: First and total order of the Sobol indices of the input parameters for hours of 

exceedance in second floor in 2050s 

 
Figure 61: First and total order of the Sobol indices of the input parameters for hours of 

exceedance in second floor in 2090s 
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Figure 62: The plot of convergence of the input parameters for hours of exceedance in 

second floor in 2010s, 2050, and 2090s 
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6. Conclusions  

This study set out to inform the growing concern on how climate change may affect 
buildings’ future energy performance, particularly with regard to the rise in cooling 
demand and overheating risk. In order to investigate buildings’ energy efficiency, 

optimization, and thermal comfort in a changing climate (long-term assessment), 
this research analyses the building stock in Italy on a regional level. For performing 
such an analysis, it was first necessary to create a reliable future weather data set. 
Accordingly, the reliability of future weather data generation methods was studied. 
Among the major downscaling methods of the regional climate models, it is seen 
that the morphing approach (statistical downscaling) can provide appropriate 
information to do a comparative study on long-term changes in building energy 
performance. However, the method’s current inconsistency could result in 

significant prediction errors. Therefore, it is concluded that when the goal is to 
design, evaluate, and communicate resilient solutions to withstand as well as 
prevent the future impacts of climate change on building energy performance, the 
dynamical downscaling method is more dependable.  

Since the Morphing method is adequate for comparative study on long-term 
changes in building energy performance, in the first step, this method was applied 
to perform a preliminary analysis. The aim was to shed light and provide an 
overview of the climate change impacts on Italian residential buildings’ 

performance and fill the research gap referring to the lack of regional scale studies 
on Italian building stock. Additionally, the impact envelope insulation under each 
of these circumstances was examined in order to take into account how the 
refurbishment will affect the performance of buildings in the future, particularly in 
light of the national policies that are frequently used. The results for various 
residential building types clearly demonstrate that there is a significant increase in 
cooling electricity consumption and a slight decrease in heating energy use. 
Moreover, there is a substantial rise in the risk of overheating in existing structures. 
More importantly, buildings with a higher shape factor are discovered to be more 
sensitive to the impacts of climate change. Applying refurbishment could help to 
reduce this sensitivity. However, despite being always beneficial, the impact of 
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building refurbishment will diminish over time, which shows the necessity of re-
evaluating the efficiency of refurbishment solutions. Different future weather 
scenarios and case studies do not all face the same climate change impacts. These 
impacts are more intense in the long term and more severe in some specific climate 
zones, making it more urgent to perform a regional and localized analysis to develop 
adaptation measures. A similar analysis was also performed for Nearly Zero Energy 
Buildings (NZEBs). It was once more seen that the climate zone and the period of 
analysis play a vital role in the intensity of climate change impacts on NZEBs. In 
addition, climate change will also affect the performance of renewable energy 
resources, and the magnitude of change depends on the type of energy source. In 
general, buildings won’t achieve the vision of NZEBs in the future, suggesting a 

new configuration is needed in order to maintain the NZEB targets. To this aim, it 
was helpful to examine the capability of different cooling technologies to provide 
more climate-resilient buildings.  

Therefore, a set of cooling solutions were assessed regarding the future 
performance of Italian residential buildings for a representative case study in Rome. 
The findings show that the mechanical ventilative cooling and ultra-selective 
double-glazed windows -depending on the building’s condition- have the greatest 
impact on reducing the impact of climate change on the thermal energy required for 
space cooling, the electrical energy consumed from the grid for cooling and 
ventilation, and hours of exceedance in the free-floating condition. This analysis 
also showed that using all the considered cooling strategies might greatly improve 
a building’s energy efficiency, resulting in a significant improvement even in the 

worst-case scenario (2090s). 

Subsequently, a global sensitivity analysis (Sobol method) was conducted to more 
precisely assess the effect of variations in building conditions (insulation level of 
envelopes) and cooling technologies on variations in building energy performance 
and thermal comfort. This analysis was performed for three time periods (2010s, 
2050s, and 2090s) and the same case study. It is noticeable that, for all three time 
periods, the variation in wall insulation thickness has the greatest contribution to 
the variation in the annual thermal energy need for space cooling, which 
demonstrates the key role of the building’s condition. Turning now to the annual 

electrical energy consumption (from the grid) for cooling, it was confirmed once 
more that in the future climate, the building’s condition plays a crucial role. In 
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addition, for both of these key performance indicators, the first and total orders do 
not differ much, indicating that interactions between the parameters do not 
contribute a large amount of variance. Unlikely, the difference between the first and 
the total order of Sobol indices is more considerable when analysing the hours of 
exceedance, and this indicates that the interactions between factors are a substantial 
source of output variance when analysing the building in a free-floating condition. 
Even though its impact decreases with time, the variance of the mechanical 
ventilative cooling air flow rate in all three periods contributes the most to the 
variation of warm discomfort hours. 

Finally, the scope of this study was limited in terms of computational cost for 
processing RCM data for more climate zones and difficulties in finding appropriate 
observational data for performing bias adjustment. Further studies could be 
performed for more climate zones since the importance of regional and local 
analysis was demonstrated. Another source of limitation in this study was the high 
computational cost of performing building simulations with adequate size for 
applying the sensitivity analysis. Although a relatively large sample size was 
created in this research, more simulations could help to study further scenarios. For 
example, fixing the parameters regarding the building condition and analysing more 
cooling solutions or comparing the active and passive resilient cooling solutions to 
widen the analysis of the resilient cooling solutions could be helpful.  

The findings of this study add to the rapidly expanding field of built environment 
climate resilience and establish the urgency of providing building adaptation 
measures for climate change. Taken together, these findings offer recommendations 
for future policies. Resilient cooling strategies should be assessed in future whole-
building performance assessment tools and calculation methods. All 
thresholds/recommendations/input data should be revised based on climate change 
impacts. Climate resilience policies should not be developed as standalone policies, 
but fully integrated with policies concerning indoor environmental quality, energy 
efficiency, fuel poverty, decarbonisation, environmental sustainability, etc. Finally, 
it is recommended that climate resilience key performance indicators should also 
be standardised and inserted into official reports, such as energy performance 
certificates and energy audit reports. 
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