
29 March 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Review on Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing / Fulcini, Tommaso; Coppola,
Riccardo; Ardito, Luca; Torchiano, Marco. - In: ACM COMPUTING SURVEYS. - ISSN 0360-0300. - (2023).
[10.1145/3582273]

Original

A Review on Tools, Mechanics, Benefits, and Challenges of Gamified Software Testing

ACM postprint/Author's Accepted Manuscript, con Copyr. autore

Publisher:

Published
DOI:10.1145/3582273

Terms of use:
openAccess

Publisher copyright

© Fulcini, Tommaso; Coppola, Riccardo; Ardito, Luca; Torchiano, Marco 2023. This is the author's version of the work. It
is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM
COMPUTING SURVEYS, http://dx.doi.org/10.1145/3582273.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2976037 since: 2023-02-14T15:18:59Z

ACM

A Review on Tools, Mechanics, Benefits, and Challenges of Gamified

Sotware Testing

TOMMASO FULCINI, RICCARDOCOPPOLA, LUCA ARDITO, andMARCO TORCHIANO, Po-
litecnico di Torino, Italy

Gamiication is an established practice in Software Engineering to increase efectiveness and engagement in many practices.

This manuscript provides a characterisation of the application of gamiication to the Software Testing area. Such practice in

fact reportedly sufers from low engagement by both personnel in industrial contexts and learners in educational contexts. Our

goal is to identify the application areas and utilised gamiied techniques and mechanics, the provided beneits and drawbacks,

as well as the open challenges in the ield. To this purpose, we conducted a Multivocal Literature Review to identify white

and grey literature sources addressing gamiied software testing.

We analysed 73 contributions and summarised the most common gamiied mechanics, concepts, tools and domains where

they are mostly applied. We conclude that gamiication in software testing is mostly applied to the test creation phase with

simple white-box unit or mutation testing tools, and is mostly used to foster good behaviours by promoting the testers’

accomplishment. Key research areas and main challenges in the ield are: careful design of tailored gamiied mechanics for

speciic testing techniques; the need for technological improvements to enable crowdsourcing, cooperation, and concurrency;

the necessity for empirical and large-scale evaluation of the beneits delivered by gamiication mechanics.

CCS Concepts: · Software and its engineering→ Software veriication and validation;

Additional Key Words and Phrases: Software/Program Veriication, Testing and Debugging Gamiication, Software Testing,

Software Engineering, Systematic Literature Review, Multivocal Literature Review

1 INTRODUCTION

The objective of software testing is ensuring the quality and reliability of software; it is therefore a crucial activity,

especially in modern software development processes, where high-complexity software is released at a very

fast pace. However, testing activities are often overlooked even by large companies and in important software

projects since they are frequently considered unappealing, time-consuming, and repetitive when compared to

more creative and fulilling activities such as software design or coding [15]. Testing activities are generally

classiied into two main categories, based on the way they are performed: (i) automated, when testers create

scripts ś either coding or via the recording of user’s interactions ś which can then be executed by automated test

runners; or (ii) manual, when testers execute manually the test sequences against the SUT (System Under Test).

Automated testing is characterised by lower execution time and lower costs due to possible reuse of the scripts;

conversely, the main issues concern the test suite maintenance and the efort still required to create test scripts

by the tester. Manual testing is associated with higher costs, due to the time spent by the tester in the execution

of test cases, though it requires simpler setup activities and guarantees higher lexibility, since testers can adapt

the test case to the scenario presented by the SUT on the ly.

Authors’ address: Tommaso Fulcini, tommaso.fulcini@polito.it; Riccardo Coppola, riccardo.coppola@polito.it; Luca Ardito, luca.ardito@

polito.it; Marco Torchiano, marco.torchiano@polito.it, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, Piedmont, Italy, 10129.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2023/2-ART $15.00

https://doi.org/10.1145/3582273

ACM Comput. Surv.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0002-0501-7886
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0002-0501-7886
https://doi.org/10.1145/3582273
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582273&domain=pdf&date_stamp=2023-02-10

2 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Over the years the market has pushed towards automated testing approaches, but the motivational gap is

common to such techniques and the manual alternatives. Motivation and job satisfaction in software testing ś and

more generally in software engineering ś is an important aspect which has been largely addressed in the recent

years [46]. A lower engagement is also considered a cause for reduced efectiveness and eiciency of testing

practices [53]. This aspect is particularly crucial; in fact surveys with software testing practitioners underline

that test engineers are more interested in options to improve efectiveness and eiciency than in theoretically

challenging issues [23]. At the same time, it is possible to trace back the lower interest in testing activities to a

subordinate role of testing in education settings when compared to, e.g., coding [49].

A recently explored solution to increase engagement and motivation of software testers is Gamiication, i.e.,

the addition of game mechanics to practices that are not ludic by themselves. The main goals of Gamiication are

to increase the productivity of the involved actors in tasks of any nature, by stimulating positive feelings through

the incorporation of elements that are typical of game contexts in the regular activities, i.e. by creating a gameful

or gamiied experience. Examples of game elements that are typically utilized in gamiied experiences are scoring

and leaderboard mechanisms, prizes and achievements, storytelling and levels. Creating a gamiied experience

that properly suits the context is not trivial: game elements cannot simply be considered separately, since what

actually afects the user is the result of their interaction [44]. For this reason some frameworks emerged to

deine the desired gameful experience and to assess it. Diferent roles and principles should be considered to

systematically deine and model the expected outcome of Gamiication, as deined by Robson et al. [44].

Gamiication, as time passes, has become more and more popular in diferent domains, attracting the interest

of the scientiic community and reaching a capillary difusion in all the scientiic disciplines over the past few

years, according to O’Donnell et al. [40]: it has been therefore identiied as a multidisciplinary ield with a high

research potential [38]. Two of the most common ields of application are Education and Computer Science,

where gamiication found a fertile ground given the beneits that several secondary studies identify [9] [37].

Gamiication also has a history of success in Social Sciences and Pedagogy, as testiied by a growing body of

theory development and empirical research [34].

Gamiication was leveraged also in Software Engineering since the beginning of the last decade. Albeit the

research is very preliminary and ś still ś frequently lacks proper methodological support, the integration of

gamiication in SE-related activities is seen as an important challenge for both researchers and practitioners [42].

Among all SE sub-disciplines, recent academic and industrial eforts have tried to utilise Gamiication to render

testing activities more engaging and appealing and, as a consequence, more efective [51]. Even though several

frameworks and tools have been described in the literature, no recent source has provided a comprehensive and

up-to-date review of all the proposed gamiication mechanics and their beneits, drawbacks, and challenges.

To bridge this gap, we performed a Multivocal Literature Review (MLR) study that covers both peer-reviewed

works, also called white literature (WL), and grey literature (GL), accessible through traditional search engines.

Through the latter category, we aimed at capturing valuable information provided by practitioners from the

industry. We frame the current state of the art and practice in the ield of gamiied software testing and provide a

characterisation based on the testing levels, methodologies, and domains covered, and on the types of game and

mechanics provided. The present work is meant to share information regarding the current state of the art and

practice, not only highlighting main trends but also outlining directions for future investigators approaching this

particular domain by framing speciic gaps to address.

The remainder of this manuscript is structured as follows:

• Section 2 presents background information about Gamiication and Multivocal Literature Reviews; it

deines the terminology used for software testing throughout the paper, and compares this work to existing

secondary studies in the ield;

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 3

• Section 3 describes the adopted research methododology by specifying its goals, review questions, search

criteria, and analysis methods;

• Section 4 reports in detail all the results collected from the analysed literature;

• Section 5 frames the results and discusses their implications, along with possible threats to the validity of

this study;

• Finally, Section 6 concludes the study by providing guidelines for diferent actors involved in gamiied

software testing and introduces future prosecutions of this work.

2 BACKGROUND

2.1 Gamification

Gamiication has been deined by Deterding et al. as "the use of game design elements in non-game contexts" [16].

This newly trending technique has been widely used in several areas such as learning, business, marketing,

tourism and also computer science; in particular, for the latter, a large increase in the usage was reported in

software engineering disciplines according to Barreto and França [4]: Gamiication-based approaches have

some important advantages from the psychological user-experience perspectives in non-ludic activities, such as

increased motivation, focus and engagement, but also better performance and higher eiciency.

Several diferent categorisations of gaming elements in gamiied approaches have been proposed in the

literature. Robson et al.[44] provide a taxonomy of game elements, which they categorise under game mechanics,

dynamics and emotions. According to Robson, game mechanics are related to the goals, rules and interactions

provided by a gamiied systems. Game dynamics are instead related to the interaction between the players

and the system during the gamiied activities. Finally, game emotions refer to the emotional outcome evoked

among individual players when participating in a gamiied experience. This classiication identiies mechanics

as common components of the gamiied system for all the diferent players, which are independent of the user

experience (e.g., the presence of a chat system), and dynamics as variable and user-dependent characteristics of

the gamiied activity (e.g., competition or cooperation between diferent players). From our preliminary analysis

of related secondary studies in the ield, however, we noticed that ś in most cases ś the proposed separation

between mechanics and dynamics is not applied. Instead, the two terms are instead used mostly as synonyms

to describe design characteristics of gamiied tools or environments. Therefore, in the present manuscript, we

will only refer to game mechanics to describe all possible design choices that contribute to build a gamiied

environment.

An essential factor in building a successful gamiied environment is a careful design of the implemented game

mechanics. Creating valuable gamiied activities that suit the business needs and the end users’ expectations

is a complex task that needs a structured and well-rooted approach to be efective. To that purpose, several

approaches have been proposed to provide a systematic ground for the application of gamiied constructs to

any activities. Among them, one of the most frequently adopted is the Octalysis framework, originally proposed

by Yu-kai Chou [10]. The Octalisys framework can be used to implement human-focused design for a gamiied

tool: it identiies eight core drives representing human aspects that can be stimulated by gamiication. The core

drivers are then decomposed into multiple atomic iner-grained game mechanics. The framework can be used as

a design tool, but also as an evaluation tool for existing instruments with gamiied elements.

The eight core drives are paired with a two-dimensional, higher-level representation: left-brain vs right-brain

drivers, and white-hat vs black-hat drivers. The former classiication distinguishes intrinsic-motivator elements

related to creativity, emotion, self-expression and social aspects (right brain elements, e.g., socialising with other

people) and extrinsic motivator elements associated with logic, calculation and ownership (left brain elements,

e.g., goals to accomplish). The latter instead distinguishes elements into positive motivators (white hat, e.g., a

narrative built to make the user feel successful) and negative motivators (black hat, e.g., assets available only for

ACM Comput. Surv.

4 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Table 1. The Octalysis core drives with a brief definition from the oficial website

Core Drive Description

Epic Meaning & Calling "A player believes that he is doing something greater than himself or he was "chosen" to do something"

Development & Accomplishment "Making progress, developing skills, and eventually overcoming challenges"

Empowerment of Creativity & Feedback "When users are engaged in a creative process where they have to igure things out and try diferent combinations repeatedly.
People [...] need to be able to see the results of their creativity, receive feedback, and respond in turn."

Ownership & Possession "Users are motivated because they feel like they own something. Players [...] innately wants to make what she owns better and
own even more."

Social Inluence & Relatedness "This drive incorporates all the social elements that drive people, including mentorship, acceptance, social responses, compan-
ionship, as well as competition and envy"

Scarcity & Impatience "This is the drive of wanting something because you can’t have it."

Unpredictability & Curiosity "This is a harmless drive of wanting to ind out what will happen next. If you don’t know what’s going to happen, your brain is
engaged, and you think about it often"

Loss & Avoidance "This core drive is based upon the avoidance of something negative happening."

a limited amount of time). A summary of the eight core drives deined by the Octalysis framework is presented

in Table 1.

Another framework to evaluate gamiied experiences and the emotional efects of their utilisation is GAMEX,

deined by Eppmann et al. [19]. GAMEX identiies six dimensions that represent the diferent aspects of a gamiied

experience: enjoyment, absorption, creative thinking, activation, absence of negative afect and dominance. A

total of 27 Likert questions are used to measure how the mentioned aspects inluence the perceived gamiied

experience1.

2.2 Sotware Testing

Software Testing is the process of evaluating software to ensure that it meets its originally speciied requirements

and revealing faults and defects that may afect the code. Its importance is considered critical in industrial software

development. Evidence in the literature suggests that the cost for software testing activities can, in several cases,

amount to up to 50% of the total costs of software development, according to some studies [28]. During the

latest years, several methodologies have been deined to perform software testing activities in diferent software

domains. .

Software testing can be classiied based on diferent characteristics. It is out of the scope of this manuscript

to provide a characterization of all dimensions to describe software testing. We will however consider three

diferent ways to characterize software testing activities: test levels, phases, and methodologies.

Test levels refer to the size of the components of the Software Under Test (SUT) that are tested. Test levels

range from the testing of individual atomic code units (Unit Testing) to the integration test of multiple units

(Integration Testing), to System Testing of the whole SUT, with which the tester interacts as a inal user would do.

A widely used representation of the testing levels is Cohn’s testing pyramid [13].

In addition to the testing level, a second categorization can be provided for testing practices, according to the

methodology used to generate test cases. Unit and integration testing are mostly performed by utilising scripted

techniques, in which the tester deines test scripts that can be run against the SUT to exercise its functionalities

[18]. At the System Testing level, several methodologies are utilised to generate test scripts. Concerning test

methodology, we adopt a classiication provided by Linares-Vazquez et al. [35]:

• Manual testing involves testers that manually execute the deined test cases against the inished SUT.

Manual testing can be performed according to diferent strategies, as reported by Itkonen et al. [30]:

Exploratory Testing is a manual testing activity where the interactions with the SUT are performed in an

unstructured way, by proceeding from feature to feature to cover the GUI features; Documentation based

1Likert questions are a commonmeasurement in user experience evaluation, consisting of declarative statements, with response sets consisting

of equally spaced numbers (typically 5 or 7) representing the agreement of the subject with the statement [27].

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 5

session strategies instead rely on executing manually the instructions reported in test documents (e.g.,

test-cases, release notes, defect reports). Manual testing activities can also be diferentiated according to

how the checks are executed, i.e. by Comparison (visual comparison of the state of the SUT with a known

working version) or by Input/Output veriication;

• Automation APIs/frameworks rely on the manual creation of test scripts that exercise the GUI of the SUT.

These scripts typically specify a series of actions that should exercise either simple units of functions of the

SUT (e.g., as with the JUnit test runner) or even the whole system through its GUI (e.g., the Selenium or

Appium GUI automation frameworks [8];

• Capture & Replay techniques involve the manual execution of test sequences that are then used to generate

repeatable test scripts [39];

• Automated Test Generation Techniques generate a model of the SUT and then automatically exercise it by

generating sequences of inputs [17]. The simplest example of automated test generation is represented

by random-based input generation, which selects random components or features of the SUT to exercise.

Advanced tools generate (automatically or with the manual aid of the tester) models to be traversed

systematically. These models of the SUT can be in the form of Finite-State-Machines (FSM) [52], Event-

Sequence-Graphs (ESG) [5], etc..

Finally, several frameworks in the literature organize software testing activities in separate phases. In this

manuscript, we adapt the phases described in the Software Testing Life Cycle [29]. Additional details about the

levels of the selected dimensions are reported in the following methodological subsections.

Especially at higher levels in the testing pyramid, testing activities are often perceived as time-consuming,

error-prone, brittle and costly. Evidence in the literature suggests that these activities are overlooked and neglected

even in large software projects, especially for what concerns automation of system-level testing: Berner et al.

report a set of case studies where the missing design for testability and the diiculty in maintaining testware

leads to inappropriate test automation strategies and to the eventual prevalence of manual testing activities [6].

All these issues are mainly due to the perception that testers have of the activity they are performing. Being the

beneits of gamiication well-known from studies in other disciplines, many works in the related literature have

thus identiied software testing as a possible area for a fruitful application of gamiication mechanics [14], with

some identifying it as a promising but still underrepresented area [42].

A practical example of a gamiied environment for software testing is Code Defenders, the tool proposed by

Fraser et al. [WL05] where the gamiied activity is mutation testing. Testers play the roles of defenders and

attackers: the former have to enrich an existing test suite with new tests, predicting any possible mutations

generated by attackers and detecting with their test code, and the latter have to inject code to break defenders’

test suite making their tests fail. Attackers earn points if they manage to break the defenders’ test suite, while

defenders score if the built test suite manages to pass all the tests.

In the mentioned gamiied environment, the adopted game aspects are the competition between the two teams,

the scoring system, and a leaderboard showing testers with the highest score. These elements have been proved

by the authors of the tool as positively engaging the testers in their mutation testing activities, encouraging them

to test the SUT more thoroughly. Thus, gamiication of software testing activities can be seen as an incentive for

software testers to perform more thorough and systematic testing of the SUTs. In section 2.4 (Related Work) we

discuss more thoroughly the existing indings in secondary studies about gamiied Software Engineering and

Software Testing.

2.3 Multivocal Literature Reviews

A Multivocal Literature Review (MLR) difers from a Systematic Literature Review (SLR) in that it includes the

Grey Literature (GL) in addition to the White Literature [41]. Grey Literature is deined as what is produced on all

ACM Comput. Surv.

6 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

levels of government, academics, business and industry in print and electronic formats, but which is not controlled

by commercial publishers, i.e., where publishing is not the primary activity of the producing body [47]. Adams et

al. classify Grey Literature into three diferent categories: 1st tier (or high credibility), which includes books,

magazines, government reports, and white papers; 2nd tier (or moderate credibility), including annual reports,

news articles, presentations, videos, question and answers websites; 3rd tier (or low credibility), including blogs,

evidence from e-mails, posts on social networks [3].

A formalisation of the MLR methodology for SE has been provided only recently by Garousi et al. [24]. The

authors base their guidelines on well-established methodological guidelines to conduct traditional Systematic

Literature Review, while stressing the beneits provided by having an overview on both the state of practice and

academic state of the art. The combination of the two points of view, in fact, allows to analyse and understand

emerging trends coming from dual perspectives, therefore reducing the risks of neglecting aspects of the topic.

Rigorous MLRs have recently been conducted in the ield of SE to investigate, for instance, the need for

automation for software testing [26], and software test maturity assessment and test process improvement [22].

2.4 Related Secondary Studies

Many works are available in the literature discussing the application of gamiied approaches to various aspects of

the discipline of Software Engineering [21].

Compared to existing secondary studies related to the application of gamiication to software testing [36] [14],

we assessed an extended set of testing-related dimensions, considering testing levels, phases, methodologies

(compatible with the mentioned studies), domains, and proposed tools (which were not analysed in previous

literature). Another additional characterization, previously unexplored, focuses on the applied game elements

and their classiication according to the Octalysis core drivers. We also perform an analysis of future challenges,

pros, and cons presented by the sources.

A complete discussion of related secondary studies is reported in online Appendix A.

3 RESEARCH METHOD

To conduct the MLR, we followed the guidelines for including grey literature in reviews for the software

engineering discipline, provided by Garousi et al. [25]. These guidelines extend Kitchenham’s guidelines for

conducting Systematic Literature Reviews [33]. The procedure of conducting an MLR is divided into three distinct

phases:

(1) Planning: in this phase, the need for conducting the MLR is established, and the goals and review questions

of the MLR are speciied;

(2) Conducting: the MLR is conducted by deining the search process, selecting the sources, assessing the

quality of the sources, extracting and synthesising the collected data;

(3) Reporting: the review results are reported and tailored to the selected destination audience.

3.1 Planning

This section describes the sub-phases of the Planning phase: motivating the need for an SLR, deining the goals

for the review, and formulating the Review Questions to answer.

3.1.1 Motivation behind conducting an MLR. To motivate the need for a literature review, we utilise the decision

table proposed by Garousi et al. [25], based on the guidelines by Adams et al. [3]. According to these authors, one

or more positive answers to the question in the decision table suggest the inclusion of Grey Literature in addition

to White Literature in a review. The interested reader can ind a detailed motivation for the positive answers to

each question in the online Appendix B.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 7

Table 2. The review questions used for the data extraction

Goal 1: mapping of the contributions

RQ1.1 What are the diferent categories of contributions of the considered sources?

RQ1.2 Which research methodology have been applied in the considered sources?

Goal 2: testing-focused characterisation

RQ2.1 To which testing level is gamiication applied?

RQ2.2 To which testing phase is gamiication applied?

RQ2.3 What are the testing methodologies considered by the contribution?

RQ2.4 What are the existing testing frameworks or tools adopted by the papers?

RQ2.5 What is the language / domain of the testing tool that is gamiied?

RQ2.6 Is gamiication applied with a practical or educational focus?

Goal 3: Gamiication-focused characterisation
RQ3.1 Which are the gamiication mechanics adopted for gamiied software testing practice and education?

RQ3.2 Which are the tools available to perform gamiied software testing practice and education?

RQ3.3 Which are the advantages of gamiication and which are the empirical results, if any available?

RQ3.4 Which are the drawbacks of gamiication and which are the empirical results, if any available?

RQ3.5 Which are the discussed challenges, open questions and focus areas for future research directions?

3.1.2 Goals and Review uestions. When deining the review questions, we identiied three main goals for this

review work:

• Goal 1: provide a mapping of the studies regarding the utilisation of gamiied mechanics in the software

testing discipline.

• Goal 2: identify contexts in the discipline of software testing to which gamiication is applied, i.e., identify

which levels, phases and testing methodologies are addressed by the collected literature, what are the

application domains considered and which testing tools are leveraged and possibly extended.

• Goal 3: characterise the gamiication mechanics, tools, and elements applied to testing and the provided

advantages, drawbacks and open challenges in the ield.

We formulated a set of Review Questions for each of the deined goals to analyse the three identiied aspects

in-depth. The Review Questions are reported in Table 2.

3.2 Conducting

In this section, we report the methodology employed in the Conducting phase and its sub-phases: selection of

literature sources, formulation of the search strings, deinition of the paper selection process, deinition of the

data extraction procedure. The process is synthesised in the diagram in Figure 1. The details of each step of the

Literature Review are reported in Appendix C.

3.2.1 Search Approach. To conduct the review, we applied the following steps:

• Application of the search strings: the speciic strings were applied to the selected online libraries (for white

literature) and on the Google search engine (for grey literature);

• Search bounding: To stop the search for grey literature and to limit the number of sources to a reasonable

number, we applied the Efort Bounded strategy, i.e., we limited our efort to the irst 100 Google search

hits as suggested by Garousi and Mäntylä [26]. On the tenth page (i.e. over the 100th entry) no relevant

contributing source was found, conirming the hypothesis that relevant results usually appear only on the

irst pages. Therefore, having no reason to proceed further, the efort limit was set at 100;

• Removal of duplicates: in our pool of sources, we consider a single instance for each source that is present

in multiple repositories;

ACM Comput. Surv.

8 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Fig. 1. Process of conduction of the literature review

Table 3. Number of papers ater quality assessment of sources defining the final pool.

Backward Forward Quality
Repository Search IC/EC Snowballing Snowballing Assessment

IEEE Xplore 328 17 23 25 21
ACM Digital Library 151 8 14 17 12
Springer Link 396 3 3 3 2
Elsevier Science Direct 231 1 2 2 2
Google Scholar - WL 95 11 12 16 11
Google Search - WL 45 3 3 3 2
Google Scholar - GL 20 9 9 12 11
Google Search - GL 55 18 20 20 12

Total - WL 1246 43 57 66 50
Total - GL 75 27 29 32 23

• Application of inclusion and exclusion criteria: we deined and applied the inclusion and exclusion criteria

directly to the sources extracted from the online repositories, based on an examination of titles, keywords,

and abstracts of the papers;

• Backward Snowballing [31]: all the articles in the reference lists of all sources were added to the preliminary

pool and evaluated through the application of the previous steps. We also added to the pool of grey literature

the grey literature sources cited by white literature;

• Forward Snowballing [31]: we looked for articles in the online libraries and in the search engine that cited

sources in the pool and, if not already present, we added them to the pool;

• Quality assessment: every source from the pool was entirely read and evaluated in terms of the quality of

the contribution;

• Documentation and analysis: information about the inal pool of paper was collected in a form including all

data needed to answer the formulated review questions.

3.2.2 Final Pool of Sources. The papers that resulted from the search merging the diferent digital libraries were

a total of 1221: 328 from IEEE Xplore, 151 from ACM Digital library, 396 from Springer Link, 231 from Science

Direct and 115 from Google Scholar (of which, one item was repeated twice). The search for grey literature was

limited to the irst hundred results from Google.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 9

0

5

10

15

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Year of Publication

Number of Sources

phase

Grey Literature

White Literature

Fig. 2. Number of white and grey literature sources per year

The total number of collected items was 1321, counting both grey and white literature. After removing the

duplicate, the papers remaining were 1293. After removing duplicates, inclusion and exclusion criteria were

applied: this operation has shrunk the number of resources in the pool to 70 units, 43 items of white and 27 of

grey literature.

The following step was the backward snowballing: from the selected papers, a total of 1562 sources came up,

including duplicate papers both from the initial set and within the resulting pool. We applied duplicate removal

and inclusion/exclusion criteria to this resulting group obtained through snowballing. This irst snowballing

process allowed us to add 16 results (14 white papers and 2 items of grey literature). Each title of the contribution

found this way has been searched in the same starting digital libraries to assign the newly discovered publications

in the correct repository, as shown in Table 3.

The same process was used for the forward snowballing, where the total number of retrieved studies was

1281. After the ilter was applied, we included the remaining 12 items (9 pieces of white literature and 3 of grey

literature). The resulting set of literature has been subjected to quality assessment.

After applying the stages described in the previous sections, our inal pool included 73 sources. The full list of

sources is reported as online additional material in Appendix D. Table 3 breaks down the number of sources that

were present in the pool after each of the review stages. We report the information about all contributions in

a publicly-available spreadsheet 2. Our inal pool comprised 50 white literature sources and 23 grey literature

sources. The number of grey literature sources found, nearly half of the white literature sources can be considered

a irst conirmation of the need to include such sources in a literature review.

The distribution of sources per year is reported in Figure 2. The chart discriminates between grey and white

literature sources. For grey literature sources, we considered the "irst published" parameter as the year of

publication without taking into account further modiications of the web pages. We observe a steady increase in

the number of sources starting from 2016 for both types of literature. The increase in the number of grey literature

sources with the year of publication is an expected result since the Efort Bounded strategy (i.e., including only

the top N search engine hits [25]) for searching the Google engine tends to favour more recent sources. At the

same time, older grey literature sources that are not permanently archived can become unavailable several years

after publication. We cannot ind an immediate rationale for the absence of grey literature sources from 2020 or

for the decrease in the number of both types of sources in 2014-2015.

2https://doi.org/10.6084/m9.igshare.19804147

ACM Comput. Surv.

10 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Journal papers

Conference proceedings

Workshop proceedings

Blog Posts

Documentation

Master Theses

PHD Theses

Preprint

Presentation

QA site/forum

Tech Talk

0 10 20 30

Number of Sources

 Type of Source

Fig. 3. Number of white and grey literature sources per category of source

Collaboration

Industry

Academia

0 20 40

Number of Sources

Type of Contributors

literature

GL

WL

Fig. 4. Number of sources by type of contributors

Tool presentation

Guidelines

Framework

Experiment Report

Discussion

0 10 20 30

Number of Sources

Contribution Category

literature

GL

WL

Fig. 5. Number of sources by category of contribution

The distribution of the sources for contribution type is reported in Figure 3. Regarding white literature sources,

we collected 35 works published in conference proceedings, 8 journal papers and 7 works published in companion

proceedings of conferences (i.e., workshop papers). Regarding grey literature, master theses were the most

frequent type of contribution, with 9 sources. We also included one PhD dissertation in the pool and 3 preprints.

These numbers testify that academia plays a fundamental role also in the production of grey literature sources

about software testing gamiication. Finally, we counted 5 blog posts, one documentation web page, 2 webinar

presentations, one item from a question & answer website (namely, StackExchange), and 2 tech talks.

Figure 4 shows the number of sources per type of contributors. The sources were divided into three diferent

categories: (i) academia, i.e., sources whose all authors were ailiated with universities or research institutions;

(ii) industry, i.e., sources whose all authors were working in the industry; and (iii) collaboration, i.e., sources

for which at least one author was ailiated to university or research institutions, and at least one author was

working for the industry. All-academic sources outnumbered all industrial sources (44 vs 1 for WL, 13 vs 10 for

GL). Collaboration works were present only among WL sources (5 items).

4 RESULTS

4.1 RQ1 - Mapping

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 11

Empirical

Case Study / Report

Solution Prop.

Descriptive

0 5 10 15 20

Number of Sources

Research Methodology

literature

GL

WL

Fig. 6. Number of sources by research methodology

Integration

System

Unit

Unknown

0 10 20 30 40

Number of Sources

Testing Level

literature

GL

WL

Fig. 7. Number of sources by mentioned testing level

4.1.1 Categories of contributions (RQ1.1). From all the resulting sources, ive main categories of contribution

were found:

(1) Experiment report, i.e. works that describe the methodology of the empirical evaluation carried out and/or

report the results of the on-ield experimentation of gamiied mechanics;

(2) Framework, i.e. works that propose and present a set of rules or mechanics to be fully or partially imple-

mented or to evaluate gamiied approaches;

(3) Tool presentation, i.e. works that are aimed at the presentation of a tool to support or realise, in a gamiied

environment, the software testing process or any of its sub-activities;

(4) Guidelines, i.e. works that argue on how and when to use a speciic tool, exploring efects, challenges and

solutions possibly with data from previous experiments;

(5) Discussion, i.e. works arguing about problems related to GUI testing and analysing possible solutions or

tool overview, explaining the main concepts, without going into details (posters, discussion about supposed

efectiveness of game mechanics, etc.).

The diference between experiment reports and guidelines is that while the former argues on the result of one

single case of application of a particular tool, the latter provides an analysis at a higher level of abstraction.

We assigned one or more categories (i.e., categories are not mutually exclusive) to each literature item by

application of open coding. The bar plot in Figure 5 reports the number of sources that were assigned to each

category. We observe that, for White Literature sources, the most common types of contribution were Experiment

Reports (26 sources) and Tool presentations (25 sources), while the numbers of theoretical frameworks, guidelines

and discussion papers were limited. On the other hand, for Grey Literature sources, we identify a prevalence of

contributions that we lagged as Discussion (10 sources) followed by Tool Presentation (7 sources) and reports.

This result suggests that the Grey Literature sources about gamiication in software testing are less technical

than White Literature ones, and that no actual validation of the beneits of gamiication is carried out outside

peer-reviewed academic research eforts.

4.1.2 Methodologies applied (RQ1.2). We divided the sources into four diferent methodological categories by

utilising a subset of the categorisation provided by Petersen et al. [43]. We assigned a single category (the most

formal applicable) to each source, i.e. research methodologies were considered mutually exclusive. The four

research typologies that we considered are the following:

(1) Descriptive and opinion studies: The studies in this category provide anecdotal evidence and theoretical

opinions about gamiication in software testing. The studies in this category do not propose any technical

solution to improve or analyse the context of gamiication in software testing.

ACM Comput. Surv.

12 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

(2) Solution proposals: The studies in this category describe and detail technical solutions (e.g., gamiication

tools, frameworks, and extensions of existing tooling with gamiied mechanics). The studies only describe

the solutions without performing any evaluation of them.

(3) Experience reports and case studies: The studies in this category perform and detail evaluations of tools,

frameworks or gamiied mechanics. Such evaluation is conducted utilising experience reports and/or

industrial case studies. The studies in this category feature small-scale experiments that do not involve

formal empirical methods.

(4) Empirical studies: The studies in this category provide evaluations of tools, frameworks and/or components

for gamiication of software testing by setting up formal empirical studies (e.g., with the planning of

controlled experiments, formulation of research questions, and hypothesis testing).

In Figure 6 we report the distribution of the sources from the inal pool according to the type of research

methodology adopted. The largest set was that of solution proposals (23 studies, 17 WL and 6 GL), followed by

Descriptive studies (18 studies, 7 WL and 11 GL), Case Studies and Reports (17 studies, 12 WL and 5 GL), and

Empirical Research (13 studies, 12 WL and 1 GL). These results conirm an expectable predominance of solution

proposals and descriptive studies in grey literature, with a higher prevalence of empirical research (12 sources

out of 48) in White Literature.

4.2 RQ2 - Testing-Focused Characterisation

4.2.1 Testing levels. We referred to the traditional test automation pyramid to identify the testing levels covered

by the gamiication mechanics described in the sources. Therefore we identify three diferent testing levels:

• Unit testing: lowest testing level, with individual atomic code units tested separately;

• Integration testing: this second testing level is meant to combine the diferent existing units by verifying

their collective behaviour;

• System testing: highest testing level, which is meant to test the inite system as a whole. System testing

includes practices like End-2-End testing (i.e., testing the system by executing the end user’s use cases), and

GUI-based Testing (i.e., End-2-End exercised through the Graphical User Interface of the inalised system,

which also includes a veriication of the actual presentation of the SUT). Although, in many cases, the

GUI and E2E test level can match, in some contexts, the system can be a complex environment of multiple

elements interacting without the aid of any graphical presentation (e.g., in the IoT domain).

We identify in each source the testing levels to which the discussed gamiication aspects were or could be

applied. The categorisation was not considered mutually exclusive, since a single tool or technique can cover

diferent levels of the testing practice. For papers not mentioning any speciic testing level, we considered the

testing level as undeined.

In Figure 7 we report the distribution of the sources according to the mentioned testing level. We identify Unit

testing as the most mentioned testing level in sources applying gamiication to testing (41 mentions, 33 WL and 8

GL), followed by system-level testing (19 mentions, 12 WL and 7 GL) and integration (8 mentions, all from WL).

13 sources (5 WL, 8 GL) did not explicitly specify any testing level, and no information could be deduced by

reading the implementation details provided. It is worth noting that unit testing is more mentioned in white

literature, while grey literature is equally focused on system and unit testing. This result can be justiied by the

more industrially-leaned orientation of grey literature, which is more likely to discuss or evaluate system testing

frameworks to be directly used by practitioners. 14 sources in the pool (6 from WL, 8 from GL) did not explicitly

mention any testing level to which the tools, frameworks or guidelines for gamiication could be applied.

4.2.2 Testing phases. The second aspect of the testing discipline we analysed is the testing phase that the

gamiication tool, mechanic or framework supports.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 13

Maintenance

Reporting

Execution

Creation

Design

Unknown

0 10 20 30 40

Number of Sources

Testing Phase

literature

GL

WL

Fig. 8. Phases of the testing process mentioned in the

selected papers

White−box

Usability testing

Security Testing

Performance Testing

Penetration Testing

Mutation Testing

Interoperability Testing

Exploratory

Capture & Replay

Black−box

Automated Generation

Unknown

0 5 10 15 20

Number of Sources

Test methodology

literature

GL

WL

Fig. 9. Testing methodologies mentioned in the selected

papers

We consider the following phases of the testing discipline:

(1) Design: the phase of planning a testing session, by deining the methodology, target, test conditions, test

input, and test oracles;

(2) Creation: the implementation phase of the test suite, which involves the deinition of all the test steps,

and/or the code writing if the test methodology is scripted;

(3) Execution: the phase in which the test sequences are executed, and the results are evaluated. This activity

can be performed automatically by executing existing test scripts or manually by a tester with a direct

interaction with the system;

(4) Reporting: the description of the results obtained in the execution phase. A detailed report documents the

found defects, faults and possible non-functional properties measured during the execution of test cases;

(5) Maintenance: the process of evolution of the test suite to resolve issues in the suite itself or to co-evolve

with the SUT.

We collected from all the sources the test phases to which the discussed gamiication aspects were or could

be applied. The categorisation was not considered mutually exclusive, since it is possible that a single tool or

methodology covers diferent phases of the testing process. For papers not mentioning any speciic testing phase,

we considered the testing phase as undeined.

In Figure 8 we report the distribution of the sources according to the mentioned testing phase. The majority of

the literature items discussed the application of gamiied mechanics in the phase of test creation (32 WL and

11 GL items), closely followed by test execution (22 WL and 19 GL items). We found a largely smaller number

of items mentioning the phases of test design, maintenance and reporting. 6 sources (4 WL, and 2 GL) did not

explicitly mention any testing phase. Interestingly, no GL items discussed the phases of test design and test

maintenance, suggesting a lesser interest from non-academic sources in these phases of the veriication and

validation process.

4.2.3 Testing methodologies. Throughout the analysis of all the selected sources, we found the mention of 11

diferent methodologies for testing. We did not consider the testing methodologies as mutually exclusive in the

literature sources as some items explicitly report the adoption of diferent testing methodologies during the use

of the gamiied environment. In igure 9 we report the distribution of the sources according to the mentioned test

methodology.

ACM Comput. Surv.

14 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Table 4. Testing tools and frameworks mentioned in selected literature sources

Tool Name Description URL Mentions

Bugzilla Bugzilla is a web-based bug tracking system and testing
tool.

https://www.bugzilla.org/ [GL10]

EclEmma EclEmma is a free Java code coverage tool for Eclipse https://www.eclemma.org/ [WL49]
EvoSuite EvoSuite is a tool for automatic test cases generation

with assertions for classes written in Java.
https://www.evosuite.org/ [WL06], [GL19]

GUnit GUnit is a library which extends Google. Test and adds
support for Gherkin to it.

https://github.com/cpp-testing/GUnit [GL06]

IBM Rational Func-
tional Tester

IBM Rational Functional Tester provides automated test-
ing capabilities for functional, regression, GUI and data-
driven testing.

https://www.ibm.com/products/
rational-functional-tester

[WL49]

JaCoCo JaCoCo is a free Java code coverage library distributed
under the Eclipse Public License.

https://www.jacoco.org/ [WL14], [GL06]

JUnit JUnit is an open source unit testing framework for Java
programming language.

https://junit.org/ [WL01], [WL02], [WL03], [WL05], [WL14], [WL22],
[WL27], [WL32], [WL39], [WL40], [WL49], [GL11],
[GL16], [GL19]

Major Major is a mutation analysis framework that enables to
generate and embed mutants during the compilation and
run the actual mutation analysis.

https://mutation-testing.org/ [WL06], [GL19]

Mockito Mockito is an open-source testing framework for Java
supporting test cases’ creation, execution, and report.

https://site.mockito.org/ [WL02]

MuJava MuJava is a system for Java that automatically generates
mutants for both traditional mutation testing and class-
level mutation testing.

https://cs.gmu.edu/ofutt/mujava/ [WL10]

Nose Nose is a tool that extends Unittest by collecting tests
automatically and organising the library and test code.

https://nose.readthedocs.io/ [GL23]

PMD PMD is a static source code analyser allowing the identi-
ication of code smells.

https://pmd.github.io/ [WL04]

Randoop Randoop is a unit test generator for Java. It automatically
creates unit tests for your classes in JUnit format.

https://randoop.github.io/randoop/ [WL14]

Redmine Redmine is an open-sourceweb-based cross-platform and
cross-database project management and issue tracking
tool.

https://www.redmine.org/ [WL03]

Scout It records and learns from manual test sessions. The sys-
tem keeps track of coverage and issues and can estimate
the quality of the app so that the tester knows when to
stop testing.

https://store.synteda.se/product/ eye-
scout/

[WL33] [GL02], [GL03], [GL05]

Selenium Selenium is an open-source tool for the automated man-
agement of browsers. It is used as a web testing frame-
work.

https://www.selenium.dev/ [WL01]

Testlink Testlink is an open-source web-based test and require-
ment management system allowing the creation, man-
agement and plan of test cases.

https://testlink.org/ [WL01], [WL03], [WL11]

Unittest Unittest is a framework supporting test automation for
Python and aggregating tests into collections. Tests are
independent of the reporting framework.

https://docs.python.org/3/library/
unittest.html

[GL23]

The methodologies that were mentioned the most in the selected sources wereWhite-box testing (13 WL, 3

BL), Black-box testing (12 WL, 3 BL), Mutation testing (12 WL, 3 GL). Some methodologies to test non-functional

properties were present: Performance testing (one source), Security testing (one source), Penetration testing (one

source), Interoperability testing (one source), Usability testing (three sources). Over the whole set, there were 11

WL sources and 10 GL sources not mentioning any speciic testing methodology. 21 sources (11 WL, 10 GL) did

not explicitly state any testing methodology on which Gamiication was applied.

From the selected literature, it is evident how the focus of GL is less aimed towards developers or testers who

deine test scripts at the code level: the most mentioned testing methodologies in GL were, in fact, Exploratory

testing (5 sources) and Capture & Replay (3 sources).

4.2.4 Testing frameworks/tools adopted. We report all the existing testing tools or frameworks that were adopted

by the retrieved items in Table 4. We retrieved mentions of 18 diferent testing tools in our literature pool. For

each testing tool, we report the tool name, a short description, a URI for tool retrieval, and the literature sources

where it is mentioned.

What emerges from the Table 4 is that the most used tool is by far JUnit, the most widely used tool to develop,

execute and report the results of unit test cases in Java. The tool was mentioned in 14 diferent literature sources.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 15

Table 5. Language used in the discussed gamification tools or frameworks

Language Name Mentions

C [WL31], [WL48], [WL50]
C++ [WL15], [WL50]
Java [WL02], [WL03], [WL04], [WL05], [WL06], [WL10], [WL13], [WL14], [WL19], [WL21], [WL22],

[WL24], [WL26], [WL27], [WL32], [WL39], [WL40], [WL44], [WL45], [WL47], [WL49], [WL50],
[GL01], [GL06], [GL11], [GL14], [GL15], [GL16], [GL19]

Javascript [WL42]
Python [WL31], [WL50], [GL23]
SQL [WL50]

Table 6. Target domain for the proposed gamification tools or frameworks

Domain Mentions

IoT [WL38]
Mobile [WL33], [WL35], [WL36], [GL03], [GL13]
Web [WL11], [WL29], [WL33], [GL02], [GL04], [GL05]

Other tools that were mentioned multiple times were Scout, an augmented tool for visual GUI testing described

in white literature by Nass et al. (4 mentions), Major Mutation Framework, EvoSuite and the code coverage

tool JaCoCo (all with 2 mentions). Several tools were mentioned only in GL Sources, Bugzilla, GUnit, Nose, and

Unittest. It is worth mentioning that over the 60% of the items (45 over 73) did not specify the tool used (either

bespoke or already available).

4.2.5 Languages and domains. A further categorisation can be performed about the programming languages and

domains addressed by the pool of studies. In Table 5 we report the target languages mentioned by the papers and

the speciic literature items mentioning them. According to our investigation, the most targeted language is Java,

in accordance with the most used tool (JUnit), which is speciically used for unit testing in Java. Our indings agree

with the study of Abdullahi et al. [2] which reports Java as the most used testing language. In fact, we observe

that a consolidated infrastructure is often the starting point for the development of new tools: this explains why

many gamiied tools adopt Java as the target language. Additionally, StackSocial reports Python as the most

used in universities to teach coding [50], for this reason, it appears natural to also consider Python for gamiied

testing in education. Although the interest in Python is rising, its actual usage spread in universities around the

world is more recent mainly because academic courses are less prone to change a consolidated language than

practitioners. It has to be underlined that the majority of the contribution did not specify any language (39 over

73). We did not assign any categorical value to all the studies that did not explicitly mention a language.

In Table 6, we report the target domains mentioned by the papers and the speciic literature items mentioning

them. We identiied two main domains to which pieces of literature could be assigned: the web domain (6

sources) and the mobile domain (5 sources). One literature source mentioned both web and mobile domains.

One additional paper was speciically tailored for the Internet of Things domain. The sparsity of the data also

characterises the testing domain: only 11 items over a total of 73 (less than 20%) explicitly identiied a domain for

the gamiied technique or tool. It can be assumed that most of the remaining sources describe approaches that

are not domain-speciic.

4.2.6 Educational or practical focus. We discriminate between three diferent focuses for the sources that we

consider:

• Educational: The source presents a gamiied environment or tool for the only purpose of educational aspects

of the software testing discipline.

• Practice: The source presents a gamiied environment or tool whose primary purpose is to support and

improve the execution of the testing activity at any phase or level.

ACM Comput. Surv.

16 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Mixed

Practice

Educational

0 10 20 30 40

Number of Sources

Contribution Target

literature

GL

WL

Fig. 10. Educational or practice focus of the sources

Unpredictability

Social Influence

Scarcity

Ownership

Epic Meaning

Empowerment

Avoidance

Accomplishment

0 20 40 60

Number of Sources

Category of Mechanics

literature

GL

WL

Fig. 11. Number of mentions for each category of mechanics

in the Octalysis framework

• Mixed: The source presents a gamiied tool, environment or framework which can be used to improve both

educational aspects or to perform at least one of the testing phases.

Figure 10 reports the distribution of sources for each of the three categories, divided by grey literature and

white literature. The majority of the sources deals with the practical aspect of the application of gamiication to

software testing, with an even distribution between grey literature and white literature. Educational-focused

sources come principally from items of white literature. Unsurprisingly, we notice that grey literature provides

contributions mostly for testing practice.

4.3 RQ3 - Gamification-Focused Characterisation

4.3.1 Gamification Mechanics. In Table 7 we report all the gamiication mechanics proposed, adopted or men-

tioned in the inal pool of sources. We applied a coding procedure to the mechanics described in the sources,

by labelling each one with one of the mechanics codiied in the Octalysis framework. In the table, we report

the name of the mechanic, its deinition, the synonyms with which the mechanic is also mentioned, and all

the sources in which it is mentioned. We also report for each mechanic the Octalysis core driver to which it

can be assigned. This way, we are able to provide a higher-level characterisation of the gamiication mechanics

mentioned in software testing literature.

We measure a median of 10 citations per gamiication mechanic. 10 mechanics had more mentions than the

median. The most popular mechanic was Score, which was implemented or discussed in 45 diferent sources,

followed by the highly-correlated leaderboard mechanic (36 mentions), and graphical feedback (22 mentions).

The less mentioned mechanics were Epic Meaning (one mention), Punishment and Auctions (two mentions each).

The absence of punishment mechanics suggests that research and development in the gamiied testing ield have

mostly focused on providing positive motivation to the users instead of negative disincentives.

In Figure 11 we report the number of mentions for each gamiication core drive, according to the Octalysis

Framework. From the graph, it is evident how the main focus of available gamiication implementations for

software testing is to provide Accomplishment to the users as a positive means of motivation (43 WL and 21 GL

mentions). Conversely, only two WL sources implemented mechanics related to the Avoidance dimension, which

is related to the enforcement of correct patterns by applying punishments and maluses to non-conforming users.

Few mentions were also gathered by the gamiication mechanics related to the Epic Meaning macro category of

the Octalysis framework. We consider such a low number of mentions as an efect of the still prototypal nature

of most of the described tools, which did not allow for the implementation of complex narratives.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 17

Table 7. Game mechanics mentioned and utilised in the pool of literature sources

Mechanic Octalysis Core
Drive

Deinition Synonyms Mentions

Achievements Accomplishment A mechanism to show the user his or her progress and
achievements within the system.

- [WL16], [WL17], [WL24], [WL25], [WL28], [WL47],
[GL12], [GL17], [GL23]

Auction Ownership A part of the gaming session where players bid to obtain
particular virtual goods or real resources.

- [WL30], [GL18]

Badges Accomplishment Graphical rendition of a particular achievement that can
be used to enrich a player’s proile or to certiicate the
fulillment of certain target

Medals, Titles. [WL01], [WL03], [WL13], [WL16], [WL17], [WL20],
[WL28], [WL34], [WL36], [WL39], [WL47], [GL01],
[GL04], [GL06], [GL10], [GL14], [GL16], [GL18], [GL21]

Challenges Empowerment Challenges to motivate a player to perform a certain task
under a particular set of assigned condition.

- [WL01], [WL14], [WL21], [WL22], [WL25]

Duels Social Inluence A clash involving two or more players or factions where
only one of them may prevail.

Battle, Combat
System

[WL02], [WL05], [WL06], [WL07], [WL12], [WL14],
[WL16], [WL17], [WL19], [WL27], [WL32], [WL40],
[GL11], [GL19]

Easter egg Unpredictability A message, image, or other types of hidden feature that
can be used to encourage exploration from the user and
can add unpredictability to the gamiied session.

- [WL33], [GL02], [GL03], [GL05]

Experience points Accomplishment Marker that a system use to represent the progression of
a player in completing tasks or in the step necessaries to
complete it.

Reputation Build-
ing, Progress Bar

[WL03], [WL18], [WL33], [WL42], [WL47], [GL02],
[GL03], [GL04], [GL05], [GL15]

Feedback Empowerment Additional information about the performed task pro-
vided to the user, or encouraging messages to continue
in performing the task.

Continuous Feed-
backs, Visual Ar-
tifacts, Discovery
Marker

[WL01], [WL02], [WL05], [WL06], [WL10], [WL18],
[WL22], [WL25], [WL33], [WL34], [WL36], [WL39],
[WL40], [WL43], [WL44], [GL01], [GL02], [GL03],
[GL05], [GL06], [GL08], [GL09]

Hints Empowerment Information that can be given to players under their
request to support them in solving puzzles, answering
questions or completing generic tasks.

Cascading Infor-
mation, Permis-
sion to Fail

[WL15], [WL26], [WL28], [WL36], [WL44], [WL46]

Leaderboard Accomplishment A system providing a ranking and comparison between
the scores obtained by all users of the gamiied system.

Ranking, Competi-
tion

[WL01], [WL02], [WL03], [WL04], [WL05], [WL06],
[WL07], [WL08], [WL09], [WL10], [WL13], [WL14],
[WL16], [WL17], [WL21], [WL22], [WL24], [WL26],
[WL28], [WL33], [WL39], [WL40], [WL41], [WL47],
[WL48], [WL49], [GL01], [GL02], [GL03], [GL05], [GL06],
[GL07], [GL14], [GL16], [GL18]

Levels Unpredictability Player’s progression (typically obtained through Experi-
ence Points) or system’s progressive complexity

Worlds [WL01], [WL03], [WL08], [WL09], [WL12], [WL13],
[WL15], [WL16], [WL17], [WL22], [WL24], [WL26],
[WL28], [WL34], [WL44], [GL04], [GL08], [GL14]

Proile Ownership The system ofers a space that contains information about
the speciic user and can be customised by the user.

Avatar [WL03], [WL04], [WL16], [WL17], [WL18], [WL20],
[WL25] [WL34], [WL35], [WL36], [WL41], [GL05],
[GL17], [GL20]

Punishments Avoidance Consequences to bad behaviour or performance per-
formed by a player, concretised into penalties

Penalties [WL25], [WL34]

Puzzles Accomplishment Challenges with simple rules that require speciic actions
by the users.

- [WL02], [WL05], [WL06], [WL15], [WL19], [WL23],
[WL27], [WL32], [WL40], [WL44], [WL46], [WL50],
[GL11]

Quest Scarcity The system or other users ask the user to perform a
certain activity under predeined conditions in order to
advance in the story.

- [WL10], [WL16], [WL17], [WL18], [WL24], [WL03],
[WL34], [WL47], [GL15], [GL17], [GL08]

Quiz Scarcity A series of questions that can have a set of possible an-
swers or open questions.

- [WL04], [WL08], [WL49]

Randomization Unpredictability Usage of a random generator to generate an event or to
decide its outcome.

Dice Game, Ran-
dom Rewards, Ran-
domizer, Spin the
Wheel

[WL11], [WL42], [GL13], [GL22]

Rewards Accomplishment A form of reward that is given by the system in response
to a milestone or is exchanged between player in re-
sponse of an event. It can lead to awarding in the real
world.

Gift [WL03], [WL07], [WL20], [WL25], [WL26], [WL29],
[WL34], [WL39], [WL41], [WL49], [GL07], [GL08],
[GL09], [GL10], [GL12], [GL21], [GL22]

Score Accomplishment Users can earn virtual points after performing speciic
actions in the gamiied system. The score is tracked in
the system, and in some cases can be used to obtain other
game mechanics (e.g. experience points, virtual goods) .

Points [WL01], [WL02], [WL04], [WL05], [WL06], [WL07],
[WL08], [WL09], [WL10], [WL12], [WL13], [WL14],
[WL15], [WL16], [WL17], [WL18], [WL19], [WL20],
[WL21], [WL22], [WL26], [WL27], [WL28], [WL32],
[WL33], [WL34], [WL38], [WL39], [WL40], [WL41],
[WL44], [WL48], [WL49], [GL01], [GL02], [GL03],
[GL05], [GL06], [GL08], [GL11], [GL14], [GL16], [GL19],
[GL20], [GL21], [GL22]

Social interaction Social Inluence The feature of a system allowing players to interact in
a textual or vocal way, allowing direct information ex-
change between diferent users.

Social Features [WL01], [WL24], [WL03], [WL49]

Storytelling Epic Meaning A narration layer in which players and actions are in-
volved in a ictional story that adds context to actions and
real or ictional characters that are part of the system.

Stories, Story [WL11], [WL24], [WL42], [GL22]

ACM Comput. Surv.

18 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Teams Social Inluence Cooperation between diferent players with the same
goal.

Collaboration [WL16], [WL17], [WL34], [WL38], [GL20]

Timing Scarcity Users are given a certain amount of time in which they
ought to perform or complete a speciic activity.

Timing Expe-
rience, Time
Pressure, Timer

[WL04], [WL09], [WL13], [WL15], [WL18], [WL26],
[WL30], [WL39], [GL13], [GL14]

Virtual goods Ownership Game assets belonging to a virtual environment can
be traded to redeem virtual artefacts. Unlike the score,
which is usually used for ranking purposes, virtual goods’
main purpose is to be exchanged to obtain other game
assets.

Virtual Currency,
Currencies, Shop
System

[WL10], [WL16], [WL17], [WL20], [WL30], [WL34],
[WL34], [WL42], [GL05], [GL17], [GL18]

4.3.2 Gamification tools and frameworks. In Table 8 we report all tools and/or frameworks mentioned or proposed

in the selected literature. In the table, we report for each tool its name, a brief description, the adopted gamiication

mechanics, the testing methodology supported by the tool (if speciied), and the literature item(s) where the tool

or framework is mentioned. For tools that are not explicitly provided with a name, we report the name of the

authors of the papers where the tool is irst described. If the tool is mentioned multiple times in diferent literature

items and diferent mechanics are mentioned, we report in the table all the mechanics that are mentioned at least

once in the set of papers mentioning the tool. As is evident from the table, we have found the description of 30

diferent tools and/or frameworks in our pool of literature items. Several tools were mentioned multiple times in

the collected sources:

• CodeDefenders, originally described by Rojas and Fraser [WL05] is a serious game which has originally been

used to teach mutation testing in an academic context; which prototype has irst published in early 2016.

In the following years, the tool received further development introducing more features, along with several

related experiments, which enriched the existing literature with experience reports of Code Defenders

usage;

• HALO, originally described by Shet et al. [48] is an approach to gamifying software engineering with the

MMORPG (Massively Multiplayer Online Role-Playing Game) game approach. The original tool has been

utilised in [WL24] as a basis to implement the "Secret Ninja" approach by Kiniry and Zimmerman [32],

which implies the application of gamiication aspects while keeping the users unaware of their presence.

The experience with the usage of HALO has been published later in other studies [WL47] and [GL15];

• VU-BugZoo was originally described by Silvis-Cividjian et al. [WL45] in a poster from 2020. Its usage has

been reported in two papers from 2021 ([WL31] and [WL37]) along with a detailed description of the tool

that extends the original proof of concept;

• WReSTT-Cyle (Web-based Repository of Software Testing Tools Cyber-Enabled Learning Environments)

was originally described by Clarke et al. [11] as a repository of learning objects created with the goal of

supporting software testing education. Subsequently, the project evolved, assuming the name SEP-CyLE

(Software Engineering and Programming) irstly, extending the repository to support new topics, and

inally, STEM-CyLE, with the extension to support the learning process of all STEM disciplinesGamiication

was introduced to support and empower the cyber-enabled learning environment, as mentioned in [12]

and [WL13].

• Auction-Based Bug Management, has originally been published as a master thesis [GL18] and subsequently

in a journal paper [WL30]. It proposes a gamiied approach for bug management, where developers compete

in a virtual auction to obtain the assignment of bugs.

It is worth noticing that three diferent tools were mentioned only in GL sources:

• CoCoT is an expansion for TeC, an existing serious game that supports team coordination and communication

skills. The tool is adapted to support educational aspects of testing, speciically statement coverage, and

teamwork skills. This tool has been documented in a PhD thesis by Alsaedi [GL20];

• Kucmann’s master thesis documents a tool that gamiies mutation testing inspired by Code Defenders, that

replaces players with machine learning agents [GL19];

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 19

• Finally, one master’s thesis from the pool of grey literature proposed a prototype tool based on the

framework of Cacciotto et al. [WL33] for the gamiication of Capture & Replay testing of web applications,

implementing proiles, currency and achievement management [GL05].

No testingmethodologies have been explicitly mentioned for several tools (i.e., Auction-Based BugManagement,

CleanGame, CodeMetropolis, DevRPG, GamiWare, GOAL and Testable).

Table 8. Tools described and used in the collected literature

Name Description Mechanics Methodology Mentions

Auction-Based BugMan-
agement

It is a tool with the aim of improving software productivity while
developers are assigning tasks. Users can bid in auctions to obtain
the assignment of bugs to ix.

Auction, virtual goods, timing, badges,
leaderboard

- [WL30], [GL18]

Bodhi Bodhi is a two-player game in which each player is shown a piece
of code snippet and is asked to choose whether their partner would
think there is a bufer overlow vulnerability at a given position
in the code.

Score, leaderboard White Box Testing [WL48]

Bug Catcher Bug Catcher is a web-based system for running software testing
competitions.

Score, leaderboard, timing, hints, lev-
els, rewards

Black Box Testing [WL26]

Bug Hunter Bug Hunter is a gamiied environment in which students have the
goal to reach the inal level achieving the irst ranking position.
Bug Hunter includes a live feedback mechanism and forums to
foster respectively competition and social interaction.

Achievements, proile, badges, duel,
leaderboard, level, score, quest, teams,
virtual goods

Black Box Testing [WL16], [WL17]

Cacciotto et al. A framework for building a plugin for GUI testing tools exploiting
gaming concepts.

Score, leaderboard, feedback, easter
egg, experience points

Exploratory Test-
ing, C&R

[WL33]

CleanGame A gamiied software tool aimed to teach code smell detection,
composed of two independent modules: Smell-related Quiz (i.e.
questions about code smells with multiple-choice answers) and
Code Smell Identiication, which focuses on identifying code smells
in the source code.

Quiz, score, proile, timing, leader-
board

- [WL04]

CoCoT The Code Coverage Testing Team (CoCoT) game is an expansion
to the Team Coordination game (TeC), a zero-idelity collaborative
simulation.

Proile, score, teams White Box Testing [GL20]

CodeDefenders Code Defenders is a turn-basedmutation testing game: two players
are involved in each game: an attacker with the aim of introducing
faults and a defender with the aim of writing tests.

Duel, score, leaderboard, puzzles, feed-
back, challenges

Mutation Testing [WL02], [WL05],
[WL06], [WL14],
[WL19], [WL32],
[WL40], [GL11]

CodeMetropolis One such tool is CodeMetropolis which is built on top of the game
engine Minecraft and which uses the city metaphor to show the
structure of the source code as a virtual city.

Feedback - [WL43]

CoverBot CoverBot is a game for teaching statement coverage: students act
as a character whose survivability depends on how efectively the
player can execute all lines of code in a given level with the fewest
amount of inputs possible.

Score, duel, levels White Box Testing [WL12]

DevRPG DevRPG incorporates RPG-like mechanics to the everyday soft-
ware development activity allowing the creation of a character
that relects the player’s very own skills and actions.

Achievements, challenges, rewards,
punishments, feedback, proile

- [WL25]

EMVille EMVille is a web-based system through which the human experts
get involved in the process of analysing instances of the equivalent
mutant problem through a game.

Quest, score, virtual goods, leader-
board, feedback

Mutation Testing [WL10]

HALO HALO is a plugin that uses game-likemechanics tomake the whole
software engineering process, particularly the software testing
process, more engaging and social.

Social interaction, quest, storytelling,
achievements, levels, leaderboard

Black Box Testing,
White Box Testing

[WL24], [WL47],
[GL15]

Gallotti It is a gamiication plugin for visual GUI testing of web applications Score, leaderboard, feedback, easter
egg, experience points, proile, virtual
goods

Exploratory Test-
ing, C&R

[GL05]

GamiWare Gamiware is a SaaS open-source tool to support gamiication in
iterative software processes.

Duel, score, rewards, leaderboard - [WL07]

GATE GATE is a game-based software testing tool that uses human
computation to support automatic test generation, improving test
adequacy.

Hints, puzzles Automate Test
Case Generation

[WL46]

GOAL GOAL is a framework that supports the integration of gamiication
in a software engineering environment.

Score, levels, leaderboard, badges, so-
cial interaction, feedback, challenges

- [WL01], [WL03]

GamiTracify GamiTracify is a gamiication framework with the aim of infusing
engagement into human-centric traceability tasks to record trace
links.

Score, feedback, experience points,
proile, timing, quest

White Box Testing [WL18]

Greenify Greenify is a game with a purpose that generates test data based
on the program’s corresponding control low graph with the aim
of covering special test paths.

Levels, timing, puzzles, hints, score White Box Testing [WL15]

Kucmann It is constructed in a two-player game setting. The attacker selects
mutants of a program, plays against the defender, and selects test
cases to ind the mutants; their objective is to win by the kill factor.

Duel, score Mutation Testing [GL19]

ACM Comput. Surv.

20 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

IoTCityLab IoTCityLab is a collaborative role-based multiplayer game for IoT
testing.

Score, teams Security Testing,
Interoperability
Testing, Perfor-
mance Testing

[WL38]

OATMEAL The OATMEAL gamiied tool is an online interface which presents
data about the correctness of a set of code samples on a set of test
cases.

Puzzles White Box Testing [WL50]

OBB OBB is a community-based platform for the dissemination of web
vulnerabilities.

Rewards Penetration Test-
ing

[WL29]

Pipe Jam Pipe Jam presents the game player with a set of related ball-and-
pipe puzzles. Each pipe is either narrow or wide, and the player
is allowed to control the width of some pipes. Each ball is either
small or large. The player’s goal is to ensure that the balls never
get stuck.

Levels, puzzles, score, hints, feedback Black Box Testing [WL44]

Puzzle-based Automatic
Testing (PAT)

PAT is a puzzle-based testing environment that generates test
cases by decomposing complex problems in small puzzles solved
by humans

Puzzles Automated Test
Case Generation

[WL23]

Rings Rings is a game with a purpose for test data generation designed
such that non-technical players can implicitly generate test data
for program units when solving the game’s puzzles.

Score, leaderboard, achievements,
badges, hints, levels

Automated Test
Case Generation

[WL28]

Sun It is a gamiied software testing training system supporting practi-
cal training of black box, white box testing and defect repair

Score, leaderboard, levels, quiz White Box Testing,
Black Box Testing

[WL08]

Testable Testable is a gamiied tool designed to be used in face-to-face
education in undergraduate Computer Science related courses.

Storytelling, experience points, vir-
tual goods, randomization

- [WL42]

VU-BugZoo VU-BugZoo is a digital platform to teach software testing based
on a repository of faulty code.

Mutation Testing [WL31], [WL37],
[WL45]

WReSTT-CyLE (SEP-
CyLE)

They are a cyberlearning environment that uses several learn-
ing and engagement strategies to help students to learn software
testing.

Score, leaderboard, badges, timing,
levels, rewards, social interaction,
quiz

White Box Testing,
Black Box Testing

[WL13], [WL49],
[GL14]

4.3.3 Advantages of gamified sotware testing. After the application of Open Coding, we came up with 35 diferent

codes, i.e. categories of advantages discussed by the selected papers. The application of Axial Coding resulted in

the identiication of three main categories of advantages. In Table 9 we report the complete list of codes in each

category and, for each code, its description and the sources where it is mentioned.

• Better User Experience. We include in this category all the discussed beneits related to the user’s

experience of the practice of software testing when gamiied mechanics are adopted.

Under this category, the most mentioned beneit (20 WL and 8 GL sources) is a higher Engagement (or

involvement) guaranteed for the testing activity when gamiied mechanics are implemented. Clegg et al.

report quantitative results about enhanced engagement in the ield of unit testing [WL32]; Sun reports a

better engagement in testing learning by 94% of the sample of students interviewed [WL08].

Many studies (15 WL and 2 GL sources) identiied gamiied activities are more fun than traditional testing

activities. This aspect was especially highlighted in the context of testing education: Fraser et al. report

that, in the context of unit testing teaching, "Although students tend to claim they do like to write tests even

outside the game, they conirm it is more fun to do so as a part of the game" [WL14].

Several gamiication mechanics have been proven to provide additional Motivation to the involved testers.

Saloum and Rissanen report, in the context of unit testing, that "the use of badges motivated most of the

subjects to write better unit tests [...] and to complete the tasks." [GL16]. Other mechanics that strongly

enhance the user experience of testers are Cooperation, and also healthy Competition with other players.

• Higher Eiciency. Eiciency, as deined by the ISO 9001 standard, is "the extent to which time, efort or cost

is well used for the intended task or purpose" [1].

We include in this category all the discussed advantages related to reduced eforts and costs in test case

deinition, generation or execution caused by the application of gamiied mechanics.

One of the most positively commented aspects of the environments described in the elicited sources is the

possibility of adding Informative Content to the gamiied practices, thereby reducing the efort required by

the testers to gather information to complete the required testing procedures. Lorincz et al., as the result

of an experiment with students, report that "having clear goals and destinations encourages information

gathering to achieve [the desired tasks]" [WL11].

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 21

Higher Efficiency

Higher Effectiveness

Better User Experience

0 10 20 30 40

Number of Sources

 Category of Benefits

literature

GL

WL

Fig. 12. Number of sources mentioning the diferent

categories of benefits

Lower Efficiency

Lower Effectiveness

Implementation Issues

Design Issues

Bad User Experience

0 5 10 15 20

Number of Sources

Category of Drawbacks

literature

GL

WL

Fig. 13. Number of sources mentioning the diferent

categories of drawbacks

Several sources consider gamiication a means to reduce the required efort to perform test-related activities.

The report by Usfekes, related to an auction-based crowdsourced mechanism for bug resolution, reports

that the use of the tool "makes the allocation of resources more efective, as the efort from the general public

can be utilised to [perform testing activities]" [GL18]. Crowdsourced Contributions is mentioned in several

sources and are seen as a primary mean to improve the eiciency of gamiied testing techniques. Robson

et al. argue about the opportunities ofered by crowdsourcing: "It is rational to assume that the number of

unit testers of an organisation is signiicantly smaller than the population of a game-players community, and

programmers’ cost is remarkably higher than a casual player" [WL28].

• Higher Efectiveness. Efectiveness, as deined by the ISO 9001 standard, is "the extent to which planned

activities are realised and planned results are achieved"[1].

We include in this category all the discussed advantages related to an enhancement of the outcomes of the

gamiied testing procedures.

Many sources of our inal pool identiied higher efectiveness in the purpose of testing education (Improved

Learning). For instance, the empirical study conducted by Alsaedi reports "a signiicant diference in the

students’ test scores before and after [the introduction of gamiication]" [GL20]; Sun also reports signiicant

positive results in the scores for software testing courses [WL08]. Many studies (6 WL, 3 GL) report higher

coverage as the measure of increased efectiveness of the gamiied testing tool; for instance, Fraser et

al. report an increased branch coverage and mutation score for gamiied mutation testing [WL40]. Six

sources mention a general increase in efectiveness guaranteed by gamiied mechanics. Other speciic

efectiveness-related aspects are mentioned in other sources, e.g. efectiveness in inding bugs, identifying

code smells, inding issues and adding comments to the original code. For instance, dos Santos et al. report

the results of an experiment with CleanGame, where the subjects were able to identify approximately twice

as many codes smells with respect to non-gamiied techniques [WL04].

In Figure 12 we report the number of manuscripts that report at least one advantage for each of the main

categories. It is evident that gamiication is mainly evaluated in the selected sources in terms of the beneits that

are provided to the tester in terms of user experience (32 WL and 14 GL sources). A lower overall amount of

sources mentioned beneits related to efectiveness (21 WL, 10 GL) and eiciency (12 WL, 5 GL). The inclusion of

Grey Literature allowed the identiication of one beneit related to user experience (Empowerment), which was

not mentioned in white literature.

4.3.4 Drawbacks of gamified sotware testing. After the application of Open Coding, we came up with 23 diferent

codes, i.e. categories of disadvantages discussed in the selected papers. The application of Axial Coding resulted

in the identiication of ive main categories of drawbacks. In Table 10 we report the complete list of codes and for

each code, the category, and the sources where it is mentioned.

• Design Issues. Several signalled issues related to gamiication that are mentioned in the sources are

related to the design of the game mechanics implemented. Multiple sources (2 from WL and 6 from GL)

ACM Comput. Surv.

22 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Table 9. Advantages of the application of gamification to sotware testing

Category Name Description Mentions

Better User Experience Challenge Users perceived the tasks as a dare to be fulilled
in the best way

[WL26], [WL31], [WL44]

Cooperation Interaction with other users towards the same
goal

[WL11], [WL21], [WL23], [WL47], [GL12], [GL20]

Competition Interaction with other users competing to be
the best under a certain metric

[WL01], [WL02], [WL09], [WL10], [WL11], [WL25], [WL26],
[WL28], [GL07], [GL09], [GL22]

Control Monitoring of gamiied activities [WL25]
Dynamicism A more open environment with greater inter-

actions
[WL21]

Ease Of Use Intuitiveness of the environment [WL4], [WL44], [GL08]
Engagement Users’ feeling of being transported emotionally [WL02], [WL04], [WL06], [WL08], [WL10], [WL11], [WL13],

[WL14], [WL17], [WL20], [WL23], [WL24], [WL25], [WL29],
[WL32], [WL36], [WL37], [WL44], [WL47], [WL48], [GL01],
[GL02], [GL03], [GL06], [GL09], [GL12], [GL13], [GL22]

Empowerment Users felt to be in control [GL09], [GL22]
Fun Users had fun while using the tool [WL01], [WL02], [WL06], [WL11], [WL12], [WL14], [WL16],

[WL17], [WL20], [WL24], [WL28], [WL31], [WL32], [WL36],
[WL48], [GL01], [GL04]

Higher Satisfaction Users were pleased of completing their tasks [WL17], [WL33], [WL36], [WL40]
Motivation Users were more willing to perform the activity [WL09], [WL13], [WL18], [WL20], [WL21], [WL26], [WL28],

[WL30], [GL04], [GL07], [GL09], [GL16]
Perceived Utility Users understood the usefulness of what they

were doing
[WL44], [WL47], [WL48]

Replay Value Interest in re-utilising the gamiied system [WL28], [WL48], [GL04]
Stress Reduction Lower levels of stress perceived by the tester [WL36], [GL15]

Higher Eiciency Crowdsourced Contributions Community working together contributes more
than a single user

[WL23], [WL28], [GL12]

Decreased Costs Operational, infrastructural or personnel costs
decreased

[WL15], [WL28]

Flexibility The environment created was considered very
lexible

[WL03]

Informative Content Content provided to support users’ goal [WL01], [WL04], [WL11], [WL20], [WL43], [WL47], [GL09],
[GL18]

Reduced Efort Users need less operations, time or resource to
complete the same tasks

[WL10], [WL23], [WL46], [GL08], [GL10], [GL18]

Higher Efectiveness Higher Coverage Improvement of coverage metric (code, widget,
etc.)

[WL06], [WL15], [WL23], [WL33], [WL40], [WL46], [GL01],
[GL02], [GL03]

Higher Mutation Score Improvement of the obtained mutation score [WL06], [WL40]
Improved Learning Improvement of average learning efect in stu-

dents
[WL02], [WL08], [WL13], [WL16], [WL21], [WL24], [WL29],
[WL31], [WL37], [WL40], [WL49], [GL05], [GL06], [GL11], [GL15],
[GL20], [GL22]

Increased Efectiveness Improvement of efectiveness of a testing prac-
tice, according to the deinition

[WL09], [WL10], [WL18], [WL48], [GL07], [GL15]

More Bugs Found Users identiied more bugs [WL02], [GL01]
More Code Smells Users identiied more code smells [WL04]
More Comments Added Users provided more bug reports [WL01]
More Issues Found Users identiied more issue [WL01]
More Requirements Covered Users created a test suite covering more require-

ments
[WL01]

More Test Cases Generated Users produced more test cases [WL02], [WL46], [GL06], [GL07]

mention design issues related to speciic gamiication mechanics and how they proved not suitable for

their purposes. For instance, Arnarsson and Johannesson report that "the badges, in general, are not seen as

motivating as other mechanics [...] the design of the badge system was unbalanced" [GL06]; Bryce et al., in

the context of software testing education, report that "[the subjects] did not like the design choice because we

did not tell them how many bugs are in each problem" [WL26]. Garcia et al. mention possible misalignment

issues, i.e. "gamiication should not interfere with other improvement actions being implemented at the same

time" [WL01]. Reported design issues are also related to the selection of speciic gamiied mechanics for

wrong target or purposes (5 WL and 3 GL mentions). Breum reports that "experience points can have some

drawbacks it [sic] can create a more competitive environment which may not be suited for users who do not

have a competitive nature" [GL04]. Finally, ive WL sources from the pool report the necessity to carefully

calibrate the gamiied mechanics to disincentivise possible cheating actions from users trying to exploit

them to gain beneits.

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 23

• Implementation Issues. A limited number of sources in the selected pool mentioned implementation-

related issues for gamiied tools and frameworks. The main researchers’ implementation concerns were

related to the scalability of the approach ("For complex test path constraints, the game’s length may be

relatively long. In this condition, the game will be diicult to solve" [WL28] and to generalisability to diferent

organisations [GL01] or to diferent testing techniques and strategies [GL15].

• Bad User Experience. In this category of drawbacks, we include all those related to the negative impacts

of the mechanics in terms of the inal user’s experience. The most mentioned user experience issue was a

high learning curve for the users of the gamiied techniques. For instance, Berkling and Thomas, in an

educational context, report that "the beneits of a game environment for the classroom are not evident to the

students" [WL22]. Other frequently discussed user-centred drawbacks are related to the diiculty in making

users or organisations transition to the usage of gamiied mechanics (Change Resistance). As Harranz et al.

report, "Achieving the commitment of the top managers is a very hard task." [WL07].

• Lower Efectiveness. Many sources (5 WL, 4GL) report a reduced or unchanged efectiveness of the

testing methodologies or procedures when gamiication is introduced. A grey literature source reports that

the visualisation of reached objectives can reduce the efectiveness of a gamiied tool since the tester can

feel a sense of early gratiication and stop actively searching for defects [GL04].

Three studies report failed attempts at gamifying software testing education. As an example, de Jesus

et al. provide an experience report in which "there was no diference regarding learning level when either

traditional or gamiied approaches are adopted" [WL16].

• Lower Eiciency. In this macro-category, we only consider a generic drawback, i.e. Additional Efort

required to perform the same activities when the environment, tool or methodology is gamiied. Diferent

mechanics of a gamiied tool can cause overhead. Pedreira et al. highlight that setting up a gamiied work

environment has not a negligible cost: "The efort (and therefore the cost) of gamifying a work environment

should not be forgotten due to its importance for real organisations" [WL03]. On the same line, de Jesus et al.

report that "building a gamiied environment is a complex and incremental process, especially in the deinition

phase of a reward system and the ranges of scores and levels, which are related to the game mechanics and

dynamics" [WL17].

In Figure 13 we report the number of manuscripts that report at least one drawback for each of the main

categories. Bad User Experience proved to be overall the most mentioned concern in the selected set of sources,

with 16 mentions inWL papers and 5 in GL. The less mentioned issues were those related to a reduced efectiveness

of the gamiied techniques and technical issues related to the implementation of the designed mechanics. No

speciic drawbacks were mentioned only in grey literature sources.

4.3.5 Challenges and future research directions for gamified sotware testing. After the application of Open Coding,

we came up with 22 diferent codes, i.e. categories of challenges and future directions discussed in the selected

papers. The application of Axial Coding resulted in the identiication of four main categories of challenges and

future directions. In Table 11 we report the complete list of codes and for each code, the category, and the sources

where it is mentioned.

• Design Improvements. Under this category, we iled challenges and future directions related to adding

new gamiied mechanics or improving existing ones. De Jesus et al., for instance, discuss the calibration of

the diiculty of the game mechanics: "For instance, in the current implementation, all the problem instances’

diiculty has been considered equal. A possible improvement is to compute the diiculty of each problem

instance and score the participants according to the diiculty of the instance that they solve correctly." [WL10].

Another frequently required design improvement is related to the addition of graphical feedback to the

gamiied mechanics, which is in many cases missing due to the prototypal nature of the described tools.

Many sources highlight the need for metaphorical graphical means to make the introduced mechanics

ACM Comput. Surv.

24 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Table 10. Discussed drawbacks of the application of gamified mechanics

Category Name Description Mentions

Design Issues Bad design Problems in the game mechanics conception [WL01], [WL26], [WL31], [GL02], [GL03], [GL04], [GL06], [GL08],
[GL16]

Cheating Users exploiting elements of the gamiied de-
sign

[WL02], [WL13], [WL32], [WL40], [WL50]

Wrong target Users misinterpreting the designer’s focus or
designer misinterpreting the users’ needs

[WL02], [WL13], [WL20], [WL32], [WL35], [GL04], [GL08], [GL17]

Implementation Is-
sues

Evaluability Impossibility of correctly assessing the tool [WL07]

Limited generalisability Tools or results cannot be scoped elsewere [WL09], [WL30], [GL01], [GL15]
Limited scalability Tool does not adapt well in bigger context [WL28], [WL32], [WL40], [GL17]
Malicious use User exploits the tool to invalidate its usage [WL41]
Privacy Users are concerned about their data [WL35]

Bad User Experience Change resistance Diicult adoption of the tool, due to resistance
to change current working and learning pro-
cesses

[WL07], [WL20], [WL21], [WL22], [WL28], [GL12]

Limited cooperation Users not interacting constructively [WL16], [GL20]
Limited motivation User feeling the burden of using the tool [WL17]
Diicult understanding The tool is considered cumbersome to be used

by the users
[WL04], [WL22], [WL32], [GL12], [GL22]

Discouragement Users losing enthusiasm with the gamiied en-
vironment

[WL04], [WL06], [WL24], [WL31], [WL39], [WL47], [GL01]

Utility not perceived Users perceiving the tool as useless [WL22], [WL35], [GL17]

Lower Efectiveness Decreased learning Decrease of average learning efect in students [WL16], [WL40], [GL20]
Reduced performance Decrease of ability of fulilment of a goal [WL06], [WL16], [WL17], [WL20], [WL39], [GL02], [GL03],

[GL04], [GL16]

Lower Ei-
ciency

Additional Efort Users are required more time or resources to
perform the same task

[WL03], [WL07], [WL13], [WL17], [WL32], [WL37], [WL47],
[WL48], [WL50], [GL01], [GL07], [GL08], [GL12], [GL22]

comprehensible to the end user. In their architecture for gamiication of general software engineering tasks,

for instance, Pedreira et al. report that "the engine might also be extended with a visualisation component

to show, for instance, user performance and rankings. Appropriate visualisations metaphors could be used"

[WL03].

• Implementation Improvements. According to the selected sources, many required improvements are

more related to the technical implementation of the gamiied tool and frameworks than to the actual design

of the game mechanics.

The highest number of sources mentioning implementation improvements advocate a generalisable imple-

mentation that can be evaluated on variable settings.

Several studies highlight research and implementation needs to guarantee higher scalability and depend-

ability of the solutions and deploy the techniques as online and easily-reachable platforms to enable the

collection of crowdsourced inputs. Chen and Mao, who developed Bodhi for the detection of bufer overlow

in software, indicate in their agenda "[the plan] to deploy the game on the internet to make it played by more

people and detecting bufer overlows for more software" [WL48]. In one grey literature item, it is underlined

the necessity to address "the possibility of managing synchronisation between diferent testing sessions carried

out simultaneously on the same domain at the same time" [GL02].

• Evaluation. Themost frequentlymentioned future directions for gamiication in software testing are related

to evaluating gamiied mechanics. Most literature items highlight the necessity of empirical evaluations in

academic settings to quantitatively assess such mechanics’ theoretical and qualitative beneits.

Four selected sources advocate for the utilisation of expert evaluation of the outcomes of gamiiedmechanics,

especially when they allow crowdsourced contributions that need to be veriied. Usfekes et al. underline

that "in the future, a development team could use a combination of known developer predictive resolution bids

placed across various auctionable defects [...] This would represent a positive development for efective defect

clearance through the application of gamiication techniques" [WL30].

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 25

Implementation Improvements

Evaluation

Design Improvements

0 10 20 30

Number of Sources

Category of Challenges

literature

GL

WL

Fig. 14. Number of sources mentioning the diferent categories of challenges and future directions

Table 11. Discussed challenges and future directions for gamified sotware testing research

Category Name Description Mentions

Design Im-
provements

Add communication Adding instruments to make users communi-
cate with each other

[WL02], [WL06], [GL11]

Add competition Addition of a resource to compete for [GL02], [GL03]
Add cooperation Addition of a dynamic of collaboration between

users
[GL14], [GL15]

Ethics Considering possible issues regarding people
with some diiculties

[WL21], [GL06]

Manage cheating Solving design issue avoiding unexpected bad
usage of the tool

[WL13]

Narrative Addition of a storytelling dynamic [WL06], [WL27]
Graphical feedback Addition or improving the existing graphical

feedback
[WL03], [WL12], [WL21], [WL35], [GL02], [GL03]

Redesign mechanics Addition or improving the existing game me-
chanics

[WL05], [WL06], [WL10], [WL12], [WL15], [WL22], [WL27],
[WL28], [WL31], [WL32], [WL33], [WL36], [WL44], [WL46],
[WL50], [GL02], [GL04], [GL11], [GL15], [GL20], [GL21]

Simpliication Making the tool simpler to use [WL11], [GL15]

Implementation Im-
provements

Add crowdsourcing Implement community contribution [WL23], [WL32]

Decoupling Decoupling game scenario from the code [WL03], [WL05], [WL06], [WL28], [WL43]
Deployment Deploy the tool in a diferent way [WL48], [WL50], [GL18]
Generalisation Adapt the tool to diferent context [WL01], [WL02], [WL06], [WL07], [WL09], [WL12], [WL28],

[WL29], [WL37], [WL49], [GL15], [GL20]
Reusability Application of the tool in practice [WL06]
Scalability Adapt the tool to a bigger context [WL06], [GL02], [GL03]
Test oracles Incorporating test oracles in the tool [WL06], [WL45]

Evaluation Automatic analysis Using analysis tool to extract metrics [WL03]
Control results Assessment of the obtained result [WL13]
Empirical studies Additional empirical evaluation with the tool

in the same or diferent condition
[WL01], [WL05], [WL06], [WL07], [WL10], [WL16], [WL17],
[WL19], [WL24], [WL26], [WL27], [WL32], [WL33], [WL34],
[WL38], [WL39], [WL41], [WL42], [WL43], [WL46], [WL49],
[GL01], [GL02], [GL03], [GL05], [GL20]

Expert evaluation Empirical study under the supervision of expert
of the ield

[WL05], [WL30], [WL37], [WL45]

Industrial case studies Case study in an industrial context [WL20], [WL33], [WL35], [GL16]
Longitudinal case studies Case study over a longer time span [WL01]

The evaluation of gamiied mechanics in real-world industrial contexts is also indicated as a primary need

for the ield. As Saloum et al. point out, "it would be necessary to test the efect of gamiication inside a real

project in the industry where the developers act with the gamiication features added to their every-day tools"

[GL16].

In Figure 14 we report the number of manuscripts that report at least one challenge or future research direction

for each of the main categories. Evaluation is reported as the primary challenge and research direction in the

selected literature (28 WL, 6 GL sources). The need for empirical or longitudinal evaluations was mentioned

mostly in white literature sources. Fewer sources mentioned the need for design improvements (19 WL, 10 GL) or

implementation improvements (18 WL, 5 GL). Two design-related needs (Add competition, and Add cooperation)

were mentioned in grey literature sources only.

ACM Comput. Surv.

26 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

5 DISCUSSION

In this section, we recollect and frame the results for each Review Question, and we discuss possible threats to

the validity of our indings.

5.1 Summary of Findings

The main objective of our work was to identify the current state of the art and practice in the ield of gami-

ied software testing. For that purpose, we considered both white and grey literature to analyse the available

gamiication techniques and tools, the gamiication mechanics adopted by researchers and tool developers, and

the beneits, drawbacks, and future challenges. In this section, we summarize the indings that we gathered as

answers to the speciic review questions of the paper.

5.1.1 Literature Mapping. The irst goal of our study aimed at deining a mapping of all the elicited sources. The

studies were classiied according to the literature category, the type of contributor (industrial vs. academic), and

the kind of contribution provided to the community.

Bibliometric Trends for Gamiied Software Testing. By analysing the mapping in Figure 2 we can state

that gamiication in software testing is a topic with a positive trend, presenting a growing number of publications

over the years, from both white and grey literature. In the mapping, we see an exception with the year 2020:

as a possible hypothesis for the missing grey literature items, we may mention the outbreak of the Covid-19

pandemic, and the consequent shift in working modes and communication priorities in the development and

testing communities.

Our mapping also allowed us to determine how the research community in this ield is distributed. The

collaboration graph, shown in igure 15 (where, for the sake of clarity, we include only authors of at least two

papers in our inal pool) clearly shows that the diferent manuscripts analyzed have little to no author overlap,

and therefore few collaborations are established in the ield between diferent research groups and most proliic

authors. What emerges are many isolated research groups providing autonomous contributions, with a handful

of collaborations between diferent groups. This situation substantially difers from collaboration graphs that

are reported for more mature communities (e.g., for the Graphical User Interface Testing Community [45]),

conirming the relative immaturity of the ield. The most signiicant research group is composed of G. Fraser and

J. Rojas, respectively with nine and eight items produced.

Types of Contributions The results related to RQ1.1 denote that the main contributors to the state of the

art are researchers from academia, who contributed ive times more than industry (57 vs. 11 items) as shown

in Figure 4. Industrial contributions are directed toward grey literature, while academia leaned toward the

publication of white literature items. Few collaborations have been found. These data denote the fact that industry

may be far from applying gamiication to software testing: future research eforts should be directed toward the

usage of gamiied environments in industrial contexts, to execute case studies with the inal purpose of validating

whether the observed beneits and drawbacks, still mostly analysed in-vitro, also apply to practitioners.

More than half of the considered sources provided tool presentations or experience reports from the ield. We

observe a limited amount of literature items (both white and grey) providing guidelines or theoretical frameworks

discussing the application of gamiication to software testing, as shown in Figure 5. The efort so far has been

devoted primarily to creating tools and assessing them in experimental settings. Academic literature currently

lacks large-scale empirical studies able to conirm the available preliminary assessment, providing generalizable

results. Current literature, especially in the educational setting, mostly provide experience reports that are

gathered from ad-hoc settings and are sometimes strongly contradicting (RQ1.2). Future research in this regard

should provide evidence on how the results obtained in case studies and reports can be reproduced to achieve the

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 27

Fig. 15. Collaboration between authors (n>2) of the collected literature

claimed beneits, with practical suggestions on how to apply a successful gamiied environment, and replication

of experiments in order to actually demonstrate the positive impact of gamiication. Future research could also

focus on extracting common and universal sets of guidelines for developers of gamiied environments for testing

practice and education.

5.1.2 Testing-Focused Characterization. The second goal of our study aimed at identifying the characteristics of

the software testing activities that are most commonly augmented with gamiied components.

Gamiied testing levels, phases, and methodologies. The results to review question 2.1 highlight that ś

currently ś gamiied techniques are applied mostly to Unit-testing tools, being used in more than half of the

considered studies. Next are System and Integration testing tools, both with a signiicantly smaller number

of documented applications. Some items, especially those dealing with software testing education, explicitly

mentioned more than one testing level, others neither mentioned, nor intended, any level; this could be explained

by the sources discussing a general approach that may be applied to diferent testing levels. Creating a gamiied

environment related to integration testing or even system testing appears to be more complex because those

testing levels require the incorporation of libraries, third-party code, or more diicult deployment for the solution

than just the integration within an existing unit testing engine. All those additional aspects constitute a signiicant

execution and building overhead, possibly driving away investigators. Future research should address those

higher testing levels, rather than just focusing on unit testing and its variations.

ACM Comput. Surv.

28 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

We can identify ive distinct process stages related to testing: design, creation, execution, reporting, and

maintenance. As the results of our review question 2.2 suggest, gamiied mechanics are mainly implemented in

the phase of test creation and execution, whilst a limited number of applications of gamiied mechanics have

been provided for other software testing activities, e.g. test reporting, test maintenance, or test design. The two

most frequent phases are the most operative ones, which are repeated several times during the iterative process.

When test creation is automated, the creation phase involves the deinition and implementation of test scripts,

while in manual testing the creation typically overlaps with test execution in the exploration phases of the SUT.

Given these premises, it seems natural that the efort has been directed primarily at these two phases. However,

we believe that further study is needed especially for test maintenance and test reporting activities. Especially

the former, in fact, has been identiied by many literature items as crucial and costly in the testing pipeline. We,

therefore advocate further investigations in gamifying testing activities diferent than test creation and execution.

Regarding the most frequently mentioned test methodologies (RQ2.3), we ind that gamiied activities are most

frequently applied in tasks that are either simple (like mutation, black-box, and white-box testing at unit-level) or

do not require signiicant programming skills (e.g., manual and Capture & Replay testing at the system level).

The presented distribution may serve as another conirmation of the novelty of the gamiied approach, mainly

applied to traditional white-box and black-box testing activities. Mutation testing is an exception in this respect

but, even if it has been mentioned in ifteen papers, nine of them are from the author pair Fraser and Rojas,

dealing with the evolution of the same tool, i.e. Code Defenders. The importance of their work is so great that we

can consider the two authors as the main investigators in the scope of this research work (as better explained in

subsubsection 5.2.1). Future research works should be directed towards other less exposed techniques, aiming at

identifying other fertile ground for gamiication to be applied.

Tools and languages for gamiied testing. The results for RQ 2.4 show that gamiication was applied

mostly to open-source unit-testing tools. Besides the vast majority of the items (46 out of 73) did not speciically

mention any tool in their discussion, the data shows how widespread is the usage of JUnit. This result is highly

justiiable since JUnit can be considered a de-facto standard test runner for any testing activity to be performed

on SUTs written in Java. Another commonly mentioned tool in the elicited work is the Capture & Replay testing

tool Scout. What emerges from the results is a highly fragmented situation: apart from JUnit, each research

group used a speciic tool. The interpretations of this result can be manifold: (i) researchers that are dealing with

low-level and simple testing activities can build upon JUnit to implement gamiied mechanics; (ii) researcher

dealing with higher-level and more complex testing activities (e.g., GUI testing or system-level testing) rely on

building completely new testing environments to implement gamiied mechanics. We, therefore, stress the need

for research for generic, possibly open-source, gamiication frameworks that would allow the introduction of

gamiication in more complex scenarios. The presence of easily implementable and generalisable gamiication

frameworks may also fuel comparative and quantitative empirical research across multiple settings and diferent

SUTs to better assess the beneits and drawbacks of gamiied practices.

Regarding languages (RQ 2.5), the vast majority of the collected studies provide solutions that adopt Java as

the target programming language. This data is in accordance with the previous review question, highlighting

JUnit as the most used tool, and with other studies airming Java as the most used language for test scripting [2].

Regarding the target testing domain, few data are available. Actually, only a few items provide speciications

about the domain of application of the gamiied testing tool: this data can be explained as the studies are mainly

focused on unit testing, at this level the code under test is agnostic of any domain and it can be used at low-level

for any application context (e.g., desktop, mobile, or web). The studies explicitly reporting a domain suggest

an almost even distribution between mobile and web, with the exception of a single IoT-related source. New

contributors should consider the exploration of gamiied testing in the embedded and IoT domain, which remains

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 29

an unexplored topic for the practice.

Practice vs. Education. The results collected for RQ2.6 show a prevalence in white literature sources for the

application of gamiication in educational settings. Researchers’ interest in applying gamiication in educational

contexts is not new, indeed there is a irm and shared belief in the literature that students (especially adolescents

and pre-adolescents) are likely to enjoy a gamiied environment due to their familiarity with games [7]. Industrial

approaches to gamiied software testing are almost equally distributed between white and grey literature, meaning

that practitioners are more interested in the application of game elements to support the practical testing process,

rather than using them in the testing learning process. Only a few are the proposed approaches that can be used

both to teach how to test and to conduct testing in industrial settings. We look forward to future research works

to explore the mixed approach, proposing tools, frameworks, and guidelines able to support both test education

and practice.

5.1.3 Gamification-Focused Characterization. The third Goal of the study had the objective of providing a char-

acterisation of the most frequently adopted and evaluated gamiication mechanics and tools in both white and

grey literature.

Game mechanics and Gamiication tools. By performing a meta-analysis on the collected data, before

applying the synthesis process, we observed two main trends: irstly, the collected literature items do not adopt an

unambiguous deinition of game elements, in fact in most of the literature items there is no distinction between

game dynamics and mechanics. Thus, we categorized all the mentioned game elements as game mechanics for

our discussion. In future dissertations, we suggest adopting the more strict game elements classiication provided

by Robson et al. [44] to distinguish between game mechanics adopted and game dynamics stimulated.

Secondly, we observed that only a few items employed a standardised ad-hoc method to build or to evaluate a

gamiication tool3. We highlight the fact that, being a gamiied tool highly dependent on the perception of its users,

its evaluation should take into account the user experience as a whole (some examples are Octalysis [10] and

GAMEX[19]). This implies the selection of the correct evaluation method for a fair assessment of the developed

tool, and the usage of frameworks helping in the selection of the right game elements to build a balanced and

successful gamiication environment.

After performing a mapping of gamiied mechanics, we observe that few stood out signiicantly with respect

to others. We also adopted the classiication provided by the Octalysis framework to aggregate the found game

mechanics, this allowed us to discover trends and lacks of existing gamiication design. The main trend is to

adopt elements based on the Accomplishment core drive, providing positive feedback to the user. Although this

trend is not negative in itself, the negative aspect is the lack of a counterbalance in Avoidance elements which

make the game experience quite unbalanced in most cases. Epic Meaning core drive is also quite often neglected,

with almost no narrative layer in the tools. . Since gamiication is mainly designed to increase engagement and to

make testing activities less stressful and redundant, we argue that the addition of black-hat or punishment-related

aspects of gamiication has not been yet considered by the authors developing gamiied approaches, but since

there is no evidence of its uselessness, future research efort should try to incorporate them.

Even though the gamiied approach can still be considered in its infancy for software testing research, we

found 30 distinct tools in the collected literature. It is worth, however, mentioning that the level of maturity of

the tools is highly variable and ranges from mature tools already empirically evaluated in multiple settings (e.g.,

CodeDefenders) to pure academic prototypes and demonstrators (RQ3.2).

3see the ResearchQuestion sheet at https://doi.org/10.6084/m9.igshare.19804147

ACM Comput. Surv.

30 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

Fig. 16. Number of conflicting benefits and drawbacks of gamified testing by category

Pros and Cons of Gamiication. Many studies among the collected sources analysed the beneits and

drawbacks introduced by gamiication in the testing practice. Among the beneits and drawbacks, we identiied

three factors that were mentioned in both directions: user experience, efectiveness, and eiciency. When

discussing the drawbacks, the sources also mentioned diiculties in design and implementation, which were

not mentioned explicitly among the beneits. Since the sources often provided little details on the analyzed case

studies, to provide a general balance between pros and cons, we simply counted the number of sources that

reported the given common factors as either beneits or drawbacks. Figure 16 summarizes graphically the number

of mentions for each of the factors, by type of literature. A better User Experience is the most reported beneit,

with 96 claims in this regard, while only 24 papers mention bad user experience as a drawback of gamiied testing.

The same kind of proportion is also found regarding the efectiveness of a gamiied environment (44 claims in

favor, 12 against). By contrast, more discordant opinions are found regarding eiciency (20 claims in favor, 14

against).

These indings show that there is little disagreement about the better User Experience obtained when gamiica-

tion is applied to software testing. Negative opinions can also be observed in the literature: this contrast should

not discourage researchers since, being Gamiication a user-centered technique, it can be considered normal that

the way it is perceived can vary in diferent studies, domains, and practices. A higher disagreement is found when

considering the enhancement of efectiveness provided by Gamiication. We attribute this disagreement to the

dependence of the measurement of efectiveness in the practical domain where Gamiied testing is applied (e.g.,

efectiveness might refer to bugs found, coverage reached, test cases produced, and so on). In this respect, we

highlight the need for a uniied metrics framework to assess efectiveness.Positive opinions overcome negative

opinions also for eiciency - however in this aspect opinions are even more contrasting. We argue that building

and maintaining a gamiied environment typically constitutes a signiicant overhead in the software testing

process, and it is reasonable that no unequivocal opinion can be found about such necessary overhead. We,

therefore, highlight the need for further investigations into the eiciency provided by Gamiication in future

research activities.

Future Challenges for Gamiication. Among the future challenges for academic researchers and industry

players in the ield of software testing, there is a general consensus about the need for a more thorough evaluation

and experimentation of gamiied mechanics in real-world settings. These evaluations are required since often

the reported results refer to preliminary evaluation. Experts are also required to be involved in such validations,

both to determine if the efects observed with students also apply to practitioners, and to clarify if the results

reached are considered valid by the testers’ community. The category Design improvements denotes the fact

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 31

that tools are often developed iteratively by learning from the errors, without a systematic approach. Diferently,

Implementation improvements show that, even if many attempts have positive results, there is room for features

and variations of gamiied software testing in other contexts and domains.

Future research and practical direction regarding this topic should include:

• The deinition of a set of uniied and unambiguous metrics to properly assess the efectiveness and eiciency

of subjects, considering all the possible aspects of software testing (i.e. using the samemetric when assessing

one dimension in the same way).

• Longitudinal experiments, in order to ascertain how exposing testers to gamiied environments over a

longer period of time afects the beneits found on their irst experience.

.

5.1.4 White Literature vs. Grey Literature. Comparing eforts from academia and industry in the ield of gamiied

software testing can be performed in two ways: irstly, comparing white literature items (mostly associated

with the academia) with grey literature items (mostly including industry-related content). Secondly, comparing

theoretical with practical dissertations.

The comparison between white and grey literature does not show notable diferences, as from the results we

can state that researchers and practitioners follow roughly the same trend. Regarding test phases, both WL and

GL focus mostly on test creation and test execution; the test levels that are addressed the most are almost equally

unit and system testing; also the adopted gamiication aspects follow a similar distribution.

The main diference that we observe between WL and GL items concerns the relative proportion of two

mechanics categories: social inluence and unpredictability; the former being relatively more common in WL

and the latter in GL. Another minor diference that we highlight is in the testing methodologies adopted, where

exploratory testing and capture and replay have been considered more for practical usage than for research.

Considering Grey Literature in our inal pool of literature items, we included three tools, one possible advantage

of gamiication, and two future challenges that were not signalled in white literature.

By analysing the type of literature items discussing gamiied software testing (either WL or GL) we notice

that the main types of contributions consist of tool presentations and experiments. Literature items providing

guidelines and frameworks are scarce, and typically provide experience-based analyses and not empirical results.

General discussions are mainly found in grey literature, hypothesizing possible beneits or providing clues on

how to apply gamiication to testing activities. All this evidence supports our conclusion that the application

of gamiication to testing is still in an immature phase, without consolidated practice or well-rooted empirical

evidence.

5.1.5 Comparison with existing secondary studies. The results and discussion presented in this paper expand the

existing state of the art, by complementing the outcome of previous similar secondary studies. In particular, with

respect to Mäntylä and Smolander [36], we included ifty more recent additional sources. This allowed us to ind

a larger set of game elements; we provided a deeper testing-related characterization by decomposing testing into

seven dimensions. We also found a meta-analysis of the discussed indings and challenges, providing updated

clues for those who will approach the topic in the future.

Comparing our work to de Jesus et al. [14], we included 58 additional literature items containing also grey

literature, thanks to the multivocal nature of our study and the usage of both backward and forward snowballing

activities, which were missing in [14]. We expanded the authors’ testing characterization from three to seven

testing dimensions (including the testing tools used, the target language, the domain, and the goals, whether

practical or educational), providing a new point of view and new data to be analyzed. Our game characterization

included 13 more game elements, plus a link to Octalysis’ core drives. Another diference is that they focused

ACM Comput. Surv.

32 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

on the goals that each paper had in applying gamiication to testing, while we considered the stated outcomes

grouped in beneits and drawbacks, considering also the open challenges presented by authors.

Our results include several new tools and frameworks that were not covered by previous secondary studies.

However, we notice that most of the contributors of such tools and frameworks have a practical focus and provide

few empirical results and validations; as well as they lack theoretical discussion required to establish consolidated

methodologies for gamiied software testing. With the current manuscript, we expand the previously presented

views on the currently-available instrumentation for gamiied software testing, hopefully providing inputs for

future comparative investigations.

5.2 Threats to Validity

5.2.1 Threats to Construct validity. Threats to Construct validity for a Literature Review concern possible issues

in reaching full coverage of the spectrum of all the studies related to the chosen topic. This study mitigated

that threat by identifying ive essential sources of white literature studies that we required to be present in the

retrieved pool of sources coming from the used search string in the diferent repositories. Namely, we selected

the following items of literature:

• Gamiication of software testing by Fraser et al. [20]

• Is It Worth Using gamiication on Software Testing Education? An Experience Report by De Jesus et al. [WL16]

• Code Defenders: A Mutation Testing Game by Rojas et al. [WL05]

• A framework for gamiication in software engineering by Garcia et al. [WL01]

• Gamiication-based cyber-enabled learning environment of software testing by Fu et al. [WL13]

We decided to train our search string iteratively until the essential sources were found. This process required

only one iteration. Despite its importance, one of the essential sources was not included in the inal pool of

sources due to the exclusion criterion allowing only primary studies in the selection. This does not represent a

threat, as these studies were used to test the search strings.

Grey literaturewas also considered to include gamiication tools, gamiication frameworks, and related empirical

evaluations that are not presented in peer-reviewed papers.

For both white and grey literature, we applied a reproducible methodology based on established guidelines.

To broaden the research as much as possible, we included the most commonly used terms in the search strings,

as well as the main synonyms already used in other SLRs, as seen in section 2.4. However, it is still possible

that some terms describing other relevant works in the literature may have been overlooked. Regarding grey

literature, there is a possibility that literature items about relevant tools and frameworks have not been included

in the analysis because of the inability to access the documents.

5.2.2 Threats to Internal validity. Threats to Internal validity are those related to the data extraction and synthesis

phases of the Literature Review. All the primary sources resulting from the search strings application were read

and evaluated by all authors and collaborators of this study to assess their quality. When in doubt about the

decision to include a resource or not, the inal decision was taken by a majority vote. The authors also applied

inclusion and exclusion criteria and extraction the information to answer the Review Questions of the study.

Hence, the validity of the study is threatened by possible errors in the author’s judgment when examining the

sources and/or misinterpretations of the original content of the papers. This threat was mitigated by multiple

readings of the same sources and discussion among the authors about potential disagreements during the review

phase.

5.2.3 Threats to External validity. Threats to External validity concern the generalisability of the indings of the

Literature Review. We scoped our research to gamiication applied to software testing. We also included in our

search literature items in the general ield of Software Engineering, but that showed clear applicability to software

ACM Comput. Surv.

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 33

testing. We can not estimate the generalisability of our indings to the application of gamiication to software

engineering activities other than software testing. As well, very speciic gamiication tools and mechanics, testing

tools or domains can exhibit beneits and drawbacks that have been not found in our analysis.

6 CONCLUSION AND FUTURE WORK

In the present work we deined, conducted, and documented the results of a Multivocal Systematic Literature

Review applied to the ield of gamiication in software testing. The literature items considered were published

between 2010 and the irst quarter of 2022. We provide three main contributions: a mapping of the type of sources

available in the literature; a characterisation of the testing-focused gamiied tools; a game-related characterisation

with the goal of describing all the gamiied mechanics mentioned in literature and their beneits and drawbacks.

Our literature search led us to collect a total of 73 studies (50 from white literature and 23 from grey literature),

bridging the gap with past secondary studies dated 2016 [36] and 2018 [14].

Based on our indings, discussed in section 5, we can state that gamiication represents a promising direction

in the ield of software testing for both research and industry. Well-established gamiication frameworks have

already been deined in other disciplines, and preliminary studies and experience reports in the ield of software

testing have proven that its utilisation can lead to signiicant increases in the engagement and productivity of

software testers. Gamiication is also considered a valid instrument in software testing education.

Gamiied mechanics, however, are by no means a silver bullet; evidence from the literature highlights the need

for careful calibration of the mechanics to implement. Special care must be taken to avoid misalignment with

the main purposes of the testing activities, exploitation by the players, and negative impacts on the eicacy or

eiciency of the gamiied tasks.

On top of our indings, we identify a set of actionable guidelines for diferent stakeholders interested in software

testing gamiication, that we summarise as follows:

• Researchers in the software testing ield may consider the possibility of performing rigorous empirical

assessments of the beneits introduced by the application of gamiied mechanics to existing tools and

practices. Longitudinal case studies are encouraged to verify the transferability of the techniques to the

industrial context;

• Developers of software testing tools should carefully evaluate the mechanics they wish to adopt and they

should follow existing frameworks of mechanics to provide a balanced gamiied experience for software

testers. Gamiication-based approaches should be designed sensibly to match the needs of the speciic

technique and to prevent exploitation by the users with the ensuing possible reduction of efectiveness;

• Educators are highly recommended to incorporate gamiied approaches in software testing education to

support the execution of activities during the learning process since evidence in the literature suggests a

strong motivating impact of game-like mechanics when adopted in software testing classes.

REFERENCES

[1] 2005. ISO 9001:2005 - Quality management systems - Requirements. Standard. International Organization for Standardization.

[2] Shamsu Abdullahi, Abubakar Zakari, Haruna Abdu, Amina Nura, Musa Ahmed Zayyad, Salisu Suleiman, Alhassan Adamu, and

Abdulfatahu Samaila Mashasha. 2020. Software Testing: Review on Tools, Techniques and Challenges. International Journal of Advanced

Research in Technology and Innovation 2, 2 (2020), 11ś18.

[3] Richard Adams, Palie Smart, and Anne Sigismund Huf. 2017. Shades of grey: guidelines for working with the grey literature in

systematic reviews for management and organizational studies. International Journal of Management Reviews 19, 4 (2017), 432ś454.

https://doi.org/10.1111/ijmr.12102

[4] Carlos Futino Barreto and César França. 2021. Gamiication in Software Engineering: A literature Review. In 2021 IEEE/ACM 13th Inter-

national Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). 105ś108. https://doi.org/10.1109/CHASE52884.

2021.00020

ACM Comput. Surv.

https://doi.org/10.1111/ijmr.12102
https://doi.org/10.1109/CHASE52884.2021.00020
https://doi.org/10.1109/CHASE52884.2021.00020

34 • Tommaso Fulcini, Riccardo Coppola, Luca Ardito, and Marco Torchiano

[5] Fevzi Belli, Nimal Nissanke, Christof J Budnik, and Aditya Mathur. 2005. Test generation using event sequence graphs. University of

Paderborn, Institute for Electrical Engineering and Information Technology (2005).

[6] Stefan Berner, Roland Weber, and Rudolf K Keller. 2005. Observations and lessons learned from automated testing. In Proceedings of the

27th international conference on Software engineering. 571ś579.

[7] Jenny Bittner and Jefrey Schipper. 2014. Motivational efects and age diferences of gamiication in product advertising. Journal of

Consumer Marketing 31 (08 2014), 391ś400. https://doi.org/10.1108/JCM-04-2014-0945

[8] Andreas Bruns, Andreas Kornstadt, and Dennis Wichmann. 2009. Web application tests with selenium. IEEE software 26, 5 (2009), 88ś91.

[9] Ilaria Caponetto, Jefrey Earp, and Michela Ott. 2014. Gamiication and education: A literature review. In European Conference on Games

Based Learning, Vol. 1. Academic Conferences International Limited, 50.

[10] Yu-Kai Chou. 2015. Actionable Gamiication: Beyond Points, Badges, and Leaderboards. Createspace Independent Publishing Platform.

https://books.google.it/books?id=jFWQrgEACAAJ

[11] Peter John Clarke, Andrew Allen, Tariq King, Edward Jones, and Prathiba Natesan. 2010. Using a Web-Based Repository to Integrate

Testing Tools into Programming Courses. In Proceedings of the ACM International Conference Companion on Object Oriented Programming

Systems Languages and Applications Companion (OOPSLA ’10). Association for Computing Machinery, 193ś200. https://doi.org/10.1145/

1869542.1869573

[12] Peter John Clarke, Debra Davis, Tariq King, Jairo Pava, and Edward Jones. 2014. Integrating Testing into Software Engineering

Courses Supported by a Collaborative Learning Environment. ACM Trans. Comput. Educ. 14, 3, Article 18 (oct 2014), 33 pages.

https://doi.org/10.1145/2648787

[13] Andrei Contan, Catalin Dehelean, and Liviu Miclea. 2018. Test automation pyramid from theory to practice. In 2018 IEEE International

Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 1ś5.

[14] Gabriela Martins de Jesus, Fabiano Cutigi Ferrari, Daniel de Paula Porto, and Sandra Camargo Pinto Ferraz Fabbri. 2018. Gamiication in

Software Testing: A Characterization Study. In Proceedings of the III Brazilian Symposium on Systematic and Automated Software Testing

(SAST ’18). Association for Computing Machinery, New York, NY, USA, 39ś48. https://doi.org/10.1145/3266003.3266007

[15] Anca Deak, Tor Stålhane, and Guttorm Sindre. 2016. Challenges and strategies for motivating software testing personnel. Information

and Software Technology 73 (2016), 1ś15. https://doi.org/10.1016/j.infsof.2016.01.002

[16] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. c. In Proceedings of the 15th International Academic MindTrek

Conference: Envisioning Future Media Environments (MindTrek ’11). Association for Computing Machinery, New York, NY, USA, 9ś15.

https://doi.org/10.1145/2181037.2181040

[17] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travassos. 2007. A survey on model-based testing approaches:

a systematic review. In Proceedings of the 1st ACM international workshop on Empirical assessment of software engineering languages and

technologies: held in conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007. 31ś36.

[18] Michael Ellims, James Bridges, and Darrel C Ince. 2006. The economics of unit testing. Empirical Software Engineering 11, 1 (2006), 5ś31.

[19] René Eppmann, Magdalena Bekk, and Kristina Klein. 2018. Gameful Experience in Gamiication: Construction and Validation of a

Gameful Experience Scale [GAMEX]. Journal of Interactive Marketing 43 (2018), 98ś115. https://doi.org/10.1016/j.intmar.2018.03.002

[20] Gordon Fraser. 2017. Gamiication of Software Testing. In 2017 IEEE/ACM 12th International Workshop on Automation of Software Testing

(AST). 2ś7. https://doi.org/10.1109/AST.2017.20

[21] Gabriel García-Mireles and Miguel Ehecatl Trujillo. 2020. Gamiication in Software Engineering: A Tertiary Study. 116ś128. https:

//doi.org/10.1007/978-3-030-33547-2_10

[22] Vahid Garousi, Michael Felderer, and Tuna Hacaloğlu. 2017. Software test maturity assessment and test process improvement: A

multivocal literature review. Information and Software Technology 85 (2017), 16ś42. https://doi.org/10.1016/j.infsof.2017.01.001

[23] Vahid Garousi, Michael Felderer, Marco Kuhrmann, and Kadir Herkiloğlu. 2017. What industry wants from academia in software

testing? Hearing practitioners’ opinions. In Proceedings of the 21st International Conference on Evaluation and Assessment in Software

Engineering. 65ś69.

[24] Vahid Garousi, Michael Felderer, and Mika Mäntylä. 2019. Guidelines for including grey literature and conducting multivocal literature

reviews in software engineering. Information and Software Technology 106 (2019), 101ś121. https://doi.org/10.1016/j.infsof.2018.09.006

[25] Vahid Garousi, Michael Felderer, and Mika Mäntylä. 2019. Guidelines for including grey literature and conducting multivocal literature

reviews in software engineering. Information and Software Technology 106 (2019), 101ś121. https://doi.org/10.1016/j.infsof.2018.09.006

[26] Vahid Garousi and Mika Mäntylä. 2016. When and what to automate in software testing? A multi-vocal literature review. Information

and Software Technology 76 (2016), 92ś117. https://doi.org/10.1016/j.infsof.2016.04.015

[27] Spencer E Harpe. 2015. How to analyze Likert and other rating scale data. Currents in pharmacy teaching and learning 7, 6 (2015),

836ś850.

[28] Mary Jean Harrold. 2000. Testing: A Roadmap. In Proceedings of the Conference on The Future of Software Engineering (ICSE ’00).

Association for Computing Machinery, New York, NY, USA, 61ś72. https://doi.org/10.1145/336512.336532

[29] Itti Hooda and Rajender Singh Chhillar. 2015. Software test process, testing types and techniques. International Journal of Computer

Applications 111, 13 (2015).

ACM Comput. Surv.

https://doi.org/10.1108/JCM-04-2014-0945
https://books.google.it/books?id=jFWQrgEACAAJ
https://doi.org/10.1145/1869542.1869573
https://doi.org/10.1145/1869542.1869573
https://doi.org/10.1145/2648787
https://doi.org/10.1145/3266003.3266007
https://doi.org/10.1016/j.infsof.2016.01.002
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1016/j.intmar.2018.03.002
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1007/978-3-030-33547-2_10
https://doi.org/10.1007/978-3-030-33547-2_10
https://doi.org/10.1016/j.infsof.2017.01.001
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2016.04.015
https://doi.org/10.1145/336512.336532

Tools, Mechanics, Benefits, and Challenges of Gamified Sotware Testing • 35

[30] Juha Itkonen, Mika V Mantyla, and Casper Lassenius. 2009. How do testers do it? An exploratory study on manual testing practices. In

2009 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE, 494ś497.

[31] Samireh Jalali and Claes Wohlin. 2012. Systematic literature studies: database searches vs. backward snowballing. In Proceedings of

the 2012 ACM-IEEE international symposium on empirical software engineering and measurement. IEEE, IEEE Computer Society, Los

Alamitos, CA, USA, 29ś38. https://doi.org/10.1145/2372251.2372257

[32] Joseph Kiniry and Daniel Zimmerman. 2008. Secret Ninja Formal Methods. In FM 2008: Formal Methods. Springer Berlin Heidelberg,

214ś228. https://doi.org/10.1007/978-3-540-68237-0_16

[33] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software engineering. (2007).

[34] Richard N Landers, Elena M Auer, Andrew B Collmus, and Michael B Armstrong. 2018. Gamiication science, its history and future:

Deinitions and a research agenda. Simulation & Gaming 49, 3 (2018), 315ś337.

[35] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous, Evolutionary and Large-Scale: A New Perspective

for Automated Mobile App Testing. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME). 399ś410.

https://doi.org/10.1109/ICSME.2017.27

[36] Mika Mäntylä and Kari Smolander. 2016. Gamiication of Software Testing - An MLR. In Product-Focused Software Process Improvement.

Springer International Publishing, 611ś614. https://doi.org/10.1007/978-3-319-49094-6_46

[37] Gursimran Singh Walia Mourya Reddy Narasareddy Gari and Alex David Radermacher. 2018. Gamiication in Computer Science

Education: a Systematic Literature Review. In 2018 ASEE Annual Conference & Exposition. ASEE Conferences, Salt Lake City, Utah.

https://peer.asee.org/30554.

[38] Lennart E Nacke and Christoph Sebastian Deterding. 2017. The maturing of gamiication research. Computers in Human Behaviour

(2017), 450ś454.

[39] Stanislava Nedyalkova and Jorge Bernardino. 2013. Open source capture and replay tools comparison. In Proceedings of the International

C* Conference on Computer Science and Software Engineering. 117ś119.

[40] Nicholas O’Donnell, Dennis Kappen, Zachary Fitz-Walter, Sebastian Deterding, Lennart Nacke, and Daniel Johnson. 2017. How

Multidisciplinary is Gamiication Research? Results from a Scoping Review. In Extended Abstracts Publication of the Annual Symposium

on Computer-Human Interaction in Play (CHI PLAY ’17 Extended Abstracts). Association for Computing Machinery, New York, NY, USA,

445ś452. https://doi.org/10.1145/3130859.3131412

[41] Rodney Ogawa and Betty Malen. 1991. Towards rigor in reviews of multivocal literatures: Applying the exploratory case study method.

Review of educational research 61, 3 (1991), 265ś286. https://doi.org/10.3102/00346543061003265

[42] Oscar Pedreira, Félix García, Nieves Brisaboa, and Mario Piattini. 2015. Gamiication in software engineering ś A systematic mapping.

Information and Software Technology 57 (2015), 157ś168. https://doi.org/10.1016/j.infsof.2014.08.007

[43] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic Mapping Studies in Software Engineering. In

EASE’08. BCS Learning & Development Ltd., Swindon, GBR, 68ś77. https://doi.org/10.14236/ewic/EASE2008.8

[44] Karen Robson, Kirk Plangger, Jan Henrik Kietzmann, Ian McCarthy, and Leyland Pitt. 2015. Is it all a game? Understanding the principles

of gamiication. Business Horizons 58, 4 (2015), 411ś420. https://doi.org/10.1016/j.bushor.2015.03.006

[45] Olivia Rodríguez-Valdés, Tanja EJ Vos, Pekka Aho, and Beatriz Marín. 2021. 30 years of automated GUI testing: a bibliometric analysis.

In International Conference on the Quality of Information and Communications Technology. Springer, 473ś488.

[46] Richard Ryan and Edward Deci. 2000. Self-determination theory and the facilitation of intrinsic motivation, social development, and

well-being. American psychologist 55, 1 (2000), 68. https://doi.org/10.1037/0003-066X.55.1.68

[47] Joachim Schöpfel and Dominic Farace. 2010. Grey Literature in Library and Information Studies. Encyclopedia of Library and Information

Sciences (2010), 2029ś2039.

[48] Swapneel Sheth, Jonathan Bell, and Gail Kaiser. 2011. HALO (Highly Addictive, Socially Optimized) Software Engineering. In Proceedings

of the 1st International Workshop on Games and Software Engineering (GAS ’11). Association for Computing Machinery, New York, NY,

USA, 29ś32. https://doi.org/10.1145/1984674.1984685

[49] Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. 2012. Using peer review to teach software testing. In Proceedings of the ninth

annual international conference on International computing education research. 93ś98.

[50] StackSocial. 2014. The most popular coding language at top US universities. http://blog.stacksocial.com/popular-coding-language/

Accessed: 2022-10-5.

[51] Philipp Straubinger and Gordon Fraser. 2022. Gamekins: Gamifying Software Testing in Jenkins. abs/2202.06562 (2022), 85ś89.

https://doi.org/10.1145/3510454.3516862

[52] Mark Utting and Bruno Legeard. 2010. Practical model-based testing: a tools approach. Elsevier.

[53] James A Whittaker. 2009. Exploratory software testing: tips, tricks, tours, and techniques to guide test design. Pearson Education.

ACM Comput. Surv.

https://doi.org/10.1145/2372251.2372257
https://doi.org/10.1007/978-3-540-68237-0_16
https://doi.org/10.1109/ICSME.2017.27
https://doi.org/10.1007/978-3-319-49094-6_46
https://doi.org/10.1145/3130859.3131412
https://doi.org/10.3102/00346543061003265
https://doi.org/10.1016/j.infsof.2014.08.007
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.1016/j.bushor.2015.03.006
https://doi.org/10.1037/0003-066X.55.1.68
https://doi.org/10.1145/1984674.1984685
http://blog.stacksocial.com/popular-coding-language/
https://doi.org/10.1145/3510454.3516862

